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I dedicate this book to my parents, Dorothy and Van, who 
first gave me tools. 

And I dedicate this book to those readers who, expecting 
wonders to follow so grand a title as it flaunts, may feel 
cheated by its actual content. I will be delighted if you take this 
beginning as a serious challenge. 



Preface 

As 1 review these pages, the last of them written in Summer 1978, some retrospec
tive thoughts come to mind which put the whole business into better perspective for me 
and might aid the prospective reader in choosing how to approach this volume. 

The most conspicuous thought in my mind at present is the diversity of wholly 
independent explorations that came upon phase singularities, in one guise or another, 
during the past decade. My efforts to gather the published literature during the last 
phases of actually writing a whole book about them were almost equally divided 
between libraries of Biology, Chemistry, Engineering, Mathematics, Medicine, and 
Physics. 

A lot of what 1 call "gathering " was done somewhat in anticipation in the form of 
cönjecture, query, and prediction based on analogy between developments in different 
fields. The consequence throughout 1979 was that our long-suffering publisher re
peatedly had to replace such material by citation of unexpected flurries of papers giving 
substantive demonstration. 1 trust that the authors of these many excellent reports, and 
especially of those I only found too late, will forgive the brevity of allusion I feIt 
compelled to observe in these substitutions. A residue of loose ends is largely collected 
in the index under "QUERIES." 

It is c1ear to me already that the materials I began to gather several years ago 
represented only the first flickering of what turns out to be a substantial conflagration. 
According, I took a liberty with the reference list. You will notice that about 30% of its 
entries are not to be found in the page index of publications cited. That is because they 
are not explicitly cited. Readers who like to browse will easily find these extra papers: 
they lie among papers on similar topics by much-cited authors. They lead in the 
directions of significant expansion. 

And what comes next? Well, one never knows; that is half the fun of doing science. 
But one inevitable development is especially conspicuous by its absence here. In fact, 
the original 30 chapters came down to 23 in purging it for a later volume. You will find 
here almost no mention of rhythmic driving of biological dynamics. Plainly that must 
contain the essence of any practical application, be it in hormonal gating of cell 
division, in cardiac or gastric pacemaking, or in agricultural photoperiodism. Many 
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surprises await discovery in connection with alternative modes of entrainment, the 
consequences of synchronization, and evolution in periodic environments. This topic is 
the natural successor to the present volume on autonomous periodicity. It is now 
undergoing rapid development, mainly at the hands of neurobiologists, mathemati
cians, and engineers, and will be riper for harvest a few years hence. 

It has been my good fortune to visit lively investigators in many laboratories. I have 
been stimulated by early exposure to their discoveries (which fill out so much of the 
following chapters), and their critical attention to my own seminars has refined into 
presentable form most of what is presented here. But I have never found an opportunity 
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tion. I suspect that substantial improvements of content and clarity as weil s significant 
new directions would inevitably emerge through contact with students who are eager 
and ready to study living systems in a mathematical spirit. That is a hard clientele to 
locate; I could use some help. 

I wish you good reading and wish you to send me marginal notations to collect on 
my copy. Who knows? There might even be a second edition. 

April 1980 Arthur Winfree 
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Imagine that we are living on an intricately patterned carpet. It mayor may not 
extend to infinity in all directions. Some parts of the pattern appear to be 
random, like an abstract expressionist painting; other parts are rigidly geometri
cal. A portion of the carpet may seem totally irregular, but when the same 
portion is viewed in a larger context, it becomes part of a subtle symmetry. 

The task of describing the pattern is made difficult by the fact that the carpet 
is protected by a thick plastic sheet with a translucence that varies from place to 
place. In certain places we can see through the sheet and perceive the pattern; in 
others the sheet is opaque. The plastic sheet also varies in hardness. Here and 
there we can scrape it down so that the pattern is more cIearly visible. In other 
places the sheet resists all efforts to make it less opaque. Light passing through 
the sheet is often refracted in bizarre ways, so that as more of the sheet is 
removed the pattern is radically transformed. Everywhere there is a mysterious 
mixing of order and disorder. Faint Iattices with beautiful symmetries appear to 
cover the entire rug, but how far they extend is anyone's guess. No one knows 
how thick the plastic sheet iso At no place has anyone scraped deep enough to 
reach the carpet's surface, if there is one. 

Martin Gardner 
Sei. Amer. 
March 1976, p. 119 



Introduction 

Ubi materia, ibi geometria 

J. Kepler 

This is a story about dynamics: about change, flow, and rhythm, mostly in 
things that are alive. My basic outlook is drawn from physical chemistry, with its 
state variables and rate laws. But in living things, physical and chemical mecha
nisms are mostly quite complex and confusing, if known at all. So I'm not going 
to deal much in mechanisms, nor even in cause and effect. Instead I will adopt the 
attitude of a naturalist-anatomist, describing morphology. The subject matter 
being dynamics, we are embarked upon a study of temporal morphology, of shapes 
not in space so much as in time. But by introducing molecular diffusion as a 
principle of spatial ordering, we do come upon some consequences of temporal 
morphology for the more plainly visible shapes of things in space. 

This is a story about dynamics, but not about a11 kinds of dynamics. It is mostly 
about processes that repeat themselves regularly. In living systems, as in much of 
mankind's encrgy-handling machinery, rhythmic return through a cycle of change 
is an ubiquitous principle of organization. So this book of temporal morphology 
is mostly about circles, in one guise after another. The word phase is used (over 
1,200 times) to signify position on a circle, on a cycle of states. Phase provides us 
with a banner around which to rally a welter of diverse rhythmic (temporal) or 
periodic (spatial) patterns that lie close at hand a11 around us in the natural world. 
I will draw your attention in particular to "phase singularities": peculiar states or 
pi aces where phase is ambiguous but plays some kind ofa seminal, organizing role. 
For example in a chemical solution a phase singularity may become the source of 
waves that organize reactions in space and time. 

This book is intended primarily for research students. Readers who come to it 
seeking crystallized Truth will go away irritated. I suspect that the most satisfied 
readers will be those who come with revisionist intentions, seeking the frayed ends 
of new puzzles and seeking outright errors that might lead to novel perspectives. 
I am confident that you will find plenty of both, since this project has ramified into 
more specialty areas than I can keep abreast of, ranging from topology through 
biochemistry. I've done a11 I can to eliminate nonsense from earlier drafts, with 
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indispensable help from my very critical friends, especially Herman Gordon and 
Richard Krasnow. But the material is kaleidoscopic. As long as I work at it, the 
pieces keep rearranging themselves into tantalizing new patterns. Most of these 
dissolve under continued scrutiny but more remain than I can pursue. I have 
chosen to lay them out in the one-dimensional way inevitable to written com
munication as follows. 

This volume has two roughly equal parts. The first half mainly develops a few 
themes in an order natural to the fundamental concepts involved. The second half 
is organized more like a "dramatis personae". I call it the Bestiary. It teIls about 
the organisms or other experimental systems from which the conceptual themes 
arose. In more detail: 

Experiments with docks and maps constitute the principal theme ofthis book. 
Phase singularities figure prominently in these experiments. Secondary themes will 
be played through again and again in different contexts: the progression from 
dynamics in a single unit (a cell, an organism, a volume element) to collective 
dynamics in populations of independent units, then to populations of promis
cuously interacting units, and to populations arranged in space with interaction 
restricted to immediate neighbors (as by molecular diffusion). New phenomena 
emerge at each level. 

Apart from those themes, the material gathered here may at first seem to have 
few unifying features. I have chosen ex am pies from a diversity of living organisms 
and nonliving experimental models. Each recurs in several places, illustrating 
different points. Our trial through this jungle of exotic flowers intersects itself in 
several places as these themes surface again and again in new combinations, in 
new experimental contexts. 

The material is handled in three ways: 

1. A single thread of text proceeds through the first half of the book under 
10 chapter headings. By the following two devices this part is kept as lean as 
possible to enable the reader to scoot through for perspective before choosing 
where to invest more critical thought. 

2. Along the way, frequent allusion is made to endosed "boxes" offiner print, 
each el abo rating a particular point, raising questions for exercise or research, or 
offering an anecdote. These stand aside from the main thread of text like scenic 
overlooks along the toll road. I think they contribute interest and perspective, but 
you may want to pass over them until you locate the chapters dosest to your 
particular interests. 

3. The second half of the book is a Bestiary of 13 chapters about particular 
experimental systems. These provide background facts about the organisms or 
phenomena most frequently alluded to in the first half of the book. These might 
be the most interesting chapters for readers with little use for theories and models 
and for readers unfamiliar with the experimental laboratory. I had to put one or 
the other perspective first and naturally some people think I should have chosen 
the other way around. I think that only your taste should determine wh ether you 
read this Bestiary first, or the preceding abstract notions that inter-relate its 
contents. 
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The whole is sandwiched between a table of contents and an extensive bibIi
ography. 

In your first glance through these pages you will notice a mathematical ftavor 
about some topics. Though my aim is to avoid mathematical "models" wherever 
possible, some reasoning with symbols seems inevitable to this subject matter. 
Mathematics enters in four ways: 

1. Simply using numbers to quantify experimental data for presentation as 
graphs and for comparison with quantified ideas about their meaning ("models"). 

2. Using digital computer languages to implement data handling and to 
extract implications from numerical statements of an hypothesis. For example, 
I might assurne that in some useful approximation cells divide when some con
stantly synthesized substance accumulates to a critical concentration, and digitally 
seek the implications for a compact tissue in which this substance leaks between 
adjacent cells. 

3. U sing standard undergraduate mathematics to extract such implications 
when conjectures can be formulated in terms tractible to geometry, elementary 
differential equations, and so on. I've made a big effort to avoid mathematical 
equations. This is only in part because I seldom manage to get equations right. 
My deeper motivation is a feeling that numerical exactitude is alien to the diversity 
of organic evolution, and pretense of exactitude often obscures the qualitative 
essentials that I find more meaningful. My aim is to get those right first. And that 
purpose seems better served by words and pictures supplemented by occasional 
numerical simulations and lots of experimental measurements. 

4. Employing a little ofthe language oftopologists in an effort to extract from 
models or from observations what seems to be the essence oftheir behavior, inde
pendent of quantitative variations. Such efforts are fraught both with technical 
difficulties and with the ever present danger of extracting mathematically trivial 
tautologies while discarding as "mere quantitative variations" all that is of factual 
interest about a particular phenomenon. Nonetheless, I believe such efforts con
stitute an indispensable prelude to explanation: "Wh at is the phenomenon to be 
explained, as distinct from incidentals to be glossed over? What aspects require 
explanation in terms of empirical cause and effect, and what aspects are merely 
mathematical conseq uences of facts already known?" 

It is my belief that the life sciences in particular have much to gain from, and 
perhaps something to contribute to, mathematical developments in the general 
area of topology. I wish the reader to consider this. Thus I will dwell on such 
topological notions as I have found useful in designing experiments and in inter
preting their results. From heuristic beginnings, my own efforts seI dom go far 
toward logical rigor, yet I have found much satisfaction in the fruitful dialog 
between theory and experiment that this approach has fostered. 

We turn now to the simplest abstractions about "rhythms," "cydes," and 
"docks," with a few examples. Examples are merely mentioned here, pending their 
fuller description in later chapters, where the context is riper. 



1. Circular Logic 

Philosophy is written in this great book-by whieh I mean the universe
whieh stands always open to our view, but it eannot be understood unless 
one first learns how to eomprehend the language and interpret the symbols 
in whieh it is written, and its symbols are triangles, eircles, and other geometrie 
figures, without whieh it is not humanly possible to eomprehend even one 
word of it; without these one wanders in a dark labyrinth. 

Galileo Galilei, 1623 

My objective for this chapter is to draw your attention to a few peculiarities 
inherent in the logic of periodic functions. I find a visual approach the most fruitful 
for thinking about such matters. As the pictures involved consist mainly of map
pings between circles and products of circles, I must first say a few words about the 
notions of topological spaces and mappings. This chapter thus has four sections: 

A. Spaces, with emphasis on rings (i.e., closed loops. To avoid the more exact 
connotations of the word circle I use ring, trusting the reader do not confuse my 
meaning with algebraic rings.) 

B. Mappings, with emphasis on the winding number of mappings to a ring 

C. Phase singularities of maps (Parts land II), with emphasis on the con
sequences of a nonzero winding number 

D. Technical details on the application of circular logic to biological rhythms 

The next chapter goes on to examine experimental examples of mappings to 
the ring that contain phase singularities. Discussion specifically focusing on the 
physical nature of phase singularities in each ca se is reserved to Chapter 10. 

A: Spaces 

As used in this book, a topological space is a collection of points connected in 
some way. Spaces are distinguished by the distinctive manner in which these con
nections are made, i.e., by the rules which associate to any given point an immediate 
neighborhood of other points. Six examples foIlow: 
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1. The real number axis, denoted by IR 1, is a topological space. Each real 
number lies arbitrarily close to a slightly bigger number and a slightly sm aller 
number. This ordering of points stretches from minus infinity to plus infinity or 
from zero to infinity, as in rays from an origin. Any endless open line or curve 
that does not cross itself is topologically equivalent to IR I. The great majority of 
familiar variables of concern in science and in schools are represented by real 
numbers: time, chemical concentration, temperature, energy, etc. A finite interval 
of IR 1 is called ~ I. Geneticists, for example, derive from breeding experiments a 
number between 0 and ! that teils how far apart any two genes are along the 
chromosome to which both belong. The space of genetic map distances is thus ~ I. 
(For interesting exceptions, see Example 4 below.) 

The variables of concern in this volume are of a fundamentally different sort 
(Example 4). 

2. The unlimited two-dimensional space of plane geometry, denoted 1R2 , is 
another topological space. Its connectivity is richer in that points can be neighbors 
without being greater or less than each other. There are two dimensions, a north
south axis in addition to an east-west axis. This is the space of complex numbers or, 
ifyou like, pairs ofnumbers. It is the topological product oftwo independent 1R1's 
(e.g., two perpendicular real number axes), thus the notation 1R1 x IR! = §2. A 
finite section of a two-dimensional space, a bed sheet or a blackboard, for instance, 
is topologically equivalent to ~! X ~ 1 = [2, and is also equivalent to the unit disk 
[[j)2, whose boundary is the unit circle §l to be considered below. 

3. In three-dimensional space the neighborhood relationship is richer still: 
Points can be distinguishable neighbors even when identical in respect to east-west 
and north-south position. Unbounded three-dimensional space is denoted by 
IR! x 1R 1 X 1R 1 = 1R 3 . A cubical chunk of it is ~3 (the product of three intervals). 
Asolid spherical chunk of it, a ball, is denoted §3. Topologically, §3 and ~3 are 
equivalent (just round off the cube's corners). 

4. Returning to one-dimensional spaces, consider the isolated segment ~ I. 

By joining together (or identifying, as topologists would say) the ends of the line 
segment, one forms the circle or ring. The circle is conventionally denoted §I for 
"one-dimensional sphere," and is of paramount interest in this monograph. All 
closed one-dimensional manifolds are topologically equivalent to § I. 

Several quantities of familiar practical science take their values not on the real 
number axis 1R1 but on the ring §I: angles or compass directions, perceived hues 
of colored objects, orientations of a receptive field of a ganglion cell in the retina, 
and phases in a cycle, such as the time of day or the season of the year. 

Shortly after Lederberg's discovery of sex in bacteria made it possible to apply 
the standard techniques of genetic mapping to bacteria, geneticists encountered 
an amusing dilemma that could only be resolved by abandoning the notion that 
genetic maps are mappings from an observable frequency of certain genetic events 
to a segment ~ 1 of the real line. That assumption implied that there is a unique 
distance between any two genetic loci. The following experiment violated that 
implication. Up until about 1961 it had always been found that ifthree genes lie in 
order ABC (Figure 1) along the genetic map and if a fourth gene D is found to lie 
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(0) (0) 

ABC 

1. Circular Logic 

Figure 1. Three loci on a genetic map assumed topologically 
equivalent 10 li 1. 

in order ADC, then it will neeessarily lie in segment AB or in segment Be. But this 
proved not to be true of baeteria and, later, of viruses! The genetie erosses often 
showed that the genes lay in order DAB or BCD, seemingly ineompatible with the 
view that D is between A and e. More crosses showed that bacterial and viral 
genetie maps have the connectivity of a ring. On a ring, D can lic between A and C 
along any of three ares (Figure 2). The surprising topological diseovery that the 
numerieally constructed genetic map has the connectivity of a ring of course sug
gested that the genetic material is physically ring-shaped. This was eventually 
proved by direct observation of bacterial (Stahl, 1967) and viral (Thomas, 1967) 
chromosomes. 

A 

(0) 

(0) 

(0) 

Figure 2. Three loci on a genetic map assumed topologically 
equivalent to § l 

5. One two-dimensional analog of a ring is the surface 01' a doughnut , alias 
torus, §l x §l = T Z. (The one-dimensional torus T l is the same as §l: a ring.) 
This surface ean be formed by swinging a ring around in a ring perpendicular to its 
plane; such a surface is the product oftwo rings. Each point of TI 2 can be identified 
by giving its position on its two generating circles as two angles or two phases. 
This is the natural space for representing astate given by two independent angles, 
e.g., the space of physiological times, compounded of the hour of the diurnal cycle 
and the season of the annual eycle. 

6. The alert reader may have noted that the produet of § 1 by itself is called 
TZ, not §z. §2 is reserved for the two-dimensional surface of a sphere. The 
conneetivity of § z is natural for representation of directions in three-dimensional 
space, e.g., the orientation of apolar molecule floating in solution, or of a spaee 
shuttle during maneuvers in orbit, or the direction to a star or the position of a 
ship at sea. 

There are many other finite-dimensional topological spaces wh ich in a natural 
way represent the possible values of quantities of concern in experimental science. 
Those listed above constitute a sufficient catalog for our present purposes, so we 
turn now to mappings. 

B: Mappings 

A "map" takes points in one space (the source spaee) to ccrtain points wh ich 
the map identifies as the "corresponding points" in another spaee (the target space). 
This eould be done in a higgledy-piggedly way or it could be done continuously. 
By eontinuous, I mean that suffieiently nearby points in the source space remain 
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y 

Figure 3. A map from one real number axis to another. 

x 

nearby in the target space.! Thus the mapping amounts to a distorted image of 
source space in the target space. The maps we work with in this volume will always 
be continuous, even smooth, except at isolated points or along a speciallocus. Such 
points or loci constitute the main focus of all that folIows. Before proceeding to 
examine such irregularities, you may want to refresh your familiarity with smooth 
maps by reading through the following 14 examples. A good Scientijic American 
reference is M. Shinbrot, 1966. 

1. IR I ~ IR!: Input a number, output a number. This kind of map, a function 
of one variable, is most conveniently portrayed as a graph (Figure 3), depicting, for 
example, the light emission as a function of time in a culture of glowing cells, or 
land elevation above sea level as a function of distance along U.S. Route 90 from 
Chicago. 

Figure 4. A map from the real number axis 10 the plane, geometrically 
viewed in the product space [R3, seen in planar projection. 

2. IR I ~ 1R 2 : Input a number, output a point on a plane. This kind of map maps 
the line onto the plane (Figure 4). It could be represented as an image ofthe source 
space IR I in the product space IR I X 1R 2 = 1R 3 of the source space and the target 
space, as in the first example. Figure 4 is just this three-dimensional plot seen in 
two-dimensional projection. (Any map can be so represented but it becomes 
visually inconvenient except in the very simplest cases.) For example, IR! might 
be time and 1R 2 might be the concentration oftwo substances in a chemical reaction. 
The map then constitutes a "trajectory" of the changing chemical composition. 
(If the reaction is exactly cyc\ic, so that its state in concentration space moves in 
a circ\e, then the map in IR! (time) x 1R 2 (concentrations) looks like a corkscrew or 
helix.) Such trajectories will be useful in Chapter 7. 

I Continuity defined: F(X) is continuous at X = A means that 
1. Fis defined at A. 
2. The limitx_ A F(X) exists. 
3. Thc limit F(Al is the same when X approach es A from any and all directions. 
Such a map is additionally ··smooth" if the rate of change of F as X varies is also continuous. 
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1. Circular Logic 

Figure 5. The X.l' plane is mapped into the uv 
plane (not intended (0 portray specific features 

common in retinotecal maps). 

3. [R2 ---> [R2 (or ~2 ---> ~2 if finite): Input a point on a plane, output a point on 
some other plane (or on some two-dimensional surface topologically equivalent 
to a plane). For example, the source space might be the retina of a frog's eye and 
the target space might be the frog's optic tectum. The map is then the retinotectal 
projection of ganglion cell fibers onto their cortical targets. A convenient trick for 
visualizing such a map (Figure 5) is to rule a co ordinate grid on the source space 
(e.g., retina) and then examine its distorted image in the target space (e.g., tectum), 
or vice versa, as is in fact the habit of visual electrophysiologists (Gaze, 1970; 
Jacobson, 1970). In Chapters 8 and 9, the source space will be a two-dimensional 
disk ofreacting fluid and the target space will be the composition space defined by 
two concentrations. The map is the image ofthe disk in composition space. In this 
format the kinetics of reaction interacting with molecular diffusion turns out to 
be more readily comprehensible than in more familiar formats. We will find many 
occasions throughout this book to think in terms of a two-dimensional medium's 
image in some state space. 

4. [R2 ---> [Rl: Input a point on a plane, output a number. This is a simplified 
version of the preceeding map, in that instead of associating two independent 
numbers with each point in the source space (the plane), we pay attention to only 
one target coordinate. The contour map is a familiar convenience for representing 
such a mapping. Each contour line depicts the locus of points on the plane which 
all map to the same point of the real number axis. In other words, a coordinate 
grid has been ruled on the target space. This "grid" in one dimension consists merely 
of equispaced tick marks. We examine its image in the source space. The grid 
image in the [R2 ---> [R2 maps considered above is just a superposition oftwo contour 
maps, üne für the east-west coordinate in the target spacc, and one für the north
south coordinate. In [R2 ---> [R 1, we deal with only one of these. As an example 
consider the temperature distribution in a sheet of encapsulated liquid crystals 
used for temperature sensing. Each temperature corresponds to a color. The bands 
of color on the plastic sheet constitute a contour map of the temperature field 
showing how the two-dimensional sheet maps onto the temperature axis. Another 
example is the familiar geodetic survey map of any two-dimensional area, showing 
contours of altitude above mean sea level. 

Dimension-reducing maps such as [R2 ---> [Rl correspond in a natural way to 
the process of measurement: Some aspect of a more richly variable phenomenon 
is singled out for attention by such a map, typically by reduction to a single number. 

5. §2 ---> [Rl: Input a direction in space or a point on a sphere, output a num
ber or a point on a line. 
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The principle is the same as above. Examples: the familiar weatherman's con
tour map of barometrie pressure around the globe, or the amplitude of radio 
reception as a function of orientation of an antenna. 

The next four kinds of map involve conversions to and from the circle or ring §!. 

Topologists call the line IR! (for one-dimensional real number) and the circle 
§ 1 (for one-dimensional sphere) because these are very different objects. This 
book exploits the difTerences. 

Few indeed are the instruments of modern science that report back a point on 
a circle (compass, goniometer, circular counters) rather than a point on the line 
(thermometers, volt meters, pH meters). The mainstream of experimental science 
has always flowed along the real number axis IR! and its product spaces. It wasn't 
until 1953 that anyone even went to the trouble to formalize an equivalent of 
Gaussian statistics for observables on § 1 (Gumbel et al., 1953; Greenwood and 
Durand, 1954). Nonetheless, just as the practical mathematics of engineering and 
science is mostly about numbers on the realline, so the practical mathematics of 
things periodic and rhythmic is mostly about points on the circle. 

Figure 6. A map from each point on the ring to its own number 
bet wcen 0 and I. 

? 

o 

6. § 1 ---> ~ 1: Input an angle or a point on a ring, output a number or a point on 
a line segment. 

Such a map is inscribed on every compass and protractor and on the face of 
every clock. Around the circular edge one finds numbers from 0° to 360°, or from 
o to 12 or 24 hours. If each point on the ring maps to a different number, there must 
inevitably bc a discontinuity, e.g., at the point in Figure 6 that maps to 1 or O. 

Note that in this volume I adhere to the navigator's and clock maker's conven
tion when it is necessary to label points on the ring as though they were numbers: 
We go clockwise from north at the top. Mathematicians and the makers of pro
tractors tend to go anticlockwise from east at the right. 

7. § 1 ---> IR 1: Input a point on a circle, output a point on a line. 
The tangent function of trigonometry is an example (Figure 7). It produces a 

number ranging anywhere from - 00 to + 00 depending on the angle given. The 

o X' Ion 2"4> 

Figure 7. i\ two-part map from the ring to thc infinite line. 3;-4 

There is a discontinuity at ±* cyclc. 
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I. Circular Logic 

Figure 8. A map [rom thc real Ilumher axis to the ring, gcomet
ricall y viewed in thc product space. 

act of measuring a biological rhythm might be considered another example of this 
kind of map; given a phase in the organism's daily cyde, there corresponds the 
numerical value of some quantity that we find it convenient to measure, such as a 
diurnally fiuctuating body temperature or a rhythmically varying chemical con
centration or a rate of egg laying, 

8, IR l -4 § l: Input a point on a line, output a point on a cirde, 
An example of such a map is the visual angle between the moon and the sun as 

a function oftime. As the year advances this angle varies through one full monthly 
cycle and repeats itself during the next month and the next and the next. It can be 
thought of geometrically as wrapping the real line (the time axis) around and 
around the circle. As noted above, any map can be thought of as an image of the 
source space in the product of source and target spaces. In this case the product 
space is a cylinder, IR 1 x § I, and the source space's image on the cylinder is a 
helix (Figure 8). 

9. ~ 1 -4 §!: Input a number between 0 and 1, output a point on a circle or ring. 
An example is the inverse of map 6, which necessarily suffers the same discon

tinuity though in reverse: While nearby numbers always map to nearby points on 
the ring, so do some quite different numbers ne ar the extremes ofthe interval. This 
underlies the necessity of an International Date Line (see Box A) and accounts for 
the principal annoying feature of compasses and protractors: We have to remember 
that 3600 is the same as 0". Figure 9 depicts this map as an image of ~ ! in the 
product cylinder ~ 1 x § I. This picture is equivalent to Figure 6. 

Any map to §! can also be colorfully depicted as a contour map on its source 
space using bands of different hues. It is a curious fact of human vision that we 
classify spectral distributions of light in a way that has circular connectivity : 
Red is close to orange is close to yellow is dose to green is dose to blue is close to 
indigo is dose to violet is dose to red is dose to orange .... So the different kinds 
ofmap from any space to §I can be represented by the qualitatively different ways 
to paint that space with different hues. 

Maps to §! are a primary theme of this book. 

10. § 2 -4 § !: Input a point on a sphere, output a point on a cirde. 
A weather depiction ofworldwide wind directions is such a map. Some "homing" 

and migrating birds apparently convert the three-dimensional orientation of the 
earth's magnetic field (which corresponds to a point on a sphere) to a compass 

END-ON SI OE VIEW 

Figure 9. Thc map o[ Figure 6, geometrically 
viewed in thc product space. 
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Box A: The International Date Line 

The roads by wh ich men arrive at their insights into celestial matter 
eem to me almo t a worthy of wonder a tho e matters them elves. 

1. Kepler, A lrollomia ova, 1609 

A xample 6 (§ I ..... 0') suggests, a difficulty arise in trying to reconcile the notion of 
cyc1ic daily time (a point on a dock rim) with the notion of progre sive linear time (in 
a hi tory book). When an a tronaut traces the path of Pan American #2 ea tward from 
San ranci co back to San Franci co in 1 t hour , ftying 200 miles above the ea he 
pa e Ihrough zones oflocal time Ihal advance through one fuH day. So he must arrive 
back over San Francisco 1 t hours later, but in tomorrow! That is not what an observer 
on the ground would say. or would the astronaut. 

The 17 survivors of Mage1lan' expedition around the world were the first to present 
this dilemma for Ihe bewilderment of all Europe. After three years we tward ailing, 
they fir I made contact with uropean civilization again on Wedne day 9 July, 1513 
by ship' log. Bul in Europe il was already Thur day! Pigafetta write (tran laled in 
Tile Fir. 1 Voyage AmI/lid The Wor/d, Hakluyt Society, vol. 52,1874, p. 161): 

In order to ee whether we had kept an exact accounl of the days, we 
charged tho e who wenl a hore 10 a k whal day ofthe week it was, and 
Ihey were told by the Portugue e inhabitant of the i land that it was 
Thur day, which wa a great cause of wondering to u , ince with us it 
was only Wednesday. We could not per uade our elve that we were 
mistaken: and I was more 5urprised than the other, ince having alway 
been in good health, 1 had every day, wilhout intermi ion, written down 
the day that was current. 

According to S. Zweig (Tile Story 0/ Magel/all, Literary Guild of America, ew 
York, 193 ), this phenomenon exeited the humani ts of the sixteenth century with Ihe 
same sense of wonder we feel about the space-time ingularities that our relativily 
theoris(s im pute to black hole, perhap more 0 inasmuch as the missing day was a 
direct human observation. 

So rar a 1 am aware, the young Lewis Carroll (author of Alice in WOllder/alld) wa 
the fir t to ugge t wh at 10 do about it, in a whim ical e ay in The ReclOry Umbre/la 
publi hed aboul 1850 (reprinted by Dover, 1971): 

Half of Ihe world , or nearly so, i always in the light of the un: a the 
world turn round,lhi hemisphere of lighl shift round too, and pa e 
over each part of il in succession. 

Supposing on Tuesday il is morning al London ; in another ho ur it 
would be Tuesday moming allhe we t of England; if the whole world 
were land we mighl go on Iraeing' Tuesday Morning, Tuesday Morning 
a1l the way round, lill in 24 hours we get to London again. But we knolV 
Ihal at London 24 hour after Tuesday morning it is Wednesday 
morning. Where then, in its passage round the earlh, does the day change 
it name? where doe it lose its identity? 

Practically there is no difficulty in it, because a great part of it 
journey i over water, and what it does out at sea no one can tell: and 

I The be t W;\y is lO imagine yourselr walking round with the sun and asking the inhabilanls 
as you go "whal morning i this'?" iryou suppo e lhem living all lhe way round, and all speaking 
one languagc. lhe difilculty i obvious. 

11 
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besides there are so many different languages that it would be hopeless 
to attempt to trace the name of any one day a11 round. But is the case 
inconceivable that the same land and the same language should continue 
all round the world? I cannot see that it is: in that case either there would 
be no distinction at a11 between each successive day, and so week, month 
&cc so that we should have to say "the Battle of Waterloo happened 
to-day, about two million hours ago," or some line would have to be 
fixed, where the change should take place, so that the inhabitant of one 
house would wake and say "heigh ho! Tuesday morning I" and the 
inhabitant ofthe next, (over the line,) a few miles to the west would wake 
a few minutes afterwards and say "heigh hol Wednesday morning!" 
What hopeless confusion the people who happened to live on the line 
would always be in, it is not for me to say. There would be a quarrel 
every morning as to what the name of the day should be. I can imagine 
no third case, unless everybody was allowed to choose for thcmselves, 
which state ofthings would be rather worse than either ofthe other two. 

Thus we have the International Date Line, established 180 from Greenwich, England 
in 1878. When an astronaut crosses that line in the mid-Pacillc Ocean moving from 
west to east, he pops back 24 hours into ycsterday, so when he arrives back over San 
Francisco it is H hours later toliay, not tomorrow. Each new date starts along this line 
as it rolls through midnight. Tomorrow has then begun. The International Date Line 
leads an expanding crescent of tomorrow around the east side of the earth into the 
dawn light, around through noon and dusk and back to midnight (see figure below). 
When the Date Line reaehes the midnight point it starts the next day in the same manner. 
Thus the citizens of Tafahi in the Tonga islands are among the first to report back to 
work after each weekend. Meanwhile, their neighbors on Savia in nearby Western 
Samoa, 150 miles to the east, greet the same day as a Sunday. 

NOON 

~ 
« 

.,,-----j ~ 
a 
§ 
CI) 

The earth viewed [rom astation above the North Pole (NP). Monday startcd when the 
International Date Line (IDL) rotatcd through midnight. A satcllitc poised above 
the midnight point can connect Sunday morning and evening with Monday morning. 
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By glib reference to this line the modern a tronaut excuse hirn elffrom what seemed 
a bewildering conundrum to Pigafeua. Yet there remains something peculiar about 
thi line. What kind ofline i it ? E idently it is not a circle ince it wa tran gre ed only 
once in a Hight from San Franci co to an ranci co. 0 it end omcwhere. What if 
I go to the end and walk around it, cro s over. walk around the end again, cro over 
again, and 0 on? an I rachet my elf into the remote future or pa t, a day at a time? 

nfortunately not. The International Date Line ha its end points at the pole, the two 
phase singularities implicit in mapping the globe onto an equatorial circle of 24 hour 
l see Figure 10 (right) and xample 3, next chapter]. II gain back for LI the day 10 t in 
walking a loop around the pole. Viewed in thi way, the Date Line i a necessary con
equence of the geometry of a rotating planet: but omchow its inevitability doe n't 

make it any more intuitive. 
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heading (a point on a ring). Another instance of such maps occurs in the crystal
lization of synthetic polypeptides and polynucleotides (artificial analogs of bio
logical proteins and genetic material). Such substances are fibrous, giving to each 
point on the surface of a crystalline ball (§2) an orientation. The orientation may 
be specified as a point on an abstract sphere (§2) or, given that the fiber lies in the 
plane of the surface, on an abstract ring (§lI) of compass directions. There is no way 
to carry out such a map smoothly. There must be at least one point of confused 
orientation. These points are clearly visible by polarized light microscopy (see 
Robinson, 1966; Wilkins, 1963; Anderson et al., 1967). 

11. [R2 -+ § 1: Input a point on a plane or any curvy two-dimensional surface 
topologically equivalent to the plane, output a point on a circle. 

Consider, for example, a sheet of cells, all of which are regularly carrying out 
some rhythmic function such as cell division. Given a sufficiently clear snapshot of 
such a sheet of cells, one could write labels all over it indicating at each point in the 
plane what stage of the cycle the cells have reached. Such maps will playa central 
role in our discussion of peculiarities in the rhythmic morphogenesis of slime molds 
and of fungi, and of the periodic organization of oscillating chemical reactions in 
space. 

Glass (1977) calls such maps "phase maps" and uses them to interpret the pe cu
liar symmetries of regeneration and reduplication in the growth of embryos and 
in the restoration of amputated limbs in lower animals capable of such tricks 
(see Chapter 16). 

Phase maps will also serve us weIl in discussing circadian rhythms in flies 
(Chapter 20). The source space is either a two-dimensional physical space such as 
a desk top or the more abstract two-dimensional space öf different stimuli deter
mined by two quantities at the experimenters' disposal. The target space is the 
phase of a circadian rhythm reset at that pI ace or by that stimulus. Such a map is 
drawn point by point by simply measuring the phase in §I associated with each 
point in [R2. It is convenient to run a smooth curve through aIl points in [R2 that 
correspond to the same phase. I caIl such curves "isochrons" ("same-times") on 
account of the usual association of § 1 with a rhythm in time (see Chapter 6). 

12. §2 -+ [R2: Input a point on a sphere, output a point on a plane. 
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ONE SINGULARITY 
(POLAR) 

~
. - . ...-

·· ... "':1------
, , 
, . 

TWO SINGULARITIES 
(AXIAU 

Figure 10. Two ways of mapping the sphere on a flat surface. Mapping onlo the unbounded plane 
on the left requires a singularity (at [he North Pole). Mapping onto a cylinder on the right requires 

[wo singularities (one at each pole). 

These maps include the many projections used by geographers to map the 
globe, inevitably with so me distortion, onto the ftat page of a book. As we all 
realize, perhaps with a residual twinge of perplexity since being intimidated by a 
fourth grade geography teacher's inadequate explanation, these maps never quite 
cut the mustard. Unless the earth's surface is printed as at least two disjoint regions, 
there always arise points or curved paths at which the distortion is infinite (Figure 
10). These are called singularities. They playaprominent role in this book, starting 
with the next chapter. 

13. [R2 ~ §2: Input a point on a plane, output a point on a sphere. 
In a microtome slice through a fibrous biological material, such as insect cuticle, 

microscopic fibers at various points on the section plane can be characterized 
by orientations in three-dimensional space. One geometrically convenient way 
to visualize the pattern of fiber directions is to think of orientation as a point on 
the sphere and to map each point ofthe section onto its corresponding orientation 
by appropriately stretching an image ofthe section plane onto a spherical surface. 
This map may be many-to-one if several regions (or even a one-dimensionallocus) 
of the section plane have the same fiber orientation. Just such maps provided a 
key to a puzzle about the ultrastructure of the insects' cornealiens (Chapter 17). 

14. §1 ~ §1: Input a point on a ring, output another point on a ring. 
Maps from rings to rings resemble the simplest maps treated above (example 1, 

from the realline to the realline) but with a surprising new feature. The periodicity 
inherent in a ring results in the kind of quantization which allows us to classify 
continuous §! ~ § 1 maps into distinctly different types. (This is in fact precisely 
the origin of quantization in the physics of hydrogen atoms around 1920.) Each 
"type" is associated with an integer-valued "winding number". The winding 
number is the net number of times the output value runs through a full cycle 
around a ring, as the input value is varied once forward along its ring. Because 
these topologically distinct types arise again and again in our experimental 
observations, I take time here to give eight examples ancl to dweil at some length 
on the logic of maps among rings. 

Just as the map from [R 1 to [R 1 is most conveniently displayed as a curve in 
the plane [R2, the product of [R l and [R !, so any map from § l to § 1 is most con
veniently displayed as a curve on the product space § 1 X § 1 = T 2 , the surface of a 
doughnut.lfthere is a unique output value 1jJ' ("phi-prime") corresponding to each 
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Figure 11. A map from § 1 to §1, viewed geometri
cally in the product space. 

input value 4>, then the curve relating 4>' to 4> is a dosed ring, reaching once around 
the 4> axis and necessarily returning to the same 4>' value after it is followed once 
around (Figure 11). But notice that such a curve can link any number of times 
through the hole. It can wind any number oftimes around the 4>' axis during each 
circumnavigation of the 4> axis. This integer winding number distinguishes 
qualitatively between the kinds of § 1 to § 1 map. 

Unfortunately, toroidal graph paper does not easily fit into a book. We must 
map the torus onto the plane of the page. In Figure 11 I attempted this one way 
but it leaves much to be desired since some regions are badly distorted and half 
of the surface is hidden behind the other half. A convenient alternative is to map 
§ 1 X § 1 --+ IR 1 X IR 1 by unrolling the two circular axes along perpendicular linear 
axes. This is equivalent to cutting the torus open along two perpendicular cirdes 
and stretching it into a f1at square, then repeating these square unit cells in all 
directions (Figure 12). It would suffice to present one unit cell since all the rest 
are identical, except that to do so hides the continuity of the data from the right 
side of one unit cell to the left side of the next. So I will usually present 2 x 2 unit 
cells or one surrounded by fragments of the eight adjoining cells. 

Figurc 12. A ring on the torus, 1aid Hat for con
venient inspeclion. Repeatcd as 2 x 2 unit cells on 
thc Icft, and on the right as a unit cell Hanked by 

fragments of adjacent reduplications. ~aa :a 
o 1 0 1 

In this format, the winding number of a map is revealed by the number of unit 
cells through which the data dimb vertically in the space of one unit cell 
horizontally. Examples follow: 

ExampIe A. Red is dose to orange is dose to yellow is dose to green is dose 
to blue is dose to indigo is dose to violet is dose to red is dose to orange: 
ROYGBIVRO. Thus hue (disregarding saturation and intensity) is a psycho
physical quantity with the connectivity of a ring (see Box B). In a photograph 
taken under a colored light, hues appear altered. The change ofhue can be depicted 
as a map from the color ring to itself: § 1 --+ §1. Suppose for example that a colorful 
butterfly is taken indoors to be photographed by the bluish glare of f1uorescent 
lights. Each color on its wings is mapped to a similar, but not identical, color on 
the photographic print through a combination of the emission spectrum of the 
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Bo B: The Color of Flickering Light 

It turns out that the purely ab lract ring of hue can be put into a practically u eful 
corre pondence wilh Ihe pha e ring of a rhythm in real time. If a light-dark alternation 
i di played 'aI a frequency on the order of e era l cycle per econd,one ee a flickering 
gray. ow if a line drawing i briefly illuminated during the non-dark halfcycle. its black 
ink eem tinged with color, and the color vari ace rding 10 the pha e of it pre en
tation in the light-dark cycle a ugge ted in Figure a. The eighth of over a dozen 
publi hed redi co erie of thi phenomenon. by . Benham, wa implemented in 
I 94 a a popular toy in England, a pinning di k decorated with annular pattern of 
black and white called " Benham' top" (Figure b). The "wave form" of the black-white 
cycle detcrminc a color. My own encounter with the phenomenon [unrecordcd 
redi covery=#=3729 (October 1964)J pro idc what may bc the ea ie t way to ee the 
effecI, though in it lea I quantifiable form. While tudying Moirc afterimagc in my 
room near ornell niver ity. I rota ted a celluloid tran parcncy covered with parallel 
bla k tape I mm apart. Thi give a vigorou but indi tinct impre ion of variegated 
color. 

\ sec. 

RED 

GREEN 

BLUE 

a) Timing of black-and-white 
picture pre entations to clicit 
variou color sen ation . High 
po ition indicate piclUre cuton
(dark). The arrows show when 
to project a black and white 
image in order to linge its 
black area with the indicated 

color. 

b) When thi di kir tatcd clockwi e at 
300 rpm. the inncrmo t ring appear red and 
the outerm 1 appcar blue (or vice-ver a if 
counter lockwi el. The middle ring are 

greeni h. 

The "explanation" u ually proferred i that the three kind of color receptor in the 
human retina have different time courses of respon e to impul e illumination. Thu the 
mean amplitude of respon e of each receptor depend on the frequency and wave form 
of a pcriodic stimulus. In a flickering pattern Ihe I cal wave form. and 0 the local color, 
aries spatially. So far as I am aware, thi matter ha not been pur ued experimentally 

far enough to convincingly exclude other interpretation. Can one obtain, e.g., red 
flicker en at ion in monochromatic blue light? 00 tlicker color 0 cur in color-blind 
individual who have only a single-color receptor? Po itive re ult in uch experiment 
might suggest that color i en oded in th human nervous system by mutual phasing 
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of neural rhythms. This possibility i con idcred worthy of inve tigation by contem
porary workers in i ion re earch (e.g.. ee Bulterfield, 196: heppard. 1968: Von 
Campenhau en, 1969: e tinger. 1971: Y lIng. 1977). 

Despite ignorance of its phy iological origin , televi ion engineer managed to 
parlay Benharn' Top into a cheme for broadca ting color piclllres 0 er black-and
white transmitter and black-and-whitc horne receiver. The de ice i called the Butler
field color encoder. Three color filter are arranged on a rapidly spinning wheel to 
alternate with three con ecutive opaque egment in front of the televi ion camera. 
The red-blocking filter immcdiately follows the opaque 1-cycle. Then co me a green
biocking filter. then a blue-blocking filter. ince black line een early in the non-opaque 
cycle appcar red, and tho e een in the middle appear green. and tho e seen at the end 
appear bille, thi pha ed pre entation of the three complementary olor images re
con truct a colored picture on the black-and-white televi i n creen. 

It fir t public dem n tration wa a oft-drink adverti ement over tation K XT in 
Lo Angele. othing \ a aid about color. to the con ternation of thou and of 
viewer \ ho eemed lIddenly to be hallucinating. It la t public demon tration wa in 

hile during political adverti ement b Madame Peron. 
nfortunatcly the perceived color proved to vary from individualto individual and 

depend unpredietably on the color of it urrounding background. Moreover the 
effect work be tat five to ten cycle per econd. The re ulting flicker orthe color picture 
wa 0 di ta teful 10 televi ion audience Ihal they preferred 10 buy the more co tly 
R A tri-pho phor y tem or to forego the color and tick to black-and-white tran -
mi ion in which the flicker can be made so fast a to e cape perception. 
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lamp and the absorption spectra of the photographie emulsion and its dyes. If 
we restriet our interest to bues, ignoring saturation, then tbe color map is § 1 to 
§ 1. It is continuous because similar colors similarly affect tbe emulsion. Tbe map 
might bave winding number W = 1 if all bues still appear under tbe bluisb light 
[Figure 13 (right)] or it might bave winding number W = 0 if tbe blue is so pure 
tbat cvery color is captured as some shade near blue [Figure 13 (left)]. 

Example B. A rowboat in a strong current holds a compass heading in 
direction ep. It proves convenient to measure ep on ascale 0 to 1 : north is 0, east 
is t south is t west is l The boars actual track is a straight line in some other 
direction ep'. The map from heading to track is § 1 to § 1. The character of tbis map 
is determined by tbe speed oftbe boat in the water, relative to the current. Figure 14 
depicts the rowboat R at a point in tbe stream. The stream's velocity is indicated 
by the vertical arrow. Its speed is v*. Ifthe rowboat heads in direction RH (compass 
heading ep) at speed v relative to the water, while tbe water flows downstream at 
speed v*, then the rowboat's actual track is RR' relative to terra firma. The 

im w,o iCE w·, 
ROYGBIVROYGBIV ROYGBIVROYGBIV 

Figure 13. Two qualitatively distinct maps from the color ring to the color ring. 
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Figure 14. A rowboat heads in 
direction cjJ at speed v while being 
carried south in current I'*' lts ac· 
tual track is in compass direction cjJ'. 

rowboat's velocity component toward the shore, BH or AR', is l' sin(2n<p). 1ts 
velocity component parallel to the shore, RA, is v cos(2mPJ - v*. The ratio of 
these two components is AR'/RA = tan(2mp'), so 

tan(2mj>') = v sin(2n</> )/[ v cos(2n</» .. . v*] 

or in terms of "slowness", s = I/v, additionally adopting the more compact 
notation sn</> = sin(2n</», and similarly es for cos and tn for tan: 

, snq) 
tn</> = -----. 

es <p - s/s* 

Figure 15 plots several of these heading vs. track or </>' vs. (p conversion curves 
for various rowing speeds v. Note the qualitative transition at v* /v = s/s* = 1. 
At this speed the boat cannot track upstream against the current and the map's 
winding number switches from 1 to O. We will see this formula again in context 
of circadian rhythms. 

W . N~ v"'<v S , E , ~>vi~ N , 

NESWN NESWN 

Figure 15. Four qualitatively distinct maps cjJ' = f(cjJ); the dashed curves represenllhe extreme cases 
l' = 0, 1' ..... :I . 

Example C. Local time varies with geographie longitude. At any moment, 
one is a function of the other: a map [rom §l (longitude) 10 §1 (dock phase). 
This map (Figure 16) constituted the whole motivation for the design of mechanical 
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Figure 16. Clock phase varics one-to-one with longitudc. 



B: Mappings 

Boxe: 

In I aac ewton' day, hip ailed ea t and west with no practical mean for deter
mining longitude. The extant ufficed for latitude, but without the longitude, life was 
too frequently tragic for navigator and their crc\ , pounded to fi hmeat on unexpected 
reef while the be t commercial fruit of Europe lillered the sandy bOllOrn. avigator 
wrote book on the problem. Outlandi h cheme were tried. The be t, originally due 
to Galileo but quietly filed away after certain quest ions of here y aro e. permilled 
determination of longitude at allthe chief port of ca 11 in both hemi pheres, and did so 
with tartling preci ion. Thi cheme u cd a tele opic ighting of Jupiter' four moon 
together with a table of their anticipated po itions as a function of Pari ian local time. 
The Jovian atellites pro ided a uni ersal clock of unfaltering precision by which to 
know Pari time. A extant ob er ation determined local time by determining the 
moment when the un or ome othcr tar reached it maximum altitude. The difference, 
a fraction of 24 hour , i a pha e point on a circle which can be reinterpretcd a the 
circle oflongitude at l ofwe t longitude per minute of delay (360 1(24 x 60 minute )). 

I! was eldom po sible to ob ervc th cele tial chronometer from a rolling hip' 
deck. onethele , 200 years after Magellan' extravagant experiment of 1513 ( ee Box 
Al, it wa clearly recognized that the longitude could b t be acquired as a map from 
one ring to another: from the face of a 24-hour chronometer to the required coordinate 
on the circle of 360 . So eriou \ a the need that the British Admiralty offered a prize 
of 20,000 pound (in 1714 curren y!) for a uffi iently accurate ship chronometer. So 
taxing wa the challenge that for 45 year '"the longitude prize" wa hou ehold metaphor 
for ""the impo ible" ome\ hat like "the perpelUal motion machinc" loday. But in 

lohn Harrison"s fir I attempt at the L ngitude Prize. Its great grandchild (no. 4) 
claimed the prize. Photograph ourtcsy of ational Maritime u eum, London. 

19 
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1759 John Harri Oll' .14 c1aimed the prize. On a torm-racked trip to the West Indie 
it erred by only 1/ 17,000 ofa cycle, corre ponding 101 t mile at equalOriallatitudc . 

Tho e who, like my elf, are stirred to tran ports of excitement by this sort of tale 
will want to avor (he marvelous e say entitled 'The Longitudc" by Brown in 01. 2 of 
The Wor/ci oJ J'v[allremCII!cs (J. R. cwman. ed., imon and chu ter, cw York, 1956). 

docks with such accuracy as we lake for granted today. Who would have cared 
to monitor Greenwich Mean Time (GMT) precisely in a world still free of bus, 
train, andjet schedules? Maybe astronomers. But the practical impetus to develop 
docks came from merchants, whose mariners could reckon a ship's longitude 
only by the four-minute-per-degree discrepancy between local noon and the GMT 
chronometer on board (see Box C). It may be noted that San Francisco time 
changes as GMT changes. The dependence of San Francisco time on GMT is the 
same kind ofmap from §I -> §I (Figure 17): 80th have winding number W = 1. 

~~~N g 
e 
V> 

Q __ 24hr 

Figure 17. San Francisco time varies one-tn-one with Greenwich time. 

GREENWICH MEAN TIME 

(Examples A, B, and C are eJaborated as Examples 1,2, and 3 in the next chapter.) 

Example D. A starling is ready to migrate south, a direction it knows relative 
to the sun. A physiologist (Hoffmann, 1960) resets the phase of its circadian dock 
by six hours (one-quarter cyde) and releases it. It f1ies olT in some other direction 
relative to the sun's azimuth, specifically about 90G away (one-quarter cycle). 
The map from dock phase to f1ight direction is § I -> § I. lt has been measured 
in a few kinds of organism. A type 1 map (winding number W = 1) was found in 
the sunfish (Figure 18). A type 0 map (winding number W = Cl) was found in the 
pond skater (insect) (Figure 19). 
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Figurc 1 X. The direction of sunfish movemcnt vs. time of 
day (data replotted from Braemcr, 1960, Figure 7). Note that 
the Jeft and right edgcs are thc same (midnight) and the top 

ami bottom cdges arc the same (north). 
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Figure 19. Angular orientation of a water strider to an 
artificial sun vs. time of day (data replotted from Birukow, 
1960, Figure 2). Note that the left and right edges are the 
same (midnight) and the top and bottom edges are the same 

(north). 
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Example E. A regular oscillation goes on in all the growing cells of a fungus. 
The fungus is a thin sheet, growing only along its border. The border is a ring. The 
phase of the oscillation varies locally. How does phase vary with position along 
the ring-like border'? The answer can be represented as a map from position 
(along a ring) to phase (along a ring) (Figure 20). See Chapters 4, Section C; 8, 
Section C; and 18. 

w 

Figure 20. Each point ofthe frontier ring ofa rhythmic fungus maps to the phase ofthe local rhythm 
at that point. In this cxample every point maps within about one-fifth of the cycle. Points at the same 

north-south latitude are mapped to the same phase. 

Example F. Microorganisms sometimes make seawater glow around a swim
mer at night. Hastings and Sweeney (1957) made the sensational discovery that, 
when brought into a dark laboratory, such water glows again at 24-hour intervals. 
Moreover, if exposed to light at phase cp of the rhythm, the suspended animals 
reschedule their glow as though the phase (p had been some other phase cp'. The 
map from old phase <p to new phase cp' is § 1 --* § 1. This example is developed 
further in Section D. 

Example G. Consider an optical device, in out ward appearance resembling 
a telescope, in which you view a scene. As you rotate the eyepiece, the scene rotates. 
The angle of eyepiece rotation cp is indicated against a degree scale by a fiduciary 
black dot. The angle of scene rotation () can be read against the same scale by 
projecting the obvious upward direction from the center of the scene (as in 
Figure 21). Plot () vs. cp must be a smooth curve of some integer winding number. 
By thinking of simple experiments (such as rotating yourself, rotating the degree 
scale, rotating the scene), can you show that the winding number is necessarily 
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IMAGE ROTATOR 

Th.. Govemmen, .... plu. p,,,m 270' 
functlons like jJ Dove pnsm 001 has 
the added advantage of tfan1.mining 

convergent 01' dlvi!'tgenl ~avs. 

MounU:d In a ball be:aring 
WPpor-led houslng so that .. can be 
easily and filpidly rot.ted 10 glve 
eX'traordin8ry effecu in mOIion 
p!ctut" Cf TV fot example. Image 
traru:mlued d"'ough thls pflsm 
rotaHl5 tWlce the pl"!sm angle 

rotation. Pmm is. coated, I'\as a elear 
3pt!!1UUftl of 70 x. 70 mm, Iet's power 
15 1 X. DJlgmal coU 10 Government 

in excess of Sl.CXXlOO. 

SII . Wt . 281t.;:OlP_ IR .... $8 5.00 

o' o 

90' 

e 

Figure 21. A catalüg ad für a Dove prism and a scene viewcd through a Dove prislll image rotator. 

zero? If so, wh at do you make of the accompanying mail-order catalog advertise
ment which makes it appear that one rotation of the eyepiece results in two 
rotations ofthe scene: winding number ±2'1 I was so perplexed by this paradox 
that I ordered one of the optical devices advertised (in a less expensive version). 
When it came, I looked through it at my page of notes purporting to prove that 
winding number ± 2 is impossible. It was impossible to read the prooe! The 
reason for this and the reason for the irrelevance of the "proof" turns out to be 
that the optical device presents a mirror image 01' thc scene viewed through it 
(see Box D). 

Example H. Consider a wave circulating around a ring, such as a nerve 
impulse going around and around a ring of heart muscle or around the circum
ference of a jellyfish. F or our simple purposes, we might think of each little piece 
of tissue as repeatedly traversing a continuous cycle of states with landmarks 
conventionally denoted "rest", "excited" , "refractory", "relatively refractory", 
"rest", "excited," and so on. At every instant each point on the physical ring is 
somewhere in this cycle. At any instant (on a snapshot of the ring) the map from 
ring to cycle is §1 -+ § 1. If a solitary wave revolves clockwise, the mapping has 
winding number + 1. It has winding number - 1 if the wave circulates anti
clockwise. Two pulses chasing each other around a ring correspond to a map 
of winding number ± 2, i.e., weaving around a line of slope ± 2, etc. (Figure 22). 
Ifthe ring beats almost homogeneously, then the map varies about the horizontaL 
with mean slope 0, and so its winding number is 0. 
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Box 0: he Oove Pri m Paradox 

Suppo e you have a device. omething Iike a tele cope in outward appearance. 
through wh ich YOll can peer at the tandard optical object. an arrow (Fig. a). We will 
on ider rotations about the common axis of YOllr eye and the de i e. The arrow i 

mounted perpendicularly on thi axi. Suppo e fir t that we rotate the device and the 
arrow together, a though rigidly connected. through an angle 1J. Thi i equivalent 10 

rotating your eye (your elf) through -1J aboul the ame axi . The image of the arrow 
on your eye mu I Ihen rotale to angle 1J. ow rotate Ihe device alone back to it former 
po ition, Ihrough angle -1J. The arrow' image ha thu been rota ted Ihrough ome 
additional amount 0 = f( - rjJ) characlerizing Ihi devicc, for a total rotation of rjJ + f(rjJ). 
Thi re ult i the ame a though you and the glas had remained fixed while you watched 
omeone rotate the anol\' to 1J: it image must al 0 rotate to 1J( I). SO we have that 1J + 

f( - 1J) = 1J, which mean f(1J) = 0 contrary to the adverti ed miracle of f(1J) = 21J. 
Yet the device tC/li be pureha ed and the image of th arrow does revolve fully twiee, 
lIniformly, a the deviee i lurned through a full circle! What's going on? 

Looking at ,ln arrow lhrough an 
image rOlalOr. The eye ees the 

arrow a hown in igurc 21. 

00 

4-------

1800 

EYE DEVICE 

~ 
--~--

----1- --

ARROW 

When the pri m arri ed I re-r ad my proof of it noncxi tencc, lhen opened the box. 
Unwrapping lhe pri m. I eagerly peered lhrough it at the nearest object, the proof. It 
wa unreadable! 0, nOI quite. bUI just mirror-imaged, besides being rotated. It turns 
OUI lhat lhe arro\ rolale twice dock,,';' e a lhe device lurn twiee cOlllllerc/ockll'i. e. 

o at lhe (I) above, 1J mu t be replaced by -1J. whereup nf(1J) becomes 21J as advert i ed. 
In fa I lhe wondr u device i nothing more lhan a mirror with refracting prisms 

10 lraighlen oUllhe renecled oplical axi (Figure b). 

23 

15. § I x § I ---> § I: Input two independent points on a ring (two phases, a 
phase and an angle, two direetions, ete.), output a point on a ring (a phase, a 
direetion, ete.). 

These maps, like the § I ---> § I maps eonsidered above, ean be classified by an 
integer winding number. Maps with different winding numbers have qualitatively 
different properties. Sueh maps and their winding numbers play an essential role 
in mueh that folIows. We begin with four examples: 
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Figure 22. Upper left: Distance around a ring o f tissue is dcnoted by 0 So 1/1< 1. Uppcr right: Each 

point of the ring maps to a phase 0 So () < 1 in the cyc1e of local excitation and recovery. Given two 
circulating pulses, the ring's image wraps twice a round the cyclc of states. Lower: The same map from 

<p to 0 is diagrammcd in starker format. 

Example A. Suppose a smooth chemical oscillation, e.g .. glycolysis in yeast 
cells (Chapter 12), is going on in each of t wo equal volumes. Ghosh et a1. (1971) 
made the intriguing discovery that when such volumes are abruptly combined, 
the hybrid volume continues to oscillate at some compromise phase somehow 
determined between the two "parent" phases. This compromise would be most 
naturally described by a mapping [rom the phase circle of parent A and the phase 
circle of parent B to the phase eircle of the combined volume: § 1 x § I ---+ § I . 

Example B. Suppose a motor neuron in a running insect flres at some phase 
in the rhythmic cycle oflocomotion as in the experimental studies ofStein (1974). 
Let this phase be determined by the timing oftwo impulses received in each cycle: 
one [rom a left leg proprioceptor and one from a right leg proprioceptor or one 
each from fore and aft segments. The dependence of fixing phase on the input 
phases is most naturally portrayed as a fUl1ctiol1 of two phases : q/ = F( rjJ A , <!JB), 

that is, F: § ' x §I --+ § I . 

Example C. My airplane's eompass reads a direction, a phase on the horizol1 
circle. But before it can be useful, insta lled among the distortions of earth's fiekl 
caused by the motor and radios, the compass must be adjusted. This is done by 
moving two little screws, each of wh ich rotates a pair of tiny magnets geared 
together beneath the compass. With the plane facing in one fixed dircction, the 
compass reading depends on the orientations of the two pairs of magnets: once 
again a map from § 1 X § 1 ---+ "c'; 1 . 

Example D. At the Kodak Museum in Rochester. New York, there is a device 
in which two plastic wheels overlap in front of a ditruse light. Fach wheel supports 
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around its perimeter a continuum of colored celluloids, running through the whole 
color circle ROYGBIVROY. By rotating these wheels, you can superimpose in 
front of the light two filters of any chosen hues and observe the resulting hue. 
The perceived overlap hue is determined by two hues: Once again this is a map 
§I x §1-.§1. 

Many other topological maps naturally organize little areas of experience. 
Celestial navigation is largely about maps from the product of three circles (time, 
season, and a sextant angle) to a sphere (position on the globe). The quantum 
mechanics of electrons and other fermions concerns maps to and from the three
dimensional projective plane Rp3, which is locally §2 x §I. This is also the 
topological space of fibril orientations in a wide variety of biological polymers 
(e.g., see Chapter 17). But let's stop with what we have and begin to investigate 
some of the curious logical implications of maps among circles: what I call 
"circular logic". 

C: Phase Singularities of Maps 

A Phase Determined by Two Phases 

"But that," said Perion, "is nonsense." "or course it is," said Horvendile. 'That is probably 
why it happens." 

Jurgen (Cabell) 

I begin with item 15 above, § 1 X §1 -. § 1. Call the two input phases or parent 
phases cP A and CPB' and let the resultant or hybrid phase be called cp'. As noted 
above, the (CPA' CPB) plane goes on and on periodically like wall paper, in principle 
to infinity, but we need deal with only one copy of the repeated unit cell since 
all the rest are the same. In a wide variety of physical and biological situations, 
the following three axioms hold: 

1. For almost all inputs (CPA, CPB), a small change in CPA or CPB results in at 
most a small change of cj/. 

2. CPA and CPB are interchangeable: They play equivalent roles. 

3. When parent phases cP A and CPB are nearly the same, the hybrid phase cp' 
is nearly the same as both. 

Referring to Figure 23, consider what happens to cp' if cP A is increased through 
a full cycle while CP\l is held fixed (at a value that we mayas weH caU CPn = 0). 
If cp' changes, it must change in such a way as to return to its first value as cP A 

completes its scan of the cycle. As in earlier examples, the periodic dependence 
of cp' on cP A has an integer winding number, the number of times cp' runs through 
its cycle as cj) A runs forward through its cycle. Whatever it turns out to be, call 
that winding number Wand mark it on path aß in Figure 23. Note that a, {j, y, 6 
all represent cj)A = cj)n = cp' = O. Along path a6 and therefore along equivalent 
path ßy, cj>' changes through W cycles again, since this is the same experiment 
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Figure 23. A phase </) varies as a function of position on the 
(<PA ' 'PH) to rus. Along path 'l.ß or {Iy , </>' scans through W cycles. 
Along pa th l e; it scans through - I cycle. 'l.{I)'b a ll represent the 

same point on thc torus. 

with the A and B labels interchanged. Now returning to IY. along diagonal YIY., (P' 
backs up through one cycle according to axiom 3. Thus, from IY. to ß to y and back 
to a, (1/ has changed through some nonzero integer number of cycles 2W - I. 
A contradiction is coming up; watch carefully. 

Let us ignore the word "alm ost" in axiom 1. Then a slight deformation of path 
aß, for example, cannot change the behavior of q/ along the path enough to alter 
the fact that it scans through W cycles (rather than W -- I or W + 1) from IY. to ß. 
Since W cannot change except by integer jumps, and jumps are disallowed by 
axiom 1, therefore W cannot change at all. We can thus deform path IY.ß yIY. as we 
please. In particular, we can shrink it with impunity to as sm all a ring as we like. 
But around that ring, q/ still changes through at least one full cycle in response 
to arbitrarily minute changes of (PA and <PB ' 

This is called a phase singularity, and it violates the edited version ofaxiom I. 
Without the "almose', in other words, axioms I , 2, ami 3 are incompatible. One 
cannot have a smooth symmetrie dependence of phase on two other phases sud' 
that <pt runs through a full cycle with <PA and <PB when thcy are equal. 

What does this mean in terms of the four examples under item 15 above? 

Example A. Apparently there is at least one critical combination of parent 
phases <PA and <PB near which the resultant compromise phase is unpredictable 
and irreproducible. There might also be more than one. For example, there might 
be a whole li ne of near-discontinuities along <PA = 0 and along <PB = 0 if at that 
phase the oscillator changes its chemical composition suddenly (Figure 24). The 
point of Figure 23 is that even if the mechanism is smooth , and is not such a 
so-called relaxation oscillator, then there still must be a phase discontinuity. 
And if it is not extended along a one-dimensionallocus, then it must be the much 
more violent and condensed kind called a "phase singularity" (Figure 25). In the 

~ 
o 

Figure 24. Arelaxation oscillator"s conto ur lines of uniform <p ' 
as a funetion <PA and <P B' Values are not indieated numeriea lly 
but inerease along the a rrow. In thi s case <P' ehanges abrupLly 

by one-half eycle whcncvcr 'I) /\ or <PB = O. 
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Figurc 25. As in Figure 24, but in this ca se the inevitable dis
continuity is compressed to a phase singularity point in each 

triangular half of thc un it eell. 

Figure 26. As in Figures 24 and 25, but the inevitable discon
tinuity is placed along a 45° line. Here cjJ' jumps by one-half cycle. 
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simplest kinds of chemical oscillator, the phase singularity is a special combination 
of parent phases whose intermingling forces the hybrid oscillation to its steady-state 
(see Chapter 5). But in case of anything more realistic, the phase singularity is 
not so easy to describe in terms ofmechanism. We return to this topic in Chapter 6. 

Example B. In the running insect, it might mean that when <PA and <PB are 
a half-cycle apart, the third neuron cannot make up its mind whether to fire 
between A and B or between Band A. This would be the right interpretation if 
the inevitable discontinuity were a diagonallocus <PB = <PA + !- cycle (Figure 26). 
But if it were an isolated phase singularity, then some more subtle mechanism 
would seem to be called for. 

Example C. Few of us have ever taken the time to play systematically with 
the two adjusting screws under a correctible compass. I did once, and sub
sequently took the thing apart, while preparing an exercise for a course in "The 
Art of Scientific lnvestigation". It turns out that the compass follows rules 1, 2, 
and 3 and that the compass reading becomes extremely sensitive at certain critical 
combinations of screw angles. This is because at just those angles, the two pairs 
oflittle magnets exactly neutralize the earth's magnetic field, or whatever distortion 
ofit reaches the compass through the Plexiglas windshield. The slightest departure 
from neutrality gives the compass a direction, but it can be any direction, depending 
minutelyon the orientation of each magnet. <p' turns out to have a phase singularity 
(Figure 25) at a critical combination of <PA and <PB' 

Example D. In the case of color perception, it means that on any color wheel 
same combination of two hues must be exactly complementary, resulting in a 
neutral gray transmission. 
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These are glib interpretations, not obviously correct. The point 1 wish to make 
here is only that there exists a wide variety of mechanistic possibilities underlying 
the inescapable mathematical fact that there exists no smooth map of the sort 
required, so we must settle for a map containing at least one isolated phase 
singularity, or some more extensive kind of discontinuity. That much is mathe
matics. The seienee comes in locating and making use of the diseontinuity, and 
discovering which of many alternative mechanisms underlie its particular 
character. 

My appreciation of this mathematical fact is the work of Graeme Mitchison, 
who suggests a more compact statement whieh I paraphrase as folIows: 

Theorem. The only continuous maps Fom the disk (e.q. , the area inside triangle 
aßya) to the eircle (the possible va lues of (j/) have windinq number 0 around the 
border of the disko If the winding number cannot be 0 (e.?]., because ofaxiom 3), 
then the map eannot be continuous no matter what /he underlying physical o/' 
biochemical meehanism ma y be. 

For general background and proofs of this theorem in its various guises, see 
almost any textbook of homotopy theory, e.g., J. Milnor (1965) or E. H. Spanier 
(1966). 

A Phase Determined by a Phase and a Magnitude 

With the topological essence of the phase singularity thus extractecl and 
crystallized, it is convenient to turn attention back to the less symmetrie case 
of a phase determined by a single other phase , as in items 14A to H above. For 
example, in item 14F (page 21) the experimental system delermines a phase. But the 
independent variables at the experimenter's disposal are now a phase 1>, as above, 
and a stimulus magnitude M instead ofanother phase. The map is § 1 x ~1--> § 1. 

Thus the resulting phase cf/ is to be plotted over the 1> by Al plane rat her than over 
the 1>A by 1>s plane. Let us find a stimulus magnitude wh ich maps 1> to 1>' with 
W = 0 and use that as the unit M . Just as we circumnavigated a triangle in the first 
part of this section, we now circumnavigate a square (Figure 27) : Along line PQ 
with stimulus magnitude 0, 1>' = 1>. If Q is placed one cyc\e beyond P, then along 
PQ, 1>' rises through one cyc\e. Along QR, 1>' changes by some amount; call it X. 
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Figure 27. Analogous 10 Figure 23 but one axis (M) is 
a scalar variable ralher Ihall a phase. New phase q/ is 

to bc eva lua tcd along pa th PQRSP. 
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Figure 28. Contour lines of 4>' are added to Figure 27 
as in Figures 24- 26. In (his example the contours 

are allowed to convergc to a single point. 
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The winding number being 0 along RS, cjJ ' rises and falls without net progression 
in either direction. Then from S to P, the change x is undone because PS at phase 0 
is identical to QR at phase I = O. So the winding number of cjJ' around the box is 
exactly 1 + x + 0 - x = 1. For the same topological reasons as encapsulated in 
in the theorem, a peculiar discontinuity must lie within the box. The most localized 
possibility is an isolated point phase singularity (Figure 28). 

One can visualize the necessity of some such irregularity by trying to construct 
a smooth surface of data points over the square, subject to the constraint that 
along the boundary PQRSP it must rise up one floor like a parking garage 
rampway. Think how this is arranged in the garage: It isn't. The concrete apron 
never closes, but has an inside edge everywhere. Ifs the same in a helical staircase 
or sliding board: The central upright is there not just for structural reasons, but 
also to hide a discontinuity. Architects too, not only the Creator, must design 
around the facts of topology. 

In some cases, the discovery of this screw-like discontinuity constitutes only a 
trivial insight into the physical mechanisms involved. In some cases, it constitutes 
a more profound insight, which would be difficult to arrive at in any other way. 
And in some cases, it has little to do with mechanism but rather points to a 
fundamental limitation in the process of measurement. As noted above, measure
ment consists of defining a suitably convenient observable of state and carrying 
out the map from a system's state space to the space on wh ich that observable 
is defined. But every experienced scientist knows that we are not free to define 
observables arbitrarily. One way the use of language in science differs from its 
everyday uses is that in science one cannot simply define a new term in an intuitively 
convenient way, obtain consensus on a concise definition, and proceed to use it. 
For terms refer to concepts, and concepts sometimes prove to harbor latent 
ambiguities, irremovable ones, e.g., "simultaneity" in relativistic physics. Physicists 
ran up against this problem, for example, in the 1920s when it was discovered 
that no one could specify simultaneously the position and velocity of an electron, 
although position and velocity had served as the basic independent observables 
of mechanics since the time of Newton. In the same way, if we insist upon forcing 
nature into a description in terms of phases, we may encounter ambiguities, 
even paradoxes, implicit in the very definition of that observable because there 
are situations in which phase is ambiguous or can only be defined by admitting 
ghastly discontinuities into the description of our observations. 
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This fact of topology provides us a tool for uncovering phase singularities in 
a wide variety of contexts. In the next chapter we examine an assortment of such 
singularities preliminary to entertaining notions in subsequent chapters about 
their diverse origins in biochemical dynamies. We will then be in a position to 
inquire into the physical nature of the phase singularity in each example in 
Chapter 10. 

D: Technical Details on Application to Biological Rhythms 

This chapter has mostly concerned mappings among circles. As Chapter 2 
mainly illustrates phase singularities by empirical data, it will be weil to pause 
before plunging into those examples to make sure that two much-used conventions 
are cJearly grasped. These are: 

I. The correspondence between the ring § 1 and thc phases of something 
periodic in time 

2. The format here used for portraying empirically measured maps from the 
phase ring to itself 

The Phase of a Rhythm 

"Phase", like compass direction, is a point on a eirc!i', on § 1 We identify 
directions by a number, on IR 1, inscribed on the rim of a compass. We teach our 
children to think of time schizophrenically both as a thread (IT~ 1) along which we 
inexorably progress [rom left to right, from a past lost in the mists of antiquity 
into a future forever receding before our advances, and also as a circle (§ 1) along 
which we creep Iike the hour hand that creeps repeatedly around the face of a 
cJock somewhere in Greenwich. According to the Oxford English Dictionary, 
the original Old English and Old Teutonic stern of our word "time" meant "abstract 
extension". There was no connotation of recurrence in daily or seasonal cycles 
such as children now appreciate in asking, "What time is your piano lesson'!" 
The distinctive features of rhythmic systems seem perplexing, cvcn paradoxieal, 
so long as our minds dweil implicitly in IR 1. Let us then plant them firmlyon § 1 

in this chapter about circular logic and phase maps. 
By "phase" I mean a point on a ring. But what point ami what ring? Let's use 

the unit circJe in the standard (x, y) coordinate plane: 

x = sin(2nt) 

y = cos(2nt) 

or, in complex notation, 

z = x + iy = iexp( ~2nit) 

As t runs from 0 to 1, the phase point runs c10ckwise around the circle from 
north to north (see Figures 6 and 9). As in Example 6 in Section B, our convention 
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for angles is taken from the mariner's compass: dockwise from north, rather than 
antidockwise from east as in the mathematicians convention. 

In connection with an ongoing rhythm, phase is a function of time: It is the 
fraction of aperiod elapsed since the most re cent recurrence of whatever event is 
chosen to mark rP = O. Thus we write: 

. (time t since marker event) d I 
rP = f (t) = .. mo u 0 1 

. (standard penod T) 

which makes rP = 1 equivalent to rP = O. In an undisturbed, perfectly regular 
rhythm of period T, this definition implies that rP constantly increases: 

~Li~ = 1/T. 
df 

For notational convenience, we take T as our unit of time henceforth and denote 
d/dt by an upper dot. Then the above expression becomes 

~=1. 

Defined this way, "phase" is just a conveniently periodic measure of elapsed time. 
To indicate the position of a rhythm on a time axis, we will sometimes speak 

of its phase as though it were a fixed quantity, not increasing in time. This is 
only shorthand. What is intended here is rP(to) at some time to which must be 
specified. For example, the "old phase" of a rhythm is its phase at the moment 
when a stimulus begins, and "new phase" is its altered phase at the moment when 
the stimulus ends. 

In the preceding paragraphs, we deal in rhythms without giving a thought to 
the mechanism of rhythmicity. Slipping a little further from pure observation 
toward interpretation of mechanism, phase is used to denote the state of any 
process which varies only along a ring or cyde (Chapter 3). Unlike almost any 
rhythmic process outside the domain of dassical mechanics, the only state vari
able of any consequence in a mechanical dock is the angular position ofits meshed 
gears, as indicated by the position of its hour hand. F or many purposes, the same 
is true in good approximation for circadian docks. The models of Chapter 3 
emphasize this aspect. With such models in mind, one tends to think of the phase 
rP E § 1 of a dock meclll1nism. This is a subtle but weightly shift of meaning from 
the more innocent use of "phase" above, merely to describe an observed rhythm. 
It leads to paradoxes in certain kinds of experiments with biological docks. Thus, 
when pondering mcchanisms we must stick to the purely descriptive definition 
of phase with fundamentalist zeal; exception is made only in Chapter 3, where 
the state space consists ofno more than a ring, so each state can be unambiguously 
associated with a phase of a rhythm, and vice versa. But in dealing with real 
organisms, phase must be defined simply as an observable, a quantity you can 
wring out of a measured rhythm, without assuming a one-to-one correspondence 
with the state of the (unknown) mechanism that causes the rhythm. In terms of 
mechanism, phase is a nontrivial function of state and our objective is to infer 
from experiments the topological features of that function. Such features turn 
out to have interesting implications. 
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I. Circular Logic 

I Figure 29. Phase. considcrcd as a numbcr ralher 
I lhan as a point on a ring. cannot stcadily increasc. It 

has to jog back to zero at unit intervals. This notation 
carries with it the misleading connotation of abrupt 

change. 

I dislike to think of phase as a number from 0' to 360 or from 0 to 24 ho urs 
or from 0 to 2n radians or from 0 to 1 as in Figure 29. T 0 do so gives the impression 
of a relaxation oscillator, as though something physiologically unique must 
necessarily occur sometime in the cycle, which point we single out to call cPo = 0 = 1. 
In general, nothing ofthe sort is so. For instance, no one feels momentary vertigo 
in crossing the International Date Line (see Box A). The mathematical artifact 
is the same in both cases: It comes of insisting that the circle should be mapped 
onto a line. In fourth grade geography we learned not to insist upon mapping 
the sphere onto a plane but every map in the book nevertheless did it, with apolo
gies. In the same way, we do not always escape it entirely here. Just as we on ce 
learned to think in spheres while staring at flat pictures, so in this book the reader 
must try to think in circles while inevitably handling numbers. 

A Format for Plotting Empirical Maps § 1 --> § 1 

We have one more task before going on to Chapter 2. Ifyou are already familiar 
with phase-re setting experiments, you may find it expeditious to skip ahead, but 
I urge you at least to scan the following pages on data presentation. For the 
present book I have committed myself to redundancy in this matter (e.g., see 
Chapters 14 and 19) in order to be sure that the idea comes across to every reader, 
but it might not work unless you suffer through some of the redundancy. 

Recall Example 14F in which a biological rhythm is rephased from an old 
(prestimulus) phase to a new (poststimulus) phase. Let's develop this example in 
greater detail. Experiments in this format will playamajor part in chapters to 
follow. This example focuses attention on the regularities of phase resetting. We 
experience phase re setting when we cross meridians by jet travel. We inflict it on 
a wristwatch by pulling out its stern and twisting it to adjust to the time at our 
landing place. In later chapters (3, 4, 5, and 6) it will be important to deal with 
the process of rephasing. But here we deal only with results: What is the new 
phase arrived at given the initial phase? The format in which these results were 
depicted in Example 14F was chosen for compatibility with one of the many 
formats used to depict experimental results. This chosen format was first used 
by Pittendrigh and Bruce (1957) and by Hastings and Sweeney (1958) to introduce 
the notion of aresetting experiment to the field of circadian rhythms. As this is 
the most direct representation in terms of experimental data and happens also 
to mesh nicely with convenient theoretical diagrams to appear in later chapters, 
I adopt it as the standard format for all presentations of resetting experiments in 
this volume. Data drawn from experimental papers in several different formats 
(e.g., see Box C ofChapter 4) will all be converted to this format. 
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Before going into detail about the format, a word is in order about the basic 
idea of aresetting experiment. The notion is that something rhythmic is going 
on: Once started by some standard procedure, some event reliably recurs at unit 
intervals of time. We could just sit and watch it, fascinated by the regularity. But 
we are soon seized by an impulse to poke at it and see what happens. Very com
plicated things can happen depending on when in the cycle we poke. We restrict 
our attention here to just one aspect. In the aftermath of a poke the system even
tually reasserts its prior rhythmicity with the event occuring at a time e (neglecting 
multiplies of I) after the stimulus. The whole idea of these "hit-and-run" experi
ments is simply to record the time e and how it depends on the time in the cycle 
when the poke is given. Remarkably enough, something can be learned by sys
tematic attention to this simple observation. Moreover, it is an observation of 
immediate practical relevance whenever one rhythm is to be synchronized by 
another, or whenever the expected time of an event is to be changed. In order to 
accomplish this rescheduling we need to know how the time e depends on the 
time in the cycle when we do something about it. My objective here is merely to 
layout the format of such hit-and-run experiments in a standard way that will 
lend itself to interpretation of real experiments in subsequent chapters. 

Since the late 1950s, experiments of this kind have been published in diverse 
formats, using rhythms as different as the cell division cycle, pacemaker neurons' 
electric rhythms, the circadian rhythms of whole-animal activity, and the 
periodic ovulation of female vertebrates. It seems as though every rationally 
conceivable format has been employed, and then some. But if comparisons are 
to be attempted, a convenient standard format must be adopted. This turns out 
to be one ofthose intriguing problems for wh ich our habitual reliance on cartesian 
coordinates does not provide the optimum choice offormat. Toroidal coordinates 
prove most natural for visualizing the relationships of idealized rhythms. (See 
item 14 of Section B above.) But let's work our way around to that inference 
gradually, starting with the familiar Cartesian graph format. 

Figure 30 presents such a format for laying out the results of hit-and-run 
perturbation of rhythmic processes. In Figure 30, we see a vertical time axis. The 
origin of time is at the moment when rhythmicity is started by some standard 
procedure. For example, circadian rhythms can be started by transfering cells 
from constant light to constant darkness. Thereafter, some conspicuous event 
recurs at regular intervals. We take that naturally given interval as our unit of 
time. By choosing the event to call phase 0, we determine the quantity 00 between 
the standard start and the appearance of phase 0. Thus, the standard procedure 
starts the rhythm, by definition, at phase I - 00 . Bear in mind that we have two 
time scales going now. We have absolute time t measured from the start all the 
way down the time axis. And we have periodic time ljJ measured modulo I from 
the phase reference events. Further down the axis I have diagrammed a stimulus. 
The stimulus need not be instantaneous. It can be any procedure, for example, 
turning on the lights and letting them fade gradually back into darkness, or 
ex posing a cell to aseries of action potentials 10 milliseconds apart for as long as 
the stimulus lasts. The essential point is that up to stimulus time, and after the 
stimulus ends, the rhythmic system is left alone in a standard environment where 
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I. Circular Logic 

Figure 30. Defining quantities 00' T, (/) , M. and I) in a hit-and-run 
rephasing experiment. 

it is known to function rhythmically with unit period. As diagrammed, the sti
mulus begins at a time cp in the cycle, lasts for duration M, and then ends. After 
its end, normal rhythmicity is taken up again with the marker event recurring 
after a time e plus multiples of I. The main point of this diagram is to layout the 
format of an experiment and to define the quantity () which, because it is the 
complement of a phase, we call "cophase". Cophase is the time (modulo 1) from 
the end of a stimulus to the cp = 0 marker event. Just as "phase" always implicitly 
means the phase of a process at a particular designated time, so "cophase" means 
the cophase at a particular designated time. The cophase at the end ofthe stimulus 
is e, thus the phase at the end of the stimulus is a fraction e of a cycle prior to 
cp = 0, that is, 1 - e. Equivalently, the cophase at any time is 1 minus the phase 
at that time. It is the "latency" time from end of stimulus to the rescheduled event. 
This quantity has proven convenient to neurophysiologists (Schulman, 1969; 
Hartline, 1976, 1979; Pinsker, 1977), to circadian physiologists (Ottesen, 1965; 
Winfree, 1968 et seq.; Pavlidis, 1973 ; Saunders, 1976a, 197X), and to cell biologists 
(Kauffman and Wille, 1975), although under a variety 01' names. Unfortunately, 
the names are sometimes ambiguous. For example, Kauffman and Wille (1975) 
use the symbol cp not for the phase of a plasmodium but for the time until the 
next mitosis, i.e., for a cophase. Pinsker's (1977) cophase is measured from the 
beginning of his stimulus (train of action potentials) rat her than as originally 
defined (Winfree, 1968) from its end, the beginning of free-run (see Chapter 6). 

Figure 31 introduces a format for comparing the effccts of stimuli given at 
different phases in the cycle. In Figure 31 , a large number of experiments are 
displayed side by side, each in the format of Figure 30. They are laid side by side 
with stimulus times aligned, so the starting time is systematically advanced along 
a 45° line at the top in such a way that the phase at the beginning of the stimulus 
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Figure 31. Many eopies of Figure 30 (simplified), with "START" 
at progressively earlier times before the stimulus. 
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systematically increases to the right. Stimulus time scans through two full cydes 
in this diagram. The quantity cjJ, the phase at the beginning of the stimulus, can 
therefore be measured equivalently from the last phase reference event to the 
stimulus, as in Figure 30, or to the right as diagrammed. The quantity e can be 
measured from the end ofthe stimulus to the first phase reference event, or equiva
lently, from any anniversary of the stimulus's end, forward in time to the next 
phase re fe ren ce event. The complement of e is the phase of the rhythm at the 
anniversary of the stimulus end or, equivalently, at the end of the stimulus. This 
new phase is designated cjJ' in the diagram. 

In Figure 31, the stimulus has no effect: The marker event occurs rhythmi
cally all the way down each time axis, straight through the stimulus. Figure 31 
thus diagrams an unperturbed control. In Figure 32 it is redrawn with the vertical 
time axes suppressed and with continuous diagonal lines replacing the diagonal 
trails of dots. In other words, Figure 32 is intended to represent a limiting case 
of Figure 31 with infinitely many experiments, separated horizontally only by 
arbitrarily sm all intervals of stimulus phase. Figure 32 introduces co ordinate 
frames: 

1. At the upper left, the time Tat which stimulus begins provides a co ordinate 
to the right, while the latency of the marker event after the stimulus provides a 
vertical downward time coordinate e. 

2. In the lower right of the figure, the old phase axis, cjJ from ° to 1, stretches 
horizontally to the right, aligned by the marker event at stimulus time. The new 
phase axis cjJ' stretches from ° to 1 upward, aligned by anniversaries ofthe stimulus 
end. 

(All this sounds dreadfully complicated in words, but it isn't. PIe ase stare a 
long time at the diagram to make it all co me dear. Similar diagrams are re
described in somewhat different context in Chapters 3, 7, 14, and 19.) 
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Figure 32. A redrawing ofFigure 31 with trails ordo ls replaced by 
continuous curvcs (uninterrupted 45 diagonals : Stimulus has no 
effect). Two equivalent coordinate rramcs are indi ca ted by (0, T) 

and (cp ', (jJ). 

This being an unperturbed control experiment, the data points lie along the 
cfJ ' = cfJ + M locus: New phase equals old phase plus stimulus duration because 
the stimulus did nothing, and the new phase is evaluated at the end ofthe impotent 
stimulus of duration M, whereas old phase is evaluated at the beginning of the 
stimulus, 

The new phase vs. old phase coordinate frame is mobile: It can be moved 
vertically or horizontally by unit steps. We expect our data in the present ideal
ization to be periodic both horizontally and vertically, so that it makes no difference 
which placement of the new phase vs. old phase axes is chosen. We will come to 
exceptions later in the context ofreal experiments (e.g., see Chapters 7,20,21). 

In Figure 33, Figure 32 is redrawn under a different assumption about (he 
effect ofthe stimulus : The stimulus is taken to resta rt the rhythm, no matter when 
in the cycIe the stimulus is presented. For ex am pIe, the stimulus might force the 
oscillator to a standard state, the rhythm restarting when the stimulus ends. This 
stimulus serves as a repeat of the start procedure used above along the 45 ° line. 
In this case, the new phase is always cfJo = 1 - 80' no matter what the old phase. 
Thus, the da ta lie along a horizontal line. 

How else might data Iie on such a diagram ? The es~cnce of the diagram is 
its double periodicity, taken together with our assumption of continuity, implicit 
in replacing a trail of dots by an unbroken line. As that line is traced horizontally 
through one full cycIe, it must move vertically through some integer number of 
full cycIes, possibly 0 as in Figure 33, possibly 1 as in Figure 32, possibly some 
other integer as in Figure 34. But if it doesn't get back to the same new phase at 
the same old phase, then it is telling us that the system was after all only super
ficially periodic, or else that a given experiment can havc two or more alternative 
outcomes, depending on unknown factors not specified in this diagram. 
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Figure 33. As in Figure 32 except that the stimulus 
resets rhythms from any prior T (or!/J) to a fixed phase, 

i.e., 17 =' 170 or !/J' =' !/Ja· e 

o '+ ------I---l 
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But let us assume that the system really is periodic and weil behaved. The 
essence of its periodicity is captured more compactly by a topological trick. A 
vertical sheet of wall paper such as the bot tom half of Figure 32 can be rolled up 
horizontally, superimposing the repeated columns of identical unit cells. In this 
form, our graph has an extended periodic 4/ axis vertically and a single circular 
cjJ axis in which (p = 1 is identified explicitly with cjJ = 0 by joining them. We have 
thus carried out explicitly the "modulo" operation implicit in our definition of 
phase. We might have done the same for the cjJ' axis, rolling vertically to obtain 
a horizontal cylinder. It is not too late (Figure 11). Conducted in either order, 
these two rolling operations leave us with a doughnut-shaped piece of graph 
paper, a torus. (Conducted in this order, the cjJ' axis threads the hole.) Figure 34 

w·, 

w·-, 

w·Q 

Figure 34. A mosaic of three different possible outcomes of resetting measurements, plotted in the 
format of the lower parts of Figures 32 and 33. Resetting types are classified by an integer W: The 
number of q,' cyclcs crossed per cycle of!/J. Figure 32 is an extreme ca se (flat diagonal) of W = I. Figure 
33 is an extreme ca se (flat horizontal) of W = o. W = - I (also shown here) or any other integer type 

of resetting is possible. 
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was just the single toroidal surface slit open along two perpendicular circles, laid 
flat, and repeated for the sake of continuity (see Example 14: §1 ~ §1). Though 
redundant, the planar representation is useful and we will see it again in several 
contexts because real world data are not exactly periodic and the departures 
from exact periodism are sometimes systematic and meaningful. They would be 
lost as "noise" in a strictly periodic procrustean bed such as Figure 11. But for 
now, that is precisely what we want to do: We want to examine the strict implica
tions of exact periodicity in order to generate a rigid skeleton of ideas and ex
pectations on which to hang more flexible realities later. 

Let us turn to the torus and inquire how a continuous trail of data points 
might lie on its surface. If we concern ourselves only with the logic of continuity 
and of periodicity, then the data trails must rise through an integer number of 
unit cells in Figure 34 as they advance horizontally through one unit cell. In terms 
of Figure 11, this means that the data form a closed ring, threading the hole in 
the doughnut in one direction or the other some number of times. Such curves 
fall into distinct groups, according to how many times and in which direction 
they loop through the doughnut's hole. Two limiting cases will serve as examples: 

1. Suppose the stimulus is so brief (M ~ 0) that it has almost no effect as in 
Figure 32, so <jJ' = <jJ. The data then lie in a ribbon exactly superimposed on the 
controls. This curve paralleIs the main diagonal on our toroidal graph paper, 
forming a ring that winds once through the hole in what we henceforth take to 
be the positive direction (as <jJ increases, so does <jJ'). This is called type 1 re setting, 
according to its winding number. The winding number is the same as the average 
value ofthe slope, d<jJ'jd<jJ. Even if <jJ' differed from the controls by a fixed amount 
independent of<jJ (e.g., if the stimulus does nothing but lasts a long time so <jJ' -
<jJ = M is not negligible), the data would parallel the main diagonal and link 
once through the hole. Even if <jJ' depended markedly on <jJ in certain ways (e.g., 
<jJ' = <jJ + 100 sin(2n<jJ)), the topological type of re setting would still be the same: 
The data ring passes many times through the hole, but each time except once it 
turns around and comes back out again. And although the slope d<jJ'jd<jJ reaches 
great extremes, it averages out to exactly 1 on account of the requirement of 
periodism. 

2. Suppose the stimulus restarts the rhythm at phase <jJo whenever delivered, 
so that <jJ' is equal to <jJo independent of <jJ. This curve parallels the equator of 
our toroidal graph paper, maintaining a fixed vertical level as it rounds the <jJ 
axis. It never loops through the hole. This is called type 0 resetting. Even if <jJ' 
were 100sin(2n<jJ), the topological type ofresetting would still be 0, as the winding 
number of the data through the hole remains 0 despite its passing in and out of 
the hole (in opposite directions) many times. The mean slope d<jJ'jd<jJ is also O. 
(For example, see Boxes Band C in Chapter 4.) 

Curiously, no other resetting types have been reported from experimental systems 
in which a reasonably smooth curve can be sketched through the data. In principle, 
any integer type is compatible with the requirements of continuity and of period
dicity. What further restrietion constrains naturally occuring re setting curves 
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to type 0 (q/ vs. q) wiggling parallel to the stimulus) and type 1 (cjJ' vs. cjJ wiggling 
parallel to the start)? This question will be more approachable later, when we 
have passed beyond classifying data into a discussion of kinds of dynamical 
systems. It turns out (Chapter 6) that some kinds of oscillator mechanism can 
yield only type 1 resetting, so me kinds can yield both type 0 and 1, and other 
kinds can in principle yield any integer type. At that point, we will also have to 
deal with the realistic fact that in certain experiments there are systematic devia
tions from periodicity along the cjJ axis, or along the cjJ' axis, or along both. Thus, 
Figure 34 cannot really be strictly rolled up onto the doughnut co ordinate system 
of Figure 11. Such irregularities do not prevent our measuring phase and cophase 
by extrapolating the poststimulus rhythm back to the first moment of free-run 
after the stimulus. These particulars are dealt with later in connection with partic
ular classes of mechanism, and in Bestiary chapters about particular organisms. 

A second big assumption lurks scarcely beneath the surface here: An assump
tion of continuity, glossed over earlier in stating that resetting curves thread their 
way smoothly from one unit cell to the next, in Figures 32 through 34. In imagining 
a smooth curve threading the data points, we suppose that a small change in the 
time at which stimulus is given makes only a small change in the resulting cjJ. In 
other words, we neglect the possibility of a threshold phase at which the system's 
physiology changes discontinuously by ajump or a jerk. Counterexamples abound. 
We take up some of these cases in connection with some kinds of neural pace
maker in Chapter 6, Seetion C, in connection with the cell cycle in Chapter 22, 
and in connection with the female cycle in Chapter 23. 

In fact, a resolute pursuit of even the continuous cases with winding number 
W i= 1 leads relentlessly to a discontinuity of the monstrous sort called a "phase 
singularity" (Chapter 2). But we cannot appreciate the inevitability of a dis
continuity without first pursuing the narrow path of idealization, restricting 
ourselves slightly to consider systems whose phase-resetting data appear to lie 
on smooth curves. 



2. Phase Singularities 
(Screwy Results of Circular Logic) 

... beware ofmathematicians and all those who makc cmpty prophecics. 
The danger al ready exists that the mathcmaticians havc made a covenant 
with the devil to darken the spirit and to confine man in thc bonds of Hell. 

St. Augustine 

A phase singularity is a point at which phase is ambiguous and near which 
phase takes on all values. My purpose in this chapter is to give examples by 
somewhat idealized description of phase singularities observed in several experi
mental systems. In some cases, the phase singularity is at this writing only inferred 
and not yet demonstrated. Some cases of purely hypothetical and trivial nature 
are also thrown in to help darify the principles that I take to be involved in the 
more interesting biological examples. Much is glossed ovcr here that should 
disturb a thoughtful person acquainted with the physiology of any one of these 
systems. These details are dealt with in Chapter 10 and in the Bestiary (Chapters 
11-23). 

The 15 examples I've chosen are organized in this chapter as folIows: 
First come three that are intuitively more familiar than the rest, to make the 

geometry familiar. Examples 5-10 all concern biological time measurement: They 
describe phase singularities of living docks. Physical spacc is not essentially 
involved, ex ce pt maybe in Example 10, which features docks in a growing fungus. 
From there on, physical space plays an indispensible role. The singularity is 
actually visible as the organizing center of a two-dimensional pattern. Example 15 
describes the most sensationally visible example of all, an oscillating chemical 
reaction in which colorful red and blue striations are organized around phase 
singularities in three-dimensional space. 

A: Examples 

Example 1. Color Vision. My first example is at the same time the most 
abstract and the most compellingly graphie. It concerns an oddity of human 
color vision ci ted in the previous chapter as Examples 14A and 150. Normal 



A: Examplcs 

Figure I. The plane x, + X2 + X 3 = 1 in the threc
coordinate positive Cartesian depiction of color receptor 

excitations. 

Figure 2. The locus ofspectral hues (heavy): its psychophysical 
closure through purpies (dashcdl: and the uniform-huc con
tOUfS. all on the triangular plane offixed intensity from Figure I. 
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color vision in humans is based on three primary colors. Each color of light 
falling on the retina excites three distinct receptor processes to different extents. 
(Other animals may have different numbers of separate color sensors.) The infinite 
variety of physical colors, each defined by a distribution of energy across the 
visible part of the spectrum, is thereby reduced in human perception to three 
numbers, three rates of nerve activity. Each color occupies a place in the three
dimensional space so defined. This is a very simple model, ignoring as it does the 
effects of surrounding color and texture. However, it is entirely adequate for pure 
homogeneous color phenomena, the situation for which the colorimetric model 
was invented by Isaac Newton, James Clerk Maxwell, Hermann HeImholtz, and 
Thomas Young (see Sheppard, 1968). 

If we neglect differences in overall brightness, i.e., if we confine our interest to 
equally bright stimuli (e.g., by the criterion Xl + Xz + X3 = 1 in Figure 1), then 
we need deal only with a two-dimensional section through this three-space 
(Figure 2). The boundary of this section is a triangle, topologically equivalent to 
a ring. Near the triangle's center, we find the least saturated colors, the grays 
associated with roughly equal excitation of all three receptors. On this triangular 
section, the spectrally pure colors map to an open U-shaped curve which rep
resents the wavelength axis from about 400 nm to about 700 nm. The corners and 
edges of the triangle are normally inaccessible because (outside of dreams and 
clever procedures in the psychophysicallaboratory) it is impossible to excite one 
receptor to the compiete exclusion of others, on account of their overlapping 
absorption spectra. 

The peculiar fact about human color vision is that we subjectively perceive 
mixtures ofred and blue as a pure intermediate hue called indigo or purpie. These 
hues complete a ring between the end points ofthe spectral U locus. They compiete 
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it without repeating the spectral hues in reverse order. Thus red is dose to orange 
is dose to yellow is dose to green is dose to blue is dose to indigo is dose to 
violet is dose to red is dose to orange. The essence of any topological space is 
its connectivity, and we have ring-Iike connectivity in the case of hues. The dosed 
U is the "color wheel" of grammar school. 

Phrased otherwise, the peculiar fact about human color perception is that we 
subjectively recognize colors not by the Cartesian coordinate system IR 3 that our 
three receptor excitations define, nor by any topologically equivalent coordinate 
system, but rather by darkness and brightness (topologically equivalent to radial 
distance from the origin), by saturation (topologically equivalent to distance 
from the gray diagonal Xl = X2 = X3), and by hue (topologically equivalent to 
an angle about that diagonal). That is, we employ a co ordinate system that 
somehow maps IR 3 -> § 1 so far as hue alone is concerned. 

What this means on the color triangle is that the loci ofuniform hue (neglecting 
saturation and brightness) are curves each of which crosses the maximum satura
tion ring (the color wheel, the dosed U) at one point. Inside the color wheel these 
curves can only converge. The color to which they converge evidently has all hues 
or no hue: It is gray. It is a phase singularity, in an abstract sense that involves 
no rhythms in space or in time, but only an irregularity in mapping the triangular 
disk to a ring. No such map can be carried out continuously unless the winding 
number is zero along every ring that can be traced on the disko In this ca se, the 
border ring has winding number W = 1 so that continuity is preduded. The 
inevitable discontinuity turns out to be the most localized and violent kind: a 
phase singularity. 

Example 2. Navigation in a Rowboat. In Example 14B ofthe previous chapter 
we dwelt upon the relationship between the compass heading adopted by a 
boatman and the actual track of his boat as altered by a steady current. We 
arrived at a trigonometric formula relating track (1/ to heading cjJ and the relative 
swiftness of the current. We noted that this relation takes either of two qualita
tively different forms, depending on whether the current or the boat is swifter. 
This peculiarity is associated with a phase singularity implicit in the equation 
when the boat heads directly upstream (cjJ = 0) with the same velocity as the 
current (v = v*). In this situation the boat hangs poised forever motionless in 
midstream, depending for movement on f1uctuations in the heading, the boatman's 
vigor, or the current. The slightest deviation from equilibrium gives the boat a 
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Figure 3. Taken from Figllre 14 of Chapter I to indicate the 
combinations of q; and 1 that are compatible with any fixed 
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Figure 4. The navigator's mapping: The co
ordinates are heading relative to the current 
Ihorizontal) and velocity relative tn the current 
Ivertica l). The curves are level eonlours of resul-

tant track direction, relative to Ihc current. 
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gentle drift in some direction 4/, and all directions are equally accessible. The 
combinations of cjJ and v that result in the same cjJ' are indicated geometrically in 
Figure 3. Figure 4 depicts this dependence as a contour map oftrack direction cjJ', 
plotted on the (heading cjJ, velocity ratio v* Iv) plane. The contour lines of each 
given track direction are identified by their intersections with the heading axis 
at v* Iv = 0 (no current), where heading = track. At v* Iv = 1 all contours converge 
near a north heading (upstream). At greater currents or lesser rowing speeds, all 
tracks are downstream regardless of heading. 

Example 3. What Time is It? What time it is depends on where you are, 
doesn't it? The docks behind the newscaster's desk say "Tokyo", "Moscow", 
"New York", and "Canberra" and each reads a different time. But this madness 
has its method, as noted in Example 14C of the previous chapter. If we layout a 
ring of docks along a globe-girdling path~let's say the path of Pan American 
Flight #2~then we have a big cirde and along that cirde, at any instant, local 
time advances through a full day. This leads to a difficulty. Our ring of docks is 
a big cirde lying on the surface of the planet (Figure 5). Let's contract it a little. 
I f we think of it as a necklace of 40 million pocket watches, a meter apart, we can 
envision taking up a meter of slack, pushing the watches apart, and doing it 
again repeatedly. As the ring shrinks, we may have to walk a bit north to keep up 
with it. If we take care that every watch moves north, then each stays in its local 
time zone and need not be reset as it moves. Eventually, after all but 100 meters of 
wire have been rolled up, the other side of the ring comes into sight over an ice 
ftow, dragging its millions of pocket watches. Gather up another 100 meters of 
wire. Now, what time is it? All times, no time, summertime? Look at the sun ifthe 
docks don't agree. When it is at its highest, in the south, call it noon. But the sun 
is cirding at fixed altitude along the horizon and every direction is south. 

This place is a phase singularity. 

Figure 5. A ring of pocket walches, initially on the Equator, during its 
contraclion loward the North Pole. 
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NORTH 
POLE 

Figurc 6. Apolar vicw ofthe North Hemisphere showing bound
arics of (idealized) time zones. To assign a time to each place on 
this hcmisphcrc, the hemisphere mus! be mapped to the phase ring 

(below). This cannot he done smoo!hly. 

Let's look at it more abstraetly. At every instant the determination of loeal 
time as a function of position on the globe is a map from §2 ---+ § 1. Along the 
equator the map is quite tidy: loeal noon advanees four minutes for every degree 
of east longitude. [This simple fact was the wh oie reason for development of 
ace urate chronometers: They were indispensible for global navigation (see Box B 
of the previous ehapter)]. So the equator is a eonvenient line along whieh to cut 
the sphere open, the better to deal with eaeh of the hemispheres separately as a 
disko The two-dimensional disk must be mapped to §! in such a way that winding 
number equals 1 along the disk's border (Figure 6). This eannot be done eontin
uously. The most loealized form whieh the inevitable discontinuity eould take 
is a phase singularity: a point at whieh all phases eonverge, a point that the map 
pulls apart to all phases. This is naturally plaeed at the pole, being both the earth's 
rotation axis and a plaee where alm ost nobody lives. 

Because time and pi ace are symmetrieally measured on the earth's two hemi
spheres, there is a seeond phase singularity. Both have faseinated navigators sinee 
the globe was first eharted beeause both represent inevitable eonvergenees of 
meridian lines that were initially sketehed to separate and to distinguish sueeessive 
ares along the equator (see Box A). 

Example 4. Timing the Tides. 

It is even said (by footsoldiers relurned from Alexander's expedition to the 
Arabian Seal that the many cbbings and risings of the sea always come 
round with the Moon and upon certain fixed limes. 

Aristotle 

Another phase singularity of the same kind is familiar to oeeanographers 
coneerned with the predietion of loeal tides and with understanding the eom
plexities of their geographie variation along the world's shorelines. This example 
brings out more cJearly the involvement of rhythms in time. The tides have many 
harmonie components based on the earth's period of rotation and on both the 
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Bo A : iving Clock at a Geographical Phase S ingularity 

Phy iologi t a wcll a ' navigator have been fa cinated by the pole. Agarage a 
few hundred meter from the outh Pole be ame the ene of a unique biological 
experiment when Karl Hamner arrived by an ir Force tran port with hamster. fruit 
Ilies, bean plallls. and breadmold (Hamner et al.. 1962). Perched on a counter-rotating 
platform at the end-point oflhe I nternalional Date Line, what time \ ould their biological 
dock think it was'} Two major po sibilitic wcrc envi ' ioned: 

. x hour later than it was hom ago. whell they were elsewhere: -xpected Oll 
hyp the i I, that the biological rh) thms derive from internal biochemical 0 cillators 
that take no notice of geography. 

B. 0 definite time becau 'e ut the pole no d ur ph i logical rhythms will per i t 
by which to evuluute ubjecti\e phy~iol gicaltiming; xpected on hypothe i 2, that the 
rhythm really reflect · ol11e loeal eOIl equenee ofthe earth" rotation, to whi h the eho en 
peeie are more en itive than are their observer ' in trumelll . 

What happened? Outcome A: The organi m eontinued in th ir phy i logi al 
rhythm ju ta a man's pocketwatch doe . not curing that it i earried aero the pole. 
Thi ob ervation encourage belief in hypothe i I. that circadian rhythmieity ari e 
from an internal physiologieal dock. 

nfortunately. the ob enation of outcome A did not really di tingui h rigorou Iy 
between hypolhe e I und 2 beeau organi m muhl have been reading Greenwich 
Mean Time ju la plau iblya they eould have been reading other ubtle concomitant 
of the earth' rotation. For example, a Greenwich ean Time readout i available 
synehronou Iy around the gl be not nly from talion WWV but al 0 in thc vertical 
gradient of electric potcntial in the atmo phere. Thi i' eau ed by a global maximum 
rate of thunder torm formation a certain number of hour after the major ominental 
land ma es roll into the sunlit hemi phere at 7 r .M. in ondon ( eynman el. al.. 1964, 
vol. 2. p. 9 3). Becausc the iono phcre conduet~ 0 weil. this readout i availablc 
unaltcnuated at the OUlh Pole unles experiment are conducted in a Faraday eage. 
Palmer (1976) al 0 notes that the I/lagllelic South Pole i 1.500 mile away, near ew 
Zcaland. Thu rgani m on the co mieally tationary platform were ubjecled to a 
rotating magnetic field with 24-hour period. 

Apart from thc e quibblc , the idea of the experiment wa ingeniou : If biologieal 
rhythm are geographieally cau cd. then they hould vani h when the organi m i placcd 
in a geographie pha 'c ingularit). Thc) don·t. \: c will scc in xamplc 5 9th<!t a similar 
experiment can be done too: Ir biologieal rhythm ' are phy i logically cau cd. then they 
should vanish when the organi mi placed in a phy iological pha e ingularity. They d . 

earth's and the moon's periods of revolution about their primaries, and on loeal 
resonanees determined by shoreline geography and depth profiles. The exeellent 
approximation provided by linear theory allows us to deal with eaeh eomponent 
separately. The amplitudes of the eomponents vary loeally, but eaeh eomponent 
is independently subjeet to the same prineiples. Consider for example the funda
mental harmonie ofthe lunar semidiurnal tide M 2 , whieh happens to be dominant 
on the Isle of Palms where I am writing. 
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Figure 7. The surface of a sphere mapped into a segment 
of a circJe. 

In the very first approximation, the tide is a rotating pair of bulges of water 
above the global mean sea level. Viewed locally, it is arhythmie rise and fall of 
the water surface, or arhythmie advance and retirement ofwater along the sloping 
shoreline. The tide cannot be globally synchronous because there is a flxed quantity 
of water available. So there is a geographie pattern of phase. This is easy to mea
sure along the shores, and it is possible to measure at sea using sonar depth 
finders. Thus, the tidal pattern on an instantaneous snapshot of the globe could 
be portrayed as a map ofthe sphere onto the phase circle (§2 -+ § !). This poses no 
problem to imagination. A sphere is easily mapped into a circle, e.g., as in Figure 7. 
But the map I want also has to embody a special fact , namely, that the local 
rhythm's phase (measured relative to Greenwich Mean Time) seans through two 
fuH cycles along any ring girdling the earth near its equator. Sinee the winding 
number is 2, not 0, there is no such eontinuous map. Try to visualize every point 
on a spherical rubber baHoon assigned to a point on the eircle while wrapping 
the equator twice around that circle as required. Figure 8 shows this operation on 
the Northern Hemisphere. The balloon has to be stretched flat like a pancake, 
and to finish the job, its surface must be punctured in general at two points in 
each hemisphere. The edges of eaeh puncture fly out all around the equatorial 
circle, so eaeh puncture is a phase singularity. This would be the simplest possible 
geographie pattern of tidal phase. 

It turns out that there are quite a lot of phase singularities. Some of them 
perhaps are lost inside the continental land masses, but there are thought to be 
several in the open sea (Defant, 1961; Platzman, 1972). Oceanographers depict 
these so-ealled amphidromie points by drawing "cotidal contours" on the ocean 
map as in Figure 9 (from Chart 1 of Defant, 1961). A eotidal contour is the geo
graphie loeus of synehronous tides, the locus along which the tide crests simul
taneously. Thus, each cotidal contour can be assigned a unique clock time, the 
phase of the 12A-hour eycle when this locus is at full tide. These contours radiate 
from the amphidromic point. At the amphidromic point, the tide is full at all 

EQUATOR 

NORTHERN 
HEMISPHERE 

RING OF 
TIDAL PHASES 

Figurc~. An attempt 10 map the North Hcmisphere 
onto ~I ring with the Eqllator wrappcd twiec arollnd. 

Thc hClllisphere must be punctured at [wo points . 
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2. Phase Singularities(Screwy Results ofCirclilar Logic) 

AMPHIDROMIC 
POINT 

TlDAL 
CREST 

ME AN 
DEPTH 

TlDAL 
TROUGH 

Figllrc !o. Tidal circulation in a la rge 
basin (exaggcratcd). 

times or at no time. That is, there is no tide. The water surface pivots about the 
amphidromic point like a rotating tilted plane, counterdockwise in the Northern 
Hemisphere (Figure 10). 

Example 5. The Fruitfly's Body Clock. Most living organisms have an innate 
tendency to repeat their behavior and physiological activities at intervals of about 
24 hours. This tendency is ascribed to the working of an internal physiological 
oscillator called a "circa-dian" dock or pacemaker (see Chapter 19). What little 
is known of its mechanism in any species at present mostly comes from watching 
the timing of behavioral rhythms that it indirectly drives. One of the best studied 
of these is a neurosecretory rhythm that ultimately times the first appearance of 
butterflies, moths, flies, and wasps after metamorphosis (see Chapter 20). Newly 
hatched flies appear from a heap of metamorphosing pupae at 24-hour intervals. 
These bursts of eclosion activity rcveal the phase of an internal clock that can be 
started, stopped, and reset in phase by exposures to light. 

The Pinwheel Experiment. lt was in such an experimental system, developed 
primarily by Colin Pittendrigh, that I was first able to dcmonstrate a phase 
singularity in a biological dock. The idea was to conduct the following rat her 
inconvenient experiment: 

A lawn ofyoung pupae is spread out on a desk top under constant light (Figure 
11). By slowly moving a shadow from east to west like nightfall, oscillations are 
started in columns of pupae as they fall under the shadow (sec Chapter 20). If the 
shadow takes three days to engulf the desktop, an east-wcst phase gradient 
spanning three cycles of phase is established. With all pupae now steadily oscillat
ing in the dark, they are exposed to light, almost simultaneously, by moving the 
shadow southward, exposing first the north edge of the desk , and eventually the 
whole desk. Just before the shadow reaches the south edge, it is suddenly moved 



Figure 11. A "gedanken experi
ment" in which a rectangular field 
of circadian docks is manipulated 
by light, obstructed by a moving 

shadow, 
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back up to cover the whole desktop, Thus, each row of pupae was exposed for a 
time proportional to its north-south position, Those at the north edge were 
exposed for a long time and those at the south edge were not exposed at all, The 
desk top now contains an orderly array of combinations of phase (0 ::; cjJ ::; 3, 
east-west) and duration of exposure (0 ::; M ::; BIG, north-south), We wait to see 
where pupae simultaneously emerge, and when, This was called the "pinwheel" 
experiment because the anticipated result was a pinwheel-shaped wave of eclosion 
or, rather, three identical pinwheels rotating side by side, one in each repeat of 
the east-west phase gradient. Each should rotate clockwise, This forecast rested 
on three well-established observations: 

L OfKalmus (1935) and Bunning (1935): That eclosion follows the light-dark 
transition by a fixed interval plus multiples of 24 hours thereafteL Thus, the eclo
sion wave must move along the south edge of the desk from east to west (point D 
to point A in Figure 12) in each of the three unit cells, 

2, Of Pittendrigh and Bruce (1959): That early in the fruitfly's subjective 
night (point B), a briefbut saturating light pulse delays eclosion somewhat whereas 
early in the subjective morning it (point C) somewhat advances eclosion. It was 
presumed (and subsequently verified by Engelmann, 1969 ; Frank and Zimmer
mann, 1969; Chandrashekaran and Loher, 1969b; Winfree, 1970b and c) that a 
lesser exposure gives lesser delays or advances. 

3. Also of Pittendrigh and Bruce (1959) : That with saturating exposures, the 
transition from the delaying part of the cycle to the advancing part (point B to 
point C) is made through a region in which the delay inflicted increases by about 
two hours for each hour into the subjective night. In other words,eclosion follows 
later after a light pulse given later in the subjective night. 

What this adds up to is that if eclosion happens first at point A in Figure 12, 
then a little while later it is occurring at point Band a little while after that at 
point C and a little while after that at point D and a little while after that at point A 
again. The sums of these tim es necessarily add to 24 hours since everything in 
Figure 12 has a 24-hour period. In other words, the region of active eclosion 
circulates clockwise around the borders of region ABCDA in each of the three 
unit cells of the accompanying figure. 
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Figure 12. Figurc 11 is repeated after the shadow 
covers all pcrmanently. indicating the clockwise 
sequcnce of activity cxpected along paths ABCDA. 

But if the wave of edosion rotates, then its pivot point has no definite phase. 
The pupae in that region cannot be eclosing on a 24-hour schedule. This suggested 
consequences that might be biologically interesting, so the experiment seemed 
worthwhile not just to verify what seemed a foregone condusion but to ask in 
what manner rhythmicity would break down at the pivot of the anticipated rotor. 
So it 1967 I relocated my graduate studies from the Biophysics Department at 
John Hopkins University to the Biology Department at Princeton, where Colin 
Pittendrigh allowed me to carry out this attempt in the constant-temperature 
darkness of a basement animal room during his tenure as Dean of the Graduate 
School. The job was finished in a well-insulated basement meat locker in the 
University of Chicago's Department of Theoretical Biology in 1969 and 1970. 
Altogether, it required 510 separate experiments in a standard format (Recall 
Figure 30 of Chapter 1): 

1. The rhythm was initiated in young pupae by transfer from constant light 
to darkness. 

2. The darkness was punctuated T hours after initiation by an exposure of 
dura ti on M seconds. 

3. The times of at least three consecutive emergence peaks were observed 
several days after light pulse. 

The 510 separate experiments in this format may be regarded as discrete sampies 
of one big experiment, the pinwheel experiment described above. There is no 
difference in principle between these two descriptions because (unlike some other 
insects) Drosophila pupae determine their edosion time on the basis ofindividually 
perceived light stimuli, without regard to neighbors' docks or eclosion time. 
Thus, it doesn't matter whether they are handled as separate homogeneous 
populations or as areas in a continuous sheet of differently treated pupae. 

The results are idealized in Figure l3 in the form of a computer-plotted contour 
map. Each contour band indicates the locus in Figures 11 and 12 along which 
flies are simultaneously active every 24 hours. lt indicates the combinations of 
<p and M resulting in emergence peaks after the same delay. Thus after 0 + 24n 
ho urs, eclosion is along the loci marked by a vertical curve. After 2 + 24n hours. 
eclosion occurs along loci one band clockwise from there, and so on through the 
12 bands representing 24 hours at each of the 3 pivot points. As anticipated by 
the simplistic arguments resorted to above, activity revolves dockwise about 
pivots disposed at 24-hour intervals in the direction of increasing <p (old phase). 
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Figure 13. Computcr-printed level contours of new phase 4;' on the plane of exposure time T, to 
the right, and exposure duration or energy M, upward. [4; is T j24 modulo 1, offset by a constant; 4;' 
is (emergence time (1)/24 modulo 1, offset by a constanl. 4;' approaches 4; at small M.] Arrows indicate 
wave movemcnl. This is a contour map of a mathematically-defined surface very similar to the hand 
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Figure 14. Six unit cells of the fruitfty c1ock's time crystal. Data points are plotted larger in the fore
ground, smallcr in background. Stimulus magnitude M increases toward the background from 0 in 
the foreground. M. T. and IJ in hours. 4; and 4;' in cycles of 24 hours from an arbitrary origin. See data 

in stereo without the idealized surface in Figure 5 of Chapter 20. 
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There is a more artistic and experimentally more direct way to present the 
data summarized by Figure 13. Figure 13 is a contour map ofthe surface obtained 
by plotting activity time (cophase) below the plane coordinatcd by stimulus time 
(old phase) and stimulus magnitude. Why not just plot the data and draw the 
surface in three-dimensional perspective, instead of resorting to a flat contour 
map? Figure 14 does this. (The cloud of data points through which I sketched 
the surface is presented in stereo perspective in Chapter 20, Figure 5.) The surface 
climbs upward as in a spiral staircase winding around poles along the first two 
singularities. 

The essential point of a11 this is that the activity monitored appears on the 
stimulus plane as a rotating wave. The position of the wave at any instant is a 
horizontal cross-section through this screw-shaped surface at the corresponding 
verticallevel. Since the surface is screw-shaped, its cross-sections, at successively 
lower verticallevels, (successively later times) appear to rotate about the central 
vertical axis, which serves as a pivot point for the wave (Box B). Actua11y there 
are three distinct pivot points spaced 24 ho urs apart along the east-west phase 
axis in Figures 11 and 12. These correspond to three repeats of the screw-shaped 
surface (only two of which are drawn in Figure 14). Since the data are periodic 
both along the horizontal old phase axis and also along the vertical new phase 
axis, we have here essentia11y a crystallattice of data. Each unit ce11 of the lattice 
contains one turn of a screw-shaped surface. I have sometimes referred to this 
whole structure as a "time crystal" because it resembles a crystal lattice and a11 
three of its coordinate axes represent time. The characteristic screw-like appearance 
of phase plots ne ar a singularity gives this chapter its subtitle, "Screwy Results", 
fo11owing hard on the heels of our anticipating the phenomenon via "Circular 
Logic" in the preceding chapter. 

This example (the fruitfly clock) was included: 

1. To introduce the equivalence of an abstract space of stimulus parameters 
to real physical space, as a setting for rotating waves. 

2. To introduce the equivalence of piecemeal resetting experiments to spatial 
wave experiments, via the time crystal's screw-shaped data surface. 

3. To illustrate again the central role of the winding number in maps of 
§ 1 ---> § 1: The re setting of a rhythm's phase constitutes such a map, and if it has 
winding number 0 (type 0 re setting), then the winding number cannot be 0 around 
a certain ring in stimulus space. Therefore that ring must enclose an unpaired 
singularity (Box B). 

4. To introduce a nontrivial context of application, namely, biological clocks. 

The next few examples have the same format and similar results so far as the 
topological essentials are concerned, each using a different kind of organism. 
Quantitatively, these experiments do far more than just confirm the generality 
of the picture first painted by D. pseudoobscura because each species has its own 
surprising idiosyncratic distortions ofthe basic pattern. But for the sake ofkeeping 
our exploration focused on principles in this chapter, these details are relegated 
to Chapter 14 and to the Bestiary. 
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Box B: Type 0 Re etting Implies a crew urface 

Thi eem a good place to draw your attention to a fact more ab tractly tated in 
the previou chapter. i.e., that th helicoidal pattern i very nearly implicit in a much 
simpler experiment, namely. the mea urement oftype 0 re etting. You might rea onably 
ask. "If it is implicit then why bother to carry out the more laboriou experiment?'" My 
an wer i : 

1. It deri ation i not qll;le a laulOlogy. There could be more intrieate kind of 
ingularilY, or multiple ingularitie, which would point to di tinet physical inter

pretations. 

2. Behavior in Olher re peets lhan phase re elling (e.g .. amplitude re etting) is of 
critical intere t. and ueh observation me out of the ame experiment ( hapter 7). 

3. Quantitative a peet of the Olea. urement, not only the qualitative. lopological 
tructure ofthe resetting hedule are al 0 ofinterest ( hapter 20). 

How i it that type 0 resetting belray the pre enee of a screw surface within the time 
cry tal? The reason onee again derive from the theorem ofChapter I, Section ,along 
with ome facts and a umptions: 

I. Type 0 resetting i obtained with a "big" timulu. 

2. very rhythmic y tem e hibit type 1 re etting in re pon e to a ufficiently 
altenuated stimulu . becau e in the limit of vani hing timulu, new pha e equal old 
pha e. 

3. If the y tem i really rhythmic. then new pha e depend on timulu magnitude 
(inten ity. duration. or whatever) in the amc way at pha e tjJ a a t pha e tjJ + I. 

4. We suppo e. until forced 10 the contrary. that the dependence i conlinuou 
mall change of timulu magnitude re ult in at mo 1 a mall change ofnew pha e. 

5. The winding number mu t be an integer. 

We can rea on about the topology of the re etting map on a box diagram in the 
timulll plane ( igure a). Let the Maxi represent timlilu magnitude from 0 10 ome 

"big" timlllu which elicil type 0 re elling. We need to know the winding nllmber of 
new pha e around box ABCDA. rom to B. the new phase increase throllgh one full 
cycle by item 2. From B to C il change from 0 to ome X . From C to D it goe up and 
down with no nel change according to item I. From D to A it goe back down from X 
100 by item 3. Thu , the anticlockwi e winding number i 1. ecording to the theorem 

(a) A reclilillcar path pannmg olle cycle of old 
phase and the range of stimullt magnitude from 
o up to big cllough ,1/10 c1icil type 0 re 'elling. 
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(b) omc of the truct ures that can appear in 
a COnlOllr map of new pha e. sliperimposcd 

on (al 

of hapter I, ection C there mu t be an internal discontinuity. This would bc a crew 
axi if th di ontinuity i a imple and a violent a an i olated pha e ingularity. But 
it could be that boundary AB D cannot be hrunk allthe way to a point be au e the 
ine itable discontinuity is more extensive. For example, it might consist of an isolated 
ingularity and an extra pair of counterrotating ingularitie or any greater constellation 

of an odd number of ingularitie. or even a di k who e boundary con titute a one
dimen ional singular locu in ide which phase i undefined (Figure b). 

In poinl of fact, Ihe experimental result for thi kind of fruitfly look aboUl a imple 
a il could be: a ingle mooth cre~ urface with an i olated point ingularity. Experi
ment in wh ich I allempted 10 improve data re olution near the crewaxi (Winfree, 
1973a, Appendix) indicated no "inner tructure" to the ingle 0 ten ibly imple ingu
larity seen here at a low re olution. 

Another way to look at box DCB bring out the connection between type 0 
re etling, a ingularity, and a crew-like urface. Type 0 re etting with large timuli 
implie IIOI/:ero winding number around the whole box becau e with mall stimuli the 
resetting i nece ar ily type I, and 0 + X + 1 - X = I. With winding number W = 1 
around the box, new phase rises vertically Ihrough one full cy le around the box. Thi 
e tabli he Ihe border of Ihe new pha e urface within the box. II re emble a helix . 
Only a crew urface fil within a helical border. A crew surface nece arily ha an 
internal ingularity (or ome con tellation of them). 

Example 6. A Mutant Fruitfly's Body Clock (The Singularity Trap Experiment). 
Box C provides an algorithm for experimentally locating a singularity by checking 
the winding number of phase along more and more constrictive rings of stimuli 
on the stimulus plane. Its application was demonstrated using light pulses to 
rephase a mutant Drosophila melanogaster's eclosion rhythm. In 1972 Konopka 
discovered type 0 resetting in this mutant whereas only type 1 had been observed 
in the wild type. So according to Box C, a singularity is implicit in the mutant, 
though not necessarily in the wild type. Aseries of rephasing experiments around 
a box FBCEDGAF in the stimulus plane of Figure 15 produced the eclosion 
rhythms laid out in Figure 16. lts phase drifts through one full cycle around the 
box. Thus the winding number around the box is nonzero, betraying the presence 
of a phase singularity inside that box. Dividing this box by a vertical partition 



A: Examples 

Box 

'Thc ingularily trap" is a procedure for experimentally lighlening a noo e around 
Ihe phase ingularilY in a crew-like re lIing urface. 

We fir I draw a coordinate plane wilh an old phase axi eXlending Ihrough exaclly 
one full cycle and, 90 counlerclocb i e fr 01 it. a limulu magnilude axis from zero 
10 "big"- big limulu i one for whieh thc reselling curve (new phase vs. old phase) 
ha winding numbcr IV = O. i.e., as old phase is changed through one cycle, new pha e 
ri e and falls wilh no nel change. Thi guarantee that the winding number of new 
phase around box ABCD in Figure 15{a) i IV = I. cordingly, new pha e plotled 
above Ihe plane of igure 15 d cribe a helix along path ABCDA. 

How ean we 010 I imply fill oul Ihe inside of Figure 15 wilh da la points ? he 
objective hould be 10 locale Ihe crewaxi (a uming only one) from whieh the re t of 
Ihe urface fans out 10 il helical border. One way i t execute a erie of experiment 
repeatedly bi ecting Ihc quare AB 0 of Figure 15(a). In the fir t tep, the limulu 
range (or Ihe eycle) i divided into two equal inlerval bya dozen experiment equispaced 
along line in igure 15{b). all al middle pha e wilh increa ing limulu magnilude. 
This line divides square AB 0 into two rectangular boxe. Depending on how new 
phase varies along Iheir common border . one box slill ha W = 1 and Ihe other has 
W = 0: Ihe boundary of one box (and not of Ihe other) is helical. Take the helical box. 
Bi eet it by a dozen experiments along perpendicular line GH. orlhe re ulting quare, 
only one is guaranteed to have a helical border and therefore 10 conlain Ihe rewaxi. 
Take Ihal quare and repeal the preceding Iwo- tep mea uremenl. In each ca e retain 
Ihe same number orexperiment , even though Ihey are paced do er togelher along Ihe 
horter line egment u ed. In each tage. new pha e ri e Ihrough a full cyde around 

the box, 0 that the am number or da ta point i nceded to outline a smooth curve. 
Three repeat of Ihi procedure locate Ihe crewaxi (cfJ* , M*) 10 within one-eighth of 
a cycle and one-eighlh of Ihe original timulu magnilude range [Figure 15(cl]. Thi 
procedure fill the box AB D wilh enough data points (aulomalically concentrated in 
the teeper part 1 10 oLllline the whole urface . 
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Figure 15. Stimulus parameter plane: one cycle of old phase vs. stimulus magnitude. (a) The first 
mund of mcasurements is indicated by dots along loci BC and CD. In (b), experiments in the second 
round ofmcasurements are indicatcd by dots along loci EF and GH. In (c), after the fourth round, the 
singularity at old phase = ,/,* and stimulus magnitude = M*, is known to be in the innermost square. 
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-----------------------------------------0 

TIME AFTER EXPOSURE I 
IN MULTIPLES OF + 
19.2 HOURS 

2 

AROUND THE BOX, COUNTERCLOCKWISE 

F B C E D G A F 

Figure 16. 60 emergence rhythms in Drosophila melanogasler populaliolls are plotted vertically 
down ward from stimulus time (exposure to light). Time is measured in periods o!" 19 hours. The rhythms 
are stacked up fromleft to right in order around box FBCEDGAF. Thc rhythrn's phase scans through 
one cyc\e in one tour around this box. Vou can reconstruct the box and thc clata above it by photo
copying this figure and folding it into a cylinder, overlapping thc tcrminally redundant histograms. 

The data then ascend helically. On box es not enclosing a singularily. thc clala form a stack of cJosed 

rings insteacl. 

------------------------------0 

F 

TIME AFTER EXPOSURE 
IN MULTIPLES OF 
19.2 HOURS 

AROUND THE BOX, COUNTERCLOCKWISE 

H G A F 

2 

Figure 17. As in Figure 16 exccpt that path FBCEDG is replaced hy shorlcut FHG. Thc rhythm still 
scans a cyc\e arollnd this dirninishcd box, so thc singlilarity is not in thc omitted part. 
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(a chain FHE of experiments at fixed phase in Figure 15b), we find that the right 
half does not contain a singularity and the left half does. Subdividing the left 
half by a chain GH of experiments at fixed duration, we find that the top half does 
not contain a singularity. The bottom half does (Figure 17). Thus, by repeated 
alternations between applications of the theorem and execution of the corre
sponding experiments, we converge on a singular light pulse of 1,700 erg/cm 2 

applied five hours after the light to dark transition (or at 24 hours, or at 43 hours, 
etc., since this mutant has a 19-hour rhythm). This singular exposure terminates 
rhythmicity. This is the phase singularity, (</J*, M*) ("phi-star, M -star"). Putting 
all the data together in Figure 18, in exactly the format of Figure 14 for D. 

---T ~ 

o 19 38 
o 60 
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70 sec. 

79 
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1 
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o 136 
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Figure 18. As in Figure 14 but for the mutant of Drosophila melanoi!Qster used in Figurcs 16 and 17. 
Also only four cycles of new phase are plotTed vcrtically instead of three. All data in thc first cycle 
of old phase are double-plotted. hcing repeated in the second cycle. See unduplicatcd da ta in stereo 
in Figure 10 of Chapter 20. T and (j in hours. </' and <p' in cycles of 19 hours measured from an 

arbitrary origin. 
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pseudoobscura, once again we behold a single simple screw surface. Figure 10 
of Chapter 20 plots the raw data as a stereo pair. 

In starker form than any be fore it, this example illustrates the essential con
nection between winding number and singularities of maps [R;2 --> § '. To make 
the argument more strictly correct, I should note that although winding number 0 
around a box is necessary for absence of singularities, it does not guarantee an 
absence of singularities within the box. Phase singularities can be clockwise or 
anticlockwise. Paired, they cancel each other's contributions to a winding number 
along any ring that encloses them both. The winding number only teils us the net 
excess of clockwise or anticlockwise singularities. If that excess is nonzero, then 
that many unpaired singularities must lie somewhere within the ring. But if it 
is zero, there might still be any number of balanced pairs. This fact has a curious 
implication for regeneration experiments in animals, namely, the occasional 
production of superftuous left-right paired limbs, as we will see in Example 11. 

---T ~ 

o 24 
o ~~~~rGTTIl"nrrr~~~~~~ 24N 
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24Nt24 e 

1 
0' 

o 24N+48 
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Figure 19. As in Figure 14 but for the lly Saj'c{)plwga. according to Saunders's data (1978, with 
permission). The publishcd data cover only one cycle of old phase and new phase, here repeated twice 
in each direction. See data in stereo in Figure 11 of Chapter 20. -\11, T. and 0 in ho urs. cp and 

(I>' in cycles of 24 hours mcasurcd from an arbitrary origin. 
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Example 7. A Fly that is 1,000 Times Less Sensitive. David Saunders in Edin
burgh found type 0 resetting in the pupal eclosion rhythm ofthe fleshfly Sarcophaga 
in 1976 (Chapter 20). In this ease, as in adult fruitflies (Engelmann, pers. eomm.), 
the light pulse must eontinue far several hours at about the same intensity as above: 
Stimuli less than four hours long elieit type 1 resetting, and stimuli more than 
four hours long elieit type 0 resetting. The several resetting eurves of various 
durations are assembled to ereate Figure 19, whieh suggests onee again a serew-like 
dependenee of new phase on old phase and stimulus magnitude. Figure 11 of 
Chapter 20 plots in stereo perspeetive the data on whieh this guess is based. The 
neighborhood of the serew axis has not yet been explored systematieally. 

Example 8. Resetting a Flower's Clock. Turning to circadian rhythms in 
plants, Engelmann et al. (1973), warking m Tubingen, Germany, carried out 

--T ~ 

23 46 
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69 
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23 

46 e 

1 
69 

92 

Figure 20. A time crystal of the plant Kalanchoe according to the data of Engelmann et al. (1973). 
with permission. Three cycJes of old phase are plotted to the right and four cycJes of new phase are 
plotted vertically. The format is as in Figures 14, 18, and 19 but the first singularity on the left lies outside 
the range of these data. See data in stereo in Figure 5 of Chapter 21. T, M, and 0 in hours. <I> and <1>' 

in cycJes measured from an arbitrary origin. 
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measurements in exactly the same format using Kalanchoe blossfeldiana (Chapter 
21). In this case, a red light pulse of some hours duration resets the rhythmic 
opening and c10sing of Kalanchoe's little red flower. My idealization of their 
results is shown in Figure 20. Once again, we have a two-dimensional lattice of 
screw-like unit cells. This is supposed to fit the data presented as a stereo pair 
in Figure 5 of Chapter 21. In this data set, pulse durations varied only up to 
three hours, but the critical stimulus magnitude M* is more than four hours at 
the first T*. Thus the screw axis in this first column of unit cells is outside the 
field of view. 

The topological structure of these results is not dependent on the specific 
mechanism by which light affects the circadian c1ock. The same basic structure 
is obtained by repeating the above experiment, but with the light pulse replaced 
by a prolonged temperature pulse (Engelmann et al., 1974). Chandrashekaran 
(1974) obtained similar results using prolonged temperature shocks with the 
D. pseudoobscura ec1osion rhythm. However, his measurements don't go quite 
far enough along the stimulus duration axis: The plot of ec1osion time vs. initial 
phase and exposure dura ti on looks like the first half of Figures 14 and 18, the 
measurements extending only about as far as the screw axis (or so J interpret it). 

Example 9: A Phase Singularity for Beer Drinkers. Energy metabolism in 
brewer's yeast proceeds without oxygen by breaking sugar molecules down to 
alcohol. Due to a pecularity in the feedback regulation of its rate, the passage 
of sugar through this pathway is commonly pulsatile, and the associated bio
chemistry stably oscillates with aperiod in the order of aminute. Depending on 
when in the cyc1e it is administered, abrief exposure to oxygen induces a phase 
shift in this oscillation. Reasoning from the topological notions repeatedly used 
above and from the Pasteur effect (Chapter 12), I proposed in 1971 that the resetting 
should be type O. My subsequent measurements verified this, together with the 
fuH helicoidal resetting surface and its singularity (Figure 21; raw data in stereo 
perspective in Figure 4 of Chapter 12). The critical dose is about t micromole 
of oxygen per wet gram of cells, given a few seconds before the NADH maximum. 
Projecting the screw-like data c10ud onto the stimulus plane, we obtain a wave 
of NADH fluorescence rotating about this point. 

This kind of experiment was repeated by Greller (1977) using acetaldehyde 
pulses instead of oxygen pulses and by Aldridge and Pye (1979) using Ca2 + ions. 
The results were the same in the qualitative essentials here emphasized. 

The singularities discovered through type 0 re setting arise from an impossible 
map from §l x IR l ---> §l (from a cylinder to a ring, i.e., from the combination 
of a phase and a stimulus magnitude to a resulting phase) or, as portrayed in 
Figures 12 and 13, from the disk ~ 2 ---> § l. In Chapter 1 we also deal with maps 
from two phases to a phase §l x §1 ---> §l. We saw (in context ofcolor mixing in 
Example 1) that regardless of any hypotheses about mechanisms, a certain sym
metrie format of experiment induces a map of this sort that cannot possibly be 
continuous. It might inc1ude a phase singularity. This fact has its corresponding 
expression in the chemistry of yeast cells because oscillating glycolysis in yeast, 
so easily perturbed by exogenous chemicals, can also be perturbed by contact 
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---T .. 
30 

Figure 21. Similar to Figure 20, but the da ta concern the 30-second NADH rhythm of yeast cells. 
Prestimllllls data a re included at the top, c\arifying the relationships ofthis (and previous pcrspective 
drawings) to Figures 30 through 33 of Chapter I. All data are double-plotted to the right. Also this one 
plots M into the fo rcground, so the sense of the screw is reversed. See data in stereo in Figure 4 of 
Chapter 12. T and IJ in seconds, M in units of oxygen dosage. 1 and l' in cycles of 30 seconds from an 

arbitrary origin. 

with differently phased cells. The two methods can be distinguished as folIows: 
A hit-and-run attack with a chemical stimulus (oxygen, calcium, or acetaldehyde) 
is only one way to probe the reactions of an oscillator throughout its cycle. In 
some ways, a more natural stimulus is another batch of cells, oscillating on the 
same cycle, but at a different phase. Thus, instead of testing each part of a cycle 
with a small to large dose of one of its chemical substrates, we could test each 
phase by corifrontation with each other phase: with a variety of stimuli varying 
not in amount but in a quality that varies along a circle. In other words, two 
batches of cells could be combined at different phases in the cycie. They interact 
to establish mutual synchrony. What is the compromise phase? 

This experiment was actually carried out (for other reasons) by Ghosh et al. 
(1971). I have replotted their data in Figure 22. I divided the cycle into 10 equal-time 
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9 

Figure 22. Phase compromise experiments, plolting hybrid phase as a fllncti on oftwo parent phascs: 
The digits represent actllal hybrid phase in one-tenth cycle interva ls frol11 the data ofGhosh et al , 1971. 
The digits are placed within one-tenth cycle by one-tenth cycle boxes; their positions within each 

box are arbitrary. The contours lines rOllghly link eqllivalent data. 

parts and ruled a 10 x 10 square to represent the phases of the two "parent" 
volumes of oscillating yeast cells. (The phase was observed as usual by following 
the sinusoidal changes ofNADH fiuorescence ; see Chapter 12.) The phase observed 
in the mutually synchronized mixture is extrapolated back to the moment of 
mixing when the parent phases were as indicated. I tabulated this resultant phase 
in the appropriate little square, once again in units of one-tenth of a cycle. The 
47 experiments shown do not give a clear impression but they are at least not 
incompatible with a continuous map such as I have drawn on an overlay. The 
continuous map was designed : 

1. To fit the data as weil as any smooth pattern could. (All but four out of 
47 data fall within ±* cycle from the contour map.) 

2. To show the resultant mixture phase equal to both parent phases in the 
case of control experiments (not actually reported) in which aliquots of equal 
phase were recom bined. 

3. To refiect, in its symmetry about the main diagonal, the arbitrariness of 
calling one aliquot A and the other one B. 



A: Examples 63 

4. To confine the necessary discontinuity to as small an area as possible. 
In this case, we end up with one isolated phase singularity in each triangle, above 
and below the diagonal. (Using the cell division cyc1e in Physarum (Chapter 22), 
the experiments in identical format seem to reveal a quite different sort of 
discontinuity instead of a phase singularity.) 

A caveat: These experiments have not been repeated. The uncommonly severe 
variability of results in the pioneering study of Ghosh et al. leaves room for a 
radically different interpretation, i.e., that cell mixtures don't compromise at all 
but always synchronize to one or the other of the parent populations. In all but 
two out of the 47 trials shown, the "compromise" phase was within one-tenth 
CYc1e of one parent's phase. It might be that uncontrolled variables such as the 
details of mixing determine which parent dominates. 

However that may be, the phase singularities discovered by chemical pertur
bation (oxygen, calcium, acetaldehyde) are distinctly visible in those data. I first 
proposed the experiments shortly after finding the phase singularity in a circadian 
system. Because of the temptation to believe that the phase singularity might 
reveal something unique about a universal circadian c10ck mechanism, it seemed 
incumbent upon me to demonstrate that the topological argument is really 
model-independent by applying it to a chemically different c1ock. Glycolytic 
oscillations seemed to qualify in view of their short period and acute temperature 
sensitivity of rate. We know from the pioneering studies of Chance and Pye 
(see Chapter 12) that yeast oscillations respond to AMP exactly as circadian 
systems respond to light. Thus experiments could be carried through in identical 
format using oxygen gas instead of blue light. The results were qualitatively 
the same. 

In the remaining six examples we turn to phase singularities involving physical 
space in a more substantial way than in the pinwheel experiments previously 
cited, which were actually carried out piecemeal. The first example is another 
circadian rhythm which, because it shows type 0 re setting, is a strong candidate 
for experimental realization of a phase singularity. 

Example 10. Morphogenesis in Fungi. The creature I have in mind is the 
fungus Neurospora crassa, the one Hamner took to the South Pole (see Box A). 
Its rhythm is a banding pattern that marks the loci of the fron tier of growth at 
successive 22-hour intervals. Hyphae formed along the frontier at the same hour 
of each successive circadian cyc1e turn out to mature into conidia, the asexual 
spores by which N eurospora reproduces. Hyphae formed at intermediate phases 
remain forever vegetative, without forming conidia. 

Suppose the pinwheel experiment ofExamples 5-9 were conducted on a square 
sheet of N eurospora growing on a much larger bed of nutrient agar. According 
to Figure 13, the winding number of new phase around the square AB CD must 
be W = 1. Suppose phase increases steadily c1ockwise. That means that as the 
square continues to grow at its edges, the locus of conidiation moves around 
the edge, circumnavigating the edge every 24 hours as the frontier moves out. 
Thus, the conidiation pattern is henceforth a spiral. Another way to visualize this 
implication can be seen in Figure 23. The continuity of pinwheel experiments 
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Figure 23. An idealized colony of N eurusf'()/"ll is shown with 
thineen sllcccssive positions 01' its fronlicr. Radial contour 

lines illdicalc success ive positions of phase () of thc circadian 
clock. Thc locus of {(P = 0 on the fro lltier) is accordingly an 

Archimedes spiral. 

using other circadian clocks suggested that in N eurospora, too, phase should 
vary continuously with the timing and intensity of a light pulse, i.e., with position 
on the mycelium. The usual result in Examples 5- 9 is that the contour lines of 
uniform phase diverge from an internal singularity after the stimulus is given. 
An hour later, the phase contours are all still there, but the phase each represents 
is an hour later, as with the cotidal contours of Example 4. Alternatively, one 
could say that the contour of maximum conidiation-induction moves clockwise 
from one hour to the next, revolving around the singularity like a searchlight 
beam as do the eclosion contours of Example 5. As it goes, it induces hyphae 
along the expanding frontier to differentiate into conidia. Thus the conidia appear 
along a spiral locus. 

This experiment has not yet been tried. 
The pinwheel experiment is only one way to arrange a nonzero winding number 

around the frontier. According to one view of the underlying physiology 
(Chapter 8), the fungus is liable to fall into ahabit of any small integer winding 
number immediately after germination from a tiny dot of spores. In this way, 
multiple spirals, both clockwise and antic1ockwise, as weil as concentric ring 
patterns should arise spontaneously. This is in fact observed (at least up to winding 
numbers +3 and - 3) in Nectria, in Penicillium, and in Chaetomium (sec Chapter 
18). At present, nothing is known about the phase singularity (or multiple phase 
singularities) that must lie within spiral or multiple-spiral mycelia. According 
to one theoretical model (Winfree, 1970a), the rhythmic system of thc germinating 
spore begins in the phase-singular state. In D. pseudoobscura, as weil, it seems 
that larvae reared from the egg in conditions of constant temperature and constant 
darkness remain in the phase-singular state (Zimmerman, 1969; Winfree, 1970b,c, 
1971a). 

The next three examples are drawn from the re cent literature of developmental 
biology. 

Example 11. Regeneration of Limbs. According to one view of development 
in higher organisms, each organ emerges from a !ittle two-dimensional patch 
of tissue that has some kind of organizational coherence. Such patches are called 
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developmental fields. French et al. (1976) and Bryant et al. (1977) have recently 
gathered an impressive body of evidence under the proposition that (at least 
in arthropods, and maybe in some vertebrates too) each cell knows its role in the 
developmental field by retaining within it a quantity defined on the ring
something like a phase, or an angle. At present no one has the slightest idea wh at 
this might mean biochemically. It might seem appropriate to remark, as Isaac 
Newton once did in a similar case, that 

To tell us that every Species of Thing is endowed with an occult specifick 
Quality by which it acts and produces manifest Effects, is to tell us nothing. 

Opticks, 1730 

However, the complex mechanisms of evolved systems must be unraveled by 
layers. In this case the deeper layers of molecular mechanism await another 
generation, while our present concern is with the implications of the putative 
phase-like quantity. French et al. (1976) argue in effect (and Glass (1977) recasts 
their argument to bring out this aspect more forcefully) that the center of the 
field is a phase singularity, and that if experimental manipulations so rearrange 
blocks of tissue that additional phase singularities are inevitably created, then 
additional organs of appropriate handedness must emerge at those sites. A number 
of startling experiments are demonstrated which readily lend themself to this 
"clockface" interpretation, as it has come to be called. This matter is clearly of 
central importance in any discussion of the biological role of phase singularities. 
The biological background and alternative interpretations of the data are elab
orated in Chapter 16. The physiological nature of the putative singularity is 
examined in Chapter 10 together with other kinds of singularity collected in 
this chapter. 

This example and the next are included to play the role of "straw men". Their 
apparent phase singularities are, in my view, particularly insubstantial. Although 
these two examples can be described in terms of maps among rings, I believe 
this language is inappropriate and misleading. I include them because if I am 
right, the existence of such cases alerts the reader against mechanical application 
of language: We are trying to do science, not just make mathematical metaphors. 
I include them also because I might be wrong, in which ca se they greatly enrich 
the catalog of biological phase singularities. 

ExampIe 12. The Cuticle of the Arthropods. The lens ofthe insect eye might be 
regarded as an organ, somehow assembled by a few underlying cells whose job 
it is to secrete perfectly transparent cuticle in the right geometric pattern. This 
pattern is periodic on the scale of wavelengths of light. This periodism was initially 
ascribed to rhythmic secretion of cuticle (see Chapter 17). Electron micrographs 
of microtome sections through the lens cuticle consistently exhibit a phase 
singularity of rhythmic banding in sections transverse to the optic axis. A spiral 
of more electron dense cuticle is plainly seen winding in toward this center. In 
sections parallel to the optic axis, a periodic banding is seen. Every vertical line 
penetrating into the lens parallel to the optic axis exhibits rhythmic alternations 
of electron density along its length, i.e., along the time-of-deposition axis. In 
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sections perpendicular to the optic axis, the phase ofthis rhythm is seen to advance 
through one full cyde as sam pies are taken at successive positions around any 
ring concentric to the dark spiral's center. Thus, we have a nonzero winding 
number of a structural rhythm (originally a temporal rhythm in sequence of 
deposition) and a phase singularity continuing in depth like a screw dislocation 
in a crystal. Taken together, these perpendicular sections suggest a screw-like, 
helicoidal surface of electron density within the block of sectioned cutide that 
was lens. Does this have some developmental meaning? Yes, but it is not at all 
what it appears to be. This mystery is investigated further in Chapters 10 and 17. 
(My objective for the present chapter is simply to present many cases of phase 
singularities as phenomena without resolving interpretations; this is reserved for 
Chapter 10 after a groundwork oftheoretical concepts has been laid in intermediate 
chapters, and after the reader has acquainted hirnself with more of the pertinent 
experimental details in Chapters 11-23.) 

Example 13. Cellular Slime Molds. My third example from the lore of devel
opmental biology concerns the marvelous social amoeba Dictyostelium discoideum, 
which has figured so prominently of late in the burgeoning literatures of cAMP 
and of intercellular communication (Chapter 15). 

It has been appreciated for a long time that the preamble to morphogenesis 
of social amoebae consists of a gathering together of widely dispersed individual 
cells, mediated by their periodic relaying of a chemotactic signal from a pacemaker 
cello This signal guides many thousands of other cells to the pacemaker (Shaffer, 
1962). Here they contact one another and assemble a little jelly-like slug which 
creeps away to find a place suitable for metamorphosis into a fruiting body. 

The organizing waves emitted by a pacemaker cell are dosed rings concentric 
to their source, like ripples emanating from a rain drop in a puddle. Thus, some 
interest attached to Gerisch's observation (1965) of rotating spiral waves in the 
same situation with the same consequences. The essential differences are that a 
spiral wave consists of one continuous locus of cell movement rather than aseries 
of disjoint rings of moving cells, and that it requires no special cell at its source. 
Thus spiral waves commonly arise just as soon as the maturing cells develop a 
capacity for signal relaying, but before any cells begin to oscillate spontaneously. 

How can a wave have no source? It would seem that each wave must first 
appear somewhere, and that point is its source. But wh at is manifestly true of 
concentric ring waves is not necessarily true of rotating spiral waves. If we trace a 
piece of a spiral wavefront backward in time, we never come to a dear source. 
Rather, we end up in a vague region of indeterminate periodicity or end up cir
culating endlessly about a tiny cirde bounding such a region, concentric to the 
pivot (see Section B of Chapter 9). The wavefront at any instant may be taken as 
a locus of synchronous cells: all cells pulse periodically, at the regular intervals 
of spiral rotation, and the wavefront is the locus of simultaneous pulsing. A 
multiple-exposure photograph taken by opening the shutter at intervals of one
tenth cyde would presumably show 10 equispaced parallel spirals, all converging 
toward the pivot or its bounding cirde. If these loci be the contours of uniform 
phase, then that cirde is (or contains) a phase singularity. 



A: Examples 67 

Close observations of this interesting region have just begun to appear. In the 
3-dimensional slug this singularity is thought to become a I-dimensional rotation 
axis. (Clark and Steck, 1979). 

Example 14. Pathological Rotating Waves in Heart, Brain, and Eye. The 
Dictyostelium cell's sudden triggerable release of cAMP in many ways resembles 
the sudden triggerable inrush of sodium ions through a nerve cell's plasma mem
brane. In both ca ses, the excited (permeable) state pro pagates once triggered by 
a threshold-transgressing stimulus (Chapter 14). 

Thus a pinwheel wave similar to Dictyostelium's might be looked for in an 
extensive planar expanse of nerve-like tissue. The obvious candidate is heart 
muscle. At least since McWilliam (1887), medical physiologists have postulated 
some kind ofrotating wave, a "circus movement", as an explanation for high-speed 
rhythmic tlutter, and for the much more pernicious mode of asynchrony called 
"dementia cordis" or fibrillation. Though there are probably other mechanisms 
too, some kinds offlutter and fibrillation do behave, in many ways, like a sourceless 
traveling excitation which rotates simply because it got started somehow. But 
until 1973, the best case for its existence rested on indirect physiological inference 
and on a well-developed mathematical theory confined almost exclusively to the 
Mexican and R ussian scholarly journals. In 1973, Allessie et al. published the 
first critical experiment, using a piece of rabbit atrium stretched out flat to accom
mo date the necessary array of 10 observing electrodes. Using a delicately timed 
electrical stimulus to initiate the wave, he found instances of persistent, pernicious 
rotation. Electrical activity circulates as a pinwheel wave, recurrently exciting 
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Figure 24. Map of the spread of activation in a piece of isolated lef! atrial muscle during aperiod of 
sustained lachycardia as conslructed [rom time measuremenls of the action potentials of 94 different 

fibers. The impulse is conlinuously rotating in a c10ckwise direction with a revolution time of 105 ms. 
At the left are shown the transmcmbrane potentials offive fibcrs which lie along the circular pathway 
(A-E). The moments of depolarization, in msec. are given together with the action potentials and 
the isochronic lines of thc map (Allessie et al.. 1977, Figure 1. by permission of The American Heart 

Association, Inc.). 
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every patch of muscle to contract (Figure 24). Every point is rhythmically active 
except the central patch around what would be a pivot of the pinwheel wave. In 
this central patch, activity is irregular, as befits a phase singularity. The nature of 
fitful activity in this region poses extremely interesting questions for neuro
physiology and for mathematics both. The question has mathematical interest 
because the phenomenon is apparently not a consequence of the inevitable 
inhomogeneities and physiological complexities of real rabbit myocardium. A 
similar pivoting wave and similar irregularities near its "pivot"' were observed by 
Gulko and Petrov (1972) in a very simple computer simulation based on an 
idealized notion of excitable membrane, a simplification of the Hodgkin-H uxley 
equation (see Figure 5 of Chapter 14). 

A much more slowly rotating wave of quite different pathological mechanism 
occurs in the cortex of the brain and in the retina of the eye. Still another kind of 
rotor, associated with seizures, has been observed in the cortex. See Chapter 14 
for detail and references. 

Example 15. Self-Organizing Patterns of Chemical Reaction. I conclude this 
section with a remarkable example of recent vintage from physical chemistry. It 
turns out that so me kinds of chemical reaction are capable of sustained oscillation 
and of excitability, very much as in Dictyostelium and in nerve membrane. 
Chapter 13 elaborates in detail about the most convenient of these, a malonic 
acid reaction in which chemical changcs reveal themselves colorfully in water 
solution at room temperature on a time scale of seconds to minutes. 

Consider this reaction in a three-dimensional volume of liquid. Imagine that 
you could wander through it, monitoring the phase of the red-blue alternation 
going on everywhere. Let's start at any place P in Figure 25 and follow a closed 
path through the liquid, ending up back at P. The path pp is a ring. Let's suppose 
we could monitor phase instantaneously around the ring. The net change of phase 
along path pp must be an integer number of cycles. Call this integer W, the winding 
number of phase along ring PP. Unless W = 0, the path PP cannot be contracted 
to a point without encountering a phase discontinuity. Only two possibilities 
present themselves: 

1. W is necessarily always O. This is simply not true, as the photograph in 
Figure 26 shows. 

2. Locus PP loses its winding number by unit increments, necessarily abruptly 
as some special loci are passed during thc progressive contraction. These loci 
would be phase singularities. Eventually thcrc remains only one enclosed within 

Figurc 25. A c1 0scd path in three-dimensional ' pace. 
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Figure 26. A photograph of rhythmic patterns of chemical activity in a dish of malonic acid reagent. 
Eight sources are visible. A survey of instantaneous phase along any one of the three closed paths 
shown leads thus through the indicated integer number of complete cycles of phase. This is the number 

of left-handed spiral sources minus the number ofright-handed spiral sources enclosed. 

PP, so PP can be contracted to a tiny ring of winding number ± 1 around that 
locus, or pulled across and contracted to homogeneous phase. This is, in fact, how 
it iso Figure 26 gives an example in two dimensions, each singular locus being just 
a point. 

In three dimensions, the phase singularity must be at least a one-dimensional 
locus, a thread or filament of ambiguous phase in the reacting liquid. This is 
necessary because each phase singularity must be encountered along any path 
of contraction of PP. Such paths are surfaces bounded by PP. If every such surface 

Figure 27. Three (out of a continuum of) ca ps bounded 
by a closed ring (PP) as in Figure 25. Each cap is a locus 
along which PP is conlracled to a point. Each contains a 
phaseless point. The loeus of such points (**) is thus 

one-dimensional. pp 
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encounters the singular point, then the singularity must be at least a one-dimen
sionallocus (Figure 27). 

This thread of ambiguity has been observed visually and I have reeonstrueted 
several from ehemically fixed serial sections of three-dimensional blocks of 
malonie acid reagent. These threads typieally dose in rings for reasons perhaps 
not evident here but elaborated in Chapters 9 and 13. 

B: Counterexamples 

That will be enough for examples of the smooth patterns of timing that lead 
one to anticipate some kind of singularity at the center. A few counterexamples 
now seem appropriate to fore stall any impression that such patterns and their 
phase singularities are topologically inevitable eonsequenees of using a eircular 
measure, and therefore of no scientific interest. This inference has enough truth 
to it that I have at times mi staken it for the whole truth. It comes especially dose 
to being the whole truth in connection with the rowboat navigation problem 
As I elaborate in Chapter 16, much the same might be said of the case of Iimb 
regeneration: There I believe the apparition of a phase singularity has more to 
do with logic and the peculiar but convenient choice of a phase-like measure than 
it has to do with questions of dynamies, of models, of mechanism. 

It is essential in this business to attempt a segregation of issues of logic and 
measure from issues of fact and mechanism; that comes in later chapters. For 
now it will suffice to note that a phase singularity of some kind (though not neces
sarily an isolated point) is a topologically generic consequence of continuity and 
type 0 resetting (Box C). However, many kinds of rhythmic systems violate con
tinuity or do not exhibit type 0 resetting. For example, experiments that might 
have revealed type 0 resetting or phase singularities in the cyde of cell division 
still leave those matters in doubt (Chapter 22). Resetting experiments on models 
of the female cyde, and probablyon the real mechanism too, exhibit gross dis
continuities, possibly due to threshold processes assumed to underlie hormone 
release, ovulation, etc. (Chapter 23). Many kinds of nerve, though rhythmic in 
their firing, either in isolation or in response to specific stimuli, seem to suffer 
such an abrupt alteration of membrane behavior during the action potential that 
resetting maps are grossly discontinuous (though curiously, not always ar action 
potential time) (Chapter 14). 

Turning from particular cases to more abstract categories, there are mechanisms 
in which rhythmicity is secured through abrupt transition from one state to 
another, eventually leading back to a prior state. Such discrete state devices, or 
logical automata as they are ca lied, have been widely employed as metaphors 
for biological rhythms. But there is no pi ace in such models for resetting curves 
or surfaces or, for that matter, for considerations of topological continuity. 

The dass of models taken up in the next chapter are completely continuous 
and smooth in their behavior but, for reasons to be developed there, can only 
support type 1 resetting. These too have enjoyed wide popularity as underpinnings 
for experimental design and inference about biologica! docks, but they have no 
singu!arity. 
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Another class of mcchanism employs continuous kinetics up to a point at 
which a fast mechanism, previously inconspicuous, intervenes like a deus ex 
muchina to abruptly restart the process at its beginning. These so-called relaxation 
oscillators have traditionally provided the physiologists' first recourse for explana
tion of spontaneously rhythmic happenings (see Chapter 6, Section C). But on 
account of the near-discontinuous jump, their resetting maps are not practically 
classifiable, winding number goes undetermined, and topological arguments 
cannot fence in a singularity. If one exists, it cannot be detected by examining the 
geometry of timing relations elsewhere (but see Chapter 10, Section B.) 

Thus, if we in fact observe a phase singularity, then we have some explaining 
to do in the contingent terms of empirical science, not only by making the graceful 
gestures of abstract topology. 

C: The Word "Singularity" 

Thc appearance of singularities in a physical theory suggests inconsistency 
and room for improvement. 

Narlikar, 1970 

Before departing this chapter, I wish to return to its opening lines, in which 
the word singularily was defined. Let me elaborate on that definition. As used by 
mathematical physicists and as I use it here, the word singularity means a place 
where slopes become infinite, where the rate of change of one variable with another 
exceeds all bounds, and where a big change in an observable is caused by an 
arbitrarily small change in something else. As James Clerk Maxwell observed, 

Every existencc above a eertain rank has its singular points: the higher the 
rank the more of them. At these points, inftuences whose physical magnitude 
is too small to be taken account of by a finite being, may produce results of 
the greatest importance .... 

Cited on p. 972 ofNewman, 1956 

According to the bible of theoretical physics (Morse and Feshbach, 1953) during 
the years when those who taught me physics were learning it: 

... singularities ... are usually the most important aspects of scalar and 
vector fields. The physical peculiarities of the problem at hand are usually 
closely related to the sort of singularities the field has. Likewise, the mathe
matical propertics of the solutions and differential equations are determined 
by the sorts of singularities which the equation and its solutions have. Much 
of our time will be spent in discussing the physical and mathematical properties 
of singularities in fields. 

My involvement with singularities began at a desk in the Eisenhower Iibrary 
in Baltimore, to which I retired each morning in the fall of 1965 with only a pencil 
and pad to disco ver some questions natural to an interest in physiological 
periodism. At length I fumbled to an interest in maps among rings and products 
of rings. The esscnce of that subject, according to the quote above, lies in the 
singularities of those maps. That led to noticing such objects between the lines of 
current papers from experimental physiologists. A singularity is a kind of dis
continuity. It might or might not be intercsting. lnterest goes with meaningfulness. 
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Following Fahrenheit and Celsius, I might invent a new temperature scale called 
Winfree, on which the temperature Winfree is defined as the reciprocal of tem
perature Fahrenheit. Thus the temperature Winfree would have a singularity 
somewhat below the freezing point of water, where temperature Fahrenheit go es 
through zero. But this would have no possible physical significance. This is what 
is called a "mere co ordinate singularity", a mathematical artifact of choosing a 
peculiar co ordinate system. 

Other kinds of singularity cannot be removed by any reasonable change of 
coordinates. In other words, they are defined in terms of variables whose physical 
import is immediate. Such, for example, are the space-time singularities asso
ciated with black holes. One of these is widely believed to be the creation of the 
universe. That's interesting. On a more modest scale, the singularity of heat 
capacity that ushered in the quantum mechanics of crystal lattices under the 
banner of "the ultraviolet catastrophe" was a nonremovable singularity inter
relating basic physical quantities. Arguments about winding numbers and the 
theorem of page 28 have been deployed recently to establish the existence of 
elementary particles as singularities in quantum-mechanical continua (Rebbi, 
1979) and the existence of Bloch points as singularities in magnetic bubbles 
(Slonczewski and Malozemoff, 1978). 

Yet according to one co gent viewpoint, singularities happen only in models. 
In real life, the singularity is always somehow evaded. Wind velocity falls back 
to zero in the co re of a tornado, color mixtures vanish into grayness, and a 
rhythm can simply go ftat or become very wiggly with no fundamental-frequency 
component. When a phase singularity results from feeding observed facts into a 
soundly reasoned model, we know that something has gone wrong in this model 
and that we are looking at a distillate of the logical contradictions implict in our 
notions of how the real world operates. Experiments that seem to imply a sin
gularity signal a contradiction borne of leaving something out The purpose of 
dabbling in models and of contriving experiments is to find out what is left out 
of our thinking, to see what hidden escape hatch a real system takes in evading 
the demand that it achieve the impossible. 

In the case of black holes, there remains a lively debate over the reality of 
singularities in the space-time "continuum". For example, during the month in 
which I first wrote up Drosophila's answer to the Pinwheel experiment for publi
cation, Fred Royle (Bakerian Lecture, June 1968) accosted the Royal Society with 
the question, "Do singularities exist in the real world or are they only metaphysical 
entities?" I suspect that what is ultimately being asked is whether or not our 
cherished observables (for example, distance, time, and mass) are in fact as funda
mental as we imagined before finding that they can be involved in singularities. 
Maybe they are only observables, poorly chosen in view of their peculiar behavior 
near singularities, like the Winfree temperature scale. The question then becomes: 
What are the proper quantities in terms of which the world functions rationally 
and continuously? 

My attempts to answer this question in the cases of biological and biochemical 
phase singularities require additional familiarization with the experimental 
systems (Chapters 11-23) and some elaboration of dynamic models (Chapters 3-9). 
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Only in context ofthe very simplest dynamic models (next chapter) does the phase 
singularity acquire an ineluctably paradoxical character. Subsequent chapters 
provide amendments to the simplest models whereby phase singularities become 
perfectly tarne, though not uninteresting, biological phenomena. We reconvene 
in Chapter 10 for a look at the physical origins of the phase singularities used as 
examples above. 

Because we must dabble in dynamical systems, I must issue advance warning 
about a homonym. "Singularity" also means simply "a point where something 
singular happens". "Something singular" need not necessarily involve a discon
tinuity. Thus, mathematicians in speaking of the singularities of maps may mean 
nothing more sensational than the point in deforming a curve at which it first 
acquires an extra bump. Developmental biologists identify the sites where a hair 
will emerge on an insecCs cuticle as singularities. Engineers use the terms "singular 
point" or "singularity" interehangeably in speaking of dynamical systems to 
indicate that unique state at which all rates of change are simultaneously zero, as in 
a chemical steady-state or the mechanical equilibrium position of a rocking horse. 
This ambiguity eontributes to the terrible confusion in many people's minds 
about "catastrophe theory", which, in its presently best elaborated manifestation, 
eoncerns the zeros of potential ftows. This is a subject whose richest domain of 
clear application seems to lie in engineering physics (Thompson, 1975; Thompson 
and Hunt, 1977). The zeros of potential ftows are the states at which all rates have 
dwindled to nothing, the equilibrium states, commonly referred to as singularities 
in the engineering literat ure. But the singularities of catastrophe theory are in a 
different space altogether, the space of control parameters. They are the particular 
combinations of control parameters (e.g., loads on a structure) at which the con
figuration of equilibria (singularities in the engineer's sense) undergoes a change. 

The distinct uses of "singularity" create an opportunity for real confusion in 
this book because in certain kinds of dynamic systems, described in Chapters 5 
and 6, the state which is singular in respect to rates of change, being astate of zero 
amplitude of oscillation, is also apart of the phase singularity, the locus of states 
where phase does something singular. In fact, in special kinds of dynamical systems 
(Chapter 5), it is exactly coextensive with the phase singularity. But in less 
exactingly specialized kinds, e.g., in the chemical rotors described above, the 
reaction steady-state is in no way related to a phase singularity (Chapters 6, 8, 
and 9). To help preserve this distinction, I will usually say "phase singularity" 
rather than just "singularity" in this book, and in referring to the steady-state of 
reaction, I will say "steady-state", not "singularity". 

The arguments explored up to this point have not in any way involved con
jectures about dynamic systems or kinetic models. But because some of the most 
intriguing phase singularities do arise from processes in time, we would like to 
know what kinds of dynamic systems are at least compatihle with the observed 
facts and what those kinds would lead us to expect about the nature of the phase
less state. As Sherlock Holmes was wont to enounce, "Singularity is almost invari
ably a due." Thus we pass to the next chapter, about dynamics on rings. 
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As scientists we do not merely read the book of Nature. Wr: write it . 
How much more so then the biologist, who deals with reality 01' such elusive 
complexity that only deliberate simplification ean cloak it with thr: appearanee 
of intelligibility. Nevertheless, this is the way our scienec progresses. But 
we must accept our concepts for what they are, provisional approximations 
that are as much fictions of our minds as they are faithful depictious of the 
facts. 

('. dc Duve, 1969 

A : Basic Principles, Paradigms, 
Language Conventions, Epistemology 

All things by immortal power 
Near or far 
Hiddenly 

To each other linked are, 
That thou canst not stir a flower 
Without troubling a star. 

Francis Thompsoll, 1860 1907 

Although it may be fashionable to acknowledge that everything is connected 
to everything else in principle, some things are more tightly connected to each 
other than to all the rest. Such a !ittle knot of causal interactions goes by the name 
of a system. It is also fashionable to speak of one's playthings as systems, and I 
shall adhere to this convention. It will make life easier in thc long run to clarify 
some conventional jargon at this point, as folIows. 

The Instantaneous State 

The state of a system consists 01' cverything you need (0 know about it right 
now in order to know what it will do next in response to select stimuli. A system's 
present state is determined by a collection of rariables o{ slule. Each one takes 
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its values within some topological space, e.g., 

1. On the real line (e.g., temperature from - 273 c C to very high values, or 
concentration from zero to a solubility limit), or 

2. On the complex plane (e.g., the impedance of an electric circuit, or the 
quantum mechanical wave function of a particle at a particular place and time), or 

3. On a set of discrete points (e.g., the excited, resting, or refractory states of 
a model nerve cell, or the on or off states of switches or of genes), or 

4. On a ring (e.g., the phase ofan alternating current or the color ofa lizard), or 

5. On a sphere (the position of a navigator's boat on the globe, or the orienta
tion of a flying bat) 

Most systems have a lot of state variables; in principle any number if indeed 
"thou canst not stir a flower without troubling astar". But for specific interests 
some few of these variables are more important than the rest. Call the state vari
ables that you consider im portant Xi (i = 1,2, ... ,D). Ignore all the other state 
variables that are involved in principle but which have little bearing on the 
observables of interest. An observable is something you can monitor, measure, 
or otherwise interact with. Like state variables, different kinds of observables 
must be defined on different topological spaces (discrete points, rings, etc.). The 
present value of each observable or measurement is determined by the present 
state of the system and so it teils something about the system. If it doesn't depend 
on the state of the system of interest, it may still be observable and measurable, 
but it won't be in the list. Call the observables F i (i = 1,2, ... , N) with the under
standing that F i = F;(X l' ... ,X D)' In special cases, an observable may depend 
mainly on just one state variable. For example, it may be a direct readout of that 
state variable: F; = Xi' Nonetheless, it is important to preserve a clear mental 
distinction between state variables and measures or observables that depend on 
the system's state. This may sound pompous and academic, but setting up the 
format now will be helpful later on. 

Any measurement or observation may be thought of abstractly in geometrie 
terms, either of t wo ways: 

1. As a mapping or projection from the system's state space onto some lower 
dimensional space such as a single-coordinate axis which defines an observable. 
For example, to each state of a chemical re action in water (defined by many 
concentrations) there corresponds an electrical conductivity of the solution 
(defined on the positive half-line). We can think of observing the conductivity as 
projecting state space into the half line or as looking into state space from such a 
perspective that states of the same electrical conductivity are seen superimposed 
and these sets of superimposed states are arranged along the line in order of 
increasing cond uctivity. 

2. As a contour map defined on the state space. For example, in the above 
example we could write on each point in state space its electrical conductivity and 
draw contour surfaces through points of the same conductivity. All points on the 
same surface go to the same point on the conductivity line. 
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Needless to say, we can invcnt any nLlmber of observables. (How many 
"properties" does an organism have'?) But if a system has only D state variables 
(i.e., its state space, whatever its topology may be, is D-dimcnsional), then the 
first D independent observables suffice to determine the state. Any further observ
abi es are redundant because given the state, every function of state is determined. 

Dynamics 

This book focuses on dynamical systems: systems with the interesting property 
of continually spontaneously changing state. At any instant, each state variable 
has a rate of change which depends only on the current state of the system. 

Here we encounter a linguistic choice. Obviously, any system's behavior 
depends on environmental conditions: its temperature, the voltage of its power 
supply, the amount of light falling on it, the position of its knobs. We could con
sider these as state variables that don't change spontaneously. Then we can say 
that the rate of change of state depends only on the state. Or we could say that 
the state variables are those things that change spontaneously, and that things 
that don't change spontaneously are called parameters, not variables. Then the 
rate of change depends on both. I choose this format. Notationally, then, 

dX;/dt = R;(X, P) 

where R i is the rate function for the ith state variable. Hs inputs are all the state 
variables (X) and all the extern al parameters (P). Hs output is the rate of change 
of Xi' As there is a rate function for each i, we might denote more compactly: 

X =R(X,P) 

using also the dot convention to indicate rate of change with time (. = d/elt). 
Having thus divided our initial collection of state variables into those that 

change spontaneously and those that don't (parameters), we might back up and 
note that observables also depend on both parameters and state variables: 

For example, the apparent color of a lizard may depend on its emotional state; 
but the measurement is affected also by the color of the ambient light. 

This frivolous example brings us to a crucial point: Not all observables are 
numbers, or even combinations of numbers. Some observables, like color or 
direction or the phase in a cycle, are defined not on the real number line, but on 
a ring (or on more interesting topological spaces). It is usual to try to salvage the 
more familiar form by representing such a measurement in terms of a number. 
For example, it is conventional to map the ring onto a line by speaking of"degrees" 
with the convention that 3600 is equal to 0'. A less clumsy device is to map the 
ring onto a plane (wh ich is the product of two lines), and identify a point on the 
ring by two numbers, X = sin rjJ and Y = cos rjJ. This might be a natural device 
and it might not be. We will look at cases of both sorts in context of rhythmic 
patterns in space and time, in living systems, and in chemical reactions. 
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In this chapter I dwcll on cases in which it is not natural to think ofthe ring as 
embedded in aspace ofmore than one dimension. In these cases, the measurement 
of phase (an observable) is most naturally regarded as a fairly direct mapping 
from the system's state space, which is in fact shaped like a ring, onto the abstract 
ring on which phase is defined (F; = XJ The topology ofrings has some peculiar 
consequences for the behavior of such systems, and of our measurements. 

In Chapters 5 and 6 we dweil on cases in which it is natural to think of a phase 
measurement (defined on a ring) as being embedded in a plane or higher dimen
sional space. There we take the observable "phase" as a function of state, F; = 

F;(X I, X 2)' It is natural to ask whether any meaning attaches to the inside of the 
ring. Maybe not. Maybe the very quest ion is nonsense. For example, wh at is 
inside or outside ofthe four-dimensionally spherical three-dimensional continuum 
ofspace-time? Only notime and nowhere. Or what is inside the circle of 12 hours 
on a clock's face? That might make a good Zen koan. But the question does make 
sense in some cases. For example, what is inside the wheel of saturated colors? 
Brown and grey. They are real. What's inside the sphere of latitude and longitude 
coordinates? Gold, coal, and magnetic fields. They are real. Thinking of phase 
measurement in terms of a continuous map in state space, we see no place for the 
inside of the ring. Each point in state space has some phase val ue and the surfaces 
of constant phase occupy state space completely. If there is astate that has no 
phase, then it must correspond to some kind of disastrous irregularity in the 
map: a singularity. The process of measurement being at heart a mapping from 
one space to another, it seems natural that the singularities of maps should play 
a vital role in science. This monograph exploits one aspect ofthis fact by gathering 
together experimental systems where phase singularities playa conspicuous role. 

B: Dynamics on the Ring 

It will be seen that some cases definitely do not fit the theory. This is not 
surprising since uncomplicated systems are seldom found by accident. One 
function of theory is to define the properties of simple systems so that they 
may be recognized when encountered. 

Campbell, 1964 

Hourglasses 

The world abounds with processes whose states vary in only one way, for most 
practical purposes, and whose last states are the same as the first. For example: 

1. Nerve cells and their analogs in the plant world can be thought of as 
"resting" until "excited" beyond some "threshold", whereupon a standard sequence 
of changes ensucs by which the cell goes "refractory", then through stages of 
decreasing "relative refractoriness", and then relaxes back to "rest" (Chapter 14). 
Diagrammatically, the states of such a system constitute a ring. 
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2. The cell cycle is sometimes thought of as an excursion, somehow triggered, 
from a noncycling state called A or G, through the rest of the growth stage GI, a 
DNA synthesis stage S, a second interval of growth G2, mitosis M, and back to 
A (Chapter 22). At this level of abstract ion, the human reproductive cycle of 
ovulation, conception, gestation, delivery, and ovulation has the same form, 
i.e., a one-dimensional developmental progression that returns to its origin and 
is th us a ring. 

3. In the female cycle, in "reflex ovulators" such as thc rabbit, hormonal 
events triggered by sexual stimuli precipitate an egg into the uterus and, if it isn't 
fertilized, they ripen a next egg in anticipation of next coitus (Chapter 23). This 
cycle of states is a ring. 

4. The circadian cycle in some organisms is thought of by analogy to an 
hourglass (Chapter 19). It is "turned over" daily by some such event as sunset, 
then runs through a process of standard duration, terminating with the original 
pretriggering state. 

Adopting the jargon of circadian physiologists, I will refer to such a process-or 
more exact1y to this idealization of such a process-as an "hourglass device". It 
is an especially simple kind of excitable system (see Chapter 9). 

Simple Clocks 

But in many systems of interest, that first and last stage is not a resting state, 
so that cycle after cycle ensues without interruption, without need of an external 
stimulus to initiate each new cycle. For example: 

1. Most kinds of rotating or reciprocating machinery have a fixed cycle of 
changes through which they repeatedly progress, at whatever rate the engineer 
chooses. This seems to be how bacteria swim, their helical flagellae being driven 
by a turbine rotor (Berg, 1974). 

2. The astrophysical cycles that give us lhe seasons. the lides, and the day 
repeat without interruption. 

3. In the human menstrual cycle and in the female cycles of other spontaneous 
ovulators, each hormonal event sets the stage for the next, eventually leading 
back to another ovulation (unless pregnancy intervenes). 

4. The circadian "clock" of many kinds of animals and plants, according to 
one useful approximation, is always somewhere in its cycle and advancing under 
its own power by roughly one hour of subjective circadian time per hour of real 
time. 

5. The cell mitotic cycle is so often thought of in this way that Campbell (1964) 
was provoked to define the term "simple clock": 

We shall assume that with respect to the division cycle, thc cell behaves 
like a simple clock ... by simple we mcan that there is a single variable on 
which all the interesting properties of system depend: that any ccll can be 
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assigned a time on the dock, and that the expected behavior of any two docks 
which read the same time will be the same regardless of their histories. 

Ring Devices 

79 

What both categories (the hourglasses and the simple clocks) have in common 
is their restriction to a one-dimensional ring of states (e.g., the angular position 
of the meshed gearworks in a mechanical clock). I will henceforth refer to hour
glas ses (which need to be turned over) and simple clocks (wh ich turn themselves 
over) as "ring devices", emphasizing the essential fact that they run on a fixed 
cycle. The notion of a ring of states is naive, and deliberately so. The purpose of 
such gross approximation is to isolate one essential feature of one class of phenom
ena. The ring idea constitutes the skeleton, the bare bones, of a realistic analysis 
ofits natural analogs. Chapter 5 hangs flesh on the bones, but to see what is gained 
by thus complicating the picture, it is worthwhile first to examine carefully what 
the skeleton alone can do. 

I begin with the observation that some systems, and perhaps most, can fall 
into either category of ring device (hourglass or simple clock) according to external 
conditions. For example, the cell division cycle in bacteria proceeds apace with 
regularity in a nourishing medium but is arrested at a certain phase in phosphorus
poor medium (and so it can be gated by "ticks" of injected phosphate; Goodwin, 
1969). A nerve celllingers in its resting state until a stimulus induces it to fire an 
action potential, but if continually biased with a tiny electrical current or placed 
in a calcium-deficient solution, it fires spontaneously and rhythmically (Guttman 
et al. 1979). The circadian clock in the fly Sarcophaga cycles spontaneously when 
warm but arrests at a certain phase when cold (Saunders, 1978). 

Rate Equations and Stimuli 

Let us put this fact into more general context and make something of it. The 
point is that a ring device's rate of advance through its cycle is conditioned by an 
external influence, which we might denote as an influence or intensity parameter 
1. For example, an alga's cell cycle duration is shorter when it is grown under 
brighter light (Edmunds, 1974). A sensory neuron fires at shorter intervals when 
exposed to astronger sm eIl, hotter surface, brighter light, harder touch, or what
ever it is specifically devised to sense. 

In general, the effect of 1 may be different at different phases of the cycle, so 
that we write: 

<P = v(cP,1) 

or, in words, the instantaneous rate of change of phase (the clock's angular velocity 
v) is jointly determined by its instantaneous state (phase, 4» and by the external 
influence parameter. In some standard environment 1 = 10 in wh ich we initially 
calibrated the cycle to define "phase", <P = 1 by definition. In other words, 
v (4),10 ) = 1 (Figure 1). 
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Figure 1. The angular vclocity (vcrtically) as a function of 

phase (horizontallYl, using model <j, = I + 1 cos 2)[<1>. with 
1 = O. Thc circlc abovc depicts by thc length of the curved 

arrow thc angular velocity at each phase. 

Figure 2. As in Figure I hut 1 C~ ;. 

Figure J. As in Figure I hut 1 = I i. past the bifurcation 

at 1 c= 1. An attractor-rcpcllor pair has opcncd up from 

phase <I> = L inverting the angular vclocity within that are. 

° ip 
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Box A: he Indeci ive Stopwatch 

David aunders drcw m) attention to the behavior of a tandard commercial 
topwatch (i.c., tandard beforc thc digital revolution). lt is a ring device. It parameter 

I ha only three di cretely different alue, eho en by punehing the wind-up stern: 
1= 0. I or 2. 

At I = 0.4J = 1: The dock tick forward uniformly. 
At I = I, d) = 0: The dock freeze where it i . 
At I = 2, d) is ver)' positive in the are after I 0 and er)' negative in the are before 

180 . A in Figure 3, 4J = 0 onl)' at cP, (0 ) and at cP, (180 ). Ir cP i uffieiently do e to cf), 

when you change from I = 1 to I = 2, the poor thing carcely knows whether to advance 
or delay and Cl//! linger, un tabI)'. at cP,. Thi corre 'pond to a re etting timulu 0 

trong that extraordinar) bre il)' is r quired to catch cP till on the way to cP. when the 
stimulu ends. (I haven't yet ueeeeded.) 

Thi indeci ivene near cP, i not to be eonfused with lheentirely different phenom na 
associated with a pha e ingularit)' (Brady, 1975). 

But in any other environment I cF 10 , the ring device's angular velocity (ex
pressed in the phase units of I = 10 ) generally varies throughout its cycle (Figure 2). 
Thus, the ring device runs faster or slower, depending on its current phase cI>(t), 
so long as exposed to I cF 10 , This modulation of rate, expressed as a sensitivity 
function (Winfrec, 1967a) or as an angular velocity response curve (Swade, 1969; 
Daan and Pittcndrigh, 1976b, pp. 279-280, pp. 287 -288) has been invoked to 
account for sevcral features of circadian rhythms (see Chapter 19). 

With large enough I, r may even go negative during part ofthe cycle (Figure 3). 
Phase then "sticks" stably at the beginning of this interval, at the attracting 
stagnation point ({Ja' Unless helped past the repelling stagnation point cI>, (e.g., by 
changing back to 10 for a while), it won't do the next cycle. Thus, our simple clock 
has become an hourglass (see Box A). Figures 1, 2, and 3 might have been taken 
from Figure 4 at levels 10 , 11> and 12 , The zones of negative angular velocity are 
indicated as islands in Figure 4. At any fixed I, phase will stick on the upwind 
shore of any such island. 

Figurc 4. Arrows depict ci> abovc 
the ([) axis at each level of I. The 
levels of Figllres 1 throllgh 3 are 
indicated on the I axis. Within the 
shaded region. ci> < O. The left 
branch of the U is the attraeting 
phase. The right branch is the 

repelling phase. 

I 

o 

--
• • 

o 1;2 
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The shape of the function l' of course depends on the J 0 chosen for the initial 
calibration of phase. This arbitrariness in defining phase does not affect the 
qualitative property essential for what folIows, namely, wh ether L" is positive or 
negative. A different choice of J 0 would only distort the horizontal scale of these 
diagrams (see Daan and Pittendrigh, 1976b, Figure 10). 

Is this Caricature too Simple-Minded? 

A pause may be useful to put this ring model in perspectivc. We are developing 
the simplest model of a repeatable continuous process. In this simplest case, we 
have only one variable of state (the phase), only one observable (the same), and 
only one parameter (1). More complicated models might introducc a second 
variable ofstate. For example, in Chapter 5 we abandon the restriction to a unique 
cyde of fixed amplitude and take amplitude of oscillation as a second variable of 
state. Alternatively, we might find that our real experimental system responds 
not so much to the physical parameters of its environment as to their rates of 
change. For example, such rate-dependent stimulus transduction is important in 
the light responses ofthe sporangiophore of Phvcomyces (Delbruck and Reichardt 
1956), in Dictyostelium's response to cAMP (Gerisch and Hcss, 1974; and Chapter 
15) and in chemotaxis generally. According to our definitions, system behavior 
depends only on its state and its environment, so that in such cases there must 
be a second variable of state, astate of adaptation to thc cxternal stimulus. This 
component of the state changes quickly, tracking the stimulus and buffering it 
out so long as it doesn't change. 

One method is to try the simplest interpretation first. To be sure, it will not 
long remain possible to evade more realistic complexities. But only after pin
pointing the simple interpretation's !imitations can one recognize the most 
economical amendment. We adhere in this way to the principle of Occam's razor, 
but not because of a naive hope that evolved dynamics are simple but rather 
because the plainest interpretations are the most expeditiollsly testable. (This is 
the strategy of looking for an object lost in the dark by working outward from a 
lamp post while our eyes adapt to the darkness.) 

C: Derivation of Phase-Resetting Curves 

Figures 1-4 are a1l drawn using a simple representativc model: 

v( q>, 1) = 1 + J cos 2J[q> (I) 

with J 0 = 0. J might represent light intensity far circadian rhythms, or biasing 
current or pressure for a pacemaker neuron. By setting /0 = 0, we make J the 
departure from standard conditions. So J might represent deviations from stan
dard temperature or standard ionic composition of the medium surrounding a 
he art cello The simple dock range of I is - 1 < / < 1. Bcycmd that range, v goes 
negative at certain phases and we thcrefore have an "hourglass". 
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Bo B: A Parable of Three C10ck 

uppose. contrary to the principle of im pie-dock re etting, that the new-pha e v . 
old-pha e curve moothly ri e and fall back in ome region of negative lope. uppo e 
we take lhree dock in thi regi n, $1 < 4> 2 < 4>3' Expo ing all three imultaneou ly 
to the re etling timulu ,we end them to new pha es in the oppo ite order,cP'l > $2 > $3 
(Figure a). Thi results in an awkward paradox if we try to de cribe the mechani m 
behind the monitored rhythm a a biological dock with some pha e that i advanced 
or delayed at unu ual but pha e-determined rates during a stimulus- as in re etting a 
wri twatch . To experience thi paradox take a ealed bu ine senvelope, cut off the end 
with a ci or, and open it into a cylinder. Let it circumference be a pha e axi and 
it length be a "time during the timulu .. axi . Wc will follow the three dock' change 
of pha e during the timulu a they advance or delay around the cyde. ark the 
clockwi e direction of the pha e axi , and at the left end mark initial pha e in order 
1 < 2 < 3. t the right end, mark the three final pha e in oppo ite order 1 > 2> 3. 

ow we draw curve connecting I to 1, 2 to 2, and 3 to 3 (Figure b). Thi may sound 
rather arbitrary, but it doe n't much matter. The point i that we cannot connect the 
number without ome two curve cro ing en route. nd what' wrong with that ? At 
the moment of cro sing (some time during the timulus) two clocks with identical 
pha e, ubject to the ame timulu, proceed 10 change phase at different rates. That 
pre ent a problem if dock at the ame pha e are expected 10 function imilarly. They 
are expected to function imilarly in all descriptions of phas control in term of ring 
device (Brinkmann, 1967; Winfree, 1967a,b; Pittendrigh, 1960; Swade, 1969 ; Kuramoto 
and Yamada. 1976 : ujii and awada, 1978), i.e., that environmental parameter 
determine,. in a pha e-dependent way, the rate of change of pha e (i.e. phase velocity) of 
the dock in it cyde. Thus the resetting curves of ring devices, as described in this 
chapter, cannot have n galive lope anywhere. 

Thi ob ervati n i actually not 0 deva tat ing as it appears at first glance because 
there are two traightforward e capes from thi conundrum, bOlh by routes that most 
phy iologi I , I lhink, would accept a plau ible in terms of familiar experimental 
finding : 

I. An organism with a negati e lope in it re etting curve may differ from a simple 
dock in that it biological clock change amplitude a weil a pha e during a re etting 
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A new-pha e v . old-pha e eune with a negative lopc region, where the order of pha e J 

invened. During ueh an inversion. phase can bc followed on a cylinder who e long axi i time 
during the timulu. ome pair of docks mu t come to the ame pha e at the same lime in Ihis 
process. 
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perturbation. Wever(l963. 1964, t 965a) wa the fir t 10 argue per i tently in thecircadian 
literature again t de cribing every experiment in term of phase alone, a though that 
were an unambiguou determination of the tate of a circadian dock. Pha e does tell 
all there i to kno~ about the tate of almost every kind of commercial dock, but it 
appears that when we kick a biological clock, not only do its hand rotate, but they 
hrink or elonga te too: even through lenglh 0 10 reappear at po itive length 180 away. 

This trick make all the difference, as we shall ee in hapter 5. 

2. An organi m with a negative lope in its re etting curve may differ from a simple 
dock in that it really consists of many potentially independent clock . If their aggregate 
beha ior i the ba i of our re euing measurement , then the negati e lope of the 
re etting curve could be merely an expre ion ofincoherence. As we will see in Chapter 4, 
dispersion of pha e within a compo ite pacemaker (a "dock hop") ha the arne gro 
con equence a change of amplitude, induding the po ibility of inversion through 
zero. There are good rea on to believe that many phy iological rhythm re fleet the 
aggregate rhythmicity of man) individual circadian clock , be the)' imple clocks or 
not (Chapter 19), 

In standard conditions, d<Pfd! = v(<P,O) == l. If we dcnote the beginning phase 
by ep, stimulus duration (magnitude) by M, and the final phase by ep', then a control 
stimulus, at normal intensity I = 0, gives 

iM d<P iM ep' = q> + - dt = ep + dl = (/> + M. 
o dt 0 

(2) 

In this case, no phase shift is accumulated during interval M because the clock 
advances normally. 

With I i=- 0, the algebra is a little clumsier, but without belaboring details it 
turns out as follows. Ouring the stimulus, dC/> fdl = 1'((/>, I) i=- 1. Rearranging, 

d<P 
~------=dt 
(1 + [cos 27[<P) 

M= ' dt= ~---i l1 S</>· d<P 
o </> 1 + I cos 27[(/> 

(3) 

(4) 

This integral is a bit tricky to solve, but it is a standard lookup. For the case 
-1 < I < 1 (simple clock) it takes one form, and for 11 I > 1 (hourglass) it takes 
another (see Box C). In either case, the messy algebraic result is M = f(ep ', ep , 1). 

This can be used to calculate ep' as a function of ep, M, and I. 
A simple consequence of some utility is that the rate of change of ep' with ep 

is necessarily positive: A later final phase is reached at the end of a later starting 
stimulus of given length. More exactly, 

dep' v(ep', I) 
dep v( ep, l) 

These two velocities necessarily have the same sign because the sign could only 
change by going through zero; but when velocity = 0, nothing changes. Thus 
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Box C: Integration Formula For a imple-C1ock Model 

Let rP = 1 + / cos 2n4J. 
Then for I/I < I, 

where 

And for / = ±I , 

And for 11 1 > I, 

where 

( [ tan n4J]) tan n4J' = A tan n,I,,/ F + tan - I - A- . 

A = I~I and F=-v II-/zl· 
1 - / 

[ K -IJ tan n4J' = A -- . 
K + 1 

K = [A + tan n4J] exp(2nM F). 
A - tan n4J 

M, like 4J, i mea ured as a fraction of the unperturbed eycle duration. The equivalent 
formula, rederived in different notation, appear in Kuramoto and Yamada (1976), 
Ai7..awa (1976). and Fujii and Sawada (197 ). where the ame model i applied 10 wave
Iike periodi m in ehemieal rcactions. ( 11 the figure in thi chapter are computed from 
the above.) 
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re setting curve slope is positive for all mechanisms of perturbation based on 
modulation of angular velocity, as in simple docks. This is not true of other 
dasses of oscillating kinetics. This fact is used in Chapter 22, pp. 439-440. It also 
shows that resetting achieved by modulation of angular velocity cannot produce 
type 0 resetting curves, which necessarily have a region of negative slope. See Box B. 

Graphical Interpretation: How Phase Changes in Time 

The curves cjJ'(cjJ, M) tell what final phase cjJ' is reached by the end of a stimulus 
of duration M that began at phase cjJ. These dose-response curves are plotted in 
Figure 5 for the cases 1= 0, I = !, and I = I!. Phase, rp, starts at cjJ at t = 0 and 
it increases to cjJ' at t = M. In the simple dock case WI < 1: Figure 5(a, b)] the 
period r is indicated as the time elapsed from rp = cjJ to rp = cjJ + 1. It is the same 
for any choice of beginning cjJ. The diagrams are sideways (time t plotted upward 
instead of horizontally as usual) to facilitate comparison with their source, the 
velocity characteristic v( rp, 1) plotted above. 

A very weak stimulus (I dose to 0) has little or no effect even if prolonged. 
In this case cjJ' = (p + M [Figure 5(a)]. Now, let I differ significantly from 0 so 
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Figure 5. Parts (a), (b). (c) correspond to Figures I through 3. In each, thc time dependence of 1> is 
plotted as a curve, starting from each of various initial phases. The phase axis runs horizontally and the 
stimulus duration time axis runs vertically. Thus initial and final ph,lSCS '/i ami 'V corresponu to times 

o and Mon thc vertical axis. The time r from any phase '/i to '/il I is the period 1/,/1 [2 

that V is not uniformly 1 as in the previous case, but varies above and below as 
1> varies [Figure 5(b)). So long as 111 < 1, the result is that 1>(1) rises along a sinuous 
path from each initial ep, It rises by one full cycle in time t = r, which was 1 at 
1 = 0 but gene rally differs from 1 with 1 # 0, This is because the ring device is 
moving around its phase circle at a rate that varies locally. Thus it gets around 
quicker or takes longer according to the sum of the times taken in each increment 
of phase. The phase integral of 1/(this altered local velocity) is the period. The 
mathematical result from Equation (4) (see Box C) is that if 4/ - ep = 1 (i.e., for 
completion of exa<.:tlY_9ne full cycle during M at 111 < 1), then stimulus duration 
must be M = 1/.J 1 - 12 . This M is therefore the period r obtained under chronic 
exposure to 1 # O. Note that a plot of this M against I looks like a potential 
weil with its bottom at I = 0 and vertical walls at I = ± 1. It is flat at the bottom, 
connoting homeostasis of period near I = O. I f v were chosen less symmetrie, 
or if the cycle had been calibrated at some 1 # 0, or if l' happened to vary less 
symmetrically about I, then this weil would have its flat part to one side of 1 = 0 
(cf. Daan and Pittendrigh, 1976b, p. 27'1', on the periods of rodents' circadian 
clocks). 
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If I differs so much from 0 that the ring device almost stops at a certain phase, 
then it takes a very long time to complete its cycle. Departures of velocity from 1 
are weighted more heavily on the slow side because phase dawdles longer in the 
slow regions. With any further increase in I we may pass the critical value for 
transition to hourglass kinetics [Figure 5(c)]. The ring device then lingers forever 
where d> = O. The appearance of a range of negative velocities creates a pair of 
stagnation points, one attracting (cfJa ) and one repelling (cfJr). The ring device 
approach es cfJa and sticks there. 

Notice that on each of the preceding diagrams [Figure 5 (a, b, cl], above any 
point cfJ on the horizontal phase axis the curves have the same slope. That is to 
say, d> = v(cfJ,1) is given by Equation (1) for that phase. From that phase, the 
subsequent behavior is the same in every case (supposing constant 1), regardless 
of past history. In other words, the cfJ(t) curves differ only in their displacement 
along the vertical time axis. This is what it me ans to say that in any given environ
ment (i.e., exposed to a given stimulus, i.e., given a fixed 1), the instantaneous 
angular velocity v depends only on instantaneous phase. This is the central fact 
about ring devices, as here defined. It determines their most characteristic 
properties. 

For example, this implies that at any fixed I the paths cfJ(t, 1) do not cross each 
other. If they did, then d> would not be uniquely determined by cfJ and I at that 
phase. This fact is put to work in Box B. 

When the stimulus ends and I is changed back to 0, then cfJ carries on from 
phase cjJ' according to d> = v( cfJ, 0) = 1, i.e., in free run as defined in that standard 
environment I = O. 

Graphical Interpretation: Resetting Curves 

Now let's back up and look at this same model from a different perspective. 
We ask how the new phase of a single ring device depends not on M at fixed 
beginning phase cjJ, as in the preceding section, but on its beginning phase cjJ, 
supposing fixed M. What phase shift cjJ' - (cjJ + M) does the stimulus (1, M) 
inflict, depending on the phase cjJ when it begins? 

Mathematically, the answer is given above where we calculated a formula by 
which duration M and beginning phase cjJ determine final phase cjJ'. However, 
it is helpful to summarize in graphical terms. This is done in Figure 6, which plots 
a whole family of so-called resetting curves. Each resetting curve shows the final 
phase cjJ' as a function of initial phase cjJ for one fixed stimulus duration M. The 
family of curves shows how this resetting curve changes as we use stimuli of 
different durations from 0 up to infinity. The lower row of figures plots not cjJ' 
but cjJ' - (cjJ + M) = L1 cjJ against cjJ. These curves have three conspicuous properties: 

1. They are continuous: If the beginning phase cjJ is changed a little bit, then 
the final phase cjJ' changes by only a corresponding little bit. 
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Figure 6. (above): The information portrayed in Figure 5 is redescribed by plotting cf; , vertically 
against cf; horizontally, for each of severa l stimulus durations M. (below): As above but plotting 
vertically the phase shift cf; , - (cf; + M), which is the height of the curve above the corresponding 
curve at 1= O. Advances are plotted upwa rd, delays down ward. The 111 = () curve lies on the iJ<j) =0 

o axis. 

2. They are periodic along the cP axis, since starting a stimulus at phase cP 
in one cyde or in the next makes no difference to the results. 

3. They are periodic along the cp' axis. The observed result is a rhythm, and 
saying that its phase is cp' is the same as saying that its phase is cp' + 1 or cp' - 2 
or cp' plus or minus any number of complete cycles. 

Thus, our schoolboy habit of plotting things on perpcndicular Cartesian 
coordinates is not the most appropriate or natural in this situation. The Cartesian 
coordinate in no way represents the fact that the end of the phase axis represents 
exactly the same state as does its beginning. Actually both phase axes cp' and cp 
are rings. This fact would be brought out more dearly ifthe Cartesian graph paper 
were rolled up horizontally to dose the horizontal cp axis in a ring with its endpoint 
exactly superimposed on its beginning point. Or, if it were rolled in the perpen
dicular direction to dose the vertical cp' axis into a ring, bringing its endpoint 
onto its beginning. If we do both operations, we have rolled the graph paper 
into a torus, a doughnut-shaped space whose topology cxactly captures the 
logical structure of experiments on a rhythmic system. On this doughnut-shaped 
graph paper, the resetting curve is a c10sed ring which links once through the 
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hole in the doughnut. The fact that it is a ring comes from the fact that any <jJ 
determines a unique <jJ' in this kind of experiment. The fact that it is a closed 
ring comes from the continuity property, i.e., results of nearby experiments are 
similar. The fact that it links once through the hole comes from the fact that as 
the beginning phase <jJ is scanned through one full cycle, the final phase <jJ' Iikewise 
scans through a fuH cycle in the same direction. In fact, not only does <jJ' advance 
through a cycle as <jJ does, but more: <jJ' never decreases as <jJ increases. This is a 
conspicuous hallmark of ring device kinetics. 

Graphical Interpretation: The Resetting Surface 

It is now time to parlay the notion of aresetting curve into the notion of a 
resetting surface. This extension is necessary in order to incorporate stimulus 
duration M as a se co nd stimulus parameter, supplementing the time of application 
<jJ . Take a family of curves in Figure 6, e.g., take 6c at I = 1~. Set them up side 
by side on as many vertical co ordinate frames, <jJ' vs. M, arranged in order of the 
beginning phase <jJ. Collectively, they outline a smooth surface <jJ'(<jJ, M) which 
tells wh at final phase <jJ' the ring device achieves (vertical axis) at any <jJ (horizontal 
axis perpendicular to M). This is the resetting surface (Figure 7). It is a theoretical 
prototype of the experimentally measured time crystal introduced in Examples 5 
through 9 of the previous chapter. This is the time crystal of a simple clock. It 
differs from those obtained experimentally in that it has no phase singularity 
linking the (here) separate resetting surfaces stacked periodically along the <jJ' axis. 

Think of it as embedded in a cube of clear plastic. The cube could be sliced 
up into a stack of thin layers perpendicular to any one of its three edges: 

1. We have already seen it sliced perpendicular to the <jJ axis. Each such slice 
is a dose-response curve, showing how <jJ' changes during longer and longer 
exposures started from a given <jJ (Figure 5). 

M 

o 

Figure 7. The preceding figurcs are gathered into a single three-dimensional plot of <jJ' as a function 
of </l and M at I = 1 t. The corrcsponding picture at I < 1 difTers only in that it has no range of phases 

in which (P' decreases with increasing M. 
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2. Consider now planes of constant M, i.e., 4/ x 4) planes, each cutting the 
re setting surface at one fixed stimulus duration M. The curve along wh ich it cuts 
the surface is the re setting curve for stimuli of that duration, administered at 
each beginning phase ep [Figure 6(c)]. Such curves are elaborated in experimental 
context in Chapters 1, 7, 14, 19, and 20. 

3. We can plot what the resetting surface teils us in one more convenient 
way by sectioning along planes of fixed ep'. These planes intersect the surface 
in a locus of (ep, M) combinations that guide the ring device to the same final 
phase ep'. A composite figure such as Figure 8, showing the family of such curves 
for stepwise increments of ep', is a contour map of the resetting surface for one 
fixed stimulus intensity I. Figure 8, like Figures 5 and 6, shows the q]lalitative 
appearance at I = 0, I = t and I = H. In each panel, each curve is a level contour 
offinal phase ep' on the stimulus plane ofbeginning phase ep x stimulus duration M. 

In the pinwheel experiments encountered in the previous chapter the stimulus 
plane was in real physical space. In that context each level curve of ep' may be 
regarded as the instantaneous position of a wave in space. This wave is marked 
by appearance of a marker event E, wh ich signals passage through phase rp = O. 
This is because all ring devices at a given final phase ep' when the stimulus ends 
will encounter rp = 0 simultaneously, at a time 1 - ep' later. Those in the next 
lower horizontal section plane, at ep' - b when the stimulus ends, will re ach 
rp = 0 simultaneously at a time b after that. The contour map representation 
and the wave representation will both play conspicuous roles in later experiments 
with yeast cells (Chapter 12), malonic acid reagent (Chapter 13), flies (Chapter 20), 
and flowers (Chapter 21). For the present it will suffice to note that these contour 
lines do not converge to a point. It can be shown mathematically that they cannot 
do so, in the ca se of any resetting process that amounts to modulation of angular 
velocity. In such a ca se, a pinwheel experiment cannot possibly evoke a rotating 
wave. 

M 2 

(0 ) (b) 

I 

f'la 

(e) 

Figure 8. Figures 5 and 6 represent two perpendicular cross-sections through Figure 7. Here is the 
third perpendicular cross-section. Initial phase increases to the right as in all preceding graphs, and 
stimulus duration M increases vertically as in Figure 5. The curves are level contours of uniform cp'. 
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D: Historical Appendix 

The circle is the first, the most simple, and the most perfect figure. 

Proclus 1 

Lo cerchio e perfettissima figura. 

Dante2 

Applications of the Simple-Clock Idea in Developmental Physiology 

It is not unusual for developmental processes to proceed through a sequence 
of stages, each of which seems to be a necessary precondition for the next. The 
development of a frog from egg through tadpole to adult to egg, for example, 
progresses continuously through the Pollister and Moore stages like a train 
passing stations along its track. Though its speed may vary according to tempera
ture, hormonal supplements, and the availability of food, the stages and their 
ordering are unchanged. 

In the case of temperate zone animals which repeat an annual cyde within 
their life cydes, Mrosovsky (1970) declared that a system "that could give rise 
to annual cydes is a sequence of linked stages, each taking a given amount of 
time to complete and then leading into the next, with the last stage linked to the 
first again ... as in the case with pregnancy ... it should be possible to alter 
frequencies by slowing down, speeding up, or reducing certain stages." This is 
the essence of a "simple dock". 

The same may be said of development on the level of a single cello In this case, 
there might even be a relatively simple structural analog to a railroad track. 
Halvorson and Tauro (1971) reviewed experimental indications that the genome 
(a railroad track) is transcribed in linear sequence, resulting in a sequential ordering 
of biochemical changes during the cell cyde. The following excerpts from recent 
research literature point to the fundamental role of simple-dock models in this 
area: 

Edmunds (1975) writes: 

The cell cycle ... comprises aseries of relatively discrete morphological and 
biochemical events, although the specific elements may vary among different 
systems. These developmental sequences are not necessarily linearly ordered, 
however, since branching networks (and even "nested do-loops") may provide 
several alternative pathways, some of which may operate concurrently .... 
In this sense then, the cell cycle is a "clock": the specific events correspond 
to the numerals on the dial ... under a different set of conditions, the cell 
cycle consists of the same sequence but ... the relative time spent between 
such stages is different. 

1 Commentary on the first book of Euclid's Elements; on Definitions XV and XVI. Cited in Polya 
(1954), p. 168. 
2 Convivio Il. XIII. 26. Cited in Polya (1954), p. 168. 
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HartweIl et al. (1974) write: 

Mi101ic cell division in eukaryo1es is accomplished 1hrough Cl highly repro
ducible temporal sequence of even1s that is common 10 almos1 all high er 
organisms .... How are (these events) ... coordinated in the yeast cell cycle 
so that their sequence is fixed? ... There may be a direct causal connection 
between one event and the next. In this ca se it would be necessary for the 
earlier event in the cycle to be completed before the later event could occur .... 
A second possibility ... invokes the accumulation of a specific division protein 
and another a temporal sequence of genetic transcriptions .... No event in 
this pathway can occur without the prior occurrence of all preceding events. 

Tyson and Kauffman (1975) write: 

The periodic event with which we shall be particularly concerned is cell 
division. Mitosis is an event of short duration relative to the cell cycle. The 
exact nature ofthe system controlling its regular periodicity is not yet known 
for any organism .... Some have supposed that the cycle is a cyclic sequence 
of discrete states, each causing the next. Evidence in bacteria and yeast that 
the temporal sequence of genes transcribed during the cycle may be related 
to the sequentiallinear order ofthe genes on the chromosomes have prompted 
speculation that the cycle is controlled by sequential transcription around 
circular DNA molecules in eukaryotic chromosomes. 

Applications of the Simple-Clock Idea in Circadian Physiology 

A tape-reading or railroad track analogy equivalent to those conceived of in 
context ofthe cell division cyde (see above) was explicitly proposed by Pittendrigh 
(1966, p. 305) and by Watson (1976, p. 510) as a possible basis for biological timing 
and biological docks in general. Ehret and Trucco (1967) elaborated just such a 
molecular model of circadian docks with the additional proviso that the genes 
sequentially activated needn't be physically consecutive along the genome. Their 
dock is a sequential machine composed of concentrated lumps of transcribable 
DNA. Emphasizing the one-dimensional character of this mechanism, they make 
analogies to the one-dimensional docks used in ancient times: 

The chronon be ars an interesting, though somewhat superficial, resemblance 
to the calibrated candle clocks ofthe medieval period in which the end-to-end 
consumption by a flame of carefully selected lengths of resined rope was a 
standard measure of time. 

They suggest that the spontaneous periodism of the dock might even have a 
structural basis in the dosure of the DNA track in a ring, as in the genomes of 
bacteria and of viruses, and more appropriately, of mitochondria. 

Even prior to this incarnation of the simple-dock paradigm in a physical 
ring, elaborate developments of the idea were propounded by experimental 
investigators of circadian rhythmicity. As early as 1940, Kalmus thought of the 
circadian dock in fruitfiies by analogy to a rotating, repeating gramophone 
message or the drum of a music box. (See Chapter 20 for biological background 
on fruitfiy docks, to which I will allude frequently in the next few pages.) Brett 
(1955) likewise hung his observations of fruitfly docks on a rotating wheel model. 
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Bunning (1956a) compared the cyde of activity in plants to the playback of a 
gramophone record. Enright (1975) continued this theme of tape recorder loop 
analogies, in the context of the periodic fine structure observed in the activity 
records of a marine isopod on his beach at La Jolla. 

So profoundly did the simple-dock metaphor pervade thinking about circadian 
rhythms during the 1950s and 1960s that alternative notions seI dom seemed to 
pose achallenge worthy of experimental test. One gains the consistent impression 
from the literature that, apart from the few writers who do their modelling explicitly 
by way of equations, most folks do theirs implicitly, in terms of ring devices. 
The notion thus shapes the choice of descriptive language and the design and 
interpretation ofthe experiments. This may be sound procedure: Simpler analogies 
are easier to test than complex ones and so should be tried first. The dock metaphor 
also has great appeal due to the fact that time is reckoned one-dimensionally 
both in principle and in almost all human contrivances for time keeping. Intro
duced by Hoagland (1933), the dock metaphor was adopted in the context of 
24-hour rhythms by Johnson (1939). It was first popularized by Brown in the early 
1950s in connection with his beliefthat circadian rhythms are in fact one indicator 
of external geophysical docks. Pittendrigh pursued the dock metaphor in the 
later 1950s in connection with his belief in an internal timepiece whose evolutionary 
raison d' etre is to monitor the passage of time. 

The idea that a circadian dock goes through a fixed cyde more quickly or 
slowly according to its phase and environmental factors, such as visible light 
intensity, was first suggested by Rawson (thesis, 1956) and later by DeCoursey 
(thesis, 1959). The idea promised an interpretation simultaneously for re setting 
curves and for the fact of entrainment to a fluctuating light schedule. Palmer's 
notion of "autophasing" (1959; see Palmer 1976, p. 250) invokes exactly this 
principle-that the rate of advance depends only on phase and environmental 
conditions-to rationalize the supposed generation of a circadian rhythm by a 
geophysical rhythm of different period. 

The previously implicit simple-dock paradigm was first made explicit and 
articulate by Campbell (1964) in the context of mitotic cydes, as noted above. 
Stimulated by Campbell's analysis and by six months with a population of 
simple-dock-like oscillators in Pittendrigh's Princeton laboratory (Chapter 11), 
I contrived an analysis of a simple dock's entrainment by a rhythmically fluctuating 
stimulus (Winfree, 1967a). Swade (1969) applied similar principles to entrainment 
of rodent activity cydes in the fluctuating light of the Arctic summer. 

The simple dock interpretation of circadian rhythms was most vigorously 
advanced by Pittendrigh, starting with Pittendrigh and Bruce (1957). Goodwin 
(1976) reviewed: 

The minimum number ofvariables assumed to be necessary for an oscillation 
in biological system is two ... however, there is an even simpler type of 
oscillation than this, dimensionally speaking, and that is what has been 
referred to as a generalized relaxation oscillation [see Chapter 6, Box A; read 
"simple dock"]. This is a periodic function of time which can have different 
periods, but practically no change ofamplitude. The state ofsuch an oscillator 
can be defined in terms of one variable only, which is its phase; i.e., it is like 
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an ordinary dock which can be set to any time and will then run at fixed 
speed with the only visible indicator of statc being the position of the hands ... 
from very extensive and ingenious studies of the behavior of biological docks 
in response to various types of perturbation, Pittendrigh and Bruce (1957) 
proposed a [two-oscillatorJ model in which the chronometer (A) was assumed 
to be an oscillator of this relaxation type [i.e., a kind of simple dock] whose 
phase could be instantaneously re set by a light or other signal, but whose 
amplitude remained unaffected. Any transients in the observable response 
to the signal were then regarded as occurring in that process (B) which is 
controlled by the dock (A) and by which its existence is made manifest. This 
model is widely used and has had very considerable success. 

(All bracketed insertions are mine.) 
This A-B two-oscillator model has had a profound influence on the development 

of circadian physiology. Its genesis lies, once aga in, in the simple-dock paradigm. 
Pittendrigh and Bruce (1959, p. 491) argue: 

Any model based on a single oscillator is unable to explain the concurrence of 
the three features that strongly characterize re setting in the fly: (l) ultimate 
determination of phase by a signal seen three cydes previous to the new steady 
state, (2) the presence of transients, and (3) the dependence of transient length 
on the time oft he cyde at which the signal fell. These features are, on the other 
hand, all explained by a model for the system based on two coupled oscillators. 

These facts really pI ace no constraint on an oscillator model unless by 
"oscillator" one implicitly means a simple dock. 

The point I am trying to make here is not that the simple dock interpretation 
is wrong or an inconvenient approximation (although we will be more concerned 
with its deficiencies in later chapters) but that it has been important in the develop
ment of thought and experiments in several areas of physiology and biochemistry. 
It might be added that ring devices lie at the very heart of any industrial society 
for the simple reason that industry consists largely of automated productive 
activities, and automation goes farthest quiekest in processes that are repetitious. 
In any repetitive fabrication, machines and their operators traverse aga in and 
again stereotyped one-dimensional cycles of states. So it is from the internal 
combustion engine to knitting and weaving machines to the distribution of power 
synchronized to the rotation of innumerable dynamos. 
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lf thou (dear reader) art wearied with this tiresome method of computation, 
have pity on me, who had to go through it seventy times at least, with an 
immense expenditure oftime ... 

Johannes Kepler, 1609, 
Astronomia Nova, Chapter 16 

My intent in this chapter is to direct your attention to several idealizations 
of rhythmic behavior in collections of many similar ring devices. It turns out that 
some of the peculiar limitations on the behavior of simple docks do not apply 
to populations of simple docks. Here we also encounter our first example in which a 
phase singularity emerges from an idealized model ofthe structure and mechanism 
of a rhythmic system. The chapter is divided into four sections: 

A. Collective rhythmicity in a population without interactions among con
stituent docks. This is mainly about phase resetting by a stimulus. 

B. Collective rhythmicity in a population whose individuals are all influenced 
by the aggregate rhythmicity of the community. This is mainly about mutual 
synchronization and opposition to it. 

C. Spatially distributed simple docks without interactions. This is mostly 
ab out patterns of phase in space. . 

D. Ring devices interacting locally in space. This is mostly about waves. 

A : Collective Rhythmicity in a Population 
of Independent Simple Clocks 

Definitions 

Before anything else we need adefinition of collective rhythmicity. If we were 
pooling sine waves of various phases and amplitudes, all with the same period, 
the result would always be another sine wave. So there would be no ambiguity 
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about its phase: Whatever is the measure of phase on a single clock, the same 
measure is used for the aggregate (e.g., phase = fraction ofa cycle past a maximum). 
But wh at if the output of each clock is a sharp action potential as in the neural 
oscillators of Chapter 14, or a sawtooth wave as in the neon glow tubes used 
in Chapter 11? Then the sum of many bears little resemblance to the familiar 
waveform in terms in wh ich phase was defined. If we are going to ascribe some 
"phase" to such a collective waveform, then we must have some additional rule. 
The choice is essentially arbitrary, a matter of convenience, but it must be made 
definite. I choose the following definition. 

Any periodic waveform can be depicted as a superposition of sine waves of 
suitable amplitudes and phases. This superposition includes one sine of each 
frequency, from the fundamental on up by integer multiples. We want a number 
to characterize the phase of a rhythm of unit period. (We take its period as our 
unit oftime.) A number at least as good as any other is the phase ofthe fundamental, 
scaled to range from 0 to 1. Whatever the rhythm's shape this measure changes 
by f, (modulo 1) if the whole waveform is delayed by a time G. This measure is 
unaffected by changing the overall amplitude. In nearly synchronous populations 
it registers the same phase as the phase of each single oscillator. In slightly less 
synchronous populations, the collective phase is the mean ofthe phase distribution. 

Geometrically this measure is especially convenient. If we represent the cycle 
of each simple c10ck as a perfect circle traversed at uniform speed (letting the 
central angle on this diagram be the fraction ofthe cycle e1apsed), then a population 
of clocks can be depicted as so many dots moving with constant angular velocity 
around this circle (Figure 1) The circle represents thc fundamental sine wave. 
The X co ordinate of each dot traces in time the fundamen tal sin usoidal component 
ofthat c1ock's rhythm. The superposition ofall sinusoids contributed by the many 
c10cks of a population is traced by the center of mass (*) 01' the c10ud of dots 
on this diagram. The phase of that aggregate rhythm is the central angle of the 
center ofmass. We can rule the diagram with radiallines each ofwhich corresponds 

y 

.8 

L-______________ ~~ X 

Figure 1. Thc outer circle represents unit amplitude of the first harmoni e of any rhythm. Dots 

represent docks at various phases. The astcrisk represents the phase ami amplitude of their collective 
rhythm (averaged). It follows the inner circlc so long as the clocks are independen t and unperturbed. 

The radiallines link positions of equal phase. 
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to a given phase, namely, the phase at which it intercepts the unit cirde. Any 
aggregate rhythm's phase is read off by simply locating the population's center 
of mass on one of these radii. 

This choice of a phase measure dovetails nicely with an analysis of physiological 
"transients" put forward by Mercer in 1965 and more explicitly by Kaus in 1976. 
According to this interpretation, the physiological observables that we choose 
to monitor in the laboratory sometimes do not happen to participate directly 
in the mechanism of the "dock". Rather, they are only indirect1y driven by the 
dock mechanism. In some cases, it apparently suffices to regard the driven 
observable as a linear filter, selectively transmitting the fundamental frequency 
ofthe driving dock.lts higher harmonics vary too quickly to have much inftuence 
on such a sluggish driven system. In such a case (and the fruitfty's circadian rhythm 
seems to be one ofthem) the observed rhythm would be determined by a population 
of docks in exactIy the way suggested above. 

Having chosen a collective measure of phase, we now apply it to the case of 
two, three, and more noninteracting simple docks. 

Two Clocks: Unperturbed Kinetics 

The state of a population of N docks consists of the phases (cp 1> cp 2, ... , cP N) 
of its N members. The state space thus §1 x §1 X ... X §1 = lfN, the N-dimen
sional hypertorus. In the case ofjust two docks, this is §1 x §1 = lf2, the familiar 
surface of a doughnut. We unroll it to form a doubly periodic presentation on ftat 
paper in Figure 2. Let the horizontal phase co ordinate be dock 1 and let the vertical 
phase coordinate be dock 2. We have two things to draw on this surface: 

1. Contour lines indicating the phase and amplitude of the pair (considered 
as a unit) as a function of the two individual phases, and 

2. The unperturbed trajectories of the pair of docks in this state space 

(1) Taking the two docks to have equal periods and equal weight, the phase 
of the pair is the central angle of a point midway between them on this cirde 
diagram (Figure 3). This can be written trigonometrically, but after a littIe algebra 
it reduces to something geometrically obvious: The phase ofthe aggregate rhythm 
of two equal docks lies in the direction midway between the two, at an amplitude 
less than either by an amount that increases with their phase difference. When 
the two are one-half cyde apart, amplitude of the fundamental harmonie passes 

Figure 2. The slalc space of a pair 
ofsimplc docks, being: a torus. Gan be O2 

depiclcd on flat paper as one unit 
cell of a shect of wall paper. 

., L--------_ : ' 
-----.lio... I I 

~ I i 
I I 
I I 
I I 
I I 
I I L. _______ _ 
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Figure 3. By the convention adopted in Figure I, thc phase of a 
pair of simple docks lies midway betwec n the il" individual phases. The 

am plitude of the pair is the radius of the dashed cirde. 

through 0 and phase is therefore ambiguous. If we move either oscillator's phase 
a little bit, the aggregate phase switches back and forth by one-half cycle through 
amplitude O. Note that amplitude 0 in this ca se means only that the fundamental 
has vanished. All the even harmonics are still there but, because of the twofold 
symmetry within each period, the aggregate rhythm's phase is indeterminate, 
Note also that (unless the two clocks are exactly one-half cycle apart) advancing 
both in phase by any amount advances the aggregate rhythm in phase by the 
same amount. 

The aggregate phase depends on cpl and cp2 symmetrically, with a discontinuity 
along the 45° degree line where (P 1 and cp2 are one-half cycle apart, as indicated in 
Figure 4. Pending fuller definition in Chapter 6, let 's call any loclls ofuniform phase 
an isochron ("same time"). We might also indicate amplitude contours as A = 
cos 2n[(cpl - cp2)/2J. The phase discontinuity is the "amplitude = 0" contour. 

(2) Next we need to depict this system's natural motion in its state space. If 
both oscillators have the same period, then 4>1 = 4>2 = 1 (in wh ich an upper dot 
denotes the rate of change in time). So the system's path, a trajectory from any 
initial (cpt, CP2) combination, is a 45° line. Aggregate phase thus advances lIniformly 
and aggregate amplitude is steady (Figure 5). 

If one oscillator moves a bit faster than the other, then the path's slope TtlT 2 

is no longer 1. lt therefore slants at a different angle, slowly crossing amplitude 
contours. It passes through the zero amplitude discontinuity at intervals 
l / (I /T t - I / T2 ). This path on the torus depicts geometrically the familiar beat 
note seen or heard by superposing nearby frequencies. 

Figure 4. Contours of (/' \ a nd (/>2 along which 
the phase (<!). so lid) or am plitude (A, dashed) of a 

pa ir o f simple d ocks rcmain the same. 
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Figure 5. Motion of a pair of identieal independent 
docks across the (rPh 1>2) torus in the environment J = 0 
used to calibrate phase in proportion to time. These 

paths are closed rings of period T = 1. 

Two Clocks: Perturbed 

Thus far we have implicitly assumed undisturbed cyding of the simple docks 
in whatever standard environment was used to define phase in proportion to 
elapsed time. In the notation of the previous chapter, this means I = O. Let us 
now consider 0< I < 1. This is the range in which each simple dock continues 
to cyde, but its positive angular velocity is greater or less at different phases. 
Each dock lurches and pauses around the common cyde. If two docks start at 
different phases, then the phase angle between them constantly increases and 
decreases back again with the period of each oscillator's altered traversal of the 
common cyde. Thus the pair's trajectories on the (<Pl' <P2) torus are no longer a 
series of parallel straight lines but now comprise a set of snaky lines (Figure 6). 

lf I > 1 then each dock will come to rest at <Pa be fore it has traversed a full 
cyde. This <Pa is the front edge of the range of phases in which angular velocity 
has gone negative (Figure 4 of Chapter 3). This behavior is shown simultaneously 
for both oscillators in Figure 7. 

Thus if I = 0 for a long time, but then we make I # 0 for a while, then during 
that interval of exposure to the stimulus the oscillator pair is moved from its 
prior 45° trajectory to a new one. When I reverts to 0, the pair continues in motion 
along the new 45° trajectory. At that time it will generally be on a different phase 
contour than is an unperturbed control for which I remained 0 during the same 
interval. The new phase reached by the time the stimulus ends depends on two 

Figure 6. Motion of a pair of identical independent 
docks across the (1) I' '/)2) torus in an aItered environment 
J = t which still permits cycling. These paths are closed 
rings of period T = 1/ J 1 -=-7. This figure and Figures 
7- 9, 12 14. are skctchcd from grainy computer print-

outs and so are not quantitatively exact. 

01 
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Figure 7. Motion of a pair of identical dock s across 
the (<PI, <p,) torus with 1 = 11. Each gravitates to an 

attracting phase 4)". 

1. The stimulus (1 and its duration) 

2. The initial state (cjJ I , cjJ 2) 

Note in (2) that it is not sufficient to specify just the initial phase ofthe aggregate 
rhythm. That externaIobservable only locates the state on a certain cjJ contour 
(isochron) but does not tell where the two-clock system is on that isochron. 
During exposure to the stimulus, trajectaries lead in various directions through 
the many states on that locus of uniform aggregate phase. We have to expect a 
different result from disturbing a pair of oscillators at phase cjJ, depending on 
whether the aggregate phase is cjJ because both are at cjJ or because one is at cjJ + x 
and the other is at cjJ - x. We need to know the complete internal state of the 
system. The externaIobservable cjJ is a sufficient identif'ication of a rhythmic 
system's state only in very special cases. In general, it is one convenient measure 
of state but not in itself sufficient far design and interpretation of experiments 
because two systems at the same phase can have quite different subsequent 
behavior. 

To know the complete internal state of a two-clock population, we could 
know the phase of each oscillatar or, equivalently, we could know which contour 
of aggregate phase the population lies in and where it lies along that amplitude 
locus in Figure 4. With the aggregate phase measure wc have chosen, this means 
knowing the mean phase of the two clocks and their phase difference. In popu
lations with more simple clocks we would in principle need to know the phase 
of each clock in the population or equivalently their mean phase and enough 
higher moments ofthe distribution to specify the distribution unambiguously. Ifwe 
could assurne that clock phases are unimodally distributed around the mean, 
then the measures of most importance of our purposes would be the mean phase 
and the range or variance of phases. 

Let us now return to the two-clock case to determine how the mean phase 
of such a population depends on the timing of the stimulus. It is convenient here 
and will be convenient again in other contexts to think ofthe stimulus as a mapping 
from the plane wh ich describes the stimulus (its duration M and the initial phase 
cjJ when it starts) into the (cjJb cjJ2) state plane. This can be done as folIows. Choose 
an initial phase difference between the two clocks. The pair's trajectory is then 
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Figure 8. As in Figure 4-7 but a portion is shaded, 
consisting of all states reachable from the chosen initial 
unperturbed trajcctory (cp2 - cp, = xl by increasing 
durations of exposure to 1= 11. The curves crossing 

perturbed trajcctories are loci of fixed duration M. 

a diagonal that far displaced from the main diagonal, as indicated in Figure 8. 
Points along this displaced diagonal are, trivially, the states reached by applying 
a stimulus I "# 0 of duration M = 0 at each initial phase cp. This diagonal is the 
cp axis of an image of the (cp, M) plane in state space. Now expose the population 
for a duration M at each cp, marking off increments of equal duration along the 
trajectory followed (Figure 8) du ring stimulation. Through each initial cp this 
establishes an M axis. Collectively these measurements constitute a cp x M grid 
on the state plane. It is an image of the (cp, M) plane on which we can immediately 
read off the new phase values arrived at by reference to the overlying contour 
lines of Figure 4. In imagination, stencil those contour lines onto this distorted 
image of the (cp, M) plane, then pick it up and stretch it out flat and uniform and 
you have Figure 9. All this can be done by trigonometric equations; in fact, that 
is how Figures 6-9 were obtained. But the qualitative principles are evident 
in the graphical methods described above and are independent of quantitative 
details about the chosen dynamics. 

M 

0.2 

0 .1 

o 

Figure 9. On the (1) , M) plane, level contours of 1>', the phase reached by maintaining J = It for 
duration M (in units ofunperturbed cycle period). starting at phase 1>, with 1>2 - 1>, = 0.3 eycle initially. 
Thc dotted U loeus represents amplitude A = 0; other amplitude loei are omitted. As M ..... Cf) contours 
near qJ, diverge to fill the whole space. The U becomes symmetrie about 1>, and approaches width 

0.3 as M ->x . As M inereases across the U, cp' jumps one-half eycle. 
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You will note that so long as the phase difference was initially not 0, there is a 
phase range within which a stimulus of sufficient duration carries the pair's state 
across the zero-amplitude locus, where the phase changes discontinuously because 
the two oscillators are one-half cycle apart. This happens only within a certain 
range of initial phases. The perturbed trajectory from other initial phases never 
crosses the discontinuity locus. The phase map of Figure 9 on the stimulus plane 
shows this piece of discontinuity locus as a U. 

We have spent a long time belaboring a trivial example in order to lay the 
foundations for understanding situations of greater biological interest. The next 
step in that direction comes by looking at a system of three simple clocks. This 
is as far as we will need to go with simple clocks because it turns out that three 
do everything that a larger population can do, so far as our present interests 
are concerned. 

Three Clocks: U nperturbed Kinetics 

The principles are the same but the state space is three-dimensional, being 
§l x § 1 X §1. That could be thought ofas a cube with its opposite faces identified 
pairwise by analogy to the method of depicting a two-dimensional torus as a 
square with its opposite faces identified pairwise. The trajectories followed by 
astate point (CPb CP2 ' CP3) within the cube are much thc same. The only novel 
feature is encountered in trying to depict the loci of fixed aggregate phase (the 
isochrons) in this state space. In the two-clock casc they were straight Iines 
transverse to the trajectories, abutting discontinuously along the zero-amplitude 
locus. In a three-dimensional state space they must bc two-dimensional surfaces, 
once again transverse to all the trajectories becausc moving all oscillators forward 
by amount e must move the aggregate phase forward by the same amount. 
A theorem often used be fore can now be invoked to show that something peculiar 
must happen in the way that these isochron surfaces come together in the three
dimensional state space. Consider Figure 10 and thc gedanken experiment 
indicated by the four-sided closed path ABCDA (hcavy arrows). Along path 
AB the phases of all three clocks increase equally and thus advance through 
one full cyde of aggregate phase. Along path BC docks 2 and 3 are held fixed 
while dock 1 moves through a full cycle. This causes the aggregate phase to change 
somewhat and change back to its original value without scanning through a full 
cycle, because the single clock affected is in the minority in a three-clock population. 
This feature of the collective phase measure chosen above is more obvious in a 
population of thousands of clocks, only one of wh ich is allowed to vary at a time; 

c 

A~--_-v 

Figurc 10. The cfJ, x (P2 X (p-, hypcrlorus " unrolled and laid ftat" 
as a cubica l unit cell of a threc-dimcnsional crys la l. Path ABCDA 

is followed in a conccplual experiment. 
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it turns out to be true for any number of identical clocks down to and including 
three. At point C the phases are all the same as they were at point A and point B. 
Next clock 2 is varied, holding clocks 1 and 3 fixed. Once again for the same 
reasons the aggregate phase does not scan·through a complete cycle. The same is 
true along arc DA (and along any number of additional arcs of the same sort 
wh ich would be required in describing a population of many simple clocks). The 
upshot is that the aggregate phase has winding number 1 around the closed 
path ABCDA. Now imagine any two-dimensional surface topologically equivalent 
to a disk bounded only by path ABCDA. I intend to assign to each point on such 
a surface some aggregate phase. Thus I propose a map from a two-dimensional 
disk to a phase circle in such a way that its boundary maps around the circle 
with winding number 1. Once again (see p. 28), this cannot be done without 
accepting a discontinuity. Supposing that the aggregate phase function va ries 
only slightly in response to slight changes in the phases of constitutent clocks, 
then the winding number remains I along any distortion of this path ABCDA. 
By continuing to distort the path by shrinking it, I eventually localize the dis
continuity to a unique state. Along a very tiny path around that state, all phases 
of the aggregate rhythm are realized. Thus this is astate of ambiguous phase. 
I could have carried out this argument using any surface of two dimensions, 
bounded by the required closed-ring path. Each such two-dimensional surface 
contains a point of ambiguous phase. The locus of ambiguous phase consists 
of all these points, so it is one-dimensional.lt is a curve along which all the isochron 
surfaces converge. 

In the three-clock case this is easy to understand in more mechanistic terms. 
Situations of ambiguous phase will occur only when the three clocks are symmet
rically disposed, so that their center of mass lies at the origin, at zero amplitude 
and ambiguous angle. Figure l1(a) shows the three clocks at the corners of an 
equilateral triangle. Any rotation of this configuration leaves the collective phase 
ambiguous. This ring of positions of the triangle corresponds to the one
dimensional locus of phase triplets which correspond to ambiguous phase in the 
aggregate rhythm. Any slight displacement of <pI or <p2 or <p3 from such a point 
can radically change the aggregate rhythm's phase. At that point, not only is 
phase ambiguous but, additionally, all phases are near at hand. Why? Not just 
because the aggregate rhythm's amplitude is O. That was true in the two-clock 
case, but only a discontinuity, not a phase singularity, was obtained. The underlying 
difference of mechanism is brought out in Figure l1(b). Figure l1(a) shows the 
three-clock situation and Figure 11(b) shows the two-clock situation. In both cases 
symmetry is required to attain the situation of zero amplitude and ambiguous 

0) b) 

Figure 11. Symmetrie dispositions of three docks (a) and of two docks (b) which may be arbitrarily 
rotatcd while keeping aggregate phase ambiguous. 
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phase. But in the two-dock case, minute adjustment of phases can only move the 
aggregate phase off zero to the left or right. In the three-dock case, the center of 
mass can be displaced from zero to any angle by minutely adjusting any two 
phases. This feature, of course, also obtains with any greater number of docks in 
the population. 

Three Clocks: Perturbed 

What does this imply for the response of a three-dock population's aggregate 
phase to the timing of a stimulus? Precisely as in the previous case, we can visually 
map the stimulus plane (4), M) into the (4)1,4>2,4>3) state space. Let's assurne the 
same simple dock kinetics as before for I > O. Without going through the details, 
the image of the stimulus plane turns out to fall across the convergence of all the 
isochron surfaces. Thus a cross-section through their convergence appears on the 
(4), M) plane. Figure 12 shows the result of a computer calculation ofthis map using 
the same simple-dock dynamics as in Figures 6-9, based on the models ofChapter 
3. Figure 13 shows the result with 50 simple docks. It is essentially the same! (see 
Box A). 

Now I wish to draw out four aspects of this result. 

1. The Role ofInitial Phase Variance. In all these simulations the c1ocks' 
phases were initially uniformly distributed across an arc of 0.3 cyc1e. During un
perturbed operation the trajectory of the population is therefore parallel to the 
main diagonal ofthe state space, but displaced from it. With a narrower distribution 
of phases a population's prestimulus trajectory is doser to the main diagonal 
4>1 = 4>2 = 4>3. During exposure to the stimulus (I "# 0) the population is driven 
along trajectories initially diverging from that locus only very slowly. So a little 
bit of initial variance in phase gives the population a big headstart toward the 
discontinuity (with two docks) or singularity (with three or more). With a narrower 
initial distribution of phase, the phase singularity would OCCur only after a very 
prolonged exposure to the stimulus. In the limit of initially perfect synchrony, the 
population behaves just like a single simple dock: As we see in Chapter 3, it has 
no phase singularity. In fact it can be shown analytically that the phase singularity 
lies at critical duration of exposure M* proportional to the logarithm of the initial 
variance of phases. 

Given a wide initial range of phase scatter in the population, M* becomes very 
short. The reason is essentially as follows. To obtain very low amplitude of the 

1 You might expect more fine structure in these maps, especially for small numbers of docks. It is 
there. The number of docks can be counted by counting repeated features in the contour maps. But 
these features are smaller the greater the number of docks so they are easily lost in the variability 
of data. Although they are plainly enough revealed by mathematical analysis. very fine-grained com
putation is required to map them out numerically. The maps I prescnt in Figures 9 and 12 and in 

Chapter 8 are deliberately smoothed to emphasize only their gross qualitative structurc. 
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Box A: crew)' Behavior in chizoid Population 

A pha e ingularit)' appear in the collccti c bchavior of a population of identical 
imple clock , none of wh ich individually exhibit uch peculiar behavior. How can 

that be? To be rigorou and opaque, it can be hown mathematically by taking ratios 
of trigonometric function weighted by the distribution of pha e in the population a 
it change during a timulus. But the c sence can be appreciated more implya follow . 
. igure a once again depict the fundamental harmonic of each clock's contribution to 
the collective rhythm. Points around the circle are pha e orthe imple-clock cycle. The 
radial line through each pha e point connect point of the ame pha e on inu oid 
(circle ) of lower amplitude. The mel/ll of many unit-amplitude cycle in a population 
of imperfectly ynchronized clock follow one of tho e maller circle while all clock 
advan e around the unit circle at unit pccd. 

ow uppo e that during a timulu each clock move away from t/>, toward t/>. a 
indicated by the arrow in Figure b. If the timulu begin whcn the population does 
110/ traddle t/>r' then all clock together advance or delay toward t/>. during the timulu . 
But if the population doe traddle t/>, when the timulu begin, then i( plit into an 
advancing portion (t/> > t/>,) and a delaying portion (t/> < t/>,). Ifthcy are about equal in 
ize, (hen their center of ma drop directl) toward t/>., deviating neither clockwi e nor 

counterclockwise. A the population' two halve advance and dela , their aggregate 
rhythm keep about the ame pha e but 10 c amplitude until. at a critical duration M*, 
amplitude reache a minimum (Figure b). The center of mass of this population is now 
close to the center ofthe circle: pha ei ambiguou becau e the um of oppo itely pha ed 
fundamental ha very low amplitude. 

ow notice that slight adjustmcnts of timing can reposition the center of ma 
arbitrarily. It can be mo ed up and down by adju ting the duration of the timulu. [t 
can be moved left or right by adju ting th proportion of clocks in the advancing and 
delaying group , i.e .. by tarting the timulu earlicr or latcr, when fewer or more of it 
clocks havc pa ed tPr. In other words, the population's collecti e rhythm can be 
maneuvered anywhere near this convergence of pha e line by slight adjustment of t/> 
near t/>* = tP, and of AI Ilear 1'1'1*. Thi is a phase singularity in the collective rhythm of 
the population. Its physical basis is the sp/illillg of a population at t/>,. 

a) 

b) 

(a) s in Figure I but cmphasizing the (radial) loei of 
equal phase connecting orbit of various amplitude. 
(b) Thedoud ofdo ks near<p, i plit during timulu 
1 > I into <Idvancing and delaying lIbdoud. Their 
center of ma pas e through amplitude zero if the 

timulu is lIitably timed. 
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aggregate rhythm requires that docks be distributed symmetrically around the 
cyde. This is easily achieved if their phases are already dispersed, but if they are 
initially dose together on the cyde, then they can be scattered only by an exposure 
that catches them all dose to phase c/Jr' Here slightly precocious docks are forced 
still further ahead by the stimulus while slightly retarded ones are drawn backward 
(Figure 3 of Chapter 3). But in either ca se, phase velocities ne ar phase 0 are very 
small. Thus a very long exposure is required. 

2. Type 0 Resetting. Figure 12 and 13 show that by varying through one full 
cyde the moment at wh ich the stimulus starts, the final phase of the aggregate 
rhythm is made to vary also through one full cycle, if and only if M < M*. At the 
end of a stimulus of duration exceeding M* only some final phases are obtained and 
each is obtained from two different initial phases. In other words, we have type 0 
re setting in the aggregate rhythm(see p. 38) even though no clock in the population 
is capable of type 0 resetting! This phenomenon was first hinted at in the circadian 
rhythm literat ure by Johnsson et al. (1973) in connection with populations of 
Kalanchoe flowers, whose petal movement rhythms are customarily assayed 

Figure 12. As in Figure 9 but with a population 
of three docks instead of two, spanning 0.3 eyde. 
The U-shaped discontinuity typical of dock pairs 
is replaced by the phase singularity typical of all 
larger populations. The dotted curvcs show how 
pie ces of certain contours join up at higher ,1,1. 

Figure 13. As in Figure 12 but with a 50-
dock population. 

M 
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Box B: Is There Really uch a Thing as Type 0 Resetting? 

It i , of cour e, a triHe, but Ihere i nothing so important as trifIes. 

herlock Holme in ''The Man With the Twi ted Lip" 

The exi tence of type 0 resetting is a live is ue in circadian phy iology, where the 
models of hapter 3 (which allow only type I re elling) have been deployed with 
excellent succes ,in tudie of the cell cycle ( hapter 22). and in neurophysiology, where 
model involving areal di continuity of mechanism are widely u ed a approximation 
to the le intuitive Hodgkin- Huxley formali m (Chapler 6, la t ection). What do the 
data really how? 

Even without looking at data, it seems c1ear that type l resetling exists: Thi i what 
we get with no stimulu at all, or with one that induce only mall advance and/or 
delay , or induce the ame big pha e hift whenever administered. Could it be that 
what appcar to be type 0 re etting is really ju t an extreme ver ion of the familiar type 
I re etting or even type - I re etting, a in igure a? Many a data set has been published 
graphicallya though it were (see Box C). It appears to have been tacitly assumed that if 
a phase shift increa e over a certain range of pha es, then it mu t decrea e, abrupt ly if 
not gradually, during the remainder ofthe cycle. The fact wa not appreciated that what 
goe up I/eed not come down, i.e., thatthere are alternatives to type 1 resetting. 

What are the e ential feature by which type 0 re etting i recognized in real data? 
By definition of type O. new pha c I/J' varie with old pha e I/J in uch a way that a I/J 
increa es the corresponding I/J ' change and then reverses that change, leaving no net 
change. Thus each I/J' i acce ible twice. at two different I/J' (and maybe twice again, 
in general an even number of time ). Thi ituation contra ts with every other re etling 
map type. Only in type 0 need I/J' not can acro the full cycle. It call ( ee page 3 ) but 
the range of I/J' accessed can also be very narrow. as in the limiting case of igure 33 
in haptcr 1. 

The reality of Ihis pattern is harder to assess when data are presented in terms of 
phase shifts. Phase shift is conventionally measured as the time difference between the 
11th event in the control rhythm and either the 11th event in the perturbed rhythm or 
the neare t event in the perturbed rhythm. Either way, a di continuity develop in the 
curve unle the re etting behavior i type 1. Thi di continuity in the pre entation look 

uperficially like a di continuity in the experimental re ull. lf there were really a big 
change in the re ull due to only a mall change in timulu timing, then one might 
rea onably infer a di continuity in the underlying mechani m. But in fact the pha e 
hift ju t before the di continuity commonly appear to differ by exactly one cycle from 

the pha e hift ju tto the right: The re ulting new pha e change litt le if any acro the 
putative discontinuity (e.g., ee igure I of ha pIer 19). Thus 1 find a different inter
pretation appealing. When the raw da ta are plotted directly or when the processed 
(phase shift) data are plotted on graph paper of topology natural to the experiment 
(the toru ). then one i no longer confronted with this topological artifact. In many 
cases a plausible alternati e pattern emerges in which the data are smoothly connected 
by a type 0 curvc (Box ). 

Thi i , of course an interpretation, not an irrefutable certainty. We' re a king about 
a Cl/ne but the evidence consi t of a set of discrete point. Any kind of curve can be 
drawn through them. hould wc choo e the moothe t curve that hit every point? 
Or the moothe tone that come rea onably clo e 10 mo t ofthem? Should moothness 
be adopted apriori a a criterion? If nol. then the ame da ta can be threaded on curves 
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~ w(/ 
STIMUJ"US,; ..... : 

~ 
TYPE 1 

~ 

TYPE-l 

~II 

TYPE 0 ~ ~l-" 

(a) Format as in Figures 30 through 33 of Chapter 2. Phase-resetting data can in 
principle be threaded hy curves of any "typc" if lhere is no strong reason to cxpect 

smoothncss. 

o 

o 1,0 

--0-
(b) New phase vs. old phase measured by 5<)3 eclosion peaks in "bout 200 separate 
experiments with Drosophila's eclosion rhylhm. The stimuli \Vcrc sa turating light 
pulses given any time during two conseclltivc cycles of phase. (Adaptcd from Figure 12 

of Winfrce. ] <J7.'a.1 

of any topologieal "type" (Figure a). What observations enable us to se1eet the correet 
type, if such c1assifieation is appropriate at all? The question is rhetorieal. The answer 
is to improve da ta resolution (e.g., Figure b). The eurves eommonly threaded through 
plotted data often preserve the appearanee of type 1 resetting by means of a very steep 
segment devoid of data points. If such a eurve rightly interprets thc data, then points ean 
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be placed in thi region by uitably dose pacing of mea urement along the ljJ axi . In 
Figure b this doe 1101 happen: The 593 mea urement plainly follow the type 0 pattern. 

Alternatively one could abandon preoccupation with re etting curve at fixed 
stimulu magnitude and in tead ample the dependence of new pha e jointlyon old 
pha e and timulu magnitude. Thi produce a urface in the time cry tal, a de cribed 
in hapter _, Example 5 and the end of hapter 3. If the re elling curve elicited by 
trong timuli are really nearly di continuous extremes of type 1 re elling, then the 

da ta cloud hould resemble a lack of separate urface, a in igure 7 of Chapter 3. 
Bul if trong timuli evoke type 0 re etting, lhcn fhe data cloud should remain a ingle 
urface multiply wrapped around a singular axe . 

Thi test wa one of the chief pur pose of the fir t pinwheel experimenl, done with 
Ihe ooperation of Drosophila pseudoobscllra. The re ull wa a hclicoid in each unit cell 
of the time crystal, joining moothly onto the helicoid in all four adjacent unit cells. 

imilar ob er alion have ince been made in cquivalent experimenl u ing Dro ophila 
lI1elal1ogaSll'r (Winfree and Gordon. 1977), Kalallchoe (Engelmann et al., 1978), 
glycolytic 0 cillation in yea I (Winfree. 1972d: reller. 1977: Aldridge and Pye. 1979) 
neural pacemaker in the heart (Jalife. Per. comm.), and water regulation in oat 
eedling (John n. 1976). 

M} conclu ion i ,"Ycs. I)pc 0 reseuing i real." The next que lion i . "What doe il 
mean?" This chapter presenlS one po ible an wer : The dock observed is really a 
eomposite of many clock . Chapler 5 makes another uggestion. 

collectively in bunches of 16. The analytic basis for this startling phenomenon is 
described in Winfree (1976). 

Given type 0 resetting in response to a sufficiently prolonged stimulus, one can 
turn the logic around to derive the phase singularity by a technique used repeatedly 
in earlier chapters (e.g., see Chapter 2, Box B). The empirical basis for belief in 
type 0 resetting in the real world is elaborated in Boxes Band C. 

3. A Rotating Wave and a Screwy Surface. Given type 0 resetting and a phase 
singularity (i.e., given a contour map like Figures 12 and 13), one can choose either 
of two eq uivalent descriptions of the whole pattern of rephasing of each a popula
tion's aggregate rhythm: 

1. Figures 12 and 13 ha ve the same format as we found convenient to describe 
a pinwheel experiment in Examples 5- 9 of Chapter 2. Each contour line of new 
phase (isochron) shows the locus along which cP = 0 recurs simultaneously. This 
event moves from one isochron to the next, cartwheeling about the phase sin
gularity. This interpretation presupposes a physical layout for the experiment in 
which a phase gradient at zero stimulus duration lies transverse to a gradient of 
stimulus duration. 

2. If instead of watching waves circulate on the stimulus plane we plot event 
time vertically above that plane, then each contour line lies higher than the one 
before, as in interpreting the contour map of a ski slope. In this case, the surface 
thus plotted pivots around a singularity as it rises, constructing a helical sliding 
board. Th us we have a screw of many turns, each turn formed by one day of data. 
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80 C: Data ources for Type 0 Re etting 

The greate t number of careful mea urement come from worker in circadian 
phy iology of proti t , fungi, plant, and invertebrate animal. everal neuroelectric 
rhythm have al 0 hown type 0 repha ing in re pon e to appropriate timuli. Thi wa 
expected on principle because the Hodgkin-Huxley equations for periodic nerve firing 
have an attractor cycle olution ( ee Chapters 6 and 14). But practicall peaking, it 
came a a urpri e that the re etling behavior of pacemaker neurons is sufficiently 
continuou to have a ·'type'·. The action potential con i t of such a violent and abrupt 
an excur ion of electric potential that resetting behavior immediately after such a 
di cbarge would not generally be expected to re emble behavior immediately be fore 
the discharge. Yet, in at lea t the preparations cited below, new pha e varie moothly 
with old pha e right through the action potential. The lower part of the following table 
cite various biochemical and phy iological oscillations that al 0 how type 0 re etting 
by impul ive timuli. Examples from the female cycle ( hapter 23) and the cell mitotic 
cycle (Chapter 22) are con picuou ly ab en\. 

ormats for presentation of the e data are diverse enough to defy da ification. In 
tbe third column I indicate my interpretation of the publi hed format, on which basis 
Ireplotted 4J ' v . 4J to ee whether a smooth periodic curve would fit the da ta and, if so, 
what i it topological type. Becau e curve appear in uch diverse format it i e ential 
for darity to speak of resellillg type, not a Cllrl'e type. 

My notation: 4J = pha e of timulus beginning relative to an arbitrary phase in 
the cycle 

4J' = pha e at end of limulus or an integral number of cyde later 

M = timulus duration in unit of one cycle 

K, C = ome con tant 

Format = (upward vertical) v . (horizontal to the right) 

Apart from matter of conceptual convenience, the choice of format make little dif
ference, a it involve only 45 shearing and choice of direction for axe . The ecret to 
reading data in the many format of publi hed papers is to find the locu of the un
perturbed control experiment then mentally flip andjor hear the whole published 
diagram as required to align that controllocu a de ired in the preferred forma\. 

Referellce 

Circacliall r/lythms 
Ha ting and weeney, 195 
Pittendrigh and Bruce, 1959 
Bruce et al., 1960 
Pitlendrigh, 1960 
Zimmer, 1962 

ngelmann and Honegger, 1967 
Honegger. 1967 
Halaban, 1968 

ayar, 1968 
Sweeney, 1969 
Cumming, 1972 
King and umming, 1972 

Figllre 

4 
1 

14(12h,4h) 

1,2 
3 
3 
2 
5 

3- 17 
21 
5 

Formal 

4J' - 4J - M vs. 4J 
K - 4J v . C + 4J - 4J' 
K - 4J v . C + 4J - 4J' 
4J + M - 4J' v . 4J 
K - 4J v . C + 4J - 4J' 
K - 4J vs. C + 4J - 4J' 
K - 4J vs. C + 4J - 4J' 
4J + M - 4J' v . 4J 
K - 4J vs. C + 4J - 4J' 
4J + M - 4J' v . 4J 
K - 4J vs. C + 4J - 4J' 
K - 4J v . C + 4J - 4J' 
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Konopka, 1972 5-2b <jJ' - <jJ - M vs. <jJ 

Christianson and Sweeney, 1973 III <jJ' - <jJ - M vs. <jJ 

Engelmann et al., 1973 V K - <jJ vs. C + <jJ - <jJ' 

Winfree, 1973a 5 to 17 K + <jJ' vs. <jJ 

Engelmann et al., 1974 IIId <jJ + M - <jJ' vs. <jJ 

Karakashian and Schweiger, 1976 5 <jJ' - <jJ - M vs. <jJ + M /2 
Saunders, 1976a 8 <jJ' - <jJ - M vs. <jJ 

Simon et al., 1976b 3 <jJ - <jJ' vs. <jJ 

Jacklet, 1977 2 <jJ + M - <jJ' vs. <jJ + M/2 
Winfree and Gordon, 1977 11 K + <jJ' vs. <jJ 

Wiedenmann, 1977 2 <jJ + M - <jJ' vs. <jJ + M/2 
Saunders and Thomson, 1977 2 <jJ' - <jJ - M vs. <jJ 
Harris and Wilkins, 1978 2 <jJ - K + M /2 vs. C + <jJ - <jJ' 

N eural rhythms 2 rjJ - K + M /2 vs. C + rjJ - rjJ ' 
Perkel et al, 1964 2b rjJ - rjJ' vs. rjJ 
Walker, 1969 3 <jJ + M - <jJ' vs. <jJ 

Taddei-Feretti and Cordolla, 1976 3 rjJ - <jJ' vs. rjJ 
Pinsker, 1977a 9E <jJ' + M vs. <jJ 

JaJife and Moe, 1976 9(5 pA) rjJ' - rjJ vs. rjJ 
Winfree, 1977 1 rjJ' vs. rjJ 
Hartline cl al., 1979 K - <jJ vs. C + <jJ - rjJ' 
Hanson, 1978 6 rjJ - <jJ' vs. <jJ 

Yamanishi et. aJ., 1979 6 rjJ' vs. <jJ 

Biochemical rhythms 
Chance et aJ., 1965a 4B rjJ' - rjJ vs. rjJ 
Winfree, 1972d 7 K + rjJ' vs. rjJ 
Greller, 1977 28 rjJ' vs. rjJ 
Malchow et al., 1978 5 <jJ' - rjJ - M vs. <jJ 

Aldridge and Pye, 1979a 5a <jJ' vs. rjJ 
Other physioloyical rhythms 

Karvc and Salanki, 1964 2 K - rjJ vs. C + rjJ - rjJ' 
Johnsson and Tsraelsson, 1969 5,6 K - <jJ vs. C + <jJ - rjJ' 
Johnsson, 1976 4 <jJ' vs. rjJ 

These experiments establish the reality oftype 0 resetting. Some may lend themselves 
to interpretation as population artifacts involving type 1 resetting by individual docks of 
an incoherent population. It is essential in such ca ses to enquire whether the individual 
dock is by itself capable oftype 0 resetting. In the case of circadian rhythms, only since 
1977 has type 0 resetting even been documented directly in an individual organism 
(Saunders and Thomson, 1977; Wiedenmann, 1977; Engelmann and Mack, 1978). In 

The eight phase transition measurements in Acela
bularia (Karakashian and Schweiger, 1976, Figure 5, 
replotted). A type 0 curve presumably lies somewhere 
in the shaded area, but alternative constructions are 

hard to rule out. 

I 

NEW 
PHASE 

NE'W 
PHASE 

OLO PHASE 01.0 PHASE 

o I 0 I 
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no ca e ha it been plainly exhibited in a ingle cel!. The clo est approach to date is the 
type 1 curve of Karakashian and Schweiger (1976), which lend it elf to reinterpretalion 
a type 0: but there are only eight data point ( ce Figure on p. 111 .) 

o far a [am aware, all other mooth re etting urve e er measured in Iiving 
sy tems are type I. Thi trike me a omething worth puzzling over, a all but the 
very imple t model are capable of other integer types of re etting. 

4. Amplitude Resetting. The most conspicuous distinguishing feature of the 
phase singularity deriving from incoherence within a population of independent 
docks is the amplitude resetting that goes along with rearrangement of phases. 
After the perturbation each dock still follows the common cyde at the common 
period. The distribution of phase does not change, apart from rotating around 
the cyde. Thus the amplitude of the fundamental is permanently re set (so the 
waveform is changed) without effect on the period. 

It is worth noting that amplitude resetting in this context consists of dividing 
a population of docks into two distinct populations, one of which advanced while 
the other delayed under the stimulus. This splitting of the population provides 
the dearest experimental test by which to distinguish this mechanism (see Box D). 

Ifthe periods are not all exactly equal, then phases can disperse further and the 
aggregate rhythm eventually runs down. Recovery to the standard amplitude of a 
single simple dock is obtained only by restoring synchrony within the population. 
In the absence of an external rhythmic stimulus to synchronize all the individual 
docks, this recovery can only be affected by mutually synchronizing interactions 
among the docks. This is our next topic. 

B: Communities of Clocks 

Mutual entrainment is a theme that recurs again and again throughout the 
physiology of rhythmic systems. l've chosen to place Dur first encounter with it 
here, in context of simple docks. By thus restricting each rhythmic system to a 
one-dimensional path through its state space, we enormously simplify thc analysis, 
so much so indeed that it becomes tractable. A few typical phenomena emerge that 
appear to have some physiological interest. 

Two Clocks 

As in the previous section we begin with two identical simple docks, but now 
we let them affect each other: The angular velocity of each now differs from 1 by 
an amount that depends on its phase and on the phase ofits partner. 

(~, = 1 + f(cfJ" cfJ 2) 

(~ 2 = I + f(cfJ2 ' (P,)· 
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Box D: Optical Computation of Pha e catter 

If 0 much importance mu t be attached to catter of pha e within a population, 
lhen it hould be worthwhile to acquire convenient techniques for evaluating the impact 
of a timulu on preexisting catter. The contour map of new pha e on th timulus 
plane lends it elfto thi purpo ein two ways: 

1. Small catter i altered in proportion to the derivativ of new pha e with old 
pha e and perceived stimulus magnitude: 

if cl 
elf/>' = DI = -;:;- df/> + -, - dM. 

cf/> cM 

This is the direcliollal derivative of f/>' = I(f/>, M). It i readily evaluated by hading a 
finely drawn contour map in alternate black and white band . Then either place a 
crystal of lceland Spar on top of it. producing two image lightly displaced in the 
direction (drj>, tiM) of the cry ta l" edge. or hold a Thermofax @ tran parency over the 
original di placed in direction (drj>. dM). The re ull in each case is a Moire pattern. The 
regions of interference form contours of df/>' on the (f/>. M) timulu pace. They thu 
how how any stimulu increa or decrea e the population catter. 

Proof: The uperimposed replica form a me h of parallelogram defined by COOlour 
line , each perpendicular to V/(f/>. '\/) or V/(f/> + df/>, M + dM). The Moir ' run along 
the short diagonal oflhe e parallelograms, i.e., along thedifference vector perpendicular 
10 P(J(f/>, M) - I(f/> + df/>. M + dM)). A curvc perpendicular 10 a gradient is a level 
COOlour (in thi ca se of DI = df/>' ). 

2. Large catter. approaching arrhYlhmicity. mu 1 be handled by finite methods. 
The implesl is to con ider the ubject timulu as a "blob" ofwidth LJf/> and height LJM. 
This bl ob i tran fixed by a range of isochron curves. hade them with a yellow 
Highlighter @ pen, following the funnel ofco!1lours down to the f/> axi . ThaI range is 
Llf/>', the catter after the timulus. ote that near f/>* there i a critical M* at wh ich an 
initially compact population is split into two halve about a half-cyde apart. 

An experimentally determined contour map. uch a Figure 13 in Chapter 3, can be 
dealt with in thi wa)' in rdcr to find out what (t/f/>, tiM) best accollOt for thc harpening 
or broadening of event timing after a timulu. In the ca c of Drosophila's edosion 
rhythm, thi is the change of peak width relative to the minimal peak width in perfectly 
ynchronized populations. These data are tabulated in my computer along ide the 

mean pha e data from which the phase contour map wa constructed in the first place. 
It turn out that mo lofthe catter of f/>' is attributable to an initial catter of f/> amounting 
to about one hour. (Thi was establ ished experimentally in everal independent ways. 
together with imilar e timate of thc varianee of period, photoreceptor en itivity, and 
other dock parameter and thcir roles in experimental qua i-arrhythmicity. Thi 
manu cript never reached the publi her due to a secretarial error that re ulted in it 
de tru tion. with all c pie and much ofthc data. in a Post Office paper shredder during 
the ummer of 1972. Llri u·ly. thi di a ter didn't arre t the Progre of Science.) 



114 4. Ring Populations 

0) b) 

Figure 14. As in Figure 5 cxcept that the two identical docks alleet each other's ra tes or change in 
a phase-dependent way. The result is that onc or more trajeetories becol11c attracting closed rings at 
the ex pense of others. (I n this illustra tion .!( rpl ' (/)2) is chosen to be a funet ion of ( /) 1 - rp2) alone so the 

anti phase diagonal is straight.) 

This situation obviously has a certain symmetry, most readily brought out by 
plotting the path ofthe pair of clocks in their toroidal state space as in Figures 5- 8. 
In Figure 14 the unperturbed trajectories curve because eaeh clock's rate is in
fluenced by the other clock But because clocks 1 and 2 are interchangeable, the 
whole diagram remains symmetric about the main diagonal. The main diagonal 
represents the path of perfect synchrony, Because there are mutual influences, the 
synchronized clocks run faster through some phases and slower through others, 
They might run faster or slower on the average than either of them would by itself. 
Trajectories might converge to the main diagonal, conferring on it a local stability 
as in Figure 14(a), The synchronized solution thercby becomcs an attracting cycle 
(Chapter 6), But the trajectories might alternatively diverge as in Figure 14(b), 
In this case the synchronized solution is not stable, Due to the diagram's symmetry, 
there must be another closed path around the torus, midway between repeats of 
the main diagonal in Figure 14(b), On this path the two simple clocks stay one-half 
cycle apart on the average, though wobbling about this position as they push and 
pull each other through the entrained cycle,2 In Figure 14(b) I drew nearby tra
jectories diverging from the path of perfect synchrony and eonverging onto this 
antiphase path of entrainment without synehrony. (By entrainment I mean a 
locking together of frequencies, though not necessarily with a stable phase rela
tionship, let alone in synchrony. By synchrony I mean entrainment with, in addi
tion, exact lock-step of phase.) This analysis proceeds without major revision in 
the more interesting case ofunequal periods. The main change is that ifthe periods 
are too unequal or the mutual influence is too faint, then the mutual entrainment 
is lost. For example see the exact analytic solution by Fujii and Sawada (1978) 
and by Neu (1979b) in connection with chemieal oseillators. 

2 This is the ca se with two identica l siphon oscillators such as a re eOl11monly assumed to imitatc 
the biochemieal regulation of mitosis in bl obs or Physar lII/1 (SchelTcy, 1975, pers. eomm.; see Chapter 22). 
In fact it is usual for the more realistically complicated oscillators taken up in Chapters 5 and 6 (e.g., 
van der Poloscillators: Linkens, 1976, 1977) tn have multiple stable modes of pairwise entrainment. 

See Box F o f thi s chapter and Box A 01' C hapter X. 
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Box E: An Unexplored Kind of S ingularity 

A eritieal point mediate the tran ition from an incoherent ma of cloek to a 
synchronou Iy pul ing unit capable of di eiplining its member to triet entrainment. 
Thi tran ition re emble in ome ways the pha e tran ition 3 ofmore familiar material, 
e.g., the ud den eolleetive orientation of magnetic dipoles at the Curie temperature or 
the emergence of long-range order when any liquid cry tallize . In mutual ynehroniza
tion, the long-range ordering i in time rather than in space. but it emergenee is still a 
critical phenomenon. The nature of ueh a singularity remain to be explored in eon
nection \ ith the colleetive behavior of coupled 0 eillator population. I think the 
quantum mechanical applieation (e.g .. la er optie ) are of quite a different nature [rom 
what i required in eonneelion with living organisms. Thi i beeau e the oseillators of 
phy i are all identical harmonie 0 eillators, wherea in Iiving organisms we eonfront 
simple clock or trongly attraeting cycle (Chapter 6). Moreover, the nonzero variance 
of per iod in Iiving dock playadominant role in their colleetive behavior: With no 
varianee, mutual entrainment can eventually ari e even with infinite imal interaetion 
(Zwanzig, 1976; Grattarola and Torre, 1977; eu, 1979c): with nonzero variance, a 
unimodally pcaked di tribut ion of native per iods is capable of tran ition LO mutual 
enLrainment only above a finite eeond order critical point (Kuramoto. 1975); a Rat
topped distribution ha a fir torder critical point (Winfree, 1967a). 

3 BClI'are or a terrible pun. We ha vc dealt lI'ith singularitie implicit in "pha e transitions." 
in the sense or map rrom tjJ E § ' . In thi box we LI C thc thermodynamici t' term "pha e 
tran itions:' meaning a change or collcctive organization. as rrom water to icc. 

Many Clocks 

Now what about populations of many simple docks, each faintly influencing 
all the others in the general way considered above? One possibility is that the 
pooled influenced of the many on any one amounts only to faint random noise 
because the docks are randomly phased around the cyde. This situation can be 
stable ifthe mutual influence is too weak and/or the distribution ofnative periods 
is too broad. Another possibility is that with stronger mutual influence or a 
narrower distribution ofnative periods, such chaos is unstable. In contrast, mutual 
synchronization could be stable because in that condition the coherent influence 
ofthe many impinges upon each as a strong entraining rhythm, thus keeping them 
sufficiently synchronous to generate a coherent influence rhythm. Unless all docks 
have identical native period, this condition occurs only above a critical point of 
coupling intensity (see Box E). The first docks to synchronize are those whose 
native per iods are so dose together that their collective rhythm has sufficient 
amplitude to entrain within that narrow band of periods. With a little increase of 
coupling intensity, more oscillators are captured; their periods were a little further 
removed from that of the densest nudeus. This adds to the aggregate rhythm's 
amplitude, so that the mutually synchronized nudeus expands a little more, 
capturing a few more oscillators, and so on. This process limits itself when the 
acquisition of additional oscillators requires a greater increase of collective 
amplitude than their acquisition provides. 
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Bo F: Mutual ntrainment of imple Clocks 

When a pair of idenlical imple clocks with identical nalural period lock logether, 
i.e., enlrain each olher. the) do nOI typically ynchronize. Ralher there is a pha e 
difference. commonly quile a ub tantial pha e difference. To ee why, imagine Ihat in 
the periodic environment provided by clock B, clock A run a Iittle bil faster or slower 
than normal, depending on the pha e difference b = 4> - 4>11' C10ck B is ubject to the 
ame law at pha e difference - b. utual enlrainmenl require that (he period at pha e 

difference.:5 equal the period at pha e difference - b. To olve thi problem, we plot the 
per iod a a funct ion of band (he period a a funetion of - b togelher on the ame graph. 
On CUf\' ('olid) now depici A' period and Ihe other (da hed) depici B' pcriod, in 
both ca e as Cl function of ä, B' pha e lag behind (see figure). Th e cunes nece '
sarily inierseci at one or more pair of points, providing at lea t two olution . One i 
at b = O. with the two clocks running ynchronou Iy at an altered ommon period. 

nother olution i el ewhere, near b = ~, in thi ca e. re Ihese olutions stable? An 
equilibrium i table if and nly if . curve lie belO\ B's to Ihe right of the cro ing, 
becau ethen if A lag B more. it' period is horter Ihan B' and it catche up. So the 
ynehronou equilibrium need not be slable. If it i n'l, Ihen mutual ynchronizalion of 

large populalion cannot be stable. 

Clock A runs faster or lower. on the 
a"erage ovcr a cyde. b) amount elf de
pcnding on the rel,llive pha e 6 of dock ß. 

lock ß follows the same rule with respecl 
to c1od. in relative phase I - ,j. 1 !Wo 
"Ilues of ä both dock run at the amc 

rate. 

hat i requ ired for ynchrony i that the mechani m of mutual coupling hould so 
dela) or pha 'c hirt the influence of one dock on ano ther that a lable equilibriulll i 
moved clo er 10 i5 = O. Lacking this adju (ment, a populalion of inleracling dock not 
only might fail to synchronize. bu( Ihey would actually oppose entrainmenl by any 
external rhylhm; or, if larted ynchronou Iy, they would disper e around the pha e 
cirde much fasler than would be expecled in view of their range of natural period . I 
have een thi phenomenon in computer simulation. 

In addition to thi phase requirement, coupling mu t be of ufficient magnitude 0 

that each clock take up a leading or lagging po ition a required to match il' period 
10 the ommon period laken up b (he other. ontrary 10 a frequentl y repeated con
jecture,lhi common period need not be the fa te t nor Ihe lowe I nor the average in a 
population of i olaled individual docks. The ilualion can be vi ualized a follow. 

uppo e all do kare entrained by some eXlernal rhYlhm. They adopt a certain phase 
lead or lag depending on il frequency. Their influence rhythm i Ihu synchronou with 
the enlraining rhYlhm al a cerlain frequency. It can thu ub litule for Ihal rhythm onl) 
at that frequency. which i wholly unrelated 10 the di tribut ion of nali e pcriods. If 
there is 110 uch frequency, then mutual enlrainmenl i a lively oppo ed. 

Allihe e req uiremenl are formulaled more preci ely in Winfree (l967a), additionally 
laking into accounl Ihe di tribulion ofnatural period in Ihe populalion. caricalured 
in Ihat paper, each individual clock traver e a fixed cyde at a varying rate, a in hapter 
3. Thi approximation may be adequate for trongly attracting limit cycle 0 cillalor , 
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uch as seen in common physiological context . In other ca e it may not bc, a we will 
see in Chapler . In 'ueh case . the amplitude or wave~ rm of the 0 cillator i altered 
when it i entrained by rhythmic cxternal inftuence, e.g., by the aggregate intluence 
emanating from its neighbor. or cxample, van der Polo cillator coupled in a traight
forward way are unabl to achieve mutual ynchronization unles initially entrained by 
an external rh thm. But when ynchronized, their mutual influence uffice to maintain 
synchrony, making the external entraining rhythm di pen ible. If the magnitude of 
coupling i then reduced ufficientl ,lhe mutual ynchronization uddently come apart 
and cannot be re tored. 

As in the two-oscillator case, treated in the first part of this seetion and in 
Box F, a mutually entrained population can run at any period, even faster than the 
fastest individual in the population would in isolation, or slower than the slowest. 

Now we are in a position to appreciate the pertinence ofthe two-oscillator case 
in thinking about the pooled inftuence of the many on any one dock. Consider 
"the one" to be dock 1 and "the man)''' to be dock 2. The lone dock 1 might 
synchronize to the group 2, thus contributing to the aggregate rhythm as above. 
But it might also entrain at some nonzero phase angle, depending on the detailed 
shape of the aggregate inftuence rhythm and of the simple dock's rhythm of 
sensitivity (Box F). lf dock 1 entrains without synchronizing, then it either leads 
or lags the many. But this analysis pertains to every dock in the population. They 
can't all lead or lag the rest. One possible outcome is a schism in which about half 
of the population plays dock 1 and the residue plays dock 2. In this "twinned" 
mode the aggregate rhythm has two peaks per cyde one-half cyde apart on the 
average, as in Figure 14(b). This is a common pattern in the activity rhythms of 
mammals (Chapter 19). Similar behavior was observed in a population ofmutually 
coupled neon glow tube oscillators (Winfree, 1965 and Chapter 11). Pavlidis 
(1971, 1973, pp. 154- 156) offers additional analytic models of such splitting; Daan 
and Berde (1978) offer still more. 

I obtained these phenomena by computer simulations and reduced their quan
titative analysis to a description of each simple dock by two properties: its phase
dependent contribution to some aggregate "inftuence" and its phase-dependent 
"sensitivity" (in terms of angular velocity) to that aggregate inftuence (see Box A 
ofChapter 6). By plotting inftuence against sensitivity throughout one cyde (Figure 
15), one obtains a dosed loop whose area and moment of inertia determine the 
phenomena described above (Winfree, 1967a). 

So far as l'm aware no naturally occurring observation of mutually synchronizing 
or mutually repelling docks has been analyzed in these terms. Candidate systems 
indude glycolytic oscillations in yeast cell suspensions (Chapter 12) and circadian 
rhythms in suspensions of single cells (Chapter 19). 

The phrase "or mutually repelling" above refers to a surprising situation 
implicit in the simple-dock model. As noted above, mutual synchrony may be 
impossible if the inftuence and sensitivity rhythms are so phased that Figure 15 
has negative area.ln this case each dock interferes destructively with the entraining 
rhythm. So not only does spontaneous synchronization fail, but even if it is esta
blished as an initial condition, it fails actively. I mentioned above that there are 
organized alternatives to mutual synchrony, e.g., the twinned mode with two 
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Figure 15. (a) One cycle in the rhythm of inftuence X(ct»; (b) one cyclc in the rhythm of sensitivity, 
Z(cj»); (c) X plotted against Z is a c10sed ring. 

groups of docks. But that doesn't have to be stable either. If each dock's rhythmic 
influence is very smooth, it is nearly devoid of the harmonics wh ich alone survive 
superposition of symmetrically phased subpopulations. Then the amplitude of the 
aggregate rhythm is quite low in two-group or three-group modes of temporal 
organization. Commonly the amplitude is too low to entrain enough docks to 
maintain that organization. In such cases chaos prevails, but not just for want of 
mutual coupling: it prevails actively, "bucking" any external would-be synchronizer 
by developing a countervailing rhythm, to the extent that any synchronization at 
all is imposed (Winfree, 1967a and later unpublished computer simulations). 

I know of no definite biological examples, but Ghosh et al. (1971) suggest that 
acetaldehyde may be an agent of phase-scattering mutual inftuence among yeast 
cells. Richter (1965) suggests a need for such mutual inftuence to maintain steady
state output in the thyroid gland, which may be viewed as a population of rhythmi
cally secreting follides. 

Unless a time delay mediates each oscillator's eft'ect on the others, active 
scattering does not occur when oscillators interact in the special way typical of 
chemical reactions coupled by diffusion. Thus no such possibility emerges from 
Kuramoto's (1975) and Neu's (1979c) reductions of this case to a simple-dock 
approximation. 

Communication by Rhythmic Impulses 

In some kinds ofnatural oscillator populations, mutual inftuence does not vary 
smoothly in time but is episodic and pulse-like. 

In the ca se ofpulse-like influence, the individual oscillator might be characterized 
by aresetting map, showing what new phase it recovers to after receipt of an aggre
gate pulse from the whole population. The analysis of entrainment by Perkel et al. 
(1964) provides necessary and sufficient conditions on thc § I -+ § 1 map from old 
phase before one such stimulus to new phase after the stimulus. This analysis was 
independently derived in context of circadian rhythms by Pittendrigh and Minis 
(1964) and Ottesen (1965). 
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Figure 16. New-phase cjJ ' vs. old-phase cjJ, double- ~I ' 
plotted from data of Walker (1969) from the chorusing 
rhythm of crickets perturbed at various phases by the 
sound oftheir own cal!. Phase 0 is the moment of calling. 
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Figure 17. The new phase of rhythmic activity in 
cardiac pacemaker cells, electrically stimulated at each 
old phase, replotted from unpublished data of Jalife 

o 
-0 

(1975). The action potential occurs at phase O. 

There arises a dilemma of internal phase compatibility similar to that en
countered abovc. For mutual synchronization the phase shift (<p' - <p) should be 
changing from small advances to small delays at the phase ofpulse emission. More 
exactly, the resetting map, q/ vs. <p, should cross through the <p' = <p diagonal at 
slope between + 1 and - 1 at the phase of pulse emission. Any other resetting map 
would result in more complicated aggregate behavior than simple synchrony. In 
four cases thc ingredients of such an analysis have been obtained experimentally: 

1. The mutual synchronization of cAMP pulsing in suspensions of slime mold 
cells mentioned above gives aresetting map of the anticipated sort (Malchow et 
al., 1978; see Figure 3 ofChapter 15.) 

2. Mutual synchronization of chorusing in populations of tree crickets does 
also (Walker, 1969; see Figure 16). 

3. Electrical synchrony of cells in the pacemaker of the heart seems to be 
mediated by a similar resetting curve (Jalife and Moe, 1976, Figure 9; Sano et al. 
1978, Figure 5; also see Figure 17). Peskin (1975, pp. 250-278) analyze the mutual 
synchronization of cells in the heart's pacemaker in terms quite similar to those 
alluded to above. Exact equations were derived for the two-oscillator case, but 
the population problem awaits completion. 

rr71rr71r171 
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Figure 18. The new phase of the flashing rhythm in fireflies of three species perturbed by the sight 
of their own flash at various old phases. The flash occurs at phase 0 on this scale. Each box is exactly 

one cycle by one cycle. Replotted from Hanson (1978. Figure 7). 



120 4. Ring Populations 

4. The same behavior has been obtained from studies ofmutual synchroniza
tion of flashing in two different kinds of southeast Asian firellies, one with type 0 
resetting and one with type 1 re setting [Hanson, 1975; sec Figure IS(a, b)J. 
Hanson also found that entrainment cannot always be understood quantitatively 
as repeated re setting a la Perkel, i.e., by iterating the appropriate re setting curve 
(in his case 7c). This means that simple-clock models fail in at least this one species. 
The next theoretical effort might entail a study ofimpulse response and entrainment 
in attractor-cycle oscillators ofthe sort familiar to neurophysiologists (see Chapter 
14), developing the consequences for a population whose aggregate output is 
itselfthe entraining rhythm. 

If each clock res ponds in a way describable neither as a jump along a fixed 
cycle nor as a modulation of angular velocity along a fixed cycle, then this whole 
format must be abandoned. We therefore return to this subject in Chapter 8 after 
developing a fuller appreciation of oscillating kinetics in Chapters 5 and 6. 

Collective Enhancement of Precision 

A litde studied question of some physiological significance concerns the 
precision of rhythmicity in mutually synchronized populations. lt is often stated 
in research papers (it is even alleged that I proved this in 1967, which I did not) 
that mutual synchronization disciplines each oscillator to much improved re
gularity of oscillation at the common frequency. 

One argument might run as folIows. Suppose mutual entrainment is stable with 
deterministic oscillators of native period Ti' each entrained to the aggregate 
rhythm at period '0' Each locks to that rhythm at some phase t/!('i - '0)' Suppose 
small 'i - '0, weak coupling, and a strongly attracting cycle, so that t/! changes 
slowly and little else changes at all. Then we can write ~ = 1/, - 11'0 + M(t/!) far 
some suitably-invented function M. Entrainment requires that ~ = 0 and M' < O. 
N ow suppose we have not a population of individually precise oscillators of various 
periods but rather a population of oscillators of identical statistical behavior, 
individually somewhat irregular ofrhythmicity. Ifthey do achieve mutual entrain
ment, does the aggregate rhythm drone on with a steadiness orders of magnitude 
greater than any individual's, disciplining each individual to adhere to the collective 
rhythmicity? If 'i should slowly change, then ~ =1= 0 nudges t/! toward the equili
brium typical of an oscillator with the revised Ti' Should 'i fluctuate more rapidly 
within the range of ,;'s characteristic ofthis population, then t/! will fluctuate about 
its stable position for oscillators of middling Ti' Either way the situation remains 
qualitatively the same. Thus it would appear that the aggregate rhythm does 
discipline each individual to enormously enhanced regularity. 

Some biologists are inclined to account in this way for the uncanny accuracy 
of some circadian rhythms, but so far as I am aware, the mathematical essence of 
such a mechanism has never been revealed. The matter awaits the attention of a 
master of stochastic dynamics. Substantial beginnings are made in Stratonovich 
(1967, Chapter 9) and in Kuramoto (1975). A valuable contribution could be made 
by following them up. 
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Bo G: ctive Tran port by a Row of imple locks 
(The Wave Broom) 
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I am indebted for this not ion to Dr. R. H. Wilhelm, who died before we could 
develop it furt her ( ugu t 6.196 ). Wilhelm' keene t intere t atthe time was in rhythmic 
principle that might underlie active tran port in ccll membrane (Wilhelm. 1966,1968). 
After hearing him lecture on parametric pumping. it 0 curred to me that even a rO\ of 
imple elock , properly pha cd, ugge t a mechani m for tran port of ub tanee in 

thc dircetion of wa e propagation. on ider a line of cell along whieh a periodie 
di turbanee i propagating from left 10 right. Let it period be our unit oftime. Con ider 
any ubstanee involved in thi di turbance. Let it intraeellular eonccntration vary 
periodieally, for whatever reason : e(l) = c(1 + 111),111 being any in teger number of cyele . 
Given ueh periodi m in cell metabol i m it would eem unnatural not to let the per
meability of the eell membrane al 0 vary pcriodically: p(l) = p(1 + 111). The rate of 
transport of sub tance acro the cell partition i given by Fick' law of diffu ion a : 

j = (cl - (2)P, 

Then reealling that ('2 i ju ta delayed ver ion of CI ' and integrating 0 er a full 
eyele, the mean tlux to Icft or right. integrated over a eyele, i : 

j= .idl= (c(r) - c(I - c5))p(l)dti:c5 pdc, 

where b i the time delay bel\ een adjaeent eell . Thi net tlux i ju I b time the area of 
lhe loop formed by plouing p(l) against e(I). It could be either positive or negative, but 
it would be exactly zero on I)' b deliberate eleetion of appropriate hape of c and or 
p. Thu material will in general be tran ported 10 lefl or righl a the wave pa e. 1t i 
tempting to invoke ome such "wave broom" to aecount for maintenance ofpaeemaker 
activity. once established, in any potentially rhythmic medium, e.g., the malon ic acid 
reagent (Chapter 13) or the cellular slime mold (Chapter 15). More sophisticated wave
broom-like model have been pursued in various contexts, supposing various meeh
anisms, by Hejnowicz (1970) and Goodwin (1973, 1974, 1975, 1976). 

C: Spatially Distributed Independent Simple Clocks 

In this section my intent is only to outline a forinat of description that receives 
further development in later chapters. Our subject here is a population of simple 
docks distributed in space. We are not here concerned with pooling their outputs 
nor with their local neighbor interactions. We are concerned with maps again, this 
time from a physical space in which the docks are distributed to a ring-like state 
space on wh ich each dock's phase is described. Two examples will suffice (see 
also Box G). 

The Ascomycete Frontier as a One-Dimensional Population 
of Simple Clocks Without Interaction 

Some kinds of fungus grow across a food surface at uniform speed of several 
millimeters per day (see Chapter 18). While the organism pro pagates in this way 
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Figure 19. (a) An idealized sketch of a fungus colony on which spore density is rhythmic along each 
radial growth path. The phase of the radial rhythm drifts through one cyc1e from north (OC) to east 
(90°) to south (180°) to west (270°) (b). In (c) each point on the fron tier ring is mapped to its momentary 

phase on the cycle. 

at a fixed velocity, its internal metabolie rhythms affect the style of growth: The 
mycelium becomes locally thick or thin, eventually making spores or not. The 
moving frontier ofthe colony thus leaves behind a permanent re cord ofits metabolie 
rhythm in the form of periodically alternating bands of conspicuously different
looking tissue. Time lapse movies of a disk of such a fungus show that the pattern 
is laid down at the growing edge, the circular frontier of the colony. As in the 
construction of rings in deciduous trees, or deposition of the colorful decorations 
in sea shells, the pattern does not change after the foundations are laid at the 
growing frontier (Winfree, unpublished movies). 

The frontier is a ring, a one-dimensional continuum each point of which may 
be regarded as harboring a physiological dock. The phase of this dock can be 
evaluated by measuring back either in time or in space along the radial path of 
growth to the most recent occurrence of some marker event chosen for convenience 
to be called phase 0, for example, a maximum of sporulation density [(Figures 
19(a), 20(a)]. As it happens, phase almost always varies continuously along the 
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Figure 20. As in Figure 19 but phase meanders back and forth without net effect from north (0) 
to east (90°) to south (180') to west (270). 
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frontier ring. (There are exceptions and some physiological interest attaches to 
these exceptions as opportunities to observe the outcome of a natural experiment. 
See below.) 

It will be convenient to plot the observed dependence of phase on azimuth. 
Azimuth is the compass direction from some internalorigin to a boundary point. 
A natural choice of origin is the inoculum from which the whole disk has expanded. 
To help distinguish rings in physical space from the abstract phase ring, we 
calibrate azimuth in degrees from 0 to 360, while phase is expressed in fractions 
of a cycle from 0 to 1. 

Figure 19 idealizes the phase vs. azimuth plot from the frontier ring of a mycelium 
on which a single spiral intersects the boundary in three places. Figure 20(b) ide
alizes the phase vs. azimuth plot from the fron tier of a mycelium on which con
centric rings intersect the boundary in four places. (See Chapter 18, Figures 5 and 
6 for real measurements.) 

I t would be more natural to conduct a measurement by mapping the ring-shaped 
fron tier onto the clock cycle, idealized as a ring as in Figure 20 of Chapter 1. 
Choosing a point on the cycle to represent phase 0 (e.g., the phase at which sporula
tion is fa ted in newly created tissue), we plot each frontier point on the ring 
according to its radial distance (its time) from phase O. This is done in Figure 19(c) 
and 20(c). In Figure 19 phase increases more than it decreases as we traverse the 
frontier clockwise. It increases exactly one full cycle more, resulting in winding 
number W = 1. In contrast, in Figure 20 the image of the frontier has winding 
number W = 0 around the phase circle. Phase increases and decreases through 
more than a full cycle around the frontier, but it decreases back aga in exactly as 
much as it increases. A completely synchronous mycelium has W = o. Its frontier 
maps to a point circulating around the phase ring. In this ca se sporulation patterns 
consist of concentric rings. A map with winding number W = ± 1 corresponds to 
clockwise or anticlockwise spiral morphogenesis. In the ca se of a two-armed spiral, 
the map turns out to wind twice around the phase circle (W = ± 2) in a direction 
( + or - ) determined by the handedness of the twin spiral. 

The phase circle might portray the states of a ring device functioning in each 
little patch of tissue, if each frontier point harbors a simple clock. Since phase 
advances (by definition) uniformly in time, this map is to be thought of as rotating 
rigidly once in each period of the ring device. This is 16 hours in the ca se of the 
Nectria fungus, wh ich provided the examples described above. 

In all the foregoing, we have paid no attention to the likely possibility that 
neighboring frontier cells interact to some degree. This seems particularly note
worthy in cases where phase changes rapidly over a short arc offrontier, i.e., where 
there is a radial edge dislocation in the periodic ban ding of the fungal disko One 
might reasonably expect that physically nearby cells (or hyphae, to be more exact) 
would compromise in phase, smoothing over the steep spatial phase gradient. 
Smoothing ofnear-discontinuities ofphase does occur, but slowly. A discontinuity 
typically lasts through many cycles before it is really smoothed out. So in this 
first approximation we ignore interactions. 

Note that this example deals only with the colony's growing frontier. Suppose 
we had certain proof (as Dharmananda and Feldman, 1979 might for the similar 
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ascomycete Neurospora) that interior points (old frontiers) also retain the same 
rhythmic activity as the present frontier more plainly exhibits. Then it would be 
appropriate to map the whole disk onto the phase ring. As we have often seen 
before, this cannot be done smoothly unless the frontier's winding number is O. 
In the other cases, a violent phase discontinuity is implicit somewhere inside the 
disko There the phase gradient is too steep to permit neglect of interactions. In fact 
it is too steep for any finite accounting. This will force us from simple-clock models 
to a biochemically more realistic view in which the mapping is not a ring but a 
two-dimensional state space (Chapters 5 and 6). The mapping to a two-dimensional 
space is smooth regardless ofwinding number and it permits neglect ofinteractions 
in a first approximation even in situations with W i= o. But for the present we 
must confine our attentions to the frontier. 

A Liquid Chemical Oscillator Viewed as a Population 
of Simple Clocks Without Interaction 

Imagine a fluid in which each ti ny volume element periodically executes a cycle 
of changes, returning to an initial state at regular intervals of time. If nearby 
volume elements are in nearly the same state, then (apart from concern about the 
stability of this situation) we can neglect coupling through molecular diffusion 
because there are no significant concentration gradients to drive enough f1ux of 
any substance from one volume element to the next. 

Despite the abruptness of one stage in its reaction cycle, the best studied example 
at present is the oscillating Belousov-Zhabotinsky reagent (Chapter 13). Using 
one-dimensional columns ofthis reagent with sufficiently shallow phase gradients, 
Beck and Varadi (1971,1972), Thoenes (1973), Kopell and Howard (1973a), Varadi 
and Beck (1975), and Beck, Varadi and Hauck (1976) studied wave-like patterns 
of chemical activity in terms of spatial patterns of phase. As in the N ect ria fungus, 
disks of this reagent typically show concentric ring patterns and spiral patterns of 
chemical activity, indicated by color. The color va ries between red and blue. In a 
ring pattern, all points along any ring map to the same point on the phase circle. 
Adjacent rings map to adjacent phase points. The geometry is suggested by 
Figure 21: The whole disk maps exactly as does each radial wedge of the disko 

PHYSICAL 
SPACE 

0< 

PHASE 
CIRCLE 

Figure 21. A two-dimensional oscillating chemical medium momentarily has uniform phase along 
c10sed rings concentric to point 0(. Each ring is shrunk to a point in imagination, identifying points of 

equal phase. This collapsed image of the plane is mapped ont" the ring of phascs. 
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If there are many cydes of phase along each radius, then the map winds many 
times around the phase ring. 

As indicated in the case of Nectria, a two-dimensional spiral wave cannot be 
mapped continuously onto the ring. Apart from the theorem about winding 
numbers, the problem can be visualized as folIows. Consider the border of the 
disk of reacting fluid. Having winding number W = 1, it maps once around the 
phase ring. So does the ring offluidjust interior to this border, and so on by con
centric rings inward toward the pivot. An arbitrarily sm all ring ofliquid around the 
pivot also maps once around the phase ring. Inside that, there is either a discon
tinuity in the state of the fluid or the tiny disk at the very center covers the whole 
inside of the phase ring. But this "inside" is not part of the state space and has no 
conceivablc interpretation in terms of a simple-dock mechanism. To avoid this 
paradox, we will have to abandon interpretation of spirals in terms of phase in a 
cyde, turning to astate space of two dimensions in order to support the required 
map: aspace wh ich gives insides to thc phase ring. This is reserved to Section C of 
Chapter X. 

In the one-dimensional case, each point in a column of oscillating fluid maps to 
a point of the phase ring ~ t --+ § 1. The image of the column rotates steadily around 
the ring. This picturc was given more interest by contriving a temperature gra
dient (Kopell and Howard, 1973a) or an acidity gradient (Beck and Varadi, 1972; 
Thoenes, 1973) so that one end of the column cydes faster than the other. In this 
situation the image of the column continually stretches out along the phase ring 
as the leading (hot or acid) end wraps through more and more turns than the 
lagging (cold or less acid) end. There are as many cydes ofwave-like activity along 
the column as there are windings of the image. Eventually there are so many, and 
the waves are packed so dose together, and the image is stretched so taut, that 
local interactions can no longer be left out of the picture. At this point a new 
phenomcnon first appears: real propagating waves of chemical activity. 

D: Ring Devices Interacting Locally 

Linear Coupling to Neighbors 

Considcr a simple dock whose motion along the phase ring can be described 
(vacuously) as ~ = /(4)). Suppose as in example 14H of Chapter 1 that we have 
a physical ring of such docks in which the angular velocity of each is affected by 
its fore and aft neighbors. To construct the simplest case, suppose there are so 
many docks on a ring that neighbors are at very nearly the same phase. Let the 
influence of each dock on its neighbor's rate then be simply proportional to the 
phase difference between them: 

d1;i = I(4)) + k(4)i-t - 4>J + k(4)i+ 1 - 4>;) for each cell, i = 1 to N. (1) 

In words, this rate equation says that each dock speeds through its cycle as it 
would ifalone but, additionally, it is hurried along or retarded by its two neighbors, 
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depending on whether they lead or lag. Each dock then tends to take up a phase 
midway between its neighbors. This set of N ordinary differential equations can 
be iterated in a computer to follow the changes of each rjJ;. I did this in 1973, 
collaborating with R. Casten and J. MittenthaI over those aspects of the problem 
that could be approached analytically. Before I tell wh at we saw, it should be noted 
that problems of this sort have a tradition, and mathematicians know lots of 
solutions, though apparently not for exactly the situations that caught our atten
tion then. Equation (1) could be written: 

(2) 

in which h is the physical spacing between cells, D is a diffusion coefficient, and k is 
written D/h2 . Letting h -+ 0, the interaction term is seen to be the second derivative 
of rjJ along the chain of cells. So dropping subscripts, we think of rjJ as a continuous 
function of time and position along the line of cells, and write (2) as a parabolic 
partial differential equation: 

(3) 

where e is distance along the line. This is a familiar challenge. There exists a big 
and rapidly growing literature of mathematical solutions for special forms of 
f(rjJ) (e.g., see Murray, 1977 and Fife, 1979). 

Surprisingly, however, not much attention has been lavished on the case in 
which rjJ is a point on a ring rather than a point on the line (a phase rather than, let 
us say, a voltage or a concentration) and e is also a point on a ring rather than on 
a line (i.e., the physical medium [in which cf = f(rjJ) is going on everywhereJ is a 
dosed loop rather than an open thread). Nonetheless the qualitative features 
introduced by incorporating spatial interactions are the same in any context. The 
main feature introduced is wave propagation. 

Waves 

Two kinds ofwaves invite distinction as extreme cases. In the first ca se suppose 
f(rjJ) > ° for all rjJ so that we have a simple-dock medium, and suppose D is so 
sm all or that rjJ changes so slowly with e that Dd2 rjJ/d8 2 can be ignored in Equation 
(3). (In the limit, this ca se would belong in Section C: noninteracting docks). The 
medium can still give the appearance of conducting waves because wherever rjJ 
varies with 8, rjJ = ° is reached first in one pi ace, then a little further along, and so 
on. These "pseudo" waves differ from real propagating disturbances (see Box C of 
Chapter 13) in that their wave shape and velocity are determined only by rjJ(8). 
In fact that apparent velocity, being 1/(drjJ/d8), varies locally and can even be 
infinite. I speak ofthis case only to provide contrast with the real waves that I call 
"trigger" waves. In a trigger wave a local displacement of rjJ tends to travel along 
the 8 axis, eventually shaping itselfinto a certain waveform moving at a fixed speed. 
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Both simple docks and hourglasses behave similarly in this situation: Either kind 
ofring device will conduct a trigger wave. Waves ofthis sort are quite unlike those 
of dassical physics. Unlike sound waves, light waves, and waves on water, they 
vanish at the ends of the line instead of refiecting. They annihilate each other in 
head-on collisions instead of passing through each other. In these respects they 
resemble the waves of electrical activity typical of nerve, heart, and brain tissue 
(Chapter 14) and their chemical analogs (Chapter 13). 

Quite different mathematical approaches to waves in ring device continua are 
detailed in the appendix of Goodwin and Cohen (1969), in Ortoleva and Ross 
(1973), and in Neu (1979a). 

Mappings and Their Winding Numbers (Again) 

I now return to the special ca se in which Equation (3) represents a continuum 
of identical ring devices arranged in a physical ring. As in the previous section it is 
helpful to visualize this situation by mapping the physical ring onto the ring of 
states, </J(8): §1 ~ §1. The image ofthe physical ringnecessarily winds some integer 
number W of times around the phase ring. Once established, there is no way that 
winding number can change without cutting the image. Cutting the image is 
forbidden so long as </J(8) is continuous: Arbitrarily nearby points on the ring 
cannot have finitely different phases so long as molecular exchange continues, 
guaranteeing local uniformity. The diffusion term confers coherence on the ring's 
image. Equation (1) shows that diffusion is analogous to elasticity of the image 
of the physical ring: Each element of length moves (on the phase ring) toward 
its neighbors at a speed proportional to their separation on the phase ring (see 
Chapter 8, Box D). The physical ring's image then behaves much like a massless 
rubber band, moving in a viscous medium which itselfmoves according to cjJ = !(</J). 
Each little piece of the ring follows this local rule of angular velo city but addition
ally stretch es to relieve tension in locally more taut pI aces (where phase </J in 
state space changes more quickly with distance 8 in real space). Each little piece, 
traversing the same cyde as its fore and aft neighbors, is continually adjusting 
its velocity to stay poised midway between them. That fact and the conservation 
of winding number constitute the whole story of qualitative behavior of ring 
devices with smooth kinetics interacting locally by such simple rules as Equation 
(1) expresses. 

Computational Experiments 

Consider for example an hourglass ring device described by: 

!(</J) = </J(l - </J)(</J - a) (4a) 
or 

!(</J) = 1 + Icos2n</J. (4b) 

There is a repelling equilibrium </Jr [at </J = 1 = 0 in (4a); elsewhere depending on 
I> 1 in (4b)]andanattractingequilibrium</Ja [at</J = ain(4a);at </J = -</Jrin(4b)]. 
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Kinetics on the phase ring during strang perturbation, 
analogous to Figure 3 of Chapter 3. 

Without spatial coupling, all volume elements of a ring of such a medium would 
follow the ~ arrow ofFigure 22 to CPa. But that would cause a rupture of continuity 
at CPr. Volume elements initially just to the left and just to the right of CPr separate 
increasingly as they approach CPa anticlockwise and clockwise, respectively. Iflocal 
interaction is allowed, that cannot happen. What does happen now depends on the 
winding number of the image. If W = ° as in Figure 23(a), then the whole image 
slides around to CPa. If W =1= 0, that can't happen. If W = 1 as in Figure 23(b), then 
the image becomes tauter near CPr and denser ne ar CPa, but the counterclockwise 
circulation of f(cp) prevails. The whole image then continuously rotates. Thus 
even though the local kinetics during perturbation describes an hourglass, in
capable of oscillating by itself, yet the whole system still continuously oscillates 
just as it did at I = 0. Every volume element along the physical ring is pulled around 
the cycle each time a wave of activity circumnavigates the physical ring. If W = - 3, 
there are three such waves, rotating clockwise, and they never stop. 

We observed these behaviors for diverse choices of f(cp), using the computer 
to iterate through Equation (1). It doesn't much matter whether f(cp) describes 

0r 
• • • 
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b) 

00 

Figure 23. A ring of clocks (dots) mapped onto the phase ring. If W = 0 as in (a), then the ring can 
homogeneously contract to 1>a. If W # 0 as in (bl, then it cannot, but instead ratates forever. 
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a simple dock, an hourglass, or something else. The velocities ofwave propagation 
and the wave shapes agreed weil with analytic solutions for a single wave on the 
open line when we made the physical ring large. For example, in Equation (4a) 
the velocity is dose to V = .)2(1/2 - a) and the wave shape </J(O - vt) = 

1/(1 + e1 / 2 (vt-O)) as Huxley found analytically (McKean, 1970) and as Nitzan et al., 
(1974) derived in more general context. More generally, covering cases which 
cannot be approximated analytically, we found that as ring circumference is 
increased, velocity increases toward an upper limit equal to the speed of a solitary 
pulse on the open line. As ring circumference is decreased toward 0, wave speed 
decreases toward O. Without being able to make the mathematical proof com pletely 
rigorous, Castcn conjectured that the period of circulation (circumference/velocity) 
should also increase with the circumference. This was found numerically in every 
case. The reciprocal period appears to approach the mean ~ as ring circumference 
approaches 0: 

~~ ff(</J)d</J. 

In this limit the wave appears to fiatten out to </J(O, t) = (tIT) + 0 x (any integer), as 
might be expected with molecular diffusion averaging reaction rates throughout 
the whole of a very small ring. U sing the above expression for T, it appears that the 
stable solutions to Equation (3) as D -'> CfJ on a dosed ring are: 

</J(O,t) = WO + t~f(</J)d</J 

for any nonzero integer W. 
I present these fragmentary results because their apparently great generality 

seems to invite a more elegant mathematical resolution. 

From One Dimension to Two 

Cases with W =1= 0 are important for biological applications such as the ring
shaped frontier of a fungus engaged in spiral morphogenesis in Section C. But 
the really interesting cases come when we try to treat two-dimensional media. 
This could be attempted by ex pan ding the physical ring to an annulus and filling 
in its central hole until it is dosed and we have a disko If </J has nonzero winding 
number around the edge of the disk, then there has to be a ring of discontinuity 
inside the disko In the simplest ca se this ring is as small as can be, namely, a point 
phase singularity. This is unavoidable but it is an embarrassment to models in 
which the local state can vary only along a one-dimensional state space because 
then all these different phases which converge at the phase singularity represent 
discretely different states. The phase singularity then represents a confrontation 
of distinct states in an arbitrarily small space. This is physiologically and bio
chemically unrealistic. Using Equation (4b), Kuramoto and Yamada (1976) tried 
to account for spiral waves in chemical media (Chapter 13) but were frustrated 
by the central phase singularity (their Sections 3.D and 4). Thoenes (1973) had 
previously attempted a less mathematical argument ofthe same sort, overlooking 
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the contradiction implicit at the pivot of a spiral wave in a medium whose state 
varies only in respect of phase. Wiener and Rosenblueth (1946) had conc1uded 
that rotating waves could not occur in excitable media with only a one-dimensional 
state space unless by circulating around a central hole. They didn't give reasons 
in the form of a proof, but I presume that prominent among them was the un
palatability of a phase singularity. 

In the next chapter we begin to remedy these contradictions by widening OUf 

view to encompass models whose internal state can vary independently in two ways. 
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To bring a quality within the grasp of exact seien ce, we must conceive it as 
depending on the values of one or more variable quantities, and the first step 
in our scientific progress is to determine the number of these variables which 
are necessary and sufficient to determine the quality. 

James Clerk Maxwell 

My purpose in this chapter is to start "putting ftesh on the bones" of the simple 
clock metaphor. Up to this point, I've tried to hold your attention on "phase" 
and its rate of change by confining discussion to the simplest metaphor of smooth 
cyclic dynamies, namely, the ring device. I have studiously avoided allusion to 
other degrees of freedom of the "state" of any biological clock. To make the tran
sition to a broader perspective in an orderly way, I now wish to introduce just one 
additional notion, i.e., that arhythmie process might be adjustable not only in 
phase, our exclusive preoccupation in previous chapters, but also in some measure 
of its vigor, amplitude, range, or degree of variation during the cycle. 

I do this by elaborating on a few strict1y idealized examples, drawing out the 
main features in which they differ from simple clocks. These new features are met 
again in more realistic models in Chapter 6 and in several sets of measurements 
on biological systems recently examined for such features in the laboratory. 

A: Enumerating Dimensions 

Just as people have asked how many components there are in the sensation of 
color (three) or of taste (four) so it also seems basic to ask how many components 
there are to the sense of time. Here that question is restricted to the particular sense 
of circadian, rhythmic time. A commonly accepted answer is "one", by analogy 
to the unidirectional character of linear time. The in ade qua eies of linear descrip
tions of time ha ve been met by recognizing that the one-dimensional time axis, in 
cases ofrhythmic time measurement, describes a circle. No significance is attached 
to the insides of the circle, just as we attach no significance to pI aces off the one
dimensional historical time axis. In preceding chapters we adhere to this viewpoint 
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and test its limits by mathematical inference and comparison with observations. 
The observations of negative slope in resetting curves, of type 0 resetting, and of 
phase singularities present paradoxes for this paradigm. The result is that we are 
forced in this chapter to contemplate the possibility that the sensation of time has 
two or more components. 

There are serious conceptual problems about enumerating the degrees of free
dom ofa real system.1t is not obvious that there is any unique number ofthis SOft 
because every real system involves myriads of variables, some of dominant im
portance, some of negligible interest. But neithcr is it usual for people to deal with 
real systems. We deal instead with certain aspecls of their behavior that we con
sider "relevant". In our heads, we deal with adequate approximations, caricatures, 
metaphors, models which acknowledge only the dominant variables ofreal systems. 
For a model system I use the term "degrees of freedom" to indicate the integer 
number of independently varying quantities which jointly determine its state, in 
the sense that if and only if all are simultaneously known (together with any rele
vant environmental parameters), then their immediate rates of change are all 
unambiguously determined. This is the sense in which "degrees of freedom" is 
used in thermodynamics and statistical mechanics. It is the dimension of the state 
space. It is the number of oscillators only if each oscillator is a simple clock with a 
single state variable (the phase). In certain other literatures usage differs. For 
example, in mechanics the state variables always comc in conjugate (position, 
moment um) pairs, so "degrees of freedom" has come to mean the number of 
pairs, i.e., halfthe dimension ofthe state space (Feynman ct al., 149-6). This is the 
number of oscillators if each is a simple harmonie oscillator with two independent 
variables of state. In electrical engineering "degrees of freedom" means the n um ber 
of changing quantities in an eq uation, not counting their rates of change as distinct 
degrees offreedom. This can be a much smaller number than the dimension ofthe 
state space (for example, see Pavlidis, 1973). 

In this chapter we entertain the not ion of exactly two components, but the 
qualitative inferences emphasized here are also valid for any greater number of 
components. 

8: Dcducing thc Topology 

So long as we envisioned only a one-dimensional set 01' states with the connec
tivity of a ring, there was no latitude of choice in selecting astate space. All one
dimensional closed manifolds are topologically equivalent to a ring. 

But if we are driven to recognize different flavors of each phase, then we must 
choose one of many possible state spaces. The issues at stake are dimension and 
connectivity. Consider some ofthe options for introducingjust one more variable, 
bringing the dimension ofstate space to two. We might consider involving a second 
clock for the second degree offreedom. The state space would be the product oftwo 
rings: (§1 x §1), the two-dimensional torus. Without bclaboring detail, this turns 
out to entail some discontinuities not observed in practicc. But a system of three 
or more simple clocks would serve (Chapter 4, Section A). If our "system" is really 
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a composite of many similar simple docks, the required additional degrees of 
freedom might lurk in the distribution of phase about the mean phase. In many 
respects the narrowness of the distribution would determine an amplitude, in
tensity, or vigor of aggregate rhythmicity. 

Alternatively, we could supplement the "phase" description of a simple dock 
with a second quantity, an "amplitude" of oscillation. Diagrammatically this could 
be done by picturing the circle of phases as girdling a cylinder. The cylinder's long 
axis distinguishes oscillations of different amplitudes. Dynamics in systems with 
cylindrical state spaces has been systematized by Minorsky (1962, Chapter 8) and 
by Andronov (1966, Chapter 7) among others. Without belaboring detail, I also 
reject the cylindrical state space because its qualitative features don't correspond 
to the qualitative behavior ofthe biological systems all this is supposed to be about. 

Our state space might alternatively be a surface of a cone or its topological 
equivalent, a disk. The cydes of different amplitude would be rings concentric 
to an axis or point ofzero amplitude. The singularity ofzero amplitude might then 
be regarded as adegenerate ring in which all phases are indistinguishable. 

In principle there are lots of alternatives, each characterized by a topology and 
corresponding idiosyncracies of behavior. If we want astate space of two dimen
sions, the state might be described by two real numbers or by two positive real 
numbers (like chemical concentrations) or by a phase and areal number (the 
cylindrical state space) or by two phases (a torus or a Klein bottle) or in ways that 
lend themselves less readily to verbal description (as on the surface of a sphere with 
17 handles, six of which are knotted together). And if more than two dimensions 
are countenanced, the possibilities exceed the capacity ofhuman imagination. How 
is one to choose the state space natural to a given phenomenon? If I may quote 
Ambrose Bierce (on "sleep", from The Devil's Dictionary): 

It is hardly a burning question : it is not even a problem that presses for solution. 
Nevertheless, to minds not incurious as to the future, it has a mild, pleasing 
interest, like that of the faintly heard beating of the bells of distant cows that 
will come in and demand attention later. 

For present purposes levade the wh oie issue by choosing ~D, in fact only its 
positive part, as though the process with which we will be concerned is determined 
simply by D chemical concentrations (D stands for "dimension"). By this choice 
I conjecture that for the systems we will be concerned with there is a continuum 
of realizable states between any two states and that any closed ring of states can 
be contracted through realizable states to a point. (This is not true, for example, 
of §1 nor Of§1 x §1, nor Of§1 x ~1 contemplated above.) Beyond that conjecture 
I make no more. For example we have little reason to suppose that D = 2, as 
though only two quantities suffice to adequately determine the state of a biological 
dock. This is commonly assumed for reasons of convenience in constructing 
mathematical models, but rarely is more substantialjustification given. To assume 
D = 2 is to postulate the nonexistence of a number of pecularities that require a 
third degree of freedom, as we will see in Chapter 6. The models in this chapter all 
suppose D = 2 for simplicity but I will deal only in those properties of the models 
that generalize straightforwardly to D > 2. 
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C: The Simplest Models 

Does this elaboration ofwhat may seem an arbitrary descriptive language have 
any meaning in terms of hard-nosed empirical science? What is gained by aban
doning the simple traditional state space § I for some manifold of greater dimension 
and different topology? What is gained in the end boils down to the existence of a 
continuum of states connecting each point of the familiar cycle to a point of am
biguous phase, not on the usual cycle. That may not seem like much but it allows 
us at least to describe consistently the observed negative resetting curve slopes, 
type 0 resetting, and phase singularities of biological clocks, all of wh ich seem 
perplexing in terms of the geometry of a single simple dock or even of a pair. 

In short, the following models emphasize only two interrelated supplements 
to the simple dock idea: 

1. A second dimension of internaI state 

2. Astate of ambiguous phase 

Example 1. Consider a pendulum. It goes through a smooth cyde induding 
(in order) states of: 

1. Lowest position in middle, maximum momentum to the right 

2. Medium height on right, medium momentum to the right 

3. Highest right position, zero moment um 

4. Medium height on the right, medium moment um to the Ieft 

5. Lowest position in the middle, maximum moment um to the left 

6. Medium height on the left, medium moment um to the left 

7. Highest left position, zero moment um 

8. Medium height on the left, medium moment um to the right 

9. Lowest position in the middle, maximum moment um to the right (etc.) 

This is diagrammed in Figure 1. The pendulum executes its cyde with pretty 
much the same per iod at any amplitude. The amplitude increases with the energy 
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Figurc I. One circular trajcctory in the (position. 
momcntum) statc space 01' a simple pendulum (inset 
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we impart to the pendulum in starting it. At zero amplitude (zero energy), the 
phases are indistinguishable and the pendulum bob simply hangs straight down. 

The simplest kind of perturbation of this motion is a mechanical impulse, a 
kick. Such an event quickly alters the momentum without significantly changing 
the position, as when you shove a child on a swing. This alters both phase and 
amplitude in a coordinated way. 

All the above (so long as it is restricted to low amplitudes) applies equally weil 
to any harmonie oscillator. Classical physics is built out of harmonie oscillators. 

Example 2. Examples from mechanics are a bit misleading in that the two 
ostensibly independent state variables, position and momentum, are secretly re
lated in a way that is fundamental to the whole structure of mechanics : Momentum 
is proportional to the rate of change of position in time. But similar diagrams arise 
in context of chemical kinetics. In these diagrams the perpendicular coordinates 
are concentrations of two distinct chemical substances. In 1920, A. J. Lotka pro
posed purely theoretically that a chemical reaction could oscillate if two reactions 
could be so coupled that the rate of each depended suitably on the other's product 
concentration. Diagrammatically, the state ofthe overall reaction can be indicated 
by the concentrations CI and C2 of two products. In the simplest caricatures 
there is a steady-state at CI = Cr, C2 = C!. Ifeither concentration is disturbed 
from that steady-sta te then CI and C 2 begin to change to new values. It transpires 
that change persists rhythmically as Cl and C2 bobble up and down along a 
closed path in state space (Figure 2). The amplitude ofthis closed path is determined 
by the initial displacement from steady-state, just as the pendulum's amplitude 
is determined by the energy of an initial mechanical dis placement from equilibrium. 

In terms of chemical kinetics, the simplest imaginable perturbation would con
sist of selectively adding or removing one compound, e.g., by photolysis of sub
stance 1, diagrammatically as in Figure 3. A quick dialysis that removes both in 
proportion to their concentrations would change the state as diagrammed in 
Figure 4. 

Example 3. Also in 1926, Vito Volterra independently published an identical 
scheme in which concentration Cl represents the population density of animal 
species 1 and C 2 respresents the population density of species 2. His intent was to 
abstract the essential features of ecological dynamics in fisheries. Thus he con
sidered the consequences of perturbations such as temporarily introducing a 

Figure 2. A pendulum-likc oscillation in the state space of a 
chemical reaction determined by two concentrations Cl and C2 . 

(Note that this caricature is unsound both thermodynamically 
and kinetically, due to general peculiarities ofreal chemical kinetics. 

But it suffices for now to introduce the nation of amplitude.) 

c, 

c~ 
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Figure 3. Figure 2 is altered to depict revised kinetics during a 
perturbation which ljuickly destroys substance 1. 

Figure 4. K ineties during rem oval of both speeies at a rate 
proportional to their abundances. 

harvestor that selectively removes species 1 (reduces C 1> Figure 3) or unselectively 
takes species 1 and 2 in proportion to their abundances (reduces Cl and C 2 

together, Figure 4). The timing of rhythmic fluctuations in species abundance is 
governed by the same geometric relations as in the previous cases. 

D: Mathematical Redescription 

The purpose ofthis section is to articulate more exactly the very simplest models 
of phase resetting in an oscillator characterized by an amplitude as weil as by a 
phase. Modulation of angular velocity, the mechanism explored in Chapter 3, is 
inadequate to describe or analyse the phase control of such an oscillator. We will 
see why and how that is by doing as we did in Chapter 3: We will write equations 
for a few general styles of perturbation (such as Figures 3 and 4) and graphically 
examine their implications. The four models to be presented here all resemble a 
pendulum in that under unperturbed conditions (I = 0) trajectories are concentric 
circles traversed clockwise at uniform angular velocity, the same on every circle. 
The radius ofthe circle is the oscillation's "amplitude", and angular position along 
the circle (measured clockwise from the positive Y axis) is the oscillation's instan
taneous phase (Figure 1). 

The four models to be presented here differ in the ways they react to a stimulus 
I:f. O. During an interval when / cF 0, the oscillator does not behave as it does 
when I = O. Its state changes in a different way. Our analysis proceeds by following 
the state along a trajectory ofunperturbed dynamics (I = 0) up to a certain phase, 
then following it from there along trajectories of perturbed dynamics (I :f. 0) 
during the stimulus, then reverting to unperturbed dynamics (l = 0) after the 
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stimulus. This is essentially what we did in Chapter 3 for simple clocks except 
that there the trajectories were geometrically identical, all being limited to a 
common one-dimensional path. They differed only in speed along that path. Now 
we admit perturbations of speed in two directions. The perturbed path in state 
space thus differs geometrically. To keep the story simple we consider only one 
nonzero value of J without describing how the dynamic depends continuously 
on I. 

This method of alternating ftows has been used in diverse contexts that involve 
perturbed oscillators; by Danziger and EImergreen (1956) in connection with 
an endocrine cycle and its control by hormonal stimuli; by FitzHugh (1960, 
1961) to analyze the effects of electrical stimuli on nerve membrane; by Kalmus 
and Wigglesworth (1960) to describe the impact of daylight on a circadian clock ; 
by Campbell (1964) to analyze mitotic synchrony; by Strahm (1964), by Moshkov 
et al. (1966), and by Pavlidis (1967) to rationalize resetting experiments in the 
fruitfty's circadian clock. 

Example 1. Let us suppose that the stimulus removes substance Cl at a con
stant rate k. If this rate is large and the stimulus is brief, then we can ignore other 
processes occurring during the stimulus and write: 

dC I = -k so k C'l = CI - ·t 
dt ' 

where the prime indicates the new, reset value of CI after a stimulus of duration 
t. Let's call kt the "magnitude" M of the stimulus. (Note that usage is a Iittle 
difterent in Chapters 3 and 4, where stimulus magnitude is interpreted strictly as 
duration at fixed 1.) 

In the ca se of a pendulum, CI might be the moment um coordinate, the stimulus 
being a shove; the magnitude of the stimulus is then the mechanical impulse, the 
momentum change. In ecological context Cl might be deer population density, 
thc stimulus being the hunting season. Continuing to use unprimed symbols to 
represent the state at the beginning of an interlude of perturbed dynamics and 
primed symbols to represent the state at the end ofthat interlude, i.e., at the begin
ning of unperturbed dynamics after the stimulus, we have (see Figures 2 and 5): 

C~ = C2 = Ci + A'sin2n<p' = Ci + A sin2n</>. 

Figure 5. An impulse changes the momentum of a pen
dulum or the density of a spccies by amount M. The vector 
M from the initial statc to the final state determines the new 
phase and amplitude trigonometrically. Essentially the 

same diagram can bc found in Mercer (1965, Fig. 12). 

c, 
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Letting the initial amplitude be our unit so that A = 1 and adopting the more 
compact notation sn cf> = sin(2ncf» and similarly cs for the cosine and tn for the 
tangent and moving the origin to (Cf, Ci), we have 

C~ = sn (p 
and 

Cl = A' es 1/ = es 1) - M, 

where M is the momentum change. Thus 

,C~ sn 1) 
tn 1) = = -------

Cl es cf> - M 

for the new, reset phase. At the same time, the amplitude is ehanged to A', which 
can also be written in terms of cf> and M if desired. 

Notice the same formula, for essentially the same geometrie reasons, in Example 
14B of Chapter 1 and Example 2 of Chapter 2. 

Example 2. We now suppose a more eomplieated effeet of the stimulus. Sup
pose the perturbed trajectories resemble Figure 6(a), with veloeities adjusted so 
that after a time t any oseillator started on the unit circ1e at phase cf> is on a small 
eirc1e of radius R(t) and eentered at D(t), at angle 1> from the center of the smaller 
eirc1e [Figure 6(b)]. Suppose for example that R(I) and D(I) both decrease with I 

in such a way that DIR = kt = M. The geometry says (Figure 7): 

, R sn 1> sn 1> tn 1> = ----- = ----
Res1>-D escj)-M 

as in model I above. 

o b 
Figure 6. (a) Curvy trajectorics toward an attractin)! statc durin)! pcrlurbation of the hypothctical 
oscillator or Examplc 2. (b) (jcolllctric cO!1struction (ll" the trajcctorics in (CI) by defining I~(I) ami 

D(t). functions of duration I of perturbation. 

o 

Figllrc 7. Enlargclllent ofa triangle in part (b) 01" Figllrc 

6 to ciarify trigonollletric relations. 
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Figure R. Trajcctories toward an attracting state during perturbation 
of the hypothctical oscillator of Examplc 1 Thc circles are loci reached 
from the initial (outer) circle after egual durations of exposure. 
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Example 3. Instead of supposing D! R = kt as in model 2, suppose that as t 

goes to infinity D goes to 1 and R goes to O. Then we have a stimulus that forces 
the oscillator toward a unique equilibrium on the unit circle (Figure 8). Turning 
off this stimulus releases the oscillator back into its unperturbed dynamics along 
the unit circIe. Such a stimulus imitates the suppressing effect of visible light on 
the circadian rhythm in fruitfties (Chapter 20) or of molecular oxygen on the 
glycolytic rhythm in yeast cells (Chapter 12). The expression for q/ in terms of rjJ 
and M becomes 

sn rjJ tn rjJ' = R sn rjJ 
RcsrjJ - D csrjJ - f(M) , 

where f increases from 0 to CIJ as M increases from 0 to 00. This case differs only 
trivially from that of Figure 4, in wh ich the stimulus wipes out both substances 
1 and 2 in proportion to their concentrations. 

Example 4. As a last example consider a different definition of phase. In all 
the above we took phase in the sense of time past the maximum of Clon a cycle 
of any amplitude. The loci of uniform phase were therefore simply radi i from the 
center ofrotation. For some purposes (examples: Pavlidis and Kauzmann, 1969; 
Kauffman and Wille, 1975) it might be more realistic to define phase as the time 
after the upward crossing of a threshold as in Figure 9. In such a case the loci of 
uniform phase are not radii but rotational translations of that arc of the threshold 
as in Figure 10. (Phase goes undefined on cycles of less than threshold amplitude 
inside the black hole, Figure 10). In this model the phase rjJ+ of an oscillator at a 
state given in polar coordinates as (rjJ, A) is (Figure 11): 

sn(rjJ+ - rjJ) = E A 

Figure 9. The locus of phase q, = 0 might be the up- { 
ward crossing of a threshold level Cl = E + Ci. Phase is E: 
thus undefined for oscillations of amplitude A < E -+--t--+-

(shaded). 
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F igure 10. Thc q) = (J locus ur Figurc 9 is rota ted to 
consecutivc positions onc-fifth cycle apart to construct 
isochrons (supposing the angular velocity 01' trajectories 

on thi s diagram is evcrywhere the samei. 

Figure I I. Given thresho ld le vel E and amplitude . 1 "I' oscillation, 
the two alternative definitions "I' phase '/' and (/,: are geometrieall y 

rclatcd. 

so 
rf)t = (p + the correction term sn - t ~ , 

/1 

where A is the amplitude expressed in terms of (p and M. 

E: Graphical Interpretation 

Now wh at does this tittle game get for us? Tt gets us equations by which to 
instruct a computer to draw the anticipated consequences of experiments in which 
a single harmonie oscillator is perturbed for any duration at various times in its 
cyde. The behavior of such an oscillator presents a marked contrast to that 
of the simple docks examined in equal detail in Chapter 3. This new behavior 
is intuitively accessible in terms of pushing on a pendulum, just as the simple 
dock's behavior was intuitively accessible in terms of modulating the angular 
velocity of a rotating machine. In certain qualitative essentials the new behavior 
found here resembles the behavior typical of a much wider and more realistic 
variety of biochemical and physiological oscilla tors. The reason for this resem
blance will come out in the next chapter. This chapter finishes with a display 
of some of the computer plots alluded to. These plots have three main qualitative 
features: 

1. cf/ = r/J in the limit of very brief stimuli, M -7 O. 

2. Near phase r/J = 1 cyde, near stimulus magnitude M = 1, the new phase 
cf/ has a singularity. Writing r/J as 1 + \: and M as I ~ .\', we have in good 
approximation für small departures x and r, 
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Figure 12. As in Figure 70fChap
tcr 3 except that new phase is dctcr
mined by old phase and stimulus 
magnitude according to the equa
tions of Examples 1,2, and 3 rather 
than according to simple-dock 

kinetics. 

In other words, the new phase of the oscillator is entirely determined by the ratio 
ofthe tiny departures from 41 = 1 and M = 1. The slightest error in approximating 
that stimulus timing can therefore evoke any phase, but at a very small amplitude 
(in models 1,2, 3 ; in model 4 phase is undefined at amplitudes less than threshold) . 

3. At very large M, tn 41' --> 0, i.e., a sufficiently prolonged stimulus essentia11y 
resets the oscillator to a uniq ue phase regardless of the initial conditions. 

The easiest way to see how 41' jointly depends on 41 and on M is by plotting 41' 
in three dimensions above the (41 , M) plane. It is a screw surface repeated in each 
repeat of 41' along the vertical axis and in each repeat of c/J along the horizontal 
axis. lt a11 cünsists of one single surface wound around vertical poles at c/J = 
any integer, M = 1 (Figure 12 and Figure 4 of Chapter 2). The corresponding 
plot of new, reset amplitude A' of oscillation would show a deep pit descending 
to zero at c/J = any integer and M = 1, rising to unity (by definition) along the 
front wall at M = 0 and taking other values elsewhere according to the particular 
dynamics adopted. 

It is convenient to portray these surfaces as contour maps on the stimulus 
plane as we did for the new reset phase of a simple dock in Chapter 3. These 
contours depict the (c/J, M) combinations along which c/J', and therefore tn 41', 
is constant. Thus their shapes are given by r:J. sn c/J' = es c/J ' - M. These are ares 
of sinusoids, all converging to M = 1, c/J = 1 and a11 touching the M = 0 line at 
(I>' = c/J. Figure 13 shows the contour map of new reset phase and amplitude für 
Examples 1 through 3. 

The new phase 1/ at the moment the stimulus ends is the complement of the 
event latency e, the time until phase c/J' = 0 recurs after the stimulus ends. I call 
this latency the cophuse because phase plus latency (cophase) is necessarily one 
cyde. Thus a plot of event latency downward from the stimulus plane is identical 
to a plot of new phase upward. 
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Figure 13. As in Figure 4 of Chapter 2 
the (r!>, M) plane is depicted with thc 
contour lines of lixcd new phase, r!> ', at 
intervals of 1/10 cycle. [n the simple 
dock ca se (Figure 8 of Chapter 3) they 
were parallel displacements of a co m
mon curvc whcrcas in this case they are 
various pieces of sine curves con-

verging tn a singular point. 

.~ r:o:-. --'r---, 
J 
~ 

A(lVANCe: 

ili 

~ 
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O-OLD PHASE-1 

ZERO 

DELAY 

Figure 14. The top two panels (a, b) show type 1 resetting; on the left (a) as aresetting curve, plotting 
new phase upward (or cophase downward) against old phase to thc right , and on the right (b) as a 
phase response curve (PRC), plotting phase advances upward and delays downward, also against old 

phase to the right. Thc bottom two panels (c, d) do the sa me for type 0 resetting. 
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M 
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Figure 15. As in Figure 13 except that the contours represent (r/) , M) cOI1lbinations resulting in the 
same phase shift, /l,.r!> , rather than the same new phase. The phase shift is thc ncw phase minus the old 
phase minus the stimulus duration. Stimulus duration is taken to be negligible in this figure . Contoured 
at intervals of one-tenth cycle as in Figure 13, using equation M = tn ;I,/, / (sn r!> + es r!> tn ,1r!» from 

Examples 2 and 3. 
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o 

Figure 16. Similar to Figure 6(c) of Chapter 3, showing phase shift (advances A, upward) vs. phase 
for several stimulus magnitudes ranging from M = 0 to 00. Curves of this sort are more commonly 
dcpicted in various experimentalliteratures as indicated in the lower left. The dashed segment should 

not be interpreted as part of the curve, but is commonly drawn or even drawn solid. 

In some fields it has been convenient to think instead in terms of phase shifts. 
This is a convenience, for example, in thinking about one model of entrainment, 
according to which an oscillator ofnative per iod T keeps up with a periodic driving 
stimulus of period T by doing a little phase shift iJcp = T - r. In terms of old 
phase and new phase, the phase shift iJcp is cp' - (cp + stimulus duration). Thus a 
plot of e or cp' is readily converted to a plot of iJ cp by shearing it 45° along the cp 
axis (Figure 14). A contour map of iJcp on the stimulus plane is sketched in Figure 15 
for Examples 1-3. Figure 16 plots the same iJcp vs.1> for several stimulus magni
tudes ranging from M = 0 to M = 2. Note the abrupt change of topology at 
M = 1, where the phase singularity is encountered at cp = 1. This family of phase 
response curves (PRCs) should be contrasted with the family of phase response 
curves following from simple clock models, in which phase shifts accumulate 
by modulation of angular velocity on the ring [Figure 6(c), Chapter 3]. In that 
family there is no topological change. The simple clock's strong stimulus PRC is 
simply an extreme version of its weak stimulus PRC. It includes a very steep 
narrow upslope region. Nothing of the sort is seen in the models of this chapter. 
Instead, all the steepness is packed into that one critical stimulus duration M = 1 
at the phase singularity. 

The reason for this qualitative difference of behavior lies in the qualitatively 
different mechanisms of rephasing. The simple clock achieves its big advance 
or big delay to the opposite side of the cycle by advancing or delaying through 
half the cycle. Because the choice between advancing and delaying depends on 
whether the initial phase was just before cp = 1 or just after cp = 1, large stimuli 
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applied sufficiently dose to this phase can have extremely variable resuIts. In 
contrast, the pendulum-like oscillator achieves both big advances and delays 
by a process that entails areduction of amplitude toward zero, and through zero, 
and a rebuilding of amplitude on the opposite side of the cyde. The only sensitive 
stage is the passage through zero amplitude, where phase is ambiguous. 

F: Summary 

In Chapter 3 we thought of a single simple dock as behaving differently along 
its cyde according to the intensity of some environmental parameter such as 
light intensity. Here we see the same principle in a two-dimensional state space. 
In the presence of some external modifier of the system's dynamics, its state 
changes along different paths in state space. In Chapter 3 we calculated the 
consequences in terms of phase-dependent phase re setting. The result was a 
"time crystal": a periodic lattice of unit cells composed of old phase and new 
phase repeats along two axes, with a third perpendicular axis depicting some 
measure of stimulus magnitude. Within each three-dimensional unit cell lies a 
two-dimensional surface describing new phase as a function of stimulus magnitude 
and the old phase at which that stimulus was given. This "surface" proved to be 
a stack of separate surfaces repeating along both phase axes. 

We redo the calculation in this chapter to see whether a topologically different 
kind of dynamic model implies a qualitative difference in resetting behavior. If 
so then resetting behavior might provide a useful criterion for rejecting models 
that are inappropriate to given experimental system. It transpires that there is 
one conspicuous qualitative difference: Resetting in this two-dimensional state 
space consists of aresetting of phase and a conjugate and equally stable re setting 
of amplitude. There is a peculiarity of the phase response when the amplitude 
is reset to zero. A specific, exacting combination of stimulus timing and magnitude 
is required to guide the system to this steady state and leave it there. At this special 
old phase and magnitude, new phase is arbitrarily sensitive to details of the 
stimulus. The new phase surface tiIts vertically and winds around a screw axis 
at that point. This phase singularity links all repeats along cP and cP' directions 
into one single surface quite unlike the stack of separate surfaces that characterize 
a simple dock. We have seen this pattern in experimental data. Chapter 4 gives 
us one interpretation for it in terms of internal incoherence among many docks. 
Here we have another in terms of the dynamic steady-state of a single oscillator. 

In coming chapters we ask which features of Figures 1 through 4 are essential 
for this result. It turns out that the behavior exhibited in Figures 12 through 15 
is typical of a much broader dass of less idealized biochemical dynamics and has 
little to do with the equilibrium state or with stable resetting of amplitude. But 
this simplest example is convenient for introducing the result, preliminary to 
perceiving it in less contrived models. (It also turns out that the fruitfly's circadian 
dock behaves remarkably like this simplest caricature: compare Figures 13 of 
this chapter and Chapter 2.) 
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In Section A of this chapter we associate a phase with each state of a limit 
cyde oscillator during dynamics in the absence of any perturbing inftuence. In 
Section B a stimulus smoothly alters the trajectories so that phase changes in 
peculiar ways, even discontinuously. This analysis is intended to apply to smooth 
dynamics. Accordingly, in Section C references are compiled to models which 
violate this precondition and thus do not fall within the purview of this chapter. 

A: Unperturbed Dynamics 

Introduction 

By referring everything to the purely geometrical idea of the motion of an 
imaginary ßuid, I hope to attain generality and precision, and to avoid the 
dangers arising from apremature theory professing to explain the cause of 
phenomena. If the results of mere speculation wh ich I have collected are 
found to bc of any use to experimental philosophers, in arranging and inter
preting thcir results, they will have served their purpose, and a mature theory, 
in which physical facts will be physically explained, will be formed by those 
who by interrogating Nature herself, can obtain the only true solution of the 
questions which the mathematical theory suggests. 

Jamcs Clerk Maxwell, 1856, "On Faraday's Lines of Force" 

We saw in Chapter 4 that the collective amplitude of a population of simple 
clocks can be arbitrarily small. It is determined by the distribution of phase 
within the population. But this distribution is stable only in the limiting case of 
complete independence among identical simple docks contributing to an aggre
gate rhythm. If any interaction is allowed andjor if the simple docks' periods 
differ at all, then the phase distribution does change in time and with it the shape 
ofthe collective rhythm changes. The collective rhythm might damp out altogether 
as phases gradually randomize. Or it might approach an attracting cyde as the 
many simple docks entrain one another to a common frequency in a self-stabilizing 
phase distribution. Under various assumptions about the manner of interactions 
there might be several different attracting cydes. 
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Chapter 5 is built around the idea that a single oscillator also can have an 
amplitude as well as a phase. But only in physical situations characterized by 
symmetry principles and conservation laws is it usual that dynamic systems can 
oscillate persistently at arbitrary amplitude, as in the simple idealizations exploited 
in Chapter 5. 

Attracting Cycles 

We pass from Chapter 5 to this Chapter through the idea that an oscillator 
ean have a preferred amplitude from whieh it ean be perturhed and to wh ich it 
regulates back again. This type of behavior is typical of oseillators that tend to a 
stable periodic behavior. Such an oseillator's degrees of freedom, be they few or 
many, affect each other's rates of change in such a way that all eventually settle 
into a regularly repeated cycle. Poincare called this a "limit cycle" because it is 
asymptotically approached in the limit of infinite time. For application to experi
mental seience we are concerned only with attracting (as opposed to repelling) 
limit cycles. Because we seldom await the limit of long time, and for brevity, I 
drop the word limit. Thus we embark upon a study of attracting cycles. Geo
metrically, an attracting cycle is a closed ring in state space. It may be quite 
irregular, even knotted, in a spaee of many dimensions, but the essential feature 
for our purposes is that it is a closed ring path and that all nearby paths gradually 
funnel onto it. The region occupied by paths leading onto an attracting eycle is 
called the cycle's altractor basin. Any states not in the attractor basin comprise 
that cycle's phaseless set. 

A geometrically simple example is shown in Figure 1. In polar coordinates 
the system is described by instantaneous phase (jJ and instantaneous amplitude 
R. The angular velocity ~ depends on the instantaneous amplitude and so does 
the rate of change of amplitude R: 

~= A(R) 
R = B(R). 

If R = KR(1 - R) then the amplitude R regulates to the unit circle R = I. 
It does so quickly if K is big, or spirals more gradually toward the unit circle if 
K is sm all [Figure l(a); see also Box A]. If K = 0, then R == 0, so that any amplitude 
is stable forever as in Figure I of Chapter 5. 

If ~ is constant, then the period is the same at any amplitude, as in a pendulum 
or a population of simple clocks. If ~ is not constant, then the period depends on 
the amplitude. 

The attractor basin is the whole plane minus the origin. The phaseless set 
consists only of the steady-state and the origin. 

Latent Phase 

I draw attention to this geometrie caricature of an oscillator because it helps 
introduce, in an exact way, a generalization on the notion of phase which proves 
crucial for much that follows. In Chapter 5 we deflned phase as the fraction of a 
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Box Simple Clock as Caricatures of Attracting Cycles 

Before leaving thi ection, note that for ome purpo e the imple clock of Chapter 
3 and 4 i a uitable approximation to eithcr: 

1. A system who e ta te pace really is § I for structural rea on (e.g., the tate i 
the position of a polymera c on a ring of D ) or 

2. dynamical y tcm of arbitrary complexity in wh ich trajectorie flow swiftly 
toward an attracting cycle under all experimental conditions considered. 
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In term ofthe model ofthi section, if R = 100000 x (I - R)R then the 0 cillator' 
amplitude regulate very wiftly to R = 1. 0 that for all practical purpo es the system 
alway runs on that Ijnique ring, except for a brief moment after violent perturbation. 
Wilh I '# 0, a imple elock runs on the same cycle but at pha e-dependent angular 
velocity. If J enter only into the expre ion ri> = A( ) for angular velocity and not into 
the expre sion R = B( ) for amplitude regulation then the same is true of thi attractor 
cycle model. 

lt i al 0 true in good approximation if the timulu (l '# 0) adds anything to the 
oscillator' kinetics that i too weak to substantially oppo e the violently amplitude 
regulating R = B(R). Then R is still confined elo e to the unperturbed cycle and we 
need deal only with alteration of it angular veloci ty. Thu it dynamic can be um
marized in a sensitivity function 2(</» , repre enting the fractional deviation of angular 
velocity from its unperturbed unit rate, per unit timulu, that i per unit deviation 
from standard environmental condition . Thi 2(</» (Winfree, 1967a) is the velocity 
re pon e curve ofSwade (1969), Daan and Pittendrigh (l976a,b) and Pittendrigh and 
Daan (1976a,b,c). In the notation of harner 3, the angular velocity of a simple clock 
is denoted c(r/!, 1). Performing a Taylor erie expan ion in J gives rb = t' (</> , I) = J + 
(1 - l o)2(r/!) + neglected terms in higher power f(l- 10 ) , Thi extreme ver ion ofan 
attracting cycle ha been called a generalized relaxation oscillator (Winfree, 1967a: 

wade, 1969; Kramm, 1973: Goodwin, 1976). The term originated in the idea that 
relaxation oscillators ( ee Section C) adhere very closely to an attracting cycle that 
inelude a jump. The generaliza tion consisls in embracing smooth cycles as weil a nearly 
discontinuou cyele. ce al 0 Box A of Chaptcr 9. 

Kuramoto (1975) take lhi limit explicitly, rcducing the;. - wo cillator to a simple 
clock in order to implify the calculation ofmutual entrainment in populations. In place 
of my ingle influence and en itivity, he invokes an orthogonal pair of conjugate 
influencc- en itivity pair, coupling 0 cillaLOrs by 

~= I + sin</>j Cos </>i -Cos</>j sin</>i = I + in(</>j-</>J 

The symmetry ofthis coupling facilitate analy i . 
Neu (1979a,b,c) show mathematically ju t how a D-dimen ional 0 cillator with a 

strongly a ttracting cycle can be redu ed (0 the implc-clock approximation, as assumed 
in Winfree (1967a) with merely handwaving argument . 
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cycle elapsed since some phase marker event such as the maximum of Cl or the 
upward crossing of a threshold. That definition supposed that behavior was 
strict1y periodic following any initial conditions. But in attractor cycle dynamics, 
behavior is not initially periodic. It is strictly periodic only in the undisturbed 
system and only in the limit of long time. So a more practical definition is called 
for. A notion that naturally recommends itself is the latent phase: One waits until 
the perturbed system reverts to regular periodism, and then extrapolates that 
rhythm back to the time in question to discover its latent phase at that past 
moment. Equivalently, one might start a "test" system at time 0 in some state 
whose latent phase we wish to know and simultaneously start another on the cycle 
at phase zero. After a long time both are on the attracting cycle but the test system 
is some fraction cP ahead of the control. Then cP is the latent phase of that initial 
condition. 1 

This is in fact how physiological experiments are conducted. For example, 
suppose a periodically firing nerve cell is electrically stimulated. During that 
stimulus the cell's rhythmicity is disrupted. When the stimulus is removed the 
membrane is left in some peculiar state not necessarily on the cycle. From that 
initial condition, its normal rhythmicity recovers during the subsequent un
perturbed free run. The phase of that recovered rhythm is recorded. By com
parison with the control rhythm or by extrapolation back to the moment when 
the stimulus ended, the latent phase reached at the end ofthat stimulus is measured 
(Chapter 14, Seetion A). The same format has been used to explore the dynamics 
of circadian clocks (Chapters 19, 20, 21), of biochemical oscillations (in the slime 
molds of Chapter 15; and in the yeast cells of Chapter 12), and of the cell cycle 
(Chapter 22). In these and many other ca ses, attractor cycle models have been 
proposed to link the observed rhythmicity to plausible biochemical kinetics. 

It is useful to develop a little bit of abstract geometry about the relationship 
between latent phase and an attractor cycle oscillator's state. The pair of equations 
above gives us a way to start thinking about it. Now that we have quit thinking 
of the state space as a ring, phase and state are no longer synonymous. Now 
phase is some function of state. What kind of function? The next section defines 
it analytically for the special ca se of polar symmetrie two-variable kinetics rep
resented by the pair of equations above. [Guckenheimer (1975) gives a far more 
general, precise, and rigorous treatment for state spaces of arbitrary dimension 
and topology. He also treats examples of the sort to which we now turn. Also see 
Kawato and Suzuki (1978).J 

The Isoehrons of Symmetrie Attracting Cycles 

We resort once again to useful jargon: Any set of states having the same latent 
phase cP is called an isochron, specifically "isochron cp" (see Box B). Suppose as 

1 Existence proofs for ordinary differential equations are to be found in Coddington and Levinson 
(1955, Theorem 2.2, p. 323); Haie (1963, Theorem 10.1, p. 94); HaIe (1969. Theorem 2.1, p. 217); in 
Fenichel (1974,1977) and, for functional differential equations, Haie (1977, Theorem 3.1, p. 242) where 

it is called "asymptotic phase." 
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Box B: O n Definition of Isochron 

I invented i ochron in 1967 to hclp me think about timing relation in oscillators 
perturbed off their altracting cycJe . Thi i important in physiological application 
becau e biological 0 cillator arc ahne t never on their atlracting cycJcs. The term 
jochroll has ince been u ed in a numbcr of ense. ome only ubtly different and ome 
radically different. Thi Box provides abrief 0 erview. 

u ed in the erie of paper begun in 1967, an isochron i a certain el of pha e
equivalent initial condition in the state pace of any proce that immediately or even
tually run at a fixed period that we takc as a unit of time. The e initial condition are 
equivalent in the en e that lhey lead to rhythm which are nchronou in whatever 
operational sense we have adopted. Thu an i ochron is the inver e image of a point in 
§ I for a map cf) : X -> § I from thc statc pace X of an 0 cillator to the circJe of phase § I . 

In the imple clocks of haptcr 3. the only admi ible initial conditions are all on the 
cycle: X = § I . Thus no two initial condition XI ' X2 E X are equivalent unle s they are 
identical. If the are not idcntical. the rhythm begun from uch initial conditions differ 
by a pha e hift 4>(x2) - 4>(xd. The notion of an i ochron first acquires non trivial 
interest in Chapter 5, where we con ider model which run tablyon cycJe of variou 
amplitude. In thi ituation, rhythms of different amplitude might be con idered 
cquivalent if they go through their maxima at thc amc time or if they cross a thre hold 
at the same time. Ir, a in the prescnt chapter, we are talking about a limit cycJe proce 
and initial conditions in the altractor ba in of that cycJe, thcn initial conditions are 
considered equivalent if 0 cillator tart d at tho e initia l condition funnel ynchro
nou Iy onto thc cycJe. In this case trajectorie from any initial condition on the ame 
isochron eventually become indi tingui hable. and trajcctorie from any other isochron 
cventually dilTer only by a time tran lati n equal to the latent phase dilTerence 
4>(X2) - 4>(x l ) r thc cophase dilTcrence (I - 4>(xdl - (I - 4>(X 2» between tho e two 
i ochron . 

It i helpfulto vi ualize isochron by thinking in term ofa trobo copic pre entation 
of dynamics in the 0 cillator' stale pace, a follow. Taking the cycJe period as I, we 
start an oscillalor at any initial condition at time 0 and look again to see what state it 

Points on a trajector) spiraling lOward the allracting cycle are made to emit a Oa h 
of light at unit inter""l ' of time. The 'equcilce of slich points convergcs 10 a fixed 

poil1l on the cyclc. outlining an i ochron. 
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ha reached at unit interval thereafter. If we happened to tart exactly on a do ed ring 
trajectory (the only choice for oscillator of the ort considered in Chapters 3,4, and 5), 
then al each later observation it will be back to exactly the same tate. The ame will be 
true of an attractor cyde ystem only if we tart the 0 cillator exactly on the attracting 
cyde. BUI more generally, at each ucce sive look we find the 0 cillator' tate closer to 
the attracting cyde. The quence of tale reached approache a du ter point on the 
cyde. All these point )je on lhe ame i ochron ( ee Figure a). 

I ha eu ed the term isochron sometime to mean a locu in tate pace a above, but 
ometime also to mean a et of timuli i.e., a locus in the (c/I, M) plane or cylinder. The e 

are the timuli Ihat evoke ynchronou rhYlhm by pu hing 0 cillators onlo a given 
i ochron et in tale pace. Thinking of the stimulu pace a a map into tate pace a 
in Figures 5- 11 we ee that a given i ochron appears in timulu pace where the image 
of timulu pace intersects lhat i ochron in tate pace. 

In term of copha e, an i ochron is the locus of con tant copha e e but the copha e 
intended can refer to a function of tate, or to a runction of stimulus parameters that 
ach;eve the required state. 

Guckenheimer (1975) applie the powerful mathematical method of topological 
anal i to prove the exi tence and main properties of i ochrons in the attractor ba in 
of a limit cyde. He inquires into the condition on tate pace topology and "genericity" 
of dynami lhat hedge in my conjectures (Winfree 1974c) about isochron and their 
phaseless set. Guckenheimer' paper and mine are reprinted together in Levin (197 ). 

Kauffman (1974) refer latent phase not to the attracting cycle but inslead to the 
next thre hold crossing as in Example IV of Chapter 5. Thi may be viewed a an 
experimentali l' approximation to the mea urement oflatent pha e in real physiological 
y tem which take an inconveniently long time to approach their attracting cyde . Or 

it might be viewed a a different definition of latent pha e, in which the isochron have 
omewhat different topological properties than tho e con idered above. Pavlidis (1973), 

Pin ker (1977), and Kawato and Suzuki (197 ) al 0 u e thi definition of latent phase. 
focusing on only the very next event and ignoring the regular rhythmicity pre umed to 
per i t a long time after the stimulu (after any tran ient irregularitie have died out). 

The word I ochron ha al 0 been used in quite different senses not to be confused 
with any of the above by 

I. Bouligand (1972a), to mean the locu in phy ical space along which cutide i 
simultaneou Iy depo ited (Chapter 17) 

2. Alle ie et al. (1973), to mean the locus ofsimultaneous excitation during propa
gation of an electrical wave in heart musde (Chapter 14); 

above that 
~ = A(R) with the unit of time choseti so that A(Ra) = I 

and 
R. = B(R) with B = 0 and dB/dR < 0 at some positive Ro. 

This is the simplest attractor cycle oscillator. If there is only one such Ra then 
Ra is a unique attracting cycle and we mayas weH scale R to make Ro = 1. 



A: Unpcrturbed Dynamics 151 

Since the dynamical Ilow has polar symmetry, the isochrons must also have 
polar symmetry : 

<P = y(cjJ, R) = cjJ - j(R). 

Now the latent phase <P necessarily increases at unit angular velocity as the 
oscillator follows its kinetic eq uation. Thus we write 

so 

. . df(R). 
<P=.l=cjJ--R 

dR 

This is a differential equation for f(R). We can integrate it and then obtain 
g(cjJ, R). 

Example 1. Suppose 

then 

so 

R = 5(1 - R)R 

~=.1 

Figure l(a) 

Figure l(b) 

df -=.O 
dR 

f(R) = constant, chosen so <P = 0 at R = 1 and cjJ = 0 
so 

<P = g(cjJ, R) = cjJ Figure l(c) 

R 1:"> 

4> 
R 

15 

-1:"> 

(0) ( b) (cl 

.0 

.6 

Figure 1. (a) R = 5R(1 - R). (b) A single trajectory ofthe dynamical scheme described in the text. The 
unit circle is an attracting limit cycle. (c) Isochrons of the same dynamic, marking off intervals of one
fifth cycle along all trajectories in the attractor basin of the cycle. Trajectories begun on any isochron 

reappear on it at unit intervals of time, closer to the point R = 1. 
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In this case, the latent phase corresponds perfectly with the simplest local 
instantaneous definition of phase, viz the fraction of a cycle clapsed between 
ex trema of x or y. This is exceptional. Isochrons are more commonly complex 
curves. They usually differ from such local definitions of phase as one might be 
tempted to invent. This is illustrated in the next example. 

Exampie 2. Suppose 

R = 5(1 - R)R 2 Figure 2(a) 

~ = R Figure 2(b) 

Here the trajectories have the same geometry but the state traverses these 
trajectories at speeds R times faster than in Example 1. In this ca se the angular 
velo city ~ is no longer independent of amplitude but increases in proportion to R. 
Thus 

df R - 1 1 

dR 5R(1 - R)R 5R 2 

so 
. 1 

j(R) = 5R + constant 

so 
1 . 

(/J = g(rjJ, R) = rjJ - 5R + 0.2 FIgure 2(c). 

Thus the isochron structure dose to the repelling focus of this two-variable 
kinetics consists of tight spirals. In contrast to the straight-in radial isochrons of 
simple docks (Chapter 3), dockshops (Chapter 4), and harmonie oscillators 
(Chapter 5), those associated with attracting cydes typically exhibit ornate 
structure near their convergence (see Box C). Only in perfectly symmetrie models 
with only two variables is this structure as simple as the bundle of spirals derived 

R 15 

R 
o fL--+--+--< 

15 

(0 l (bl (cl 
Figure 2. (a) R = 5R(1 - R)R. (b) As in la except both components of velocity are multiplied by a 
scalar field, leaving directions unaltered. (c) The changed isoehrons reilee! the radial dependenee of 

angular velocity. 
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Box C: on ymmetric Kinetics 

The example on display here is taken from Fitzhugh (1961). itzhugh oughl a useful 
implificalion f the Hodgkin-Huxley equa tion. He found it in a econd order cubic 

polynomial equation con tructed b hybridizing Bonhoeffer' (194 ) model of iron wire 
excitabililY ( ee al 0 Box B in hapter 14) with van der pors (1926) model of the heart
beat. This "BYP" model mimic a pacemaker neuron with a repelling teady- ta te and 
an attracting cycle. I computed it i ochron a follow : 

I. The allracting c c1e wa found by integrating the rate equation nllmerically. 
point from the cycle is cho en arbitrarily to be pha e O. The cycle period i laken a 

unit time. 

2. An arbitrary initial tate wa eho en and onee again the rate eqllation were 
integrated by ilerating the differenee eqllation in tep Lli until the tate eome within a 
mall toleranee of pha e 0 on the eycle. 

7 

l 
I 

I 9 

(a) imilar in principle to part (bI of Figurcs I through 4. Thc i ochron are calculated 
in thc lincar region m:ar thc tcady tate of Fitzhugh's BVP model of pacemaker 
activity in nerve membrane : 

(
Xl 

;;=r .r+ x - 3 

.i' = - (x - 0 + hy) c 

0=0.7, b = 0.8, c = 3.0, : = 0.4. 

Thc isochron are illtcrruptcd whcre the ca lculation become tOO delicate. al ng the 
spiral separalrix. Coordinates are as in Figure 6 but the regi n near teady- tale is 
here greatly elliarged. 11 traject rie (n t hown) are clockwise cxponential piral 
out of the steady- talC, eUlling i ochron at unit rate. The da hed curve i the lower 

right-hand are of thc attracting eycle shown c mplcte in part (b) of thi figure. 
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J Backing up along that trajectory, the latent pha e wa noted at each tep a 
cp = - LI, modulo I, I being the step number. 

4. This was done for many different initial ta te . 

s. The i ochrons were ketched through tate of equallatent phase at intervals of 
one-tenth cycle. rom tate on one isochron, the time to phase 0 i the ame, mod ulo I. 
All trajectorie pa from one i ochron to the next at intervals of one-tenth cycle. 

The re ult near the teady- tate are hown in a figure. or purpo e of convenience 
a linear tran formation ofvariables waseffected in plotting the trajectorie and i ochron . 
This wa done in order to di play trajectorie near the teady-state as exponential 
piral and to give the wh oIe diagram polar symmetry. The i ochron approach the 
teady- tate in a di tinctly complicated way. 

urther out, the trajectorie approach their attracting cycle and the i ochrons behave 
a one might expect intuitively: 

I. Thcy are packed do e together near the separatrix (Figure b): A slight displace
ment of state where the ystem i in one of these state elicits a big change of pha e in 
its eventual rhythm. 

3 I 
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(b) Similar in principle to part (a) of Figure I through 4. I ochron are olid curves. 
Trajcctorie (dashcd) wind out of thc rcpelling teady- tate and diverge along the 
pirat cparatrix. Thc picturc i omcwhat skcwcd from thc convcntional reprcscn

tation in Fillhugh' Figure 5 [ ce depolarizing (0) and recovery (R) variable] by 
the linear transformation rcquired to ymmctrize thc pirals near teady-state. Figure 

(a) enlarge that region. 

2. A mall depolarizing (exeitatory) pul e advances pha e during the depolarizing 
pha e of the action potential and delays it du ring thc relatively refractory recovery 
interval. Hyperpolarizing (inhibitory) pul e have the oppo ite effec!. 
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Box D: A Measurement Problem 

Doe the ornate tructure of isochron near their convergence point provide an 
e perimental distinction between uch 0 cillators as we considered earlier and the 
altractor cycle dynami under con ideration in thi chapter? It might, but only in 
principle. 

In practice, isochron tructure i poorly re olved near lhe isochron' convergence. 
The model of hapter 4 and 5 have unusually low-amplitude rhythmicity in this region. 
That implie unu ual difficulty in mea uring pha e with adequate precision near the 
region of convergence. lt al 0 mean that the sy tem is particularly u ceptible to the 
random perturbation that chronically afflict any real experiment, e pecially biological 
experiments. Maybe in dealing with an attractor cycle mechanism, as in thi chapter, 
one might e cape that difficulty because the amplitude will regenerate. Why not wait 
for normal ampli tude to recover, filell mea ure pha e and extrapolate back to that 
earlier moment when amplitude wa too low? Thi work fine if regeneration i swift 
but the longer the wait, the greater the impreci ion of pha e mea urements. Extra
polation i not accurate acros many cycle during which random perturbations are 
alway creeping into the experimental y tem. [n every case, the mere fact that the 
isochron do converge mean that high resolution is e ential. Slight variability in 
timulu timing, or in the en itivities of individual biological organisms, ha a di -

proportionate impact on pha e mea urement near a convergence of isochron, e.g., ee 
mea urement ofthi variability in Winfree, 1974, Appendix, for the Drosophila circadian 
y tcm. In hort, da ta variance i typically greatest in the very region where highe t 

re olution i needed to di tingui h the isochron. Becau e mea urement i 0 impreci e 
near a ingularity, there i liltle point in deploying refined models. The screw urface 
and pinwheel contour map I have fitled to data have all had the implest, plainly radial 
i ochron tructure near the pha e ingularit . 
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above. And in such cases, the spirals degenerate to radiallines as in Example 1 
only if the angular velocity A is independent of amplitude (see Box D). 

Example 3. Suppose 

R = (1 - R)R] Figure 3(a) 

~ = 1 + s(l - R)] Figure 3(b) 
so 

df s 

dR R 
so 

f = s In R + constant 
so 

cp = rP - dnR] Figure 3(c). 

This example shows that the isochron spiral can turn either way relative to tra
jectories, depending on the sign of S. 
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o f---+-----''I;----< 

-15 

(0) (b) ( cl 
Figure 3. (a) R = R(l - R). (b) As in 1a but radially five tim es slower and azimuthally somewhat 
dependent on radius. (c) The isochrons make exponential spirals into the origin, in contrast with the 

hyperbolic spirals of Figure 2e. 

Example 4. Suppose 

R = 5(1 - R)(R - ~)R] Figure 4(a) 

<p = 1 + c(l - R)] Figure 4(b) 

The point here is to examine a self-sustaining oscillator that is not also self
exciting (examples: the circadian dock models of Kalmus and Wigglesworth 
(1960) and of Pavlidis and Kauzmann (1969); Teorell's (1971) mathematical 
model of pressure sensitive neural pacemakers; Best's (1976, 1979) computation 
of isochrons for pacemaker nerve and the subsequent measurement by Guttman 
et al. (1979); Aldridge and Pye's (1979) theory and measurements of oscillating 
glycolysis in yeast; Johnsson's (1976) and Johnsson et al.'s (1979) on oscillatory 
transpiration) : 

R 15 

R 
O+-~-'l----< 

'5 

-15 

(0 ) 

df c (1 1) 28 
- = 1 = '-~-1- --:-- * --:--. 
dR 5R(R - 2) R - 2 R ::, 

.2 

( b) ( c) 

Figure 4. (a) R = 5R(1 - R)(R -1). (b) The azimuthaI equation is as in Figure 3a, while the radial 
equation is modified to create a repelling eyde at R = 1. Trajectories inside that radius wind into the 
attracting equilibrium. (cl The phaseless manifold is the disk R = ~. Along its border all isochrons 

converge (as they did in Figures 1 e, 2c, and 3c but with R = 0). 
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For R < t, cf> will go undefined. For R > t 
21> R-t 

f = Sln ~ + constant 

so 

cf> = c/J - ~l>ln(2 - ;)] Figure4(c). 
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The phase singularity in this case is not a point but the whole circular border of 
a black hole. (This provides an alternative mechanistic basis for Example IV of 
the preceding chapter). 

Phaselessness vs. Timelessness 

In all the above examples, the phaseless set is an equilibrium or its attractor 
basin. Ambiguous phase is achieved by timelessness in these cases: the system 
ceases to change state. Do not be deceived by simple examples to imagine that 
this is necessary or even usual. Even in kinetics involving only two variables as 
above, the phaseless set could consist in part of quite lively states, e.g., it could be 
the attractor basin of a different cycle. A phase singularity is not necessarily 
timeless, but only indeterminate in respect to the phase of a rhythm of specified 
period. 

To assume that any given physiological oscillator has exactly two important 
degrees of freedom is of course a rather special assumption. It is a common as
sumption because two is the minimum number needed to describe an attractor 
basin around a cycle. Two is also the maximum number of dimensions compatible 
with a number of widely used analytic and graphic techniques required for exact 
mathematical solution of models. However, the features that I would bring out 
do not rely on this restrictive ad hoc assumption. They do not rely on the ge
ometry of the plane, and they do allow us to treat the more complex models 
which are becoming common in the recent literature of physiological and bio
chemical control systems (Box E). 

Oscillators of Greater Complexity 

The main principle involved in generalizing to an arbitrary number of dimen
sions has been encountered before (p. 28). It is that a disk cannot be mapped 
continuously onto the phase ring unless the winding number of phase along the 
disk's rim is zero. This principle applies as follows in context of latent phase in a 
D-dimensional state space. Suspend from the attracting cycle any simply con
nected two-dimensional surface, i.e., a cap whose boundary is the attracting cycle. 
Now ask what is the latent phase cf> ofeach point in this cap? Around the boundary 
cf> = c/J: Its winding number is 1. Thus cf> cannot be assigned in a continuous way 
to all points in the cap. There must be a discontinuity. This is true of every cap 
that can be hung on the cycle (as on pp. 28 and 69). Thus the necessary point of 
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Box Dynamic Involving Three or More Interacting Variable 

By conceptually implifying a ystem to a ingle- ariable kinetic model, we 10 e 
track of phenomena that are con picuou in the laboratory. Thc ame i oftcn true of 
implification to only two variable . In matter of phy iology and biochemi try it i no 

mere affectation to abjure rehance on mathematical mcthod that fa il when a third or 
fourth variable come on tage. ny action involving two or more oscillators, forexamplc, 
transpire in aspace of at least four dimen ion (except in the mo t ema culated appro
ximation, that makes one or both into a im pie clo k). Any action tran piring in pace, 
in a continuum of coupled oscillator i properly de cribed by a partial differential 
equation. Thi may be wrilten in approximation as a et ofmany repeats ofthe ordinary 
differential equation of kinetics, one for each volume element, thu multiplying the 
number of dimen ion by the number ofvolume elements con idered. Kinetics portrayed 
in terms ofa time delay likewi e require a partial differential equation or approximation 
bya high-dimen ional ordinary differential equation. You will al 0 find in peru ing the 
bibliography of hapter 12- 14 that realistic chemical kinetics seldom involve as few 
a two major interacling variables. Three or four are typically involved in the models 
employed 10 mimic oscillating glycoly i in yea t, cAMP pul ation in lime mold , 
alternating oxidation and reduction in the malonic acid reaction, and the permeability 
interaction in nerve membrane. 

lt i not unusual for smooth dynamic involving three or more variable to exhibit 
chaotic behavior. Oscillator and coupled et of 0 cillator eem e pecially usceptible 
to uch departure from periodicity. ee 1976- 79 paper of Rössler. 

diseontinuity in eaeh eap is that eap's interseetion with a phaseless loeus of at 
least D-2 dimensions. That loeus threads the eyde, in the sense that it penetrates 
everyeap. 

How does this peeuliarity of <P(x) relate to anything observable in the phase 
relations of perturbed oseillators? This is the subjeet of the next seetion, but let's 
first tidy up this seetion by summarizing the essential and generalizable features 
of latent phase seen in the foregoing examples: 

1. Within the region of state spaee from whieh all trajectories lead to the 
eyde (its attraetor basin), every state has a unique latent phase <P. 

2. States having the same latent phase Iie in a single eonnected eontinuum of 
dimension one less than the dimension of state spaee. I eall these continua iso
ehrons, meaning same-time loei. The isochrons fill up the attractor basin of the 
eyde. 

3. The isoehrons never intersect except on the basin's boundary. 

4. Eaeh of these isochrons cuts thc cyde at one and only one point, in order 
around the eyde. 

5. <P ehanges at unit rate along all trajcetories in the attraetor basin. Therefore, 
the isoehrons are trans verse to trajeetories everywhere inside the attractor basin. 
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6. Initial conditions (states) outside the cycle's attractor basin have no latent 
phase. This set of states includes all steady-states of the dynamics as weil as the 
trajectories leading to such steady-states (their "attracting manifolds"). 

7. Along the boundary of the attractor basin a11 isochrons typica11y converge 
in such a way that they a11 become arbitrarily close together. This boundary has 
either one or two fewer dimensions than the state space. A piece of it also threads 
the cycle. 

8. The phase singularity has nothing necessarily to do with timelessness. It 
only indicates failure to return to the standard mode of rhythmicity. 

In the above models we used unperturbed dynamic equations (I = 0 implicitly) 
to determine the latent phase function of state cJJ = g(x): [R2 ---> §1. Then we plotted 
its contour map in state space by plotting the locus of states (the isochron) corre
sponding to each cJJ. We did not inquire into behavior during perturbation (I =I- 0). 
The next section does this and in so doing shows how to transfer the isochrons 
onto aspace of experimental stimuli, which is our only window into the state space 
of a system whose mechanism and state variables are still unknown. 

B: Perturbing an Attractor Cycle Oscillator 

Introduction 

In most of the experimental situations gathered into this book we deal with 
systems that are eventua11y regularly rhythmic. Because we don't know what 
complexities of physiological dynamics mediate between the oscillator we wish 
to study and our more peripheral rhythmic observable, we cannot easily interpret 
any observations preceding establishment of that standard rhythmic state. But 
once that condition is achieved, a phase dis placement of the observable rhythm 
may be taken to reflect an equal phase dis placement of the underlying oscillator. 
In other words, in the last analysis our only reliable observable is the osci11ator's 
latent phase. This function of its state was deduced from sampie dynamic equations 
in Examples 1-4. The states of equallatent phase were there plotted as isochrollS. 
Having drawn the isochrons in state space, we can now forget ab out trajectories 
and their equations. 

But a11 this pertains only to the standard environmental conditions, the un
perturbed condition we denote by I = O. 

Perturbed Trajectories 

In the presence of a stimulus (by definition), the osci11ator's dynamic is aItered. 
Its state no longer moves from one isochron to the next at unit rate. How does it 
move? We must draw trajectories again as we did in Chapter 5, Figures 3,4,6, 8. 
Nothing of those diagrams is changed in principle in this chapter about attractor 
cycles. The only new feature introduced in this chapter is that the isochrons are 
gene rally wiggly curves instead of straight lines. The topological outcome is the 
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same. Whether we consider cophase O(the event latency after stimulus) or latent 
phase <P(a function of the statc rcachcd at the end of the stimulus) or new phase 
cjJ' (of the poststimulus rhythm, extrapolated back to the end of the stimulus), the 
graphs above the stimulus plane (cjJ, M) all resemble a lattice ofscrew surfaces when 
plotted in the three-dimensional time crystal. Recall also that we may conveniently 
speak ofthat three-dimensional graph in terms ofits contour map on the stimulus 
plane. The contours being loci of equal time of an event, latent phase resembles 
a pinwheel wave when plotted as a contour map on the stimulus plane. 

The purpose of this section is to put those observations in a more general 
context. This seems to be called for because the qualitative features of resetting 
behavior seem remarkably independent of many quantitative details of model 
equations and because in real physiology we sei dom have equations anyway, nor 
do we know how to define the state space in which to draw the trajectories and 
isochrons that such equations would describe. Can we set aside these hypothetical 
constructs to deal only with what we can observe? The following argument may 
provide a step in that direction, to be pursued experimentally in Chapter 7. 

We suppose a dynamical system whose state may be represented by a point in 
[RD. We suppose the system tends to an attracting cycle which is some closed ring 
in [RD, not necessarily circular, possibly even knotted. The essential feature is only 
that it has the topological connectivity of §1. We suppose also that every point 
x in that cycle's attractor basin in principle has a latent phase <P = g(x), defined 
on the circle § 1 . 

Let us suppose that when a stimulus begins at time t = 0 the oscillator is 
somewhere on the attracting cycle. In general it departs from that cycle during 
the stimulus. After a time At, oscillators initially on the cycle have moved to other 
states as schematically indicated in Figure 5. Assuming continuity and smoothness 
of the dynamics, those new states at time t = At also lie on a ring: a distorted 
version of the ring of initial conditions along the attracting cycle. If the stimulus 
continues (and so the perturbed trajectories extend to t = 2A t) then the set of 
states arrived at is another ring, further displaced from the attracting cycle. We 
are defining a two-dimensional surface in the state space [RD. This surface is 
fibered by the perturbed trajectories, each from a different initial phase cjJ, and, 

a 

b 

Figure 5. (a) Points initially on the attracting 
cycle at time t = 0 are "blown" off it during expo
sure to a stimulus. Thc trajectory from one initial 
point is shown with arrows. The ring of all initial 
points progressively deforms and moves to a new 
attracting cycle as 1 --> x. (b) As above, but the cycle 
degenerates under continucd exposure: The stimn
lus forces the system to a steady-state regardless of 
its initial phase. For examples in context of cir-

cadian rhythms, see Peterson and lOHes (1979). 
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criss-crossing that ruling, by the rings, each for a different duration t of per
turbation. The surface is an image of the stimulus plane (cjJ, t) mapped into state 
space. Topologically it is a cylinder Iike a windsock blowing from the attracting 
cycle. Where it intersects the isochron surfaces in state space we have the isochrons 
of stimulus space, the loci of stimulus combinations (cjJ, t) that are equivalent 
in that they evoke synchronously reset rhythms. 

Suppose some kind of rhythmicity persists under indefinite prolongation of the 
stimulus, as is the ca se for circad.ian rhythms exposed to dirn enough continuous 
light and for pacemaker neurons biased by a small enough electrical current. 
Then the rings approach a limiting ring along which the state continues to circulate 
at a new period. This is the system's attracting cycle under conditions of continual 
exposure to the stimulus. The set of states reached by such stimuli thus constitutes 
a cylinder, as in Figure 5(a). 

But suppose the perturbing stimulus is such that the system is eventually 
brought to rest at a unique equilibrium. This is the case for some circadian rhythms 
exposed to prolonged artificial daylight, and for nerve in a voltage-clamp device 
and for oscillating glycolysis suppressed by oxygen (the Paste ur effect). In geo
metric terms all trajectories converge to that rest state, the standard starting 
state from which trajectories approach the attracting cycle again in permissive 
conditions. So the two-dimensional cylindrical surface converges to a point, 
like a cone [Figure 5(bl]. Incorporating that point, the surface is closed. lt is a 
two-dimensional cap bounded only by the attracting cycle (attracting under 
unperturbed conditions, in the absence of the stimulus). This cap is topologically 
equivalent to a disk whose boundary (cjJ,O) is that cycle. 

Topology to the Rescue 

We know a theorem about mapping such a disk to §1, as we implicitly do in 
assigning a latent phase qJ E §1 to each stimulus (cjJ, t): the map cannot be con
tinuous unless the winding number of qJ around the boundary (cjJ,O) is O. But it 
isn't. By definition, qJ = cjJ around the cycle: The winding number is 1. So qJ 

cannot vary with stimulus coordinates (cjJ, t) in a continuous way. 
What kind of discontinuity might be expected? Since there is no discontinuity 

along the boundary, it must be a closed locus inside the cap. That Iocus could 
be as small as a point at which the isochrons converge. This is our minimum 
phase singularity. It does not commonly lie at the apex ofthe cap in Figure 5(b): 
If it did, the rhythm would start at no definite phase upon reversion to permissive 
conditions. So in general, the phase singularity can be reached by following some 
a perturbed trajectory from a particular phase, cjJ* for a particular finite stimulus 
duration t*. In other words, regardless of the complexity with which any number 
of variables may be interacting in a rhythmic system, some point of the phaseless 
set can be reached by varying stimulus parameters in only two ways. 

What does a point in the phaseless set correspond to physically? lt is most 
likely not an equilibrium of the unperturbed dynamics. This is because for D > 2, 
any two-dimensional cap of trajectories ahogether misses most points (e.g., the 
equilibria) in IR/). There seems little to be said about it apart from discussion 
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Box F: Phase Compromise in Chemical Oscillator 

One way to construct a cap across an attracting cycle in state pace is to perturb the 
y tem [rom the cycle toward a fixed point. We ha e een that the et of tale 0 reached 

nece arily encountcr all i ochron alld encounter thcir con ergence poinl in the 
pha eIe el. 

There is another way, 100. By mixing the chemical oscillators one creates an oscillator 
ofhybrid compo ition. Suppo e the two "parent .. are identical but for timing, and both 
are on their eommon allraeling cycle, and that all th ir tat variable are ub tance 
eoneentration that quickly reach an intermediale compromise. Then the hybrid 
initially occupy states on slraight line joining the two parent pha e in tale pace. By 
fixing one parent' pha e and varying the other a weil a the volume ratio of the two 
parents, one can explore a two-dimensional set ofstate bounded only by the attracting 
cycle: a cap (Fig. a). This cap necessarily interseets the eonvergence of i oehron , the 
boundary pha eie et. 

By mixing lWO copies of a chemical oscil
lalor, of different volumes, al different 
phase. one achieve chemical compo i
lions intermediale belween Iho e mixed. 
The el of all ueh hybrid con lilllie a 
cap bounded only by Ihe allraeting eyde. 

oIe that thi can be done for any choice of the one parent's fixed pha e. Thu in 
an experiment varying both parent' pha es at fixed one-to-one volume ratio the 
ingularity i en ountered twice : once a above and onee under an exchange of the two 

parents' phases and relative volume . (See al 0 Box A of ha pIer 22.) 
An exception arises in the peeial ease of a plane eireular eycle with a repelling 

teady- laie at its center. Then by combining equal volumes of any two geometrically 
oppo ite pha e , one create the tale at the convergence of i ochron , viz the central 
teady-state. Thi pha e discontinuity thu appear not a two i olated points but a a 

one-dimensional curve in the (4)1,4>2) plane. A fuBer presentation of the relevant geo
metry is given in Winfree (1974c). It turn out that the phase singularity occurs along a 
one-dimen ional locu in the three- pace of 4>1. 4>2 and the volume ratio. In the ex
ceptional case mentioned, this locus is a straight line falling exactly in the equal volume 
plane. 

of a specific dynamic system. It is just a point in the attractor basin's boundary 
through which the unperturbed trajectory, wherever it may lead, does not return 
to the attracting cycle. 

The take-horne lesson seems to be that observing a phase singularity in the 
stimulus plane (observing a helicoid in each unit cell ofthe time crystal or observing 
a rotating wave in a pinwheel experiment) in itself suggests nothing very specific 
about the underlying mechanism. It may be interesting that more complicated 
phenomena are not observed, but the observation of only this much scarcely 
indicates more than: (a) that the physiological dynamics tends to a unique cycle 
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Box G: The Dilemma of "The Man Without a Metric" 

Figure 1 through 4 a umc an underlying tate pace homeomorphic to the urface 
on which they are printed. If, as must usually be the ca e, the actual tate pace ha more 
than the two dirnen ion of thi paper' mooth urface, we can till get by. We just say 
that the piclUre shows only the two-dimensional set of tate encountered along tra
jectorie departing under the tandard stimulu from the ring of different possible 
initial conditions. The isochrons are then one dirnen ional illler ee/iolls of thi urface 
with the higher dirnen ional i ochron surfaces or hyper urface of dirnen ion D - J, 
a in Figure 11 . Whatever the interpretation, we are concerned only with the relative 
geometry of thc perturbed trajectorie and the unperturbed trajectories. That is what 
determines how the c10ck change phase under diver e combination of timulu timing. 

o omeone could come along and deform the underlying state pace arbitrarily, 
tretching it here, twi ting it there, compre ing it el ewhere. It doesn't malter so long 

a the deformations are merely quantitative and do not violate the topological con
nectivity of the pace. (In other words, this is rubber sheet geometry, in which ci or, 
pins, and razor blade are di allowed.) So long a the perturbed and unperturbed tra
jectories (and therefore the isochrons) are deformed together, the re etting behavior is 
unaffected. Thu the re etting behavior of any simple smooth kind of 0 cillator can be 
obtained from much more complicated 0 cillator , even from oscillator in which 
things change abruptly and trajectorie hoot acro great distances at lightning speed, 
a in relaxation 0 cillators. To argue that a pattern of re etting behavior indicate a 
quanti tativc feature of the underlying 0 cillator, it is neces ary to know apriori how 
that oscillator works either in the pre ence r the ab ence of the cho en timulu .2 

Re elling beha ior reveals only a compari on between perturbed and unperturbed 
dynamics. 

This simple fact secm to me to invalidate any inference from dynamic ob erved 
experimentally to the many kind of dynamic model or metaphor that populate the 
Jot/mal of Theore/ical Bi%gy, the Bulle/in of Mu/hellla/iea/ Biophysics, Bi%gica/ 
Cybeme/ies, the JOl/rna/ of Mathematica/ Bi%g)", etc. Quantitative inference work 
only in the other direction. Le .. from an as umed mechani m to the expected resetting 
behavior. Departure from uch behavior, if large enough, might be taken to exclude 
the underlying hypothe i about mechanisms. But concurrence with ob ervation prove 
nolhing. 

On the other ide of the coin, certain kind of reselling behavior cannot occur unless 
the state spaee ha the right connectivity and enough dimension to allow trajectories 
the required elbow room in which to maneuver. Thus certain qualitative patterns of 
re etting behavior (e.g., negative slope in arcsetting curve) uffice to exclude certain 
topologieal eategorie of mechanism (in the ame example, mechanisms based on 
modulation of angular elocity as the only tate variable). And some conspicuou 
tructure that mu t occur in lRo, uch a a pha eie et threading the attracting cycle, 

need not occur in pace of other topology, such a the cylindrical ta te spaces ofrotating 
machinery [Andronov, et al., Chapter 7 (1966)]. 

2 Conditiom, are more favorable in pha c compromise experiment wilh chemical 0 cillalor . 
Whentwo volume of reaction at di tinct pha e are mixed. each perturb the other in a known 
and imple way. viz taking a weighled average of concentralion . 
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Box H: Resetting Curve For Multiple timuli 

ampbell (1964) initiated the practice ofanalyzing entrainment ofbiological rhythm 
in term of regular alternation between two environment, and thu between two 
dynami . (He had in mind ychron ization of the mitotic cycle by rhythmic alternation 
between two growth temperature .) Thi technique is u eful not only for hi imple 
clock, but al 0 for any 0 cillator that quickly recover to an altracting cycle in one of 
thc two environment (e.g., during ab ence of the timulu). Phase control of ueh an 
oscillator by a rhythmic timulu ean be analyzed by calculaling lhe impact of a 
ingle (repcated) exposure to that tirnulu. This was Ar t pelled out by Perkel et al. 

(1964) in context of neural pacemakers driven by a volley of action potential and by 
Pittendrigh and ini (1965) in context of circadian clocks driven by a dail light pul e. 

We are thu equipped to a k, "What i the winding number Wo of the phase resetting 
cur e indueed by a equence of n regularly paced timuliT This resetting eurve tell 
how weil an arbitrarily pha ed oseillator i ynchronized to the entraining rhythm after 
the 11th pul e. 0 far a the topologieal type of the eurve i concerned the an wer is 
conveniently imple: Wo = W7. To ee why, reason a follow. we vary tPo, the phase 
at whieh [he fir t timulu encounters the oseillator, we change th.e phase tP'o al the end 
of that first timulus. A tPo varie through one eycle. tP'o varies through W1 eycles. The 
next timulu arrives after a fixed interval T at phase tP'l = tP'o + T. or each eYcle 
through wh ich tPl is varied. tP'l and therefore tPz varies Ihrough W1 eycles. Thus tP2 
varies through W1 x W1 cycle per eYcle of tPQ' nd 0 on. 

Thu if W1 i 2 or - llet us ay. then Wo can be arbitrarily large. In other word the 
average lope of the resetting eurve (10 a volley of repealed limuli) can be arbitrarily 
large. 

On the other hand, if W1 = 0 or I, then w" = 0 or l. This doesn't guarantee mall 
resetting curve lope, but a small average lope is a neees ary precondition for small 
lope . Intere tingly, these are the only (wo resetting type thu far ob erved in nature, 
o [ar as l am aware. 

when unperturbed; (b) that it tends to a steady-statc under the stimulus used; 
and (c) that both these processes behave in reasonably smooth ways. 

In fact it turns out that convergence to a steady-state is by no mcans necessary: 
Displacement toward a new attracting cycle as in Figure 5(a) can servc the same 
purpose. The same result also emerges from an entirely different style of pcr
turbation (see Box F). Nor is smoothness of the dynamics really necessary (see 
Section C and Box G). In fact, the same behavior has been found evel1 in oscil
lators which are not describable by finite-dimensional state spaces (Johnsson and 
Karlsson, 1971). It should also be noted that our interpretation ofthe I coordinate 
as stimulus duratiol1 is more restrictive than necessary. First of all, the stimulus 
need not be a fixed parameter change. If the stimulus pro gram is a concatenation 
of simpler stimuli as in Box Hora wildly time-varying schedule of influences, 
it still drives the system's state along some path. The only geometric change 
induced by this generalization is that such paths can now intersect each other 
and themselves. That only means that the (4), t) surface may be folded and may 
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pass through itself, but this is of no concern to our topological results. t may 
also therefore be interpreted as dosage of a substance or magnitude of a per
turbation deJivered all at once, which only gradually dribbles into the dynamic 
system. As in Chapter 5, M here refers to stimulus magnitude, thus generaJizing the 
usage in prior chapters where a stimulus was described as lasting for duration M, 
from t = 0 to t = M. 

Oscillators of Greater Complexity 

Given at least three state variables to play with, one can obtain rather complex 
patterns of phase response. Depicted as isochrons on the stimulus plane, these 
patterns typically amount to arrangements of singularities smoothly connected 
together as in Figure 6. Note that in the M ranges indicated, the dependence 
of q/ on cjJ can be type -1, 0, 1, 2, etc. In the simpler models considered up to 
now we have seen only types 0 and 1. Let me explain briefly how these things 
can happen. 

In all the following, we will assurne as a stimulus some fixed change in the 
oscillator's dynamies. This is applied for a while then removed. During such a 
stimulus the rate of change of state is the same at any given state no matter how 
or when that state was reached. (This is the definition of state, not an assumption.) 
The trajectories in state space therefore cannot cross through each other. We 
saw in Chapter 3 that simple clocks respond to such stimuli with type 1 resetting. 
In Chapters 4 and 5 we saw that by introducing a second variable of state we 
can also obtain type 0 resetting. The "type" is the winding number of latent phase 
around the ring along wh ich all the perturbed trajectories end, starting from the 
attracting cycle. This ring, being a distortion of the cycle under nonintersecting 
flow in two dimensions, either encircled the phaseless set with winding number 1 
(as at stimulus duration 0) or was pushed beyond the phaseless set to obtain winding 

Figure 6. Isochrons as they might appear 
in the (1', M) plane of initial phases and 
stimulus magnitudes. The trajectory fol
lowed as M increases from initial phase 0 
passes through a succession of encounters 
with phaseless sets. At these critical M's, 
(he resetting "type" changes by ± I. See 

also Chapter 2, Box B. 

-1 

M 

o 12 
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Figure 7. Rings a, h, cdcpict states reached during Ilow toward point d 
from the 3ttracting cyclc of an oscillator with onl y two independent 
dcgrces of freedom (the two-dimensional analog of Figure 5(b)). The 
radial strokes indicate isochrons. Rings a and h wind once through the 
cyclc of isochrons. Ring c has winding Illlmher O. These are the only 

two choices for non-self-interscctillg Il ow in the plane. 

number 0 (as in the limit of approach to equilibrium under prolonged exposure 
to the stimulus) (see Figure 7). 

What if there are more degrees of freedom than 2'1 Can other re setting types 
be obtained? First, note that invoking additional degrees of freedom might be 
the same as invoking a more complex pattern ofperturbation: A constant stimulus 
such as considered above might appear to an oscillator as a time-varying pattern 
of interference in its operation if there are internal degrees of freedom that slowly 
move in response to the fixed stimulus and, as they change, affect the working of 
the oscillator. In physiological systems it would be quite astonishing to find only 
two state variables and the corresponding elementary resetting behavior. Up to 
now only such simple resetting behavior has been found in the several systems 
examined in detail. But the observations are all crude and are less than a decade 
old, so it seems to me timely to indicate in broad strokes some other behavior that 
undoubtedly awaits discovery. 

To begin, recall that in a two-dimensional state spacc the phaseless set is at 
least an attracting or repelling steady-state point and that in a three-dimensional 
state space the phaseless set is at least the extension of that point into a one
dimensional curve, This curve consists of the two trajectories leading toward or 
away from the steady-state. 3 This phaseless set is the convergence point for all 
the isochrons, arranged in order around the cycJe. It threads the cycJe. Latent 
phase has winding number 1 around the phaseless set along any closed path near 
the attracting cycle. We will now proceed by considering how oscillators initially 
on that cycle might be moved to new states under a stimulus. We thus consider 
distortions of a ring of initial conditions assumed to coincide with the cycJe at 
stimulus magnitude M = O. Figure 8 suggests how a stimulus can change this 
winding number from I to O. Viewed in projection along the phaseless locus, 
Figure 8 would look a lot like Figure 7. Figure 9 suggests how a somewhat different 
geometry of change during the perturbation could inducc a winding number of 
2, i.e., type 2 resetting. Figure 10 suggests another alteration of the flow during 
perturbation which would result in winding number 0 and then, with a further 
prolongation of the stimulus, would result in winding number - 1. In fact any 
of the integer winding numbers, all of which are allowed so long as we consider 
only the abstract logic of phase resetting, can also be achieved by appropriately 
contrived smooth dynamical flow involving no more than three state variables. 

J Which must exist, supposing the trajectories point inward from infinity, as they must in all real 
chemieal systems (Wei, J 962). 
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Figure 8. Figure 5(b) is elaboraled to include pieces of several isochrons to show how they converge 
along a curve wh ich lhreads the attracting cycle from which the co ne hangs like a wind sock. Isochrons 
acquire their phase labels in the order of intersection with states along that cycle at t = O. At any t > 0 
the ring of states reached either does or does not encircle this locus. The resetting type is the winding 

number of this ring around the phaseless set. 

Figure 9. During perturbed dynamics, oscillators initially on 
the attracting cycle at t = 0 are displaced only slightly (mostly in 
region abc) to achieve W = 2. The horizontalline is supposed to 

be the convergence loeus of isoehrons, i.e., the phaseless set. 

Figure 10. Suppose the dynamical flow during the stimulus is a 
cloekwise rotation about an axis indieated by the dot, perpendic
ular to the page. Then a ring of states initially with winding 
number W = 1 around the phaseless loeus next eonverts to W = 0 

and then to W = - I. 

t=O 

t=l 

t=O-~ w=! 

t=l -----~- W=O 

~ 
t=2 ~-W=-l 
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TUBE OF 
TRAJECTORIES 

DURiNG 
SllMULUS 

I Figure 11. Similar 10 Figure X. but thc tube of 
displaced rings of initial conditions (the (,/), M) 
surface of Figurc 6) intersects some isochrons in 
closed rings (the ring isochrons of Figurc 6). This 
can only happen in astate space of at least 3 

dcgrces of frecdom. 

Figure 8 shows not just distortion of the initial ring of states achieved at the end 
of the stimulus, but the whole continuum of progressive distortion, comprising 
the cylinder of states that can be reached by stimuli of increasing magnitude 
beginning at any phase on the cycle. This can be made to intersect the phaseless 
set any number oftimes in a great variety ofways as in Figures 9 and 10. The two
dimensional surface in Figure 8 is a mapping of the stimulus plane into state 
space. So isochrons on the stimulus plane (rjJ, M) can in principle converge to 
any number of phase singularities of either clockwise or anticlockwise orienta
tion. No one has yet observed such behavior experimentaIly4 but I feel confident 
that it only awaits the investment of labor. R. Krasnow (unpub!. ms) argues that 
almost any circadian oscillator should exhibit multiple phase singularities in the 
stimulus plane for very dirn light at durations comparable to the circadian period. 

In Figure 11 we switch emphasis from the phascless set to ex amine how a 
single isochron surface in state space might intersect the (rjJ, M) cylinder. The 
geometry of three dimensions allows intersections along a closed-ring locus with 
the consequence that isochrons in the stimulus plane can present the appearance 
of a bull's eye, a nest of concentric rings as in Figure 6. This is impossible in the 
case of only 2 degrees of freedom. 

C: Unsmooth Kinetics 

In deriving the existence of phase singularities from simple observations in 
Chapters 1 and 2, we relied on topological arguments. We have now seen that 
phase singularities are also implicit in a variety of dynamical models. In both cases 
smoothness (in space, in time, in state space) was an indispensible ingredient ofthe 
argument. But in some kinds of data and in some kinds of dynamical model, things 
do not change so smoothly; things sometimes change quick as lightning. The 
theory of discrete state automata, catastrophe theory, and the like provide an 
abundance of intoxicating perspectives on processes involving abrupt change, 

4 Note added in proofs: Jalife ct al. (1980) ha ve demonstratcd a seq ucnce of resetting types 1 --> 0 --> 1 
with increasing stimuli in the sinus node of the ki Itcn's heart. I thank Sluart Hastings for the observation 

that no third variable is required for this: a concavc are in the planar limit eycle is sufficient. 
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but my purpose here is only to examine the discontinuities implicit even in 
smoothness. Accordingly, the remainder of this chapter provides no more than a 
briefsurvey ofthe role played by quick changes ofpace in the experimental systems 
most involved in this volume. 

The main points I would submit to your attention in these examples are: 

1. Systems exhibiting abrupt changes have commonly been described by 
discontinuous models. Most commonly, these models involve only a single internal 
variable of state. They are essentially simple docks with a discontinuity in their 
rate functions. Such models have no place for phase singularities. 

2. Nevertheless, the experimental systems in question commonly turn out to 
exhibit one or more phase singularities. 

3. A big improvement of realism in modeling is achieved by recognizing 
the necessary existence of at least one other internal variable of state. This at 
least makes it possible to consistently describe a dynamical mechanism without 
invoking magie at the discontinuity. For examples in biophysical contexts see 
van der Pol and van der Mark (1928), Fitzhugh (1960, 1961), Katchalsky and 
Spangler (1968), Franck (1968), Lavenda et al. (1971), and Linkens et al. (1976). 
In more general context, see Chapter 8 of Andronov et al. (1966) and Chapters 26 
and 31 ofMinorsky (1962). 

4. Such models are topologically equivalent to their smoother relatives and 
their phase behavior is qualitatively the same as that of smoother models except 
that a lot of it is compressed into the very brief interval during which lightning 
changes transpire. 

5. Such models often exhibit phase singularities similar to those considered 
in prior chapters. But sometimes no singularity is evident because it is squeezed 
into the brief interval of rapid change, where data resolution is particularly poor. 

Let us now turn to some examples in order of their appearance in the Bestiary. 

Relaxation Oscillators 

The neon glow tube used in the coupled oscillator population of Chapter 11 
provides an example of arelaxation oscillator. It works by accumulating a voltage 
on a capacitor. The voltage rises toward a limit. Ifthe voltage exceeds a threshold, 
then the tube discharges be fore reaching the limit, and the cyde restarts. If the 
threshold exceeds the limit, then the tube waits to fire until stimulated and then 
restarts its accumulation. This caricature invokes arbitrarily rapid change in one 
state variable at a certain phase in the cyde, in every cyde. In ring devices it occurs 
only in returning toward the cyde after a disturbance (Box A). These are two 
different limiting cases of a smooth attractor cyde, both of which eliminate all but 
one state variable (corresponding to phase) by turning the others into a seldom 
invoked "deus ex machina". Such approximations usually do violence to the model's 
accuracy in situations other than routine circulation along the attracting cyde. 
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The Malonic Acid Reaction 

Though the kinetics of any reaction are necesarily continuous, certain steps 
can go very much faster than others. In the malonic acid reaction (Chapter 13) 
the transition from red to blue, with all that it entails, is so abrupt that we mayas 
weIl think of it as a discontinuous change at a threshold, or so it would seem. But 
cutting corners in this way leads to contradictions when we come to consider 
reaction geometries in which phase has a nonzero winding number around some 
ring. This is because such a ring necessarily contains a phase discontinuity, as we 
have often seen. Ifphase is identified with some chemical concentration, that means 
a concentration discontinuity. But that is impossible in a physically continuous 
medium. So it is necessary to retain the more complex description involving rapid 
but continuous changes in two or more mutually regulating reactions. 

The malonic acid reaction can be thought of as a relaxation oscillator whose 
primary variable of state is bromide concentration. Bromide concentration falls 
exponentially as bromide is consumed. At a threshold, it is recreated during a 
momentary explosion of oxidative activity. But within this small fraction of a 
second, a second variable of state HBr02 increases lOO,OOO-fold (according to the 
carefully fabricated kinetic scheme of Field et al. (1972)). Hastings and Murray 
(1975) showed an attracting cycle implicit in this scheme. Vavilin et al. (1968) also 
showed that the system can be phase-shifted without permanently altering the 
reaction's parameters, using a pulse of ultraviolet light. Thus the malonic acid 
reaction presents us with all we need in order to find a phaseless manifold: an 
enterprise that makes no sense in terms of single-variable relaxation oscillator 
models. By locating the singular combination of dosage and timing that puts the 
system in its phaseless manifold, one might discover whether the steady-state is 
locally an attractor or a repellor. However, such matters have not yet been pursued 
in the laboratory so we don't really know how much of the topological logic of 
resetting actually will prove useful in an oscillator with such stiff kinetics. 

Electric Rhythms in Cell Membranes 

Relaxation oscillators are widely used to depict nerve kinetics. In fact it was in 
context ofneural rhythms that A. V. HilI (1933) initially declared that all biological 
oscillations are of this sort, aremark echoed in contemporary papers even as 
sophisticated as Nelsen and Becker (1968) and Linkens et al. (1976). In the latter 
paper the relaxation oscillator is really continuous, following a tradition instigated 
by van der Pol (1926), in which a periodic jump can be made as swift as desired by 
choosing a parameter in a differential equation. But another tradition makes no 
compromises with continuity. According to this interpretation of pacemaker 
activity in neurons, the membrane voltage slowly falls as sodium leaks in. Mean
while the threshold for sudden increase of sodium permeability gradually rises, 
recovering from a previous action potential. When the two meet, an action poten
tial occurs and both are discontinuously re set to widely separated values, resuming 
their approach to equality. For example, see models in Perkel et al., 1964; Rescigno, 
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1970; Knight, 1972; Fohlmeister et al., 1974; Peskin, 1975; Hartline, 1976; Pinsker, 
1977; Allessie et a\., 1976, 1977; and Glass and Mackey, 1979. This kind of model 
of a neural oscillator resembles a leaky bucket in which a single quantity accumu
lates until the bottom springs open momentarily, afterwhich accumulation resumes. 
In such models there is no pi ace for type 0 re setting nor for rotation about a pivotal 
phase singularity. 

Nerve kinetics has also been caricatured in terms of the other kind of single
variable discontinuous kinetic scheme, the ring device. The first well-developed 
model ca me from Wiener and Rosenblueth in 1946. Wiener envisioned the heart 
cell as baving an excited state followed by a prolonged refractory period, which 
terminates in a resting state. With the resting state and the excited state identified 
as adjacent, and the refractory state portrayed as an interval along which state 
advances at a steady rate, the model resembles a ring device. Krinskii (1968) 
stretcbed the excited state out to a finite duration to recapture some phenomena 
lost in Wiener's more ascetic simplification, thus anticipating experimental results 
whicb later induced a similar amendment of the Hodgkin-Huxley equations for 
the beartbeat (McAllister, Noble, and Tsien, 1975). Those two early papers 
led into substantial matbematical developments about the behavior of ring 
devices in sheets, spatially coupled to admit the possibility of wave propagation 
as in the heartbeat, in epileptic seizure, and in spreading depression (see Chapter 
14). One upshot is that there cannot be a stably rotating wave of excitation. 

The rotating wave and type 0 re setting are both admitted only when a second 
variable is admitted. It is not necessary to exclude discontinuous kinetics though. 
For example, Zeeman's (1972) "cusp catastrophe" model of nerve membrane and 
heart muscle, whatever its other defects, does support a rotating wave, given 
suitable quantitative adjustments (Winfree, 1973c). 

Tbe fast kinetics of the threshold process is described in continuous detail by 
the Hodgkin-Huxley equations using jimr variables of state. Along most of the 
cycle two variables are cbanging slowly and the other two faster variables behave 
almost like instantaneous functions of the slow pair. They exhibit interesting 
behavior only during tbe moment of the nerve's firing, which is reduced to instan
taneous discontinuity in tbe more compact approximations. 

Best in bis dissertation (1976) inquired wh ether type 0 resetting and the phase 
singularity are implicit in the Hodgkin-Huxley equations. Best computed resetting 
curves for a periodically firing squid axon using the Hodgkin-Huxley equation 
with parameters as measured on squid. He used a current bias to induce oscillation, 
described by an attracting cycle in the four-dimensional state space. One of tbe 
state variables is membrane voltage. At various times in the cycle, Best increased 
or decreased this voltage by some fixed amount by cbarging or discharging the 
membrane capacitance. He then continued the computation until tbe membrane 
had returned close enough to its attracting cyc!e so tbat its phase was increasing 
very nearly uniformly in time. Extrapolating back to the moment of the voItage 
impulse, he plotted tbc new phase just after the stimulus as a function of the old 
phase at which the stimulus was given. For stimuli of middling magnitude, either 
positive or negative, tbe resetting curves looked discontinuous. But by enormously 
increasing the time resolution in the ostensibly discontinuous region, Best was able 
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to show that the curves are in fact contin uous, and that they change topology from 
type 1 to type 0 at a critical pulse magnitude. s 

According to the Hodgkin-Huxley equation thc singular dcpolarizing (excita
tory) pulse and its actual discontinuity of phase are found in midcyde, between 
action potentials. At nearby stimulus magnitudes the resetting curve has a region 
too steep to distinguish experimentally from a discontinuity. For hyperpolarizing 
(inhibitory) pulses, this lies ne ar the end of the cyde, just before the action poten
tial. Suggestively similar experimental results appear in Moore et al. (1963, Fig. 14), 
Perkel et al. (1964, Fig. 2A), Schulman (1969), Jalife and Moe (1976, Figs. 5 and 9), 
Pinsker (1977, Fig. 5E-l Sec.), Ayers and Selverston (1979, Figs. 5, 6, and 11), 
Jalife and Antzelevitch (1979), Jalife and Moe (1979, Fig. 14) and Scott (1979). 
Discontinuities are not commonly associated with the action potential itself. Scott 
(1979) argues that they represent encounters with the separatrix emanating from 
the singularity (see Box C, pp. 153-154). 

Best's result also illustrates the importance of using a continuous causal model 
for real dynamic systems, however quick some stages of their dynamics may be. 
When we settle for a threshold relaxation caricature of membrane kinetics, we 
invoke magic at the threshold to bring about the necessary changes. All questions 
of process and of causation are obviated by collapsing that critical interval to a 
single structureless instant. After resorting to such an approximation, it seems 
difficult to understand the type 0 resetting observed in pacemaker neurons, in 
which the Hodgkin-Huxley cyde is evidently very much smoother than it is in 
squid. 

Biochemical Excitability in Slime Molds 

A sheet of aggregating social amoebae behaves as an excitable medium capable 
of relaying a pulse of cAMP (see Chapter 15). The triggering of cAMP synthesis 
and release is abrupt. Nonetheless, pacemaker cells exhibit type 0 resetting. And 
sheets of cells support rotating waves, pivoting around a phase singularity that 
later becomes the assembled animal (Clark and Steck, 1979). 

Circadian Clocks 

Relaxation oscillators have been invoked as models for the mechanisms of 
circadian docks since the earliest days (e.g., Pittendrigh and Bruce, 1957, p. 84; 
Bunning, 1960 and 1964; Roberts, 1962; and Pavlidis, 1967a). Arecent addition to 

5 Because Best chose parameters such that the steady-state is locally an a((raetor eompeting with 
the attracting eycle, the geometry was not quite so simple in detail. Resetting curves too close to the 
critical pulse magnitude are not either type, because eaeh has a zone of old phase in whieh new phase 
is undefined. This happens beeause the system falls into the locally attracting steady-state after any 
such stimulus. Only along the boundary of this attraetor basin does new phase behave in an honestly 
singular way. A slight adjustment of the biasing ennent would presumably climinate this peculiarity 

without a!feeting much else. 
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this literature by Rössler (1975) ties the relaxation oscillator notion to a chemical 
mechanism for temperature independence. But the reasons for adopting discontin
uous models seem to me less than compelling. They are: 

1. Tension discharge models are especially easy to visualize and to test 
experimentally. 

2. Resetting curves, when plotted in terms of phase shift, commonly suggest a 
discontinuous change from one-half cycle advance to one-half cycle delay. This 
"phase jump" was thought to be the "discharge" of a physiological accumulator. 

Because smooth attractor cycle kinetics lead to the smooth screw surface 
actually observed in the time crystal, I rejected the relaxation oscillator idea 
(Winfree, 1970b). That was wrong too. Only the single-variable discontinuous 
caricature is excluded by this observation. Nonsmooth kinetics can readily result 
in smooth resetting behavior (see Box G), just as smooth kinetics can result in 
nonsmooth resetting behavior (e.g., Figure 9 of Chapter 4). 

The Cell Cycle 

Extensive re setting measurements have been conducted using the lO-hour 
cycle ofnuclear division in the acellular slime mold (Chapter 22). These and other 
experiments have led many to believe that cell division is governed by a cyto
chemical oscillator which once per cycle triggers the sequence ofprocesses required 
for DNA synthesis and nuclear fission. Is the oscillator a relaxation oscillator, 
constrained to a fixed cycle with an abruptjump in it? Several mechanisms ofthis 
sort have been proposed (e.g., Rasmussen and Zeuthen 1962; Rusch et al., 1966; 
Fantes et al., 1975). Or might it be a feedback process that functions like a smooth 
attracting cycle? Several models of this sort have also been proposed (Selkov, 
1970; Burton and Canham, 1973; Gilbert, 1974; Kauffman, 1974; Tyson and 
Kauffman, 1975). These two classes can be distinguished by examining their 
resetting behaviors even prior to learning more about the physical mechanism. 
Tyson and Kauffman (1975) and Kauffman and Wille (1975) have tried to put 
Physarum in a position to reveal the smoothness of its cycle using such measure
ments. Unfortunately, Physarum doesn't cooperate. Most experiments up to now 
show a sharp discontinuity in resetting behavior less than a hour be fore mitosis 
(Sachsenmaier et al., 1972; Tyson and Sachsenmaier, 1978:) The particular simpli
city of the discontinuity observed in Physarum strongly recommends a model in 
which the concentration of a mitotic inhibitor or activator abruptly doubles or 
halves when receptor sites on the DNA are doubled during replication. 

More fundamentally discontinuous models have been elaborated. Kauffman 
(1969), for example, envisions the cell cycle as a sequential machine not unlike 
a digital computer, in which each configuration of gene activity induces a unique 
next state until the whole dance has worked through to a new beginning. Nothing 
like a phase singularity would be expected in such a case, either. In fact there 
seems to be no compelling evidence to date that the cell cycle need be described 
by anything more than the one dimension of phase. 
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Box I: Alternative to the Limit Cycle Interpretation 
of Biological Clocks 

Kalmu and Wiggle worth (1960) provided one of the fir t application of the 
qualitative theory of ordinary differential equations to understanding the behavior of 
circadian rhythms. Thi model invoked a pair of limit c de , one attracting and one 
repelling. It architect were aware that they were instigating a conceptually important 
departure from the then wide pread implicit a umption of im pIe-dock dynamic : 
"We hope that they may erve u better than the alarm do k wh ich our ehildren hear 
ringing from the in ide of Peter Pan' crocodile, and \ hich has mi led many of us in the 
past." This hope wa weil plaeed, a we hall eontinue to ee in ub equent chapter . 

onethele we hall also ee that the limit cyde metaphor fails in several important 
ways. 

Fir t, in the real world one never does get to the limit. What ifrecovery to the attraet
ing cycle take much longer than the typical interval between ucce ive stimuli? Then 
the exi tence ofthe limit ha no more than academic pertinence. It i Iherefore important 
to mea ure the rate of recovery. Thi i undertaken for Drosophila' circadian dock in 
the next chapter. 

Second, it may not be usual to find a single isolated physiologieal oscillator. ore 
commonly they come in pair or in larger population, interacting at lea t weakly. Two 
mutually ynchronized 0 cillator have at lea tone attracling cyde, and generally 
several alternative attraeting cyde in a pace of twice the ingle 0 cillator' number of 
dirnen ion. In principle thi ea e may till be regarded in term of dynamics around an 
attracting eyde, but that may not be too helpful in situations involving significant 
departure from the cycle becau ethen the complexitie of How in high,dimen ional 
pace ean beeome quite unmanageable. 

Third, it is not obviou that real phy iological y tem eommonly have a limit cyde 
at all, though they may nonetheless be attracted into a ring-like volume of states. lt i 
entirely possible for a system involving three or more variables to meander aperiodically 
without ever converging either to a tationary tale or to a unique attracting cyde. 
Laboratoryexample of ueh irregularly periodie dynamies are ju t beginning to appear 
in the research literature of 1977. Many of the theoretical examples, notably due to 
Rö ler, suggest that the chaotic dynamic of so-ca lied strange attractors readily arises 
in connection with lightly perturbed 0 cillator and pair or population of mutually 
interacting 0 eillator . 

lt seems particularly ironie that most of this chapter was developed in an effort to 
account for the reaction of Drosophila' circadian dock to a single pha e-resetting 
timulu . But more recent experiment gave cant upport to the notion that Drosophila' 

edo ion lock ha an attracting cyde: ifit doe ,it attraci mueh more lowl than anyone 

had imagined. More recent theoretical model ofthi circadian dock tend to emphasize 
it re emblanee to a population ofo cillator whosecollective behavior i not domina ted 
by an attraeting eyde. The e matter are pur ued in hapter 7 and . 
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Rhythmic Ovulation 

The female cyde (Chapter 23) has usually been described in terms of sudden 
discrete changes of state (e.g., ovulation, hormone levels transgressing thresholds, 
etc.) which eventually recreate a prior state. The early mathematical model of 
Danziger and EImergreen (1957) is typical in this respect. In such a case the cyde's 
rephasing by exogenous hormonal stimuli would be expected to reflect these 
discontinuities. This is the ca se in experiments on Bogumil's numerical summary 
ofthe endocrine kinetics thought to underlie the human menstrual cyde. Estrogen 
infusions of various sizes app!ied at various phases do reveal stark discontinuities 
in the model's response (Bogumil, pers. comm.). Ifthere are any phase singularities, 
they are weil hidden in these discontinuities. 

The only complete resetting curves presently available from living mammals 
were obtained with such potent synchronizing stimuli that !ittle can be inferred 
about the smoothness or discontinuity of the cydic mechanism (see Chapter 23). 

Conclusion 

In respect to phase resetting and patterns of phase in space, there seems to be 
!ittle qualitative difference between attractor cyde oscillators with smooth kinetics 
and others which change state abruptly during the normal cyde. Resetting behavior 
is really discontinuous only ifthe state space is one-dimensional or ifthe attracting 
cyde has certain ungeneric exact symmetries (e.g., Box F). However a phase 
singularity can be caught up in an interval of sudden change, where the time 
axes are, as it were, very compressed. This can result in such severe distortion 
of the bundle of converging isochrons that one sees only stark discontinuity. 
This can happen, but need not, and apparently does not in some ofthe experimental 
systems referred to above. 

These last remarks are not just theoretical, but conjectural as weil. With a 
parting reference to Box I it now seems appropriate to depart from the extremes 
of theoretical abstraction approached in this chapter. We will next pursue opera
tional definitions and experimental methods for testing the utility of isochrons 
and allied not ions in connection with a particular physiological system. In the 
next chapter I present such an attempt using Drosophila pseudoobscura's circadian 
dock. 
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First get your facts; and then you can distort them at your leis ure. 

Mark Twain 

A: Introduction 

If, in context of reallaboratory experiments, we wish to seriously contemplate 
models with more than one degree of freedom, then we must find two or more 
independent empirical measures corresponding to the movements of the system 
in its state space. We must seek to plot a trajectory in aspace oftwo or more mea
sureable quantities. If we can find a way to do this, then we can distinguish the 
quickly attracting cycle of Chapter 6 from the orbitally stable kinetic schemes of 
Chapters 4 and 5. 

In mechanical systems such as the pendulum of Chapter 5, position in space 
and its rate of change (the velocity or momentum) comprise a natural choice of 
coordinates for the state space. In chemical systems, this kind of plot is much less 
natural because reaction rates depend only on concentrations, not on their rates 
of change. Ideally we would monitor two or more concentrations or functions of 
the concentrations and plot these against each other to measure a trajectory. 
Observations in this style have been collected by Ghosh and Chance (1964), Betz 
and Chance (1965b), Betz (1966), Degn (1969), Betz and Becker (1975a), Blandamer 
and Roberts (1978), and Wegmann and Rössler (1978). 

Lacking such complete information, people have resorted to plotting any single 
accessible observable against its rate of change. The hope is that both quantities
the observable and its rate of change-are reasonably smooth, independent func
tions of the state variables (concentrations). If so, then a plot of the one function 
of state against the other might constitute a recognizable, though distorted, image 
of a two-dimensional projection from the state space. 

The least risky attempt of this sort is a plot of concentration against its rate 
of change in a system believed to be weil understood and to involve only two 
important variables of state, one of which is the measured concentration. 
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A more adventuresome attempt with the same procedure might use a system 
believed to importantly involve interactions among several quantities. Trajectories 
of this kind are familiar to neurophysiologists using membrane voltage (one of 
the four coordinates in Hodgkin's and Huxley's state space, essentially a ratio of 
inside/outside ion concentrations) as the only direct observable (e.g., Jenerick 
1963; Gola, 1976; Pinsker, 1979; and Guttman et al. 1979. See Chapter 14 for 
background). 

More precarious is the attempt to use a conveniently observable function of 
state without the support of any well-tested idea of wh at the basic variables of 
state might be or what kind of function of state the observable might be. In this 
category we might consider any circadian rhythm in which some quantity can be 
monitored continuously. For example, the openness of Kalanchoe's ftower is such 
a quantity. A plot of openness against its rate of change winds 'round and 'round 
a center, with variations of amplitude, at reasonably uniform angular velocity. 
Such plots provided the first direct measurement of "isochrons" (see Chapter 21). 

Still more perilous is the effort undertaken in this chapter to use an observable 
that is not even defined on the same kind of space as are the presumed variables 
of state. The observable most natural to our interest in things rhythmic is the 
phase of a circadian rhythm. Of course that makes a rather dull plot since phase, 
being defined in proportion to elapsed time, has rate of change identically 1. But 
persevering in this preoccupation with phase, we might instead take the reset phase 
of a rhythm as our observable and plot this value against its rate of change as we 
vary the time at which a stimulus is given. Those two observations presumably 
constitute two independent measures of the unperturbed clock's state. To put it 
another way, we do as in the previous paragraph, but our rhythmic observable is 
"the phase to which the rhythm would be reset if perturbed right now in some 
standard way." We plot that against its rate of change. This is simply the familiar 
rhythm of sensitivity, the resetting map, plotted against its slope. 

The labor involved in such an effort is nearly prohibitive. Why go to the trouble? 
What will be gained by it? 

The result will be some kind of distorted look into a circadian oscillator's 
dynamical space: the first ever obtained. In principle it might reveal any kind ofun
anticipated dynamical complexity, any unforeseen pattern of organization among 
attracting and repelling steady-states, attracting and repelling limit cycles, thres
holds, and separatrices, etc.: No one has ever before examined the dynamics o[ a 
circadian clock for its essential, qualitative features. In fact, as you will see, what 
emerges is startlingly simple and disconcertingly unlike the relaxation oscillator 
model and quickly attracting limit cycle models previously entertained. 

Such an experiment requires thorough automation. The remainder of this 
chapter mostly presents the results of one such experiment, using Drosophila's 
circadian rhythm ofpupal eclosion and my University ofChicago "time machine". 
(See Winfree, 1973a and Chapter 20 for background.) The analysis sketched here 
was presented verbally at the Biophysical Society meeting in Philadelphia, 
February 1975; the graphs were distributed at the Dahlem Conference on the 
Biophysical Basis of Circadian Rhythms in Berlin in November 1975; both were 
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presented together at the Circadian Clock Symposium in La Jolla in January 1976; 
but they have not previously appeared in print. 

B: The Time Machine Experiment 

It is a capital mistake to theorize before one has data. Insensibly one begins 
to twist facts to suit theories, instead of theories to suit facts. 

Sherlock Holmes, 
"A Scandal in Bohemia" 

Background 

To put the forthcoming trajectories in context of our earlier encounters with 
Drosophila, let me remind you of the pinwheel experiment and its resuIting time 
crystal (Chapter 2, Chapter 20). The pinwheel experiment was contrived to dis
tinguish the dock's states by keeping it for a while in one environment (constant 
dark or red light up to a time Tor phase 1jJ) and then for a while in another (constant 
blue light for a duration M). Edosion timing then provided one measure of the 
dock's state at the end of that treatment. The measured dependence of the re
suIting cophase, 8, on T and M was depicted in two equivalent ways: 

1. As a lattice of screw surfaces in which a screw axis is the only conspicuous 
irregularity, and 

2. As a contour map or a wave rotating on the stimulus description plane, in 
which the pivot corresponds to the screw axis at T = T*, M = M*). 

This 8 provides one measure of the dock's state at the end of the stimulus. 
However, as we saw in Chapter 3, single-variable models proved inadequate to 
account for all the facts of phase-resetting. So we need to discriminate some addi
tional way the clock's state can change. We thus need to figure out how to assay 
the state of the dock as it follows some path possibly off its "normal" cyde. We 
can then ask whether the path observed is or is not the same old usual cyde. If not, 
how quickly does it return to the standard cycle? Or does it noticeably approach 
the standard cycle at all? In performing this exercise I will abjure theory and 
stick consistently to facts taken from a single circadian system, viz Drosophila 
pseudoobscura eclosion. 

It seems appropriate to start by defining observables in strict operational terms. 
How can we monitor the state of a circadian dock without knowing what a 
circadian dock is? We don't know the clock's biochemical state variables, but 
we do have some observables that may qualify as functions of state (Figure 1): 

A. For a first measure take the time from t hours after the initializing stimulus 
(T, M) until edosion in continuous red light or darkness. So long as eclosion occurs 
in reasonably narrow unimodal peaks, the center of mass of the peak (the daily 
average eclosion time) will adequately characterize the interval from t to teclosion' 

That measure of the clock's state x at time twill be called 8(x(t)) = teclosion - t, 
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Figure 1. Defining 8 and f}' (8" is d8' Idt). The horizontal time axis starts with transfer of pupae to 
darkness (downstroke), then leads through a stimulus after T hours and the assay pulse (or its absence) 

after t more hours, then ends in a seq uence of ecJosion peaks about 24 hours apart. 

referring to eclosion in the singly pulsed pupae. Because this is merely proportional 
to time the after the initializing stimulus, it is not an especially informative measure 
of clock behavior after that stimulus. 

B. For a second measure, do as above but also give the organisms a standard 
exposure of blue light at time t, prior to leaving them undisturbed in red light. 
Because of the blue light exposure, which we call an "assay" pulse, the time to 
eclosion turns out to be different. Call that revised time 8'(x(t)) = teclosion - t, 
referring to eclosion in the doubly pulsed pupae. Two details: 

1. The assay pulse should be strong enough so that variations in its duration 
or intensity do not cause the resulting eclosion times to vary much. In other words 
the assay pulse should saturate the phase response. This will prove to be an im
portant technical convenience below. 

2. The blue exposure maps the state x(t) to a new state x'(t), so 8'((x)t) is the 
same as O(x'(t)). This relation will be useful because through it we will be able to 
measure the mapping x --> x' imposed by blue light. 

C. For a third measure evaluate the rate of change with time of the second 
measure: 

., = d8'(x(t)) = dO(x'(t)) 
8 _ - . 

elt dt 

(Note that r consistently use the upper dot for the time derivative. The prime has 
no such connotation in this book.) Let me be clear about the actual operational 
meaning of the time derivative. Because the measurement has to be done with 
discrete aliquots of the population of flies, 0 and 0' cannot be measured contin
uously. 0 iE, measured once and e' is measured in replicate populations at two
hour intervals of t. With e' plotted against t, we put a smooth curve through the 
data points by hand, digitize it at intervals of one-fifth of an hour (i.e., at 10 points 
bctween actual measurements) and define Ö' as five tim es the difference between 
successive ()' values. 

There are obviously other possible measures. For example, we could take the 
time to eclosion if we sprinkle cigarette ashes on the pupae at the same time as we 
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Figure 2. Treatment 01" one harvcst of pupas to measurc (I(l), 0'(1), and (I"(t) following initial conditions 
cstablishcd hy stimulus (r, ]\,1). 

give a cold pulse or we could take the fifth time derivative ofthai measure, etc, But 
three will be quite enough and the particular three obscrvables detailed abovc do 
lend themselves especially nicely to manipulation,! 

Now how do wc set up initial conditions at 1 = 0, from which to follow O(t), 
e'(t), and ri'(t)? First of all, we need a standard starting slate, Call it xo. This is 
obtained by very long continuous cxposurc tn whitc light To obtain different 
initial conditions, x(o) =1= xo, we start with this standard state X(), wait a time T, 
and then expose once again to standard light for a duration lvI. Ir M = 0 then 
x(t) is still the trajectory from xo. If M =1= 0 then x{t < Tl is still the same but 
x(t> T + M) is a trajectory from some new state reached at the end of M, Measures 
0, e', ()' monitor this x(t > T + M). Luckily these turn out to be smooth periodic 
functions, 

Implementing the Experiment 

My aim now is to fit all these results together in an ul1derstandable way. This 
is a nontrivial game because we are doing not mathematics but empirical science: 
All the experimental results are estimates subject to diverse sources of error and 
we have to find out what aspects of the data to regard as noise so that wc don't 
base too sensitive a calculation on them. We need to find out how to bring out the 
essence of the results graphically, Many ways were tried. I show the ones that 
worked, 

With that overview, we proceed through the experiment in riner detail. In 
Figure 2 we examine the measurement of a single trajectory, starting from whatever 
state the dock reaches after the initial stimulus (T,M). In Figure 2 time increases 

1 In Winfrec (1973a) I used a slightly different notation. ;'vl was thcrc S (stimulus scconds), avoided 
here out of defcrence to topological notation for thc circle. I was W AlT. ()" was 02' 
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through about two weeks from the left to the right. Beyond the far left, fertilized 
eggs are laid during an interval of about four days. The maturing larvae are reared 
and allowed to pu pate under continuous light. At time T = 0 they are taken into 
red light (equivalent to darkness). The bottom diagonalline represents the rem oval 
of a tiny aliquot of these pupae to serve as an overall control, unperturbed by any 
further exposures to light. 

The rest ofthe pupae remain under red light until a time Twhen the blue light 
is turned on for a duration M. This creates the initial condition following which 
we intend to monitor a trajectory. The second diagonal line to the lower right 
represents rem oval of a sm all aliquot of this population to serve for measurement 
of 8, the time to eclosion in a subsequently undisturbed population. In this aliquot 
and in all of those to be described below, the new "time zero" is located at the end 
of a blue light pulse. 

Eclosions occur only during an observation window (dashed box) during which 
the eggs fertilized 20 days previously achieve sufficient maturity to hatch as adult 
flies. The eclosion peaks and their previous anniversaries (E's in Figure 2) mark 
the times when 8 = O. They measure observable A, the 8 associated with t = 0, 
at the initial conditions set up by the end of the pulse (T, M). 8 at any later time is 
that measured IJ minus the elapsed t. This is because the time remaining until 
eclosion is less by t after that much time has elapsed. 

The top 24 diagonallines represent a division ofthe remaining population into 
24 equal aliquots. In each of these an assay pulse is given at a different time in 
order to measure 8' at that time. These assay pulses are given at two-hour intervals 
of t as diagrammed. Thus the assay pulses scan altogether two cycles of x(t) fol
lowing establishment of initial conditions t = O. The times 8' from assay pulse 
until eclosion in each ofthese 24 populations are measured from a new zero oftime 
at the end of the assay pulse. Like 8 measurements, these measurements are avail
able only during the observation window. They are taken only after a minimum 
of three cycles have elapsed since the assay pulse; earlier rescheduled eclosions 
are sometimes irregular. The observed times 8' are indicated by dots on the top 
24 horizontals in Figure 2. They most commonly lie along four smooth curves 
during the four-day observation window. Note that the vertical axis can be taken 
as the taxis, spanning the two days scanned by the assay pulses. The t's at which 
8(t) = 0 are indicated by E's on the right. 

Bear in mind that we have three consecutive regimes oftime measurement here. 
The first extends from 0 to T between the light-dark transition and the blue pulse 
which establishes initial conditions. The second extends from 0 to t between the 
end of that pulse and the beginning of the assay pulse. The third extends from 
o to 8' at eclosion, starting at the end of an assay pulse and continuing under 
constant red light or darkness until the flies have hatched and died, ending the 
experiment. Twenty-four assay pulses are given, each two hours later than its 
predecessor (except for the first, which is given sometime within two hours after 
the initializing light pulse). 

It is convenient now to remove the observation window and rotate it 90° as in 
Figure 3(a). This lays the taxis horizontally to the right with the twenty four 8' 
axes extending vertically down ward in the standard format of previous chapters. 
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Figure 3. (a) Observation window from Figure 2, rotated 90: (b) part (a) with the zero es of the 24 
time axes aligned horizontally. 
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Figure 4. Actual experimental rcsults with M = 0, in the format of Figurc 3(h). The shaded regions 
represent missing data (mostly mechanical failures). 
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B' is plotted downward instead of upward so that the "new phase" axis extends 
vertically upward on the same diagram. 

In Figure 3(b), Figure 3(a) is sheared by one hour vertically per hour horizontally 
in order to bring the zeroes of all 24 B' axes into horizontal alignment. Thus B' 
is measured downward from a common zero. This shearing puts the data into the 
format of Figures 31 - 33 of Chapter 1, in which type 0 resetting has average slope 0 
and type 1 resetting has average slope 1. 

Figure 4 shows the results of an actual measurement in this format, using 
Drosophila's eclosion rhythm. In this particular ca se the prior M = 0, therefore 
T is arbitrary. It shows that the eclosion peaks are of uniform narrow width. (I 
believe this is because the 120-second duration ofthe saturating assay pulse evokes 
rhythmicity of standard high amplitude in the circadian clock. I disallowed myself 
this approximation in the more rigorous exposition of Winfree (1973a) but for 
our present purposes it works weil enough). Thus we can use the centroid of each 
peak (the average eclosion time) as a sufficient measure of eclosion behavior. 

In Figure 5 for contrast, the assay pulse is omitted. The 24 eclosion records 
are handled exactly as in Figure 4, i.e., the time when the assay pulse should have 
been given is made time zero and all the zeros are aligned horizontally. The quali
tative change in the data layout shows that the assay pulse is doing something in 

Figure 5. For contrast, an experiment identical (0 (he one shown in Figure 4, except that the assay 
pulse was omitted. 
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Figure 6. As in Figure 4 but MolO. Specifica!ly, a 20-second eXflosure was delivered 6.2 hours after 

oscillation began, then fi' was measured by assay pulses at two-hom intervals for (he nex( 48 hours, as 
in Figure 4. 

Figure 4, Without it in Figure 5 the 24 aliquots are indistinguishable, except for 
the systematic displacement imposed on their time axes. 

In Figure 6, T = 6.2 and M = 20 seconds. The point here is to show that the 
prior pulse (T, M) does set up different initial conditions by showing the different 
subsequent configurations of data . The 0' measurements differ systematically from 
those encountered in Figure 4. Peaks are still of standard width, so the centroid 
remains a sufficient numerical measure ofthe subsequent rhythmicity. 

Figure 7 (right) simplifies the data more, focusing interest only on the centroids. 
Because the centroids recur periodically along the 0' axis at intervals close to 24 
ho urs, it will suffice to reduce them to a single collective measurement, viz 0' 
modulo 24 hours. Figure 7 (right) shows the data replotted in this way. At each 
t there are now two or three dots representing the two or three successive eclosion 
peaks, all reduced to nearly equal (l values by removing multiples of 24 ho urs. 
These B' points lie in a reasonably well-defined corridor through which I have 
presumed to draw a smooth curve by hand. [In my first approach to these da ta 
I tried a "hands off" method, automatically fitting a ninth degree polynomial to 
the digitized data points. But these polynomiaJs proved to fit the data no better 
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Figure 7. (right) As in Figure 4 but only the centraid of each peak is retained, and all centroid times 
13' are reduccd modulo 24 hours. The B' scale is given on the left to minimize clutter. (Jeft) Thc vertical 
down ward axis is ()' in units of 1 hour. Each dot projected from the right is located horizontally by its 
Fr (the loeal slopc along the curve on the fight). Eclosion time in the unassayed contral is marked E on 

the right. 

than the hand-sketched curve (standard error = ±0.6 hour) and they often had 
unnecessary bumps and wiggles in them.] This is Figure 4 with M = O. Thus 
8, 8', and the slope Fr are being measured along the standard cycle initiated by a 
light-to-dark or blue-to-red transition. Note that the curve is not strict1y periodic 
along the taxis. This is the reason why I use rectilinear measures T and trather 
than circular measures such as cPl and cP2 for the times of the first and second 
pulses: The flies' behavior deviates systematically from perfect periodicity and so 
it is inappropriate to implicitly map our observations onto the phase circle. This 
can be done later as an explicit approximation if that seems appropriate after we 
have looked at the raw data without first coloring them by theory. Note the arrows 
marked E for eclosion: These mark the times at which 8(t) = 0 along the taxis. 
This is how the () measure is brought into this diagram. Now all 3 observables 
(8,8', and (i') are presented in a single plot. 

C: Unperturbed Dynamics 

As a matter of convenience we could eliminate the taxis, plotting ()' against 
Fr in Figure 7 (Jeft) (redrawn in more convenient format as Figure 8). This kind 
of plot necessarily gives us a clockwise rotation since 8' is increasing (downward) 
when its rate of change is positive (to the right). (If it is a rotation, does it rotate 
about some point? If so, that point must be on the Fr = 0 line. I have drawn an 
asterisk at Ö' = 0 at 8' = - 3 hours: watch this spot in the subsequent diagrams.) 
This clockwise rotation provides some kind of picture of the standard cycle. 
It might be called a trajectory in (8', Ö') space. If 8'(x(t)) and Ö'(x(t)) are functions 
of the state x(t) then this diagram must be some two-dimensional projection out 
of x space. What kind of projection? There is no way to know in advance. May
be 8' and Ö' are such peculiar functions of x that the projection will be twisted 
and folded so that trajectories appear to criss-cross. Fortunately, this turns out 
not to be so, as we will see by examining trajectories started from 30 different 
initial conditions. 

Note that no theory or models have been involved so far nor will they be in 
what comes next. 
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Figure 8. As in Figure 7 but rescaled. Letters E are placed on the trajectory where e(t) = 0 by ob
servation in the unassayed contro1. At states along locus (r = -I, e' + t = constant along trajectories, 
i.e., the assay pulse infiicts the same phase shift whenever given. Note that the f)' axis is really a circ1e: 
-12 hours is the same as + 12 hours, modulo 24 hours. The inset coordinate arrows at the upper 

right show how the (f)', B') directions are related to "new phase" cp'. 

Many Trajectories 

The next job is to compare trajectories from other initial conditions, that is 
(T, M =I- 0). These initial conditions might or might not prove to be on the standard 
cyde. Let's see. Figure 9 shows about half of the 30 experiments, in the format 
of Figure 7, starting from diverse initial states by using diverse initial (T, M) 
exposures. Even though we cannot define a metric on (8', e') space, it seems dear 
that x(t), as assayed by (8'(t), e'(t)), does not follow a unique cyde. The changing 
state of the dock cannot be regarded as a mere time dis placement along one 
preferred trajectory. 

A big transient is seen in a few of these trajectories. In all cases it lies entirely 
within the early parts T + t < ~ cycle after pupae are removed from the prior 
continuous light in which they were reared. This feature does not repeat at 24 hour 
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intervals. It is a one-time transient. A number of other circadian rhythms and 
other biological docks have since revealed a similar transient upon release from 
prior inhibition (e.g., in Kalanchoe, Chapter 21; see also Johnsson and lsraelsson, 
1969). The dock may be winding down from the initial state in wh ich it was held 
by whatever prolonged stimulus was used to arrest dock motion (in this case 
continuous light). In Drosophila this feature is not due to the photoreceptor's 
dark adaptation, which also follows prolonged exposure to light; nor is it an 
indication that the assay pulse is less than wholly saturating : A similar anomaly 
is observed when the assay pulse exposure is easily 105 times greater (unpublished 
experiments, and Pittendrigh, pers. comm. 1972). 

It seems noteworthy that this 16-hour transient is all one would ever observe 
in the wild, where docks seldom run as long as 16 hours before daylight returns. 

At first sight this big transient looks like a winding down to a unique attracting 
cyde, as in Chapter 6. Such behavior was anticipated in the mathematical 
metaphors of Wever (1964, 1965a) and Pavlidis (1967). However, there is no 
corresponding trajectory winding outward toward the same cyde. Rather there 
seems to be a continuum of parallel concentric orbits of smaller sizes that go 
right down to zero. After the first 16 hours there is no conspicuous tendency 
inward or outward, neither to a preferred cyde, nor to a steady-state. Thus the 

-10 

10 

e' 

j Figure 10. Thc left -hand parIs of 
Figure 9 are supcrimposed, omitting 
lhe inward lransicnl characterislic of 
lhe first 16 hours a fter release from 

constanl-lighl inhibition. 
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effect of the light pulse (T, M) is not just displacement of the rhythm in time but is 
also something like aresetting of amplitude. 

The tendency of each trajectory to repeat its previous path after the initial 
transient is more conspicuous when all the initial parts of trajectories with 
T + t < ~ cyele are omitted (Figure 10). Here we see that the trajectories sampled 
in Figure 9 elose more or less concentrically about the point 8' = - 3 hours 
at Ö' = 0 (the asterisk). 

It is also convenient to examine this behavior by constructing a Poincare 
return map as folIows. Points along the first 24 hours of each trajectory are 
connected by arrows each to its corresponding point along the same trajectory 
24 hours later (Figure 11). In case of perfect periodicity these two points should 
be identical. In case of perfect periodicity obscured by noise the arrow connecting 
the two points should have some nonzero length but random direction. Figure 11 
shows a distinct inward tendency ofthe arrows from high amplitude. This transient 
in the first 16 hours is followed by essentially random variation around periodicity 
at all subsequent points along the trajectories. There seems to be no systematic 
dependence of the period on the amplitude. 

Orbits are concentric to the asterisk. Viewing this (8', &') plot as a projection 
from the dynamic space of the elocks' mechanism, we might take this as evidence 

Figure 11. In the format of Figurcs X and 
10. the trajectories of the left-hand parts 
of Figure 9 are used to construct a 24-hour 
return map. Each "nail" procecds from a 
(0'. e') point (at the blunt end) to the point 
rcached 24 hours later along thc same tra
jectory (at the sharp end). Thc initial 
transient is distinctly inward but it is hard 

to see any other tendency. 
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6' 
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that there is nothing like an alternative attracting equilibrium or a saddle point 
or a repelling cycle between attracting cycles or a hornoclinie point anywhere 
within the accessible portions ofthe clock's state space. In other words, its dynamics 
seem very smooth and simple. 

Isochrons 

The next question we can approach through these data is, "At what states 
is the clock found 24 N hours before eclosion occursT' We used the 8 measurement 
to put an E on the taxis wherever 8(t) = 0 in Figure 7 (right). In Figure 8 these were 
transferred to the trajectory plot as two E's, one on each of the two cycles during 
which the trajectory was measured by assay pulses. Collecting together the 30 
trajectories, each of two cycles duration starting from a different initial condition, 
we obtain a cloud of 60 E's, shown as dots in Figure 12. These constitute a ray 
projecting downward to the left from the singularity at the asterisk. This suggests 
that eclosion does not occur at any fixed 8' value nor upon crossing any definite 
e' threshold, but rather it occurs along a radius cutting trajectories of all amplitudes. 

This might suggest that eclosion timing is determined by an extracted first 
harmonie of the oscillator's movement, as proposed by Kaus (1976). 
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Figure 12. All 30 trajectories are super
posed in thc format of Figure 10, hut only 
the E's are rctained (as dots). All other 
points are suppressed. This ray of dots 
marks thc stales of the dock that precede 

eclosioll hy multiples of 24 ho urs. 
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Figure 13. Figure 12 is extended to show 
eight isochrons by proceeding for the 
appropriate number of hours along each 
trajectory from E before placing a do!. 
Contours are eyeballed through the dots 
at three-hour intervals. The dashed parts 
are extrapolated bcyond the presently 

available data. 
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More generaUy one can ask, "Where was the (8',8') state any number of ho urs 
before eclosion, or the complementary number of hours after one of the pre
anniversaries of eclosion?" This is answered by marching along any trajectory 
to that number ofhours beyond the ray ofE's and placing a dot, and then another 
one 24 hours further along. After we've done this for all 30 trajectories, each 
of these new clouds of dots contains about 60 points (Figure 13). All extend 
radially from the asterisk near the center of rotation of trajectories. Though 
uncertain now wh ether the attractor cycle theory of Chapter 6 applies here, 
I caU these sets of states "isochrons": equivalent time loci, so far as eventual 
eclosion time is concerned. This is the second direct measurement of the isochrons 
of a circadian clock. (In the first I used a simpler experimental technique with 
data from the plant Kalanchoe; see Chapter 21.) 

D: The Impact of Light 

All the above was about the trajectories followed in darkness, the nominally 
"unperturbed" trajectories. Now how does the individual trajectory's shape depend 
on the timing and duration of the stimulus (T, M) which was used to establish 
its beginning state? One can ask about the stable amplitude after the initial 
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Figurc 14. As in Figure ~ but ollly the 
first 18 hours ur the M = 0 trajectory is 
shown, alld thc axes are suppressed. Thc 
circles mark thc approximate starting 
placcs of 30 I raj ectories. These starting 
places are sliccessive points a long 
pCrlurbed (blllc light) trajectories, here 
co nnccted and nllmbered in order of in-

creas ing M at fix cd T. 

inward transient: Which preliminary stimuli lead to big cycles and which lead 
to sm aller cycles? In more detail one can ask, "How does exposure to light move 
the state of the clock from the standard trajectoryT' The way to ask the question 
is to find out at what (8',8') state each trajectory starts, immediately after the 
initial conditions are set up by exposure for M seconds to a light that started 
T hours after the oscillation began. At each T we have several durations of M, 
from M = 0 up to the duration (120 s) of the assay pulse. The sequence of states 
reached by longer "and longer M is the clock's trajectory during the blue light 
exposure. 

Figure 14 connects the initial points of 30 trajectories in order of duration 
in blue light, at each initial T. The initial point of each red light trajectory was 
obtained by extrapolating the trajectory backward from the first datum (typically 
at I = 1 to 2 hours) to isochron 0(0). ]n five cases the first fcw points along the 
trajectory were too far apart to permit confident extrapolation: Those five are 
omitted from this plot. Note that all the remaining blue light trajectories start 
along the M = 0 trajectory (wh ich is here given six "starting points", since M = 0 
can be assigned to any T.) The trajectories generally shoot leftward to lower Ö' 
in blue light, remaining at roughly constant 8'. This is as expected: the initial 0' 
is the time to eclosion after a saturating assay pulse; if instead we give a stimulus of 
duration M followed without interruption by a saturating pulse, that combination 
pulse is also saturating and should therefore result in the same eclosion time 0'. 
In fact what is peculiar in these data is that 8' is not quite constant as M increases. 
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Figure 1 S. Intersections 11 = Ii' are esti
matcd using the isochrons measured in 
Figure 11 At such points (marked by 
circles) the assay pulse has no effect on the 
c1ock's phase. These points lie roughly 

along the vertical line at 0' = - 1. 
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I do not know why it is not. Maybe the assay pulse is not really as thoroughly 
"saturating" as I believed from earlier measurements, In any case the main point 
to notice is that the blue light trajectories are not along the cycle, and cannot be 
described as backing up (phase delaying) or hurrying ahead (phase advancing) 
along the cycle. 

The predominantly leftward trajectories must end up along a special locus 
which can be constructed as folIows. Saturating exposure by definition leaves 
the clock in astate such that its phase is not affected by further immediate exposure, 
so () = 0'. The loci of fixed e are the isochrons in Figure 13. The loci of fixed 0' 
are horizontal lines. The intersection between a given isochron and the corre
sponding (J' stratum occurs along the heavy arc in Figure 15. This has to be where 
all the long exposures end up. In point of fact they don't end up exact1y along this 
locus but Figure 14 suggests that they tend toward it as exposure duration increases. 

So much for the direction of blue light trajectories. Now what about marking 
off time along them? The 30 exposures given to initiate the 30 trajectories all had 
durations 0, 20, 30, 40, 50, 60, 80, or 120 seconds, So time marks can be roughly 
placed along the blue light trajectories by drawing links (Figure 16) between 
the M = 20-30 second experiments (row 1), another row of links between the 40 
second experiments (row 2), another row connecting the M = 50-60 second 
experiments (row 3), and another connecting the M = 80 second experiments 
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° 

Figure 16. As in Figure 14 but initial 
states reached after roughly the same M 
are linked, regardless of T Rows 0, I, 2, 

3,4_ 5 are described in the text. 

l°i 
, 6' 

(row 4)_ We already have links connecting the M = 0 second experiments (row 0) 
because this is the unperturbed red light trajectory_ These rows of links get c10ser 
and c10ser together as M approach es saturation. 

E: Deriving the Pinwheel Experiment 

Now, combining the trajectories at fixed T and their cross-links at fixed M 
we have a (T, M) grid. This superposition of Figures 13, 14, and 16 teils what 
isochron we get to by starting an oscillation with a light-dark transition, waiting 
T hours, and then giving M seconds of blue. This experimentally determined 
diagram (Figure 17) turns out to be essentially identical to the one I presented 
as a theoretical inference in summer of 1968 at the Federation of European 
Biochemical Societies's meeting in Prague (Figure I I of Winfree, 1968)_ It can 
be regarded as a contour map of 8 above the (T, M) plane. This is made a bit 
c1earer by straightening out the distorted (T, M) grid of Figure 17 to create 
Figure 18. We have seen this picture before as Figure 13 of Chapters 2,4, and 5. 
It is the contour map of one unit cell of the time crystal portrayed in Figure 14 
of Chapter 2. The time crystal came from the pinwheel experiment, which I was 
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Figure 17. The isochrons on a (T, M) 
grid constructed by superposing Fig- f--- --

ures 13. 14, and 16. -2 

Figure 18. As seen in Figure 17, Fig
ures 14 and 16 superposed constitute 
a curvilinear (T, M) grid. Graphically 
pulling Figure 17 into rectilinear shape, 
the isochrons and initial points (circles) 
are moved to the positions here shown. 
(cf. Figures 13 in Chapters 2, 4, and 5, 

and Box B of Chapter 12.) 
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Figure 19. As in Figure 6 but the prior stimulus was 40 seeonds exposure at 6.2 hours after initiating 
oscilla tions. This near-singular pulse resulted in almost arrhythmie ec1osion. There is very little time 
dependence of ()' in rhythmic ec1osion shown here after a second stimulus (e.g. , the assay pulse). The 

measured trajectory winds elose around * (see Figure 20). 

conducting while building the time machine to undertake this more elaborate 
measurement of trajectories. The results of that earlier experiment (fortunately) 
turn out to be implicit in the more comprehensive results. The phase singularity 
is the point * about which all trajectories revolve in the absence of a perturbing 
stimulus. 

Note the trajectory starting (at M = 0) at T = 6.2 in Figure 17. It passes very 
nearly across the singularity. If blue light (of the standard intensity used in all 
these experiments) is terminated after only about 40 seconds, the dock should 
be left in astate of uncertain phase. In fact the edosion "rhythm" becomes virtually 
aperiodic after such a stimulus (Figure 19) and the trajectory measured after 
such a stimulus has exceptionally low amplitude (Figure 20). This is as much 
as to say that whenever light again strikes the dock, it restores normal rhythmicity 
at practically the same phase, specifically, thc phase ofthe isochron which roughly 
paralleIs blue light trajectories proceeding Ieftward from the environs of the 
singularity. This is also the phase of rhythm initiation in "naive" flies, suggesting 
that prior to some stimulus to mark "time zero", the newly created dock in a 
young fruittly larva Iingers near the * in ils slale space. 
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Figure 20. As in Figure 8, replotting (he 
data of Figure 19. 
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What about trajectories under perturbing light of a different color or intensity? 
If photons get into the dock through a single chromatophore (i.e., if the dock 
lacks color vision), then color and intensity should be interchangeable. There 
seems every reason to believe the same trajectories are followed under higher 
intensity illumination, but faster: The net effect of brief ( < 1 hour) illumination 
seems determined by energy. But what of much dimmer lights? As intensity 
approaches zero the trajectories must approach the concentric rotation measured 
in utter darkness. This part of the story has not yet been filled in. However from 
Winfree (1974a) we know that Drosophila's dock is arrested under prolonged 
illumination brighter than 3(0 mW /m2 , and continues to oscillate under illumina
tion 10 x dimmer. From Chandrashekaran and Engelmann (1976) we know that 
T* remains the same under illumination as dim as /0 mW/m2, even though M* 
has increased to 14 hours in such dim light. Thus it would appear that the transition 
from unperturbed to perturbed geometry occurs in the range between 360 and 
10 mW/m2 ofblue light. 

As noted in Chapter 2, several other circadian systems and at least one 
biochemical oscillator all gave qualitatively similar results in a pinwheel experi
ment. Do they also exhibit dosed concentric trajectories when probed with a 
second pulse as here described? Engelmann et al. (1973) repeated this two-pulse 
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measurement using the plant Kalanchoe and obtained answers similar to 
Drosophila's, but more detail was needed for an exact comparison. Kalanchoe, 
unlike Drosophila, provides a continuous readout ofits clock's activity (as opposed 
to only one datum per cycle, at eclosion time). So it should be possible to construct 
complete trajectories by the methods of Chapter 21, using only the existing 
experimental records from which the published phase measurements were ex
tracted. This remains to be attempted in detail, but Engelmann et al. (1978) do 
report that the Kalanchoe clock's amplitude, once reduced by a critically timed 
stimulus, usually stays reduced for at least several days. 

Turning now from circadian clocks to biochemical rhythms of shorter period, 
we find measurements in the same format by Greller (1977) using the glycolytic 
oscillation in yeast. Up to now the published data are too few to assemble a 
convincing trajectory, but just as noted above in regard to Kalanchoe, the un
published fluorimeter traces could presumably be used to plot trajectories more 
directly by the method of Chapter 21 (in this ca se, plotting NADH fluorescence 
vs. its rate of change). 

Similar remarks apply to Johnsson's (1973, 1976) and Johnsson et al.'s (1979) 
recordings of oscillatory water transport in seedlings, perturbed for various 
durations at various phases. This case is especially interesting because both the 
steady-state and the limit cycle locally attract trajectories. Thus a second, and 
repelling, cycle might be revealed when detailed trajectories are plotted from the 
existing data. 

Malchow et al. (1978) inflict single-pulse perturbations on the cAMP clock 
of Dictyostelium (Chapter 15) while continuously recording optical properties 
of cells in liquid suspension. They too note that recovery to an attracting cycle 
is not swift: Effects on amplitude are conspicuous. 

F: So What? 

This is the end of my data presentation for this experiment. What good are 
these results? First of all they fulfill the objective I proposed at the beginning, 
namely, to elicit a picture in model-free form, a picture in which nature could 
reveal herself directly prior to any attempt on our part to impose theoretical 
interpretations. Any model that can draw this picture or any consistent distortion 
of it gets by unexcluded. But in so saying, it should be noted that the (8', fi') plane 
is an arbitrary projection from the assumed state space x. This projection could 
be arbitrarily distorted. The da ta require only a relationship between the isochron 
grid, the red light trajectories, and the blue light trajectories. Any distortion of 
the space on which they are all drawn leaves those relationships intact and therefore 
is as valid a picture ofthe dynamical flows as is any other distortion. The particular 
choice of coordinates employed here happily presents an especially simple and 
pleasing picture of smooth round concentric red light trajectories, parallel blue 
light trajectories, and nearly radial isochrollS. Though it is pretty, remember 
it is not unique. 
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To my mind the most noteworthy and previously unsuspected features of the 
circadian dock which are brought out by these experiments are: 

1. The time crystal with its helicoidal unit cell 

2. The phase singularity (and its equivalence to the initial state of the dock 
in organisms which have never been exposed to an environmental stimulus) 

3. The smoothness of the concentric dosed trajectories 

4. The initial transient following prolonged arrest in a non permissive environ
ment (e.g., under continuous light) 

5. Lability of the apparent amplitude of oscillation, with very nearly the same 
period at all amplitudes 

6. An effect of perturbing stimuli which to a first approximation resembles 
parallel displacements of state along one state variable, as though one particularly 
labile substance were destroyed by the stimulus. 

Here are three quite different dasses of mechanism which typically exhibit 
such features. 

A Single Non-simple Oscillator 

There are abstract dynamical models asserting (by analogy to mechanical, 
electrical, or chemical kinetic equations; see Box A) that the dock has two or 
more state variables that affect each others' rates of change in such a way that 
an oscillation is engendered. So far as Drosophila is concerned, the most successful 
of these models to date emerges from the tradition begun by Danziger and 
EImergreen (1956), developed by Strahm (1964) as a masters thesis project 
specifically to match Pittendrigh's Drosophila pseudoobscura data, and further 
refined by Pavlidis (1967, 1973). Several specific assumptions of this model have 
been found awkward in the decade since its first publications, but the basic ideas 
(feedback oscillations around an equilibrium state, lateral displacement of states 
during perturbation) remain acceptable (see Boxes A and B). Recovery or decay 
of amplitude in Drosophila (as assayed by the resetting curve) proved to be so 
slow that two whole days can go by without noticeable (± 10%) change. This 
can be accomodated by an ad hoc adjustment of descriptive parameters in such 
a model to make its lower amplitude trajectories more nearly dosed rings. 

But it is not really necessary to abandon the now widespread assumption that 
circadian docks are typically rapidly recovering attractor cyde oscillators. Such 
mechanisms may still be compatible with observations 1-6 above if we admit 
the possibility of many relatively independent sources of circadian rhythmicity, 
for example all the cells of some rhythmic tissue. Phase dispersion may at first 
seem an outlandish possibility, scarcely worth checking. But the fact is that we 
have precious little reason to assurne that the circadian docks in most organisms 
necessarily oscillate as a functional unit, except under conditions of entrainment 
by an externallight-dark cyde. There exists considerable evidence to the contrary, 



Box A: Traditions in Modcling Drosophil a's Circadian Clock 
b~' MalhematicalMctaphors 

(see .. Iso Chapter 20. Sccl ion B) 
There was a lime when biologisls had nOI heard Ihe words "limit C)c1e". which have 

become so popuhlr since lIbout 1965. The first signific3nt incursion of those words inlO 
the world of ci rc3dian rh)lhmology was Ihrough Kalmus lind Wigglesworlhs' paper 
paper re3d at the first symposium on biological elocks at Cold Spring Harbor in 1960. 
That paper expounded the doctrine of attracting cyc1cs lind separaled il from the not ion 
of repelling equilibria but neglccled 10 dclineale in an) e~plicil way the dynamical 
interprelalion of a slimulus (e.g .. an exposure to light). This mighl ha\'e been picked up 
from FitzHugh 0%0. 1961) on neural oseillators. but its first explicit application 10 
cireadian experimenls (in facl. tO Pitlendrigh's DrQsoplli/t/ data) was in Strahm's (1964) 
unpublished masters thesis 31 MIT. Borrowing from Danziger and Elmergrecns' (1956) 
inlerpretation of pcriodic disease. Strahm outlined in considcrable delai l csscntially 
Ihe view of dock dynllmics that prevails in today"s lileTalure, after refinement and 
quantification by Pavlidis (1967 et scq.). 

The Strahm- Pavlidis model in\"olvcs spiral trajeclories winding out from a repclling 
cquilibrium. butlimited in amplitude b) a "walr' bcyond .... hieh no fUTlher decrease of 
one variable is allowed (perhaps because this is coneenlralion 0), This nonlinear cUI-olT 
Ihus becomes one arc of an allracting limit c)'ele. Trajcclories do nOI just approach the 
allracting C)de. but actually gel QntQ il (by hitting the wall) within a day or Iwo from most 
ini tial conditions. This sccms 10 bc as natural a first model of rh)thmic d)namics as 
Ihe van der Pol oscillalor or the ;.-1\' oscillalor. After Danliger and EImergreens' model 
of catatonic sch izophrenia and the Drosophila dock mode1. it apparenlly arose again 
independently in Hunter's (1974) analysis of the slccp-wake eyde and in Nicolis and 
Prigogines' (1977. p. 394) model of lac operon dynamics in f;. coli, 

The Strahm- P3vlidis model postulates that the limited quantity is phololabile: 
During exposure to light it s\\iftly approachcs the w'll l. Stmhm even introduccd the 
nOlion of cirC'.ldian modulalion of a threshold of de\elopmental readiness as the basis 
for the quantization of populations into discrete cclosion peaks (Chapter 20. Bo~ A). 

Pavlidis's very inl1uenl ial contribution to this story la) largely in dirccting attention 
quanlilativel} to the implications of brief perturbation. l1e was the firsl to ealculale 
rcsclling cunes quantit3Ii\el}. as a funclion ofstimulus magnitude. The first menlion 
of a si"gular combinalion of sllmulus phase and dur31ion is 1I1 Pa\'lidis (1967). \\ here 
the fUTlher conclusion is dm" n from nonobscr ... a lion of such a disaster that tnljectories 
must dherge with eX lraordinary haste from equilibrium tow3rd the allracting qcle. 
NOle Ih3t exeept for th is. Figures 10 and 14 look remarbbly like Pavlidis's diagrams 
describing the model. 

HOl'.'e'ier in the case of Drosoplli/a's eclosion rh)lhm. Ihe circadian rhYlhm most 
studied by penurb<lIions in Ihe 1960s.there was ne\er any cvidenee specifically indicating 
either instability of the steady-state or return toward an attracting C)'cle. I think my 
own experiments were Ihe first to look for such indicalion. and none I'.'ere found . In 
faci an adjustable amplitude model more like a frictionless pcndulum than a limit C)'cle 
fils Ihe dala splendidi), This Winfrec (1972e) model ma} h:l\c sccmcd retrogrcsshe from 
the b)-thcn-fashion3ble assumption ofan allracting limit C)cle, 11 0we\er. the adjustable 
amplilude model sencd all purposes of phase TeSClling equally weil and addilionally 
accounted for Ihe newly obscn'ed plasticity of Ihe resetting curves (Ihe subjcct of Ihis 
chapter) and the arrhymicil) of dark-rcarcd allimals. It also succcssfully predicled 
suppression of circadilUl rhythmicity by incredibly dim light. 110I'.'e\·er. it too proved 
deficienl in still further lesls. Sec Box B. 



F: SoWhat'! 

Box B: Are Phase and mplitude Enough? 

The adju table-amplitude model of Winfree (1972e. Appendix) was formu lated in 
respon e to 3 di coverie . Fir t of all Winfree (1968) and Zimmerman (1969) had found. 
contrary to pre iou repon, that the arrh thmicity of "naive" Drosophila populations 
could not be attributed to random pha ing of individual : ralher, each anima\" dock 
lay tably at equilibrium. econd, thi initial tate eemcd the ame a the" ingular, 

pha eie " ta te reached by critical perturbation of previousl rhythmic Drosophila. 
Third, it had been found (Winfree, I 972b.e) that the Drosopilila dock' relative ensitivity 
to light during the first day aftcr con tant-light inhibition re embled dark adaptation 
in a dock-independent photoreceptor. 

The principal conjecture embodied in thi model i that the dock i trict ly periodic 
but ha a econd variable of state, an unchanging "amplitud " conjugate to it pha e, 
and that amplitude and pha e together compri e a complete identification of its state. 
Amplitude zero is the pha eless or naive tate. Thc dock can 0 cillate along any of a 
continuum of do ed concentric trajectories of con tant amplitude. A shown in hapter 
- , thi lead to the ob er ed re euing behavior (two "t pe ", a ingularity. and a lattice 
of screw surfaces) and to an amplitude dependence of the re euing curve uch a we 
ob erve in this chapter. Formulated a little ditTerently, the behavior of th i model i 
entirely ummarized in a family of pha e-re etting curves ami a fami ly of amplitude
re etting curve .ln the e familie the hape ofeach curve depends on stimulus magnitude 
or initial amplitude. This r ult was first fore een by Wever (1962, 1963, 1964, 1965a). 

The la t paragraph ofWinfree (1973a) explieitly eonjecture that thi expan ion from 
one 10 Iwo variable of tate i eompletc and sufficient. But this has not yet been checked 
experimenlall) and there are now plenty of rea ons to doubt it. The e are 

I. ignificant honcoming of the adju table amplitude model, conccived of as a 
single 0 cillalOr: 

201 

a. nder u tained light it amplitude should decrease at a rate proportional 10 

the light inten ity. 11 eem not 10 (Winfree, 1974a). 
b. It provide no interpretation of the Iran ient ob erved in the first 16 hour of 

darkness. 
c. As P. Kaus wa thc fir t 10 recognize (per . commun., 1975), it should blow up 

under entrainment by light pulses 26 ho ur apart. (I t doe not.) 
d. 1t does not automatically account for the apparenl constancy of the period at all 

amplitudes. 

2. The availability of a different dass or model, namely, a population of relatively 
independent attractor c de 0 cillators. Such model typically accomoda!e the facts of 
pha e resetting and also aecomodate point a - d above. 

Ir m dei of type 2 are appropriatc, then the Winfree "la t paragraph" conjecture 
mentioned above should be demonstrably wrong. The rea on is that there are many 
way for a population to achieve any givcn amplitude of 0 cillation, namely, by dif
ferent distributions or pha e. Such different population should phase-shirt differenlly 
in reaction to any sub equent timulu. although lhey ma have the ame phase and 
amplitude according to the e perimental criteria used up to Ihe pre ent. 
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especially in the vertebrates and in plants (see Chapter 19). One need not necessarily 
expect strong mutually synchronizing interactions among circadian oscillators 
in smalI, neariy transparent, non-temperature-regulating organisms, since all of 
their circadian clocks would normally be independently entrained by the external 
cycle of light and dark, hot and cold. In no experimental organism have we yet 
resolved even the simple question whether type 0 resetting betrays scattering of 
phases within the organism as in Chapter 4 or, as in Chapters 5 and 6, it reflects 
a single oscillator's dynamies. 

Thus we come to the second of three classes of mechanism: 

Bilateral Symmetry in the Fruitfly 

Within the practical limits of resolution in biological phase-resetting experi
ments, a smooth screw-shaped re setting surface and smooth concentric trajectories 
would be expected of a population of three or more simple clocks (Chapter 4). 
How many independent attractor cycle oscillators would be required to give this 
appearance in the individual organism? Under the rule used in Chapter 4 to pool 
the outputs of many oscillators into a single aggregate observation, the answer 
is "just two". Pair-wise redundancy of the circadian mechanism has long been 
suspected in bilaterally symmetrie organisms and is especially cleariy brought out 
in the re cent experiments of Page et al. (1977) using the cockroach and of Koehler 
and Fleissner (1978) using a beetle, and of many workers intrigued by the splitting 
of activity rhythms in various vertebrates (see Chapter 19). The left- and right-brain 
clocks of Koehler and Fleissners' beetle apparently function independently. 
Similariy, let Drosophila' s two oscillators be loosely enough coupled so that they 
show no measureable tendency to synchronize during the two days throughout 
which their composite trajectory was monitored. It turns out that an excellent 
caricature of the data is given by combining the outputs of only two independent 
oscillators, separately reacting to a light pulse in the ways characteristic of the 
rapidly attracting oscillators explored in Chapter 6. In fact, I have quantitatively 
fitted all my Drosophila data, both for the one-pulse perturbations used in the 
pinwheel experiment and for the two-pulse perturbations used in this trajectory 
experiment, to a very simple model of this sort. The root -mean-sq uare fit is quite 
as good as for any other models thus far contrived, and alm ost as good as the 
reproducibility of phase measurements allows. 

Lots of Attractor eycle Oscillators 

Chapter 4 presented the third dass of models wh ich mimic the trajectories of 
Drosophila's dock. In these models a population of very weakly interacting or 
completely independent oscillators of almost any kind individually pursue a 
common cyde, be that an attracting cycle or the unique cycle of a ring device. In 
such a population, phase corresponds to the mean phase of the population and 
amplitude corresponds to the dispersion of phase within the population. The blue 
light trajectories reflect the changing phase and amplitude of the fundamental 
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harmonie of such a population's aggregate rhythm during the independent changes 
of phase of all of its many constituent oscillators. 

In the first 16 hours after release from constant light, the clock's trajectory 
winds swiftly in ward before repeating along a cycle of whatever amplitude it 
finally adopts. This inward transient is hard to account for in terms of simple 
clocks. But it could reprcsent thc collective behavior of many attractor cycle 
oscillators individually winding inward to a standard amplitude. The final closed 
cycle could be the collective behavior ofthose oscillators all moving on the common 
cycle, but not exactly synchronously. 

Demonstration that the period of the wh oie organism's rhythm depends on its 
amplitude would suffice to exclude this not ion of superposition of independent 
cellular clocks. 

Besides the initial transient, there is another way in wh ich the resetting behavior 
of a population of attractor cycle oscillators differs from that of a population of 
simple clocks. In the simple-clock populations, the singular stimulus duration 
go es to infinity as the initial dispersion of phases goes to zero. In contrast, the 
singular stimulus duration in an attractor cycle population goes to a finite limit, 
namely to the singular stimulus duration of the single oscillator. 

This suggests an experiment, not yet undertaken so far as I know, in which an 
organism would be subjected to a particularly severe entraining rhythm prior to 
the phase-shifting experiment. The idea here is to im pose the strictest attainable 
synchrony on whatever oscillators might comprise the individual's clock. If this 
treatment fails to increase the singular duration then it might be supposed that 
dispersion of circadian phases within the individual organism plays a negligible 
role in determining the phase singularity. This would indicate at least that the 
individual circadian oscillator does have a helicoidal resetting surface, unlike a 
simple clock. It would remain to be determined whether this clock's trajectories 
approach an attracting cycle slowly enough to explain (without invoking phase 
dispersion) the nearly concentric trajectories found above. A more direct resolution 
of the question might employ a histological assay in which the pertinent part of 
the fly's brain would be microscopically examined for synchrony of its cellular 
secretory rhythms. Ostensibly arrhythmie flies might show distinct rhythmicity 
in their randomly phased cells or they might show arrhythmicitiy all the way down 
to the cellular level (Figure 21). Suppose internal homogeneity and coherence of 
circadian function or nonfunction could be established by so me such assay. Then 
phase-resetting experiments on whole organisms could be interpreted at face value, 

Figure 21. Contrasting two mieroseopic causes of 
macroscopic arrhythmicity: in (a) individual cells 
remain normally rhythmie but are randomly phased; 
in (b) caeh ecll is arrhythmie. (Experiment suggested 

by Hunning, 1959, p. 522.) 

0) b) 
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providing much stronger constraints on interpretations of the dock mechanism 
than they do at present. But suppose it were found that the cells or tissues of a 
single organism can persevere in circadian rhythmicity at arbitrary relative phases. 
Then phase singularities and less drastic changes of amplitude would not tell us 
much about the individual dock in multicellular organisms or in populations of 
single-celled organisms until a way is found to guarantee and monitor coherence 
among their many docks. 

At least in the case of certain free-swimming unicellulars, the question lends 
itse1f to resolution by a tidy experiment which seems more immediately feasible 
than the above. Owing to the continual sedimentation of cells suspended in water, 
it is not unusual for circadian rhythms of motility, density, adhesiveness, etc., to 
manifest themselves as circadian variations in the vertical density distribution of 
cells. Arrhythmicity induced by diversifying phases within the population could 
then be distinguished from arrhythmicity of every cell by removing sam pies of 
liquid from various depths into new bottles. This either will or will not isolate 
observably more coherent subpopulations. The same kind of experiment could be 
used to determine whether the type 0 re setting observed in such organisms (e.g., 
Gonyaulax) represents type 0 resetting of each cell or only a splitting into advanced 
and delayed subpopulations. 

All such experiments presuppose that the cells' docks do not influence each 
other. Such interactions have been looked for and none have been found (see 
Chapter 19). 

G: In Conclusion 

No one expected the phenomena demonstrated in Drosophila in this chapter, 
least of all myself. Yet in retrospect they can be derived with almost no specific 
assurnptions on oscillator mechanisms, without even invoking interdependence 
among the individually competent docks. Going still further, Aldridge and Pavlidis 
(1976) and Aldridge and Pye (1979a,b) point out that incoherence can last a long 
time even with strong coupling among multitudes of docks. 

The moral seems to be that it is ofthe greatest importance to check for coherence 
(e.g., among cells) in the circadian rhythms of multicellular organisms. This 
remains the crux ofthe dilemma stressed by Wilkins (1965): 

Unfortunately, nothing is known about the amplitude ofthe basic oscillating 
system or how it is related to the amplitude ofthe rhythms in the physiological 
or biochemical process used to monitor the behavior of the basic system. 
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Chapter 4 provides a preliminary look at the phenomena to which we now 
turn: the phenomena typical of aggregates of oscillators. J ust as the oscillator 
populations of physics comprise a very special case with very special properties 
(associated with linearity, energy conservation, etc.), so did the simple docks of 
Chapter 4 comprise another very special case with very special properties (asso
ciated with the one-dimensionality of their state space). My objective in this 
chapter is to organize under the same four headings as in Chapter 4 some discus
sions and examples of what I take to be the characteristic behavior of attractor 
cyde oscillators in populations and communities. Such oscillators can have any 
number (2: 2) of variables mutually determining their rates of change in nonlinear 
ways. Linear oscillators, conservative oscillators, and simple docks are special 
limiting cases of the attractor cyde oscillators considered in this chapter. 

The chapter is organized in four sections: 

A. Collective rhythmicity in a population without interactions among con
stituent oscillators. Mainly about phase resetting by a stimulus. 

B. Collective rhythmicity in a community with completely promiscuous inter
actions (all individuals inftuenced by the aggregate rhythmicity ofthe population). 
Mainly about mutual entrainment and mutual repulsion. 

C. Spatially distributed oscillators without interactions. Mainly about pat
terns of phase in space. 

D. Oscillators interacting locally in space. Mainly about smoothing of con
centration gradients that would become discontinuities were neighbors not 
coupled. 

A: Collective Rhythmicity in a Population 
of Independent Oscillators: How Many Oscillators? 

As in the case of simple-dock populations, we can ask of a population of 
attractor cyde oscillators whether there are characteristic features of the collective 
phase response by which to distinguish the type and number of independent 
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Figure l. Ten equispaccd contours of new phase on 
the (old phase, stimulus magnitude) plane. calculated 
for a pair of independent atlractor cyclc oscillators 
silllilar 10 Example I of C hapter 6. Thc two are 
initially 0.3 cycle apart. At the dash cd line, new 

phase shirts by one-half cycle. 

oscillators involved. For this purpose I adopt the same measure of collective 
rhythmicity as before: the phase and amplitude of the Jimdamental harmonie of 
the aggregate rhythm. This aggregate rhythm is simply the sum of the rhythms 
!(cpj) of N identical oscillators at phases cPj on the attracting cyde. The scalar 
function! of phase is arbitrary but might be one of the chemical concentrations 
involved in the oscillation. 

To recapitulate, we found in Chapter 3 that in a single simple dock new phase 
depends on old phase and stimulus magnitude in an especially simple way: All 
the contour lines of uniform new phase are parallel translations of a single mono
tone curve. The behavior of a pair of simple docks is characterized by a U-shaped 
locus along which new phase jumps one-half cyde. A population of three or more 
simple docks dissembles as a single pendulum-like oseillator in that its phase
re setting pattern is organized around a singularity and its amplitude is as labile 
as its phase. 

A single attractor-cyde oscillator also typically exhibits one or more phase sin
gularities, but its amplitude recovers promptly to normal. Now a pair of such oseil
lators, like a pair of simple docks, turns out to exhibit a U-shaped loeus of (old 
phase, stimulus magnitude) combinations along whieh new phase shifts abruptly 
(ifthe two docks contribute exactly eq ually) by one-half cyde. But in this ca se the 
locus does not go to infinity along the magnitude axis : It terminates at two half
singularities as in Figure 1. The reason for this odd behavior is understandable. 
At any time when the two oscillators straddle cp*, there is a stimulus magnitude, 
roughly M*, that sets them 10 opposite phases (Figure 2). Here collective ampli-

2 

M 

o 

F igure 2. Figure 13 of Chapter 5 is repeated 
with emphasis on resetting from two old 
phases E apart, straddling cf>* New phase has 
winding numher W = 1 around path ABCDA. 
The phase difTerence along BA at M = 0 is s. 

At sufficien tly large M, along CBAD, it is dose 
to 1. If there are no discontinuities along this 
path then the phase difference must pass 

through 1 at sOllle SIllaller M . 
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tude is 0 and a slight change of stimulus magnitude makes it positive or negative 
(i.e., positive at either of two opposite phases). At either extremity of this range, 
one oscillator can be placed on its singularity by M = M*. A suitable slight change 
of cjJ or M will change that oscillator's phase to any desired phase, as we saw in 
Chapter 6, while negligibly altering the phase response of the other oscillator. 
Now suppose that both oscillators recover to their attracting cycles, and suppose 
that we continue to employ the collective phase measure introduced in Chapter 4. 
Then the phase of the pair ranges through half a cycle in the ne ar neighborhood 
of each of these two points in the stimulus plane. 

A more stringent test of the two-clock interpretation at the end of Chapter 7 
might make use of Figure 1, in which the split singularity presents the signature 
of a pair of independent oscillators. To test for this experimentally, the first thing 
to do is to ensure that the putative two oscillators are weIl separated in phase. A 
way to arrange this reliably in many replicate organisms remains to be contrived. 

Three or more independent attractor cycle oscillators behave pretty much like 
one, except that unlike the single oscillator, a population's collective amplitude 
does not recover from adjustment of the phase distribution. Also its apparent M* 
is less than the single oscillator's by an amount that increases with the initial 
variance of phases. 

As noted on page 104, the finer details of resetting behavior, if they can be re
solved experimentally, do reveal the number ofindependent oscillators collectively 
observed. However, if N > 3, such details are easily obscured, especially in data 
collected from populations of individual animals or plants. 

B: Collective Rhythmicity in a Community 
of Attractor Cycle Oscillators 

From populations of independent oscillators we now turn to consider com
munities of (interacting) oscillators. Boxes A and B provide a compact literat ure 
survey of recent physiology in wh ich mutual entrainment between two coupled 
attractor cycle oscillators is prominent. 

We now turn directly to mutual entrainment among many docks. This part 
of the story is not much altered by exchanging the community of simple clocks 
considered in Chapter 4 for the community of attractor cycle oscillators considered 
here. However, owing to the additional degrees of freedom of the attractor cycle 
oscillator, there do exist additional instabilities through which such a population 
can es cape the mutually synchronized state to other modes of organization in 
time. So far as I am aware these have not been systematically explored. 

Oscillators of Identical Period 

A particularly tidy mathematical study of this sort was carried through by 
Zwanzig (1976) using an idealization of a mechanical clock: a piece-wise linear 
attractor cycle oscillator (Minorsky, 1962, Figure 26.2). He specified the conditions 
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Box A: Bibliography of Experimental y tem Involving Pair 
of Coupled Similar Oscillator 

Mutual entrainment between two identical oscil la tors play a con picuou role in 
a wide variety of phy iological proce e . ( ee Box B for di imilar 0 cillator .) Analysi 
has proceeded independentlyon a dozen front up to now. A decade of experimental 
and theoretical work is contained in the ~ 1I0wing referen e and their bibliographies ; 
see corre ponding Be tiary chapter for context. 

Chapter 12. Differently pha ed population ofyea t ce 11 ynchronize their rhythm of 
energy metabolism (Gho h et al., 1971: Winfree, 1974c, 197 b). 

Chapter 13. Chemical 0 cillators in continuou Iy tirr d tank reactor ometime 
I1chroni7e (Marek and Stuchl, 1975). It hould be noted that there are quite a lot of 

other pos. ibilities, e.g. , a non-uniform tcady- ta te ra yn hr nou 0 illation. ome 
of these are described in A hkenazi and Othmer (197). ujii and awada (1978) and 

eu (1979a) de cribe ome ofthe almo t periodic alternative in the course of an analysis 
of ynchronization. Rössler(1976c) notes that coupling between two identical osci llators 
can also lead to chaos (Box B of hapter 13). In facl, the fir I ob ervalion of chaotic 
solutions 10 ordinary differential equation re ulted from Poincare' coupling of two 
pendulum 0 cillator (ee rnold and vez, 196 ). Arecent lectronic experiment by 
Gollub et a J. (1978) is of interest in this regard. 

Chapter 14. Individual cells ofthe pacemaker node in the hearl normally ynchronize 
each other (Berkinblit et aJ. , 191', u ing oble's adaptation of the Hodgkin-Huxley 
equation: Pe kin. 1975. pp. 250- 278, using the "integrate-and-fire" model of membrane 
kinetics: Linkens and Datardina, 1977, u ing Hodgkin-Huxlcy equation : Torrc. 1976 
and Gratlarola and Torre, 1977. u ing the van der Pol model). pontaneou Iy rhythmic 
musc1e llnits of mammal inte tine ynchronize each other electrically ( elson and 
Becker, 1968: and Linken , 1976, 1977, again II ing an der Po)' model). Linken 
(op. cit.), Boon and Strackee (1975). Zwanzig (1976). Ashkenazi and Othmer (1978), 
Pavlidi (1978b)andKa\ atoet al. (1979) not thatiti ju ta commonforlwoo cillator 
to lock togelher 011/ oJ step a to ynchronize. (See also Box F of hapter 4.) Krin kii 
et al. (l97_) make this ca e e pecially pertinent to irregularitie ofthe heartbeat. 

CJiClpler 19. The left and right c10cks of th in ect brain function independently in the 
one pecie of beetle examined (Koehler and Flei ner, 197 ), but in the cockroach they 
ynchronizc one another unle urgically decoupled (Page et al.. 1977; Page, 197 ). 

A noted on page 202, a model invoking two independent 0 cillators suffice to accounl 
for resetting of amplitude a weil a phase in Drosophila (Winfree. 1976), but Pavlidis 
(1976) howed at the ame meeting that even if the two 0 cillator are trongly coupled, 
it can take them so long to synchronize n the atlracting cycle that the re uired phe
nomena are till obtained. 

C!wptel' 22. Two blob ofrhythmically mito ing Physarllm quickly e tabli h ynchrony 
a t a compromise phase when mixed together(Ty on and Sach enmaicr, 197 ). Kauffman 
and cheffey (1975. per. comm.) found that entrainment between two of the single
variable "siphon" 0 cillat r model traditionallya ciated with thi mechanism doe 
not nece sarily entail ynchrony: Out-of- tep entrainment i common. Tyson and 
Kauffman (1975), usinga two- ariable attractorcycle model more recently advanced as a 
model of mitotic control. find the ame phenomenon. In fact , thi i quite ordinary in 
diffusion c upled 0 cillatory reactions as no ted under hapt r 14 ju I ab e. 
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Box B: Bibliography of Experimental y tem Involving Pair 
of oupled Di imila r 0 cillator 

In at lea t live 'eparale area f phy iolog) it ha proven useful 10 ab Iraet the 
dynamic ofarh)thmicproce ' inlcrm ofapairofunequalocillalor.lnsomecae 
one driv the ther a ymmetrieall): in Olher ca e the two interaet reeiproeally. 

C/rapler 14. 0 rar as I know, the first in tance of lhi sort was van der Pol and van 
der Marks' (192 ) anal)' i of the heartbeal, in which the -A pacemaker drive the 
otherwise autonomou A- pacemaker. The mo t ignifieant direct de cendents of thi 
inno ation include Grant (19561, Nade<lu <lnd Roberge (1969), Licko and Landahl (1971), 
Bhcreur et al. (1971), Katholi et al. (1977) and Plant (1979j. 

C/rapler 19. The next phenomenon 10 bcnefit from this outlook wa the 24-h cireadiall 
rhythm, beginning with the inlroduction of a light- en itive ma ter clock A driving a 
more passive and phy iologi ally more temperature-dependent 0 eillator B (Pittendrigh 
and Bruce. 1957). The AB model wa developed mainly in eontexl of Drosop/rila' 

eclosion rhythm ( hapter 20) and wa rcfined malhematieally by Pitlcndrigh et al. 
(195 ) and Kau (1976). A more inleraetive version of the two-o eillator model ha 
ince been introdllecd by Pitlendrigh (1974), claborated by Daan ct al. (1975), and 

refincd by Daan and Berde (1978) lInder the label M and or and M. This model 
slIppose lwo clo eI) eoupled cireadian oseillator with eon pieuou I different re pon c 
to i ible light. together determining the activity rhythm ofrodent. varicty ofolher 
circadian rhythm have been variou I)' interpreted a ummation of two rhythm , one 
initiated by dawil alld olle b) du k. Thi traditi n began independently with Takimoto 
and Hamner (1964) and Ty hchcnko (1966. in Ru ian) wa app1ied to in eet rhythm 
by hand ra hckaran et al. (1973) and aunder (1974) and wa nieel re icwcd by 
Hamner and Ho hi7aki (1974). 

C/rapler 23. Ofmore reeent vintage i the realinltion thattheestrous eyele in laboratory 
harn ter , rat , mice, ctc., i an oscillator who e period i eon trained to exaet multiplc 
of the circadian clock's period. It appears that the eireadian 0 eillator pro ide a dai!y 
neurohumoral input 10 the fema1e's longer period endoerine 0 eillator, and thi unilatcral 
eoupling mcdiales entrainment. ( ee Chapter 23 for referenee .) 

Chapler 22. There eems inereasing rea on to think of the eell mitotie eycle as a 
dynami interplay between two eparalely competent cycle , one involving D A 
repliealion and one involving cyloplasmie growth and cleavage. xplieit two-o cillator 
modeling here began with Goodwin' 1966 model. \ hieh is essentially isomorphie to 
Pittendrigh and Bruce's (1957) B m dei of eireadian rhythm . For more reeent work 
see M itehison (1971) and hapter 22. 

C/rapler 12. Oseillations in anaerobie ugar metabol i m have been ubjected to 
intcn ive experiments and dynamie modeling ince aboul 1964. It appear that lhi 
pathway eontain two ite of oseillation eoupled thr ugh a common metabolic pool 
(Chance ct al.. 1967: Dynnik and elkov, 1973, 1975a.b: Dynnik ct al.. 1977). 
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under which mutual synchronization is stable, at least for the case of identical 
oscillators. Grattarola and Torre (1977) achieved the same for populations of 
identical van der Poloscillators, suitably coupled. Neu (1979c) did it for chemical 
oscillators with a circular limit cyde. 

I think the restriction to populations of idenl ical oscillators is probably a serious 
one. At least in simple dock communities (Winfree, 1967a), mutual entrainment is 
a threshold phenomenon requiring contributions from a number of oscillators 
proportional to the range of native periods they span. Bu( in a population of 
identical noise-free oscillators, that range is zero. 

A Finite Range of Native Periods 

Envision a two-variable dynamic flow with polar symmetry. As in Section A 
of Chapter 6, suppose that phase increases at a uniform rate dependent only on 
the amplitude and that amplitude also changes at a rate dependent only on the 
amplitude. This is the A-W model exploited by Kopell and H oward (1973b), and 
the A-B model of Ortoleva and Ross (1974). In the limit of very rapid regulation 
of amplitude to the attracting cyde, this is almost a simple dock (see Box A of 
Chapter 6). If the rate of change of phase is now made to depend instant by instant 
upon the aggregate of all the oscillators' outputs, then we have a dose approxi
mation to the situation encountered in Chapter 4. The main result there was that, 
in a population of somewhat dissimilar native periods, interaction might encourage 
or discourage synchrony, depending on the magnitudes and phase relations of an 
influence and a sensitivity to that influence within the model oscillator. In the case 
of encouragement, synchrony arises by a collective process, above a critical density. 
I expect these features to carry over to populations of attractor cyde oscillators. 
Kuramoto (1975) successfully dealt with this model, in the special ca se of inter
actions similar to molecular diffusion between chemical oscillators. More recently 
Grasman and Jansen (1979) generalized the results presented in Chapter 4 for 
the ca se of mutually-coupled relaxation oscillators with at least two degrees of 
freedom. 

Systematic Reorganization of Amplitudes 

Unlike simple docks, any attractor cyde oscillator is able (0 deviate from the 
common cyde during rhythmic perturbation. In the simplest cases each oscillator 
adjusts not only its phase but also its amplitude, wh ich depends on the relative 
phase while entrained. This not only alters each oscillator's contribution to the 
aggregate rhythm but also alters its mode of response to further rhythmic influence 
and, typically, its period too. One consequence is that mutual synchronization may 
be stable, but only after it is initiated: If mutual coupling fails briefly, mutual 
synchronization is lost and cannot again arise spontaneously from the disorganized 
state (Winfree, 1967a, and unpublished computer simulation 1978-1979 circulated 
privately). Another consequence of labile amplitude is that chemical oscillators, 
mutually synchronized by free exchange of reactants through molecular diffusion, 
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are susceptible to instabilities of a wave-like nature in space (N icolis and Prigogine, 
1977; Ashkenazi and Othmcr, 1978). Through such diffusive instabilities, spatial 
gradients of phase or evcn discontinuities akin to shock waves can arise (Howard 
and Kope11, 1974, 1977; Neu, 1979a). 

Prodded by instructive conversations with J. Mittenthai in 1969, I ran extensive 
computer simulations of a population ofvan der Poloscillators in order to explore 
the range ofvalidity ofthe simple clock approximation. Except in the limit ofvery 
strong amplitude regulation (large fl), new modes of behavior were readily de
monstrable, a11 of which involve systematic dependence of the individual oscil
lator's entrained amplitude on its native period. These phenomena included 
splitting of the population into two oppositely phased parts and in ability of the 
initia11y randomly phased population to approach mutual synchrony even though 
synchrony was stable once achieved (by entraining the wh oie population to an 
external rhythm). Informal circulation of these results, and discussions with 
Mittenthai and Pavlidis, led to much mathematical analysis but no broad gen
eralizations. You may wish to consult more recent analyses of special cases by 
Pavlidis (1969, 1973), Linkens (1974), Aizawa (1976), and Aldridge (1976, p. 77). 
Aldridge and Pye (1979a,b) point out that ifthe oscillators' limit cycle and steady
state both attract, then perturbations may have lasting effects on co11ective ampli
tude even when osci11ators are strongly coupled: by bumping some of them into 
the steady-state's attractor basin. 

Hysteresis 

Van der Poloscillators are typical of attractor cycle devices in their well-known 
habit of entraining to rhythmic input in more than one stable way. These alterna
tives give rise to hysteresis if the driving frequency is varied up and down. They 
also suggest that mutual synchronization in a population may admit almost as 
many waveforms as there are oscillators to choose between alternative modes of 
entrainment. Viewed in the aggregate, a population ofmany such oscillators would 
then appear to have a continuum of neutrally stable waveforms and amplitudes, 
rather like a Hamiltonian oscillator. We saw such behavior in populations of 
coupled simple clocks in Chapter 4. And we saw it in the fruitfly's circadian rhythm, 
which might reasonably be suspected of a composite origin in many imperfectly 
synchronized cells. 

The Chemistry of Coupling 

At a less abstract level of analysis, one would like to know what mediates the 
interactions between biological oscillators of each kind. 

The Physarum plasmodium, in which myriad nuclei synchronously fission, 
seems to represent a case of very strong interaction (see Chapter 22, Section B). 
The chemical nature of the coupling factor remains to be discovered. Nor does 
anyone know wh at substances synchronize mitotic timing in yeast cells dividing 
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in suspension culture (Halvorson et al., 1971) or cultured mammalian cells (Dewey 
et al., 1973). 

Turning to shorter period regulatory oscillations, Gooch and Packer (1971) 
impute to the ATP-ADP ratio a dominant role in mutual synchronization of 
respiratory oscillators in suspensions of mitochrondria. Aldridge and Pavlidis 
(1976) and Aldridge (1976) consider certain oddities in the reaction of a well
stirred suspension of oscillating yeast cells to chemical perturbation, from which 
they reason that the cells are metabolically coupled in a phase-dependent way. 
The troublesome challenge is to guess what molecular messenger couples the 
cellular oscillators. None of the presently envisioned candidates satisfy all the 
presently envisioned requirements (see Chapter 12). The adenyl cyclase oscillation 
in social amoebae presents a well-studied example of attractor cycle oscillators 
synchronizing through chemical coupling. The chemical is cAMP. Gerisch et al. 
(1975) and Malchow et al. (1978) contrived ways to perturb this oscillation in 
suspensions of single cells, with much promise for combined experimental and 
theoretical investigation of mutual synchronization. 

In the ca se of circadian rhythms, not much is known about the channels of 
communication through which the various organs stay synchronized during pro
longed residence in an arrhythmie environment (Moore-Ede et al., 1976, Sulzman 
et al., 1978). It might be noted that sometimes they don't stay synchronized. 

C: Spatially Distributed Independent Oscillators 

Oscillators Arranged in One Dimension Without Interactions 

As long as they don't interact and we leave to them to their autonomous kinetics, 
attractor cycle oscillators run ne ar a fixed cycle alm ost like simple clocks. Only 
their reaction to perturbation reveals their lack of constraint to the one-dimen
sional world of simple clocks. This seetion examines the spatial consequences of 
a rephasing perturbation, building on the examples used in Seetion C of Chapter 4, 
and leading to a reconsideration of wave-like patterns in space. 

Reversing a Pseudowave 

The first principle at work here is, again, the principle of a "pseudowave". You 
saw one of these the last time you noticed the chain of flashing strobe lamps at 
the end of an airport runway. The lamps flash in quick succession, giving the 
appearance of a ball of fire moving toward the runway threshold. This is not a 
wave in the usual sense: It is not a propagated disturbance. It is just a spatial 
gradient in the timing of strict1y local oscillators. Its speed is simply -lj{d4>/dz)r, 
r being the period. This ball of fire can "move" at any speed, even faster than the 
speed of light if the phase gradient is shallow enough. Moreover it takes no notice 
ofwhatever ostensible barrier might be erected across its path. That is why in my 
first publication on chemical oscillators and their wave behavior, I distinguished 
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Figure 3. ;\ thrcc-dimensional diagram shows how the 4>' 
vs. (/' rcsctting curve revises a phase gradient in space (x). 

The rcsctting stimulus reverses the gradient between points 
x = a and x = h. 
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this ca se as a pseudowave (Winfree, 1972c; see also Beck and Varadi, 1971; 
Thoenes, 1973; Varadi and Beck, 1975). In the slightly more general context of 
spatially graded period (from which emerges achanging gradient ofphase), Kopell 
and Howard (1973a) called it a "kinematic" wave. They demonstrated the irrele
vance of an impermeable barrier inserted after the gradient was established. 1 

Now wh at would happen if a one-dimensional array of independent oscillators, 
spatially graded in phase, were exposed to a phase-shifting disturbance, spatially 
graded in magnitude? Consider, for example, exposing a dish of oscillating malonic 
acid reagent to a flash of ultraviolet light. Vavilin et a1. (1968) and Busse and Hess 
(1973) showed that a phase shift results, though they did not systematically mea
sure its dependence on phase and the energy of the flash. But let us suppose be
havior typical of an attractor cycle oscillator. A sufficiently brief exposure would 
induce only slight phase shifts and would therefore leave the geometry of pre
existing pseudowaves qualitatively unaltered. Local phase gradients would be 
changed in proportion to the ratio d(f/ldcjJ (from deP/dx to dcjJ'/dx) resulting in a 
proportional change of pseudowave speed in that region. The direction of propa
gation would remain unaffected. 

The story would end here were we still thinking in terms of ring devices, whose 
response to a temporary disturbance consists entirely ofa phase-dependent change 
of rate along a fixed cycle. But in this chapter we deal in attractor cycle oscillators. 
A somewhat larger perturbation can therefore elicit aresetting curve with a region 
ofnegative slope dcjJ'/dcjJ < O. This inverts the local phase gradient in space and so 
turns pseudowave velocity backward (Figure 3). (Note also that at the boundaries 
of this region, where dcjJ'/dcjJ = 0, there dcjJ'/dx = 0 so pseudowave speed is infinite, 
not 0). Figure 3 shows the old and new phases at time t = 0 at each point x. We 
transfer the new cjJ'(x) curve from Figure 3 to Figure 4 now (dropping the prime) 
and watch as cjJ continues to increase everywhere. The pseudowave can be visu
alizcd by considering how phase changes everywhere as t increases from 0: Every 

I Thcir cxceJlcnt paper in Science was delayed in pubJication by the referee's (my) insistence on that 
experiment: meanwhile Thoenes's (1973) alm ost identical paper appeared in Nature. but without the 
critical experiment. The same experiment. in this case proving that electrical wave trains in the brain 
are /lot pseudowaves, was performed by Petsche ct al. (1970) and Petsehe and Rappelsberger (1970). 
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vO 
Figure 4. The revised phase pat(crn (I'(x) in Figure 3 changes 

t:O in time as all phases increasc togcthcr Pseudowaves appear tu 
emerge from point .\ = (/ ;1I1d vanish at x = b. 

x 

<jJ(x) increases in register. As the <jJ(x) curve moves up the </> axis its points of inter
section with any line parallel to the x axis are found to move. The points at which 
<jJ = 0 might be taken as wave front markers. At unit intervals oftime two pseudo
waves now emerge from point a, and at a later moment they annihilate each 
other at point b. 

Preliminary to incorporating nearest neighbor interactions into this picture, 
we should note that in the preceding figure we made use of a map from the line 
segment ~ 1 to the phase cirde §1 (rolled out along linear coordinate axes). It will 
be convenient to draw pictures of the line segment mapped into the state space of 
the oscillator. Let's now put that map into context by changing the target space 
to [RD, the D-dimensional space of chemical concentrations (or whatever other 
variables might define the oscillators' state). Such a map can be visualized as an 
embedding of ~ 1 in [R D. Specifically ~ 1 maps along the attracting cyde in [RD in 
Figure 5 as specified by <jJ(x). Figure 6 shows this map transformed to <jJ'(x) by a 
stimulus. The ostensible source point a and collision point bare indicated. 

Rhythmic Fungi Again 

For more practice in thinking geometrically, reconsidcr the case of Nectria, the 
fungus that makes spores only in periodic patterns of ring or spiral topology. 
When we first considered these patterns it sufficed to think of phase maps from the 
frontier ring to the ring of phases of a simple dock. The moving frontier left rhyth
mic zonations in its wake. But how are we to think of the origin of pattern in a 
germinating spore or very tiny mycelium? This question will be examined more 
elaborately below in context of two-dimensional media, but we can make a begin
ning here while thinking only about the one-dimensional outer border, the frontier 
ofthe mycelium. Because it has the connectivity of a ring, its image in composition 
space is also a ring. Recognizing that the ungerminated spore is dormant, we 
might reasonably suppose that the oscillation encountered in the large, mature 
mycelium beg an from so me uniform state in the germinating spore or in the very 
small mycelium. Thus the frontier's image is initially very smalI, lying quite dose 
to the pregermination state. Suppose that state is the repelling equilibrium state 
of whatever reaction engenders rhythmicity later on. The equilibrium lies within 
the convergence of isochron surfaces (not shown) in composition space. In fact the 
equilibrium state is the unique convergence point of the isochrons if we suppose 
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for a moment that the oscillation is engendered by interaction between only two 
variables, so that the composition space is only two-dimensional. In this simpli
fication it is easier to see that the fron tier ring necessarily has some integer winding 
number around the ring of phases represented by the converging isochrons. 
Each isochron indicates the latent phase ofthe oscillation prior to realization ofits 
destiny on the attracting cycle. So the winding number realized here and now fore
teils exactly the winding number and therefore the pattern type of the mature 
mycelium. In this two-dimensional simplification the unperturbed trajectories of 
Figure 5 diverge from the repelling equilibrium, so that every oscillator on the 
frontier is independently carried out toward the attracting cyde. [In D-dimensional 
space, they would diverge from the entire (D - 2)-dimensional phaseless set.] The 
frontier image expands onto the attracting cycle without ever changing its winding 
number (Figure 7). The winding number could only increase or decrease through 
a stage in which some part of the frontier's image crosses over the convergence 
of isochrons. But the local reaction flow is away from that state. 

The crucial point ofthis story is that because the initial conditions are arbitrarily 
dose to equilibrium, their winding number is determined by initially arbitrarily 
minute fluctuations about that equilibrium composition (Figure 8). In that respect 
this diagram rationalizes the observed polymorphism of pattern in mycelia grown 
under seemingly identical conditions from genetically identical single spores 
(Winfree, 1970a and 1973d; and Chapter 18). 

Figure 5. Thc x axis of Figurc 3 before perturbation is 
mapped onto the attracting cyclc of the local oscillation. 

Figure 6. Figure 5 is reviscd in corrcspondence with the 
resetting curve diagrammed in Figure 3. Note that after 
perturbation point x = a leads thc image around the cycle, 

while point x = b is thc last to cxperience each event. 

) 
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Figurc 7. A ring of 15 eells, initially ncar eLJuilibrium and 

encircling it , diverge to wa rd the a ttracting eycle in Figures 5 
and 6. The winding numhcr of latent phase is unchanged 

heeause the oscillatllrs are independent. 
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Figure 8. Situations analogous to Figure 7 are depiel cd a t an ea rl y Illllment when a ll cells are near to 
equilibrium. A ring of cells (with north , east, so uth. and west points indicalcd) has winding number 
W = 0, 1, or - 2 about the phaseless manifold (here shown simpl y as an equilibriulll point). At the 
right we see thc rhythmic pa tte rn that will form on an ex panding lll ycdiul11 whose fronti e r has each 

winding nUlllber shown. 

Oscillators Distributed Across Two-Dimensional Space 
Without Interaction 

As in the one-dimensional case, the new features introduced by substituting 
attractor cycle kinetics for simple-clock kinetics are (1) the attractor cycle os
cillator's different pattern of rephasing by a stimulus and (2) the existence of a 
phaseless locus in the attractor cycle oscillator's state space, where latent phase 
(a function of state) can suffer a discontinuity while the state itself still changes 
continuously. 
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The new feature introdueed by substituting two dimensions of physical space 
for the single dimension to wh ich we previously restricted our attentions is the 
possibility of applying a stimulus gradient transverse to a preexisting phase gra
dient. This is the format of the pinwheel experiment, by which the time crystal's 
helicoid and singularity were discovered in circadian clocks, in oscillating glycolysis, 
and in transpiration in plants. 

My purposes for this section are to describe the pinwheel experiment in terms 
of a map from two-dimensional physical space into state space and to exhibit a 
similar mapping derived from our consideration of Nectria's growth rhythm. 

Pinwheel Experiments: Two-Dimensional Arrays 
of Independent Attractor Cyde Oscillators 

Suppose an extended medium such as a two-dimensional rectangle in which 
every area element is oscillating on a common attracting cycle. For example, 
imagine a dish of malonic acid oscillator, as in Busse and Hess' (1973) demon
stration oflocal phase shifting by a focused beam of ultraviolet light. Let there be 
an east-west phase gradient such as might have been established by the earlier 
passage of a solitary wave of excitation from east to west. As a geometrie conve
nience, roll up the rectangle to superimpose any repeats of the full cycle of phase 
along the east-west gradient. We now have a cylindrical piece of oscillating medium 
with a cycle of phase around its circumference as shown in Figure 9. This is only a 
pseudowave. It sweeps around the cylinder as indicated by the arrow. Now suppose 
we apply a stimulus graded in magnitude M along the vertical axis, transverse to 
the circular phase axis. At the bottom of the eylinder let M = O. At the top let M 
be "big" by the criterion that type 0 resetting is evoked. Consider the fate of a ring
shaped element R of the cylinder, shown in state space in Figure 10. All points on 
R receive the same stimulus, but these points are at all of the old phases cjJ on the 
attracting cycle. R initially has winding number W = 1 around the circle oflatent 
phases because the attracting cycle does and R maps directly onto the attracting 
cycle. Ifthe stimulus acts in a way qualitatively resembling the models ofChapter 6, 
then R is moved off the cycle during the stimulus. By the time the stimulus ends, 
R's image in state space mayor may not still have winding number W = 1 around 

BIG 

Figure 9. Phase has winding number W = 1 arüund a M 
cylinder üf üscillating medium. lt is expüsed lü a stimulus 
für a lünger time at higher altitudes, resulting in winding R 

number W = 0 alüng ring R. 

o 
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Figure 10. After thc stimulus of Figure 9 this 
cylinder is mappcd illto a three-variable state 

space. Isochrons 01" thc dynamical flow are 
schematically illustratcd by the "paddlewheel". 
The allracting cyclc is thc heavier ring at the 
bottom. Beforc thc st imul us the whole cylinder 
was on the attractillg cycle {similar 10 Figure 8 

01" (·hapt er 6). 

the convergence of isochrons. For big enough M, it doesn' t. It can have any other 
interger winding number in general , or none at all in rare cases of discontinuity or 
degeneracy. But let's suppose W = 0 at big M. 

Figure 10 shows the terminal states reached by ring R for bigger and bigger M. 
It is a mapping of the ((I>, M) cylinder into state space. Thc convergence of the iso
chrons necessarily lies within the stippled area. We know this because between 
the ring M = 0 and the ring M = big, W has ehanged from I to O. More formaHy, 
ifboth boundaries are traversed in one sweep along path ABCDA in Figure l1(a), 
then the winding number ofnew phase along the eomposite border ofthe stippled 
area is 1. That means that a fuH eycIe of isochrons enter the stippled area but do not 
emerge from it. It also means that the stippled area cannot be mapped continuously 
onto the phase eircIe. There must be an internal diseontinuity. That is where the 
missing isochrons vanish. The tidiest way to manage it would be a single point 
where they a11 eonverge: a phase singularity. The models of Chapter 6 do it that 
way. Figure 11(b) shows the isoehrons in the shaded area, converging to an internal 
phase singularity in agreement with Figure 10. The shaded area being an image 
of the eylinder of Figure 9, these isochrons ean be drawn on the eylinder. Slitting 
the eylinder along vertieal element and laying it flat, we have the stimulus 
plane ofthe pinwheel experiment [Figure lI(e)]. The isochrons may be regarded 
as level contours of new phase cp' plotted above the ((I>, M) plane. They therefore 
deseribe a screw surface winding up around the critical stimulus (cp*, M*) as 
observed in the several biological oscillators tediously overworked in this volume. 

The isoehrons mayaiso be regarded as the suceessive positions of a wave front, 
the loci of cp' = 0 on the cylinder. The wave front circulates around the base of the 
eylinder, on ring M = 0, at the same time as it rotates, pivoting about (cp* , M*) . 
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Figure 11. (a) The conical image of the cylinder 
after a graded stimulus (from Figure 10). Locus 
ab-dc is the cylinder element abdc in Figure 9. 
(b) Part (a) is redrawn to show intersection loci of 
the cone with the isochrons and their phaseless 
manifold. (c) Parts (a) and (b) unrolled and straight
ened into the rectangular format of <p x M (cf. Box B 
and Figure 13 of Chapter 2, Figure 13 of Chapter 4, 
Figure 13 of Chapter 5, Figure 6 of Chapter 6, 
Figure 18 of Chapter 7, Figure 2 of this chapter and 

D. ____________________ C 

M 
Box B of Chapter 12). 
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This (rjJ*, M*) remains stationary on ce all oscillators have independently re
covered nearly to the common attracting cycle, because then phase advances by 
the same in creme nt everywhere in each in creme nt of time. 

We've been through this argument before, perhaps too often. In each previous 
context the object of interest was the single oscillator. Here it is a population of 
oscillators, specifically a two-dimensional continuum. The argument is the same 
because the area elements ofthis continuum are here assumed not to interact. 

This idealization has sometimes been adopted as a useful approximation to the 
mechanism of periodic patterning in two-dimensional films of malonic acid 
reagent (Chapter 13). Thoenes (1973), Smoes and Dreitlein (1973), and Smoes 
(1976) have even gone so far as to suggest that all the wave phenomena, spirals 
included, can be so interpreted. According to this interpretation every volume 
element is at so me phase on the attracting cycle. The two-dimensional wave 
pattern is then a contour map showing where phase = 0 at the moment. On 
account of the phase singularity implicit in every rotating wave, this description 
would be tenable only if it were acceptable to suppose (as Smoes's model does) 
that arbitrarily sm all adjacent volume elements can remain at finitely different 
phases i.e., that the state variables of the oscillator do not diffuse. But they do, and 
in fact diffusion ofHBr02 and Br- is the driving principle behind one kind ofwave 
propagation in this medium (Field and Noyes, 1972; Murray, 1976a; Tyson, 1976). 
These diffusion-coupled waves are typically a few millimeters apart, or less, and 
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travel relatively slowly, in the order of several millimeters per minute. These 
"trigger waves", first described by Zaikin and Zhabotinsky (1970), are probably 
what Busse (1969) and Herschkowitz-Kaufman (1970) mistook for stationary 
"dissipative structures", and what Beck and Varadi (1971), Varadi and Beck (1975), 
and Beck, Varadi, and Hauck (1976) mistook (I suspect) for pseudowaves or 
kinematic waves. In contrast, the waves observed by Zhabotinsky (1968), by 
Thoenes (1973), and by Kopell and Howard (1973a) were spaeed apart by centi
meters or more, and moved at speeds in the order of meters per minute. I think 
these probably were the pseudowaves or kinematic waves expected theoretically 
by Beck and Varadi (1971, 1972), Winfree (1972c), Kopell and Howard (1973a), 
and Thoenes (1973) i.e., phase gradients in a spatially distributed oscillating 
medium. So far they have been examined in detail only in one-dimensional context. 
See Box C of Chapter 13. 

The Ascomycete Frontier as a Two-Dimensional Population 
of Independent Attractor eycle Oscillators 

We turn back to the fungus N ectria for an ex am pIe of attractor cyde oscillators 
arranged in a two-dimensional spatial continuum. In Chapter 4, Section C the 
colony's fron tier was idealized as a ring of ring devices. You may have wondered 
at the time what is to be done about the interior of the colony which, after all, 
constitutes both its overwhelming bulk and the whole ofthe area in wh ich pattern
ing is clearly visible. We mapped the [rontier continuously onto the phase circle, 
confident that this was only an act of selective attention, that the frontier map was 
only a restricted part of the whole disk's continuous map onto the phase cirde. 

1. A Point of Ambiguous Phase. But a paradox lurked in the circumstance that 
Nectria makes not only ring-shaped formations but, alternatively, spirals. The 
frontier map for spiral morphogenesis necessarily has nonzero winding number. 
It is impossible to continuously map a disk onto the cirde in such a way that its 
boundary has nonzero winding number. 

Must the map then be literally discontinuous? Very steep concentration gra
dients pose no challenge to the imagination but an actual discontinuity would be 
hard to accept in a fine-meshed mycelium of richly interconnected hyphae. 
Moreover, there is typically no hint of phase discontinuity at any time during the 
mycelium's growth, as recorded in the visible zonations left by the moving frontier. 
Is this discontinuity always kept away from the frontier? Even in the tiny young 
mycelium? How could a tiny web of cytoplasm, less than a millimeter across, 
harbor the fierce discontinuity of phase implicit in spiral zonations? 

Rather than answer such riddles, we could abandon the single-variable simple
dock model for a more complicated, but more realistic vision of oscillator dy
namics: an attracting cyde in astate space of two or more variables, as in any of 
the last decade's reviews of biochemical oscillations (Higgins, 1967; Hess and 
Boiteux, 1971; Nicolis and Portnow, 1973; Goldbeter and Caplan, 1976). In such 
reviews, there is not one ring device to be found. In a previous section of this 
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chapter our map of the mycelium's fron tier onto the phase ring was accordingly 
revised, becoming a map into aspace of at least two dimensions in wh ich phase 
is ajimction of state as in Chapter 6. We look to this state space of at least two 
dimensions for the state of each tiny patch oftissue, sm all enough to be considered 
homogeneous, but large enough to have a steady average composition. 

2. Mapping 1Ri 2 -> 1Ri 3• Now it is time to quit restricting our attention to the 
one-dimensional frontier. Figure 12 depicts a snapshot of the whole two-dimen
sional mycelial disk mapped into a three-variable state space. I use threedimensions 
instead of two because three is the most we can easily visualize, and restrietion to 
two implicitly assurnes some rather special features that the fungus has not yet 
exhibited. I caII it a "snapshot" because Figure 12 only depicts each cell at its 
instantaneous combination of chemical concentrations, and those concentrations 
are aII thought to be changing rhythmically in time. 

The heavy ring represents the conjectured attracting cycle, and the finer curves 
show how concentrations tend to that cycle "in the limit" oflong enough time. 

The chief assumption implicit in this picture is that concentrations vary 
smoothly in space, i.e., nearby hyphae map as neighbors in state space. The fron
tier maps wholly onto the attracting cycle. If its winding number is 0, then the 
whole disk can map wholly onto the cycle. But Figure 12 shows a ca se with winding 
number W =I- 0. Where is the continuity problem? Instead of a discontinuity 
of state and the implicit infinite concentration gradient somewhere inside the 
mycelium as required by the simple-clock conjecture, we have here a perfectly 
smooth variation of concentrations across the mycelium. 

If we insist on assigning a phase to each point in the mycelium, there still has 
to be a phase singularity. But that no longer forces us to accept a singularity in the 
biochemical state of the mycelium unless we insist on adherence to the attracting 
cycle everywhere. The mapping to state space can be, and presumably is, perfectly 
smooth. It is thefurther map from state space to the ring oflatent phase values that 
harbors the singularity, as explained in Chapter 6. And that poses no paradox: 
There is no reason to expect an arbitrarily chosen function of state ("latent phase") 
to be free of pathological behavior. The fine trajectories of Figures 5, 6, 7, and 12 
show how most sets of initial conditions lead onto the attracting cycle. The cycle's 

Figure 12. An image of a disk of oscillating medium 
in state space, supposing its border has winding 

number W = 1 around an attracting cycle. 
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attractor basin is necessarily shaped like a doughnut surrounding the cycle. Even 
ifthe doughnut is puffed up to enclose as much of composition space as possible, 
apart of its boundary (what bounded the inner hole) must thread the cycle. In 
the less graphic terms of topology: Any cap bounded only by a cycle must contain 
at least one point (an initial state) from wh ich trajectories never return to the cycle. 
Guckenheimer (1975) further showed that trajectories from nearby initial states 
reach the attracting cycle at every phase. This point is the phase singularity first 
intimated by the simple-clock model of Chapter 4. This point is apart of the 
"phaseless manifold", the locus of at least D - 2 dimensions from which you 
cannot get to the attracting cycle by spontaneous processes without help from 
outside. In Figure 12, D = 3, so the phaseless manifold is one-dimensional. 
Specifically, it consists of the two trajectories labeled with an asterisk. 

3. The Germinating Spore. A mycelium with nonzero winding number con
stitutes such a cap, so somewhere inside it is a patch of tissue with ambiguous or 
indeterminate phase. Following this line of argument back in time to the very 
young and very sm all mycelium, scarcely more than a germinating spore, we infer 
that the single spore from which emerged a spirally-patterned mycelium must 
have been in or very close to the phaseless manifold. 

In principle a spore could contain any concentrations ofthe relevant substances 
and still not oscillate until a parameter change during germination disinhibits 
their chemical interactions. In such a case, the initial concentrations would deter
mine the latent phase ofthe whole mycelium, which would accordingly go onto the 
attracting cycle homogeneously. A homogeneously oscillating mycelium makes 
concentric rings. This is what most rhythmic ascomycetes do. 

Therefore any fungus that spontaneously makes spirals must have had its 
initial conditions ne ar the phaseless manifold. That means little in terms of concrete 
biochemistry until the oscillating mechanism is chemically isolated, but it does 
predict a somatic polymorphism, as noted in the previous section and as observed 
in Nectria. 

So if spiral morphogenesis is observed, then genetically identical spores, 
cultivated under identical conditions, must be expected to develop into mycelia 
bearing rings, spirals of left and right handedness, double spirals, etc. This is just 
wh at happens in N ectria. The other two ascomycetes known to make spirals 
(Penicillium diversum, Chaetomium rohusta) also make rings, but further details 
of their behavior have not been reported. 

Note that the pattern originates in every ca se from the relatively homogeneous 
initial conditions required by our assumption of smoothness of concentrations in 
a tiny mycelium. Such homogeneity in a simple-clock model would imply homo
geneity of phase and therefore concentric circular zonations. But the phaseless 
manifold of the attractor cycle model gives us the possibility of a phase singularity 
without the biologically impossible state singularity. The state is initially relatively 
homogeneous, but the divergence of trajectories from the phaseless manifold gives 
us a deviation-amplifying device that soon puts points of the fron tier at widely 
different states on the cycle. 
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Bo e table Implications 

(I) We uppo e that the angular di tribuli n of pha e around the frontier of a 
mall mycelium i achie ed by mall random di placement from an initial state. If Ihis 

initial tiny ring of tate cannot adopt a ariety of winding number , Ihen it mll 1 not 
be clo e 10 the D - 2 dimen ional locu (where the i ochrons converge) about which 
the winding number i defined. Being liny, il Iherefore doe not enclo e Ihat locu , il 
winding nllmber is W = O. and it pallerning therefore con ist of concentric rings. In 
other word ,Ihi model require that a fungu which rOlltinely re Iricl it rhYlhmic 
patlerning 10 one winding nllmbcr mu t make clo ed ring, a i mo t common among 
rhythmic fungi. 

(2) A di tllrbance which alter the pha e of a biochemical rhythm doe 0 by 
temporarily changing the rate of reaction invol ed in the 0 cillation. Only in the 
exceplional ca e Ihal all rate change in the ame proportion i the geomelry of flow 
in compo ition pace unallered. Olherwi e nol only rale bul al 0 direclions of flow 
are altered. Thll lrajectorie previoll I con lituting the boundary of Ihe pha eie el 
during unperlurbed 0 cillation are replaced during perturbalion by lrajectories which 
cro Ihal bOllndary. ring of 0 cillalor encircling the pha eIe el i lhen blown 
acro il and end up Iying 10 one ide. no longer encircling lhe pha eIe el (Figure a). 
Its winding number ha changed to W = 0, 0 morphogene i Ihereafter changes 10 

concentric clo ed ring. 
(3) The same principles allow transition from ring to spirals, but only ifthe stimulu 

i exqui itely timed. uppo e a frontier with winding number W = ° i expo ed to the 
perturbation diagrammcd in Figure a. uppo e the timulu begin when the ring of 
initial conditions is exactly "lIpwind" from the pha eless set. Let il conlinue jll I long 
enough 10 take part of the ring through the pha eIe el, changing it winding number 
from zero. If Ihe timlilu terminate at thi time, pirat morphogenesis must ensue. If 
the stimulus continue longer then the winding number re ert 10 zero a in (2). However, 
if lhe timulll i applied at the wrong time or in a mycelium initially too homogeneou 
in pha e, then the winding number remain W = 0. 

Figurc imilar 10 Figurc 8. bUl lhe 
ring· haped image ofthe fronlier i moving 
along trajcclOries of the perlurbcd dy
namic. s it moves. its winding number 
changes discretcly. The live radial line 

W= 0 are suppo ed 10 be i ochron . 
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4. Consequences. Three predictions foJlow from the foregoing (see Box C): 

1. If a fungus makes patterns of only one winding number, then that winding 
number must be zero and the pattern must consist of equispaced disjoint rings. 
For example, there should be no mutant that makes only dockwise two-armed 
spirals. 

2. A fungus with spiral polymorphism should go on to make only rings if 
shocked during germination. (A shock is anything that disturbs the oscillator's 
mechanism by the criterion that it infiects a phase shift on a rhythmic mycelium). 

3. A fungus which mainly exhibits rings should sometimes convert to spiral 
morphogenesis following a suitably timed shock. 

3. Potential Difficulties. There exist alternatives to thc ccntral conjecture elab
orated above that each tiny patch of mycelium harbors a continuous attractor 
cyde "dock" which functions essentially independently in each patch and whose 
state varies continuously across the organism. 

For example, more might be made of the inevitable interactions between 
nearby patches of tissue: The model elaborated above achieves its seductive 
simplicity by ignoring molecular diffusion and cytoplasmic mixing. Particularly 
in very young and small mycelia, spatial coupling of oscillators could dominate the 
launching of morphogenesis into concentric ring patterns. In the next section of 
this chapter, a beginning is made toward incorporating such interactions. 

What about the many other internally rhythmic ascomycetes that do not 
make spiral zones, but only eoncentric rings? Why the anomalous ability of 
Nectria, Penicillium, and Chaetomium to makc rings and spirals? Suggestions: 

1. Conceivably the others, if they harbor biochemical osci11ators at a11, have 
"simple docks". The simple dock can only have winding number W = 0 around 
a very tiny mycelium, and this can only initiate morphogenesis in rings. 

2. The critical feature of the attractor eyde model for spiral polymorphism 
is that the steady-state changes from attractor (in spores and old, crowded, or 
damaged hyphae) to a repeJlor (in rapidly growing hyphae) while staying fixed 
at the same concentrations. For if it moved in concentration space, then aJl the 
ceJls previously attracted would soon find themselves to one side of the repellor 
and go into oscillation synehronously. Nearly synchronous oscillation means 
W = O. It might seem a bit too ad hoc to pro pose a model in which the steady-state 
changes type, but does not move, while the metabolie rate increases. But this 
idiosyncrasy is strictly necessary to aCCOLll1t for spiral polymorphism in terms of 
an oscillator model. It might thus account for the phylogenetic rarity of the 
phenomenon. 

Neurospora crassa (band, csp-1), whieh makes only rings spontaneously, 
exhibits type 0 resetting, so (I) is exduded for N euros[Jora. Dharmananda and 
Feldman (1979, Figure 2) report that the banding rhythm usually starts up from 
germination within a predictable third ofthe eycIe. Thus the initial steady-state lies 
off to one side from the convergence of isochrons in the mature dynamies. So (2) 
seems likely for N eurosporu. 
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D: Attractor eycle Oscillators Interacting Locally 
in Two-Dimensional Space 

To ignore interaction among neighboring area elements of a reacting continuum 
is to make a gross approximation. Sometimes that is exactly what we want to do 
in order to abstract an essential principle out of an incidentally more complicated 
context. The appropriateness of such an approximation sometimes depends on 
the scale oftime and space we are concerned with, in relation to the time and space 
constants of reaction and of local interaction. But not here. In dealing with spiral 
patterns we confront a topological difficulty that cannot be resolved without 
invoking some kind of dynamical interaction between adjacent patches of tissue. 
Why is that? According to the hypothesis of independent kinetics, every patch of 
tissue promptly moves into the attracting cycle. The only exception is that single 
cubic micrometer that initially happens to be poised exactly at equilibrium. If all 
its neighbors so on begin to oscillate on the cycle, then this neighborhood ex
periences oscillating concentration gradients of startling intensity. Unless the 
tissue be divided up into largish chunks by nearly impermeable membranes, there 
will be arhythmie exchange ofmaterials between differently phased neighbors, and 
corresponding modulation of local kinetics. 

Tying the Mycelium Together 

Accordingly, we now add neighbor interactions. Specifically, let each area 
element not only go about its own business according to its local kinetics but also 
let it tend to adopt astate midway between its immediate neighbors, as in the last 
part of Chapter 4. In terms of equations this is represented by adding a Laplacian 
operator V2c to the rate equation of each state variable c. Physically it is equivalent 
to introducing molecular diffusion between adjacent area elements. Geometrically 
it corresponds to conferring on the image ofthe medium in state space a coherence 
or integrity which for many purposes resembles an elasticity (Winfree, 1974b,f; 
1978a and Box D). Viewed in any ofthese ways, the essential result is that the area 
elements can no longer depart freely from their neighbors in composition space. 
Nearby points initially have, and continue to have, nearby compositions. Com
position varies smoothly because extreme concentration gradients do not long 
survive unless aided and abetted by an extreme irregularity in the kinetic rate 
equations. 

With this understanding, Figure 12 contains less to disturb the skeptical reader. 
Without local exchange of reactants, the center of the mycelium's image in state 
space would be stretched infinitely thin and taut as almost all volume elements 
independently approach the attracting cycle. With diffusion restraining the 
divergence of neighboring states, the map stays smooth as sketched. In the absence 
of neighbor interactions, area elements initially near the phase singularity would 
independently diverge, tearing a hole in the image of the continuum or stretching 
it infinitely thin. Only that infinitesimal area element that was initially exact1y on 
the equilibrium state would remain inside the cycle. But the effect of molecular 
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Box 0: The Medium's Image in Concentration Space 
Behave Uke an Ela tic Membrane 

A noted on page 127, the parabolic partial differential equation of reaction and 
diffusion ha the ame form a the equation de cribing the movements of a simple kind 
of ela lic membrane immersed in a vi cou flow. To make this metaphor explicit imagine 
the membrane a a rectangular gr idwork of pring connected at four-way junction 
(Figure a). I wi h each pring to develop mechanical tension in direct proportion 10 the 
vector eparating its end point . The e force add at each jllnction of four pring : 

r 

ow suppose this bedspring is immersed in a viscous medium moving with velocity 
v(/') at each point r. So let each junction r be lIbjecl to an additional vi cous drag force 
due to its motion relative to the loeal flow: 

F(r) = k2}NBR - r) + j.l(v(r) - I') 

Ir both bed pring and surrounding fluid be essentially massless, then there are no 
significant inertial forces F to balance the pring force and vi cou drag. T hen we can 
write 

k 
f = L'(r) + - l)rNlIR - r). 

P 

Now call klp = D and interpret /' not a r = (x, y) in phy ical pace but as C = (Cl' C2) 

in concentration space. Interpret v(r) a the reaction flow R(c). And recall that 2)c ßR - c) 
is the diserele approximation to the Laplacian: 

c = R(c) + D 2C. 

To put it another way: the fundamental equations of ehemical reaction, considered 
in terms of molecu lar collision , are hyperbolic and i omorphie to tho e of a web of 
springs and ball. The more familiar parabolic reaction fdiffu ion equation is used only 
as an excellent approximation that overlooks transient of duration in the order of 
10 - 10 second (Othmer, 1976b). Thi approximation amounts to neglecling (he mass of 
each ball. 
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I find it ea ie t to "intuit" the olution of such equation by thinking of them a 
motions of a thin elastic membrane eaughl up in ftowing mola e. The ftow ha just 
the phase portrait ofthe loeal kineti . 

oie that this metaphor i accurate only if the diffu ion matrix i a scalar. Thus it 
i c1ose-to-accurate only in reaction involving moleeule of comparable mobility and 
in biological y tem involving random bulk tran port of all reactant , a in cytoplasmic 
translocation in fungi. 

exchange is to preserve continuity. The image stretches toward the attracting 
cycle and thins out in the middle, but not forever. Beyond a certain point the 
concentration gradients near the phase singularity are steep enough (area elements 
have moved far enough apart in state space) that molecular exchange prevents 
further divergence. The oscillation remains thus attenuated near the phase sin
gularity, as it would not were every area element independent. The image of the 
medium continues to rotate and every area element oscillates synchronously. But 
full amplitude is achieved at only so me distance from the phase singularity. Area 
elements near the phase singularity are in close contact by molecular diffusion 
with area elements at all phases of the cycle so that they scarcely vary in 
composition. 

Other Possible Outcomes and Interpretations 

As described in the foregoing paragraph, this is a purely heuristic and conjectural 
story. lts support comes mainly from numerical computations of specific examples 
(Winfree, unpublished, 1973 and 1974; Yamada and Kuramoto, 1976; Erneux 
and Herschkowitz-Kaufman, 1977; Cohen, Neu, and Rosales, 1978). 

There are three main alternatives to the qualitative pictures presented above. 
The first is that the whole situation could be subject to instabilities of a nonintuitive 
sort in wh ich the medium's image, initially girdling the cycle, pulls across the 
convergence of isochrons, defying the local kinetic trajectories. After this, all 
rings have winding number W = 0, the whole medium oscillates synchronously, 
and its entire image contracts to a point circulating on the attracting cycle. This 
happens in my unpublished numerical solutions ifthe physical medium is too sm all 
or (the same thing) if the reaction is too sluggish relative to the homogenizing 
influence of molecular exchange. 

In the ca se of one-dimensional media, the mathematics of Kopell and Howard 
(1973b), Othmer (1977), Ashkenazi and Othmer (1978), and Conway et al. (1978) 
can be invoked to show that in the presence of molecular diffusion (or random 
cytoplasmic streaming), nonzero winding number of phase is unstable on too 
small a physical ring, though it is perfectly stable on large rings [and this is borne 
out quantitatively in numerical simulations (Winfree, unpublished)]. The critical 
size depends on the ratio of the diffusion coefficient to a quantity related to the 
vigor of radial divergence from the phaseless manifold. Given W =1= ° in such an 
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unstable situation, the rate at which it evolves towards a switch to winding number 
o depends on these two factors and on the frontier's circumference, wh ich is 
meanwhile increasing as the mycelium grows, and might increase enough to 
restore stability before winding number changes. But if it doesn't then only 
concentric rings will be observed. 

At present, we lack figures to test this conjecture for N ecl ria. But estimating 
the effective diffusion coefficient at 10- 5 cm 2 per second and assuming kinetics 
such that the attracting cycle would be approached with a time constant in the 
order of an hour, the minimum stable size for spiral morphogenesis should be 
in the neighborhood of 1 cm of circumference. In Nectria, this represents an age 
of about 50 hours. So it might be that in N ectria, uni ike Ascom ycetes that embark 
only upon ring morphogenesis, intramycelial coupling is rcstricted during the 
first 50 hours; or it might be that the instability doesn't develop to completion 
within that time; or it might be that the clock process is not disinhibited until at 
least 50 hours after germination. In fact, this region never does develop clear 
banding. I personally doubt that coupling by diffusion plays any important role 
in Nectria, other than ensuring reasonable smoothness of the bands. But the 
foregoing possibilities remain unexcluded alternatives to interpretations based 
on strict1y parochial oscillation. 

The second conspicuous alternative to the simple ideas about Neclria under
Iying Figure 12 is that while W =1= 0 is preserved, the medium's image does continue 
to rotate, but not rigidly: Area elements near the phase singularity dart this way 
and that irregularly, always tethered inside the attracting cycle by the requirements 
of continuity, but not stably so. This makes a rotating wavc whose apparent 
"center" is forever meandering irregularly. Oscillating versions of the malonic 
acid reagent exhibit such meandering centers (Winfree, 1973c; Rössler, 1978, 
Rössler and Kahlert, 1979). 

Kuramoto (1978) points to still more ghastly irregularities of timing that can 
arise in a field of oscillators coupled by diffUsion. He calls these "phase turbulence" 
and "amplitude turbulence". Like the "diffUsive instabilitics" pursued by the 
Brussels School (Turing, 1952; Nicolis and Prigogine, 1977), these pathologies 
can only occur where diffusion coefficients differ s ufficiently. M utants of N ectria 
which typically exhibit irregular periodicity might conceivably represent this 
parameter range. 

Third, it could weil be that only the frontier oscillates. Hyphae left behind 
the frontier in crowded conditions on staled nutrient medium might not be 
oscillating at all. If the pertinent metabolie parameters differ so drastically from 
pi ace to place, then it is wholly inappropriate to map all those places onto a 
common dynamic flow as in the foregoing diagrams. However, at least in the 
case of Neurospora, Dharmananda and Feldman (1979) reccntly succeeded in 
showing experimentally that the oscillation does persist, only slightly alte red 
in period, at points sampled weil behind the frontier. 

My fourth conspicuous alternative occurs first to most people, i.e., that the 
local kinetics (neglecting transport) does not osciIlate at all, but that the growth 
rate at the fron tier "stutters" due to an instability of the balance between inward 
diffusion of nutrients and production of "staling" byproducts that locally inhibit 
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Box E: Chain and Sheet of oupled Oscillator (Bibliography) 

The behavior of oscillating continua ha been of vital concern for over a century in 
eonnection with mechanical vibration, acou tic , and optie. rom uch tudie of 
crystalline olid we inhcrit the geometrie wonder of Brillouin zone, ermi urface, 
and uch u eful technology a la er optic and emiconductor eleclronic . 

On a more nearly macro copic cale than that of atomic lauice, pontaneou ly 
rhythmic living tissuc and oscillating hemical reaction have recently acquired ncw 
interest. What will come of it cannot be gues ed a yet, but there eem good rea on to 
anticipate insights of comparable cope and applicability in the area of biochemical 
dynamics. For the reader' convenience I have gathered here a repre entalive collection 
of recent re earch paper under three heading . 

The Malol1ic Acid Oscil/alor 
Zaikin and Zhabotin ky (1970) 
Field and oye (1972, 1974b) 
Bu e and He (1973) 
Oe imone et a1. (1973) 
Tatterson and Hudson (1973) 
Kopell and Howard (1 973a, 1974) 
Murray (1976,1977) 
Stan hine (1976) 
Ha ting (1976) 
Troy (1977a.b) 
Tyson (l977a) 
Zaikin and Kawczyn ki (1977) 
Reu er and Field (1979) 

Gelleral Difji;siolJ-Col/pled Oscillatiolls 
Gmitro and Seriven (1966) 

cou (1970a,b) 
Goldbeter (1973) 

Biological ituat iOlls 
(a) lectrical rhythm of inte tine: 

el en and Becker (196 ) 
Diamant el a1. (1970) 
arna et a1. (1971, 1972a,b) 
pech! and Borloff (1972) 

Brown et a1. (1975) 
Linken el a1. (1976) 
Patton and Linken (1978) 
(b) Ecological cycle geographically coupled 

by difTu ion: 
Murray (1975, 1976b) 
lorne (l977) 
Wilhelm and van der WerfT (1977) 
(c) EXlremely precise chemical 0 cillation in 

Physarum, coupled by flow of endoplasm in 
a loose two-dimen ional nelwork: 

Durharn and Ridgway (1976) 
Yo himOlO and Kamiya (1978) 

(d) Monolayer of slime mold amoebae, con
idered a limit-cycle 0 cillators coupled by 

mole ular diffusion: 
ovak and eelig (1976) 

Kopell and Howard (I 973b, 1974. 1977) 
Howard and Kopell (1974,1977) 

azarea (1974) 
Ortoleva and Ross (1973, J 974) 
Ari (1975) 

rneux and Her chkowitz-Kaufman (1975, 1977) 
Kuramoto (1975) 
KuramOlO and Yamada (1975.1976) 
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Pavlidi (1975) 
Guckenheimer (1976) 
Greenberg (1976) 
Ha ting (1976) 
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Kuramoto and Tsuzuki (1976) 
Ortoleva (1976) 
Ro (1976) 
Yamada and Kuramoto (1976) 
Zwanzig (1976) 
Cohen, Hoppen leadt and Miura (1977) 

icoli and Prigogine (1977) 
ohen, eu, and Ro ales (1978) 

Greenberg (1978) 
Greenberg and Ha ting (1978) 
Ashkenazi and Othmer (197 ) 
Kuramoto (197 ) 

eu (1979a,b,c) 
Gra man and Jan en (1979) 

For update subscribe to Joseph ord' .• on-linear Seien ce Ab tract " c 0 School of 
Phy ic , Ga. In t. ofTech., tlanta, Ga. 30332. 

growth. With the proviso that any such model must involve at least two mor
phogens in order to accommodate patterns other than concentric rings (Winfree, 
1970a, 1973d), this seems to me as plausible as the "local clocks" model. The 
question simply awaits someone to explicitly formulate a plausible model, verify 
that it exhibits the observed delicate polymorphism in two dimensions, and point 
to a distinguishing observation. 

And here we arrive at the badly frayed end ofthis story. There are good problems 
here for those with a flair for mathematics. (See Box E for collected references 
to the research literat ure.) As the takehome lesson from this chapter, I emphasize a 
conjecture: that the usual mode oforganization in a held ofindependent oscillators 
is a wave rotating around a central pivot (a point in two dimensions or a curve in 
three dimensions); and that this remains so if neighboring volume elements are 
coupled by balanced diffusion. The following chapter asserts that it even remains 
so ifwe now break open the attracting cycle so that the medium is merely excitable. 
There we entertain kinetic schemes similar to the hourglass kinctics considered in 
Chapter 3 in which oscillation is not spontaneous. Such media of course do not 
support pseudowaves, but given neighbor interaction they do support real prop
agating waves, even pivoting rotating waves similar to those we encountered 
above. Some promising starts have been made in the last few years toward iden
tifying the properties of these waves both by numerical experiments in digital 
computers and by observing biological media of practical interest such as brain and 
heart muscle. 



9. Excitable Kinetics and Excitable Media 

The beauty of life is, therefore, geometrical beauty of a type that Plato would 
have much appreciated. 

J. D. Bemal, The Origin 01 Life 

Chapter 3 on ring devices is followed by Chapter 4 on populations and com
munities of such single-variable units: both simple docks and the nonoscillating 
hourglasses. Chapter 6 on oscillators with more than one variable of state is 
followed by populations and communities in Chapter 8. What about nonoscillatory 
kinetics with more than one variable? That case is taken up briefly here, together 
with consequences of interaction in spatially distributed communities. The upshot 
is a new kind of oscillator and a new kind of phase singularity, both of which are 
apparently exhibited in diverse chemical and physiological systems. Even though 
no isolated piece of it may oscillate, an excitable medium can organize itself spa
tially in a way that stabilizes oscillation at a characteristic period. Architecturally, 
this configuration more resembles a dock than anything encountered in previous 
chapters: It consists of crossed concentration gradients, any one of which might 
be taken as the dock's "hand", apointer that physically rotates about a fixed 
pivot once in each cyde of oscillation. At the pivot, nothing changes; the pivot is a 
phase singularity and all the rest is built around it. 

A: Excitability 

Clocks and Hourglasses Again 

In Chapter 3 we encountered the simplest form of smooth oscillator, the simple 
dock. We saw that a tiny, local change in its rate law converts it from a spontane
ously recycling clock into an hourglass. An hourglass is a system which rests 
poised at a delicate equilibrium, waiting to be helped across a shallow barrier to 
complete one cycle on its own. Both simple docks and hourglasses are ring 
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~-------------~ 

(0) 

'----------------~ 

(b) 

Figure 1. Two ways for an attracting cycle to change locally, rcsulting in cxcitable kinetics without 
spontaneous oscillation. Case (a) is always an cxcitable oscillator: ca se (b) IS not initially excitable. 

These are sketches. not computations. 

devices. Any ring device is excitable if a tiny but finite disturbance triggers it into a 
big excursion followed by spontaneous approach toward the original state. If 
the recovering excitable system sticks at an attracting equilibrium, awaiting a 
stimulus to trigger the next excursion from that original state, then we have an 
hourglass. If it never quite stops butjust creeps on to go spontancoLlsly into another 
excursion, then we call it a simple dock. 

I called both by the name "ring device" to emphasize their distinguishing fea
ture, that the state space is a one-dimensionalloop. Real kinetic systems, however, 
can seI dom be realistically approximated in terms of a single degree of freedom. 
So in Chapter 6 we generalize the ring device to a dynamic system with an arbitrary 
number of degrees of freedom D. In such a higher dimensional dynamic system, 
all trajectories can eventually funnel onto an attracting dosed trajectory like the 
unique cyde of a simple dock. The same sort of generalization is appropriate in 
the case of an hourglass. In this larger world of D-dimensional composition space, 
attractor cyde kinetics and hourglass kinetics can be dosely related through a 
sm all local change in the directions of trajectories. lt is common for model bio
chemical schemes or more abstract dynamic models such as the Hodgkin-Huxley 
equations to exhibit either behavior, depending only on fine adjustments of some 
parameter (Figure 1). Box A gives a bibliography of examples in biological and 
biochemical contexts. 
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Box Oscillation in Excitable Kinetics 

o cillatory kinetics i rendered additionally excitable by any adju tment that make 
the flow very much lower in a limited are of the attracting cyc1e. This happens, e.g., if 
the equil ibrium point is moved very c10 e to any point on the cyc1e. 

on-o cillating excitable kinetic i ea ily converted to spontaneou 0 cillation. 
Verbally, it require onlya reduction (not necessarily to zero) of the threshold beyond 
which a mall di placement from equilibrium wi ll grow enonnously before lhe y tem 
again approaches equilibrium. [n the world of biophy ic ,thi tran ition to or from 
spontaneity ha been prominent for the longest time in the lUdy of electrically excitable 
membranes. TI i a con picuou feature of most neurodynamic model (See Katehai ky 
and pangier, 1968; and lack et al., 1975 for reviews and particular references). 

More recently tudies ofbiochemical kinetic have produced spontaneou 0 cillator , 
inc1uding the excitable kind that readily convert to mere excilability without oscillation. 
For theoretical examples see Rö ler(1972b,c, 1974a,b), Hahn el al. (1974), Karfunkel 
and Seelig (1975), Othmer (1975). and anglier and icolis (1976). The cAM P kinetic 
of ocial amoebae exhibit thi transition in real lire (Cohen, J 977. 1978: Goldbeter 
and Segel , 1977; Goldbeter et al.. 1978); and 0 might the pho phofructokinase oscil
lator of ugar metabol i m (Goldbeter and Erneux, 197 ). 

A conceptual model convenient to the theme of thi volume i implicit in the 
radially symmetrie 0 cillator used in ha pt er 6. Section A. There an attracting cyc1e 
was approached by two variable according to kinetics de cribed in polar coordinates 
a cP = I, R = KR(1 - R). With large K, this is practically a simple c10ck as noted in 
Box A of Chapter 6. Adding a uniform rat of increa e of one concentration (e.g., of 
x = R cos 27tcP, dx 'dl = C ~ 27t) a in Figure I(b), the attracting cyc1e i carcely de
formcd. but cP changcs to I + f(C K) sin cP a in thc pcrturbed ring devices ofChapter 3. 

bove a critical C K, the cyc1e i interruptcd by an atlractor and repellor just as in 
the ingle-variable model . 

Another da s of convcniently simple two-variable models are piecewi e linear with 
the [wo piece of tate pace eparated bya thre hold level of one variable. This kinetic 
eherne ha been u ed for a long time to caricaturc nerve membrane (Offner ct al., 1940: 

Cohen, 197 1; Rinzel and Keller, 1973), dock ( ndronov et al., (966), and excitable 
reaction (Winfree, 1974b,f: Zaikin, 1975). The computation hown in Section C used 
such a kinetic equation. With light adju tment of the Ihre hold level, it 0 cillate 
ponlaneou Iy. By playing about with thi model and with the malonic acid reagent I 

believe I have hown that the wavelike phenomcna dcscribed up to now in [his reagent 
came from a property quite independent of it 0 cillation, namely its excitability alone. 

Excitable Media 

Consider now an extended line, surface, or volume, each point ofwhich harbors 
the excitable dynamic system. Neighboring volume elements are coupled so that 
each can excite the next. Such a continuum is called an excitable medium. Just 
as in the case of the excitable continuum of ring devices discussed in Chapter 4, 
these dynamically more elaborate media turn out to support waves. Analytic 
solutions are more challenging than when only a single rate equation is involved, 
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but some examples have been solved explicitly. The most thoroughly explored 
equations of course exploit some particular simplification. The commonest are 

1. Elimination of all but one degree of freedom (examples in Chapter 4). 

2. Incorporation of all the nonlinearities into a single threshold (piecewise 
linear models: Offner et al. (1940), Minorsky (1962, Chapter 31), Andronov et al., 
(1966, Chapter 8), McKean (1970), Rinzel and Keller (1973), Winfree (1974b,f) 
Zaikin (1975), Zwanzig (1976). The models of Tyson (1977a, Figure 3) and of 
Zaikin and Kawczynski (1977, Figure 2) and of Goldbeter et al. (1978, Figure 1) 
are geometrically essentially the same as the piecewise linear models. 

3. Segregation of the dynamics into one or two slowly changing variables 
and one other that moves much more quickly (Minorsky (1962, Chapter 26) and 
Andronov et al. (1966, Chapter 10)). Cells are commonly coupled only through 
this one variable [Hodgkin and Huxley (1952), Zhabotinsky and Zaikin (1973), 
Karfunkel and Seelig (1975), Ortoleva and Ross (1975), Yakhno (1975), Hastings 
(1976), Troy (1977), Zaikin and Kawczynski (1977), Collins and Ross (1978), and 
Fife (1979)]. This dass indudes catastrophe theory models of excitable media and 
their waves (Zeeman, 1972; Winfree, 1973c; Tyson, 1976; F einn and Ortoleva, 
1977; Schmitz et al., 1977; and Rössler, 1978). 

A variety of wavelike phenomena have been derived or simulated in these 
approximations. Some ofthese waves pro pagate through the medium by means of 
an effect of one area element on the next, like the trigger waves first encountered 
in hourglass media in Chapter 4, Section D. A trigger wave can travel stably as a 
single isolated event, tending to a standard waveform and velocity. In a trigger 
wave, each volume element's local dynamical excursion is triggered by encroach
ment of the wave through neighboring volume elements. The triggering event 
propagates like a grassfire, behind which the grass grows back after a while, 
restoring readiness to conduct another trigger wave should one come along. 

Rotating Waves 

In Chapter 4, Section D, we saw that, given a suitable spatial distribution of 
activity, nearest-neighbor interactions can gloss over the slight difference of 
geometry (Figure 1 a) that determines whether or not an excitable kinetics will 
cyde spontaneously. The result is that a ring of potentially quiescent hourglass 
material is enabled to sustain rhythmical activity. Looked at another way, this 
is not remarkable. The period is just the circulation time of excitation propagated 
as a wave on a ring of excitable medium. 

Something more interesting arises when we carry over the same principle to 
two-dimensional media. This was impossible in Chapter 6 because a rotating 
wave has a nonzero winding number about an interior disk, and that implies 
a phase singularity inside the disko Phase singularities are verboten in continua 
composed of coupled ring devices because they require infinite gradients of 
chemical composition whereby all the different phases confront one another at 
the singularity. 
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As we saw in Section D of Chapter 8, no such dilemma arises in continua 
with two or more dynamic variables. A two-dimensional rotating wave arises 
in every pinwheel experiment, and its geometry can remain much the same when 
the adjacent oscillators are coupled by diffusion. It is not hard to imagine the 
same thing happening in media whose isolated volume elements do not spon
taneously cycle, if excitability is the dominant principle. Imagine how Figure 12 
of Chapter 8 might change while we change the local dynamic as suggested in 
Figure I of this Chapter. The alteration affects only a ti ny domain of composition 
space, occupied at any moment by a sm all patch of the physical meOmm (the 
wave front, roughly speaking). Because the medium is cohesive, adjacent patches 
help along the patch that is temporarily tempted to backslide into equilibrium. 
It is pulled away from equilibrium and stimulated into another cycle of excitation. 
Thus the whole medium perseveres in rhythmic activity alm ost as though the 
local kinetics were spontaneously oscillatory. 

At the center of this rotation is a new kind of singularity. lt is closely related 
to the phase singularities previously described in two-dimensional continua of 
attractor cycle oscillators such as the rhythmic fungi, circadian clocks in plants 
and flies, and oscillating glycolysis. This new kind of singularity differs from 
those encountered before in that it fundamentally involves coupling between 
volume elements by molecular diffusion. It arises in excitable media such as the 
malonic acid reagent (Chapter 13), heart muscle (Chapter 14), and slime mold 
(Chapter 15). I call it a "rotor". 

B: Rotors 

A rotor is the self-maintaining source of a rotating wave. It arises where the 
phase singularity arose in the final section ofthe previous chapter. Initial conditions 
for a rotor can be set up by executing the pinwheel experiment on an excitable 
medium whether or not it happens (as in that section) to oscillate spontaneously. 
This has not yet been attempted in the direct and obvious way, using a graded 
stimulus transverse to a phase gradient or a traveling wave. Let me show how it 
has been done and then show a few more pictures describing rotors in composition 
space. Then we will turn to abrief romance about rotors in three-dimensional 
excitable media. 

The Basic Anatomy of a Rotor 

What are the essential qualitative features of the situation m Figure 12 of 
Chapter 8? I see two: 

a. A piece of the physical medium maps smoothly across the interior of the 
usual cycle realized elsewhere, and 

b. (Which is the same thing) within that piece the level contours of one state 
variable are not parallel to those ofanother state variable. At the moment captured 
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hgure 2. As in Figure 12 of Chapter 8 but geographie 
labels are allixed to the image. rotating with it. Three 
levcl eontours are also indieated: one for A, one for B, 

ami one for C. These are fixed in conccntration spaee 
and therefore rotate in relation to the geographie labels 

in physieal space. 

in Figure 2, A increases from north to south within the rotating center of the 
disk's image. B increases from west to east and C increases from southeast to 
northwest. All three gradients rotate together. 

I now argue backward to this situation from: 

1. The observed existence of a spiral wave (see below) 

2. An experimental method of creating a rotor by abutting a wave onto 
another piece of medium not containing a wave (Winfree, 1974d, in malonic acid 
reagent), and 

3. An experimental method of creating a rotor by shearing a preexisting wave 
(Winfree, 1972c, also in malonic acid reagent) 

1: To show that thc cxistencc of a spiral w(/['c imp!icsji'aturcs Cl and b. Suppose 
a wave rotates about a hole. On each ring concentric to the hole, nearly the same 
sequence of states is realized in clockwise order around the ring. In other words, 
each ring maps with winding number J onto a common ring of states in com
position space. Now plug the hole with a disk of the same medium and ass urne 
that the wave continues to rotate around the former border of the hole. Suppose 
this central disk, this plug, adopts a distribution of compositions compatible 
with the wave. How does the central disk rnap into cOlnposition space in such a 

a) b) 

Figure 3. The disk whosc image appcars in Figure 2. In (a), contour lines "f A rota te clockwise. At 
this moment maximum A occurs in the southeast and minimum A occurs in thc north. In (b), contour 
lines of B rotate synchronously with those of..1. At this Illoment lll'lximnlll /3 occurs in the east and 
minimum B oecurs in the wcst. The indicated wavc front is the locus of A maxinlil on concentric rings. 

Alternativcly. a wavcl'ront Clluld be a ccrtain level of A or B. etc. 
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Figurc 4. If 10 each A level there corresponds a unique B level, then the 
image in concentration space of any ring, and in fact of the whole two

dimensional medium, would be one-dimensional. 
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way that its boundary continuously joins the border of the hole? It has to map 
across the interior ofthe cycle in composition space as in Figure 2, This is feature a, 

Now let's do it in terms of level contours of concentrations A and B in the 
physical medium (forgetting C for simplicity), Traveling c10ckwise around the 
border or around any inner ring concentric to it in Figure 3a, A must fall and rise 
back to its maximum. Call the maximum of A along any ring the wave front. 
Contour lines of Aare indicated. There are two branches of each level contour: 
one branch (dashed) where concentration is falling c10ckwise and the other 
(solid) where it is rising back again. A and B do not vary together along any ring, 
otherwise their cycle in composition space would be f1at as in Figure 4 and there 
would be no asymmetry to distinguish c10ckwise from counterclockwise circulation 
of the wave, B rises and falls around each ring, but out of phase with A, Thus 
the central disk is seen to contain a concentration gradient of A pointed north
south, and a concentration gradient of B pointed east-west. It contains crossed 
gradients of these two essential state variables. This is feature b. 

In contrast, a disk of medium entirely on the attracting cycle (therefore 
necessarily with winding number W = 0) has all its concentration gradients 
parallel. This can be seen as folIows. Each point necessarily has some phase on 
the cycle, so that contour lines of uniform phase can be smoothly drawn without 
singularities on a snapshot of the disko All concentration gradients are perpen
dicular to those contours. Thus they are locally parallel. 

2: To show that a method or reliably creating a rotor is compatible withfeatures 
a und b. The method I have in mind starts with a wave in a two-dimensional 
piece of medium and a second piece of identical medium containing no wave. 
The two are shoved together as in Figure 5. Concentrations initially vary discon
tinuously across the dotted seam. How do these discontinuities resolve themselves 
into a continuous gradient? We depict the level contours of A in the upper left 
half of Figure 6 and of B in the lower left half. The right half shows how the 
concentrations wOllld be expected to spread into the unexcited medium in the 
first instant of contact, prior to any significant degree of reaction. Figure 7 
superimposes these two right halves. Gradients A and B are seen to criss-cross 
throllgh the cycle average val lies of each state variable in the stippled region. 
This is feature b. 

Figure 5. Two rectangles of medium are pushed into contact. 
The one on the left bears a wavc moving from bottom to top. 
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Figure 6. (Ieft) A a nd B Icvels at the moment of contact in 

Figure 5. (right) Shortly thercartcr. when initial discontinuities 

of concentration have heen rcsolvcd: cq ual levels (marked 

"A VG") bchind and in front 01' maximum conncct together. 

Figure 7. The right side of Figure 6, com hincd to .cmphasize criss-crossing 

of thc avcrage levels of A and 13 in thc stippled region . 

Now let's look at the same manipulation in terms of the images of the two 
blocks of medium in composition space. The left half block maps degenerately 
along a one-dimensional trajectory from near-equilibrium through excitation and 
back to near-equilibrium (Figure 8). This is the locus of states realized during the 
traveling wave cycle. The right half block maps even more degenerately to a single 
point, the equilibrium. When the two are joined along the seam, each pair of 
abutted points becomes the center of a little composition gradient stretching in 
a straight line in composition space from the composition of the left block at that 
point along the seam to the (uniform) composition of thc right block. Thus area 
elements from the inner edges of both blocks are pulled into the interior of the 
cycle. This is property a. This procedure is implemented experimentally in Winfree 
(1974d) and is implemented computationally in Winfree (1978a). It seems to bear 
an intriguing analogy to the regeneration of limbs on animals manipulated 
surgically in analogous ways. (See Chapter 16.) 

3: Ta show thut the "sheuriny" method ofcl'eatiny (/ rolllI' in (/1/ excitable chemical 
medium is also computible with features a and h. Start a solitary wave in a thin 

A 

8 

Figure K .4 is plottcd against B along thc wave 

moving up the Ich side of thc squares in Figures 6 

and 7. The erllirc right half of each square is 
initially at steady-statc (calied "equilibrium" in thc 

text). At the momcnt 01' co nt acl each point along 

the seam abuts (radiallincs) a point at steady-state. 
Thc seam then comcs tn adopt a midway COIl1-

posit ion (dashed). 
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Figurc 9. (a) A cylindrical wave propagates away from the center ofa shallow dish ofliquid excitable 
medium: (b) the dish is tilted, shearing the cylinder; (c) only the north and south sides of the cylinder 
survivc, while the cast and west sides are thoroughly mixed with liquid at steady-state. The result is 

four free end points of wave front! 

layer of the malonic acid reagent. The wave pro pagates outward as an expanding 
ring. Gently tilt the dish containing this liquid reagent, shearing the upper layers 
offluid relative to those closer to the bottom ofthe dish as in Figure 9. The east-west 
shearing has !ittle effect at the north and south edges of the wave because there 
the fluid flows parallel to the wave front. But at east and west the tilting stretches 
each cylinder of uniform composition between closely overlying and underlying 
layers with composition much closer to equilibrium. Figure 10 shows the northeast 
quadrant (shaded) of the circular wave before and after the operation of Figure 9. 
Along the three radial loci the chemical state initially va ries from equilibrium 
through a rise of A and then of B (the wave) and back to equilibrium (before, right). 
But after the spatially graded mixing is carried out, the changes along path 3 are 
a lot more attenuated than along path 1. The image ofthe shaded region, formerly 
one-dimensional on account of the polar symmetry of the original wave, has been 
made two-dimensional by the stimulus gradient. Because the stimulus consists 
of a mixing of states originally present on the wave cycle (before, right), the new 
image (after, right) fills the inside of that cycle. 

Figure 10. The circular wave of Figure 9(a) and 
(c) is mapped into the concentration space of 

Figure 8. 
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The image thus shows property a. The preceding paragraphs have repeatedly 
shown that property b is eq uivalent. The result in this experiment is a rotor in 
each of the four quadrants of Figure 9(c), with appropriate mirror symmetries. 

Bibliography of Examples 

Experimentally, rotors in excitable media have been on record at least since 
1963. Nagumo et al. (1963) had established such waves in a two-dimensional grid 
of iron wires in nitric acid. This is an electrochemical system which, in its simpler 
one-dimensional arrangement, has been studied as an analog to electrical excitation 
in nerves. Unfortunately, their Japanese publication and sequelae were never 
translated to English until 1976 (Suzuki) and came to my attention only in 1978. 
With the exception of Yoshizawa (below), all subsequent rediscoveries in diverse 
experimental systems were apparently also made in ignorance of the Nagumo 
result: Rotors in excitable media were found by Gerisch (1965) in the social 
amoeba (see Chapter 15), by Yoshizawa et aL (1971) in an electronic network, 
by Zhabotinsky (1970) and Zhabotinsky and Zaikin (1973) in the malonic acid 
reagent (see Chapter 13), by Allessie et al. (1973) in rabbit heart muscle, by Petsehe 
et al. (1974) in rabbit cortex, by Shibata and Bures (1972, 1974) in rat cortex, and 
by Martins-Ferreira et aL (1974) the retina of the eye (see Chapter 14). 

Using various mathematical approximations to an excitable but not oscillatory 
continuum, stable rotors were produced numerically, analytically, andjor by 
graphical arguments by Selfridge (1948), Buerle (1956), Farley and Clark (1961), 
Balakhovskii (1965), Krinskii (1968), Gulko and Petrov (1972), Winfree (1974b 
and f, 1978a), and Karfunkel (1975); and by Reshodko and Bures (1975), Greenberg 
and Hastings (1978), and Greenberg et aL (1978) who work with a reticulated 
medium like the one introduced by Moe et a1. (1964) for computer simulations of 
fibrillating he art muscle. Pursuing a more mathematical analysis, Greenberg and 
Hastings (1978) ingeniously exploited a discretized analog ofthe winding number 
that plays such a conspicuous role in association with phase singularities of 
continuous media. 

To give only one example of a rotor, I choose my own computations (op. eiL) 
using piecewise linear kinetics. This dynamic invokes only two variables often 
supposed to represent measures of excitation and refractoriness in nerve mem-

A 

10' 

o· 
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o 10 20 

Figure 11. A specific implcl11cnlalion of excitability using 
two variables named A and B as in Figure 8. The fine trajec
tories sal11ple the vector field of Equation (1), which is linear 

above and below threshold T, Thc stippled ring with electro

physiological jargon on it is thc cycle roughly followed in 

wavcs "f cxcitation. 
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brane. In that application, adjacent cells are coupled by diffusion only through 
the first variable (voltage). I took the same kinetics to represent the nerve-like 
behavior of the malonic acid reaction (Chapter 13), and so coupled adjacent 
volume elements by diffusion equally through both variables (departures of the 
concentrations of small molecules from an equilibrium level). 

Diagrammatically, the local kinetics (without diffusion) is as portrayed in 
Figure 11. In terms of numbers, 

dA 
- = - A - B (+ 20 if and only if A > 1) 
elt 

dB A 

elt 2 

(1) 

In one simulation, a I-mm square was divided into 61 x 61 cells, each harboring 
this kinetics. Each interior cell was connected to its four neighbors by Fick's 
law of diffusion, according to which A and B flow between adjacent cells at a 
rate proportional to the instantaneous concentration differences, A - A' and 
B - B', respectively. (Boundary cells have three or two neighbors only.) Figure 12 
shows the result of a prolonged computation in which a rotor formed and stabilized. 
Each area element is here mapped into IA, B) composition space. All continually 
revolve along paths parallel to the heavy rings. A central area element (darkened) 
holds fast, its local kinetics exactly balanced by diffusion from its neighbors. 

Figure 12. A square o[ excitable medium bearing a rotor 
is mapped onto thc dynamical portrait o[ Figure 11. This is 
a moment in the pcriodic steady-state o[ a computation 
using Equation (1) togcther with no-f1ux boundary co nd i
tions and crossed-gradient initial conditions. Area elements 
in this 61 x 61 grid deviate [rom the trajectories o[ isolated 
homogeneous reactors: They hang together, circulating 

along paths such as the live concentric rings shown. 

-20 

~ ____ ~~~ ____ ~s 
a b 

B 

Figurc 13. Figure 12 is rcplotted in dual representation as level contours o[ A (Jeft) and o[ B (right) 
on the 61 x 61 cell grid o[ cxcitable medium. The live circles are the ring paths of Figure 12. 



242 9. Excitable Kinetics and Excitable Media 

Box B: Spiral Wave in the ky 

In the phy ical cience we are accustomed to wave of divcr c ort , emitted a 
concentric elosed shell from a radiating ource. But where i one to find a spiral wave'! 
lt turn out that they are not quite 0 uncommon a one might have uppo ed. In the 
simples! ca e, a rotating ource ofpar!ieles wraps it elfin a pirallocu ; this is apparently 
the typical configuration of the olar wind, e.g., winding through e eral turn a far a 
the orbit of the middle planet (Gosling and Hundhau en, 1977). Though th phy ical 
principle involved are a bit more ubtle, much the ame geometry ari e in the magnetic 
field surrounding a rotating dipole. This is thought to be a prominent feature of pul ar 
(0 triker 1971). On a still grander cale, the proce of blue tar formation j thought 
to be "contagiou ", re ulting in olitary waves of creation within the gas that con titute 
most of any galaxy' mass (Mueller and mett, 1976). Behind the wave of creation lie 
a wave of supernova and behind that lies a refractory zone that pers ist until ga again 
wander into the relative vacuum. The implest model of di crete- ta te excitable media 
(Wiener and Ro enblueth, 1946) predict involute piral rotating about any long-lived 
hole in the u ceptible continuum. Later refinement (e.g., Krin kii, 196 ) allow piral 
without hole. Sut even without these effect , galaxie develop spiral tructure through 
the continual hearing of wave by the fa ter rotation of the galactic corc (Mueller and 

mett, 1976; Gerola and Seiden, 197 ). 

The less illuminating but more familiar dual representation appears in Figure 13. 
Here we see the square covered by level contours of concentrations A and B. 
This pattern rotates counterc1ockwise about the central pivot cell at constant 
angular velocity, as shown in Figure 14. The corners, given compass labels N, S, 
E, W, are indicated by heavy dots in Figure 12. 

Spiral Waves in Two Dimensions 

In the preceding biophysical contexts among others (see Boxes Band C) 
a rotating source emits a wave into the surrounding medium, which conducts 
the disturbance at essentially uniform velocity. The resulting wave resembles a 
spiral with fixed radial spacing between its successive turns. Along any radial 
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Figure 14. The angular or icntation o!" the B = 7 contour line 
of Figure 1 J. plotted at l-sccond interva ls spanning fift een 

12-sccond rota tion s. 
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Box C: Pa tureland a an Excitable Medium 

A ''fairy ring" i a vi ibly di tinct locus in a pa ture or on a big lawn of grass that 
rather re emble a circJe or fragment of a circJe. lt turn out to indicate where a eertain 
ba idiomyeete fungus ha reeently been active. Parker-Rhode (J955) wrote: 

large gra field carrying a ystem of fairy ring can be vi ualized 
a like a pond in a light hower of rain. ach ring grow outwards at a 
constant (or irregularly fluctuating) rate, and new rings are added to 
the y tem with approximately con tant frequeney. When ring of the 
ame pecie meet, then, unlike ring waves on water, their inter ected 

portions are obliterated: but a between different peeie either or both 
may survive the inter ection. The important thing i that no ring ever 
remain till , but only stop growing v hen it die. However, all the e 
proee e take plaee with extreme lowness; in the rain-drop analogy 
the rings grow at a few feet per eeond, and new one appear at the order 
of ten per square foot per econd, wherea fairy ring grow at a few feet 
per year and appear le often than ten per hundred acres per year. 

Ritzema Bo (1901) u ed the analogy of a gra sfire in de cribing how fairy ring 
con tantly advance, weeping around ob lacJe , mutually annihilating one another in 
eollision and leaving a walh refraetory to infection by the same pecie for ome 
di tanee behind the advancing wave. 

Parker-Rhodes' de cription might be taken almost word for word to describe the 
bull's-eye of coneenlrie circular waves in the malonie aeid reagent (Chapter 13), exeept 
for one detail. The ouree being the germination of the single pore, i not periodic. 
But he goe on to de eribe the effect of a breaeh in the wave front, uch as might be 
indueed by temporaril terilizing a few yard of oil : 

Let us suppose Ihat by ome mean . .. a lenglh of the perimeter of a 
growing ring is abolished. The ub equent growth of ueh a ring hould 
ideally proceed wilh two ineurving horn \ hieh , when they meet, will re
con t it ute the clo cd perimeter and at the same time ab tricl aT - haped 
portion from which a new ring could gro\ in ide the parent. uch a 
eeondary ring will belong 10 the next impingent group after that of it 

primary; the point of origin of seeondarie will lie al a more or le 
definite di tanee within the effective perimeter of the primary. 

Thi i indced a very cJo e deseription of what happen in the malonie acid reagent 
when a olitary ring i broken by temporary bio kade ofa mall portion ofit perimeter. 

Continucd propagation of an interrupted ring 
cannot heal the IWO open end point . They 
hould become centers around which piral 

form. u ion of adjaeent piral are makc 
rings. 
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Each end point becomes a rotor and wave from the two adjacent mirror- ymmetric 
rotor periodically collide a diagrammed. nforlunately, I have not located any 
scientific account of such fairy piral , bul I believe I have seell them in the lawn sur
rounding Sali bury athedral in England. 

path out of the source one observes a periodic wave train. Along any closed ring 
around the source, cutting each radius once, the phase 01' this rhythm undergoes 
a net change of one cycle: The winding number of phase around the ring or of 
the ring's image around the circle of phase is W = 1. (See Figure 26 of Chapter 2). 

To plot the time evolution ofsuch a wave we might stack up aseries ofsnapshots 
taken at unit intervals of time. The whole pattern rotates about its pivot as time 
advances upward, sweeping out a screw-shaped surfaee (Figure 15). This surface 
could also be constructed by plotting vertically the recurrenee times of excitation 
of each point in the plane or by plotting the phase of thc rhythm at each point 
in the plane as in the pinwheel experiment in Chapter 2. Any horizontal eross
section through this surface is a snapshot of the spiral wa vc rotating in the plane. 

So far as algebraic description is eoneerned, Archimedes' spiral is the simplest. 
This is the shape of a neatly eoiled rope and of the groovc in a phonograph record. 
In normalized polar coordinates (0 < e < 1, unit spacing between turns) it is 
described by 

e = r. 

This is the locus of any fixed phase rPo taken to mark the wave front. To be 
more accurate, this is the loeus of a stream of partieles cmitted radially from a 
uniformly rotating souree like a garden sprinkler. Regetr(led as a wave, this loeus 
has the peculiarity that its radial velocity rather than its velocity perpendieular 

TIME 

Figure 15. P10tting wavc arri val time above the 
plane of a wave emittcd rrom a rotor is equivalent to 
stacki ng up successivc sllapshort s of the wave. The 
surface so constructed rcscmbles a screw. Its singu-

larity is ahovc the pivot. 
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to the local wave front is everywhere the same. This difference is conspicuous 
near the center where the perpendicular to a wave front is far from radial. 

Another description of a spiral wave emitted by a rotating source is obtained 
by strict adherence to the assumption that the wave front locally propagates at 
unit velocity perpendicular to itself. This idea is embodied in Huygen's principle 
for conduction of light or sound or any other disturbance in a uniform medium 
with uniform propagation velocity. Taking the most symmetrie ca se for illustration, 
one might simuitaneously adopt this velocity rule and a second requirement, 
i.e., that the spiral wave's advancement in time be indistinguishable from a rotation. 
Taken together, these two rules imply 

(See Winfree, 1972c, for a derivation in context of chemical waves.) This is to be 
contrasted with the previous case, which might be rewritten: 

The difference is conspicuous only at small r. Note the curious dilemma: Unlike 
Archirnedes' spiral, this curve cannot continue toward the center beyond 2nr = 1 
because then de/dr turns from real to imaginary. This conundrum draws attention 
to the ultimate incompatibility of our two rules: Close enough to the pivot of a 
rotating wave, movement must be slower than any chosen speed unless the 
rotation period decreases toward zero. 

This is the "involute" wave first described by Wiener (1946) as an approximation 
to waves of excitation on the surface of the living heart (Figure 16). The involute 
idea was later elaborated by Stibitz and Rytand (1968) in context of experiments 
on animal heart and by Durston (1973) in context of aggregation waves in slime 
mold. These models implicitly assurne that the underlying kinetics has only a 
single variable of state as in a ring deviee, and they ass urne an unftinchingly 
steadfast velocity. On both counts such models conjure unreasonable paradoxes 
at the pivot. Other reasons that an involute wave cannot be exact1y right are 

Figllre 16. An invollite of thc eircle can be drawn with a 
pencil tethered to spool of thrcad, and lInwinding it. If every 
element of are along this loeus moves perpendicular to itself at 

the same speed (arrows) then the loeus rotates rigidly. 



246 9. Excitable Kinetics and Excitable Media 

Box D: Temperature Efreet on the Rotor 

dimen ional con equence of the reaction-diffusion equation ha a bearing on the 
wavelength and rOlatiOllai period of lhe piral wave. LeI the equation be written: 

ce . c2c 
- = R(e) + 0 -
C/ cx2 

where R i a el of temperature-dependent reaction rale and 0 is a relatively tem
perature-independent diffusion matrix. 2 uppose the rate-limiting reaction of R have 
nearly the ame temperature coefficient (or that a ingle reaction dominate) 0 that at a 
different temperature the equation differ only in that R i multiplied by a factor k. 
Dividing through by k and changing the unit of time so that r' = rk and the unit of pace 
o that x' = x k, we recover the original equation. Thu if that equation ha a periodic 
olution with wavelength Lo and period To, then at a different temperature the ame 
olution i viablc cxccpt that (in the Id unit ) L = Lo , k and T = T o(k . Thus L 2 T 

is the ame at any temperature. Taking V = L I T, we al 0 find that TV 2 is the ame al 
any temperature and LV is the same al any temperalure. Also the temperature co
efficient of velocity Vi about k; i.e., the QI O of velocity hould be about half of what 
i typical for the supporling reaction . Such con tancies are ob erved in rough approxi
mation in the Iime mold (Gro , [ 1975, Table I] and Chapter 15), in rhythmic fungi 
(Bounet, 1971: and Chapter I ), in fcrlilizat ion wave (Gilkey ct al. , 1978, igure 8), 
in the malonic acid rcaction (unpubli hed student manu cripl and hapter 13) in 
nerve axon ( hapman, 1967) and heart mu c1e ( He ie et al. 1977, Fig. 7) and perhap 
in preading deprc ion (Chapter 14 and Burd et al., 1974 page 69, Fig . 3c, d). 

2 D is commonly a lightly temperature-dependent calar. A more rcfincd calculation ac
cordingly divides all L' and V' by D. 

belabored in Chapter 13 in eontext of chemical aetivity. 
Greenberg and Hastings (1978) showed that Wiener's rule of eonduction in 

space is equivalent to moleeular diffusion. Greenberg (1976) made an attempt to 
derive a spiral wave directly from the general equation of loeal reaetion and 
molecular diffusion, not limited to a single reaetant. The ealculation beeomes 
awkward near the pivot and was left unlinished there, but further out it is possible 
to ealculate the eoeffieients of an expansion: 

b 
,.2 

and it turns out that, unlike the in volute idealization, (/ * O. In this general 
reaetion-diffusion ease, the phase singularity at the pivot does not imply an 
unboundedly steep gradient of eoncentrations there. This is because in kinetie 
models involving more than one variable of state a phase is not the same as a 
state on the wave cycle. That the state of reaction near the pivot va ries smoothly 
is shown in eomputations by Gulko and Petrov (1972), Karfunkel (1975), Winfree 
(1974b and f, 1978a), Erneux and Hersehkowitz-Kaufman (1977), Yamada and 
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Kuramoto (1976), and Cohen et al. (1978). The former three use non-oscillating 
excitable kinetics (the topic of this chapter). The later three use non-excitable 
oscillating kinetics (the topic of the previous chapter). The hybrid case works the 
same way (Winfree, unpub. computations, Box A). Cohen et al. achieved for the 
first time a complete analytic solution for a rotor. At this writing its stability 
and physical reasonableness remain to be checked. Box D presents a model
independent correlation between waveiength and velocity. 

Ring Devices Can't Make Rotors 

Men are rather beholden ... generally to chance, or anything else, than to 
logic, for the invention of Arts and Sciences. 

Francis Bacon, 
The Advancement of Learning, 1605 

My own rediscovery of rotors and the spiral waves they emit came about 
through an experiment which I deliberately posed to check an argument alleging 
that spiral morphology violates the most basic principles of physical chemistry. 

My reasoning was simple. Spiral morphology corresponds to a spiral con
figuration of the contour lines of uniform chemical composition. The topological 
essence ofa spirallocus is that it passes an odd number oftimes across any closed 
ring encircling the spiral center (Figure 17). But chemical concentration contours, 
like the altitude contours of a geodetic survey map, necessarily cross any closed 
path an even number of times. This is because what goes up must come down in 
order to get back to the starting altitude or concentration after one circuit of the 
ring. So spatially distributed reactions can only produce closed-ring contours, 
or bits and pieces of closed rings interrupted by container's walls, but certainly 
not spiral contours converging to a central point. 

The reason for seeking a way to test this seemingly obvious argument was 
the recent discovery by Bourret et al. (1969) of spiral morphogenesis in the 
ascomycete fungi (Chapter 18). Stuart Kauffman had brought this paper to my 
attention a few months earlier, and I had envisioned an interpretation in terms of a 
biochemical oscillation. This interpretation had to be wrong if chemical concen
tration contours could not have spiral configurations. 

Figure 17. Any closcd ring ara und the inner end point of any single 
spiral cuts the spiral at an odd number of places. 
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A=B=I 

8 =1 
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Figure 18. A loeus offixed eomposition, determined hy at least two independent 
quantities, can cut a ringjust onee and then vanish (as A = 1 and B = 1 diverge). 

So when my student Andre Laszlo brought to my attention the recent publi
cations by Zaikin and Zhabotinsky (1970), we thought we understood why only 
ring-shaped waves were reported there. To check this argument, it seemed 
imperative at least to prepare the Zaikin and Zhabotinsky reagent, and to try 
various tricks which might induce spiral waves if the argument were somehow 
mistaken. 

It came as a bewildering surprise, on October 10, 1970, to behold several 
perfectly stable spiral waves sedately rotating in a dish of this chemical reagent. 
This saved the oscillator interpretation of ascomycete morphogenesis. But what 
was wrong with the topological argument? The error lay in confusing composition 
with concentration in the second paragraph. 

That identification is valid if and only if chemical composition, as it affects 
fungus growth or chemical wave conduction, is determined essentially by some 
single concentration. Figure 18 shows that if composition varies in two or more 
ways, a locus of fixed composition (for example A = 1, B = 1) can cut a ring 
around the pivot at an odd number of places while the concentration contour 
lines A = 1 and B = 1 each cut the ring an even number of times, as they must. 
Thus, spiral morphogenesis in fungus growth or in the malonic acid re agent is a 
mystery only in terms of single-concentration interpretations. The alert reader 
may retort, "Okay, it can cut a ring at an odd number of places. But to salvage 
the topological argument above requires that it cut any ring around the pivot 
an odd number of times. It can't do that unless the contour lines join at a sharp 
angle at the pivot dot, which is physically unreasonable. Moreover, only one 
composition locus could do so, but we're implicitly asked to believe that most, 
if not all, compositions achieved along this spiral follow spiral contours." 

That's right. The topology of a spiral cannot be maintained all the way into 
the pivot. In fact, the "pivot" is an idealization, like the position of an electron, 
which serves a purpose only when not examined too closely. The practical essence 
of the spiral is that there are an odd number of intersections along any ring big 
enough to securely enclose the pivot, but the pivot cannot be localized within a 
minimum area. To think realistically and precisely about the structure of this 
critical disk requires that we turn inside out our habitual way of thinking about 
spatial distribution of reactions, thinking of the physical medium mapped into 
a concentration space rather than concentrations mapped onto the physical 
medium. 
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Figllre 19. A wave is boundcd hoth fore and aft by the same 
A concentration level, although the composilion differs fore 
and aft because 8's level contours are not pa ralIed 10 A's (cf. 

complltation, Figurc 13). 

249 

In terms of composition involving two or more concentrations, there is no 
equivalent to the not ion that what goes up must come down. It need not, so that 
an odd number of intersections is feasible. An odd number of crossings is also 
feasible in models based not on concentration (topologically, a point on the real 
n umber line IR!), but on a phase of a simple-dock oscillation (topologically, a 
point on the cirde § 1). However, in this ca se the unavoidable implication is a 
discontinuity (e.g., a phase singularity) inside any such ring. This is physically 
unrealistic in any continuous, simply-connected medium spatially coupled by 
molecular diffusion. So simple-dock models are exduded in all these phenomena, 
just as are single-concentration models. 

Another way to resolve the dilemma posed by a dish full of spiral waves is to 
recognize that although a concentration level contour may be a wavefront, the 
converse is not true: A wavefront is not a concentration level contour. It is part 
of a concentration level contour, the rest of wh ich goes around behind the wave 
front to cut the boundary again, thus ensuring an even number of intersections, 
and removing the paradox (Figure 19 ; cf. Figure 13). 

The notion that the contours of chemical composition must be rings or pieces 
of rings seems to have deep intuitive roots, perhaps because we take our cues 
from the simplest conjecture that composition equals the concentration of a 
single important substance. This notion impeded until 1969 the recognition that 
"rings" in fungi are often spirals (and there is a huge literature of rings, going back 
to pre-World War I German botanists). It impeded the recognition ofspiral Lie
segang rings for 30 years; in fact the cover photo of a book on these "rings" of 
chemical precipitation is in actuality (Figure 20) a photo of six parallel spirals! 
While studying electrical waves on the beating heart, Wiener and Rosenbluth 
(1946) conceived an otherwise fruitful single-variable model of excitation which 
led him to the mistaken condusion that spiral waves could not ex ist. Selfridge 
(1948) refined the argument to show that they could ex ist but are unstable. 
Balakovskii (1965) and Krinskii (1966) and Kuramoto and Yamada (1976) argued 
further for stability, ignoring the implicit discontinuity at the spiral's source. All 
these problems evaporate when we quit restricting our thoughts to single-variable 
dynamies. 

A similar assortment of riddles present themselves in context of morphogenesis 
in animals. Locke (1960), Lawrence (1970, 1971), and Lawrence et a\. (1972) 
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Figure 20. Six spirals lone highlighted for this 
figure) from Rothlllund (1907, Figure I), as 
pointed out by the ph otographer Liesegang 

119391 

pereeived the wrinkle patterns on inseet eutide as eontoUf maps of the eon
centration of a single morphogenetie substanee. If a morphogenetie gradient 
were ever found to run in a dosed ring, a fundamental challenge would seem to 
be posed for the notions that the gradient is a substanee gradient and that loeal 
polarity is its direetion of dilution. 

This is exaetly wh at has oeeurred in the ease of limb regeneration in inseets. 
The dockface model of Freneh et al. (1976) and ofGlass (1977) meets the challenge 
of an ostensibly eontinuous eireular gradient by entertaining the not ion of a 
morphogenetie phase variable. A phase gradient ean dose in a ring. To my mind, 
a tidier and more eonservative approach would be to extend the substance gradient 
paradigm to eneompass (wo substances whose eoneentrations jointly determine 
the loeal eell type. This would eliminate the phase singularity. Chapter 16 
elaborates this approach in context of the experimental literat ure, in essentially 
the style ofthis chapter and the previous, but without invoking any time periodicity. 
In more mathematieal terms, essentially the same response has independently 
appeared in arecent paper by Cummings and Prothero (1979). 

C: Three-Dimensional Rotors 

Isochrons and Phaseless Sets Again 

An exeitable eontinuum inhabited and organized by a rotor is driven periodi
cally at the rotor's period of rotation. Every volume element can thus be assigned 
a phase relative to some reference dock oscillating at the same period. What do 
the loei of uniform phase look Iike? The wave front is one such loeus. Its earlier 
positions mark other such loei. We might call these loci isochrons (Joci of same 
time) even though in present eontext the isolated volume element is not an oscil
lator. The isochrons are thus defined only in real physical spaee, not in eom
position spaee. Goodwin and Coben (1969, appendix) adopt tbis deseriptive 
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Figure 21. A rotating wa ve in thc malonic acid excit
able medium (Chapter 13) is almost an involute spiral. 
Parallel involutes drawn 400 Jlm apart by computer 

approximately mark past positions of the same wave. 
Thcy are thus isochrons. Thcy cannot be reliably 

followed inward past thc evolute circle but appear to be 
converging to the pivot. 
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convenience in using the eikonal equation 1 to assign a phase to each cell in an 
organism whose development is supposed to be governed by periodic waves. 

In the case of a rotating wave in two dimensions it is clear that the isochrons 
necessarily converge somewhere near its center. If the wave strictly rotates about 
a pivot point, like a picture engraved on a rotating turntable, then the isochrons 
converge toward the pivot (Figure 21). Inside a central disk of circumference :::::: 1 
wavelength, recognizable phases are not realized, owing to the mixing of states 
through molecular diffusion. But for purposes of gross description, I want to 
ignore the finite dimensions of this disk, and now pretend that isochrons co me all 
the way in to the pivot point. Phase can be defined operationally on any circle 
concentric to the pivot by simply watching the periodic fluctuations of any con
cent ration at any point. Whenever such a concentration reaches its maximum, 
call that phase zero and measure off a full cycle of phase behind it around the circle 
through the pivot. Concentration fluctuations on the tiniest circle will not amount 
to much, so the chemical state realized at each phase on a tiny circle is not identical 
to the state at that phase on bigger circles where the full-amplitude cycle of exci
tat ion is realized. Nonethe1ess, these isochrons permit us to deal with timing re
lations throughout the whole continuum. (We can do this only if concentrations 
vary in a strictly periodic way. They do in computer solutions of some equations, 
but not in others, nor in malonic acid reagent. In the latter ca ses the periodicity 
approximation gets worse closer to the pivot. I wish here to sweep such matters 
under the rug.) 

The isochrons so defined converge to a pivot wh ich is therefore a phase singu
larity. This simply means that there is no discernible timing relation here relative 
to the reference dock for the very good reason that concentrations do not change 
in time at the center of a rotating pattern. 

Wh at becomes of such a point in the larger context of a three-dimensional 
continuum? Like the intersection of isochrons in state space, the zero-dimensional 

I Thc eikonal equat ion formalizes the not ion that every piece of wave front advances parallel 10 

itself at consta nt speed. See Keller (195~). 
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figure 22. Scroll-shaped waves have a spiral 
cross-section perpendicular lo the pivolal axis 
from wh ich lhey cmergc. In (a) lhe axis is a short 
upright line segment. In (bI it slants from floor to 
ceiling. In (cl it curves around in a U. from 
Winfree (1973b) Copyright 1973 by the Amcrican 

Associalion for the Advancemenl of Science. 

convergence point of isochron lines in two-dimensional physical space becomes 
a one-dimensional convergence line of isochron surfaces in three-dimensional 
physical space. The simplest three-dimensional extension of the spiral wave is a 
scroll (Figure 22). Its rotation axis is the three-dimensional equivalent of the pivot 
point in two dimensions. lt is a one-dimensional phase singularity. This rotation 
axis threads its way through the three-dimensional continuum as a filament of 
ambiguity, so far as phase relations are concerned. Clark and Steck (1979) argue 
that this actually happens in the migrating slime mold slug. 

Scroll Rings 

How does it end? It doesn't. Apart from the possibility that the medium itself 
might end (at a glass wall in the case of malonic acid reagent), its usual behavior 
is to make a ring [Figure 23(b)]. This may seem strange. Isn't it rather unlikely that 
a one-dimensional locus meandering through three-space should exactly close 
on itself? Certainly so if that were the real structure of this situation. Were we 
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o 

b c 
Figure 23. A scroll ring may be envisioned by joining the ends of an imaginary cylinder containing 
aseroll wave (a). This can be done as in (b) or as in (c), imparting a twist of 360' (or multiples thereof) 

to the cylinder before joining ils ends. 

dealing with a continuum of ring devices, that indeed would be the case: The 
isochron surfaces would be arbitrarily positioned, and so would be their conver
gence, so that the locus of convergence would not typically ever intersect itself or 
dose into a ring. But then neither would there be a convergence locus: A singularity 
is a serious matter, strictly an impossibility, for ring devices because it implies 
finite differences of state between volume elements arbitrarily dose together. 

So let's go one step further toward realism. A biophysically realizable excitable 
medium typically consists of interacting chemical reactions. Its state is not deter
mined unless at least two concentrations have been specified. The organization 
ofreaction in space is a mapping of the physical continuum [R3 or ~ 3 into a com
position space such as [R2. A whole one-dimensional set of the three-dimensional 
continuum thus maps onto each composition. In particular the pivotal compo
sition is realized along a one-dimensional set: a thread in the physical continuum. 

Looked at another way, the pivotal composition is a particular combination 
of at least two concentrations. Call them A* and B*. Let's think about that. The 
locus along wh ich A = A * is some two-dimensional surface in the three-dimen
sional continuum. The locus along which B = B* is some other two-dimensional 
surface. If a composition (A *, B*) is realized, it is an interseetion of those two 
surfaces. So it is a one-dimensional locus. Though such a locus might end at the 
boundaries of the medium (e.g., a glass wall), its typical configuration is a ring 
as in Figure 24. 

These arguments are hardly scholarly. They obviously become sticky when 
one thinks of the composition space as involving three or more reactants. And 
the geometry of mapping ~2 or ~3 -+ [R3 with a singular locus dosed in a ring is 
quite difficult to visualize. It is not easy to bring our three-dimensional geometrie 
intuition to bear on problems involving five or more dimensions. 
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F igure 24. If two non-sc ll~in te rsect ing orientable 
smooth surfaees intersect in three-dimensional spaee, 
they typically intersect along a ring. The ring may be 

knotted. 

F igu rc 25. i\ seroll ring, sliccd open a long diameters 
(sim ilar to F igure 22(c) but viewed [rom hclow). 

Nonetheless let's forge ahead as best we can, If the scroWs axis typically closes 
in a ring, then scroll rings should be easy to demonstrate in three-dimensional 
excitable media such as the malonic acid reagent This has been done, Scrolls 
of I-millimeter wavelength have been found in malonic acid reagent, with the 
axis closed in rings of any length exceeding about 1 millimeter. This was dem on
strated in serial sections of waves chemically fixed in a three-dimensional block 
ofreagent (Winfree, 1974d), The photographically enlarged sections, reconstructed 
on stacks of plexiglas sheets, resemble Figure 25, 

Fancy Rings 

With that much established as fact, we are encouraged to ask the next question: 
What other modes of ring closure might occur ? For example, could the ring be 
knotted? Or could the spiral cross-section be gently twisted through 360 x N 
degrees along the length of the closed ring? [Figure 23(c)], Or combinations of 
both? These are all feasible geometries so far as the surfaces of uniform concen
tration are concerned, At least the once-twisted, unknottcd ring can be realized 
in terms of concentration gradients from source loci without cutting or otherwise 
doing topological violence to the continuum (Winfree, unpubl. sculpture). Are 
such structures stable then? I think probably yes, at least as stable as the experi
mentally demonstrated spirals, scrolls, and sero 11 rings. Any instability would 
have to be based on long-range interactions, since the sero 11 is locally stable. 
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Figure 26, Circular loci of fixed phase on the surface ofa doughnuL Only half of each circle is visible, 
One ofthese circles is the edge ofthe wave in Figure 23(c), The others are its earlier and later positions, 
Any disk plugging the hole touches these iso phase circles in order along its boundary, Phase thus 

increases c10ckwise through a full cycle around this boundary, 

Long-range here means several millimeters. In the ca se of chemical scroll rings 
in the malonic acid reagent, the typical time scale for long-range communication 
through diffusion is in the order of L 2/ D. For a sero 11 ring of diameter 2 mm, with 
diffusion rates typical of sm all reactants in water, this is about 30 minutes. This 
is much greater than the I-minute rotation period of ascroll emitting the typical 
I-mm waves. 

So far as I am aware no one has looked into this matter computationallY or 
experimentally. Some peculiar topological consequences invite testing by such 
experiments. For example, in the ca se ofthe once-twisted sero 11, phase runs through 
a full cyde along any ring around the axis perpendicular to the plane of the ring 
ambiguity (Figure 26). Waves emitted from this ring therefore converge in a spiral 
toward that perpendicular axis (Figure 27). Along any two-dimensional surface 
bounded by a ring interior to the phaseless ring (the scroll axis), phase has winding 
number W = 1. How is phase organized along such a surface? The answer is a 
map of the two-dimensional disk to the phase cirde. But we know that no contin
uous map exists unless W = 0 along the border. Therefore, at least one phaseless 
point (or locus) lies within every such surface. Since the three-dimensional medium 
is composed of a continuum of such surfaces, this argument indicates a new 
phaseless locus of at least one dimension threading the previously established 
phaseless ring. Does this new locus typically dose in a ring, Iinking the first ring? 
Ooes it emit a spiral wave? 00 all twisted scroll rings necessarily co me in linked 
pairs? 

Such questions abo und in the study (not yet undertaken, so far as I know) of 
three-dimensional continua of oscillators. We confront such media in the malonic 
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Figure 27. The twisted scro ll ring of Figure 26 is repeated to show thc progress ion of phase throllgh 
one cycle arollnd an eqllatori,,1 ring. Every disk bOllnded by that ring must the refore contain a phase 
discontinllity or singlliarity. preslll11ably localed along the hole axis. Thc spiral wavefront shown in 

that disk is converging toward the center 

acid reagent (Chapter 13), in cardiac muscle and in brain tissue (Chapter 14), in 
aggregations of Dictyostelium cells conducting pulses of cA M P (Chapter 15), in sus
pensions of yeast cells rhythmically processing sugar to make ATP (Chapter 12), 
in suspensions of mitochondria rhythmically making ATP by oxidative phos
phorylation (Chance and Yoshioka, 1966), and in three-dimensional tissues com
posed of cells rhythmically dividing (Chapter 22) or harboring circadian clocks 
(Chapter 19). Any investigation of the geometrie and topological constraints 
characterizing waves in such media would probably encounter something new 
almost immediately. 

However, there are few true firsts in science. Questions about rotating patterns 
of activity, the threads about which such patterns rotate, their closure into rings, 
linkage among the rings, and interaction among such rings (attraction, repulsion, 
etc.) were addressed a century aga by Herman Helmholtz (1867) and Sir William 
Thomson (1867) (later Lord Kelvin). 

Vortex Atoms 

Heimholtz, Thomson, and contemporaries were concerned with the aether, 
then considered as an incompressible three-dimensional fluid, a continuum whose 
motions are organized by vortex lines not unlike the axis 0(' our scroll waves. The 
idea was entertained that atoms are indestructible vortex rings. According to 
this vision, moleeules are assemblages of vortex rings, linked, knotted, knitted, 
and otherwise bound together. Thomson even went so [ar as to calculate their 
hydrodynamic interactions in quantitative terms and to show that the principles 
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so discovered lent themselves to quantitative interpretation of binding energies 
in reactions fashionable to the physical chemistry of his day. 

Thomson's vortex atoms died a quiet death, forgotten rather than discredited 
by experiment (apart from the experiments that undermined belief in palpable 
aether). In excitable media we may have a new context in which something like 
the vortex atom theory can live aga in, strangely transfigured. 



10. The Varieties of Phaseless Experience: 
In which the Geometrical Orderliness 

of Rhythmic Organization Breaks Down 
in Diverse Ways 

A cautious man should above all be on his guard against resemblances; they 
are a very slippery sort of thing. 

Plato, "The Sophist", translated on 
p. 180 of F. M. Cornford, 

Plato's Theory of Knowledge, 1935 

In Chapter 1 we dwelt on the notion of smooth maps from one space to another. 
In Chapter 2 it emerged that certain kinds of mapping involving circles cannot be 
contrived smoothly. As an application we saw that certain kinds of experimentally 
observed continuity and smoothness involving measures that are periodic in space 
or time inescapably imply an unobserved (but observable) discontinuity. A phase 
singularity is one way to resolve this crisis of continuity implicit in the observation 
of nonzero winding number. 

The six chapters 3, 4, 5, 6, 8, and 9 elaborated a variety of dynamic schemes 
commonly employed in biological time keeping. Those included were chosen 
for two essential features: periodicity and smoothness of mechanism. In each 
case it emerged that the topological crisis encountered in Chapter 2 has a parallel 
in the more concrete terms of mechanism and structure. 

This feature acquires a disproportionate interest on account ofthe thoroughness 
with wh ich our sciences are permeated with the idea of smooth maps. An 
assumption underlying almost all science is that similar causes have similar 
effects. It is this rule of thumb that we implicitly invoke in supposing that our 
deliberately simple-minded "explanations" of idealized aspects of things are useful 
approximations to the real causes of real-world messy phenomena. Without that 
faith, there would be no laboratories in wh ich especially simple vers ions of 
phenomena are contrived for study and there would be no explanations of 
phenomena conceptually isolated from all the goings-on that surrounded them. 

If science is mostly approximation and approximation means a smooth map 
from cause to effect then exceptional interest inevitably attaches to those isolated 
states near which the cause-to-effect mapping loses its smoothness, even its 
continuity. There is little we can do to satisfy curiosity about such things when 
the discontinuity is as abrupt as an earthquake, a mutation, or a miracle. But 
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if the discontinuity is surrounded on all sides by smoothness (e.g., the trajectories 
and phase patterns of Chapter 7) and is even implicit in that smoothness, then 
we can creep up on the exceptional event gradually and know why it has to be 
there. This is the beauty of Thom's catastrophe theory, of the physical theory 
of state transitions, of the mathematics of singular perturbation and, I would add, 
of the singularities implicit in the geometry of biological time. 

We have looked at the smooth geometrie patterns oftiming (or more abstract 
phase) that surround singularities, by which their existence is inferred. This we 
did both abstractly in Chapters 1 and 2, and in terms of component processes 
in Chapters 3,4,5,6,8 and 9. We now fix our attention steadfastly on the organizing 
center of those patterns: the singularity itself. 

In doing so Sections A and B below will again follow the outline of mathe
matically oriented Chapter 2: Section A consists ofthree intuitively familiar cases, 
followed by six cases involving biological clocks not necessarily involving physical 
space, and six more critically involving spatial periodism; Section B concerns 
three cases in which there may exist a physiologically important phase singularity, 
but if so it cannot be inferred just from the geometry of smooth timing relations 
elsewhere. I hope you will find it useful in connection with many of these brief 
statements to read the corresponding chapter of experimental background in 
the Bestiary. 

A: The Physical Nature of Diverse States 
of Ambiguous Phase 

Example 1. Color Vision. A short list of the most tantalizing mysteries promi
nent in daily experience could hardly exclude human color vision. Even the 
simplest aspect, the classification of homogeneous colors according to hue along 
a color wheel, has no parallel in psychophysics unless it be that we classify musical 
tones along a cycle by perceiving a repeat at octave intervals. This analogy, together 
with the color sensations induced by suitably timed rhythms of black and white, 
has prompted suggestions that the neural co ding of color is somehow basically 
rhythmic, involving periodic patterns of firing by visual neurons (see Box B of 
Chapter 1). Unlike disparate musical tones, two different colors combine to make 
a new color. Implicit in this fact is a singularity of hue: a color of no hue or of 
ambiguous hue. Obviously this is merely gray, obtained by mixing complimentary 
colors. 

In present context the most important fact about gray is that it is a singularity 
only from the limited viewpoint of hue measurements. When one takes account 
of saturation as weIl as hue, gray no longer seems discretely different from nearby 
colors. Suppose there were mutants who perceived only hue and intensity, but 
not saturation. To such a person the singularity of hue would present a striking 
phenomenon. But when colors are distinguished according to saturation no 
singularity is perceived. It is evaded by the saturation going to zero at gray, 
making all hues indistinguishable: Grays slightly tinged by any hue are all 
perceived as similar, not as disparate points on a color cycle. 
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Example 2. Navigation in a Rowboat. Here again the singularity is an artifact 
of an artificially restricted viewpoint. If we attend only to direction of movement 
neglecting speed, then the zero of velocity is a singularity. A boat rowed directly 
upstream so as to remain at rest with respect to the shore has all directions or 
no directions, as you like. An arbitrarily small perturbation directs the rowboat 
in any direction. It is much the same in correcting the compass with the two 
little magnets attached to screws mounted in the case (Chapter 1, Section C, 
Example C): At a certain setting, the earth's magnetic field is exactly neutralized 
and any further adjustment, no matter how smalI, can give the needle a preferred 
orientation in any direction. Only the delicacy of its mounting hides from us 
the fact that the magnitude of the orienting field is passing through zero at the 
singularity of direction. In the same way the directional singularity implicit in 
wind patterns revolving about barometric highs and lows resolves itself simply 
in a calm at the center. Even in a tornado, the center is becalmed so far as compass 
direction of f10w is concerned. The conservation of mass is satisfied by evoking 
an overlooked dimension: the wind roars straight upward. 

So it is with singularities in general. As noted in Chapter 2. Section C, the 
ostensible singularity is always evaded by bringing into playa degree of freedom 
that remained inconspicuous everywhere else. This comes as a surprise only if 
you really didn't think there was another degree of freedom. The way in which 
that evasion comes about can be most revealing. a viewpoint which faneiers of 
black holes will warmly endorse, and which I also adopt in eonnection with 
biological clocks. 

To return to the rowboat and its compass, nothing of much interest transpires 
at these singularities except that some vector passes through a reference zero in a 
perfectly smooth way. These singularities amount to little more than artifacts of 
the choice of co ordinate systems and consequently have no further interest. 

Example 3. What Time ls It? On the scale 01' global time keeping, just as in 
the eye of a hurricane or a tornado, a singularity is inevitable: It is a pivot, a point 
of zero amplitude rotation, an axis about which the whole earth turns. Viewed 
from this axis the sun neither rises nor sets each day but simply boxes the compass, 
invoking a new degree of freedom, an "amplitude" of the day-night cycle which 
is zero if the sun keeps constant altitude. 

Example 4. Timing the Tides. An equally smooth attenuation of amplitude 
presumably explains the amphidromic points of the global tide charts (though 
to be strictly correct, I don't think anybody has cver identified sueh a point and 
monitored the sea level there). The tidal range falls to zero at cach such point, 
with nearby points of the ocean surface slightly rising and f~t1ling in sequenee 
around the horizon. It is worth noting that this vanishing of amplitude pertains 
only to one harmonic of the tide. It is not a vanishing of f1uct uation because the 
other harmonics generally have their amphidromic points c1sewhere. In this 
respect the singularities of the tidal rhythm resemble those of attractor cycle 
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oscillators. Putting such an oscillator into its phaseless set typically ensures only 
that the subsequent trajectory, wherever else it might go, does not lead back 
to the standard cycle. This phaselessness amounts to absolute timelessness only 
in the special case D = 2, which in the case ofthe tides corresponds to recognizing 
only a single harmonie. 

Example 5. The Fruitfly's Body Clock. Does any of the foregoing provide 
a useful elue to the meaning ofphaselessness in circadian rhythms? And what has 
the fruitfly to tell us of such matters? First of all it does not seem likely that 
phaselessness in the fruitfly represents phase scattering in a population of simple 
docks, if only becallse it ean be achieved in mere seconds even under dirn light. 
It seems lInreasonable to suppose that ring devices could zip through half of a 
24-hour cyde in so short a time. However a population of docks each having 
two or more variables of state, one of which is photolabile, might easily achieve 
the large phase shifts req lIired in an arbitrarily short time. 

The Clock's Singularity 

But setting aside the possibility that the singlilarity is an artifact of physiological 
ineoherence, the first question to ask is whether the singularity might simply 
be the steady-state of a biochemical oscillation. Before we tackle that question, 
let's make sure not to beg the question by perpetrating a pun. As noted on page 73, 
the word sinyulurily means one thing to mathematicians and physicists, and 
another to engineers, and both, as weil as other things, to biologists. The phase 
singlilarities inferred on topological grollnds throllghout this book are singularities 
in the sense of mathematicians and physicists. They are diseontinuities at which 
physically important variables change infinitely abruptly. This is the sense of 
Penrose and Hawking in their study of black holes as space-time singularities 
(see Misner et al., 1973), of Guckenheimer (1975) in his study of the phase 
singlilarities of attracting eyeles, and of Rene Thom (1975) in his study of catas
trophes as singlilarities of maps. The "physically important variable" in present 
context is the phase of the sllbjective daily cycle. 

In contrast, the singlilarity commonly referred to in engineering literat ure is 
the critical point, equilibrium, or steady-state of a set of kinetic equations. This 
is the sense of Higgins's (1967) analysis of biochemical oscillations, of Pavlidis's 
(1967) analysis of circadian rhythms, and of Kauffman and Wille's (1975, p. 50) 
study of the dynamies of the cell cyde. 

Unfortllnatcly, for my present attempt to distinguish usages of the word, 
I lIsed the sinyularil y term in both senses simultaneously in the first three papers 
deseribing Drosophila's phase singularity. These two senses do eoineide in the 
limited context 01' two-variable models. I argued explicitly from experimental 
data that the phase singlilarity is areaction steady-state in astate space of 
dimension D = 2 (Winfree, 1968). That argument could have been correct and these 
two senses of "singularity" cOlild be reasonably taken to coincide, as Pittendrigh 
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and Daan (1976c) choose to emphasize: 

[WinfreeJ has aeeomplished the delieate feat of"stopping" the D. pseudoobscura 
pacemaker by driving it onto the "singularity" of its phase plane where it is, 
apparently, stably motionless .... [WinfreeJ has donethe sameto oseillations 
in the redox state of NAD whieh he generates by disturbing the steady-state 
of yeast glyeolysis .... In all oseillating systems eapable of self-sustained 
limit-eyde movements, no matter wh at their physieal nature, there is, as 
analytie necessity, a point equilibrium or singular state on the phase plane .... 
The only empirieal question is wh ether or not that singularity is stable~and 
how stable. 

Unfortunately, there is no such analytic necessity, nor do we know that we 
are working with a limit cyde process. The statement quoted is true only on the 
assumptions that a steady-state exists, that it is accessible, and that the only 
acceptable models are ordinary differential equations involving exactly two 
variables. Some models proposed in the circadian rhythm literat ure are of this 
sort but many others are not; e.g., simple dock models (Chapter 3), independent
oscillator population models (Chapters 4 and 6), time delay models (Johnsson 
and Karlsson, 1971, 1972, Engelmann et al., 1973, 1974, 1978), singularity-free 
discontinuous oscillators (e.g., Pavlidis, 1967a), differential equations involving 
three or more variables (Chapter 6 and Cummings, 1975), and coupled oscillator 
models (Pavlidis, 1976). It cDuld be that D = 2 and if it is then the data plots of 
Chapter 7 acquire much more vital impact. But I no longer find the evidence 
persuasive on this point. (See the end of Chapter 7.) 

The Clock's Steady-State 

Following the tradition of enquiry into chemical oscillators (Chapter 12), 
oscillations in sugar metabolism (Chapter 13), neural rhythms (Chapter 14), and 
rhythms of cell division (Chapter 22), almost every conceivable conjecture has 
been offered about the steady-state of circadian dock. 

1. It doesn't exist. The circadian cyde could be an oscillation with no steady
state and only slightly adjustable amplitude, as in Danziger and Elmergreen's 
(1957) models of the female cyde applied to the circadian cyde by Strahm (1964) 
and Pavlidis (1967a). Or it could be a simple dock (Swade, 1969), even a physical 
ring of DNA traversed periodically by a polymerase (Ehret and Trucco, 1967), 
or a physical rotor like the turbine wheel of bacterial flagellae. In such a model 
perturbations only vary the rate of change of phase. Nonphase states make 
no sense. 

2. It does exist but is so violent a repellor that for all practical purposes 
it is inaccessible, and amplitude regulates completely back to the standard cyde 
from almost any subnormal amplitude within a day (PavJidis, 1967b, 1968, 1978a 
quoted on p. 422). 

3. It exists and repels (i.e., amplitude regulates away from 0), but not so 
quickly. The near dosure of trajectories during the two days monitored after 
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perturbation to lower amplitude (Chapter 7) could be interpreted as lethargic 
regeneration of amplitude (Pavlidis, 1976). 

4. The dock has more than the two variables assumed under 2 and 3. For 
example, Cummings (1975) invents a three-variable biochemical oscillator and 
Pavlidis (1976) supposes an oscillator composed oftwo or more oscillators coupled 
together, each contributing two variables. Thus, if a phase singularity is found, 
it is probably not because dock kinetics was forced to a steady-state, but rather 
because it was tricked into some other dynamic mode (possibly leading to the 
steady-state) conspicuously different from the usual 24-hour oscillation. 

5. The steady-state exists and attracts from nearby states (Kalmus and 
Wigglesworth, 1960; Pavlidis and Kauzmann, 1969). Starting from below a critical 
amplitude, such an oscillation is unstable and degenerates to stationarity. Such 
a situation could even result from coupling many oscillators whose steady-states 
individually repel. Below a critical amplitude of collective rhythmicity, mutual 
synchronization is unattainable so that the population remains incoherent and 
any slight initial collective rhythmicity degenerates (Winfree computer experiments 
privately circulated, 1967). 

6. The question cannot be answered from the observed behavior of whole 
animals because multicellular docks consist of many cellular docks functioning 
independently for all short-range purposes. In such a case the vigor, amplitude, 
or intensity of circadian oscillation in the wh oIe organism, being a sum over many 
separate oscillators, would mainly measure the coherence of their phases. Any 
stimulus that further scatters phases within the population would thereby attenuate 
the collective rhythmicity, and if interaction were weak, then coherence would 
not so on re cover. Without an independent assay of phase scatter among the 
oscillating units, little would be revealed about each unit's amplitude. 

In using a succession of models, theorists have thus covered every base. 

My favorite conjecture is 6, that the circadian dock is actually a composite 
of two or more independently competent oscillators and that the whole-organism 
rhythm reflects some kind of average over this population. In such composite 
dock models, the facts are explained by incoherence in the population. I suggested 
a model involving only these essentials, not even invoking coupling among the 
component docks. This simplest, though perhaps least general, interpretation 
accounts for all the Drosophila data quantitatively (unpublished computations). 
The quantitative fit can probably be retained even with weak synchronizing 
interactions between the individual docks (Pavlidis, 1976) or even with strong 
synchronizing interactions (Aldridge and Pye, 1979b). Any number of conjectures 
might suffice. The essential qualitative point is that the phase singularity is 
interpreted in terms of incoherence in a population rather than as a steady-state 
of areaction. Given any such composite dock interpretation, the phase singularity 
could be a steady-state only if all the docks were perturbed to their individual 
steady-states simultaneously. The fact that a phase singularity is obtained by 
adjusting only two stimulus parameters makes this an implausible interpretation. 
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In short, whatever evidence points to a composite structurc of circadian docks 
in multicellular organisms also points away from interpretations of the phase 
singularity as areaction steady-state. A few experiments are suggested at the 
end of Chapter 7 which might help to resolve this ambiguity. 

The Singularity in Development 

A related question dealt with in more detail on pages 417 -420 cl seq. concerns 
the arrhythmicity of edosion in naive pupae who have ncvcr experienced a change 
of lighting or temperature by which 10 start or set thcir docks. Are they in the 
same state as are "rhythmically experienced" pupae rclurned tn arrhythmicity 
by a singular stimulus? They are by the criterion that both populations become 
indistinguishably rhythmic after exposure to light or a temperature shock, though 
evidence from more discriminating comparisons would bc reassuring. Until such 
further comparisons reveal unforeseen distinctions, it scems a plausible guess 
that the singular state in Drosophila's dock is its primordial state, as assembled 
in the maturing egg prior to activation by an external stimulus. 

Example 6. A Mutant Fruitfly's Body Clock. Drosophila melalloyaster's dock 
has been probed nowhere near so intcnsively as D. psewloobscu/'c!'s. But neither 
have any conspicuous differences been detected to distinguish the 19-hour mutant 
melanogaster from the wild type pseudoobscura, apart from the 20°<, difference 
in their periods. 

Example 7. A Fly that is 1000 Times Less Sensitive. Sarcophaya has not been 
examined in respect to its singularity, except to demonstrate its cxistence by the 
screw-shaped pattern of rephasing around it and the relative arrhythmicity of 
edosion near it. Saunders (1978) believes that some forms of arrhythmicity in 
Sarcophaga represent incoherence among circadian rhythms within the individual 
fly. But the question whether this is true of arrhythmicity elicited by a singular 
pulse has not yet been posed experimentally. 

Example 8. Resetting a Flower's Clock. As noted in Chapter 21, Engelmann 
et al. (1978) belicve that the arrhythmicity induccd by a critical stimulus in the 
individual Kalanchoe flower represents a steady-state of the circadian oscillator 
throughout the flower, possibly because the dock's biochemical steady-state is 
locally an attraetor. If this inference withstands the further tests in process in 
Engelmann's laboratory, it may provide a unique opporlunity to implement the 
following experiment proposed by Winfree (1970b) and by Tyson et al. (1976). 

On the assumption that diverse physical and chemic~tl influences alter dock 
dynamics in diverse ways, then, applied to a dock at its steady-state, they should 
induce rhythmicity at diverse phases. If time be allowed for relaxation to the 
steady-state after the critical stimulus then the dependenec on stimulus magnitude 
of the phase ofrenewed rhythmicity after a second stimulus should eharacterize 
the site of interference in dock dynamics. Th us, suitably selective interfering 
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agents can be classifled according to their sites of action (supposing they don't 
all act at multiple sites). The sites of action can thus be enumerated. The chemical 
nature of each site may be suggested by chemical properties common to those 
agents which apparently act at that site. There might also be a minimum dose 
required to elicit any rhythmicity, revealing that the arrhythmie state is a local 
attractor and thus confirming that it is not a me re artifact of incoherence. 
Engelmann has had experiments of this sort in progress since 1977 (personal 
communication). There seem to be technical difficulties in reliably inducing and 
maintaining arrhythmicity in the controls. 

In the case of Avena's 30-minute transpiration rhythm, the experiments of 
Johnsson 1976, Figures 4 and 8) and of Johnsson et al. (1979) gave particularly 
clear-cut results: The singular stimulus kicked the seedling into a locally attracting 
steady-state of water transport. 

Example 9. A Phase Singularity for Beer Drinkers. The chemically well
studied oscillation of an aerobic glycolysis in yeast cells provides a nice opportunity 
to simultaneously test the above experiment in a better understood system. A 
start has been made through the independent experiments of Winfree (1972d), 
of Greller (1977), and of Aldridge and Pye (1979a,b). In these three investigations 
it was found that oxygen, acetaldehyde, and calcium elicit rhythmicity from 
previously arrhythmie cell suspensions respectively at the phase of NADH 
maximum, one-quarter cycle later, and one-half cycle later. 

The nature of arrhythmicity in this system has not been clearly established. 
However, Greller (1977) and Aldridge and Pye (1979a,b) argue cogently both 

1. that the individual oscillator has an attracting steady-state in addition 
to an attracting cycle, and 

2. that the cell population is made inhomogenous by near-critical stimuli 
which divide it into a synchronously oscillating subpopulation and another 
subpopulation trapped within the steady-state's attractor basin. 

These inferences may eventually be confirmed by direct microftuorimetry of 
individual cells. 

There are now five ways to drive glycolysis into its phaseless manifold: 

1. by mixing differently phased cell populations, 

2. by applying a suitably timed critical dose of oxygen, 

3. or of acetaldehyde, 

4. or of calcium, 

5. or of EGT A (which chelates calcium). 

If glycolysis has a unique attracting steady-state, then all five techniques 
presumably direct cells eventually to that state, even if the five techniques enter 
the phaseless manifold at different points. But no one has yet excluded the al
ternative possibility that different arrhythmie states are reached by these five 
techniques. The question could be substantially resolved by reinitiating rhythmicity 
with agent i after annihilation with agent j. If the new phase depends only on i 
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independent of j, then the five singularities very likely have a single biochemical 
basis. If this result is obtained only after an interval during which the result 
depends on the time between j and i, then the points of entry into the phaseless 
set are different but a unique steady-state is eventually reached. If the result 
depends differentlyon i for various j's, then there are distinct alternative attractors. 

Example 10. Morphogenesis in Fungi. In the ca se of N ectria, phase-resetting 
experiments have not yet produced quantitatively reliable results (Winfree and 
Gordon, accordingly unpublished). However, a phaseless state within the two
dimensional mycelium can be inferred from the nonzero winding number of phase 
around the mycelium's fron tier in cases marked by spiral conidiation. Most 
likely the entire interior of the mycelium has ceased to oscillate due to locally 
alte red nutrient conditions, so the singularity is lost in the general collapse of 
rhythmicity for other reasons. However, in the youngest smallest mycelia, there 
is no "interior". The whole germinating mycelium must initially be dose to the 
singular state to allow the observed delicate indeterminism of winding number. 
Thus the singular state in N ectria is probably the biochemical steady-state of the 
dormant spore, somewhat as conjectured above in embryonie Drosophila. 

In the case of Neurospora crassa, Dharmananda and Feldman (1979) have 
shown persistence of ostensibly normal oscillation throughout mycelia bearing 
bands of conidiation. Nonzero winding number (spiral patterning of mycelia) 
has not yet been contrived and apparently does not happen spontaneously. 
However, it seems likely that this will be contrived in view of the following result. 
Dharmananda and Feldman (pers. comm.) have shown type 0 re setting of this 
circadian rhythm by a light pulse, which strongly suggests the existence of a 
singularity at some shorter exposure time M*. The physiological nature of the 
singularity in this spatially distributed continuum of oscillators will be especially 
susceptible to scrutiny by microscopy, by histologie procedures, and by bio
chemical tests. 

Example 11. Regeneration of Limbs. The "dockface" model of pattern for
mation beautifully organizes a diversity of perplexing experiments involving 
regeneration of organs and parts of organs. It accounts for the striking regularities 
of mirror-image reduplication in cases where regeneration fails. lt enables 
prediction of the appearance of unanticipated extra limbs where parts of normal 
limbs are forced into unnatural contact. All this and more comes from a simple 
set of rules about hypothetical phase values, invented by French et al. (1976) 
(detailed in Chapter 16). Translated into mathematical language (e.g., by Glass, 
1977), the phase rules become remarks about winding numbers and encirded 
singularities. As if that weren't enough to suggest something periodic at the 
root of it all, the diagrams of French et al. resemble docks, even being bordered 
with rings of digits 1-12. These observations understandably created a stir among 
theorists, whose files already bulged with papers ab out "docks" and "maps" 
underlying normal development, e.g., Goodwin and Cohen (1969), Bourret et al. 
(1969), Robertson et al. (1972), Winfree (1970a, 1973d), Goodwin (1976), Cooke 
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and Zeeman (1976), Stern and Goodwin (1977) and Kauffman et al. (1978) to 
remind you of only a very few. Much ofthis stir inevitably emphasized the circles 
in the clockface model, seeking some mechanistic interpretation. The cap we 
have often drawn over a cycle in state space even emerged naturally as a 
regeneration blastema. 

Such enthusiasms aside, in 1977 I had the misfortune to conceive a recon
struction of the same experiments which makes no use of those concepts but seems 
to me geometrically at least as simple as current versions of the clockface 
construction (see Chapter 16). My belief at this point in the furor is that the circles, 
winding numbers, and phase singularities are strictly mathematical inventions 
that have no mechanistic interpretation in these particular living systems, however 
convenient they may be as didactic tools. 

The fundamental question for theorists in this affair is, "What must a model 
do to satisfy all the data?" My conclusion is, "Not much". The data almost force 
us to a continuous map [R2 --> [R2, from a two-dimensional sheet of cells to a 
bicoordinate space of cell types. This map and its transformations only involve 
circles if a circle is gratuitously drawn on the sheets of cells, and/or if one artificially 
restricts attention to a ring-shaped sub set of the space of cell types. If these things 
are done then the [R2 --> [R2 maps are restricted to §I --> §I or [R2 --> §I maps. 
This is wh at French et al. do, and it represents a major conceptual advance both 
over the [RI --> [RI maps common in the "morphogenetic gradient" literat ure since 
the time of Child (1941), and over the [R2 --> [RI maps so ingeniously deployed 
by Lawrence (1970, 1971), Lawrence et al. (1972), and others to account for 
otherwise perplexing patterns that arose when two-dimensional sheets of cells 
were surgically transplanted. But my belief is that the §1 topology is only a 
result of artificially restricting [R2 and thus should be viewed only as a tantalizing 
way-station enroute to a broader view in which cells are located two-dimensionally 
by two transverse gradients, each of which follows the rules long familiar in 
one-dimensional contexts. Cummings and Prothero (1979), for example, exhibit 
this broader view. Such constructions have no necessary place for cycles or 
singularities but they seem to account for the facts quite gracefully. Viewed in 
this way, the apparent singularities from which limbs emerge in the clockface 
outlook have no biochemical or physiological import. They just happen to lie 
at the arbitrarily chosen center of apolar co ordinate grid. 

Wh at I hope to show in Chapter 16 is that there is nothing uniquely appropriate 
about the description of these phenomena in terms of phase, rings, winding 
numbers, and phase singularities. I think these objects arise as artifacts of a 
theory which tries to segregate the two dimensions of tissue specificity, isolating 
"proximal-distal positional information" as though it could be analyzed inde
pendently. One then has to impute the topology of a ring to the remaining single 
variable of azimuthai tissue specificity, and accept the attendant fictional dis
continuities. We have seen this happen before. In trying to apply simple-clock 
notions to circadian rhythms in Chapters 3 and 4 (retaining the phase aspect 
of an oscillator's state while ignoring amplitude as an independent problem) 
and in trying to understand rotating waves in terms of ring device kinetics in 
Chapter 9, pages 247 -250 (once again insisting upon a single-factor description 
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Figurc I. A bounded divergent flow in two

spacc ncccssa rily includcs ~ I cycle (or "1110st

proximal" cell types cncircling the "most distal" 

type). 

of a process involving at least two mutually interacting factors). I am accordingly 
skeptical of theories wh ich take the prominently featured ring as a cue for seeking 
causal answers in terms of oscillators, circulating waves, or singular points. 
Needless to say, I would rejoice to find this skepticism unfounded. 

I think there is one way in which my pessimistic outlook could soon prove 
wrong. The fact seems increasingly weil established that cells do not acquire 
their type specificities in a passive way by smoothly bridging the differences 
between their neighbors, but are rather invested with some dynamic. Goodwin 
(1976) was the first, I think, to suggest attributing to new cclls a tendency to 
diverge from more distal types toward more proximal types in a way that might 
be summarized geometrically by a vector flow diverging from a point in state 
space. This divergence must be bounded and its boundary is topologically a 
ring (Figure 1). This ring presumably consists of the most proximal cell types, 
and the center of divergence is the most distal cell type. Th us it is at least con
ceivable that there exists a meaningful natural origin for apolar coordinate 
system which can be identified with the singularities implicit in the clockface 
scheme. To establish this as a fact would require monitoring the changing fate 
of proliferating cells. 

Example 12. The Cuticle of Arthropods, A ca se in which the singularity even 
more clearly turned out to harbor only a mathematical artifact concerns the 
regular plywood-Iike laminations of skeletal material in arthropods. The passage 
of a microtome knife through cuticle elicits a pattern of periodic banding that 
might at first suggest rhythmic secretion by the cells that constructed the cuticle. 
(It did to me.) The observed bands would then be seen as markers of biological 
time, Iike archaeological strata, indicating the horizontal distribution of phase 
of those vertically secreting clocks. The wonder of it was that in many cases, 
most conspicuously in the lens cuticle of the compound eye, a ring could be 
drawn on the cuticle round which the phase of this putative "secretory rhythm" 
had nonzero winding number. The implicit singularity was plainly visible in the 
microscope as the inner end point of a spiral of relatively more opaque cuticle. 
But here for sure my enthusiasm to find biological expressions of phase singularities 
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Box Structural Pha e ingularity in Muscle iber 

In iron whi ker , tobacco mo aic iru , and baclerial flagellae, a trictly structural 
rhythm i 0 arranged in pace (around a crew di location) that a point of ambiguou 
pha e is implicil. In the following ca e it al 0 turn out to be biochemically unique. 

The individual fibril of ertebrale keletal mu cle how con picuou bands a few 
micromeler apart along lheir whole lenglh of somc millimeter or centimeler". Thi 
a tonishingly preci c periodi m rcAecl lhe mu cle' underlying molecular architeclure. 
Myosin filaments alternate with overlapping actin fi lament in repeated tructural 
unit called areomere. The arcomere are joined end-lo-end in thou and of repeat 
like the unit eells of a crystal. A mu cle fiber i compo ed of many such fibril lying 
ide-by- ide with their sarcomeres exactly in regi ter. The fiber thus gives the appearanc 

of a taek of Aat di k , each one arcomere long, monotonou Iy repeated. 
With thi arehitecture in mind it eome a a urprise to note that many kind of 

invertebrate muscle fiber are helimlly trialcd, like a barber pole. In ueh fibers the 
moleeular filament ofactin and myosin are lill aligned parallelto the fiber' long axis 
and they Li)) repeat with exqlli ite periodi m in lhi direction. BUI adjacent filament are 
lighlly out of register in a y temalic way. Proceeding once arollnd lhe fiber following 

the edge of a helical band, one advances along lhe fiber by some integer number W of 
unit cell . Or gird ling the fiber at a fixcd level, one cro e W helieal bands. In olher 
words the phase of the banding rhythm has winding number W # 0 around the fiber. 

o mllch for lhe vi ible slirfaee of the fiber. Whal about its interior? In vertebrate 
triated mu cle (W = 0) each band vi ible on the surface is only the border of a di k 

extending moolhly lhrough lhe interior. an a disk have a helical boundary? lt cannot. 
A helieal boundary cannot be conlinued into lhe interior of a cylinder with creating a 
ingular axi along wh ich pha e mu t be ambiguou . Do anything of phy iological 

interest transpire there? In thi ca e, il does: hclicoidly striated mu cle fiber have a 
cenlral cytoplasmic axi 1I11erly devoid of aClin and m 0 in filament ! (Lanzave chia, 
1977 Figllres 16 and 21.) 

ran aground on the facts. It turned out, thanks to a remarkable geometrie insight 
by Yves Bouligand (1972), that these "rhythms" derive from the bent-liquid
crystal ultrastructure of cuticle. As elaborated in Chapter 17, Gordon and I (1978) 
were able to argue that the bands of darkness are created by the influence of the 
microtome knife itself on the periodically oriented chitin fibrils of wh ich cuticle 
is composed. The phase of this rhythm of banding is determined geometrically. 
It becomes ambiguous where the local screw axis of the liquid crystal is per
pendicular to the plane of the cut. Mathematically it is indeed a phase singularity, 
but all it represents physically is a critical orientation relative to the knife. No 
rhythm of secretion, no pattern of phases is revealed. (See Box A.) 

Example 13. The CeIIular Slime Molds. What then of the phaseless center 
from which wave trains of cAMP release emerge in spiral pattern on a monolayer 
of Dictyostelium cells? Is that point different in any significant way from all other 
points, apart from being the locus of a mathematical phase singularity? It certainly 
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becomes so soon enough. All cells within reach of those ripples of cAM P move 
toward the source and eventually accumulate into a multicellular organism at 
that site (see Chapter 15). But was there initially any special kind of cell at the 
phaseless origin of the rotating wave? I know of no reason to think so. In con
tinuous media dynamically similar to the cellular medium of a Dictyostelium 
monolayer, spiral waves are created by temporary interruptions of continuity. 
A wave passing such a gap acquires two free end points, each of which becomes 
the source of a spiral wave if continuity is reestablished before the end points 
find one another again. In media composed of wandering cells such temporary 
interruptions presumably come and go all the time as local cell density fluctuates. 
In continuous media the source points so formed exhibit a unique interplay 
between reaction and diffusion by which astate is created and maintained wh ich 
never occurs anywhere else. But in media composed of discrete cells communicating 
by pulses, the arguments of continuum mechanics and of topology have no clear 
application. I see no reason to believe that the phase singularity in Dictyostelium 
initially has any locally detectable unique properties. (But once aga in, being the 
center toward wh ich cells collect, it soon acquires unique properties.) 

Example 14. Pathological Rotating Waves in Reart, Brain, and Eye. On a 
grosser scale, waves geometrically similar to the slime mold's tempo rally organize 
the repetitive firing of excitable membranes in vertebrates. These patterns were 
initially discovered in the early 1970s, in every case by severe artificial stimulation. 
This only shows that neuromuscular tissue is capable of persistent rotating 
self-excitation. The normal role of such rotors, if any, remains to be discovered. 
In all cases but one the singularity is not available for examination, being lost 
in a central patch of tissue damaged by the stimulus. (See Chapter 14 for details.) 
In that one ca se (Allessie et al., 1973) the phaselessness ofthe singularity is nothing 
so simple as attenuation of amplitude to zero. The pivotal patch of membrane 
is not held stably at a voltage (and at ion permeabilities) intermediate between 
those realized in the wave circulating around it. Instead the rotor's central patch 
is irregularly invaded by sizable "wavelets", so its phaselessness consists of 
irregularity rather than oftimelessness. Nonetheless it may appear as timelessness 
in a grosser macroscopic description of the phenomenon (see Box B). 

It seems natural to interpret atrial flutter or ventricular flutter in terms of one 
or more rotors. Wh at about fibrillation, the higher frequency, less regular mode 
of arrhythmia? One line of thought suggests that fibrillating tissue is possessed 
by many tiny rotors, continually being created and extinguished within a two
dimensional medium of spatially inhomogeneous refractoriness (Krinskii, 1966, 
1968; Krinskii and Kholopov, 1967a,b; Krinskii et al., 1967). But a slightly earlier 
and apparently independent literat ure places less stress on the "tiny rotors" idea 
and more on the "many tiny" idea. These are the papers ofMoe and collaborators 
(Moe and Abildskov, 1959; Moe, 1962; Moe et al., 1964) which I suspect were 
imaginative and deep beyond their time, yet remain today undeservedly neglected. 
Moe's 

variant ofthe circus movement theory proposes that fibrillation is maintained 
by the irregular wandering ofnumerous wavelets generated by the fractionation 
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Box B: The Human Heartbeat's Phase Singularity (?) 

The figure how two kymograph tracings recorded in 1913 by a young physiologist 
who, a few month after ubmitting them for publication, accidentally killed himself in 
electrical experiment on his own heartb at. The e tracing were made by a rabbit' 
heart who e regular 0 cillation wa 0 ca ionally perturbcd by an electrical timulu of 
suitable intensity (M ines, 1914). A you can see following each dot on the tracings, most 
uch timuli induced at most a tran ient up el withoul re etling the ino-atrial pace

maker. But timuli delivcred at a critical pha e in lead topped the heartbeat for a long 
time. Pre umably this singular rc ult requirc not only the exact timing determined by 
Mine but al 0 uitable timulu inten ity, in that a much weaker timulu would have 
lillle effect and a much tronger one would re ynchronize the heart muscle and SA 
node altogether. But when admini tered at thi pha e, the inten ity employed induced 
fibrillation: microscopically a chaotic jumble of circulating wave , but macro copically 
a pha e ingularity in thc bchavior of an elaborate part ial differential equation oscillator. 

So rar as I know thi i the fir t recorded cncountcr with a phy iological pha e 
singularity. The whole subject might have received much earlier development had not 
it di coverer' enthu ia mIed 0 promptly 10 lopping hi own heart. 

"'" 11'1 ' I"''', ' 'I '" ',," I, <# I • " " • ~ -. \. 
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of a wave front passing through tissue in astate of inhomogeneity with respect 
to excitability and conduction velocity. The arrhythmia is assumed to sustain 
itself when the number of wavelets is so great that coalescence is improbable. 
The number of wavelets which coexist in the tissue should be directly related 
to some function ofthe mass ofthe tissue, and inversely related to the duration 
of the refractory period and to the conduction velocity. 

This sounds superficially like Krinskii et al. seven years later, but Moe's 
computer simulations show very little that suggests locally regular rotation. 
Rather the process more resembles the "chemical turbulence" or "diffusion-induced 
chaos" first noticed by Zhabotinsky (1968, p. 90) in the homogeneous malonic 
acid re agent, and more recently studied by Rössler (1978), Kuramoto (1978), and 
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others in homogeneous media. As Moe described his fibrillation, spatial inhomo
geneity of parameters is the sine qua non of fibrillation. When refractoriness was 
suddenly made spatially uniform in his model, the previously turbulent activity 
simplified, sometimes to one or more rotors. My bet is that the role played by 
inhomogeneity of one parameter in Moe's essentially single-variable model of his 
local kinetics is served by the se co nd or third degree of freedom required for 
chaotic behavior in partial differential equations and in ordinary differential 
equations, respectively. Thus I think the issue of inhomogeneity is a red herring 
and that the theories of chaos and turbulence arising in the late 1970s may in the 
end have more to do with fibrillation than will theories about rotors and phase 
singularities. 

Example 15. Self-Organizing Patterns of Chemical Reaction. A strictly con
tinuous analog of the excitable media discussed in the two preceding examples is 
presented by the malonic acid reagent (Chapter 12). In this ca se one might expect 
the volume element at the center of symmetry to be held at time-independent 
average composition. This would seem a reasonable consequence of diffusion 
from volume elements only a small distance away which are at all stages of the 
periodic cycle of excitation. In fact though, the center is subject to irregular color 
changes. Tracing the movements of the indistinct end point of the spiral wave of 
oxidation, one obtains a jumble ofloops each oflength about one wavelength, all 
consistently clockwise or anticlockwise, mostly contained within a central disk 
of diameter about one-half wavelength. (The wavelength is the spacing between 
turns of the spiral.) This area is certainly phaseless but by no means time
independent in its activity. The cause ofthe irregularity has not yet been determined. 
As noted in Chapter 9, some computer simulations of idealized excitable media 
show similar effects, but in others the patterns pivot rigidly about a fixed center. 
In each case the amplitude ofthe unit period fundamental falls to zero at a central 
fixed point but what determines the amplitude pattern at other frequencies, 
harmonic or otherwise? 

Setting aside that question, it remains of interest to inquire about the size of 
the central region within which the fundamental is substantially attenuated, 
whether or not other frequencies substantially increase their amplitudes there. I 
call this finite disk surrounding a singularity a "rotor". In the malonic acid reagent 
it is about one-third the wavelength in diameter. This is the practical dimension 
of the singularity. In three-dimensional experiments the rotor is a thread of about 
that thickness wandering through the reagent like the core of a tornado. Rotors 
are unstable within confines smaller than this dimension, or closer than this to an 
impermeable barrier. It is my impression that rotors are attracted to walls and to 
counter rotating rotors which come this close. This also happens in computer 
simulations ofthe reaction-diffusion equation used in Chapter 9. Whether adjacent 
rotors of the same handedness also repel, and if so whether the effect varies ac
cording to their phase difference, remain to be looked into. Such effects could have 
much to do with the allowed topological changes undergone by the rotor thread 
in three dimensions, such as decay into little rings, knotting or unknotting, linkage 
or unlinking of rings. 
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Another way to characterize the rotor leaves aside consideration of phase and 
amplitude and instead focuses attention on concentration gradients. In any plane 
wave, all level contours of chemical concentration are parallel to the wave front. 
Gradients are normal to the front, pointing along the direction of propagation. 
In its outer parts, the spiral wave looks like a plane wave and its concentration 
gradients are nearly parallel. To measure departures from this parallelism in com
puter simulations, I used the magnitude ofthe vector cross-product ofthe gradients. 
As one follows any gradient inward toward the source of rotation, this measure 
increases. It increases slowly at first and then quite abruptly increasing lOOO-fold 
within a short range of the singularity. The width of this bell-shaped peak, taken 
between its inftection points, is once again about one-third wavelength (Winfree, 
1978a). 

In geometrie terms the region of crossed gradients is the part of the medium's 
image in state space that departs substantially from the cycle, comprising the cap 
or diaphragm bounded by the cycle. This is the part that produced time singularities 
in state space analyses of the pinwheel experiments and which produces distal 
organs (limbs) in state space analyses of regeneration experiments in Chapter 16. 
In terms of developmental biology, this chemically structured region would be 
called the "organizer", or a "regulatory field". It imposes a spatial and temporal 
organization on the surrounding medium, maintains its own dynamic structure 
against small perturbations, but vanishes altogether if too big a piece of it is 
removed. It behaves as do limb fields in surgical regeneration experiments in 
respect to the number and handedness of new rotors (limbs) created. In other 
words, it satisfies the formal rules of French et al. (1976) and of Glass (1977) for 
reasons which I believe derive from little more than the continuity of maps. 

B: The Singularities of Unsmooth Cycles 

A theory has only the alternatives of being right or wrong. A model has a 
third possibility: it might be right but irrelevant. 

M. Eigen 

The alert reader may have noticed something missing from discussions of the 
malonic acid oscillator: There has been no mention of resetting curves and no use 
of the pinwheel experiment argument that type 0 resetting implies rotating waves. 
That is because no such measurements have been reported. And I suspect that 
when they do appear, anything of topological interest about them will be weil 
hidden in practical discontinuities. 

The adjective "practical" is important here. Chemical kinetics follow continuous 
differential equations which, in the case of the malonic acid reaction, describe an 
attracting cycle. Chemical perturbations being modifications of the dynamic 
equations, continuously map points initially on the cycle to new latent phases, 
effectively mapping the cycle to itself with some integer winding number. All the 
reasoning used in previous chapters must apply ... in principle. But maybe not 
in a practical way. This remains to be seen. 
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An analogous case is seen in the slime mold, whose cAM P oscillator also has 
a very abrupt jump in its biochemical cycle. Nonetheless it is in principle con
tinuous and type 0 resetting has been measured by exposing these cells to cAMP 
pulses. It is not yet dear how the singularity implicit in this observation relates to 
the singularity geometrically observed at the pivot ofthe spiral wave in a monolayer 
of cells. 

Spontaneous rhythmicity in nerve membrane presents another case ofthis sort. 
The Hodgkin-Huxley equations and their various adaptations to neural oscillators 
are continuous. With most practical settings of parameters, their solutions indude 
jumps so abrupt that simpler discontinuous models are more often used than the 
full continuous equations. Nonetheless the fuH continuous equations, if not the 
simpler discontinuous models, have a phaseless manifold and in it a dynamic 
steady-state. Moreover, experiments on pacemaker neurons published as long aga 
as 1964 show what has more recently been interpreted as type 0 resetting (Winfree, 
1977). It follows that a phaseless set should be accessible to a sufficiently attenuated 
stimulus ofthe same sort, suitably timed. Best (1979) demonstrated this computa
tionally using the Hodgkin-Huxley equation for rhythmically firing squid axon, 
current-biased to make the steady-state a local attractor. In this way he expanded 
the phaseless manifold from its minimum dimension (D - 2) to its maximum 
dimension (D), turning this least promising of neural oscillator models into a 
sure-fire demonstration. As in James Thurber's 'The 13 Clocks", 

... he tampered with the clocks to see if they would go, out of astrange 
perversity, praying that they wouldn't. Tinkers and tinkerers and a few 
wizards who happened by tried to start the clocks with tools or magie words, 
or by shaking them and cursing, but nothing whirred or ticked. The clocks 
were dead ... 

Since then Guttman et al. (1979) and Jalife and Antzelevitch (1979) have confirmed 
the computational results experimentally. A suitably timed voltage pulse of just 
the right size kicks the membrane off its attracting cyde into its phaseless manifold 
wherein it promptly retires to the attracting steady-state. This effect was also 
observed by Teorell (1971) in a 2-variable model of a sensory pacemaker neuron. 

I wonder if a similar phenomenon may await discovery in other biological 
docks? Section B of Chapter 2 described three counterexamples, viz neural pace
makers, the cell division cyde, and the endocrine oscillator that times ovulation 
and menstruation. Because oftheir characteristic near-discontinuities, these docks 
ren der only disrespectful and scarcely recognizable homage to the topological 
principles that supposedly govern biological docks. They probably have phaseless 
manifolds and, within them, steady-states, but these are evidently such asym
metrically violent repellors that only discontinuities are evident in coarse measure
ments. This violent repellingness rather than nonexistence of the singularity 
probably underlies the unsatisfying outcome of Kauffman and Wille's pioneering 
investigation ofthe mitotic cyde in Physarum (Chapter 22). 

The example of neural pacemakers raises the question wh ether the steady
states of the fern ale cyde and the steady-state of the mitotic cycle might not also 
become local attractors in the right hormonal environments. In fact, we know they 
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can, but with the techniques currently in use ("the pill", antimitotic cancer drugs) 
they become global attractors, leaving no attractor basin for the cyde. As everyone 
realizes, there are medical side effects connected with such severe alteration of the 
normal parameters. Is it possible that the steady-state can be given an adequate 
but much smaller attractor basin by using far less of the medications already in 
use? No one would ever have noticed a small attractor basin by accident without 
looking for it. It might be there. The way to look for it is by a pinwheel experiment, 
in the singularity trap format of Chapter 2, Example 6. While maintaining the 
treatment intended to alter the steady-state's stability, one varies the two param
eters (T and M) of a fleeting perturbation. After each stimulus the re setting of 
the continuing rhythm is measured. Those measurements can be put together to 
construct the re setting maps, isochrons, and winding numbers in such a way as to 
guide the search for the singularity. When it is found it will prove either attracting 
or repelling ... hopefully attracting as in Jalife's and Guttman's experiments and 
in Johnsson's (1976) and Johnsson et al.'s (1979) experiments with the oat sprout's 
transpiration oscillator. 

In the cell cyde this would switch off proliferation, either permanently or until 
another sufficient perturbation reinitiates it. In the case of unicellular organisms 
that reproduce by cellular fisson, this would also be arrest ofthe life cyde. In larger 
animals, e.g., female humans, it would mean arrest of ovulation. One might 
switch it back on by administering another stimulus to kick the system back out 
of the steady-state's attractor basin or by removing the relatively mild chronic 
therapy that keeps the steady-state attracting. 

Obviously this is an ambitious iftedious program. But it seems to me likely to 
work, and more monotonous searches have been successfully conducted in the 
past. As the Hobbit was once overheard to remark, "There's nothing like looking, 
if you want to find something". 

This sort of phenomenon may be more common than we realize. Richter (1965) 
has collected myriad examples of biological rhythms, mostly of a pathological 
sort from his dinical experience, which seem to be turned on and off unexpectedly 
by fleeting perturbations. 

Returning from dinical speculation to a somewhat broader context, it seems 
to me remarkable that in this whole catalog of examples there is not one c1ear 
case of a smoothly cyc1ing biological c10ck with a violently repelling phaseless 
set. This is in striking contrast to the models most commonly elaborated by 
theorists. Wiedenmann's cockroach shows promise of providing the first example 
of a strongly repelling phaseless set. Attempts to locate its singularity produced 
unpredictable rephasing but never a sign ofarrhythmicity in the individual animal 
(Wiedenmann, 1977). 

C : Transition to Bestiary 

This ends the predominantly theoretical section ofthe materials I have gathered 
between these covers. Probably you have already delved extensively into the more 
experimental material that follows in the distressingly one-dimensional order 
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inevitable to books. Nonethelcss, this spot marks a transition and seemed to me 
the best place to articulate a few cavcats explicitly. As Hermann Hesse says in 
'The Steppenwolf Treatise", 

All attempts to make things comprehensible require the medium of theories, 
mythologies, and lies; and ... [an author who respects his readers] ... should 
not omit at the close of an exposition to dissipate those lies as far as may be 
in his power. 

Some authors of a theoretical bent, in neglecting to do this, have brought down 
around their necks the wrath of the Eumenides, manifest most notably of late as 
Kolata (1977), Pearson and McLaren (1977), and Zahler and Sussmann (1977). 
I don't think that much in the way of disclaimers will be required for this book, 
as no one is likely to mistake my pictures and guesses for mathematical proofs of 
anything. There is much room for proof in many of the more theoretical chapters 
where remarks are made about the anticipated behavior ofidealized model systems. 
Such remarks are mostly "proofs by example" buttressed by geometrie diagrams 
and computational results. Perhaps some reader of mathematical inclination, 
recognizing a favorable case, will pick up one of these remarks and establish its 
exact domain ofvalidity as an exercise. For myself, the pictures are ofvalue mainly 
in a heuristic way in connection with laboratory work. I am not persuaded that 
much is to be gained for empirical science by distinguishing, for example, exactly 
which kinds of dynamical system give phase singularities inside a ring of nonzero 
winding number, and which others give discontinuities of other sorts. I adopt this 
rather cavalier attitude partly because topological notions are in principle in
capable of rigorous application to empirical science: sufficient quantitative dis
tortion would (and does) alter any topological structure beyond hope of practical 
recognition; it can make any topological structure look like any other, so far as 
experiments of finite accuracy can resolve. My aim is more nearly to discover 
patterns in the sense of the quote opening the Introduction to this book than to 
prove that they had to be there a11 along and that it wasn't rea11y necessary to 
look. I believe that I have found some, and that pleases me profoundly. As to their 
meaning in terms of particular mechanisms, I fo11ow George Polya's recom
mendation in "How to Solve 11": 

Quite often it matters !ittle what your guess is; but it always matters a lot 
how you test your guess. 

The matter preceding this page largely concerns guesses. The matter fo11owing 
largely concerns testing. 



11. The Firefly Machine 

The Glowworms represcnt another shew, which settle on some Trees, like a 
fiery cloud, with this surprising circumstance, that a whole swarm of these 
Insects, having taken possession of one tree, spread themselves over its 
branches, sometimes hide their Light aU at once, and a moment after make 
it appear again with the utmost regularity and exactness, as if they were in 
perpetual Systole and Diastole. 

Kaempfer, 1727 

A: Mechanics 

A maehine onee existed (Figure 1) in whieh 71 fliekering neon lamps were eaeh 
eoupled eieetrieally to all the others. (There were 71 beeause out of 100 eon
strueted, 29 drifted outside the intended range of autonomous period during initial 
"wearing in".) The purpose ofbuilding this maehine wasjust to "look and see what 
would happen", on a huneh that groups of oseillators might synehronize together 
in fleeting allianecs. One hope was that by plotting the output of this population 
of interaeting oseillators in the same format as biologists use to plot aetivity 
rhythms of multieellular animals, enough resemblanees might be notieed to 
suggest some interpretation of the tantalizingly eomplex biologieal reeords. 

The neon lamp operates as follows (General Eleetrie Glow Lamp Manual, 
1963). Current [rom a fixed voltage power supply-V, in Figure 2--triekles into 
a eapaeitor C, steadily raising its voltage. The eapaeitor's voltage appears aeross 
two metal eleetrodes separated by neon gas N. The gas has some slight electrical 
eonductivity, and passes a eurrent from one electrode to the other. For reasons 
that have to do with the kineties of ionized atoms in electrie field, this current 
depends in an S-shaped way on the eleetric field maintained between the electrodes 
(Figure 3). At least, this is how the eurrent-voltage relationship would look under 
steady-state conditions. However, conditions are not steady beeause the capacitor 
voltage rises as eurrent trickles into it. When it reaches E2, the glow discharge 
ignites and the eurrent suddenly rises to 12. This current short-circuits the capaeitor 
so that E very quiekly falls down to EI and the glow discharge ceases. The current 
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Figure 1. On the right, mounted in a plexiglas frame, the array of 71 neon oscillators, individually 
shielded in brass tubes. The silvered funnel on top swings down to expose a photodetector to the 71 
flickering lights. The oscilloscope is painting a pattern like Figures 4 through 7. Equipment borrowed 

N 

from the lab of Victor Bruce, Princeton, 1965. 

, 
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Figure 2. A single neon oscillator (left) is one 
of many connected through impedances Xl and 
grounded through common impedance xo. The 

impedances used werc resistive or capacitive. 

Figure 3. The steady-state current-voltage curve of a neon glow 
tube. The negative-slope branch represents unstable states, so 

current jumps to a stable branch at EI and E 2 . 
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drops abruptly to 11. From here E slowly increases again. The neon oscillator was 
originally chosen for its simplicity and reliability and for the analogy it presents 
to a rhythmically f1ashing firefly, a heart cell or other pacemaker neuron (see 
Chapter 14), the cAMP oscillator in a slime mold cell (Chapter 15), or any other 
biological oscillator based on a quantity like membrane voltage wh ich acctimulates 
to a threshold and then discharges abruptly. 

The several-millisecond period ofthe cycle can be made quite stable by "aging" 
the lamps at high current for several days, cleaning the glass bulbs against con
ducting films of humidity, using an individually trimmed trickle resistor, and 
encapsulating the whole circuit in a grounded metal cylinder to protect against 
extraneous electric fields and especially against visible light. In the machine, the 
distribution of periods was tuned to a standard deviation about ten percent of the 
mean. The oscillators were all coupled equally to one another by connecting each 
to a common terminal through a sm all capacitor. This terminal was grounded 
through a larger variable capacitor so that the magnitude of mutual influence 
could be adjusted. 

A signal depicting the aggregate activity of the 71 oscillators was derived 
electronically or through a photoelectric monitor watching a subset of the flick
ering lamps. The signal was used to modulate the brightness of an oscilloscope 
display, just as in a television receiver. The horizontal sweep was tuned to twice 
the mean period of the oscillator population, thus painting a horizontal strip of 
bright or dark segments corresponding to activity above or not above a chosen 
threshold throughout two consecutive activity cycles (essentially the same as one 
cycle repeated for easier visualization). The vertical scan rate was much slower so 
that these "daily records" were pa in ted one above the next on the oscilloscope 
screen, stacked some hundred cycles deep in compliance with the custom of cir
cadian physiologists. Thus, if all 71 oscillators flash in synchrony, the horizontal 
sweep can be tuned to (half) that frequency and the display presents a (repeated) 
solid vertical column of horizontal bright segments. If the population period 
lengthens, then the formerly vertical column drifts to the right as it goes down, as 
each day's activity is a little later than on the day before (taking the horizontal 
scan period as two conventional "days") (see Figure 4). 

Figure 4. Thc time axis is broken into stacked segments (slanting) of 
length 2t. An cvent repeats (dots) at intervals D.St in this idealized example. 
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B: Results 

What, in fact, happens? First of all, with no coupling all oscillators run at their 
own periods. Though initially synchronous, phases spread around the whole 
cycle within 20 cycles after starting. During these 20 cycles, the activity bar widens 
from a point and its mean level drops proportionately, eventually falling below 
the display threshold. Figure 5(b) shows a population in this condition, displayed 
as described above. The horizontal axis is two "days" or two cycles at the popula
tion's mean period. Vertically the recording covers several hundred cycles. A 
black gap appears in the record whenever an oscillator discharges. Vague trails 
of gaps slant across the displayas little groups of oscillators gain phase (to the left) 

Figure 5. (right) In the double-plotted format of Figure 4. spanning sevcral hundred cycles from top 
to bottom, sudden changes of voltage appear as black dots arrangcd in criss-cross trails. Each trail 
represents a fleeting alliance of some few synchronous oscillators. (left) The corresponding voltage 
waveform is plotted on the same vertical time axis, increasing down ward, with collective voltage at the 

common node plotted to the right. 
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or lose phase (to the right) relative to the scan period. Mutual coupling is so weak 
that only the most fleeting alliances occur. Figure 5(a) shows a simultaneous tracing 
of a voltage to which all 71 oscillators contribute equally: Its amplitude is quite 
low and fluctuates irregularly as oscillators drift in and out ofsynchrony. 

With resistive coupling (Cl and Co replaced by resistors), no matter how strong, 
the result is about the same: random phases. Thus, it appears that simply admitting 
mutual influence is not sufficient to guarantee mutual synchrony in a population 
of "clocks". This result goes somewhat against intuition, especially for oscillators 
which easily lock together in pairs, given almost any kind of coupling of intensity 
commensurate with the difference between their natural periods. The reason for 
this failure of synchronization in groups seems to be a phase compatibility problem, 
as touched upon in Chapter 4, Section Band in Chapter 14, Section B. Near the 
moment of the nearly synchronous dis charge, the phase adjustment inflicted on 
each individual depends on that individual's exact phase in such a way that the 
spread of phases in the population is increased rather than decreased. 

However, with capacitive coupling mutual synchrony is achieved abruptly at 
a threshold intensity of mutual influence. In this situation the intrinsically slower 
oscillators are imposed upon to speed up a bit, and the faster ones slow down, so 
all stay in step at one common frequency. But the exact mechanism of mutual 
synchronization was never determined quantitatively in this machine. Figure 6 
is analogous to Figure 5 but has its vertical time axis much expanded to reveal 
individual cycles. Figure 6(a) shows the sawtooth voltage waveform to which all 
71 oscillators contribute equally. As groups of sawtooth oscillators drift out of 
synchrony the collective waveform develops multiple zigzags in each cycle and 
decreases its peak-to-peak amplitude. Each zigzag appears as a whiter patch 
(because it is traced twice, not just onee) of width proportional to the number of 
oscillators that discharged at that time. The phase relations among these groups 
are displayed more conveniently in Figure 6(b) [(with the same vertical scale as 
Figure 6(a), i.e., much expanded relative to Figure 5; the horizontal scale also 
happens to be compressed relative to Figure 5(b)]. The scan is solidly interrupted 
(black gap) when many oscillators discharge simultaneously. The discharge of 
smaller subpopulations appears as a proportionally smaller interruption. When 
two major groups are about one-half cycle apart the waveform in Figure 6(a) 
exhibits about half its maximum amplitude. 

With still stronger coupling (smaller Co) the synchronous population abruptly 
splits in two, with a slight change of period (Figure 7). This spontaneous schism 
doubles the frequency ofthe aggregate rhythm. Formally, this is a familiar bifurca
tion in the behavior of coupled ordinary differential equations (as one might view 
the coupled oscillators). I found its mechanism in detail in the case of smoothly 
varying simple-clock oscillators (Winfree, 1967a). Pavlidis (1971, 1973) derived 
similar behavior in oscillators involving two variables. Durston (1973) reports a 
similar abrupt frequency doubling in the similarly pulse-like rhythmic coherence 
of social amoebae (Chapter 15), though he suggests quite a different mechanism 
for it. I expect to see more studies of mutual synchronization in populations of 
equally coupled cells of this creature in the near future, thanks to the suspension 
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Figure 6. Similar to Figurc 5 but the vertical time scalc is much expandcd and the horizontal seal es 
a re ealibrated dilTcrently. 

technique of Malchow et a1. (1978). Records of circadian activity rhythm in verte
brate animals often show such ostensibly spontaneous splitting into two compo
nents (see pages 396~397). Splitting of an animal's activity pattern might reveal the 
presence of exactly two oscillators (Pittendrigh, 1974; Daan and Berde, 1978), 
but the possibility exists that neither of the two oscillators has a distinct identity, 
each being assembled at the time of splitting by aggregation of randomly gathered 
individual oscillators. 

It is not unusual to see small groups of neon oscillators temporarily escape 
entrainment and fleetingly slant across the screen, showing up at later and later or 
earlier and earlier times in successive cycles until they are again absorbed into a 
larger group. In these respects the population of oscillators exhibits some of the 
tantalizing features of mammalian activity records which have suggested to many 
observers that the whole organism's activity is governed not by one central pace
maker but by many committees of circadian rhythms, possibly situated in the 
several centers ofhormonal and neurosecretory contro1. (See Chapter 19, Section C 
on multioscillator interpretations of multicellular circadian rhythms.) 
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Figure 7. As in the right part of Figurcs 5 and 6, calibratcd in cycles of 1 day = 24 hours. At B the 
population splits into two which persevere in wobbly mutual entrainment but avoid synchronization. 
(From Winfree in Biochrollometry (1971), page 151 , with the permission ofthe National Academy of 

Scicnces, Washington, D.C.) 

C : Historical 

The neon device was originally intended to simulate a two-dimensional sheet 
of cortical neurons. Spatial synchronization and wave-like activity, hopefully of 
some novel variety, were to be sought as a means of discovering which features 
of real neuron behavior are essential to such phenomena. This had been tried 
before. Leon Harmon told me of technical difficulties with his similar population 
of neon discharge tubes. His were packed dose together without shielding and 
without connecting wires in ho pes of achieving mutual synchronization and waves 
by means of optical and electrostatic coupling. I resolved to eliminate such 
unquantifiable int1uences from my own device and to test it first with all units 
electrically coupled to a common terminal. Only after examining mutual synchro
nization phenomena in this mode would coupling be rewired on a neighborhood 
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basis. By the time this m uch was accom plished (1965) it had become clear that 
computer simulation offered a more controllable model and a more flexible format 
for observation and output. Moreover, in this same year, Farley (1965) published 
a computer simulation of spatially coupled, idealized neurons which exhibited 
synchronization, waves, and even pinwheel-like rotating waves. In the same year, 
Gerisch (1965) published an account of nerve-like excitability and rotating waves 
in populations of social amoebae. Also in the same year, Balakhovskii (1965) 
published a geometrie model of excitable media showing wave propagation and 
rotors. Then came the discovery that yeast cell suspensions are populations of 
mutually synchronizing oscillators (Chapter 12), and Zaikin and Zhabotinsky's 
(1970) discovery of a repeatedly excitable chemical medium (see Chapter 13). 
Then even computer simulation seemed inconvenient as a way to investigate 
mutual synchronization and the spatial activity modes characteristic of such 
media. So the neon device was never wired for neighborhood interaction and such 
behavior as had been recorded under conditions of promiscuous interaction was 
never rationalized in quantitative terms. 



12. Energy Metabolism in Cells 

The want ofwhich incomparable Artifice (microscopes) made the Ancients' ... 
erre in their ... observations ofthe smallest sort ofCreatures which have been 
perfunctorily described as the disregarded pie ces and huslement of the 
Creation . .. . In these pretty Engines are lodged all the perfeetions of the 
largest animals ... and that which augments the miracle, all these in so 
narrow a room neither interfere nor impede one another in their operations. 
Ruder heads stand amazed at prodigious and Colossean pie ces of Nature, 
but in these narrow Engines there is more curious Mathematicks. 

Henry Power, physician, Experimental Philosophy, 1663 

A: Oscillators 

Cells have three alternative means of procuring energy for digestion and 
biochemical synthesis, for maintaining concentration gradients, for muscular 
contractions and cell division, and for maintaining body heat: 

1. Photosynthesis: The chloroplasts of green plants capture photons to convert 
ADP to ATP. Water is split to reduce NADP to NADPH, releasing oxygen. 

2. Respiration: The mitochondria use that oxygen and convert ADP to ATP. 
In the process, NADH is oxidized to NAD and water. 

3. Glycolysis: Lacking illuminated chloroplasts or lacking oxygen, cells 
metabolize sugars by fermentation to make a little ATP from ADP. Historically, 
this was probably the first way to make the high-energy pyrophosphate bond of 
ATP. All cells maintain this pathway. Most cells fall back on glycolysis only when 
they have no better alternative, but it is common to have no better alternative. The 
microorganisms ofyogurt, sauerkraut, gangrene, and food poisoning, for example, 
subsist wholly on glycolysis, as do faculative anaerobes such as intertidal bivalves 
(e.g., oysters) and parasitic helminths (e.g., schistosomes) and diving vertebrates 
(e.g., green sea turtles) during their prolonged periods of contented abstinence 
from respiration. Red blood cells have no other energy supply. Poorly vascularized 
tissue such as the cornea ofthe eye, compact tumors, and embryos rely heavily on 
glycolysis for their energy needs. For shorter intervals, so do the aching muscles 
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of any animal in violent exercise, especially those of diving mammals such as the 
porpoise and whale. The rabbit heart muscle used by Allessie (Chapter 14, p. 332) 
to support a rotating wave presumably drew its energy predominantly from 
glycolysis. 

The first three biochemical oscillators discovered (all since 1955) were in these 
three sources of energy: photosynthesis in chloroplasts, respiration in mitochon
dria, and glycolysis in the cytoplasm of yeast cells (and later in more dilute cell-free 
extracts of yeast, heart muscle, and skeletal muscle). See reviews by Hess and 
Boiteux (1971), Nicolis and Portnow (1973), by Goldbeter and Caplan (1976), and 
by Goldbeter and Nicolis (1976). According to a proposal by Wagner et al. (1975, 
1976), circadian rhythmicity also arises from the control dynamics of energy 
metabolism, regulated adaptively in relation to diurnal changes in light intensity. 

B: The Dynamics of Anaerobic Sugar Metabolism 

At present, the most vigorously and successfully studied biochemical oscillator 
is oscillating glycolysis in yeast. In fact, biochemistry originated in studies of the 
mechanism of glycolysis in brewer's yeast, which makes ethanol. The chemistry is 
consequently weil understood. Yet it wasn't until 1957 that Dllysens and Amesz 
obtained the first hint that glycolysis does not always producc energy in a steady 
OC mode: it sometimes goes AC, the cells oscillating like little dynamos with a 
period on the order of aminute (Figure 1). With this realization came a new 
emphasis on the second and less well-developed aspect of biochemistry: Not only 
must we understand the sequence of molecular transformations among reaction 
pathways, but we must also understand the regulation of rates of transformation. 
Molecular transformations are media ted by enzymes. The enzymes' catalytic rates 
are governed by the concentrations of pertinent substrates and cofactors, most of 
which are themselves produced in other enzyme-catalyzed reactions of the same 
pathway. The discovery that such a system can spontaneollsly vary its rate by 
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Figure I. NADH fluorescence in a suspension of metabolically oscillating ycast cells (from Pye in 
Biochronometry (1971) page 627 with the permission ofthe National Academy ofSciences, Washington, 
D.C.). Note that other variables change in a much more abrupt fashion. Peoplc cOl1lmitted to describing 
this oscillation as "pendulum-like" or "relaxation-oscillator-like" would bc divided into nlutually 

antagonislic schoo1s according to their choice of astate variable 10 watch. 
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Figure 2. A schcmatic ofthe sC4uence oftransformations undergone by a glucose molecule becoming 
ethanol or lactate. These changcs are wrought by some dozen enzymes, ofwhich only four are indicated 
here in italics. The bold arrows indicate the immediate effect of oxygen: increasing ATP and NAD. 

factors of 10 to 100 in a regularly repetitious way seemed at first to offer the 
experimental biochemist a particularly favorable opportunity to study regulation. 
And it seemed to offer a particular challenge to those who would formulate the 
mathematics of regulatory kinetics. But it turns out that as far as investigations of 
mechanism are concerned, the fact of oscillation in itselfhas provided no particular 
experimental opportunity. It also has provided few constraints by which to 
eliminate what proved to be a plethora ofpossible mechanisms. Far from requiring 
very special arrangements, oscillation turns out to be a common feature of even 
very simple regulatory kinetics, a feature that rapidly becomes all but unavoidable 
as reaction complexity increases (Goodwin, 1963; Higgins, 1967; May, 1973). 

In the particular case of glycolysis, then, the problem is not to think of a possible 
mechanism, but to determine by ingenious experiment which of the many poten
tially oscillatory aspects of that pathway in fact assurne dominant importance 
under physiological conditions. This job was carried out primarily by Higgins in 
Philadelphia, working with biochemists brought together by B. Chance, and by 
Selkov in Moscow, working with biochemists brought together by Hess in Dort
mund and by Betz in Stockheim. 

Glycolysis consists of a chain of a dozen enzyme-catalyzed transformations of 
a six-carbon sugar (Figure 2). The sugar is twice phosphorylated, then split into 
two three-carbon fragments, each of which gets phosphorylated again, gives up 
both phosphates to ADP, and ends up as pyruvate. On the way to pyruvate, each 
gets oxidized, simultaneously reducing NAD 1 to NADH. In oxygen-starved mus
cle a final reaction converts three-carbon pyruvate to three-carbon lactate, a cause 
of general anxiety, of charley-horses, and of labor pains. In yeast, a preliminary 
step cleaves off carbon dioxide, making the broth fizzy and leaving two-carbon 

I Before 1970. NAD was DPN. 
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acetaldehyde (AA) to be reduced. The result is then grain alcohol, a cause of 
highway disasters for drinkers and their victims. Either way, the final reaction 
oxidizes the NADH accumulated earlier back to NAD. This NADH, as it happens, 
fluoresces blue-green in ultraviolet light. Following the innovation ofDuysens and 
Amesz (1957) one can monitor the flux ofmaterial through the pathway by watehing 
this glow. This works because the reactions increasing and decreasing NADH 
happen to fluctuate out of phase with each other. Like the NAD-NADH couple, 
an ATP-ADP couple also links remote reactions in this pathway (Figure 2). But 
here the books are not kept so neatly balanced: Each trio se that runs this gantlet 
uses and restores one ATP but additionally converts one ADP to ATP in shedding 
its final phosphate group to become pyruvate. And here we come to the crux of 
the matter: Glycolysis is for making ATP, and is regulated accordingly. 

C : The Pasteur Effect 

The rate of glycolysis is regulated by the cells' balance of A TP and ADP. When 
there is more ADP (less ATP), glycolysis runs faster, converting ADP to A TP at 
the expense of glycogen or starch reserves. When there is less ADP (more ATP), 
e.g., when there is enough oxygen for operation of the mitochondria, the cell's 
main ATP factory, then glycolysis shuts down. This regulation is called the 
Pasteur effect. 

How is this trick managed? It turns out that it is managed mainly by one enzyme, 
the one that puts the se co nd phosphate on the sugar. This is phosphofructokinase 
(PFK). When there is enough ADP around, the concentration of AMP is also 
high and some of it sticks onto a special receptor site on the PFK moleeule. This 
changes its shape so that it works more quickly, admitting a swift flow of 
sugar through glycolysis to convert the excess ADP back to ATP. The activity 
of PFK in fact changes almost lOO-fold during each cycle of oscillation (Hess 
et al., 1969). 

But here lurks a paradox. PFK is a phosphorylating enzyme. It uses ATP, 
degrading it to ADP. Thus it is activated by its immediate product. A potential for 
instability lurks here, not far beneath the surface. As sugar passes PFK, ADP 
accumulates and enhances the rate of sugar passage and of ADP accumulation, 
unless that ADP is consumed at a correspondingly increased rate further down 
the pathway. If there is any delay (and there is) in the arrival of phosphorylated 
sugar further down the disassembly line, then the pulse will grow until its front 
does reach the later reactions. Then so much ADP is converted to ATP that PFK 
shuts off the input altogether. 

Verbally, this is how the oscillation arises. But as Hermann Hesse observes in 
The Steppenwolj Treatise, "Things are not so simple in life as in our thoughts, nor 
so rough and ready as in our poor idiotie language." All such verbal arguments 
about cycles are specious, a realization aptly articulated by Wojtowicz (1972, p. 65) 
and by Aldridge (1976, p. 2). One knows where to make such an argument only by 
the hindsight acquired through biochemical experiments and through solving 
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kinetic equations, The problem with verbal rationales lies in their in ability to 
decide wh ether 

1. The verbally articulated mechanism can or cannot settle down to a nice 
balanced rate at which ATP is produced exactly as fast as it is consumed. 

2. The regularly periodic oscillation is approached spontaneously from the 
steady-state. 

However these questions have been resolved in a variety of other ways. Most 
recent, and probably the most successful quantitatively, is the work of Goldbeter 
and collaborators, whose kinetic analyses we will also meet in Chapter 15 in 
connection with Diet yostelium's cAM P oscillation. Goldbeter's analysis (Goldbeter 
and Lefever, 1972; Boiteux, Goldbeter, and Hess, 1975; Goldbeter and Nicolis, 
1976) derives much of the observed behavior from an attracting cyde of allosteric 
activation of PFK by ADP. This is not to deny that other reactions are involved, 
but this reaction asserts itself especially conspicuously under common operating 
conditions. 

D: Goldbeter's PFK Kinetics 

Though it is not glycolysis, the single enzyme oscillator built around PFK is 
sufficient to account for many of the facts of oscillating glycolysis. Not only 
sufficient, it may be a necessary part ofthe glycolytic oscillator. This is revealed by 
the following fact. It is possible to bypass the first steps of the pathway by starving 
the cell-free extract for sugar, then dripping into the reacting extract any substrate 
that normally appears after the PFK step. With PFK thus bypassed, no oscillations 
have been observed (Hess and Boiteux, 1968). 

H iggins and Chance's early recognition of the pivotal roles of PFK and of the 
ATP-ADP couple also res ted heavily on the fact that the many substrates of 
glycolysis oscillate in essentially four groups. All those prior to PFK oscillate 
synchronously. All those after PFK and before GAPDH also oscillate as a group, 
but 180 phase-shifted from those preceding PFK, as though PFK were the 
fulcrum of a teeter-totter. Those from GAPDH to PK are synchronous, though 
somewhat delayed relative to their precursors. And all substrates after PK are 
180 opposite to that phase. The two enzymes PFK and PK mainly seem to be 
gating the flow. Whenever mass flow through one of these bottlenecks increases, 
downstream concentrations rise and upstream concentrations fall. 

An essential third due implicating the ATP-ADP balance in controlling the 
oscillation came from phase-resetting experiments. An injected pulse of ADP was 
found to profoundly affect the oscillation in cell-free extract (Chance, 1965; Pye, 
1969, with an cven smaller dose). Not every substrate does this. In particular, 
Pye (1969) found that FDP has no such effect. FDP is the other product of PFK, 
and like ADP it also activates PFK. The demonstration that FDP has no effect 
and that ADP has a profound effect led to Goldbeter's updating of the earlier 
models of Higgins (1964) and Selkov (I968a,b). 
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Caveats 

Every theory of the course of events in Nature is necessarily based on some 
process of simplification and is to some extent, therefore, a f"airy tale. 

Sir Napier Shaw 

Without going into much more detail here, it seems appropriate to note that 
glycolysis is really much more complicated than its simplest adequate model. In 
particular: 

A. Phase shifting in extracts requires about 30 times more ADP (about 
12 /lmolejg of cells) than would be expected for the 0.4 IlmoI/g swing of its con
centration in the oscillation. The strong phase-shifting by oxygen requires the 
equivalent of about 1 /lmol/g of ADP. Thus one might guess that the effect of O 2 

is not mainly by depletion of ADP and that ADP is not a primary state variable 
in the oscillation mechanism. In fact the other adenosine phosphates play weightier 
roles in controlling PFK activity. All three adenosine phosphates are in equilibrium 
through myokinase, so from a functional point ofview, any one may be considered 
the controI. Selkov and Betz (1968) found that, under conditions allowing oscilla
tion, PFK is controlled almost exclusively by AMP. Chance et aI. (1965a) found 
that cyclic AMP phase shifts the oscillation about 100 tim es more efficiently than 
does ADP. 

B. At least two other reactions play important roles in the oscillation: 

1. Pyruvate kinase (PK), another phosphorylating enzyme, is sensitive to 
ADP levels and rhythmically gates the flow of material through glycolysis almost 
as much as PFK does. 

2. Glyceraldehyde phosphate dehydrogenase (GAPDH), regulated by fluc
tuating NADH levels, likewise plays a modulating role. In fact, 3-PG K and 
GAPDH alone, without PFK, seem to constitute aseparate autonomous oscillator 
under some conditions (Chance et aI., 1967: Dynnik and Selkov, 1973). The 
dynamics oftwo interacting oscillators is much richer than that of one alone. This 
lower part of glycolysis is not so thoroughly studied as is the upper tract, and may 
yet contain many secrets. The effect of cyclic AMP (see A above) seems to be on 
an enzyme after 3-PG K. 

C. All the critical control points of glycolysis change according to the cell 
type and its physiological state (determined by dietary conditions and hormone 
levels). Substrate concentrations and cofactor concentrations determine the 
operating points ofthe enzymes and so determine what quantities their rates react 
to most sensitively. Selkov (1968a,b), Garfinkel et aI. (1968), and Higgins et aI. 
(1968) have given myriads of different approximations to the complete kinetics of 
glycolysis, each appropriate under different operating conditions. 

D. Glycolysis can be reconstituted in glassware from crystallized enzymes, 
substrates, cofactors, and an ATPase to simulate "the rest of the cell". [t works 
fine and it oscillates (Hess and Boiteux, 1968). But this trick has not yet been 
achieved using any less than all the enzymes from hexokinase through alcohol 
deh ydrogenase. 
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Figure 3. Piecing togcther observations of phase 
resetting at high dose, low dose, and insensitive phase, 
we obtain a helical boundary on the surface that 
describcs ncw phase as a function of old phase and 

dose. 

NEW 
PHASE 

0' 

/ 

/ 
/ TYPE' 

/ RESETTING 

OLD PHASE fil 

E: Phase Control of the PFK-ADP Oscillator 

291 

TYPE 0 
RESETIING 

The resetting data of Chance (1965) and of Pye (1969) are fragmentary but they 
suggest type 1 resetting in response to a 0.7 mM ADP increase and type 0 resetting 
in response to a 2.5 mM ADP increase. They also indicate that an injection of 
ADP during about half ofthe cycle has little lasting elfect on the oscillation's phase. 
Taking these observations at face value, they describe a helical boundary on the 
three-dimensional graph of the glycolytic oscillator's new phase as a function of 
the size of an ADP dose and the old phase at which it was administered (Figure 3). 
Interpolation into the middle range of doses and phases in Figure 3 leads us to 
anticipate a helicoidal resetting surface inside the helical boundary (see Chapter 1, 
Section C and Chapter 2, Box B). We are driven to this surface by assuming a 
smooth dependence of phase on the stimulus parameters. Yet such a surface 
necessarily contains a discontinuity. The most compact discontinuity we can get 
away with is a phase singularity. 

If the unavoidable discontinuity manifests itself in this form, then a phase 
singularity should result from perturbing glycolysis by a suitable change in the 
ATP-ADP balance, neither too drastic nor too subtle, atjust the right phase. Wh at 
would happen to cells so treated? Their new phase should be unpredictable and 
irreproducible. We might also observe some elfect on the amplitude of oscillation. 
The magnitude and nature of such elfects could tell us whether the glycolytic 
oscillation has a smooth attracting cycle or more nearly resembles an hourglass
like relaxation oscillation, whether it has one or more steady-states, and wh ether 
they are repellors or attractors. 

F: More Phase-Resetting Experiments 

I went to E. K. Pye's lab in Philadelphia to try this experiment in 1970. Without 
his making every service available to me, it never would have worked in the single 
week I had scheduled (in which the daylight hours became unexpectedly busy 
because Nixon chose that week to invade Cambodia). 
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As a novice, leery of cyanide-inhibited respiration and of homogenized cells, 
I preferred to use intact Iiving cells. So I chose to perturb the A TP-ADP balance 
indirectly, using an oxygen pulse. This was necessary because phosphorylated 
intermediates do not penetrate the cells' plasma membrane,2 but oxygen does. 
By injecting a tiny amount of buffe red water containing dissolved oxygen, the 
cells' mitochondria are stimulated to quickly deliver a measured burst of ATP, 
whereupon the corresponding amount of ADP vanishes within the cells. During 
the few seconds required to consume it, the oxygen concentration was weil above 
the 0.4 .umolar concentration required to saturate mitochondrial activity (Chance, 
1965). In other words, I used the Pasteur effect as a perturbation. Glycolysis was 
allowed to run in its usual anaerobic oscillation and was then switched to aerobic 
metabolism. Aerobic metabolism operates at a high steady A TP level with very 
slight flux through the pathway. But the switch to aerobic dynamics was scarcely 
begun when the sm all pulse of oxygen ran out. 

G: Results: The Time Crystal 

In 88 separate experiments, I gave various doses of oxygen at various times in the 
cyc\e, all the while monitoring the NADH fluorescence rhythm. The results appear 
in Figure 21 ofChapter 2, and, in stereo without artwork, as Figure 40fthis chapter. 
Each NADH maximum is plotted as a dot in three dimensions along three axes: 

1. Vertically downward, the time ofthe maximum, mcasured [rom the time of 
oxygen injection 

2. Horizontally to the right, the time ofthe injection, measured [rom the time 
ofthe prior NADH maximum 

3. Horizontally in depth, the amount of oxygen given 

Sure enough, the data points fill out a screw-like surface in each 30 seconds x 
30 seconds unit cell of the time crystal. Its singularity lies a few seconds before the 
NADH fluorescence maximum (which is also the ADP maximum) at about 20/11 
of oxygen-saturated buffer. These 20 .ul contain 28 nmole of oxygen which, if 
completely used by the cells' mitochondria, would deplete 170 nmole of ADP 
in the 160 mg ofsuspended cells. So we're talking about an ADP depletion ofabout 
1 .umoljg of cells. As noted above, this is at least double thc whole range offluctua
tion of ADP in these cells. Thus, some doubt is raised about the simple inter
pretation I use throughout this chapter in terms of the ADP-PFK mechanism 
considered in isolation. The phase of the singularity seems right, though. A 
coordinated increase of ATP and depletion of ADP [rom the ADP maximum on 
the anaerobic cyc\e would move the oscillator toward its stationary state. 

2 They do in Aplysia neurons, whosc electrical rhythms are rcgulated by PFK activity (Chaplain. 
1976. ami Chapter 141. 
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Box A: How to Look at Figure 4 

The tereo picture in thi chapter, the three in hapter 20, and the one in Chapter 21 
are intcnded for iewing with the help of a mirror. (Thi i my alternative 10 the eye
cro ing method, which require praclice, and to the red and green speclacles melhod, 
which involve the publi her in color printing.) fir t- urface mirror work be t, but 
ordinary ilvered glas will erve if you can ignore the duplicale reflection off the gla s 
front urface. Mount the figure direclly in front ofyou. Hold the mirror in the symmetry 
plane ofyour head 0 that it touche your no e and the paper and reflect the right image 
into your right eye. Look at the left image with your left eye. Adjust the mirror to align 
the two image . The graph hould now nap into three-dimen ional per pective. 
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Figurc 4. Stcrcographic vicws 01' 342 measurements of NADH peak timing be fore and after an 
oxygcn pulsc. (For vicwing, scc Box A.) Coordinates and perspective as in Figure 21 ofChapter 2. Thc 
two intcrior uprights dcpict thc presumed singularity, a pole around which data points c1imb in cork
screw fashion. Thc 10 dots stacked up in middlc background are unpcrturbed controls. All data arc 

double-plottcd to the right. 

Amplitude effects were a little harder to evaluate because, being a tyro in this 
business, I prepared rather poor cells. Their oscillations ran down exponentiaIly, 
each maximum being only about halfthe size ofits predecessor after the cells start 
at high amplitude upon running out of oxygen and going an aerobic. [Later 
experiments by Aldridge and Pye (1976) show that I had too great a density of cells 
in suspension.] In experiments right at the singularity of the phase surface, the 
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Box B: The Fluore cent Pinwheel Experiment 

A in the ease of other pha e-re etting experiment explored in this volume, the 
Pa teur-effeet rephasing by oxygen pul e applied to 0 eillatory energy produetion in 
yea t cell ean be de eribed in term of one ingle experiment condllcted in two
dirnen ional pace. Imagine a thin layer of yeast cell pread out on a table top, con
dueting aerobic metabol i m. ow we begin to eover them with a gla heet or ome 
other urfaee capable of excl uding oxygen. Slide the hield from ea t to we tat a con tant 
veloeity ufficient to reach the eells furthe t to the we t within aminute or two. A the 
cell are covered and eonsume a re idue of di olved oxygen, they enter upon anaerobic 
metabol i m and begin oscillating. By grading from east to we t the time at which this 
happen we e tabli h an east-we t phase gradient covering two to four cycles. ow to 
admini ter a transversely graded stimulu ,we lide the oxygen barrier northward then 
return it immediately to its original po ition. The southernmo t cell are thus exposed 
(at variolls phases along the ea t-we t gradient) to oxygen for a relatively long time, while 
those at the northern extremity are expo ed for only a moment or not at all, at the 
extremity of the oxygen hield' movement. We have thlls a embled in an orderly way 
in two dimensions a11 the individual re etting experiment that can more conveniently 
be carried out one by one in the fluorometer. Thi experiment presents in a continuum 
a11 combination of (pha e oxygen do e) within the chosen limits. Our 88 fluorometer 
experiment eon titute 8 sam pIe within one eYcle of pha e in thi idealized two 
dirnen ional experiment. The re ult were plotted in igure 4 and in Figure 21 of hapter 
2 in the format ofa time cry tal. Each unit cell ofthat plot contain a crew urface who e 
alt itude at each point is the time of the ADH fluorescence maximum al that particular 
combination ofinitial pha e and do age of oxygen admini tered at that pha e. A contour 
map ofthis surface con i t ofcurves, each ofwhi h indicate a locus ofcon tant altitude 
on this surface (Figure a). onstant altitude means constant time of the fluore cence 
maximum. Each ueh contour could be obtained by taking a cro -seetion at fixed 
altitude through the time cry tal. The time ery tal i a tack of erial section of thi 
ort or, equivalently, a et of contour lines a ketched in the adjacent figure. In the e 

contours we see the re ult of the pha e-re etting experiment rea embled in two
dimensional format a a pinwheel experiment. At any gi en moment, one of tho e 
contour line marks the locu of brightest blue-green fluore cence. A few econd later 
the next eontour Hne i brightest and a few econd after that the next. and 0 on. Thus 

M 

Box B Mean loci along whieh 
ADH Ouore eenee peak up at the 

indieated number of eeonds after an 
oxygcn do e fM nanomoles per wet 
gram of cells applied T seconds after 
an ADH maximum. (Sketehed from 
erial ections of the dala c10ud in the 

time crystal of igure 4. and Figurc 21 
of hapter 2. 
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we ee that the glow i a wave which wcep 'round and 'round a central pivot at the 
ingularity of the crew urface. 

Thi rotaling wave i only a "pseudowave". in the sense elaborated in hapter 4. 
However, ifthe two-d imensional experiment were conducted in a mall enough physical 
pace, let' ay 1 centimeter by 1 centimeter, then the molecular interaction which 

normally ynchronize nearby yeasl cells would be reaching aero cell of ignificantly 
different phase in the eycJe in time eomparable to one cycJe duration or less. Without 
olving [he equalion of kineti and diffu ion. one doesn't know what would become 

of this situation, but similar initial condition in the malonie acid reaction ( hapter 13) 
and in Diclyosleli llm ( hapter 15) re ult in table rotation of a spiral wave around that 
fixed pivot. To actually ee Lhi in yea t would require the ervice of a canning Ruoro
meter not unlike the eanning eleetron miero eope or a televi ion camera. 

eeording LO Goldbeter and Erneux (1978) the glyeolytie oseillator ean be "exeitable" 
in a phy iologieally rca onable range of parameter, in the ame en e a the malonie 
acid reagent and Dicl)'osreliul/1 are exeitable. On thi ba i , too, one might reasonably 
antieipate metabolie wave propagation, rotor, and eroll rings in one-, two-, and 
three-dimen ional media eomposed of yea t eell . 

Figure 5. (a) Two NADH ftuorescence 
traces superimposcd. The heavy trace is 
an unperturbed control. In the thin 
trace, a critical dose of oxygen was ~ 
administered at the critical phase (arrow), 
quenching rhythmicity (from Winfree 
1972 Figure 11). (b) As above but from 
Greller, 1977, Figure 29, using acetal
dehyde instead of oxygen. (The time 

scale is somewhat different.) 

T· 28 SEC 
D· 0.26 flmole/grom 

! 

(al 

(bJ 

cell suspension nearly quit oscillating [Figure 5(a)], but I saw no conspicuous 
effects on amplitude otherwise. A more careful reexamination of the data years 
later [prompted by Aldridge's (1976) re setting experiment using Ca 2 + pulses and 
by Greller's (1977) resetting experiments using acetaldehyde pulses] shows that 
there are effects on amplitude following nonsingular perturbations. Specifically, 
the damping is precociously advanced the closer the stimulus was to the critical 
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phase and critical dose. This is what would be expected ofthe ADP-PFK mech
anism. Goldbeter's equations show trajectories winding many times around the 
steady-state before the oscillation recovers most of the way back to the attracting 
cycle, after an increment of adenosine phosphate moves its state into the inside of 
the cycle. 

Aldridge and Pye (1979a,b) envision a slightly more exotic mechanism of ampli
tude adjustment. They propose that the steady-state and the limit cycle are bath 
attractors. A near-singular perturbation then deposits same cells inside the steady
state's attractor basin and they stay there, contributing little or nothing to the 
aggregate amplitude. It is argued from numerical studies that this situation is 
stable even in the face ofthe strong mutually synchronizing interaction known to be 
at work in yeast cell suspensions of the density used. 

H: A Repeat Using Divalent Cations 

Essentially the same phase and amplitude behaviors as noted above were 
elicited by Aldridge and Pye (1979a, b) using pulses of Ca 2 + or Mg2 + concentration. 
The effect of remaving ions from the extracellular medium was qualitatively the 
same as the effect of adding a comparable amount a half-cycle earlier or later. The 
mechanism by which these sud den changes of ion concentration affect the kinetics 
of glycolysis has not been resolved. Activation of membrane-bound enzymes that 
proeess ATP, ADP, andjor AMP seems a likely possibility. 

I: A Repeat Using Acetaldehyde 

There are basically two good ways to deliver a swift kick to glycolysis in intact 
cells. One is to transiently kick glycolysis indirectly, by activating mitochondria 
with oxygen or by afflicting the membrane with ions as above. The other is to tran
siently kick glycolysis itself directly with one of the nonphosphorylated substrates 
that occur late in sugar degradation. Pyruvate (PYR) and acetaldehyde (AA) are the 
obvious candidates (Figure 2). And it turns out that both cause large phase shifts at 
submillimolar concentrations. As with ADP, AA has been used to measure type 
1 (weak) re setting (Betz and Becker, 1975b; Greller, 1977) and, at the same dose, 
type 0 (strong) re setting (Greller, 1977). An AA concentration of 50-60 .uM seems 
to be the dividing line between weak and strong resetting. Greller's data, like 
Aldridge and Pye's, onee again describe a helical boundary for the surface within 
each unit cell of the time crystal. Greller found the expected singularity at M* 
about 50 .uM AA, at a phase <jJ* about one-third circle before the NADH peak 
[Figure 5(b)]. AA presumably (Figure 2) strikes first at lower glycolysis, in the less 
studied GAPDHj3-PGK oscillator. Its immediate impact is on NADH, oxidizing 
it and thus further diminishing NADH coneentration. The measured <jJ* is hard 
to interpret on this basis because the <jJ* is already near the minimum of NADH 
fluorescence. From there, a further decrease of NADH leads outside the cycle 
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and so cannol lead back toward the stationary state if only two variables are 
importantly involved. Unless there is somehow a delay of one-half cycle, this 
observation would seem to preclude any such simple tidy interpretations as 
attempted above for the oxygen singularity in terms of ADP and ATP. Greller 
points out that a model involving at least three variables seems to be required. 
This might be a reftection of the fact that this experiment, by striking low in 
glycolysis, does indeed implicate additional variables in the disruption of the 
oscillator. 

Mutual Synchronization 

Another point of interest in AA as a perturbing agent is that AA has been 
considered a candidate for the coupling agent diffusing between cells to keep them 
synchronous. Without such an agent, a cuvette full ofyeast would not long exhibit 
coherent oscillation. But with a steady tri ekle of sugar input, von Klitzing and Betz 
(1970) kept it running for days with a roughly normal periodism. As in the yeast 
mitotic cycle (Halvorson et al., 1971) and in Dictyostelium's cAMP pulsations in 
cell suspensions (Gerisch and Hess, 1974; Malchow et al., 1978), it is evident that 
mutual synchronization is occurring. It is probably mediated by a small ion. 
AA (Pye, 1969) and PYR (Betz and Becker, 1975b) have been nominated as 
candidates. 

On the other hand, Ghosh et al. (1971) show that no loss ofsynchrony follows 
addition to the extracellular medium of enzymes that tned to remove PYR and 
AA. This experiment might be refined, possibly to show that neither substrate 
alone is the intercellular messenger. The candidacy of AA is also weakened by 
Betz's observation that its concentration in and between cells (summed) doesn't 
fiuctuate during the cycle. These hints are corroborated by an implication of the 
following experiment (according to my interpretation only). 

The strength of the mutually synchronizing interactions was measured in a 
dilution experiment by Aldridge and Pye (1976). If cells are far enough apart, 
their mutual coupling should be negligible. At some point in the dilution of a 
cell suspension, they will fail to synchronize their metabolie rhythms, and the 
collective amplitude ofthe population will fall drastically. Aldridge and Pye (1976) 
found this threshold 3 at a dilution ofabout one cell volume per 10,000 surrounding 
water volumes. This indicates a startling specificity ofthe coupling agent. Assuming 
a fiux of one-half pmole of fructose per gram of yeast per second (Betz, 1966), at 
most 1 pmole of AA can be secreted per second into the 10,000 grams of water. 
Thus its concentration could increase by, only 3 pM per 30-second cycle. To 
maintain sychrony, cells must adjust phase substantially during each cycle. A dose 
of even 10 pM produces scarcely noticeable phase shifts, even if applied at the 

3 Othmcr and Aldridgc (197X). and Aldridge and Pye (l979b) favor an alternative interpretation, i.e., 
that each cell quits oscillaling when too isolated from its neighbors by dilution. This possibility can 
be checked by spectropholomelry of single-cell NADH rhythms (Chance ct al., 1968) but definitive 

results have not been reported. 
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optimal phase (Greller, 1977). Moreover Betz and Chance (1965b) find that AA 
concentration 

1. Does not fluctuate during the cycle, but only climbs steadily and 

2. Is three orders of magnitude lower than the above maximum estimate, 
presumbly because ADH promptly changes it all to ethanol 

Thus AA seems after all a poor candidate. 
PYR fluctuates by 0.2 mM/g during the cycle. A substantial portion of this 

amount appears extracellularly (Betz and Chance, 1965b). In 1: 10,000 suspension, 
this amounts to 0.02 mM changes. Since PYR causes large phase shifts only 
at 70 mM concentration, this 0.02 mM variation does not seem adequate to 
maintain synchrony. 

Aldridge and Pye also found an upper limit to cell density, at volume ratios in 
the order of 1: 5, above which the rhythm dies out. Presumably the oscillation is 
suppressed in every cell by excessive exposure to its own and its neighbor's diffusible 
products. The density of 1 : 12 used in my experiments and in many others' is near 
the upper end ofthis permissive range. The commonly observed damping of oscilla
tions at such high densities in unreplenished medium might represent accumula
tion of those products. The whole question about the role of cell density subverts 
Chance et al.'s (1968) estimation of the range of single-cell natural frequencies in a 
cell suspension: Their calculation was based on comparison of observed damping 
rates of single cell rhythms and population rhythms, but the cell densities in those 
two cases were not the same and were not reported. 

J: Phase Compromise Experiments 

The vigor of cell-cell interaction is shown in another series of experiments, all 
done at the same cell dilution (1: 12) as in my phase-setting measurements using 
O 2 and in Greller's using AA. In these experiments two equal suspensions of cells 
at different phases in the cycle are poured together. They quickly establish a phase 
compromise, as in Physarum (Chapter 22) and resurne normal but now syn
chronous oscillation (Pye, 1969). The design of this kind of experiment has a 
striking symmetry, and that symmetry has a curious mathematical consequence 
(Chapter 1, Section C). The consequence is that the experimental result (a com
promise phase) cannot depend continuously on the phases of the two parent 
populations at the moment they are poured together. This statement has nothing 
to do with any interpretations of the mechanism of rhythmicity. However, the 
nature of the discontinuity might reveal something about the mechanism. For 
ex am pie, a smooth attractor cycle mechanism would localize its discontinuity 
as two isolated phase singularities, supposing perfectly instantaneous mixing of all 
reactants and neglecting the exceptional case of perfect symmetry (Chapter 6, 
Box F). On the same basis, a discontinuous relaxation oscillator would have a 
phase discontinuity varying in magnitude along a pair of perpendicular lines at the 
jump phase. In fact, glycolysis in yeast shows neither pattern clearly. At first sight, 
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it shows almost no pattern at all, according to the experimental results of Ghosh 
et al. (1971). With a little imagination (Winfree, 1974c), the data can be seen as a 
noisy approximation to a two-screw pattern surrounding two isolated phase 
singularities (Chapter 2, Example 9). This is what would be expected from such 
attractor cyc1e models as those ofHiggins (1964,1967; et a1., 1968), Selkov (1972), 
and Goldbeter and Lefever (1972). 



13. The Malonic Acid Reagent 
("Sodium Geometrate") 

A new chemical reaction with either excitable or periodic dynamics appears 
every month in the theoretical journals. But only one has been widely studied 
experimentally in ways that reveal wave-like organization in space. There are 
already two entire books about it: Zhabotinsky (1974, in Russian) and Tyson 
(1976b). 

This is a catalytic oxidation of an organic fuel to carbon dioxide in water 
solution at room temperature. As far as that much goes, it sounds almost bio
chemical, especially as three of its possible fuels (citric acid, oxaloacetic acid, and 
hydroxylsuccinic acid) are prominent in the Krebs cycle, one of them (citric acid) 
inhibits PFK (see Chapter 12), and another (malonic acid) is a specific inhibitor 
of the Krebs cycle. The catalyst is typically an iron ion held in an organic ring 
complex called "ferroin", not unlike the heme group of oxidative enzymes. But 
the resemblance to cell metabolism ends about there. The organic fuel must be 
easily brominated and can be any one of many water soluble organics. The ferroin 
can be replaced by ruthenium bipyridyl, cerium, mangane se, or cobalt and pre
sumably by other transition metal ion complexes. In fact, oscillation with no 
catalyst has been reported (Kuhnert and Linde, 1977; Körös and Orban, 1978; 
Orban and Körös, 1978). 

The chief indispensible feature is an acid solution rich in bromate ions. Much 
of the chemistry seems to rest on peculiarities of bromate, bromide, and more 
exotic bromine-based ions. Its essence is oxidation of an organic substrate by 
bromate in water at low pH. 

Exotic though some of the elementary reactions may be, the reagent is easy to 
prepare and it works reliably. The recipe I prefer is one adapted from Zaikin and 
Zhabotinsky's version of 1970, which was itse1f an improvement on Zhabotinsky's 
1964 recipe, in which the oscillations were enhanced by substituting malonic acid 
for Belousov's original citric acid. The 1970 recipe substituted the colorful ferro in 
for cerium, to serve double duty as catalyst and redox indicator following Busse's 
(1969) introduction of a trace of ferroin to improve color contrast in the cerium 
recipe (see Boxes A and B). 
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Box Recipes 

To prepare Ihi rcagent , Ihe following aqueou olution are to be made from 
anhydrou reagent: 

To 67 ml ofwaler, add 2 ml of concentraled sulfuric acid and 5 gof odium bromate 
(Iotal 70 ml). To 6 ml of Ihi in a gla ve el , add I ml of malonic acid sol ulion (I g per 
10 ml). Add 0.5 ml of odium bromide olution (I gin 10 ml) and wail for [he bromine 
color 10 vani h. Add I ml of25 mM phenanlhroline ferrou ulfatc and a drop ofTrilon 
X-IOO urfaclanl solulion (I gin 1000 ml) to facilitate preading. Mix weil, pour into a 
covered 90 ml Petri di h illuminated from bc10w (Figure 5. top). Bubbles of carbon 
dioxide can be removcd every 15 minute by tirring the liquid: lt turn bille then 
revert to red and the color change begin anew. The reagent will lurn permanently 
blue after about 45 minute at 2- . Amounts are not critical except that no more than 
4 mM hloride an b tolerated: in other word , u e distill d water and keep your salty 
fingers off any urface that will contact Ihe liquid. Avoid using the European Merck 
ferroin, which ontains 75 mM chloride. I have u ually found il nece ary to recrystallize 
the odium bromate, even from AnalYlical Reagenl grade stocks. Leaving OUI half ofthe 
recommended ulfuric acid will uppre pontaneou 0 cillation, at lea I in thin layer 
expo d to th air ( igurc 5, boHom). In thi condilion. Ihe blue, oxidizing pha e 
propagate like a gra firc when started bUI never occur pontaneou Iy. 

The easiest way to walch Ihe chemical wave i to pour a I-mm deplh ofreagent into 
a very clean di h re ting on top of a lighlbox. Disposable plastic li sue culture di he 
are good for thi purpose. They are oplically perfeci and free of dir! and scralches, 
which olherwi e erve both a nuclei for carbon dioxide bubbles and a pacemaker 
nuclei that engender a discouraging profu ion ofwave . Wave may tart pontaneously. 
If nOl, a touch of a hOL needl will help. etting th dish over a second di h filled with 
blue copper ulfale olution (to which a few drop of sulfuric acid are added for clarilY) 
both prevent the rapid de IrllClion of waves by convection current and grcal ly 
enhance vi ual contra I between Ihe vivid blue wave frOIll and it orange-red back
ground. Be ure to cover the reagent dish: The slighlest air currelll di rupt the per
fection ofthc wave fronl . Escaping byproducts will give you a headache a a remainder. 
You mu I be very careful nOllo bump, vibrale, or tilt the di h, or liquid flow will de troy 
Ihe waves. 

Two ml of collodial silicon dioxide c.ln be u cd 10 gcl I ml of rcagenl. Waves prop
agalc in this pcanul-bulter-like gel exactly a in the unbound fluid. This make it 
easy to insert barrier 10 block a wave, or 10 hear wave in a controlled way. or to CUI 
out Ihe cenler of a spiral or ring source, elc. 

De imone el al. (1973) showed anolher way to eliminale possible complicalions 
from hydrodynamic movemcnt , by binding Ihe ferroin catalyst-ind icator in a Ihin fi lm 
of ··collodion" cellulo e e lers. This film is Ihen wetted by floating on a olution of a11 
the other ingredients of Ihe malonic acid reagenl. I find it more convenient to prepare 
the complete reagent and Ihen drop a illipore filter disk onto the liquid' urface. 
Millipore i a papcr-like material made of cellulose esters or of vinyl chloride pervaded 
by ubmicro copic tunnel Ic than a micrometer in diameter. The reagelll quickly 
soak into thi ultra- p nge and i imlllobilized by it own iscosity. Thus the illipore 
can be handled freely wilhoul di rupting wave patterns. However, onee aga in, beware 
of salty fingertips and iron forcep: e nylon or tainle . I have nOI found any other 
kind of micropore filter Ihal work weil. 01 all ersion of the reagent pro pagate in 
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Millipore , but the reeipe given above doe when uitably protected from air to retard 
evaporation and exdude oxygen. I sandwich the filter between pla tie heet or tick it 
to the in ide of the lid of a do ed pla tie di h, or drop it in oil. Carbon dioxide passes 
off without forming bubble and, in such a thin lay r, reaction heat pa e off efficiently 
enough that all the phenomena ob erved can be rea onably thought of as isothermal. 

or demon tration purpo e , it i ometime eonvenient to have a upply of dry 
Millipores which need only be wetted to start the reaction. These make excellent wave 
that continue LO move about for half an hour at room temperature. Prepare I Molar 
ammonium malonate l in water. Mix this with an equal volume of str.ndard 25 mM 
ferrou phenanthroline. Combine thi mixture with an equal volume of 4 M ammonium 
bi ulfate. Float a Millipore on this solution, remove surface liquid by dabbing with 
filter paper and allow it to dry on a pla tic urfaee. Don't let it dry complelely before 
removing it from the pla tic urface, le t it crack when removed. Stored dry in a pla tie 
baggie in the refrigerator, these have hown no ign ofdeterioration in a year. To produce 
wave , wet the filter by floating it on t sodium bromate in water. (0.015 mlfcm 2 is 
the right amounl per unit area of dry Millipore.) Protect the wetted filter from oxygen 
and drying between two heets of plaslie. Blue dot oon appear and grow into waves 
propagating at a few millimeter per minute in ring and piral configuration . 

I In a previou publication (Winfree. 197 a) 1 gave thi recipe with ammonium bromomalonate. 
Itturn out thatthi i not nece ary, wh ich i just a weil since bromomalonate i hard to come 
by. 

A: Mechanism of the Reaction 

The mechanism of this chemical oscillation has been dissected in fine detail 
by many investigators, but most notably by Field, Körös, and Noyes (reviews in 
Eyring, 1978). In gross outline (see Tyson, 1976b, and Figure I), bromate is con
tinually converted to molecular bromine, which continually attacks malonic 
acid and brominates it while inhibiting a second reaction. The bromate is decom
posed by either of two routes, depending on the bromide concentration. At high 
bromide, aseries of oxygen atom transfers is involved, which incidentally consume 
bromide. When bromide falls below a critical concentration, a free radical mecha
nism (the second reaction) comes to dominate. As bromide falls below this switch
ing threshold, HBrO z appears explosively (increasing IOs-fold within much less 
than a second) by areaction which abruptly consumes the last vestiges ofbromide. 
In this transition, the red ferrous ferro in in oxidized to the blue ferric form which, 
in turn, oxidizes the accumulated bromomalonic acid. As it does so, it turns back 
to the red form and bromide and carbon dioxide are released. When enough 
bromide accumulates, control is handed back to the first reaction. 

This reaction is spatially coupled by molecular diffusion. According to Field 
et al.'s analysis (1972, 1974b, 1979), things would probably go quite differently if 
HBr0 2 were somehow prevented from diffusing. Physical movement of other 
reactants is probably less important, though for conceptual convenience equations 
are commonly written as though all diffusion coefficients are exactly equal. 
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Box B: Chemical Oscillation , Practical Joke , and Chao 

The fir t ver ion ofthi reaction wa encountered by Belou ov in 195 while trying 
to a ay citrate quantitativel in an acid mix LUre containing bromate, bromide, and a 
standard reagent for oxidation-reduction titration, ceric ulfate. eedle tO ay, the 
Huctuating compo ition of the mixture occa ioned initial consternalion. I found thi 
u eful a a practical joke during recalibration of a repaired Cary pectrophotometer. A 
cuvelle ofpale yellow malonate reagent (u ing the original cerium in lead oflhe vi ually 
more colorful ferroin) i placed in the ample beam, with an equivalent cuvette lacking 
malonate in the reference beam. Ordinary reaction how a monotone approach to a 
table optical den ity at each wavelength. But with the malonic acid reagent, large 

irregular excur ion of optical den ity in the ultraviolet continue for half an hour while 
the vi ible yellow scarcely change (Figure a). The perplexity of an un u pecting expert 
in electronic can la t longer. (The irregularity i due to carbon dioxide bubble and 
patial different iation of pha e in the un tirred 0 cillation.) 

E. K. Pye, while a re earch LUdent of biochemi try at the Univer ity of anchc ter 
in 1963, encountered imilar vexing "instabilitie" while pectrophotometrically 
following ugar metaboli m in yeast by ADH Huore cence. Mea urement were imply 
irreproducible. Every other po ible ource of error wa proven fault-free before te ting 
the outrageou conjecture that NADH concentration was Huctuating with a regular 
30- econd rhythm (ee hapter 12). 

Many phenomena including vital clinical mea urements, in which irreproducible 
reading have been tolerated as "biological variability", have been found to be regularly 
periodic. For an e pecially nice example, ee Young (1978). This fact provides the 
foundation for the whole fie ld of circadian phy iology ( ee Chapter 19,20, and 21). 

Of more recent vintage, adetermini tic interpretation of irregularly variable mea
surements ha been found in the concept of" trange attractors". In uch ca ses, the 
osten ibly chaotic fluctuation of chemical concentration are traced, not to probabili tic 
cau e , but to lawful variation through known reaction . The malonic acid reagent 
exhibit uch bchavior in an appropriate range of oxidant concentration . (See chmitz 
el.al. , 1977 ; Rössler and Wegmann, 1978; Wegmann and Rössler, 1978· Ty on, 1978; 
Yamakazi et al., 1978, 1979; HeilweIl and p tein. 1979: for other example ofchemical 
chaos see Olsen and Degn, 1977 : and chmitz et al., 1979.) 

-- llME 

Qptical density in the ultraviolet, a 
traced by a spectrophotometer look
looking through 1 cm of cerium
catalyzed malonic acid reagent. Thi 
wa in the days before ferroin. The 
irrcgularities are pre umably due to 
patial gradients of phase and slow 

fluid convection. 
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BROMIDE FERROUS PHENANTHROLIN E 
RED 

BROMO
MALONIC 

ACID 

Figure I. Two sets of reactions can account far the oscillation or thc malollic acid reagent from red 
to blue and back to red. Thc Il1cchanism can be fol1owed in skeletoll l(lrIll hy describing reactions 
among bromide, bromate, ll1alonic acid, and iron phenanthroline, which serves double duty as a catalyst 
and as an indicator dye. The conccntration of bromide deterll1incs which 01' the two sets of reactions 
will dominate in a certain region. In the first set (left) the bromide and hrolllate both brominate (add 
bromine to) the malonic acid to form bromomalonic acid. During this process the phenanthroline 
dye is red, with its iron atom in the ferrous form. If the concentration of the hromide drops below a 
threshold level, then the second set of rcactions (right) starts to dominate. The last vestige ofbromide is 
consumed and the bromate takes over the hromination of the malonic acid. Simultaneously it oxidizes 
the iron atom in the indicator dye, changing it from red ferrous phcnanthroline to blue fenic phenan
throline. Accumulated bromomalonic acid later (dashed arrows) rcduces fCrric phenanthroline back to 
red ferrous phenanthroline, thereby releasing bromide and carboJl dioxide. High concentration of 
bromide shuts off this reaction sequcncc and restarts the red stage. Other substances such as oxygen 

in thc air are also involved but they are not shown. 

B: Wave Phenomena 

This chemical reagent provides very nearly wh at I aspired to create by wiring 
together a lot ofneon glow tubes in Chapter 11, wh at Franck and Mennier (1953) 
created by wiring together electrochemical oscillators, and what Diamant et a!. 
(1970), Sarna et al. (1971), Brown et al. (1975) and Palton and Linkens (1978) 
approximated by wiring together electronic oscillators (Chapter 14). It is a con
tinuum of mutually coupled relaxation oscillators. However, they are not all 
indiscriminately coupled: Nearest neighbors are coupled most strongly. Thus 
the sought-after mutual synchronization phenomena acquire spatial organization. 
It was in thin layers of such a ferroin-malonic acid reagent that Busse (1969) and 
Zaikin and Zhabotinsky (1970) discovered sharp bands of vivid blue cruising 
through the motionless red liquid. The behavior of these waves has stimulated 
much curiosity and investigation. Two extremes of wave behavior warrant 
separate attention, though it should be remembered that they are only extremes of 
a continuum which grade into each other through intermediates (see Box Cl. 

At one extreme, the malonic acid reagent exhibits "pseudowaves". These are 
periodic patterns of color which appear to move through the liquid, not by virtue 
of any physical conduction or propagation but as a natural consequence of a 
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Box C : P eudowaves 

the papers of M. L. moc t tif (1979 and ubmiued),1 have introduced ome 
confu ion into the re earch litera lUre of chemical \ a e along with my not ion of 
p eudowave (Winfree. 1972c and thi book page 124 127, and 215 - 220.) I believe the 
problem tem from amistake 1 pre ented in December 1973 at the araday ociety 
meeting of the Royal ociety (Winfree, 1 974d). 

Thi twofold error con i t fir tl of calling omething a p eudowave that wa not 
definitively hown to be uch (and. a 1 now perceive, mo tly likely wa not one): and 
econdly in fal ely equating p eudowa e wilh wave train of time period equal to 

the pontaneou 0 cillation' period in an i olated volume element. 
trictly peaking, p eudowave eil only in imaginary continua of complelely 

independent identical 0 cillalor . Their patial inlegrity gradually deeay , being pro
vided only by the inilial condilion. ny real medium i a poor approximation to that 
ideal, e pecially in that adjacent volume element are ine itably tightly coupled by 
diffu ion. However, phenomena do ccur in realo cillaling reaclion which Irikingly 
re emble p eudowave . The c occur whcrc thc loeal 0 cillalion i not quite ynchronous 
acro a wide space. uch wa c wcre fir I reponcd by Zhabotin ky (196 . p. 90). Thc 
are di tingui hable b Iheir \ ide spacing (wavelength at least several centimcter ) and 
high velocity (at lea ta millimeter per econd). ueh wave occur only a periodic wa c 
train. They pa each point at the ame period, indi lingui hable from the period of 
o cillation in an i olated lume element. heir apparent velocity Ihu nece sarily 
va ries locally. Thcy are not noticcably di turbed by impermeable barrier . The only 
documentalion of thi effect i in Kopell and H ward (1973a), whose wave is only 
olle-dimen ional and run along a grlldielll of 0 cillation period. In thi conte t Kopell 
and Howard call it a killematic wave. 

The notien of a pseudowave thu em at pre cnt primarily a Iheoretical con-
truction introduced primarily a a contra t to "trigger" \ ave. trigger wave move 

with patially uniform velocity. It can occur a a ingle unrepeated wave front. 
ow, what 1 howcd at the t-"arada) 0 iety meeting wa an 0 cillating reagenl in 

whieh pa age of a trigger wave train left the rcagent behind it without an ource of 
excitation a e it own ponlan ou 0 illalion. halO cillation was phased in each vol
umc element by the pri r pa age fthe la ttrigger wave. Every volume elcmenlturned 
blue at the fixed interval of local 0 cillation aftcr pa agc of Ihal trigger \ ave. hu 
even if every volume elemenl \ ere eompletely i olated from it neighbor, the \ ould 
till turn blue in ucce ion a ob er ed, and a Irain of p eudowaves would follow the 

receding trigger wave fore er at exactly its velocily. That i what I aw and I called it a 
pseudowave. BUI it couldn"t have been. 

It could not ha e been a p eudowave beeau e thc volume element were not mutually 
independent. either eould the coneentralion gradicnt ha e been hallow enough that 
diffusion had negligible impact on the cour e of local reaction . On the contrary, all 
the diffu ion gradients were a teep as in the initial trigger wa e becau e whenever a 
volume turn blue it initiate a trigger wa e like the fir tone. In a lightly hallower 
phase gradient, volume element would turn blue in ucce ion Ja ler than the trigger 
wave propagatc and thi pontane u bluing would outraee true propagation. The 
continually triggered wa e would be continuall) anticipated by the chedulaled local 
o cillation in the olume element ahead. But here the teepe I u tainable pha e 
gradient wa e tabli hed by a moving trigger wave, 0 thaI the p eudowave had no 
greater peed than a trigger wa e. 
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I think what I ob erved wa in fact a eries of trigger wave , each nearly a replica of 
the first one used to cstabli h the pha e gradient. Each wa initiated at the extreme point 
ofthe pha e gradient, when that volume element turned blue in it pontaneou 0 cilla
tion. But away from that point diffusion could not be ignored. The fact that the wave 
pa ed each volume element at the period of the homogeneou 0 cillation does not 
mean that the wave is only a pha e gradient along a continuum of independent local 
o cillator (a p eudowave) but only that it wa triggered by the local 0 cillation at the 
origin with that period. Had all volume elements been magically uncoupled, a true 
p eudowave of much the ame appearance and timing would have continued. But the 
real wave wa not a pseudowave because volume element lI'ere di tinctly coupled, and 
diffu ion wa 1101 negligible, and the pha e gradient wa /101 infinitely hallow. 

I suspect that Beck and Varadi's (1971, in Hungarian) introduction of the ame 
notion fell prey to a imilar error. They rightly noted that Bus e' (1969) "di ipative 
struclure " probably were Iraveling wave . But they were probably not p eudowaves 
and probably did critically involve diffusion, being so e10se together. I think they were 
trigger wave . 

Recent calculation by Reu er and ield (1979) how a gradual tran ition from 
trigger-wave-like velocity to p eudowave-like velocilY over the critical range of initial 
pha e gradient teepne . They e1early how that the waves I contrived at the ste p end 
of that range were like p eudowave only in their pcriodicity and that "true" p eudo
waves are revealed only in the limit of infinitely shallow gradients. 

parochial oscillation whose phase varies in space. In such a case, the successive 
color changes of adjacent volume elements give an appearance of motion. 

At the other extreme let the spatial phase gradient be very steep. The waves will 
then creep so slowly and be so dose together that molecular diffusion between 
adjacent volume elements has a substantial impact on the local reaction within 
each volume element. This will occur when the emigration of molecules from a 
volume element proceeds faster than local synthesis can replace them and when 
their immigration is correspondingly faster than local degradation can consume 
them. When the waves move this slowly and come this dose together, the blue oxi
dizing excitation actually pro pagates like a grassfire. Volume element after volume 
element is triggered to a pulse of oxidative activity by the activity of its neighbor, 
and in turn conducts the impulse to its neighbor on the other side. In this extreme, 
we have what Zeeman (1972) called a "trigger wave". Such waves are characterized 
by a reasonably uniform velocity, though it depends somewhat on wave spacing. 
Pseudowaves, in contrast, are characterized by a uniform periodicity in time 
(Figure 2). The pertinent physical quantity which determines which limit the 
system falls into is a ratio between a measure of diffusion flux and a measure ofthe 
reaction's sensitivity to concentrations. To be specific, the measure of diffusion 
is the second derivative of concentration in space. This determines the rate of 
accumulation or loss of substances from a given volume element. The measure of 
the reaction's sensitivity is the differential rate of change of reaction rate as local 
concentration is changed. These conditions are specified quantitatively in mathe
matical papers by Kopell and Howard (1973b), Othmer (1975), and Conway et al. 
(1978). 
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Figure 2. (above) Pure pseudowaves. Only in a linear 
gradient of phase do such waves all have the same 
apparent speed. (period = horizontal spacing and 
speed = slope on this diagram.) (below) Real propa
gating waves. Only when far apart do such waves all 

have the same period. 
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Trigger waves persist when the chemical composition ofthe reagent is so altered 
that its oscillation per iod becomes very long or ceases altogether, that is, when the 
clock-like behavior is turned into hourglass-like behavior (Chapter 3). This can 
be done either gradually, following the wave behavior and bulk oscillation period 
as the reagent ages by consuming its substrate (Winfree, 1974d; see Box C), or 
discretely, by preparing areagent that doesn't oscillate even in the beginning 
(Winfree, 1972c). 

C: Excitation in Non-oscillating Medium 

I contrived a non-oscillating version of the malonic acid reagent in 1970 in 
order to demonstrate abolition of waves when the isolated volume element's 
limit cycle was abolished. That seemed a reasonable expectation at the time, since 
oscillation and periodic wave propagation were the main features distinguishing 
this reaction. At the time, I was not thinking "excitable media" such as nerve 
membrane or layers of social amoebae, which are capable of recurrent wave 
propagation wh ether or not they support a local oscillation. But by early 1971 my 
reagent bottles, facetiously labeled "1 normal solution ofthe wave equation", had 
to be relabeled "aqueous solution of the Hodgkin-Huxley equation" because the 
non-oscillating reagent proved to conduct waves almost indistinguishable from 
those seen earlier in oscillating reagents. Rössler and Hoffmann (1972) were, I 
think, first to note that the qualitative paralleis to electrophysiological waves are 
quite striking. This analogy has been pursued heuristically in Winfree (1974e) 
and in mathematical detail by Troy (1978). Troy and Field (1977) have assembled 
an analysis of excitability without spontaneous oscillation, based on the original 
oscillator mechanism. [Since then Goldbeter et al. (1978) and Goldbeter and 
Erneux (1978) have achieved the same for the oscillatory biochemistry of 
Dictyostelium and of yeast glycolysis, respectively.] Tyson (1977a) has reduced the 
chemical equations to the mathematically typical phase portrait of an excitable 
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medium. In this approximation, the malonic acid reaction's kinetics resemble the 
still simpler caricature I used (Winfree, 1974b,f) to isolate the essential geometric 
principles of stably rotating patterns of reaction and diffusion in this reagent. 

It is my impression that the main phenomena ofwave-conduction and pattern
formation in this chemical re agent derive not from its oscillation, but from its 
completely independent property of excitability. 

The non-oscillating reagent presents us with a second surprise. Its quiescence 
turns out to be perfectly stable in the unstirred liquid, as weil. No diffusive in
stabilities occur. As in other excitable media, the spatially uniform steady-state 
is stable. To initiate oxidative activity (red-to-blue color change), aperturbation 
is required, and it must exceed a threshold magnitude. This fact about the malonic 
acid reagent is persistently overlooked by theorists of"dissipative structures" who 
see waves in this re agent as examples of structures arising from diffusive ins ta
bilities [Ross, 1976; Defay et al., 1977, p. 507, who also, following Beck and 
Varadi (1972), mistook the waves for a surface phenomenon; Cottrell, 1978]. 

D: Wave Pattern in Two
and Three-Dimensional Context 

A flask of liquid malonic acid reagent, at first glance, looks like effervescent 
deep purpie Kool-Aid. The bubbles are carbon dioxide. Closer inspection reveals 
that the color is mottled red and blue in bands a millimeter or less apart which 
constantly move. Turmoil is guaranteed by the occasional ascent of a bubble from 
the vessel wall to the upper surface and by the convective turnover of the reacting 
liquid as it warms itselfby several degrees Celsius. This liquid proves to be as full 
of surprises as any ofthe organisms I expected it to resemble. Latent in this reagent, 
waiting for the right stimulus to conjure it into vivid red and blue animation, is 
a three-dimensional self-regenerating pattern of activity quite unlike anything 
seen before in a chemical solution. 

In sufficiently thin layers of reagent, frame by frame analysis of movies reveals 
this pattern in two-dimensional cross-section. It is a rotating spiral wave. 

(a) Each piece ofthe spiral wave is propagating at fixed velocity perpendicular 
to the local wa ve front, as though following H uygen's principle (1690). 

(b) The whole wave is also pivoting rigidly as though engraved on a rotating 
disko 

As noted on pages 244-247, one waveform is compatible with both descrip
tions. This is the involute of a circle, i.e., the curve traced by the end of a taut string 
winding around a circle of circumference equal to the standard wave spacing. One 
property of such a curve is that perpendiculars to it are all tangent to that central 
circle. Figure 3 shows this construction on a typical snapshot of a spiral wave. 

As Eugene Wigner once no ted, "Every empirical law has the disconcerting 
quality that we do not know its limitations." Some of the limitations of approxi-
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Figure ~ . An involut e spiral is plotted 
a to p a ph otograph of thc inner two 
turns 01" a spiral wave in malonic acid 
reagcnt. Its evolute is a centra l disk of 
unit c ircumference. (Thc uni! is 1.85 

millimeters. ) 

mation (a) plus (b) are exposed in the following Cour points: 
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1. Experimentally, wave velocity is not quite uniform: The malonic acid 
reagent conducts an excitation somewhat more slowly if it has done so in the 
recent past. In consequence, the wave velocity increases somewhat with wave 
spacing (and a variety of situations do admit local variations in wave spacing, 
e.g., the sudden extinction of a nearby source). 

2. The experimentally observed wave does not truly pivot. Its inside end more 
nearly "meanders" through a central disk of circumference about equal to the 
standard opening. 

3. Mathematically, the involute solution terminates on the boundary of the 
centrctl disko Inside that disk, the solution becomes imaginary, signalling that our 
two descriptive approximations a and bare incompatible too dose to the pivot. 

4. According to the in volute approximation (a and b together), all the contour 
lines of uniform reactant concentration on a snapshot would be parallel involutes. 
But this is impossible, since on a trip around any ring-shaped path the concentra
tion of each substance must go up and back down, so we run across each con
centration an even number of times. The contour lines thus come in pairs that 
must join together on the inside. They cannot all just dive into the pivot because 
an infinitely steep concentration gradient would then appear at the pivot, but this 
is impossible in the face of molecular diffusion. Instead, each concentration con
tour line connects onto its mate as in Figures 13 and 19 ofChapter 9, violating the 
exact involute description. Guckenheimer (1976), Hastings (pers. comm.), and 
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Greenberg (pers. comm.) all independently proved mathematically that con
centration contours cannot all be parallel spirals without violating the basic 
equation of reaction and diffusion. But far from the core, they can approximate 
an involute spiral quite weil (see Tyson, 1976b, pp. 98-103) and "far" can be quite 
near if the kinetics are nearly discontinuous. 

Details aside, we do see a spiral wave in thin layers. Note that the thinness 
required to justify a two-dimensional description is about the diameter of the 
troublesome central disk of the involute approximation. This disk is the source 
ofthe outer wave and is the only region in wh ich something more interesting than 
straightforward wave conduction is taking place. Experimentally, the rotor's 
core cannot be confined in a box sm aller than about the diameter of the model's 
central disko It is unstable in smaller confines : The reacting liquid lapses into 
uniformly red stationarity. This critical dimension gives us a practical definition 
of the topological idealizations "zero-dimensional", "one-dimensional", "two
dimensional", and "three-dimensional". 

How does the two-dimensional rotor fit into the more richly structured three
dimensional picture? The first clue is that the period of the three-dimensional 
structures is nearly the same as the period of the two-dimensional rotors. (There 
also exist structures of quite distinctive appearance with other periods, called 
"pacemakers" or "leading centers". See below.) 

The second clue is that the two-dimensionallayer is not really two-dimensional. 
It has a finite thickness and within that thickness, the spiral wave re sem bl es a 
very narrow scroll, like a watch spring. And that scroll has an axis, a short vertical 
line seen in vertical projection as the pivot point. What if it were longer? What if 
it were tilted over, not perpendicular to both interfaces? Figure 22 of Chapter 9 
sketches such situations. It turns out that the structures seen in somewhat thicker 
layers can be interpreted in some detail in terms of such curvy tilted scrolls. There 
is a depth threshold at which simple spiral patterns give way to the more complex 
patterns which I interpret as three-dimensional structures seen in projection. 
This depth turns out to be just wh at is required to admit a horizontal scroll axis. 
Beyond this depth, the scroll axis can meander to arbitrary distances between 
the liquid's upper and lower interfaces. 

The scroll axis has some intriguing properties. Particularly notable among them 
is its indecisiveness. Every other volume element in the reacting fluid cycles re
gularly through red and blue stages with a universal period. Only at the scroll 
axis is such regularity impossible. It is impossible precisely because ofthe regularity 
elsewhere. On any cross-section through a scroll axis, the contour lines of fixed 
phase in the red-blue cycle are all spirals converging to the scroll axis. Near the 
scroll axis, all phase values appear in order around any tiny encircling ring. Around 
this ring, phase has winding number W = 1. At the scroll axis, all phases converge, 
making the scroll axis a point of ambiguous phase. In three dimensions, it is a one
dimensionallocus, afilament of ambiguous phase. Here the chemistry necessarily 
becomes time-independent or varies in a way that has no component at the other
wise universal period (see Chapter 2, Example 15 and Chapter 9, Section B). 

Another peculiarity is that the scroll axis is physically so long and narrow, 
unless confined in a tiny reaction vessel. Laterally, its dimensions are in the order 
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hgurc 4. Ascroll ring is cut open along a plane 
through its axis of rotational symmetry. The inner 
wavc is topologieally a disk boundcd by the sero 11 
ring. As this rotatcs about the seroll ring, it buds ofl' 
tomato-shaped waves that bccome more nearly 

spherieal as they expand. 
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of tenths of a millimeter while in length it may eommonly extend many eenti
meters be fore running into a wall or closing in a ring. 

Furthermore exaet closure in rings in typieal. This feature initially seemed 
quite surprising in view of the narrow eross-seetion of this filament of ambiguity. 
In retrospeet, and in view ofthe interpretation ofthe rotor's eore given in Chapter 9, 
it seems less surprising. Aeeording to that view, a rotor appears when eoneentra
tions of eerie ions and bromide ions cross through a eritieal range as trans verse 
eoneentration gradients in spaee. The seroll axis is seen as the interseetion of two 
surfaees of eritieal eoneentration in three-dimensional spaee: one of eerie ion 
eoneentration and one of bromide ion eoneentration. The interseetion of two 
eurving surfaees in three dimensions is typieally a ring (Figure 24 in Chapter 9). 
Thus the typieal configuration in whieh an exeitable reaetion organizes itself in 
time and spaee is ascroll ring (which appears within the confines of a sm all con
tainer as ascroll axis bounded by walls). At any point in the volume dominated 
by any such wave (exeept along a ring-shaped phase singularity from whieh the 
wave emerges), exeitation reeurs at the same fixed interval of time. The volume 
thus dominated is bounded by surfaees along wh ich outgoing waves collide with 
waves emitted by another source. Such surfaees have fixed shape and position if 
the other souree is also ascroll ring and therefore emits waves at the same period. 
Beeause sero 11 rings emit waves all along their length, there may be eomplieated 
eollision surfaees even within the domain of a single ring. Outside the smallest 
sphere eompletely enclosing the simplest kind of sero 11 ring, the waves are topo
logieally equivalent to disjoint eoneentrie spheres; inside that sphere the seroll 
ring wave is one single eontinuous surfaee (Figure 4). 

Finally, the sero 11 axis is stable, onee ereated. In this respeet, it resembles the 
vortex line of classieal hydrodynamies, but the seroll axis differs from a vortex 
line in that there is only one allowable vortieity: All seroll axes rotate with the 
same period. Ascroll ring also differs from the quantized vortex ring of liquid 
helium in that the ring ean have any length, above a minimum required for stability. 

There remains at present a eonspieuous shortage of physieal insight into the 
meehanism of these rotating diffusive struetures that generate spiral waves in two 
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dimensions and generate scroll rings in three dimensions. Any chemically realistic 
picture of this tiny chemical vortex must be built out of the continuity properties 
of reaction kinetics in time and the continuity properties of concentration patterns 
in space. These matters are briefly dealt with in terms of models in Chapter 9. 

Even more mysterious is the appearance of spontaneous pacemakers. These 
may represent local violations of continuity, e.g., dust motes. 

E: Pacemakers 

As no ted in Figure 4, a rotationally symmetrie scroll ring is a periodic source 
of concentric spherical waves of very short period. 

There is another mechanism by which longer-period concentric spherical waves 
are instigated. It gets short shrift in this volume because it does not involve a 
phase singularity, but since it occurs in the malonic acid reagent, in the cellular 
slime mold, and in heart muscle, it deserves at least passing mention. This is the 
pacemaker point. 

A pacemaker can be made in oscillating reagent by simply phase-advancing a 
spot. Busse and Hess (1973) did this by briefly irradiating a spot in a dish of malonic 
acid reagent with ultraviolet light. That spot turns blue ahead of surrounding 
volume elements in the next cycle and thereafter, so that a ring of blue is seen 
expanding out of that spot. 

By another trick involving a scroll ring (Box C), a radial phase gradient can be 
established. Its central extremity becomes the origin of a "buIl's-eye" of circular 
waves radiating away at intervals equal to the period of oscillation in spatially 
uniform reagent. 

Mathematical analyses by Ortoleva and Ross (1973) and Greenberg (1978) 
still leave in doubt the stability of such phase gradients. 

If a spontaneously oscillating medium has any slight parametric inhomogeneity 
(e.g., nonuniform temperature), then there is a point of locally minimum period. 
The phase ofthe oscillation advances faster here than elsewhere, so a spatial phase 
gradient develops. When the phase gradient becomes steep enough, waves from the 
center reach outer points before the liquid out there spontaneously completes 
its own cycle. (If the local gradient of phase is not initially that steep, it will even
tually become so, since the short-period center is constantly advancing in phase 
relative to its surroundings.) The waves emanating from such a source are of course 
concentric spheres. All points within that source's domain of influence cycle at 
that same period without exceptions for any locus of ambiguous phase. As with 
scroll rings, the domain of influence is bounded by impermeable barriers or by 
surfaces along which waves collide with those from other sources. In the latter case, 
the collision surfaces are constantly changing shape unless both sources should 
happen to have identical periods, a situation guaranteed ifand only ifboth sources 
are pieces of scroll rings. If the periods differ, then the collision surface constantly 
moves toward the longer period source. This is because each collision wipes out a 
pair of waves. Of the two waves next in line, the one [rom the short-period side 
will reach that prior collision point after a short period and the one from the long-
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Figure 5. (top) Circular waves emerge periodically from randomly scattered pacemaker nuclei in a 
1.5 millimeter thickness ofreagent. (A few pacemakers lie outside the field of view.) These blue waves 
of malonic acid oxidation cancel each other where they collide. Each successive collision occurs closer 
to the lower frequency pacemaker until it is entrained. These four successive snapshots by transmitted 
light were taken 60 s apart. The field of view is 66 millimeters in diameter. Wave velocity is about 
8 millimeter/minute. Pacemaker frequencies range from about one to three rings per minute. The tiny 
circles are growing CO2 bubbles. (bottom) Everything is as above ex ce pt that the reagent is less acidic 
(to minimize pacemaker activity and to slow wave propagation to 4 millimeter/minute). This reagent, 
when conducting ring-shaped waves, was deformed by gentle tilting. (See Chapter 9, Figure 9.) Seg
ments ofblue wave revert 10 red and the surviving pieces begin to pivot around their free ends, winding 
into paired involute spirals. Each spiral rotates twice each minute. Notice the widening space between 
the outermost waves: Waves move a little faster into virgin territory than into re agent still recovering 

from the passage of a prior wave. 

period side would reach it after a long period. Thus, the next collision occurs 
after an intermediate period doser to the long-period source. Each pacemaker 
has its temporary domain of control, but shorter period domains expand at the 
expense of longer period domains (see Figure 5, top). 

In non-oscillating media, heterogeneous nudei seem to induce local oscillation 
with much the same consequences. In the malonic acid re agent, these nudei seem 
to be dust partides andjor surface defects in the container (Rastogi et al., 1977). In 
heart musde they are called ectopic foci, which indude patches of tissue irritated 
by abrasions, or by chemieals, or by local defects of blood circulation. In cellular 
slime molds, they seem to be single cells that have shorter period than most others. 

Numerous models have also been proposed whereby non-oscillating excitable 
media may generate concentric ring waves of periods greater than the rotation 
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period of scroll rings without the help of heterogeneous nuclei (see Shcherbunov 
et al., 1973; Zhabotinsky and Zaikin, 1973; Yakhno, 1975; and Zaikin and 
Kawczynski, 1977). The mechanisms invoked there suggest another application 
of the "wave broom" principle (Chapter 4, Box G), i.e., substances can be trans
ported toward a source of waves. The transported substance would only have to 
encourage spontaneous cycling, or shorten its period, in order to make the origin 
of a first wave into a permanent pacemaker. 

In no case has a pacemaker been found with aperiod less than the rotor's. The 
reason for this peculiarity seems clear only in terms of relatively naive models that 
involve the notion of an absolute refractory period. In such a case, the minimum 
supportable period is the refractory period, and this is realized by a rotor, so no 
pacemaker can do better. Unfortunately, such models imply a discontinuity of 
concentration within the rotor's core. This may be acceptable in cellular media 
such as heart muscle and social amoebae, but it is definitely not acceptable in the 
malonic add reagent. When we turn to strict1y continuous models of excitability, 
however, there seems a possibility for the rotor's period to exceed the minimum 
stable period of plane waves. Whether it can also exceed the minimum stable period 
of waves emitted from point source remains to be determined. 



14. Electrical Rhythmicity and Excitability 
in Cell Membranes 

Every cell has a plasma membrane. The plasma membrane is a thin film, less 
than a hundred angstroms thick, which maintains a difference between inside and 
outside by gatekeeping the passage of molecules and ions. Every cellular mem
brane is free1y permeable to some substances (e.g., water) and essentially imper
meable to others (e.g., pro teins and certain ions). Nerve cells and some secretory 
cells are distinguished from most other kinds of cell chiefly in that the selective 
permeability of their plasma membranes depends sharply on an electric fie1d. All 
cells experience an electric potential difference between inside and outside, ulti
mately because amino acids bear an ionic charge and, once polymerized inside 
the cell, they can't get out. 1 This potential difference is typically about one-tenth 
of a volt, so the thin plasma membrane is stressed by an electric field in the order 
of 10 million volts/rn. In nerve cells, molecular anatomy within the plasma mem
brane is believed to readjust when this field is reduced to less than a certain thresh
old. With its selective permeability altered, the membrane passes certain ions that 
it had formerly restrained, resulting in a further decrease in the field maintained, 
and a self-catalyzing breakdown ofmembrane potential quickly ensues. But things 
are so arranged that a recovery promptly follows in which electrical imbalance 
is restored. 

The kinetics ofthis "action potential", as it is called, has been a favorite object 
of study among biophysicists. The first thorough quantitative description of the 
major ionic events was given by Hodgkin and Huxley (1952) on the basis of their 
electrical experiments using a squid's giant axon, the high-speed conductor for the 
squid's escape reflex. 

Hodgkin and Huxley clarified the mechanisms of nerve excitability by estab
lishing five facts in the squid axon: 

1. Excitability is a membrane phenomenon. If the cytoplasm is involved, it 
is involved only as a dilute solution of the several essential ions (and, in the long 
term, as the biochemical support of the membrane). 

I This potential difference would persist without expenditure of energy were the membrane perfectly 
impermeable to select ions. But it leaks a littie, so the observed voltage must also be attributed to ion 

"pumps" in the membrane. 
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2. Fast changes of membrane potential V derive from changes in selective 
passive permeability to ions, notably sodium, potassium, and chloride (and cal
cium, in many of the pacemaker membranes of concern in this chapter; but that 
is a more recent appreciation). 

3. The rates ofthese permeability changes are governed instantaneously by V. 

4. A standard linear electrical equation describes the rate of change of V in 
terms of the membrane's capacitance, its permeability to ions, and ion currents 
driven by the potential difference across the membrane. 

5. Active pumps in the membrane compensate for imperfections ofits selective 
permeability. 

For at least a decade this much had been explicitly formulated, though not yet 
universally accepted (e.g., see Offner et al., 1940). The achievement of 1952 lay in 
contriving ingenious experimental methods to actually measure the expected 
functional dependencies and in showing numerically that they suffice to rationalize 
the familiar neuroelectric phenomena. Hodgkin and Huxlcy summarized the 
kinetics of voltage and permeabilities in a four-dimensional local differential 
equation augmented by diffusion terms representing the spread of current in space. 
The best description ofthe equation's behavior, in both topological and biophysical 
terms, is due to FitzHugh (1960, 1961). A variety of simplifications in current use 
today retain the essentials of interest in present context. So do other modifications 
which introduce alte red conductivity functions or a fifth variable quantity ex
pan ding application of Hodgkin and H uxleys' paradigm to encompass myelinated 
nerve, Purkinje fibers of the heart, pacemaker sensory neurons, etc. The books of 
eole (1968); of Jack et al. (1975, especially Chapter 8); and of K uffler and Nicholls 
(1976) give excellent and readable accounts of experimental and theoretical 
aspects of neuroelectric dynamies. Some fascinating historical background is 
summarized by Harmon and Lewis (1966) and in the book of MacGregor and 
Lewis (1977). 

My purpose in this chapter is not to dwell on membrane biophysics or differ
ential equations but to describe four c1asses of neuroe1ectric behavior that relate 
to the themes of this book through their phase singularities and their rhythmic 
interactions : 

1. Rephasing schedules of pacemaker neurons 

2. Mutual synchronization in the zero-dimensional ca se 

3. Waves in one dimension 

4. Rotating waves in two dimensions 

This material is intended to provide the physiological context that readers 
untrained in biology may require in order to evaluate the significance or triviality 
of phase singularities described in the main text. 
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A: Rephasing Schedules of Pacemaker Neurons 

Experimental Results 

Some kinds of nerve cells fi.re with impressive regularity at a rate determined 
by environmental conditions. The most sensational examples I know of are the 
stretch receptor cell in crayfish muscle (Firth, 1966), the pacemaker in the brain 
of the f1y Calliphora (Barneveld, 1971; Leutscher-Hazelhoff and Kuiper, 1966), 
the similar neuron in the brain of the housefly Musca (Hengstenberg, 1971), and 
the pacemaker in crayfish optic nerve (Nudelman and Glantz, 1977). Under con
stant conditions, firing intervals vary by only a couple percent of the mean, in 
these cases. Many other kinds of pacemakers also fire with sufficient regularity 
to suggest description in terms ofphase in a cycle. Perkel et al. (1964) and Schulman 
(1969) measured the rephasing schedules (alias re setting maps) of a stretch receptor 
cell in the crayfish, which serves as astrain gauge on the muscles: Its firing frequency 
is modulated by mechanical tension. At a fixed tension its electrical cycle is regular 
but it is transiently upset by arrival of impulses from a synapsing inhibitory neuron. 
Upon recovery of regular firing (essentially within one cycle time), the rhythm 
continues as though it has been displaced along the time axis. (For details about 
systematizing such observations, see below. If you read the first half of this section 
easily, then skip the second half.) A replotting of their data reveals type 0 re setting 
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in response to one kind of stimulus and type 1 resetting in response to others 
(induding, of course, "placebo" nonstimuli). Hartline (1976) and Hartline et al. 
(1979) automated the procedures of stimulation, recording, and display so as to 
obtain a new phase vs. old phase plot directly on an oscilloscope screen (Figure 1) 
in the same format as that used by Schulman (1969) and that used throughout this 
volume. Similar experiments using endogenous bursting neurons in the abdominal 
ganglion of Aplysia also resulted in smooth type 0 resetting (Pinsker, 1977). Jalife 
and Moe (1976, Figure 9) measured type 0 resetting in dog heart Purkinje fibers. 
(See also Figure 17 in Chapter 4.) Sano et al. (1978, Figure 5 filled cirdes) found 
type 0 re setting in rabbit sinus node. Populations of rhythmic neurons also 
exhibit smooth type 0 resetting, as seen in the neuromuscular network of Hydra 
(Taddei-Ferretti and Cordella, 1976), the chirp reflex in a cricket (Walker, 1969; 
see Figure 16 in Chapter 4), and the finger-tapping rhythm investigated by 
Yamanishi et al. (1979). 

At this writing, the collection of resetting data from neuromuscular oscillators 
is in about the same state as was the corresponding collection from circadian 
rhythms in 1967 when the significance of type 0 resetting was first seized upon. I 
expect a similar development in neuroelectric measurements: measurement of 
the complete helicoid2 and lattice of helicoids, investigation of the singular per
turbation,3 a test oftwo-pulse interactions (as required for the entrainment model 
of Perkel et al., 1964; Pinsker, 1977 and Scott (1979) have weil begun this), and 
measurement of oscillator trajectories during recovery from near-singular per
turbation by me ans of two-pulse experiments as in Chapter 7. 

Discontinuities in the re setting curve are common with inhibitory (hyper
polarizing) stimuli [e.g., Perkel et al., 1964, Figure 2A; Schulman, 1969, Figure 3; 
Pinsker, 1977, Figure 5 (I s); Ayers and Selverston, 1977, Figure 1BJ. Discontinuity 
is required by a widely used dass of models that essentially amount to a topolog
ically altered, but more intuitively usable, approximation to the Hodgkin-Huxley 
model (perkel et al., 1964; Rescigno et al., 1970; Knight, 1972; Mayeri, 1973; 
Peskin, 1975; Hartline, 1976). The HodgkinHuxley model, adjusted to fire rhyth
mically, does predict type 0 resetting though it would not necessarily be smooth 
enough to be empirically distinguishable from discontinuity (Best, 1979). 
Some of the modifications recently contrived in connection with pacemaker cells 
might possibly have smoother resetting behavior, but this has not yet been looked 
into (see Chapter 6, Box C). Thus it comes as a surprise that continuous, even 
smooth, resetting maps are obtained from electrically rhythmic membranes that 
suffer catastrophic reorganization at the moment of the spike action potential, 
and that in cases where there is a discontinuity in new phase as a function of old 

2 Added in proof: data from Jalife (in preparation) scem to provide this f"or the first time. using sinus 
node of thc kitten. 

3 Added in proof: this has al ready appeared in Guttman et al. (1979) who incidentally point out that 
Teorell (1971 Appendix 3) observed a singular annihilating pulse in his 2-variable model of a sensory 
pacemaker (his Figures 10e, 12h, 16c). Both these cases, as weil as Best"s computations, expedite location 
of the phase singularity by adjusting parameters tn make the neuroclectric steady-statc locally an 
attractor. Jahfe and Antzelcvitch (1979) using kitten sinus node also dcmonstrated annihilation by a 

critically timcd singular stimulus. 
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Figure 2. Idealiza tion of a typical slow 
wave or pacemaker potential as seen on 
an oscilloscope plotting membrane poten
tia l vertically and time to the right. Where 
the wave transgresses a threshold it fires 
action potentials at a rate that increases 

with the excess potential. 

MEMBRANE 
VOLTAGE 

319 

TIME 

phase, it doesn't necessarily coincide with the nerve's firing (e.g., Perkel et al., 
1964, Figure 2b; Pinsker, 1977, Figure 15). See pages 170-173. 

A possibly related peculiarity is the discovery that smooth oscillations of mem
brane potential continue even when tetrodotoxin (a puffer fish poison) is used to 
inhibit the spike (e.g., Strumwasser, 1968, 1971, Mathieu and Roberge, 1971; 
Junge and Stevens, 1973, McDonald and Sachs, 1975; Pinsker, 1977, p. 539). These 
oscillations are commonly called "pacemaker osciIlations" or "slow waves". They 
are commonly seen in a wide variety of neuroelectric preparations even without 
tetrodotoxin. They start as subthreshold rhythmicity of membrane potential, 
building up until threshold is exceeded during each cycle (Figure 2). During the 
interval when membrane potential exceeds threshold the otherwise smooth po
tential oscillation is decorated with spikes, unless tetrodotoxin is used to suppress 
them (e.g., Arvanitaki and Chalazonitis, 1968; Bortoff, 1969; Junge and Stephens, 
1973; El-Sharkaway and Daniel, 1975; Kuriyama and Suzuki, 1976). These obser
vations suggest that oscillation along a smooth attracting cycle triggers spikes 
between successive threshold crossings, but that the oscillation is not itself dras
tically affected by the triggered spike. A strong suggestion of such separation of 
cause and effect had been made by Brink et al. (1946). They observed an irregular 
train of spikes issuing from frog sciatic nerve but the intervals between successive 
spikes were always nearly integer multiples of a least quantum, as though a regular 
subthreshold oscillator continued undisturbed whether it managed to trigger a 
spike or not. 4 The smoothness of the resetting curves or the phasing of their dis
continuities might derive from the properties of this oscillator, functioning inde
pendently of the action potential. 

What might be the physical nature of this underlying oscillator? How strict 
is the separation of cause (the putative smooth rhythm) and effect (triggering of 
membrane spikes)? An early viewpoint on these phenomena emphasized the fact 
that the Hodgkin-H uxley model and certain of its simplifications are capable of 
subthreshold oscillations. Their period is essentially determined by the membrane's 

4 Similar measurements have emerged in the literature ofthe female cycle and ofthe cell cycle. Cycles 
without ovulation seem to occur in the menstrual rhythm, without upsetting its quasi-regularity 
(Chapter 23). According to Kauffman and Wille (1975), the mitotic cycle in Physarum can be suppressed 
without suppressing a timer that brings about the next mitosis one or two or three cycles later, roughly 
on schedule. If these observations are to be taken at face value, they suggest that the action potential , 
ovulation and mitosis are c(lused by a covert timer (see, for example, Both et al., 1976) but do not in 
turn affect it unless they just happen to affect it in such a manner that the time to the next event is the 

same either way. 
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Resistance Capacitance time constant (1-10 ms) and roughly matches the period 
ofthe highest frequency pacemaker activity. Possibly, random fiuctuations of some 
sort occasionally direct the membrane to recycle along the subthreshold route. 
Wilson and Wachtel (1974), Gola (1976), Connor (1978), and Gulrajani and 
Roberge (1978), working with pacemaker neurons in molluscs and crustacea, 
trace their rhythmicity to a negative-resistance segment of the membrane's 
current-voltage characteristic. Connor and Stevens (1971a,b,c), Plant and Kim 
(1975, 1976), and Plant (1976, 1977), and Carpenter (1979), among many others, 
also trace rhythmic modulation of firing rate to the Hodgkin-Huxley equation 
with suitable modifications. This approach quite satisfactorily accounts for elec
trical rephasing of pacemaker rhythms and control of their frequency (or even 
suppression, leaving only the rhythmic "slow wave") by a steady biasing current. 

Nonetheless it is not yet clear that the whole cause of rhythmically varying 
conductivities (etc.) is to be sought within the membrane itself in all cases. Both 
et al. (1976) and Chaplain (1976) postulate a separate metabolie oscillator whose 
activity affects membrane permeabilities and potential. They emphasize the role 
of glycolysis and in particular of phosphofrutokinase (PFK), suggesting some 
relationship to the glycolytic oscillation in yeast, as explored in Chapter 12. Rapp 
and Berridge (1977) also suppose aseparate metabolic oscillator but put more 
weight on observations implicating calcium ions and cAMP. They suggest a re
lationship to the cAMP oscillations in the cellular slime mold, explored in Chapter 
15. (Note that Goldbeter's kinetic model, Chapter 12, allegedly serves for both 
PFK oscillations and cAMP oscillations.) Rapp and Berridge (1977) and Pollack 
(1977) even go so far as to argue that the ultimate source of rhythmicity in the 
heartbeat may be a Ca2 + -cAMP oscillator, rather than an instability of the mem
brane potential. 

Formats for Rephasing Measurements 

Perhaps the single most conspicuous fact about most biological rhythms is our 
present ignorance of their chemical mechanisms (for exceptions, see Chapter 12). 
In many cases, we do not even know for sure whether or not our chosen observables 
themselves participate in the oscillatory mechanism. In some cases, it seems likely 
that they are causally "downstream" from the undiscovered source of periodicity, 
being only indirect1y affected by it, and not affecting it in return. Despite extraor
dinary advances in biophysical measurement since 1950, the mechanisms even of 
electrophysiological rhythms still challenge the most resourceful investigators. 

In this situation, workers in several areas of experimental physiology (cell 
cycles, circadian rhythms, biochemical oscillations, and neural and cardiac 
rhythms) have frankly accepted the challenge of indirect inference. One can ask 
a question ofthe mechanism by probing it with discrete stimuli. One sure indicator 
of impact (whether direct or indirect) on the mechanism generating a rhythm is 
alteration of the rhythm's phase, period, or shape as measured under standard 
conditions. Thus the imposed disturbance must be temporary, e.g., a current pulse, 
not a step up or down. If the measurement were conducted under conditions 
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other than those in which its prior phase was measured, then it would be hard to 
know what the new phase measurement means in terms of the old phases. The 
significance ofthe experiment would be obscured to the extent that we are ignorant 
ofthe changes imposed by the changed conditions on the structure ofthe rhythm
generating mechanism. 

In the cases of concern here, ephemeral disturbances usually have little lasting 
effect on a rhythm's period. But the detailed time course of the rhythm may be 
altered, most conspicuously by a permanent phase shift. The phase of an oscillator 
is the main feature we can measure reliably by watching an arbitrarily chosen 
rhythm without necessarily knowing anything about how the hidden oscillator 
imposes its rhythmicity on this feature that we find it convenient to monitor. We 
measure the phase some time after a fleeting disturbance, after transient effects 
on the rhythm's shape or period have died away. One can discriminate between 
alternative conjectures about an oscillator's dynamics on the basis ofthe distinctive 
regularities in its patterns of phase adjustment in response to the timing and 
magnitude of such a stimulus. 

Thus biochemists have probed reaction sequences by looking for an advance 
or delay in rhythmic NADH fluorescence following injection of a consumable 
substrate (Chapter 12); behavioral physiologists have revealed the causes of 
seasonal flowering and hibernation by examining the phase control of circadian 
rhythms by suitably timed exposure to visible light (Chapters 19-21); cell physiolo
gists have examined the "excess delay" of cell division following some physiological 
shock to a regularly dividing cell suspension (Chapter 22); and electrophysiologists 
have studied motor co ordination by systematically measuring how far a post
synaptic potential resets the phase of a pacemaker neuron. 

Such data are now widely available. They exhibit certain regularities which 
may be diagnostic ofvarious classes ofmechanism, permitting us in some respects 
a "sneak preview" of what will not be properly understood in terms of molecular 
mechanism for a very long time yet. But it is troublesome that re setting data are 
available in such an imaginative array of formats. (See Box C of Chapter 4.) 

My purpose here is to redescribe the formats in use among neurophysiologists 
in relation to the format J've chosen as a common standard for the diverse rhythmic 
systems and conceptual models gathered in this book. 

A physiological rhythm consists of either a discrete conspicuous event repeated 
rhythmically (e.g., aspike dis charge) or smoother rhythmic variations in so me 
quantity (e.g., membrane potential). In the latter case, a "phase reference event" 
is chosen on the smooth rhythm to serve as a discrete event (e.g., a local maximum 
or minimum or an upward or downward zero crossing). In the former case, the 
system has al ready chosen for us: The discrete event was presumably triggered by 
some underlying smoothly varying quantity reaching a threshold. 

It is usual to plot the rhythm as a trail of dots, each marking the occurrence 
of the chosen event, along a time axis extending horizontally to the right. It is 
usual to stack up such lines vertically in order ofthe time when a stimulus offixed 
quality and duration was given. Here two choices present themselves. In depicting 
them, I use the notation of Hartline (1976), who electronically automated an 
on-line display of a pacemaker neuron's resetting, simultaneously in both formats. 
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Format 1: Spike referenced or control referenced (Figure 1). Experiments are 
plotted on horizontal time axes stacked vertically with the prestimulus rhythms 
aligned; hence the name "control referenced". In Hartline's cases, the data points 
outlining the rhythm consist of neuroelectric spikes, hence the name "spike 
referenced". On each successive line, vertically, the stimulus comes later, so that 
the vertical down ward axis is the old-phase axis. 

In this format, data points in type 0 re setting fall along curves wriggling about 
a parallel to the stimulus diagonal. Type 1 re setting data wriggle about vertical 
lines parallel to the controls. This format has the advantage that deviations of the 
poststimulus rhythm from periodism in both horizontal and vertical dimensions 
are plainly exposed, and that if one wishes to simplify, omitting those features to 
plot only a phase shift, then this is easily done by clipping out a square unit cello 
Rotated 90° and flipped over, this is a phase-resetting curve (PRC). It plots verti
cally the change of phase expected if an impulse arrives at the phase plotted 
horizontally. I dislike this operation because it breaks up the continuity of the 
data: Type 0 resetting acquires a spurious full-cycle "breakpoint" which cor
responds to no comparable discontinuity in the data or in the physiology of the 
oscillator (e.g. see Figure 1 of Chapter 19). 

Presenting results in a format reduced to a single unit cell not only violates the 
continuity of experimental data and shows only one square out of a larger pattern, 
but it also commonly entails presenting the difference between a perturbed rhythm 
and an unperturbed control rather than presenting the unprocessed direct obser
vations. This procedure might eliminate correlated sources of error, but in my 
experience those are slight compared to the independent sources of deviation 
from perfect rhythmicity. So, in taking the difference, data variance is increased. 
Moreover, the difference must be taken between a chosen event in the perturbed 
rhythm and a chosen event in the control rhythm. Which ones are chosen? There 
are several different equally valid conventions in use, and if the result is to be 
confined to the interval ±t cycle, then it usually requires a change of convention 
at that point. 

However, this format is most convenient in arguments about entrainment, 
which typically deal with small phase shifts repeatedly inflicted during a standard 
cycle by stimuli of one standard duration. It is also convenient in arguments where 
the process of phase change is of less interest than the end effect: a small advance 
or delay in each cycle of the stimulator. Perkel et al. (1964), Walker (1969), Stein 
(1974), Taddei-Ferretti and Cordella (1976), Pinsker (1977), Scott (1979), and 
Jalife and Moe (1979) have presented their experimental results in this format. 

Format 2: Stimulus referenced (Figure 1). This is the same as spike referenced 
except that the successive horizontallines are sheared over 45'· to vertically align 
the previously diagonal trail of stimuli. "Cophase" or "stimulus latency" is mea
sured to the right from stimulus time, so that the poststimulus horizontal axis 
becomes the cophase axis in all experiments. Cophase being complementary to 
phase, the horizontal time axis is also the new phase axis, running from right to 
left. In type 0 resetting, data points lie along a curve wriggling rhythmically about 
a vertical, parallel to the stimulus column. Type 1 re setting data wriggle about 
diagonals parallel to the control diagonal. 
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If the stimulus referenced plot is rotated 90° and flipped over, then we have the 
old phase axis horizontal to the right (previously vertically down), the new phase 
axis vertically up (previously horizontal to the left), and the cophase axis vertically 
down. This is the format of Schulman's (1969) and Harcombe and Wyman's 
(1977) presentation of pacemaker neuron re setting, and the format of all my 
publications, induding this book. Schulman's silent period D is exactly my cophase 
8, supposing exactly normal rhythmicity follows the first poststimulus spike. This 
format has the advantage of presenting all the experimental data plainly while 
portraying the phase transition curve, alias re setting map, in each square unit cell. 
This curve is convenient for analysis of entrainment in terms of phase just before 
and just after the successive entraining pulses (perkel et al., 1964). It also lends 
itself to analysis of the process of phase re setting (during the stimulus, as its duration 
increases) in terms of the phase reached, or the internal state of an oscillator at 
each moment. Such analyses are more cumbersome when conducted in terms of 
the phase shift, the changing difference between the phase reached and whatever 
the initial phase may have been. 

B: Mutual Synchronization 

Mutual synchronization is an interesting problem, and one that all societies 
have to solve. It can be solved dictatorially, every individual being entrained to an 
external rhythm (a common zeitgeber in the jargon of circadian physiology) or to 
a unique pacemaker individual (a "master dock"). Or it can be solved democrat
ically, each individual contributing equally to an aggregate signal, a virtual 
pacemaker that serves the same purposes as a zeitgeber or master dock, holding 
all entrained in synchrony. 

In the case of nerve-like individuals, the spike discharge is presumably the most 
influential part of the signal. If so, then mutual synchrony requires that whether 
the spike be nominally excitatory or inhibitory, each cell should advance (or delay) 
slightly if it encounters the aggregate spike slightly before (or after) its own was 
scheduled to occur. Ideally the advance or delay would be exactly equal to the 
phase discrepancy. Taking the output spike to mark phase cjJ = 0, the ideal response 
would consist simply of re setting the phase to 0, i.e., cjJ'(cjJ) == ° independent of cjJ. 
This is the extreme form of type ° re setting. However all that is really required is 
that -1 < dcjJ'/dcjJ < 1 near cjJ = 0. This is observed for example, in the cases of 
rhythmically flashing fireflies (Figure 18 of Chapter 4; Hanson et al., 1971; Buck 
and Buck, 1976; Hanson, 1978) and of chorusing crickets and cicadas, phase
shifted by hearing their own collective chirp (Walker, 1969; Figure 16 ofChapter 4). 

If cjJ' =1= cjJ at cjJ = 0, then each time a population fires, it advances or delays itself. 
If IdcjJ'/dcjJl exceeds 1 near cjJ = ° (as in Winfree, 1977, Figure lA, for example), then 
entrainment is unstable (perkel et al., 1964). Thus such patterns ofresponse would 
bring about interesting consequences, such as a general speeding up or slowing 
down, or fragmentation of the population into two or more subgroups (see Buck 
and Buck, 1968, on alternation synchrony in chorusing grasshoppers), or even 
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Figure 3. Single cells of dissociated chick heart creeping across thc Iloor of a tissue culture dish in 
summer 1966. The rounder hrightcr cells are about to dividc. Thc /leid of view is in the order of 

0.1 millimeter in diameter. 

active resistance to mutual synchronization such as we saw in context of simple 
docks in Chapter 4, Section 8. 

Mutual synchronization is especially important among the cells of the sino
at rial pacemaker node of any mammal's heart (Jongsma et al., 1975; Clay and 
DeHaan 1979), and among all the cells of certain less differentiated hearts, e.g., 
in the hagfish (Jensen, 1966). The process of mutual synchronization is directly 
observable in a culture dish of individual pacemaker cells taken from the enzy
matically dissociated heart of a four-day-old chick embryo (Figure 3). The cells 
visibly beat as they creep about underwater. They encounter one another, form 
electrical junctions, and begin to beat synchronously (DeHaan and Sachs, 1972). 
Eventually large clusters of electrically joined cells are seen to twitch rhythmically 
as waves of contraction sweep repeatedly [rom a leading center. It was my good 
fortune to work under Robert DeHaan's direction in summer 1966 while trying to 
measure the phase resetting of a pacemaker cell in response to injected current 
pulses. I wasn't successful, but Stephen Scott was (1979 thesis). His rephasing 
curves (4/ vs. rjJ) do show the features required above. Sec also Figures 16- 18 in 
Chapter 4, Jalife and Moe, 1976, Figure 9, and Sano et al.. 1978, Figure 5 for cells 
of the Purkinje fibers and sinoatrial node. 

There exists a tantalizing prospect that in some cases mutual synchronization 
among nerve-like cells might not be based so much on exchange of electric spikes 
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as on clectrotonic influences or chemical interactions among the smooth metabolie 
rhythms that time the spikes or slow waves. Watanabe et al. (1967) found that 
mutual synchronization among the heart cells of a large shrimp is mediated both 
by spikes and by "slow waves" (oscillatory pacemaker potentials), both of which 
independently afTect the phasing of the slow waves in the cells they reach. The 
measurements of Jalife and Moe (1976), of Sano et al. (1978), and of Scott (1979) 
also suggest that mutual synchronization may be mediated by electrotonic inter
actions. It is not entirely clear as to whether the slow wave, Iike the action potential, 
originates in the ionic mechanisms of the membrane or has some other metabolie 
basis. 

Whatever its mechanism, local synchrony does not necessarily guarantee long
range synchrony. One possible outcome of extension in space is propagation of a 
wave, as in a row of upright dominos. Buck and Buck (1968) mention waves of 
synchrony in swarming fireflies. We have seen this in layers of pulsing Diet yostelium 
cells (Chapter 15) and in oscillating chemical reactions (Chapter 13). It is equaHy 
familiar in neuromuscular contexts. 

C: Waves in One Dimension 

Hodgkin and Huxleys' analysis of a quarter-century aga admirably fulfilled 
their aim to calculate the squid's traveling action potential and to rationalize its 
constant velocity in terms of local permeabilities. A similar wave sweeps across 
the bulging surface of a human's fuH atrium to squeeze the contained blood into 
the ventricle. A wave propagating along the Purkinje bundle, arborizing down 
into the much thicker muscle of the ventricle, initiates its almost synchronous 
contraction. But the wave-like aspect of cardiac contraction plays little functional 
role in either the atrium or ventricle alone. Both in the heart and in the squid's 
motor neuron, things would go even better with instantaneous transmission of 
each impulse within each compartment. 

Wave behavior plays a more essential functional role in vertebrate intestine 
where it ushers food along the route from stornach to anus. The intestine is a 
long tube enveloped by a Iining of smooth muscle. There is a layer oflongitudinal 
smooth muscle and a layer of smooth muscle of quite different electrophysiological 
and chemical properties engirdling the intestine in circular bands. Each of these 
rings contracts homogeneously around its circumference like a sphincter. In an 
isolated segment of intestine, these contractions are regularly rhythmic. No one 
knows how thc electrical signals for contraction originate, but they are apparently 
myoyenie in that they originate in the longitudinal muscle itself, not in the asso
ciatcd nerve cells. Spontaneous rhythmicity is apparently the rule for smooth 
muscle in bladder, ureter, vas deferens, oviduct, uterus, sero turn, penis, and all 
thc veins and arteries, as well as in the gastro-intestinal tract (Golenhofen, 1970). 

In the latter case, the native frequency of this rhythm is highest nearest the 
stornach ( ~ 20/minute) and falls off in a monotone way toward the ileum, where 
the native frequency is lowest (~l0/minute). All this is most commonly observed 
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electrically, by way of chronically implanted electrodes (in dogs and cats). The 
visible muscle contraction follows in consequence ofthe electrical rhythm crossing 
a threshold of depolarization which elicits action potentials which in turn evoke 
the mechanical response (Holaday et al., 1958). 

The word wave enters this story because intestine does not normally come in 
disjoint segments, but in one long continuum. Local electrical activity stimulates 
a similar response in adjacent muscle membrane, which responds vigorously 
enough to conduct a propagating wave. The one-dimensional gradient of native 
frequency is apparently responsible for the unidirectional bias of movement in 
the small intestine from stomach toward anus, a feature of considerable adaptive 
importance. The waves of electrical depolarization are typically several minutes 
and several centimeters apart. By stimulating circumferential contraction, they 
divide the small intestine into moving beads, each encouraging the conveyance 
of a bolus of digested food, as in a peristaltic pump. (However, as in almost 
everything biological, it isn't really that simple. Superimposed "segmentation" 
contractions squish food in both directions. See Davenport, 1977, Chapter 3.) 

The smooth unidirectional gradient of native period encourages unidirectional 
movement of peristaltic contractions. But it does not guarantee smaath movement 
because the frequency gradient covers a range of native frequencies spanning a 
full octave. To a first approximation, in any intact segment of intestine, the high
frequency end serves the functional role of a pacemaker. At any point in that 
segment there are as many waves per unit time as there are pacemaker cycles. 
Downstream, these periodic disturbances stimulate electrically more lethargic 
membranes. At same distance, the local membrane has become too sluggish to 
respond as often as waves arrive from the high-frequency pacemaker. So an 
occasional wave encounters refractory membrane, is ignored, and gets deleted. 
This might be looked upon in two ways: 

1. A local oscillator is driven by a high-frequency stimulus. If the frequency 
discrepancy is too great, then entrainment is imperfect and an occasional pulse 
is lost, or the slow oscillator simply runs at its own native period, somewhat 
perturbed by impinging electrical disturbances. But strict entrainment is main
tained within the segment up to that critical frequency. This segment might be 
looked upon as a population achieving mutual entrainment through electrical 
interactions. Only a certain range of frequencies can thus cohere, so the intestine 
breaks up into aseries of domains, each operating at its own frequency. Figure 4 
shows some ofthese frequency plateaus and the temporally disorganized transition 
zones between them. Models of this situation have been contrived and studied 
in relation to real intestine. These models are basically anterior-to-posterior chains 
of van der Poloscillators, each coupled electrically to its posterior (Diamant 
et al., 1970) and anterior (Sarna et al., 1971) neighbors. The most advanced 
modeling of this SOft that I know of is in Brown et al. (1975) and in Patton and 
Linkens (1978). See the bibliography in Chapter 8, Box E. 

2. An excitable membrane is refractory for some time following each response 
to an adequate stimulus. During this time, a bigger stimulus is required to elicit 
another response, and the response may even then be only half-hearted. So if a 



20 

19 

16 

w .... 
17 :::> 

2 
:i' 
"-
V) 

16 w 
.J 
U 
>-
U 

~ 15 

w a 14 
~ ... 

13 

12 

C: Waves in One Dimension 

UPPER JEJUNUM, 16/MIN ~ 

FIRST ZONE OF WAXING ANO WANING ~ 

........... 
"'----.. .... SECONO PLATEAU, 17/ MIN .......... 

"" 

~~ 
, lMIN I 

.......... 
............... M/AXIMUM DRIVEN FREQUENCY 

........... 
.......... 

.......... 
.......... 

.......... 
. ......... 

\... ••••••• CUT \ ..... 
~~U~~A~i~~····::=::.:~~······\~~~~~······ 
FREQUENCY ABOVE •••• AFTER CUTTING 
INTRINSIC RATE ••••• 

..... .......... 
............ , 
/' TERMINAL ILEUM, 12.5/MIN 

INTRINSIC FREQUENCY •••••••••• NVIJWWINVVVWVWW 

lOUOOENUM, JEJUNUM ••••••••••••••• ILEUM 

327 

r 
Figure 4. Frequency of the basic electrical rhythm of the small intestine of the anesthetized ca!. The 
stepwise heavy line shows the observed frequency, 18 per min in the duodenum and upper jejunum 
and descending to 12.5 per min in the terminal ileum. Segments of the electric record from which the 
frequency was measured are shown. The upper slanting dashed line shows l /refraetory period. The 
lower slanting dotted line shows the intrinsie frequeney displayed by short, isolated segments of the 
intestine. If the intestine is transected at the point labeled CUT, the frequeney distal to the cut falls 
to that ofthe intrinsie frequency at the point oftransection. [From Davenport, H. W.: PHYSIOLOGY 
OF THE DIGESTIVE TRACT, 4th edition, 1977, Year Book Medical Publishers, Ine., Chieago. 
Used by permission. (Adapted from Diamant and BortotT, 1969. Electric records supplied by A. BortotT.)] 

second wave arrives during the refractory interval, it fails to stimulate and is 
blocked at that point as surely as though a gate had been lowered. Arshavskii et al. 
(1964) contrived an analogous situation in a long nerve from an earthworm by 
laying it on a temperature gradient. Waves initiated electrically at the hot end 
get only so [ar before occasional deletions are inevitable. The surviving waves 
readjust their spacing and proceed as far as the next critical temperature, at 
wh ich once again some are deleted (and so on). 

I suspect that the differences between these two approach es are in part semantic 
differences and that a quantitative, rather than a verbal, biophysical model may 
behave much the same under either description. However, the differences of 
concept can be exposed by changing the model's parameters. I think so because 
that's how it is in the malonic acid reagent (Chapter 13), in which the analogous 
situation can be set up (see Box A) and in wh ich models similar to those of electro
physiology have proven useful (Rössler Hoffmann , 1972; Winfree, 1973c, 1974b,e 
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Box A: A Biochemical "Analog Computer" 
for Inte tinal Peristaisis 

It might be amu ing to u e our model excilable medium ("aqueou olution of 
Hodgkin-Huxley equalions", Chapler 13) 10 mock upa length ofintestine, or Ar hav kii' 
nerve (1964). J think thi i whal Diamant, Sarna, Daniel, Brown, and Ihe other might 
have done in tead of running van der Pol equalion in the computer for a couple dozen 
di crete segments of inle line, had Ihey acce 10 such an analogou conlinuum of 
excitable and rhythmical material. I tried il crudely. By mounling a copper bar between 
hot and cold waler balh a lemperature gradienl was eSlab1i hed along it length. Then 
llaid along the bar a trip of chromatography paper oaked in malonic acid reagenl, so 
that Ihe warmer end alternate between red and blue more frequenlly Ihan the colder 
end. ach time the warmer end lurns blue, Ihal blue wa ei added 10 the train ofwaves 
propagating toward the colder end. ow imagine any intermediate poinl and a k 
"Whal is it 0 cillalion frequency?" I il Ihe local oscillalor frequency corre ponding 
to Ihe lemperature al thaI po ilion? 0 , it turn blue more often Ihan that, 10 be exacl. 
as often as a blue wave arrive from the hOl end. 0 rar a electrode recording goe , you'd 
say il adopt the frequency ofthe hot end, as doe every up tream poinllhat tho e waves 
pa ed. 

Bul what beeomes of these wave a Ihey propagate into naturally lower region? 
Eventually they must get to a pi ace where the reagent cannot re pond a often a waves 
arrive: Its refractory period i too long. So a wave get deleled. rom there on, "fre
quency"' i lower, and remains the same al every talion along Ihe chromalography 
Irip up to a point where a neXI wave i deleled. O\V I can't say Ihallhi proce unfolded 

it elf before my wondering eye with pcrfcct clarilY in Ihal one fir I crude attcmpt, but 
something like th i \Va happening, rather like Ihe plateaus of ynchrony in gUI ( ee 
Figure 4), There is a region of 0 many \Vaves per minute, a di organized transitional 
region, a region of fewer wave per minute, another di organized tran itional region, 
and so on. And all the e plateaus are rather labile, Iheir boundarie hifling back and 

PLATEAU { \ 

PLATEAU{ , 

TIME 

A Irip of oseillating medium, een at time zero on Icft end ofbox, eonduet horizontal 
waves vertieally from warmer end (below) toward c oler end (above). Wave are 
hown at front edge of trip a time increa es to right. Shorter pcriod waves from 

beI w mu t be deleted a they a cend ioto longer period region . Deletion levels 
(dashcd) mark boundarics of frequency plateaus in Figure 4. 
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forth as wave pacing va ries, re ulting in critical spacing and deletion of wave at 
different points along the full Icngth. (These phenomena pose intriguing mathematical 
problems.) 

What th analogy to excitable media sugge t • then, i simply thaI a slightly different 
emphasis i po ible in which the critical parameters would be not local oscillator 
frequency but rather local refractory pcriod. It seem to me likely that the local capacity 
to oscillate i not ver important in inte tinal mooth muscle, except at the mo t anterior 
end. (And perhap cl ewhere to provide a local "backup" pacemaker in ca e wave from 
the anterior end should be omehow blocked, e.g., by ulceration or by surgery.) Local 
rhythmicity might be important if loeal excitation \ ere not 0 gros Iy anticipated by an 
arriving wave; but ifil iso then it hardly matter whether the loeal membrane would have 
recycled pontaneou Iy omewhat later or would ha e lingered at re ting potenlial 
until exciled. Ln either ca e what matter i not native frequency. but refractory period. 
Specht and BortofT(l972) and ama and Daniel (1974) did emphasize refractory per iod. 
This change of empha is has proven critical for a number of phenomena (for example 
the rotor) in excitable film of malonic acid reagent and of lime mold cell . One way 10 

find out whether it i important in smooth mu c1e might be to inhibit pontaneity of 
firing without greatly altering the refractory pcriod, perhap pharmacologically [a 
wa done chemically in the malonic acid reagent (Winfree. I 972c)]. A direct mea uremenl 
of refractory period along the inte tine hould allow explicit prediction ofthe po itions 
of plateau boundarie and f the tep-dO\ n in frequency from one plateau 10 the next 
by deletion of waves rather than by mutual ynchronization of local oscillator . For a 
theoretical trealment ofwave propagation alonga gradient ofrefractorine , ee Krin kii 
and Kholopov (1967). 

Troy, 1977b. 1978). But a systematie study of sueh dynamieal systems has not yet 
appeared in the literature. It might be a useful exereise. 

D: Rotating Waves in Two Dimensions 

The wall of the intestine is treated as a one-dimensional eontinuum beeause 
our interest in it in this ehapter is limited to a single layer of musde (eliminating 
the depth dimension) whieh aets mueh more nearly synehronously around eaeh 
eireumferenee than along its length. But if we follow the intestine anteriorly, we 
diseover that it abruptly flows out into a mueh more symmetrie bag ealled the 
stomaeh. The smooth muscle lining of the stomaeh behaves mueh as does the 
intestinal smooth muscle. The lower half of it is spontaneously rhythmie in a 
way that suggests to Sarna, Daniel, and Kingma (1971, 1972a,b) and Sarna and 
Daniel (1973, 1974) and Kingma and Min (1975) a two-dimensional eontinuum or 
network of eleetrophysiologieal oseillators beating several times per minute. 

The loeal eoherenee and larger seale wave-like organization of the stomach 
aetivity keeps food properly ehurned up and eventually forces it toward the upper 
bowel via the pylorus. As in the intestine, there are marked gradients of native 
frequeney, the most anterior muscle having the highest frequeney. Surgieal exeision 
of ulcera ted or eaneerous parts of this gradient can result in peeuliar alterations 
of wave behavior, by juxtaposing regions of dissimilar native frequeney. Diamant 
et al. (1973) remark that the postoperative side effeets of operations for peptie 
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ulcer often include diarrhea and anomalies of stornach movement which are 
usually attributed to damaging the vagus nerve, but might really reflect alte red 
coupling in a sheet of distributed pacemakers. Specht and Bortoff (1972) and 
Sarna and Daniel (1973) explored this problem somewhat, both with dogs and 
with networks of van der Poloscillators. They believe electronic gastrointestinal 
pacemakers may have medical uses comparable to the now-conventional cardiac 
pacemaker (see Sarna and Bowes, 1976). 

Apart from derangements of the normal gradient, are there new geometric 
possibilities for wave conduction in the more expansive context of stornach wall? 
Reshodko (1974) obtained rotating spiral waves in models of smooth-muscle 
sheets implemented in a digital computer. The data of Sarna et a!. indicate that 
real stornach is characterized by steep gradients of excitability and of native 
frequency in the spontaneously rhythmic region. I find it hard to imagine stable 
rotation of a wave in such a situation, but the question remains to be studied 
empirically. 

The situation is quite different in the excitable tissue of the heart and of the 
brain. In both cases, the theoretically predicted possibility of perniciously rotating 
excitation has been demonstrated experimentally during thc 1970s. 

Rotors in Heart 

We first examine the heart muscle, in which the demonstration is clearest. 
For almost a hundred years it has been unoriginal to speculate that some forms 
of high-frequency irregularity of heart beat (e.g., atrial flutter) might represent 
the effect of one or more circulating waves. Details of this hypothesis have varied 
and the most ingenious evidences have been brought to bear, but the following 
papers comprise the main contributions I have found to this story. 

The basic idea is that an excitable medium that can fire rhythmically forever 
should also be able to conduct a circulating wave, if the medium is made into a 
ring and asymmetrically stimulated. This was shown in jellyfish (Mayer, 1908, 
1914; Kinosita, 1937), in strips ofheart muscle (Mines, 1913,1914: Garrey, 1914), 
and in earthworm nerve (Arshavskii et a!., 1965). In fact, Pastelin et a!. (1978) 
showed that one mode of flutter is essentially one-dimensional in this sense: 
It originates in pulses circulating along three loops of specialized conduction 
bundles. 

The equivalent experiment in a two-dimensional sheet of excitable medium 
would be to punch out a hole or to inactivate a disk whose periphery may then 
serve as the required ring. According to the simplest models, this would only 
work if the circumference of the ring or central obstacle were adequate to accom
modate the shortest periodic wave that the material will support; or otherwise 
put, if it is long enough so that the circulation time of a pulse will exceed the 
material's absolute refractory period. The hole might even be the aorta or superior 
vena cava in a large vertebrate's heart, such as man's. Stibitz and Rytand (1968) 
attempted to demonstrate such an excitation whirling around inlet and outlet 
ducts of dog heart and ofhuman heart, using the published data of several research 
groups. 



Box B: The Iron Wire Model 

William 0 twald (1900) wa fir t to notice that iron wire in nitric acid exhibit an 
electrochemical urface phenomenon quite im ilar to the action potential in nerve. It 
wa vigorou Iy inve tigated with thi in mind for decade (see Suzuki, 1976; MacGregor 
Lewi , 1977 for review). 11\'0 dimensional surface (a ten-inch iron phere) behave 
in many ways like a human heart, even "fibrillating" when made too excitable or 
timulated too frequently (Smith and Guyton, 1961). A gridwork of iron wire al 0 

upport wave . The first publication ofthi experimenta l y lern ( agumo el al., 1963) 
exhibited both circular wave radiating from a point source of exci tation alld spiral 
waves rotating 100 ely about one endpoint of the wavefront (Figure a). Unfortunately 
for many in lhe West, thi remarkable and thorough tudy wa publi hed only in 
Japane e in a erie of paper thai pa ed al mo I unnoticed in Engli h-speaking 
countrie . 

Pencil tracing al 1/ imerval (Iefl to right. Ihen down a row) from photograph 
of a 30 m x 30 cm grid of 26 x 26 iron wires in nitric acid . Stimuli introduced at 

" 2. ), and 4 ' ponlancous activity pcrsisls for a while in the form of waves 
irregularly pivoting about moving end point. ( rom agumo el al., 1963, Figure 15, 

with pcrmi ion.) 

Balakovskii (1965) and Krinskii (1966) argued that a hole might not even be 
necessary. Farley and Clark (1961), Farley (1964), and Moe, Rheinboldt, and 
Abildskov (1964) had observed such rotors in computer simulations of nerve-like 
excitable media without holes. See Box B. In 1965, Gerisch published a photo graph 
of a rotating wave of excitation in an ostensibly uniform field of Dictyostelium 
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cells (see Chapter 15). Rozenshtraukh et al. (1970) attempted to demonstrate such a 
wave using the atrium (alias auricle) of a frog's heart stretched out on a frame 
in Ringer's solution. He may weIl have had such a wave, but the demonstration 
was unconvincing without an adequate number of simultaneous recordings from 
multiple electrodes scattered over the m uscle surface. Gulko anel Petrov (1972) and 
Shcherbunov et al. (1973) computed rotors in perfectly homogeneous tissue using 
heart-like vers ions ofthe Hodgkin-H uxley equation. In 1970 and 1971, respectively, 
Zhabotinski and I found stably rotating waves in a perfectly uniform and con
tinuous excitable medium that resembles heart muscle in several qualitative 
essentials (see Chapter 13). 

In sufficiently inhomogeneous media a more aggravated condition arises in 
which no macroscopic periodism has been detected. This "fihrillation", as it is 
caIled, has been explored by Gordon Moe and collaborators in an exciting se ries 
of experiments and computations emphasizing the role of microheterogeneity of 
refractory periods. See Chapter 10, Example 14. 

The most conspicuous features of f1utter (and of fibrillation) that suggest a 
sourceless rotating wave are the facts that 

1. High-frequency "tachycardia" has aperiod limited only by the refractory 
period and is thus faster than any other pacemaker. This is potentially trouble
some medically because a focus throwing out waves more often than other sources 
is able to expand its domain of control with each mutually annihilating collision of 
two waves. 

2. A minimum area is needed, as in the malonic acid reagent. In Allessie's 
experiments (see below) this is about 40 mm 2 Flutter is not stable in smaller 
hearts and is not observed at a11 in much smaller hearts. Fibrillation is never seen 
in frog heart or house cat atrium. Cat ventricle (wh ich is bigger than the atrium) 
can fibrillate transiently, but spontaneously recovers. So docs dog atrium. Dog 
ventricle, however, fibrillates persistently, as does human atrium. 

3. Convulsive synchronization restores control to the sinoatrial node of the 
heart. I've watched this happen during open heart surgery at Johns Hopkins 
Hospital. The heart starts f10pping more and more irregularly, and less and less 
coherently until it is all ajumble. Synchrony is restored with a pair of smooth, 
flat electrodes, making the whole heart simultaneously refractory: The next 
pacemaker discharge restores coherent contraction. This erasure of the patho
logical wave would not work ifits source were a little nucleus of irritable membrane, 
because the nucleus would still bc there after synchronization destroyed the 
preexisting wave pattern. 

4. Gulko and Petrov obtained a rotating wave in a computer by interrupting 
an established wave front with a temporarily inhibited zone, such as might be 
produced by an untimely local stimulus (Figure 5). [Thc procedure is similar 
for the malonic acid reagent's rotor and for the rotating wave of spreading 
depression (see below). All three were independently discovered in formally 
similar excitable media within a span of one or two years. No one has yet reported 
attempts to deliberately induce a rotor in Dictyostelium.] 
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Figure 5. Computer simulation of an action potential wave in nerve membrane. Its progress to the 
southeast is obstructcd by cross-hatched barricr (artificially held at resting potential), wh ich is later 
rcmovcd. The wavdront pq continues to revolve about the middle of the square. (From Gulko and 

Petrov, 1972, Figure 5.) 

All these observations set the stage and enhanced anticipation for the experi
ment of Allessie et a!. (1973). They used a sheet of rabbit atrium, once aga in 
without an anatomical obstacle, stretched on a frame perfused with an oxygen 
rich solution at 37C. To initiate tachycardia, they stimulated electrically at one 
point at regular intervals of time. Every so often, they also stimulated just behind 
that wave and then waited to see if spontaneous high-frequency excitation persisted 
in the absence of further stimulation. Sometimes it did (Figure 6). The effect is 
not consistent nor is the mechanism of action very clear. The procedure originated 
from two observations: 

1. Wiener and Rosenblueth's (1946) original theoretical study of wave con
duction in heart muscle argued (incorrectly: see Durston, 1973) that it should be 
possible to initiate a rotor in this way. The corrected version of that argument 
requires an anatomical obstacle or inhomogeneity to wipe out one of a pair of 
symmetrie waves thus initiated. Allessie and friends believe that they are taking 
advantage of such inhomogeneities in the refractory zone just behind the wave 
initiated by the 11 rst of their two pulses. 

2. According to Katz and Pick (1962), periods of tachycardia or fibrillation 
in man almost without exception are preceded by apremature beat. 

In any casc, once tachycardia started, Allessie et a!. used an array of 10 
electrodes, moving the array to as many as 30 different posrtions during aperiod 
of persistently sustained activity in the rabbit's atrium. From those hundreds of 
recordings, they were able to build up a composite two-dimensional picture ofthe 
rotor. For example, Allessie et a!. (Figure 6) show how the time of pulse arrival 
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Figure 6. Initiation of tachycardia by apremature beat. Surlace elcctrograms recordcd at 10 sites 
on the left atrium (A-K). The atrium was driven rcgularly with abasie interval of 500 ms. Thc first 
arrow indicates the last basic stimulus, applicd near A and spreading toward F. The sccond arrow 
indicates the premature stimulus (interval 81 ms). Thc sketch at the bottom shows the sitcs at which 
the electrograms were recorded: the site of stimulation is rcpresented by thc asterisk. Note that 
conduction of the premalure impulse failcd in direction KJHG. This area was activited from site F 
in a retrograde fashion. Sites A, B, C, etc .. were then reexcitcd from site K. This pattern persisted 
during the ensuing tachycardia. (Adapted from Allessie et aJ., 1973, Figure 4, with permission from the 

Ameriean Heart Assoeiation, Ine.; sec also the idealization in hgure 24 of Chapter 2.) 

lags progressively along the perimeter of a circle of 10 electrodes around the 
putative pivot. The winding number of phase of this periodic excitation is thus 
W ± 1 around the ring, and so the ring must contain a phase singularity. In 
their Figure 5 the wave front is shown in 17 successive positions as it pivots around 
this singularity. Allessie et al. are careful 10 point out that this demonstration does 
not prove that such rotors occur in living animals, nor that they are the only 
mechanism of flutter even if they do. But this is the first mechanism that has 
actually been verified physiologically. 

One of its most intriguing features is of course the phase singularity. What 
can be going on there, electrophysiologically? This is not even clear in Gulko 
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and Petrov's computations, which serve up every variable to the experimenter 
for precise observation. Their wave does not exactly pivot around a fixed point 
but seems to wobble, to meander, as can be seen in Figure 5 by superimposing 
tracings of the successive panels. So the central patch of membrane, while not 
participating in the regular rhythm expressed everywhere else, is also not elec
trically stationary. A similar perplexing wobble occurs in the malonic acid reagent's 
rotor. Rössler (1978) and Rössler and Kahlert (1979) believe that it may be an 
instance of "chemical turbulence"; in the heart we would have to call it "elec
trophysiological turbulence". There is also turbulent activity, not quiescence, at 
the center of the rotor in rabbit atrium. The wavefront seems to run through the 
center irregularly. Given many such rotors packed close together we might see 
only a writhing mass of short-lived wave-icles not unlike the turbulence described 
by Moe et al. (1964) when their electrophysiological equivalent of a critical 
Reynolds number was exceeded in computer simulations. 

Rotors in Brains 

We are accustomed to think of nerve membrane as an electrically excitable 
medium along which a sharp impulse can pro pagate at a steady high velocity. 
There are also lower velocity waves of collective firing in brain tissue (Verzeano, 
1963; Petsche and Sterc, 1968, Petsche et al. 1970). Petsche et al. (1974, Figure 6) 
show that these waves can stably rotate at 10 cycles per second around little 
patches of rabbit cortex a few millimeters square. 

Not everyone knows that there is still another mode of electrical wave activity 
in masses of nerve cells, a mode that is in sensitive to tetrodotoxin, i.e., a mode 
which does not at all require the sodium-based electrical action potential. It is 
induced by applying any of a variety of mild stimuli to any of a variety of cortical 
structures of any of a variety of different animals. In this mode, cells depolarize 
and leak potassium ions from their potassium-rich insides, thus furt her depo
larizing themselves and their neighbors, who therefore also leak potassium and 
so propagate the condition. A droplet of potassium chloride solution is thus a 
reliable stimulus for starting it. After a few minutes, metabolic potassium pumps 
restore normal ionic conditions and the cells return to their usual function. There 
remains only a ring-shaped frontier of newly depressed cells which will in turn 
soon recover. In this way the frontier moves outward [Tuckwell and Miura 
(1978)]. This phenomenon, called "spreading depression", was discovered by Leao 
during his Ph.D. thesis research during World War II (Leao, 1944). Leao was 
studying epileptic seizure by deliberately initiating the bulk excitation that causes 
it in the cortex of a rabbit. It turned out that weak mechanical or electrical stimuli 
applied to the exposed cortex can also trigger adepression of activity that lasts 
locally for some minutes and spreads as an expanding ring. In fact, this phenome
non commonly follows epileptic seizures anyway. During this depression, all neu
rons are turned offwithin a 2-mm zone as the wave go es by. Accordingly, the EEG 
is locally attenuated. The ring's rate of expansion is determined by the diffusion 
rate of potassium in the extracell ular medium, the rate of potassium leakage from 
depolarized neurons, and the rate at wh ich cells bai! themselves out after ceasing 
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to leak potassium. In the presenee of obstacles (e.g., the edge of the tissue, or a 
knife cut, or a bit ofthermally eoagulated tissue), the wave propagates around the 
obstacle aeeording to Huygens' prineiple exaetly as in Dietyosteliwn or the 
malonic acid reagent (page 245). lt can be induced to ratate around a big enough 
obstacle by blocking one of the two waves into which the obstacle splits an 
oncoming wave front. The surviving half-wave then circulates for as many as 
50 rotations of approximately constant period (Shibata and Bures, 1972, 1974). 
These waves travel about 3 mm per minute, comparable to the eortieal disturbanee 
associated with Jacksonian epilepsy. [In this connection it is intriguing to note 
that although spreading depression is supposedly a loeal condition, propagated 
by diffusion of potassium ions and maybe neurohormones, Leao found that when 
only one hemisphere is stimulated, spreading depression arises also at the mirror 
image spot on the other hemisphere (presumably by way of the corpus callosum). 
Jacksonian epilepsy also involves alternation of excitation between left and right 
sides.] Could the coma following concussion be a spreading depression rotor? 

The conduction speed of spreading depression is also quite similar to that 
of the scintillating blindspot associated with migraine headache (Lashley: see 
Bures, 1959, p. 245; Richards, 1971; Martins-Ferreira et al., 1974). Gouras (1958) 
diseovered that spreading depression also oecurs in the retina of the eye. In this 
case, one does not need e1ectronic machinery to observe it because there is a 
visible change of light scattering in the retina itself as the wave goes by. As in 
the cortex, spreading depression can be induced to circulate around an obstacle 
for six to seven hours, completing as many as 50 rotations of strikingly uniform 
period (Martins-Ferreira et al., 1974). 

After Shibata went back to Japan, Reshodko eame from Kiev to Bures's 
laboratory in Prague to undertake computer simulation ofthe rotating wave and 
of the mechanism of its induction. Basieally, his model is similar to Wiener and 
Rosenblueths' (1946) and the other two-dimensional excitable media discussed 
in this book. As in those cases, Reshodko and Bures (1975) found that the eentral 
obstacle is not neeessary. A stable spiral wave was found to pivot around a point 
in a sheet ofseveral thousand cells (in the computer). This has not yet been observed 
in real nerve tissue; however, I see no good reason to discount the possibility 
that it will be. Allessie et al. (1973, 1976, 1977) found that it is tricky to start a 
rotor in heart muscle unless there is a substantial obstacle. It can be done, but the 
mechanism re lies on unpredietable inhomogeneities in the excitable medium, such 
as might not have been achieved in trials on cortex or retina. 



15. The Aggregation of Slime Mold Amoebae 

Two kinds of slime mold play central roles in this book. Later on we will meet the 
"true" slime mold (M yxomycetes), an acellular jelly remarkable for the regularity 
and synchrony of mitosis in its many nuclei. Topologically, the true slime mold is 
one single monstrous cell. But in the present chapter, our concern is with the 
cellular slime molds (Acrasiales), the best studied of which is Dictyostelium 
discoideul11 (Bonner, 1967; Gerisch, 1968). This creature is more conventional 
in its cellular structure but is equally astonishing topologically in that its cells 
wander independently, like the individual workers of an ant colony. Like the 
ant hivc, Dictyostelium is a "superorganism", a genetically homogeneous being 
composed of autonomous individuals, nevertheless organized altruistically for the 
collectivc good. The life cycle runs as folIows. 

A : The Life Cycle of a Social Amoeba 

Spores borne on wind and rain arrive at a substrate that encourages their 
germination. Following much visible turmoil within the ovoid spore capsule, 
a crack appears and the vibrantly active little blob of jelly es capes, leaving behind 
the transparent shell. This lO-micrometer-diameter single cell, a "social amoeba" 
as it is ca lied, wanders about the substrate voraciously consuming bacteria. As 
they feed, the amoebae divide by fission. Eventually, the population outruns its 
food supply. During the next few hours, an internal transformation takes place 
by which these formerly independent cells become more alert and responsive 
to their neighbors. Depending on conditions not yet clarified in detail, a cell may 
become spontaneously active whereupon it emits a pulse of cAMP every five 
minutes, or it may only emit a pulse of cAMP when triggered by its neighbors. 
This principle of pulse relaying was discovered by Shaffer in 1957. The fact that 
the substance involved in the pulse is cAMP was discovered by Konijn et a!. 
(1967) at Princeton. As in other systems ofsimilar biochemical dynamics, a hairline 
difference in membrane properties is believed to distinguish these two modes of 
behavior: spontaneous activity (as in pacemaker neurons, spontaneous ovulators, 
or oscillating malonate re agent) or mere excitability (as in q uiescent neurons, 
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reflex ovulators, or the non-oscillating version of malonate reagent). This develop
mental change is believed to be spontaneous, in large measure. But it is also 
accelerated by exposure to cAMP, especially ifthe cAMP comes in pulses (Gerisch 
and Hess, 1974). Darmon et al. (1975) and Gerisch et al. (1975) also showed contact 
site formation to be accelerated by cAMP pulsing. 

Relaying behavior results in wave conduction if the cells are sufficiently weIl 
coupled, i.e., if a cell receiving the chemical impulse passes it on, amplified up 
to a saturation level. If cells lie close enough together, then thc amplified impulse 
reaches enough unexcited cells before it is attenuated too much to trigger them. 
So they relay it and a wave of cAMP release propagates across the field of cells 
at 2-3 mm per ho ur. The passage of a cAMP wave is made visible by the slightly 
later passage through the field of cells of a geometrically identical wave of altered 
refractivity (Alcantara and Monk, 1974). These waves were discovered and filmed 
by A. Arndt in 1937. As in heart musc\e (Chapter 14) and in malonic acid re agent 
(Chapter 13), two kinds of wave occur: concentric rings emitted from a homo
geneous pacemaker, and spiral waves emitted from a quiescent center. Figure 1 
shows a photograph of a spiral wave, first published by Gerisch in 1965. As in 
he art muscle and in the malonic acid reagent, these rotating waves resemble 
involutes of a circle whose circumference equaIs the wavelength. See Figure 2; 
cf. Figures 2-26, 9-15, and 13-3. The wavelength as weIl as the rotation per iod are 
both shorter than in concentric ring waves. Apart from their sources and their 
distinctive shapes, the two kinds of wave (rings and rotors) share the same 
mechanism and properties. 

Nonetheless, Dictyostelium is not heart muscle and Dietyostelium is not the 
malonic acid reagent. There are some differences. For example, Dictyostelium's 
cells move around. Shortly after it emits its reflex pulse of cAM P, each cell elongates 
and moves about 1 cell diameter in the direction from which it was triggered. 
In consequence of the repeated movement toward the sourcc of the waves, cells 

Figure 1. The first photograph of a rotating-spiral wavc in a layer of aggregating D. discoideum 

amoebae. The wave spacing is about ~. mm. al velocity 43 microns/min. Spacing and velocity as much 
as IO-fold greater are commonly observed in less dense monolayers. From Abb. 7 of Gerisch (1965) 

with permission. 
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accumulate at the center. When enough have gathered, a "tip" differentiates and 
secretes cAMP continuously, thus ending the spiral wave. The ring of nearby 
excitable cells is triggered to release cAMP as often as it recovers from the prior 
release, and the subsequently emitted waves form a nest of concentric rings (if 
they hadn't already adopted that configuration around a pacemaker cell). 

To finish the life cyde, cells continue to accumulate un~il the tip is raised aloft 
on a substantial column of cells which eventually toppies over. This little blob of 
transparent jelly, called a "grex" or "slug", is motile, perhaps due to the caterpillar
like waves of contraction rippling down its length from the tip at about five-minute 
intervals. It crawls off toward whatever light and warmth may be nearby, stops, 
and rights itself again. Then the tip is shoved aloft by a fountain-like streaming of 
cells, in which about one-third of their number sacrifice themselves to become a 
hard dead stalk. The remainder turn into spores in a tiny ball atop this erect 
column. Eventually, the spore capsule ruptures and the life cyde is complete. 

B: Questions of Continuity 

Because the slime mold consists of discrete cells, it is not obvious apriori that 
continuum models are appropriate vehides for understanding its wave behavior. 
In fact, Cohen and Robertson's (1971a,b) quantitative interpretation of aggrega
tion waves takes a radically different approach. It is based on a discretized approxi
mation in which each cell is a point in a lattice (betraying Cohen's alter ego as a 
solid state physicist), capable of responding to stimulation after a fixed delay by 
emitting a discrete pulse of cAMP. Following this it is completely refractory to 
stimulation for a fixed interval and then once again returns to excitability. A 
medium of such cells might conduct waves not smoothly but by discrete leaps at 
fixed intervals oftime. Alcantara and Monk (1974) observe just such leaps of 60 Jlm 
every 12 seconds. Also according to this view, the source of the rotating spiral 
wave is not a phase singularity but a discontinuity. The geometrie model of 
Balakhovskii (1965) makes this discontinuity a line of length equal to half the 
spiral's wavelength, along which cells at all stages of excitation and refractoriness 
abut. In this respect Dictyostelium, as a collection of discrete cells like a nerve 
network (Chapter 14), may differ qualitatively from continuous excitable media 
such as the malonic acid reagent (Chapter 13) and associated partial differential 
equation models. 

The chief alternative to this supposition that adjacent cells can differ discretely 
in their biochemical states is to suppose that rotors appear only where a cAMP 
pulse can circulate around a physical hole in the "continuum" of cells. I doubt 
that asound case can be made for this alternative. In many cases, a distinct 
doughnut-shaped stream of connected cells dearly supports a circulating impulse, 
and its center is empty [e.g., Gerisch, 1961 and computer-simulations by Mackay 
(1978) at low cell density]. But in other ca ses, a thick droplet of cells, many layers 
deep, plainly supports a rotating wave, pivoting within the pile of cells (Gerisch, 
1971, Figure 9). Neither the original photos of Gerisch (e.g., Figure 1) nor a more 
recent one published editorially in Nature (12 June 1975, p. 522) shows a hole in 
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the field of ce11s near the spiral's core. Moreover the spiral waves seen in early 
aggregation fields a11 have nearly the same period and wavelength. That would 
seem to im pose upon the hole model the awkward ad hoc assumption that every 
hole must have the same circumference viz the observed common wavelength. 
Although waves can also be made to circulate around the edge of a hole, and the 
source of the spiral wave can sometimes be a pulse circulating around the hole's 
perimeter, my inference is that this is not a necessary or even typical mechanism. 

Whether or not biochemical continuity is commonly maintained in two
dimensions in the film of ce11s, their discreteness and motility no doubt do make 
Dictyostelium's connectivity at least precarious in some situations. As the pictures 
of Gerisch (1961) and the simulations of MacKay (1978) both show, cells are 
further apart in some regions than in others. A sutllciently low-density region may 
serve !unetionally as a hole. These inhomogeneities presumably have much to do 
with the early appearance of rotors and the spiral waves they emit. Rotors never 
arise spontaneously in the malonic acid reagent because the chemical solution 
remains almost perfectly homogeneous until a suitable local irregularity is delib
erately introduced. But in a certain DiC/yoste/ium mutant (aggr 52) which makes 
no pacemaker cells, rotors arise in abundance (Gerisch, 1971). The cause may be 
that local density ftuctuations ensure that the functional equivalent of holes 
continually appear and vanish again. The Russian literature of excitable media 
is replete with mathematical analyses of such inhomogeneous media (e.g., Krinskii, 
1973, 1978). These papers are directed toward fibrillation in cardiac muscle, but 
the formal results might as weil describe Dictyoste!ium. The prediction for both 
media is that waves of minimum supportable period should arise and multiply. 
In the normal case, this would go on only until each differentiates into a pulsing 
"tip". However, Gerisch's mutants do not form tips so they support rotating waves 
for a very long time. 

Gerisch (1971, Figure 9) has also seen tiny blobs of cells possessed by rotors 
with two or more arms. Such multiarm rotors seem to be unstable in other excitable 
media, for reasons as yet unknown but possibly related to the difTerence between 
continuous and discrcte media. 

C : Chemistry in the Single Cell 

In regard to the single cell's biochemical dynamics, it seems worthwhile to 
mention two special features of Dic!yos!e/ium's spalial coupling mechanism. 

1. Although released cAMP is the only known coupling agent, it is not trans
ported as such in ward across the receptor cell's plasma membrane. Rather, cAMP 
affects membrane surface receptors which in turn affect intracellular reactions. 

2. The inftuence of cAMP seems more nearly proportional to the rate of 
change of extracellular concentration than to the absolute amount released. 

What goes on inside the cell? For purposes of qualitative analogy we might 
think of the cell as a triggerable switch that can be al rest, excited, or refractory, 
as in the discrete-state model of Cohell and Roberlson (l971a,b). But suppose we 
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want a continuous biochemical characterization of the process of excitation and 
of its spatial distribution? Goldbeter (1975) put forward the first detailed quanti
tative model of this kind. The model consists of three rate equations for enzyme
mediated reactions involving cAMP synthesis and degradation. 

1. Energy is provided by a constant intracellular production of A TP, which 
is consumed by the following reactions. 

2. At a rate enhanced by cAMP, A TP pyrophosphohydrolase degrades A TP 
to 5'-AMP, wh ich is constantly removed by a nucleotidase, and 

3. At a rate enhanced by 5'-AMP, adenyl cyclase turns ATP to cAMP, which 
is constantly degraded to 5'-AMP by a phosphodiesterase. 

In another version ofthis model (Goldbeter and Segel, 1977; Goldbeter et al., 
1978) reaction 2 is ignored, and is replaced by an isomorphie expression for extra
cellular cAMP transport. The same equations are saved under a renaming of 
variables to re pi ace internal 5'-AMP by external cAMP [there being currently 
some difficulty in confirming the Rossomando and Sussman (1973) measurement 
on which the original interpretation was based (Klein, 1976; Roos and Gerisch, 
1976).J Either way, behavior strikingly like that of Dictyostelium cells is obtained 
when the pertinent biochemical parameters are assigned plausible values. De
pending on the exact values, the equations either oscillate, thereby producing a 
cAMP spike every several minutes, or respond with a cAMP spike only upon 
stimulation by extracellular cAMP. 

Essentially the same kinetic equations were previously deployed, under another 
exchange of names, to mimic the mechanism of glycolytic oscillations in yeast 
cells, based on PFK inhibition (Goldbeter et al., 1978; Goldbeter and Erneux, 
1978). As yeast has been shown to support a rotor in the pinwheel experiment 
without diffusion (Chapter 12), much the same might be expected of Dictyostelium, 
even with diffusion added. 

Marcus Cohen (former student of the Morrel Cohen referred to above) under
took a graphical and mathematical analysis of kinetic schemes of this sort, 
analogous in many ways to formal models of excitability in nerve membrane and in 
the malonic acid reagent (Chapter 13). Cohen's (1978) model seems to account for 
the development of excitability and other aspects of social dynamics during 
Dictyostelium's life cycle. 

Using digital and analog computers, kinetic schemes of a qualitatively similar 
nature have been diffusion-coupled in two dimensions through one reactant, as 
in Dictyostelium: 

1. Gulko and Petrov (1972) obtained a rotating action potential using three 
equations of membrane conductivity coupled only through membrane voltage 
(see Chapter 14, Figure 5). 

2. Karfunkel (1975) obtained a rotating biochemical wave using enzyme 
kinetics coupled only through one substrate, and 

3. Winfree (1974b,f) obtained rotating waves in a hypothetical excitable 
medium borrowed from nerve modeling, coupling volume elements through 
diffusion of all reactants (Chapter 9). It works nearly indistinguishably when 
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coupling is only through the variable that represents cAMP or membrane voltage 
(unpublished). 

Presumably the same will be shown in this case, coupling cells by way of cAMP. 
The various models are susceptible to biochemical testing, thanks to the 

development by Gerisch and Hess (1974) oftechniques for observing synchronous 
biochemical activity in aqueous suspensions of many Dictyostelium cells. At this 
writing, it has been found that adenyl cyclase activity fluctuates as in the postulated 
kinetics, but the predicted intracellular A TP fluctuations are not yet measureable. 
[Roos et al., 1977; Geiler and Brenner (1978) J. 

D: Phase Resetting by a cAMP Pulse 

It is possible to rephase the spontaneous oscillation by injecting cAM P into a 
cell suspension. The new phase va ries according to the old phase at which the 

t ime 
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-

wave propagation lpenod 
=1.3~m.m,n-1 =Smin 

wave lenglh 
=230~m 

Figure 2. Diagram of the spiral pattern of chemotactic signals in an carly stage of cell aggregation. 
Top: Cells are attracted towards their inner neighbours (arrows) along a curvcd linc wh ich forms a 
spiral. The zones where such a spiral wavc mects the neighbouring ones become sharp boundaries 
between adjacent aggregation territories. From these boundary zones thc cclls are withdrawn by 
chemotactic attraction towards either side. 

From top to bottom the movement ofthe origin ofthc spiral around a ccntral area (do!ted) and thc 
propagation of the spiral wave over the aggregation (crrilory is shown. Thc data on bo!tom apply 10 

dense cel! layers. In more dilute cell populations the speed of wave propagation is highcr (Alcantara 
and Monk. 1974). (Dala from Gerisch. 1965). From Fig. I ofGerisch 197X with permissions. 
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Figure 3. The experimentally-determined new phase (1/ reaehed by rhythmically pulsing D. dis

codieum cells when stimulated by a cAM P pulse at phase c/>. The data are replotted from Figure 5 of 
Malchow ct al. (1978), which plots phase shifts (advances A, delays 0). The spontaneous cAMP pulse 
occurs at 4' = o. The second cyclc of c/> here is merely a duplicate of measurements reported in the 

first cycle. 

cells are exposed to cAM P. Using a cAMP pulse much smaller1 than what the 
suspended cells provide themselves every eight minutes, Malchow et al. (1978) 
have found type 0 resetting (Figure 3). Their resetting curve lingers along the 
diagonal (new phase-old phase) near the usual phase of cAMP release. Thus a 
slow cell gets advanced and a fast cell gets delayed by each collective pulse of 
cAMP, so that synchrony is maintained. However, there are also effects on the 
amplitude of the cAMP rhythm following these pulses, so the effects of repeated 
pulsing cannot be evaluated simply by repeated application ofthis curve.1t should 
be possible to compare these results with similar experiments on the Goldbeter 
model and others. However, it is first necessary to verify that all cells are oscillating 
in the cell suspension and not just a small minority with the more numerous 
remainder responding after a delay. 

E : Historical Note 

Before leaving the subject of periodic wave-Iike activity in slime mold mor
phogenesis, I interject a point of historic comparison with other experimental 
systems in this Bestiary. 

1. The first quantitative analytical attack on these intriguing problems 
(Keller and Segel, 1970) was based on a linearized continuum approximation. 
This invoked diffusion-induced instabilities of a spatially uniform steady-state. 
This approach proved to be in error: 

A. Experimentally, the uniform steady-state lS stable so the phenomenon 
is intrinsically nonlinear. 

I Bv ''smaller'" I mean the total amount relcased. The cells might be more concerned about the peak 
. rate of release. 
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B. The linear analysis produces only periodic solutions, but Dictyostelium 
is capable of propagating a solitary pulse (Robertson et al., 1972). 

C. The linear analysis allows arbitrary superposition of whatever eigen patterns 
have positive growth rates. But in fact only pure rings and pure standard-pitch 
spirals are observed. Also ofinterest in this connection is Nanjundiah's quantitative 
argument (1973, last page) that continuous secretion as postulated by Keller and 
Segel would be much less efficient as a detectable chemotactic signal than would 
be a periodic pulse ofthe same substance. Pulsatile morphogenesis may have been 
adopted by cellular slime molds for reasons of economy.l 

2. The same thing happened in the first attempts to rationalize ring and spiral 
patterns in the malonic acid reagent (e.g., Desimone et al., 1973). The appearance 
ofperiodic patterns reminded theorists ofthe instabilities oflinear kinetics coupled 
spatially by sufficiently asymmetric linear diffusion. Because the mathematics 
was weIl developed, it seized the imagination, squeezing other observations 
out of consciousness. For examples: the same patterns arise in reagent with a 
stable uniform steady-state, and spirals do not arise spontaneously, and colliding 
waves completely vanish. To my mind such phenomena make "diffusive ins ta
bilities" a far-fetched metaphor. Yet so tenacious is the appeal of a beautiful idea 
that theorists continue to interpret the real phenomena in these terms (Ross, 1976; 
Defay et al., 1977; Thompson and Hunt, 1977). 

3. The similar concentric ring and involute spiral patterns in N ectria fungi 
(Chapter 18) predictably served as a conspicuous target for application ofthe same 
models (various people's preprints, withdrawn be fore publication), despite the 
equally conspicuous fact that no hint is ever observed ofthe pattern superposition 
expected oflinear models (unless by exquisite tuning of parameters all wavelengths 
but one are given negative growth rates). 

I think it is important for research students to be aware of such trends in the 
elaboration of theory, and doubly important for those whose mathematical 
aptitudes make their minds susceptible to infection by whatever beautiful and 
sophisticated models chance to be currently in fashion. As Sherlock Holmes once 
remarked, "It is a capital mistake to theorize be fore you have all the evidence. 
It biases the judgement" (A Study in Scarlet.) My impression is that after the facts 
are collected with an eye receptive to surprises new biological phenomena alm ost 
always suggest quite different models than whatever first came to mind. 

I Although Keller and Scgel's original interpretation of slime mold aggregation secms incorrect 
for Dictyostelium, practically the same equations seem to account nicely for the moving bands of 
chemotactic bacteria (Keller and Segel, 1971a,b). This is not at all an unusual pattern of discovery. For 
example, Newton's equilibrium theory of lhe lides is utterly mislaken for seawater, but it served beau-

tifully for tides in the atmosphere when they were discovered. 



16. Growth and Regeneration 

One of the principal objects of theoretical research in any department of 
knowledge is to find the point of view from which the subject appears in its 
greatest simplicity. 

J. Willard Gibbs, 1881 

Many kinds of living organisms regrow appendages that are crushed or tom 
off in the mishaps of an active life. People have scarcely any abilities of this sort, a 
fact which contributes to their jealous curiosity about the mechanisms ofregenera
tion in more resilient organisms. This curiosity runs deeper than me re jealousy 
would motivate because regeneration in many ways resembles the initial normal 
development of an animal's structures. Normal development plus regeneration, 
collectively called morphogenesis, presumably operates by some general rules 
that we might at least elucidate empirically as aprelude to ferreting out deeper 
mechanisms. Yet for all the imaginative and meticulous efforts of at least four 
generations of developmental biologists, few general rules have stood the test of 
time. Ifprinciples of widespread applicability ex ist, they remain tantalizing obscure. 

A: The Clockface Model 

New hope in this area comes from arecent synthesis by French et al. (1976). 
They draw on experiments with the fruitfly larva's "imaginal disks" (the precursors 
of the adult fly's various appendages) (P. Bryant), with the legs of cockroaches 
(Y. French), and with amphibian limbs (S. Bryant). Their paper is an extremely 
impressive tour de force of focused experimentation and organization of data. 
They come up with two principles which together account for an extraordinary 
diversity ofpeculiar experimental results. Let me first re mark that what one takes 
to be "the principles" is presently subject to so much subjective interpretation that 
there are as many versions as there are people retelling this story. I will retell it in 
four principles, in such a way as to draw out the aspects of greatest interest in 
context of mappings and phase singularities. The reader will want to examine 
French et al. (1976), Goodwin (1976), Bryant, et al. (1977), Glass (1977), French 
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(1978), and Cummings and Prothero (1979) for other slants and for more dctailed 
references to the original experimental papers. 

The main point introduced by French et al. (1976) is that each tiny patch of 
tissue is somehow labeled permanently with an unchanging quantity that behaves 
like a phase or an angle in that it denotes a point on some abstract ring of states. 

French et al. (1976) place the digits 1-12 as indicators of local tissue specificity 
around the circumference of a limb or other developmental field. Many of their 
diagrams thus resemble the face of a clock. Although this notation gives the model 
its name, it unfortunately also requires a numerical discontinuity (12/1) where 
none is intended biologically. As we saw in Chapter 1, compass directions or hues 
of color provide more apt quantitization of a ring than do numbers borrowed 
from the realline. Whatever the notation, we cannot yet imagine what this circular 
state space might correspond to biochemically, but the following simple rules 
make use of it and suffice to systematize a lot of otherwise very perplexing experi
mental results. At an appropriate stage in regeneration, tissue will develop struc
tures (sensory hairs, muscle attachments, color patches) corresponding to their 
phase labels. This is an application of Wolpert's (1969) principle of separation of 
tissue specificity, encoded in some kind of chemical gradient, from the cell's 
interpretation ofthat "positional" specificity. 

Rule 1 : Each little patch of cells is labeled with a phase which is part of a smooth 
phase gradient across the tissue. Thus there exists a smooth map from the tissue 
to an abstract ring of biochemical specificities. Once established, this map does 
not change. (Note 1: Some independent second label is implicitly assumed, 
whereby to distinguish cell types in two dimensions.) Rule 2 introduces an ex
ceptional point ne ar which this map is not smooth. 

Rule 2: In the normallimb, the phase values are supposed to run one full cycle 
around the limb axis (the azimuthai direction) as in Figure 1. If a limb were a 
hollow cyclinder, this would pose no problem. But a limb has a foot or a hand 
at the end. (Note 2: Being a three-dimensional volume, it also has insides, a fact 
that we find expeditious to sweep under the rug.) Again we invoke the much-used 
theorem that there is no smooth map from a disk to a ring unless the rim of the 
disk maps with winding number zero onto the ring. Here the winding number is 
± 1 so we see that there must be a discontinuity. French (1978) showed that there is 

Figure 1. The circular dimension around an appendage is 
believed to be encoded in the cells by a time-independent phase
like quantity which increases smoothly around the appendage. 
For the sake of graphie clarity I sketch human-like appendages. 
even though mammals do not regenerate wh oie limbs. Most of 
the experiments used the less familiar-Iooking appendages of 

insects. 



A: The C10ckface Model 

Figure 2. The epidermis of the ap
pendage in Figure I is stretched out 
Hat. Six idealized phase contours are 
indicated. The dotted rings are 

fingernails. 

Figure 3. Any odd number of coun
terrotating singularities would satisfy 
the boundary conditions as wen as the 

one singularity of Figure 2. 
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no discontinuity along some "seam" running the length ofthe leg (the proximodistal 
direction) like an International Date Line. The discontinuity must therefore be 
more compactly localized than that. It might be an isolated phase singularity, as 
depicted in French et al. (1976, their Figure 1 = my Figure 8) and in Figure 2. 
Alternatively, there could be several isolated phase singularities, e.g., three, of 
wh ich two have opposite handedness and cancel out (Figure 3). 

Rule 3: (French et al.'s (1976) first rule, the rule of intercalation.) So long as the 
phase gradient is shallow enough (if adjacent cells are sufficiently similar in phase), 
cells divide only to replace those that happen to perish. But if cells with normally 
nonadjacent phases are juxtaposed (e.g., by cutting off a leg, rotating it, and 
sticking it back on), then those cells begin to divide in earnest. (Note 3: An exception 
apparently occurs at the singularity, where cells do not always divide although 
the phase gradient is infinitely steep there.) As proliferation continues, the new 
cells take on phase values intermediate "between" their immediate neighbors. 
Thus the phase discontinuity is soon bridged through newly regenerated tissue. 
(Note 4: There are two spans of phases, two arcs, "between" any pair of points on 
a ring. The new cells may "decide" to populate either arc. Which one? We evade 
this question for now as it will turn out to be superftuous.) Proliferation continues 
until it has restored the initial shallowness ofthe phase gradient in space. (Note 5: 
Some kinds of discontinuity cannot be smoothed over by intercalation of inter
mediates, e.g., a phase singularity such as French et al. (1976) postulate at each 
limb's distal tip.) 

Rule 4: (The second rule of French et al., (1976) the "complete circle" rule of 
distal transformation.) A new limb will grow out wherever there is a phase sin
gularity. It is left- or right-handed according to whether the winding number of 
phase around the singularity is + 1 or -1. Multiple limbs of appropriate handed
ness are possible, and as we shall see, occur in fact. Within a patch of tissue whose 
border has winding number W around the phase ring, there will emerge R light 
limbs and Lieft limbs and R - L = W. 



348 

LEFT 
FOOT 

16. Growlh ami Regeneration 

Figure 4. In the stippled cylinder of rcgencrating 
and healing tissue the transition is made from the 
c10ckwisc polarity of the left-handed graft (foot) to 
the countcrclockwisc polarity of the right-handed 

host (foreleg). A human limb is sketched only 
because its lefl and right aspects are familar to most 
readers; humans do weil to regenerate even as 

much as ;1 finger. 

Applying the polar coordinate rules by way of illustration, consider the re
generation of a severed foot. A layer of epidermis, a hlastema, grows from the 
cylindrical edge to cover the stump. By rules 1 and 3 and Figure 2, it must contain 
a phase singularity of the same handedness as the original foot. So by rule 4 a new 
foot ofthe same sort replaces the old.ln terms ofwinding numbers, W = ] (ür - 1), 
so in the simplest case R = 1 and L = 0 (or L = 1 and R = 0). 

Consider a second example in which a right foot is cut off and replaced by a 
left foot severed from the other leg. The cylinder of new tissue proliferating in the 
junction according to rule 2 is bounded by two complete circles of phase, as 
indicated in Figure 4. This two-part border has winding number W = 2 around 
the cylinder of skin it enc!oses. This is shown in Figure 5 by slitting the stippled 
skin along the li ne AB and laying it ftat: Along path ABB'A'A the phase increases 
by 0 + 1 + 0 + 1 cyc!e. Thus we expect two additional new right feet to emerge, and 
possibly any number of left-right pairs. In animals capable of regeneration, the 
actual result is indeed two additional right feet. [A Chinese woman suffered this 
very operation 1973, following piecemeal destruction 01' both limbs in a railroad 
accident (Mobile Medical Team of Wuhan Fourth Hospital, 1976). The inability 

6 --t---t,..,...·:· """.-J..,,' 'Ifj··f· I-··,.· ·H~:'.,.:,. -t.·: . ..,-: .. ;~' :,..,::'+--/-i~- ~ Figure 5, Thc stipplcd cylinder of Figure 4 is slit 

o ........ ;::..:...:+---1-- 3 open along thc line from AA ' to BB'. Lincs A'B' and 
T --t--+---,... . :/ l AB are the same, Contour lines and arrows show the 
----+-'~'-~.:-I~,;;;; ~/ '.R ~·-. *"", j ''-'-:-+---- smoothest way to join the oppositely oricnted phase 
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FORELEG Figure h. As in Figure 4 but the left foot is only 

rotated 180' rather than sufTering removal 10 a 
right slump. 
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Figure 7. As in Figure 5 but now the transition can be made by just twisting the contour lines through 
180 0 without invoking a singularity (a). In (b) an alternative construction invokes a pair of complemen
tary singularities. Any number of such pairs (here none above, one pair be1ow) would satisfy the experi
mentally imposed boundary conditions but some choices are smoother than others, depending on the 

topology and metric of the underlying state space. 

of human beings to regenerate limbs presumably spared all concerned an 
embarrassment.] 

As a last example consider a left foot cut off and replaced (Figure 6) 180 0 

rotated. By the same argument, we expect no supernumerary limbs, or else any 
number of left-right pairs (Figure 7). A common result is a right foot and a left 
foot. The other common result is no new limbs. 

B: An Alternative Description 

Superficially, the data compiled by French et al. (1976) would seem to argue 
forcibly that phase singularities do play a central role in the morphogenesis of 
higher animals, not only in the social amoebae (Chapter 15) and the ascomycete 
fungi (Chapter 18). 

This is a distinct possibility that I personally find very exciting, but it does have 
difficulties. These arise when we ask, as in the other organisms exhibiting phase 
singularities, wh at happens at the singularity? There is no abrupt discontinuity in 
cell type, no unique structure, and in apparent violation of rule 2, cells do not keep 
proliferating indefinitely. All this suggests that the proximodistal aspect of tissue 
specificity interacts in an essential way with the azimuthai tissue specificity 
represented on the phase ring. Though French et al. (1976) do not dwell on this 
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Figure x. On a piece (1f tissue, level contours of 
proximodistalness are drawn as rings concentric to 
the most distal point. Level contours of thc comple
mentary phase-like tisslie specificity are drawn per
pcndiclilar to these rings. The ? deno tes ambiguity 

of thc phasc-like quantity. 

interaction, it is implicit in their polar coordinate diagram (Figure 8) in which 
the proximodistal level is represented radially with the most distal parts (toes, 
fingers) at the center. 

If cells have two interdependent aspects of tisse specificity then one must ask 
wh at motivates the choice of one coordinate system over another on this two
dimensional state space. Of course, one would prefer a coordinate system natural 
to the topology of the state space. In the published experiments ci ted in French 
et al. (1976) I find no reason to postulate any exotic topology (a cylinder, a toroid, 
a Moebius band, a Klein bottle, or a sphere) for the two-dimensional state space. 
A plain piece of paper seems to have the right topology. One might also prefer 
coordinates natural to adynamie implicit in observations that states tend to 
evolve in a certain direction. The evidence for adynamie would be that homo
geneous patches of tissue change their specificity autonomously and predictably. 
I know no certain evidence of such changes after the earliest stages of growth. 
(However, see implication 1 below.) Also one might prefer a coordinate system 
that gives a preferred role to any unique tissue types (e.g., an indispensible organizing 
center such as the grey crescent of amphibian eggs or the pulsating tip of the slime 
mold slug). But I am not aware of any special pi aces or tissue types revealed by 
regeneration experiments. There is no natural origin for whatever co ordinate 
system we will use to describe the type-determining state ofa cell. In fact, since we 
know nothing of the biochemical basis anyway, we might abandon coordinate 
systems altogether. By dealing in a coordinate-free representation, we isolate the 
essential facts necessary for understanding the empirical results. 

C: Redescription in Terms of a Map Without Singularities 

A coordinate-free representation may be undertaken as folIows. Let us suppose 
a tissue specificity space (TSS). We endow it with enough dimensions (two) to 
distinguish cell types on a two-dimensional surface such as the surface of a leg. We 
depict as a position in TSS the latent tissue specificity of a cell or a patch of cells. 
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To each region in TSS there corresponds a type of structure that cells in that region 
will make when they mature. As we have done so often be fore, let us map the 
creature, organ, or tissue into TSS. There is nothing new in this procedure. This 
is only drawing a fate map, inside out as it were: Instead of drawing the organism 
in the real world and writing tissue names on an overlay, we write the tissue names 
at fixed places in tissue specificity space and then draw the organism as an overlay, 
distorted as required to put pI aces on their corresponding names. For example, 
a bilaterally symmetrie organ has a folded map so that two patches of cells sym
metrically disposed to the left and right of a mirror plane map to the same place 
in TSS. The mirror axis maps to a fold line (Figure 9). Now consider two pieces of 
an organism, normally not adjacent in the intact, mature stable organism. These 
appear in TSS as two islands of tissue. If they are now physically juxtaposed, this 
does not initially affect their tissue specificities, but dotted lines should be used 

HAIRY 

FUZZY 

NUDE 

TWO- DIMENSIONAL 

SPACE 

TISSUE 

SPECIFICITY 

SPACE 
(TSS) 

RED VIOL E T BLUE 

Figure 9. An imaginary organism (top, in physical two-dimensional space) is mapped to a two
dimensional spacc of tissue specificities (bottom, TSS). Each tissue is characterized by color and 
hairiness. The organism's bilateral symmetry corresponds to folding of its projection into a two
dimensional TSS. The discrete cdl types of a given genotype would occupy tiny polygonal regions 
of this plane. If there be discontinuities of "positional information" at the boundaries of compart-

ments or neids, then replace "organism" by "organ" throughout. 
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to connect the cells that are physically adjacent along the surface of contact 
(Figure 10). Unless TSS has some topology more exotic than [RD, it should be 
possible to make these dotted lines straight by suitable local stretching and 
twisting of whatever map we should first plot. The new map is as good as the old 
in the absence of any definite operational significance attached to the implicit 
coordinate axes, and it is better in that "in-betweenness" now acquires adefinite 
geometric interpretation.' We rewrite the rules now in four parts as above, using 
this geometric language: 

Rule 1: Each little patch of cells is labeled with astate wh ich is part of a smooth 
gradient of states across the tissue. This state is a point in a two-dimensional space 
of biochemical specificities, homeomorphic to the plane [R2 Once established, 
this smooth map does not change. 

Rule 2: No exceptional point or state exists. 

HAIRY 

FUZZY 

NUOE 

WOUND 
CLOSURE 

INTERCALATION 
OF MISSING 
CELL TYPES 

RED VIOLET BLUE 

Figure 10. A strip oftissuc is cut out ofthe organism ami its image. without allccting adjaccnt tissues. 
Physical apposition of the two surviving pieccs is symholizcd hy fine lincs in TSS connecting thc cells 
that come in contact. Daughtcr cclls arising as thc WOUBd hcals adopt tissue specificitics intermcdiatc 

betwecn their progcnito)'s'lalong the fine linesl. 

1 The alert reader may, with good cause, Iccl duhiollS ahout thc forcgoing. 011ce again I lind myself 
"The Man Without a Metric"lp. 16:1). S0111e work is l1eeded here. 



D: Applying the TSS Image Rules 353 

Rule 3: Cells proliferate at a rate determined by the local gradient of tissue 
specificity, i.e., determined by the distance between adjacent cells in TSS. If they 
are initially quite far apart (e.g., cells on the interface, connected by dotted lines in 
Figure 10), they begin mitosis. The tissue expands in physical space while its image 
in TSS remains unmoved but becomes denser with cells. Proliferation stops when 
the density of cells throughout the image has risen to a local norm, i.e., when the 
local gradient of tissue specificity has diminished to normal for each kind of 
tissue. There is no problem about endless proliferation at an unremovable phase 
singularity; No singularities occur. J ust as in the original rule 3, new cells take up 
tissue specificities intermediate between their physical neighbors. This is the 
intercalation rule exactly as above, but now in a two-dimensional TSS homeo
morphic to a plane. No ambiguity arises about intercalating along the "shorter" 
or "longer" are between two cell states. This is geometrically quite different from 
defining in-betweenness independently both on a phase ring and on an implicit 
proximodistal axis. The latter approach is equivalent to defining in-betweenness 
on the cylindrical product space. 

Rule 4: No separate rule is needed for induction of a limb. The image in TSS 
of any ring of tissue is necessarily a ring, and by rule 3 the tissue inside the physical 
ring must acquire the tissue specificities inside its image. At an appropriate stage 
in development cells will develop the structures by which their positions in TSS 
were named. If those should happen to include the distal parts of a limb (fingers, 
for example), then such structures arise when tissue specificities are interpreted 
biochemically, and we have a "lirnb". 

D: Applying the TSS Image Rules 

If the most distal structures are normally internal to more proximal structures 
in TSS, then amputation in the real world corresponds to ablation of a disk in 
TSS. Blastema formation followed by wo und healing corresponds to stitching 
across the empty disk dotted lines along which new cells take up the missing tissue 
specificities, restoring the more distal organs (Figure 11). Note that this picture 
in TSS is the same for right or left limbs. 

Replacing a left hand (L) by a right hand (R) on a left stump corresponds to 
cutting out the disk in TSS and replacing it with an identical disko But remember 
that because of the inevitable L-R mismatch in physical space, tissue connections 
from the (R) central disk reach across to the opposite side of the (L) hole (Figure 
12). We thus have a three-Iayered map across the distal core of TSS. The three 
layers are the existing hand and the cylinder of wound along the wrist that joins 
hand to forearm. The two new layers (the cylinder ofwound proliferation) have the 
same orientation, so that we get two replicate left hands. 

Or imagine that the arm is amputated at both ends. Both the proximal and 
distal blastemas must then span the middle ("hand") region of TSS. So mirror 
image hands must emerge (and do) at each end. This is the simple geometrie essence 
of the rule of distalization. According to this rule more distal structures regenerate 
from any stump even at the proximal end where, if regeneration were naively 
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PHYSICAL 
SPACE 

TSS 

Figure 11. Following French et al. (1976), the parts 01' a limh are supposed to hc so disposcd in TSS 
that more distal structurcs are concentrically interior to ll10re proxim;t\ structures. Amputation at any 
level thus deletcs a central disko Contact or"wrist" tissues across the stllll1p is indicatcd hy dottcd Iincs 

spanning the ahbtcd tlsslle spccilicities. 

expected to restore missing parts in an anatomically faithful way, one might have 
expected a shoulder to grow. 

And so on. All the diagrams of French et al. (1976) can be executed in this format. 
The phase circles of Glass (1977) can be constructed by drawing circles on the 

physical tissue and then following the circle images in TSS. The number of sin
gularities corresponds to the winding number of the image about an arbitrarily 
chosen origin for the angular coordinate system. The usual choice of origin is the 
distal-most tissue, but I see no biological reason to prefer such a choice to any 
other. From my point of view, the arguments of French ct al. (1976) and of Glass 
(1977) about circles, phase maps, and winding numbers amount to using a circle 
embossed on the organism as a means of bookkeeping the folds and rotations of 
the regenerating tissue's image in TSS. Glass's calculational procedure is very 
useful here because it takes practice to visualize handedness in TSS maps. But so 
far as I can tell, the predictions all come out the same with any origin for the polar 
coordinate system or (as done here) with no origin at all. 
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Figure 12. The experiment of Figures 4 and 5 is represented, not as there by joining up phase contours 
as smoothly as possible, but by examining the locus ofwound tissue in TSS hung between the surgically 
established boundary conditions. In physical space the left hand's epidermis is seen as a disk, like the 
disk of latex rubber from which a glove is molded. Its polarity runs counter to that of the fore arm to 
which it adheres through a cylinder of"new wrist'·. To plug them into Figure 11, hand and forearm must 
be oriented to a common polarity, which means flipping the hand's image. In TSS the hand's physical 
attachment to the forearm therefore twice crosses through the central (most distal) range of specificities. 

Two new hands of opposite polarity are thus induced in the new wrist. 

E: Experiments Needed 

False facts are highly injurious to the progress of science, for they often end ure 
long; but false views, if supported by some evidence, do !ittle harm, for everyone 
takes a salutary pleasure in proving their falseness. 

Charles Darwin 

Certain implieations of the geometrie viewpoint adopted above may allow 
eritieal testing: 

1. This style of mapping physieal media or organisms into astate spaee or 
a TSS differs [rom our previous examples [aseomyeetes (Chapter 8) and rotating 
diffusive struetures (Chapter 9)J in that no dynamie is postulated in state spaee. 
Applied to nondividing or relatively slowly dividing tissue, this is the assumption 
of epimorphosis. But dynamies may play an essential role in more rapidly dividing 
young or regenerating tissue. As Goodwin (1976, p. 175) was first to emphasize, 
this is a defieieney that needs attention. For example, eonsider the following: 

a. Although Freneh et al. (1976) address themselves exclusively to epimor
phosis (old eells retaining their speeifieity), some amount of morphallaxis 
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(re-specification) may commonly occur in regenerating limbs. According to 
Maden's interpretation (1977), this fact is assimilated by simply allowing our 
Rule 3 to govern wounded tissues even prior to cell division. This scarcely alters 
our diagrams. However experiments to elucidate the following two points are 
potentiaily more subversive. 

b. Every tissue starts as a ti ny patch of indistinguishable cells which, as they 
grow, acquire divergent specificities. Thus at least at some stage of development 
there is adynamie in TSS. Duranceau (1977) shows this empirically as achanging 
fate map ofthe immature imaginal disko Kauffman et al. (1978) provide an alluring 
linear theory of this dynamic. Bunow et al. (1980) critically refines their contribu
tion by pointing to the structural instability of linear models. The essence of 
reliable pattern formation must then come of non-linear amendments that remain 
to be specified. 

C. Peter Bryant's observations on transected imaginal disks of the fruitfty 
argue for a strong tendency of tissue specificity to evolve more proximally. The 
qualitative observation is that both edges of the cuts produce the same new 
structures : one piece exactly duplicates and the complementary piece regenerates 

PARTIAL 
DUPLICATION 

PARTIAL 
REGENERATION 

PHYSICAL 
SPACE 

CUT~ 

TISSUE SPECIFICITY 
SPACE 

Figure 13. (Above) The imagina1 disk of a fly's appendage is painted with reference circles and rect
angles (left) then mapped into TSS (right). Thc central (more distal) tissue is imagined to occupy dis
proportionately liltle space in TSS as though chemical concentrations change more slowly near the 

middle of the disk than near its edges. 
(Below) Cutling off a chord in physical space ([eft) severs a corresponding Iens-shaped piece in TSS 
(right). Both pieces fold to dose the cut edge and recover tissuc specificities intermediate between 
apposed boundary cells (fine verticallines). Mapping the regenerated tissue (stripes back into physical 

spaee (right to left) we find some bUf 1101 all of the missing tissue types restored. 
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completely. Thc knife line in Figure 13, though straight in the real world, is 
generally curved on the image of a disk in TSS, TSS being defined in such a way 
that in-betweenness follows straight lines. No matter how the cut edge heals 
onto itself, the proliferating cells will adopt tissue specificities intermediate (parallel 
lines) between points on the knife cut's image in TSS. These intermediates cannot 
include the whole domain occupied by the excised piece if the disk's image is 
convex in this TSS- and it must be, else the intercalation rule could produce tissue 
types not normally present. So transection of the disk leaves each part completely 
without access to some region of TSS occupied by the other part (Figure 13). 
Without a dynamic, one piece must fail to fully regenerate while the other fails to 
fully reduplicate. Transection experiments may thus provide the means to verify 
the existence of a dynamic and to quantitate the rates at which tissue specificity 
can change during normal growth and during regeneration. 

2. According to this coordinate-free representation, ablation of a feature on 
the symmetry plane of a bilaterally symmetrical organism (a tongue, a nose, a 
penis, a tail) corresponds to cutting a hole out ofthe fold ofthe two-Iayered image 
in TSS (Figure 9). Such a hole can heal in two quite distinct ways (Figure 14): 

a. Closing horizontally (top-to-bottom contacts), the hole in TSS would be 
filled again. Thus we would anticipate complete regeneration. 

b. In contrast, a vertical closure (side-to-side contacts) would join mirror 
image tissues. Thus, no proliferation would ensue. Even if it did, the missing tissue 
specificities would not be recovered. 

c. The results of diagonal closure must vary between the extremal results a 
and b according to the angle of the diagonal. This se ries of experiments may help 
to distinguish betwecn geometric interpretations of tissuc specificity. 

Figure 14. As in Figures 9 and 10, a bilaterally 
symmetrie appendage maps as a folded disk into 
TSS, unlike the unfolded disks of asymmetrie 
appendages in Figures 1- 3 and II -13. Amputa
tion ablates an interna I disk straddling the fold 
line in TSS. Wound closure might achieve inter
calation as in (a), regenerating, or as in (bj, without 

issue. 

a 

AMPUTATE 

b 
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In experiments by Bryant (1976) testing mode b, an artificially symmetrized 
double-lateral limb was constructed on an amphibian. FoUowing amputation, 
there was no proliferation and no regeneration. Slack and Savage (1978) did obtain 
regeneration in a similar experiment. The results were interpreted, respectively, 
as support for and as critical evidence against the elockface model. My first guess 
is that they had more to do with the difficulty of distinguishing between healing 
geometries a, b, and c. 

3. If one had to guess before observing, it might reasonably be supposed that 
an organism would respond to surgical challenges by intercalating positional 
values between given boundaries in the smoothest way. This surmise comes ofthe 
observation that paired phase singularities (left-right pairs of supernumerary 
appendages) are uncommon 1 where uniformity of phase might alternatively prevail. 

Why then does the experiment of Figure 6 commonly result in a left-right pair 
of limbs, adopting the bottom solution rather than the top solution in Figure 7? 
The top solution is plainly smoother in terms of phase alone. But it turns out that 
the bottom solution can be the smoother if the tissue's state can vary not only in 
phase but also in a conjugate quantity like the radius on apolar co ordinate diagram. 
It therefore seems to me important to ferret out the sources of variability in the 
outcome of such experiments. 

F: Summary 

Gibbs' injunction to seek simplicity (page 345) must be amended by Alfred 
North Whitehead's, " ... to seek simplicity and distrust it". For the present it 
appears to me that the existing experimental results reveal little more than that 
developmental fields map smoothly into a suitable descriptive space, wherein the 
images of new cells lie elose to the images of their progenitors. I hope that by 
posing the problem in this format I am encouraging the discovery of critical 
experiments to resolve present day ambiguity about the topology of that space, 
about its metric, and about the dynamical flow that presumably guides cells to their 
final positions in it. 

G : Historical Note 

I am grateful to Otto Rössler for drawing my attention to Bateson's Materials 
for the Study of Variation (1894), in which Figure 153 contains a most remarkable 
photograph (Figure 15). In this mechanical model Bateson summarized the 
constraints limiting the observed variety of naturally occurring anomalous 
appendages in the cockroach. The observed positions and orientations of legs 
suggest that each is mounted on a gear meshed to another gear supporting the 
adjacent leg of opposite handedness. It is only necessary to apply digits 1-12 

1 Ignoring the troublesome fact that most organisms are not featureless spheres and do have bilaterally 
symmetrical appendages. 
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R 

Figure 15. Figure 153 from Bateson (1894). Three roach legs are mounted on meshed gears 10 illus
trate "Bateson's rulc" of local mirror-imaging. This corresponds simply to local folding of the tissue's 
image in TSS. R is anormal right leg. P and Aare its posterior and anterior tibial spurs. SL and SR 

are supernumerary right and left legs. 

around each circumference of ge ar teeth to see that this contrivance captures the 
logical essence of the clockface model. The gear axles are the phase singularities, 
counted plus or minus according to sense of rotation by the index theorem of 
Glass (1977). Adjacent gears, necessarily of opposite sense, can be deleted or 
inserted by pairs,just Jike complementary singularities or left-right supernumerary 
appendages. 

This model of what we now call developmental fields might almost be taken 
from a late nineteenth century treatise on the aether, depicting its properties in 
terms of counterrotating gears or vortices. The aether, later called the electro
magneticfield, found more graceful description in Maxwell's vector field equations. 
Arecent paper by Cummings and Prothero (1979) provides the corresponding 
model of developmental fields. Geometrically, their picture is, I think, essentially 
what I have sketched in this chapter, but they say it in the language of vector 
operators rather than of mappings. This is made possible by adopting a specific 
quantitative assumption without which the mathematics would lose its elegant 
clarity. Cummings and Prothero map each cell from two-dimensional real space 
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(x + iy) to a two-dimensional tissue specificity space (u + iv). Here u = f(x,y) 
and V = g(x, y) as in Figure 5 of Chapter 1 but with the additional constraint that 
the gradient of v is assumed perpendicular to and proportional to the gradient of 
u. This makes u and v vary in space like steady-state solutions of the heat equation 
or the equations of electrostatics. This both guarantees smooth interpolation of 
tissue specificities and, as a special case of the diagrams more vaguely sketched in 
this chapter, gives us access to an elegant body of classical mathematics as a 
quantitative model. 

ACKNOWLEDGMENT. Conversation with Jay Mittenthai was particularly critical in thinking out 
this chapter. 
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The shop seemed to be fun of an manner of curious things-but the oddest 
part of it was that, whenever she looked hard at any shelf, to make out exactly 
wh at it had on it, that particular shelf was always quite empty, though the 
others round it were crowded as fun as they could hold. 

Through the Looking Glass 

A: Rules for Development 

Experiments with the limbs of amphibians, roach legs, and fly wing disks sug
gested to French et al. (1976) some simple rules governing growth and pattern 
formation in the insects and in higher animals. To apply these rules (Chapter 16), 
we must first find a point on a ring associated with each point on the animal's 
two-dimensional surface. French et al. argue that morphogenesis is conducted 
primarily within two-dimensional sheets of cells and that within these sheets cells 
know their identity in part as a point on a ring, which we might think of as an 
angle or a phase. The pattern of phase (together with a second, independent 
quantity) across the two-dimensional sheet determines the qualitative pattern of 
growth and differentiation. In particular, phase singularities play a crucial role, 
for example determining the number and handedness of limbs (Glass, 1977). 

Convenient as the notion of developmental phase may be for conceptual pur
poses, we still lack any direct way to measure the phase of a cell. Two potential 
clues are provided by cuticle, the plasticy exoskeleton that characterizes all the 
arthropods. 

Cuticle is made oftwo substances, a hard chitin and a more rubber-like resilin. 
These substanees are secreted from the underlying cells, not synchronously, but 
alternately. Thus, as the insect grows, the cuticle beeomes laminated in alternating 
sheets of chitin and resilin, some mierometers thick. This alternation is governed 
by a circadian clock. In the normal light-dark eycle, the distance between suc
cessive sheets of chitin in this lamina ted cuticle represents 24 hours growth. In 
constant conditions in the laboratory the alternation continues but now with only 
circadian period. It is not yet clear whether this period reflects the oseillation of 
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some central, perhaps neurosecretory, pacemaker or whether it is a local property 
deriving from the separate circadian docks in each cell that secretes cutide. 
Wiedenmann (1977) finds that the cutide dock is at least independent ofthe brain 
dock that controls activity rhythms. Zelasny and Neville (1972), Brady (1975, 
Section 3.2.4), and Lukat (1977) suggest that insect epidermis is a two-dimensional 
sheet of oscillators, each capable of autonomous cyding, but each coupled to its 
immediate neighbors. Thus, local synchrony might be maintained even when cells 
are not all entrained by the externallight-dark cyde. 1fthis were so, then the insect 
epidermis would have many organizational properties in common with the models 
oflocal oscillation in two-dimensional fungus mycelia considered in Chapter 18. 
In particular, there might be phase gradients, even circular phase gradients en-
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Figure I. A thin section through the hexago nal array of exocone lenses in a tiretly\ compound eye. 
Each lens is about 10 micrometers in diameter. From Wolken (1971, Figure 3. 12) with permission. 
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c10sing a phase singularity. Wh ether such spectacles occur normally and whether 
such phase patterns as might exist bear any resemblance to those inferred by 
French et al. (1976), no one has yet reported. But the record of local phase is 
presumably there, preserved in the insect's hardened cuticle, awaiting inquiry. 

B : Insect Eyes 

A very suggestive lead appeared on the cover of Science for 7 Sept. 1968 
(Figure 1). Similar photographs appeared in a few other publications, also without 
comment. These are all electron microscope pictures of sections through arthropod 
eyes in which alternating lamina of dark and light were quite conspicuous. The 
part in question, the corneal lens, is described in textbooks as a secretion from 
underlying cells, like other parts of the cuticle. The alternating lamina of dark and 
light cuticles are portrayed as tiny cups, all skewered concentrically on the optic 
axis of the lens (Figure 2). The cup-like shape of the layers of cuticle would be 
determined by the curvature of underlying cell surfaces and the relative phases 
of their secretory rhythms. Herman Gordon and I took a keen interest in this 
structure because sections (e.g., Figure 1) perpendicular to the plane of Figure 2 

uanophore 
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Figure 2. The cxocone lens (alias cuticular lens) from Fahrenbach (1969) with permission. The lens 
is depictcd as a nest of concentric layers secreted by adjacent cells. 
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Figure 3. (a) Schematic similar to Figure 2. (b) Cross-section perpendicular 10 pla ne (a) and to (a)'s 
long axis, as in Figure I. (c) Cross-section in plane (a). From Wolken (1971. Figure 3.13) with permission. 

showed not concentric ring-shaped zones of black and white as required by the 
textbook model , but rather a single-armed spiral winding into the center. 
Figure 3 shows both views. If the alternating black and white zones reflect alter
nating phases of a secretory rhythm, then the spiral pattern betrays a phase gradient 
in space which, in one full cycle of black to white to black, winds once around a 
symmetry axis. That means that the center of the spiral is a point of ambiguous 
phase, a phase singularity of the sort postulated by French et al. as an organizing 
center for discrete organs such as arms, legs, wings, antennae, and, in this case, 
perhaps the single cornealiens. 

It turns out that this growth rhythm has much shorter than circadian period. 
The growth rate of lens cuticle is such that the period works out to minutes to an 
hour. We are not looking at Zelasny and Nevilles' sheet of long-period clocks. In 
fact, an entirely different interpretation comes to light with the realization that 
although in oblique sections the dark zones appear much more widely spaced, 
they are only a few tenths of a micrometer apart in three dimensions. It turns out 
that cuticle is not just an amorphous, isotropie plastic. It is richly structured, 
similar in architecture to cholesteric liquid crystals. We owe this remarkable 
discovery to A. A. Michelson in a remarkable paper written late in his dazzling 
career. There we read of the beetle Plusrio! is /"csplcl1dcl1s , whose 

whole covering appears as if coated with an electrolytic deposit of metal , 

with a lustre resembling brass. 

Michelson, 1911 
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Finding that light reflected from this surface is circularly polarized, he conjec
tured, 

The effect must therefore be due to a screw structure of ultramicroscopic, 
probably of molecular, dimensions. 

Michelson, 1911 

This startling insight collected dust in libraries for the customary half-century 
before the riddle was solved in detail by the morphologist and geometer Yves 
Bouligand. 1 Bouligand (1965) brilliantly inferred that arthropod cuticle is com
posed oflayers of parallel chitin fibrils whose orientation rotates as one penetrates 
deeper into the cuticle normal to the planes of parallelism. The fibrils' orientation 
turns through 3600 in about a micrometer ofthis laminar material, thus completing 
a fuH cycle of semi-crystaHine ultrastructure in about the distance occupied by a 
wavelength of visible light. This kind of architecture is common to aggregates of a 
wide variety of elongated macromolecules (Bouligand, 1978) including the collagen 
constituting the corneas of certain vertebrate eyes (Trelstad and Coulombre, 1971; 
Gordon, 1976); the DNA packed into cell nuclei (Bouligand, 1972a; Livolant et al., 
1978) or into sperm heads (Sipski and Wagner, 1977); and the cellulose deposited 
in the walls of growing plant cells (H. Gordon, ms. circulated privately in 1976). 
As Michelson foresaw even before World War I, much ofthe iridescent decoration 
of insect cuticle derives from this helicoidal periodism in the molecular archi
tecture of chitin (Neville, 1975). 

C: Micromechanical Models 

Bouligand (1972a) was the first to realize that the zones of light and darkness 
seen in microtomed sections of cuticle are not different materials at all, but arti
facts of mechanical interaction between the moving microtome knife and the 
cuticle's periodic fibrillar ultrastructure. 

Bouligand argued that the dark regions, as seen by the electron microscope, 
arose where the chitin fibrils had a certain three-dimensional orientation relative 
to the knife's path. But Bouligand's liquid crystal model of chitin implies a certain 
kind of mapping from any slice of chitin W) to the sphere of fibril directions (§2). 

According to the idea that certain fibril orientations result in local darkening, that 
region of orientations can be painted dark on §2, indicating that darkness is ac
quired by whatever parts of the slice 0 2 ) map onto that region. It turns out to be 
implicit in the symmetries of liquid crystal architecture that the pertinent maps 
must be two layered, in such a way that if some locus in 02 acquires darkness, then 

1 If you love geometry, look at Bouligand's papers on disloeations in liquid erystals (Journal de 
Physique, 1972-1974). They are full of astounding singularities, including eusps, serews, and even 
Möbius bands. At least some ofthese have been identified in biologieal materials and may play essential 
roles in the meehanies of plant eell elongation and of ehromosome eondensation. The literature of 
liquid erystal spherulites (of polypeptides, DNA, ete.) likewise is a study in singularities, sinee there 
is no way to smoothly map a sphere's surfaee to the ring of possible compass orientations for moleeules 
on that surface. See also Sionezewski and Ma10zemoff (1978) on orientational singularities in three 

dimensional magnetie bubbles. 
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Figure 4. Computer simul ation supposcd to rep
resen! a cross-section similar to those in Figures I 
and 3(b). Each tiny dot is the endpoint of a chitin 
fiber. The dots werc initially unifoTmJy den se, then 
each was slightly displaccd according to Jocal fiber 
orientation relative \0 microtome knife motion. 
Orientations were descrihed mathematically accord
ing to the obscrved curvatures of cuticle in the 
exocone lens ami Bouligand's liquid-crystal model 
of chitin. The displacements create a single-spiral 

locus of thickening and thinning. 

so must another, symmetrieally disposed, loeus. So if there is only one spiral of 
darkness then either Bouligand's liquid erystal arehiteeture is wrong (a repugnant 
not ion) or (more likely) the spiral is not after all a mierotoming artifaet ofthe sort 
postulated, Then might there still be something to discover in this phenomenon, 
something about rhythmie seeretion, phase maps of nonzero winding number, 
and a morphogenetie phase singularity? 

This was my hope. Unfortunately, however, Gordon and I managed to contrive 
an alternative meehanical model by whieh the single spiral of darkness could 
arise as an artifaet of mierotoming. Aeeording to this simple interpretation (as yet 
untested by experiment), the moving knife compaets material in eertain pi aces by 
inducing relative movement between chitin fibrils and their surrounding matrix 
(Gordon and Winfree, 1978). Mathematieally describing the helicoidal structure 
of cholesteric liquid crystals in a computer and arithmetieally displacing fibrils 
according to this rule of movement, we obtained patterns of compression such as 
in Figure 4. These look disappointingly similar to the patterns observed, for 
example, in Figures 1 and 3. 

Under this interpretation, the phase singularity at the center of the dark spiral 
is nothing more than the point of tangency between a plane of parallel fibrils and 
the cutting plane of the knife. Thus a phase singularity in the formal deseription 
of an object does not necessarily indieate an event of singular interest. 

In the next chapter we review some facts about the development offungi which, 
on a much larger scale, again display this same geometrie pattern: a spiral derived 
from spatial periodism in which the phase of a rhythm has a nonzero winding 
number around a ring of tissue. Is anything of physiologieal interest assoeiated 
with the encircled phase singularity in this ease? 
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Good problems and mushrooms of certain kinds have something in common: 
they grow in clusters. Having found one, you should look around; there is a 
good chance that there are some more quite ne ar. 

(See also Chapter 9, Box c.) 

H. Polya, p. 65 of 
How Ta Salve It 

In Chapter 12 we dwelt on a biochemical dock in an ascomycete, the yeast 
cell. The familiar bread molds and their relatives are also ascomycetes. They are 
called colonial ascomycetes because of their habits of growth. Like animals, these 
fungi derive their energy by oxidizing organic fuels. Like plants, they grow where 
the seed falls and feed through roots. An ascomycete colony starts when a spore 
falls on a food surface. It germinates and extends a fine web ofhair-like filaments, 
called hyphae, across the food as an expanding disko This two-dimensional disk 
of hyphae is called a mycelium. It is not really a cellular organism since the septa 
dividing hyphae into tiny compartments typically have holes in them, so that 
cytoplasm fiows freely between the compartments. 

It is not unusual to find mycelia banded with concentric rings ofheavy growth 
and/or sporulation. In many cases, these rings turn out to be 24 ho urs apart on 
the expanding disko Each ring marks those regions that were in a certain range of 
ages when it was daylight, or hot, or wet (or whatever) in the diel cyde, much as 
rings of heavier growth mark the annual seasons of a tree. 

Setting aside such cases of obvious environmental infiuence, there remain a 
vast array of papers describing spatially periodic growth in ascomycete mycelia. 
Independence of environmental rhythms can be verified in these cases by adjusting 
either the growth temperature or light intensity or nutrient conditions to change 
the period, or by using a transient stimulus of the same sort to infiict a permanent 
phase shift in the growth rhythm. 

What might cause such banding? We may be short of explanations, but there 
is no lack of plausible conjectures and little reason to expect any one of them to 
cover all cases (see Winfree, 1973d). 

By a daring leap of faith, we might for example conjecture that what is not 
driven by an extern al rhythm of environment al conditions is driven by an internal 
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metabolic rhythm. Only recently has a single experiment been published showing 
repetitious activity of any sort in patch of hyphae [Dharmananda and Feldman 
(1979) in the case of Neuraspara crassa]. 

An alternative seems equally plausible, i.e., that conditions on the fron tier of 
growth locally determine the immediate activity mode of newly created cells, 
which in any case soon lapse into a standard metabolic condition as the growth 
frontier moves on. For example, frontier cells might be transiently disinhibited to 
"high" activity if and only ifthe nearest high activity event was a sufficient number 
of hours in the past andjor sufficient number of millimeters behind the growth 
fron tief. In the latter case, some mechanism of transport, such as cytoplasmic 
streaming or diffusion must be invoked to separate events in space. Models ofthis 
sort have been exploited to good advantage in connection with periodic banding 
of bird feathers (Nickerson, 1944), Liesegang ring formation in inorganic gels 
(Stern, 1967), etc. 

H seems appropriate to look at these phenomena with respect for the diversity 
of nature's inventions. We first cursorily survey similar phenomena in four 
ascomycetes and then stick to one for a more detailed correlation of facts. 

A: Breadmold with a Circadian Clock 

Neurospora erassa, the geneticist's favorite mistress before E. eali, exhibits 
several mutant varieties of circadian rhythm as well as banding rhythms of other 
periods. These currently offer some of the best clues to a circadian clock's bio
chemical mechanism. The typical circadian rhythm properties of temperature
compensated period, suppression by dim light, phase re setting by brief exposures 
to blue light, and clarity of period are best exhibited by the "band" mutant, usually 
grown on very long "race tubes." In this technique, a floor of nutrient agar is 
poured in a U-shaped glass tube with a wide flat bottom. The inoculum of spores 
or hyphae placed at one end soon elaborates a mycelium which propagates at a 
uniform speed of about 1 mm per hour across the sterile nutrient. After a weeks' 
growth in constant darkness at 25 c C, six to eight bands are found to be placed at 
circadian intervals along the tube. Within each band, spores differentiate in the 
mycelium's luxurious aerial arborization (Figure 1). Abrief exposure to light 
increases or decreases the interval to the next band, depending on the phase ofthe 
rhythm at exposure time and the amount of light given. After that phase shift, 
the rhythm continues at circadian intervals, but phase-shifted relative to the 
series ofbands preceding the stimulus. Thus resetting curves can be measured as in 
any other circadian rhythm. Type 1 (weak) resetting is observed following brief 
enough exposures. Type 0 (strong) re setting is found after greater exposures 
(Feldman, Dharmananda, pers. comm.). 

Dharmananda and Feldman additionally tested bits of mycelium behind the 
frontier for their phase. This is done by cutting them out and transplanting them 
to a new race tube to observe band phasing in the renewed growth, as Chevaugeon 
and van Huong (1969) had done previously with the rhythmic ascomycete 
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Figure I. Rhythmic banding in ra ce tubes -4 
of Neurospof(/ ··timcx" (= an invertase-
delicient strain of"band") from unpublished 

experiments of W. Engelmann. This stack 
oftubes is prescnted in the format ofFigures e 0 
31 through 33 of Chapter 1, calibrated in 
cycles o f 21 hours . Growth is vertically 
downward. Thc stimulus was a cold shock 4 

which scarccly alfected the rhythm. 

o 
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Ascobolus immersus. However, unlike Ascobolus, it appears that each patch of 
Neurospora mycelium, even many days old, continues to keep time with the same 
circadian rhythm. The whole mycelium apparently remains nearlyl synchronous 
in phase beneath the waves of growth and sporulation that record each patch's 
phase at that moment long aga when it passed a decisive age. Demonstration of a 
persistent dock in a fungus is not surprising in itself. The docks of Daldinia (lngold 
and Cox, 1955) and of Pilobolus (Bruce et al., 1960) were studied 20 years earlier, 
but this is thc first demonstration that a dock underlies the spatial periodicity 
of a fungus. 

B: Breadmolds in Two-Dimensional Growth 

Although much less studied, Penicillium divers um also exhibits a rough 24-hour, 
temperature-compensated rhythm of growth and sporulation. In this case, how
ever, no sensitivity to visible light has been shown. Because its frontier moves 
much more slowly, it is convenient to culture Penicillium diversum as a disk on 
two-dimensional agar plates, not only along essentially one-dimensional slants. 
In this conflguration, Bourret et al. (1969) made a most remarkable observation: 
Though many mycelia are banded in concentric cirdes 24 hours apart, many also 
make a single continuous band winding round and round the inoculum as an 
Archimedian spiral (Figure 2). Along any radius (equivalent to a radial ra ce tube), 
zonation has a 24-hour rhythm. But as one changes the azimuth of the chosen 
radius, the phase of that rhythm drifts, drifting through one fuH cyde as the 
imaginary race tube is rota ted through 360 '. 

I More exactly. Dharmananda and Feldman (1979) find a phase gradient of about 11 hours per day's 
growth, suggcsting that young hyphae right on the contemporary frontier cycle that much faster than 

older hyphae left behind on staled medium. 
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Figure 2. /\ spiral locus of heavier sporula
tion on a disk-shaped mycelium of Penicillium 
di l'ersum, from Bourret et al. (1969) copyright 

,\ 1969 by the American Association for the 
l Advancement of Science. 

Archimedean spirals of zonation, as an occasional alternative to the more 
usual concentric rings, were also reported in Chaelomium rohustum, another 
filamentous ascomycete with a 24-hour rhythm on nutricnt agar (Kraepelin and 
Franck, 1973). 

C: Pattern Polymorphism in Bourret's Nectria 

Another ascomycete, identified as N ectria cinnabarina 2 exhibits a noncircadian 
16-hour rhythm of growth and sporulation in slant tubes. lt has the same habit 
in two dimensions (Figure 3). Its bands are approximately 1 millimeter apart at 
20°C. By shaving all the surface growth off an agar plate like that of Figure 3, 
one obtains an agar layer containing bands of denser and lighter growth. Running 
this through a densitometer, and plotting the positions of successive density 
maxima along any radius, one obtains a distinctly periodic record. Figure 4 shows 
the distribution of distances (0.9 ± 0.2 mm) between 264 adjacent bands. This 
interval and its variability showed no conspicuous differences with age or distance 
from the inoculum in the 10 mycelia examined. 

In two-dimensional growth, Nectria's bands appear as distinct rings nominally 
1 mm apart in about two-thirds of the colonies, and as clockwise and counter
clockwise spirals in about two-thirds of the remainder. Nectria has also been 
caught making distinct two-armed and three-armed spirals. In such ca ses, each 
arm winds around at a pitch of 2-mm or 3-mm (respectively) per 360". Thus bands 
along any radius occur at I-mm intervals as usual. The difference is that the phase 
of the radial rhythm progresses through two or three cycles rather than one (as in 
one-armed spirals) or zero (as in disjoint rings) as thc chosen radius is swung 

2 Probably misnamed. It is not the same as the British N. cinnabl1ril/o Ithe "conti spot fungus") nor 
the same as the N. cinnabaril1a that decimated N.Y. State beech trees in 1975. According to the rat her 
confused taxonomy of order Hypocreales, 10 which family Nectriaccac belongs, N.c. is the perfect 
stage of a fungus whose imperfect stage (fusarium) is called TL/bereu/aria l"II/garis (Bcssey, 1950, p. 287). 

Hypomyces may be another name for Neclrio. 
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Figure 3. This disk-shaped mycelium of Nectria, printed at actual size be ars two spiral ridges of 
spores. Note the glass coverslip inserted deep into the agar radially at 2 o'c1ock before the mycelium 
had grown big enough to touch the glass. lt has no discernible effect on the sporulation pattern. The 
wedge-shaped patches are colonies of faster growing mutants. See also the cover photograph of Sciem'e 

for November 7, [969. 

Figure 4. This histogram c1assifies into lOO-llm intervals 264 
measurements of the distance between adjacent bands. The 

NUMBER OF BANDS 
80 

measurements were read by computer from densitometer trac- 40 
ings of hyphal density in shaved agar along radial tracks from 

the inocula of ten g-cm mycelia. 

20 

10 

mm 
SPACING 

through 360 0 of azimuth. Figures 5 and 6 show digitizer tracings of R(4)), the 
radial distance of a spore band from the inoculum as a function of compass angle: 
Figure 5 is the two-armed spiral of Figure 3 and Figure 6 is a one-armed spiral. 
The spacing between successive bands is nominally 1 mm in both cases. 

This situation lends itself to several different styles of description. For example, 
one might emphasize the global integration of pattern: Spores differentiate along 
an integer number of distinct rings or spiral arms, each of which either encircIes 
the inoculum concentrically (in the case of ring morphogenesis) or (in the ca se of 
spiral morphogenesis) winds at mean pitch proportional to the number of arms. 
This point of view raises challenging questions about the large-scale integration 
of pattern. How are the distinct loci of sporulation distinguished? At various times 
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Figure 5. Figure 3 was placed on a digiti zer platen while the electronic cross-hair was moved by hand 
and eye along the locus of densest sporulation. Its position was continually plotted in millimeters from 
thc mycelium's center (vertically) and in degrees of azimuth from nDrth (horizontally). Thc first 360 
panel was replicated 6 limes so that both spirals can be followed through scvcral complete turns without 

jumping back from 360 (00 . 
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Figure 6. As in Figure 5 but thc sporulation locus is a single spiral of opposite handedness in a different 

petri dish. The radial spacing is about the same as in Figure 5. 

during growth of the disk-like mycelium, each one is interrupted by the frontier 
at several places, yet as the mycelial disk expands, they grow together exactly. 
How do the segments of each successive ring "know" that they belong with the 
other segments of that ring and avoid joining up with segments of other rings 
currently under construction elsewhere? üne is led by these questions to consider 
possible channels of long distance communication within the mycelium, such as 



0: Integration of Pattern 373 

the waves postulated by Goodwin and Cohen (1969) [and in fact seen in 
Dictyostelium (Chapter 15)]. But by implanting glass barriers, cutting out pieces, 
etc., it can be quickly shown that pattern formation is independent of spatial 
continuity and continuity (Winfree, 1973d). Integration of pattern is somehow 
managed on a local basis. 

D : Integration of Pattern 

Another elue is afforded by looking for the most predictably reproducible 
aspect of the observed patterns in hopes that it may suggest the appropriate lan
guage of description, which in turn may suggest a mechanistic basis for the terms 
used. For example, is the slope dRjdcjJ of the spiral reliably predictable? No. 
Neither the distance to the frontier from a spore ridge, nor its distance from the 
inoculum varies regularly with angle (Figures 5 and 6). The only sure thing is that 
the average slope on a fuH cyele of 3600 azimuth will be an integer. 

To cut a long story short, what is most re1iably conserved is the nominal1-mm 
periodicity along each radius (Figure 4). Even when the pitch of spirals or rings 
changes by local quantitative variation or by a global qualitative change of 
connectivity, still a I-mm spacing is conspicuous in densitometer tracings made 
along every radius. The standard deviation ofthis spacing is fuHy 22% ofthe mean 
and shows no serial correlations (unpublished computations). This makes it about 
half again as unreliable as the notoriously variable menstrual period (Chapter 23). 
But the essential point in present context is that the spacing is not correlated with 
pattern topology: It does not double or halve in two-armed spiral patterns. 

A second reliable feature is the propagation of pattern defects along the direc
tion of growth. It commonly happens that rings do not quite elose: There is a 
mismatch as in a lock washer. Maintained during cyc1e after cyc1e of growth, this 
sudden change of phase with azimuth becomes the site of a radial mismatch of 
many bands, resembling a zipper or an edge dislocation in a crystal. Only after 
many cyc1es do the adjacent hyphae synchronize weH enough for bands to cross 
this radius smoothly. This feature points once againt to substantiallocal autonomy, 
certainly so far as interactions transverse to the me an direction of growth are 
concerned. 

A third reliable feature is that zonation patterns are always concentric to the 
inoculum. The centers of rings and the pivots of spirals are always where the 
colony started. 

If we choose to emphasize these elues over others, then the natural terms of 
description will feature the radial rhythm and the variation of its phase with 
azimuth. The c1ues that suggest local autonomy lead us directly to a simple 
interpretation in terms of such a local oscillation as has been widely assumed for 
many years and recently shown in N eurospora. The c1ues that point radially to 
the inoculum suggest that we seek the origin ofthe topologically distinct morphs in 
the initial condition of the germinating mycelium. 

So my next experiment asked, "Does the shape of the inoculum determine 
the choice between the several patterns of differentiation?" I found no way to 
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classify the microscopically observed shapes into groups that correspond to the 
eventual patterns that each develops. So my answer is "no". 

Then "might the initial conditions be invisibly latent in the hereditary material?" 
The required experiment is to grow a mycelium from a single spore, collect its 
identical asexual spores, and plate these separatelyon agar, several to a dish. Each 
dish turns out to contain mycelia of the several various morphs even though each 
is started from genetically identical units and is grown under identical culture 
conditions. This is so even if the spores are floated on a Millipore raft on a sea of 
liquid nutrient to make culture conditions just as homogeneous as possible. 

So it would seem that the difference between initial conditions is very subtle 
and delicate, though these differences do lead to qualitatively distinct patterns of 
differentiation into sporulating and nonsporulating hyphae. In other words, we 
are looking for some reasonable interpretation of a singularity. lt turns out that 
the kind indicated is just the kind found to underlie the helicoidal resetting be
havior of circadian docks. (See Chapter 4, Section C and Chapter 8, Section c.) 

But what about other internally rhythmic ascomycetes that do not make 
several alternative rhythmic patterns, but stick to one reliably? That one is always 
the concentric ring pattern, with rings parallel to the frontier and concentric to 
the inoculüm. When it occurs, spiral polymorphism reveals something intriguing 
about the mechanisms of differentiation and pattern formation, but why is it so 
rare? At present this question can only be answered by conjecture in terms of a 
proposed interpretation of N ectria's biochemistry. Such conjectures are found 
at the end of Chapter 8, Section C. 
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Time sleeps quite naked, Anaitis, and, though it is a delicate matter to talk 
about, I notice he has met with a deplorable accident. 

So that time begets nothing anymore, Jurgen, the while he brings about old 
happenings over and over .... 

J urgen, J. B. Cabell 

One doesn't have to look at many living organisms before noticing that a lot 
of behavioral physiology is tempo rally organized in periodic patterns. In fact, if I 
had to decide what impresses me as the single most conspicuous feature of natural 
ecosystems, I would say that it is the daily and seasonal periodism and the con
sequent temporal organization of niche structure, food webs, and behavior. Of 
course, it would seem natural to assume that any given daily rhythm or seasonal 
rhythm is a response to the environmental cycle of days and nights, summer and 
winter. This is often the case.1t is, for example, in the case of"deepscattering layers". 
These are layers of diverse fauna in all the world's oceans that show up very clearly 
on sonar. They go deeper in the daytime and rise back toward the surface by night. 
My job on an Indian Ocean Expedition cruise from Woods Hole in summer of 
1964 was to study these deep scattering layers using sonar and tow nets during 
their diurnal up-and-down migrations. Investigators in Cousteau's diving saucer 
found that the deep scattering layer consists largely of small fish. They seem to 
simply follow light intensity, e.g., they come up during eclipses. Enright and 
Hamner (1967) later found a substantial role of endogenous rhythmicity in the 
vertical diurnal migrations of invertebrates in the scattering layers. 

That opportunity to participate in field work in 1964 started me wondering 
about the dynamics of physiological rhythms in general. Probably the most 
pervasive physiological rhythms, phylogenetically speaking, are the ones with 
24-hour period, a subject on which Colin Pittendrigh had delivered one of his 
typically enthralling lectures at Cornell shortly be fore my summer at sea. Thus I 
learned that 24-hour rhythms are commonly found to continue at about the same 
period even when apparently isolated from all diurnal inftuences. The period is 
often quite exact, but sei dom exactly 24 hours. In other words, organisms have 
endogenous rhythms: circadian rhythms as they are called from the Latin meaning 
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Box A: Possible Clinical Relevance of ircadian Rhythm in Human 

This Box provide an a ortment of refcrenccs in chronological order. The papers 
and books Iisted are only lho e that I ha e run acro and found eonvincing or otherwi e 
timulaling. The li I i far from complete. Many of the e paper repon experiment not 

aClually on man, but on laboratory mammals. I indude them on presumplion ofsimilar 
etTeet in human phy iology. Much ofthe work take place in diel cyde rather than in 
the externally con tanl condition rcquired to ob er e cndogenou 0 ci llators. Thu . 
I am not di tingui hing here between a pect of temporal organization imposcd by an 
internal circadian dock (eg. the adreno-eortical ystem in man) and a pcet imposed by 
external 24-hour dock ( ia light chedule, meal chedule and exereise schedule). t the 
time of writing, thi literature i ju t beginning to grow. It will pre umably be vcry much 
more cxtensive by the time you read this. The follOl ing bibliography might therefore 
be mo t u eful a a ource Ii t for finding newer re earch papers and review in Scien e 
Citation Index. I 0 cc haplcr 22 on eireadian regulation of milo i and Chapter 23 
on circadian involvement in rcproductive cycle . 

Halberg et al. 1960 Hau ct al. 1974 
Hellbrügge 1960 1974 
Pizarello el al. 1964 1975 
Ascholf 1965a 1976 

heving et al. 196 Moore-Ede et al. 1976 
onroy and Mill 1970 ollberger 1976 

Kraft et al. 1970 Weitzman 1976 
olq uhoun 1971 Halberg 1977 

Luce 1971 Mile et al. 1977 
Reinberg and Halberg 1971 Moore-Ede et al. 1977 
Haus et al. 1972 Palmer 1977 
Wongiwat et al. 1972 ulzman et al. 1 977a,b 
Mill 1973 Fuller et al. 197 
hackel ford and eigin 1973 oore- de el al. 1978 
rquhart 1973 YOllng 197 

Most ofthe above concern normal rhythmicity of dinical norm and of the elfect of 
drllg in man or imilar laboratory animals on a 24-hollr chedlile. The following concern 
tran ient di rllption of the 24-hollr chedule as in time-zone hift by air travel and in 
unu lIal departures from 24-hOllr cheduling ueh a in pace travel. ubmarine patrol , 
and polar expedition. 

Flink and Doe 1959 We er 1973 
chofT 1965a JOllvet et al. 1974 

Hauty and Adam 1965 Ehret et al. 1975 
AchofT el al. 1967 Klein and Wegmann 1975 
LaFonta inc ct al. 1967 Wev r 1975 

schoff 1969 choff and Wever 1976 
hri tie et al. 1970 Mill et aJ. 1977 
Iliott et aJ. 1972 Moore- de et al. 1977 
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"roughly daily". The word has, unfortunately, become Americanized to cir-ca'-dian, 
with the result that more than once I've been asked after a lecture on "cicadian 
rhythms" why I never got around to the subject of the 17-year cicada. 

The observed circadian rhythms are said to reflect the functioning of a bio
logical dock. It is called "biological" because it is apparently generated from 
within the organism, and it is called a "dock" because it measures time in a periodic 
way, sometimes with surprising precision, with period dose to 24 hours (see Box A). 
Circadian rhythms have been found in every major group of animals and plants 
except the procaryotes, which comprise viruses, bacteria, and blue-green algae or 
cyanobacteria. There exist two reports of vague circadian rhythmicity in bacteria, 
but both await confirrnation (Rogers and Greenbank, 1930, analyzed by Halberg 
and Connor, 1961; and Sturtevant, 1973). 

In protozoa and algae we find 24-hour rhythms of capa city for photosynthesis, 
of mitosis, of motility, and of bioluminescence. In some fungi there is a daily hour 
of spore discharge. In plants there are diurnal rhythms of leaf movement and of 
flower opening and dosing. Many kinds of insects periodically regulate the times 
of egg laying, egg hatching, and emergence from the pupal case (see next chapter). 
Vertebrates induding man have conspicuous circadian rhythms of activity and 
sleep, ofbody temperature, and ofhormonal activity. Menaker et al. (1978) provide 
an excellent recent review, focused on five specific experimental systems. Box A 
provides a bibliography of medically-pertinent literature. 

Besides regulating the daily activities of organisms adapted to life on a rotating 
planet, circardian rhythms have become involved in se aso na I adaptations to life 
in orbit around a star. Circadian docks are involved in the measurement of daily 
photoperiod to govern flowering in agricultural plants; to regulate diapause in 
their pest insects; and to organize migration, navigation, and reproductive sea
sonality in the vertebrates. 

The rest of this chapter is divided into three parts to review some general 
characteristics of circadian rhythms, to speculate "without fig leaves", as Bacon 
said, about their evolutionary origins, and to gather observations suggesting 
multioscillator organization of "the dock". 

A : Some Characteristics of Circadian Rhythms 

Circadian organization is one of the most pervasive facts of physiology and 
of ecology. The mechanism of endogenous temporal organization is unknown, but 
is surely mediated by different organ systems and biochemical pathways in men, 
fruitflies, paramecia, pigweeds, and bread molds (see Section B). Yet some aspects 
of function seem alm ost universal: 

1. A spontaneous periodicity of about 24 hours (Box B). 

2. Relative temperature independence ofthat period so long as the temperature 
is constant (see pages 379-381). 

3. Persistence of the rhythm even in the smallest unit of biological function, 
the single cell. 
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Box B: Is 24 Hour a Long Time? 

Per on lrained in chemi tr , phy ics, and electroni often express surprise that a 
biophysical objecl can generale aperiod a long a a day. ould such long period be 
compounded from oscillation of horler per iod ? For example, two 0 cillators ofsimilar 
hort period could generate a beat note with aperiod much longer than either oscillator. 

Or a counter could re et only after accumulating a thou and tick ofa milliday 0 cillator. 
lmo t all ommercial clock work lhi way. Such analogie have often been invoked 

for biological clock (Piuendrigh and Bruce, 1957, p. 94; Schmitt, 1960; Higgin , 1967; 
Pye, 1969; Pavlidi , 1969). r have never found thi vicw very plau ible becau e : 

I. The repha ing behavior of circadian clock mechani m give no hint of hort
period repelilions, and 

2. Mo tuch scheme make the long period extremely en itive to changes in lhe 
hort period (see Ty on et a1., 1976). 

My own beliefi lhat ponderou Iy low dynamic proces es are unfamiliar not becau e 
they are in any sen e rare or can only arise by compounding the more common short
period oscillator , bul only because long period are inconvenient in the laboratory. 

ntil recently, environmental control and mea uring instrument were eldom built 
to tight pecification for ba eline drift on time cale greater lhan several hours. Anyway, 
few oul are bold enough 10 found a career on one datum per day. 

hemical proce e which, at least in lheory, greatly expand the time cale offamiliar 
kinetic eherne without invoking the biochemical cquivalent of a gear box ha e been 
advanced by many theori ts since at lea t 1960, a noted on page 380- 381. To me il 
hardly eem nece ary to struggle with familiar fa t kinelics in order 10 contrive a low 
proce . Simpl becau e they are low we are unfamiliar with prolracted reaction , like 
tho e involved in aging or in the female endocrine cycle or in replacement ofmembrane 
pho pholipid . It eems to me rea onable to look here for Ihe mechanism oflong-period 
cycle rather Ihan trying 10 compound a low reaclion out of fa I one . 

4. lmmunity to many kinds of chemical perturbation. Exceptions include 
infiltration with heavy water, exposure to some inhibitors of protein synthesis, 
and exposure to other substances affecting membrane structure [possibly in
duding general anaesthetics (Bunning, 1956b; Keller, 1960). 

5. Sensitivity to visible light of an appropriate color (with rare exceptions: 
see page 408). Light suppresses osciIIation in some organisms even at intensities 
weIl below fuIl-moon light. Given in a brief pulse, light rephases. Given in periodic 
pulses of adequate energy, light entrains the circadian rhythm if the period of the 
recurrent light is not too different from the native period of the endogenous dock. 

Speculations About Mechanism 

At the level of concrete mechanism in particular organisms almost nothing is 
known of the biochemical basis of circadian rhythmicity even in the best studied 
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species. Current guesses are that circadian rhythmicity has something to do with 
respiration and mitochondria, something to do with membranes and ions, some
thing to do with glycolysis, and something to do with DNA transcription and RNA 
translation. All these pro ces ses are normally found in circadian organisms. Cir
cadian rhythmicity has been modeled by borrowing Danziger and Elmergreen's 
(1956) model ofthe menstrual cyde (Pavlidis, 1967a), by borrowing Higgins' (1964) 
model of oscillating glycolysis in yeast (Pavlidis and Kauzmann, 1969), and by 
borrowing Goldbeter's (1975) model of cAMP rhythms in slime mold (Cummings, 
1975). Saunders (1978) has remarked that there seem to be almost as many models 
as investigators. This reminds me of Byron Goldstein's humorous observation 
that so me shortage of equations is suggested by the reappearance of essentially 
the same mathematical forms, thinly disguised, in so many models. One might 
make sense of both quips by guessing that although mathematical principles are 
universal, mechanisms are diverse. Such a guess is suggested by the facility with 
which model makers, in each decade of changed emphasis in biochemistry, have 
collected data from many species in support of the corresponding fashion in 
modeling circadian rhythms. Taken collectively, this literature amounts to a 
parody of reductionism. Maybe cell chemistry provides an incredibly fertile 
seedbed ofmechanisms for long-period oscillation (see Box B). One could imagine 
that the ones we see today are exempted from the general tyranny of homeostasis 
only because their periods easily conform themselves to a 24-hour environment. 
Beyond this, one expects selection of certain functional attributes, e.g., photo
sensitivity, but as far as inner workings go, the only common features may be 
those common to a wide dass of ordinary differential equations. 

Though the physical, biochemical, and genetic dissection of dock processes 
is part of a literature mostly still unwritten, it seems likely that the mechanisms, 
when discovered, will exhibit a diversity comparable to the mechanisms ofhomeo
stasis or of endocrine control, rather than such conservative uniformity as is 
found in sugar metabolism, protein synthesis, and oxidative phosphorylation. 
For the present, the most promising experimental systems appear to be fungi 
mutated in fatty acid metabolism (implicating membrane structure: Brody and 
Martins, 1979), and birds whose pineal dock is somehow involved in melatonin 
and serotonin metabolism (Zimmerman and Menaker, 1975; Menaker and 
Zimmerman, 1976; Turek et al., 1976). 

Temperature Dependence of Circadian Clocks 

In the early years of inquiry into circadian rhythms (before they were so named) 
debate and contradictory evidence obscured the temperature independence 
expected ofa functional "dock". Such independence was first noted by Wahl (1932) 
in connection with the time sense of bees. Brown and Webb (1948), for example, 
thought the rhythm to be independent of temperature because the "dock" was in 
fact ultimately the rotation of the earth. Kalmus (1935, 1940) thought it tem
perature-dependent because the first cyde of Drosophila melanogaster's edosion 
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after a temperature change occurred at lengthened (if colder) or shortened (if 
warmer) intervals. Brett (1955), also using D. melanogaster, affirmed a temperature
independent period. These were the beginnings. Pittendrigh (1954), switching to 
D. pseudoobscura and improving on Kalmus's experiments, argued for temperature 
independence up to the final 24 hours be fore edosion. Pittendrigh and Bruce 
(1957) distinguished between the dock and the physiological or behavioral rhythms 
that the dock drives, which we happen to find convenient to monitor. They 
verified relative temperature independence of period only in the former. It proved 
important to distinguish dearly between temperature independence and tempera
independence of period. Only the period (overlooking transient behavior, photo
receptor kinetics, amplitude, etc.) has been systematically explored as a function 
of temperature. 

Although many circadian docks have nearly the same period at any temperature 
within a reasonable physiological range, acute sensitivity to temperature changes 
is not uncommon. This sensitivity in the basic dock, as weil as in peripheral 
driven physiology, is shown by synchronization of circadian rhythms to tiny 
changes oftemperature on a 24-hour schedule (Hoffmann, 1969b), and by large and 
lasting phase shifts in the rhythm at constant temperature, following abrief 
exposure to heat or cold, in Euglena (Brinkmann, 1966), in various strains of 
Drosophila (Winfree, 1971; Maier 1973; Chandrashekaran, 1974); in Kalanchoe 
(Engelmann et a1., 1974). 

Arguing as an evolutionary biologist on grounds of plausible selective advan
tage, one might reasonably expect temperature independence of the circadian 
dockworks. Yet what has been found is instead a temperature independence of 
period at constant temperature, a condition that few organisms have ever 
experienced. Wh at selective advantage attaches to such temperature compensation 
of period in an organism acutely sensitive to temperature ('hanges, in a world whose 
temperature never stops changing? Even when the worlcl doesn't, the organism 
changes temperature by moving from sunlight to shade or by working. Bumblebees, 
honeybees, and wasps, for example, get 10'C hotter in flight (Heinrich and 
Bartholomew, 1972; Heinrich and Casey, 1973). The optimum temperature for 
insect flight musde is typically 30-40C C (Esch, 1976). Sm all homcotherms typically 
abandon temperature regulation while sleeping, and thus cool off by 20U e. Such 
observations suggest that something of further interest may lurk here, awaiting 
discovery: something about the rate or change oftemperature (e.g., see Zimmerman 
and Pavlidis, 1968; Pavlidis and Kauzmann, 1969). 

Returning to the question of temperature compensation of period at fixed 
temperature, there has been widespread speculation since about 1970 that the 
mechanism lies in membrane melting and in the well-known biochemical accom
modation of melting point to ambient temperature (Njus et a1. 1974; Wisnieski 
and Fox, 1976). I've been an eager consumer of this literat ure since coming to 
believe that the quite different temperature sensitivities of Zimmerman's flies 
and mine (see Chapter 20) might stern from their different diets, especially their 
lipid compositions. Yet in the current enthusiasm we tend to overlook a surprising 
abundance of alternative mechanisms. It turns out that temperature compensation 
of rates and periods is quite common in inorganic chemistry, biochemistry, and 
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physiology. I offer a short menu of randomly encountered examples in chrono
logical order: 

1. Skrabal (1915) found that the temperature coefficient of the iodine dock 
reaction depends on sodium sulfate concentration. The rate factor per 10°C can 
be adjusted from 1.25 through 1 down to 0.85. This is about the range observed 
in circadian docks. 

2. In general, inorganic reactions may absorb heat or liberate it. In the latter 
case, the reaction is fostered by cold: It has a rate factor less than 1. It is also 
common in association reactions [2NO~(NOh; 2I~I2J to find an optimum 
temperature, at which a compromise is struck between molecules finding each 
other and not bouncing apart in the collision. On the high temperature side of an 
optimum, the rate factor is less than 1. 

3. Bullock (1955) observes that the Arrhenius rate law, such as Hoagland 
(1933) first observed in his fevered wife's time estimates and such as we use to 
estimate the outdoor temperature by the frequency of cricket chirps, is actually 
very uncommon. Temperature independence of period is surprisingly common. 
Bullock gives an impressive example in the pulsing rates of a jellyfish. The rate 
seems nearly constant over a wide range oftemperatures surrounding the seasonal 
temperature of seawater and falls off sharply at both the high and the low ends. 
Golenhofen (1970) shows temperature independence of period in the electrical 
slow waves of isolated guinea pig intestine over a 15°C range. Much the same is 
typically true of growth and development in poikilotherms, at least to the extent 
that there is a range of optimal temperature in which rates are almost temperature
independent, falling off to either side. 

4. Ifmolecular diffusion plays a big role, its relative independence oftempera
ture can dominate. Ehret and Barlow (1960), Ehret and Trucco (1967), Pavlidis 
and Kauzmann (1969), and Selkov (1973) invoked diffusion limitations to account 
for the temperature independence of overall rate in circadian rhythms; however, 
such conjectures risk proving too much because circadian dock kinetics is not 
temperature independent. 

5. At physiological substrate concentrations, the rate of enzyme reactions in 
poikilotherms may be relatively independent oftemperature because the enzyme
substrate complex falls apart prematurely at higher temperatures, or because Km 
increases with temperature as fast as Vm , and the overall rate depends on their 
ratio (Somero and Hochachka, 1969; Newell, 1969). 

6. In general, the rate of a compound reaction depends on the rates of its 
constituent reactions in a complex way, often involving relatively temperature 
independent ratios of rate coefficients. These notions have been repeatedly invoked 
in connection with circadian rhythms by Hastings and Sweeney (1957), Spangier 
and Snell (1961), Goodwin (1963), Pavlidis and Kauzmann (1969), and Selkov 
(1973). This principle is exploited in connection with chemical relaxation oscilla
tors as models of circadian clocks in a delightful paper by Rössler (1973). 

7. Mano (1975) reports that the cytoplasmic oscillator underlying cell division 
in sea urchin eggs has the same period over a wide range of temperatures. Reasons 
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such as the above, based on hypothetical kinetics, might be advanced. Alternatively, 
making use of the widespread belief that the cell division cyde is nearly a "simple 
dock" (Chapter 22), it seems appropriate to draw attention to the cute example 
of environmental determination of period given on page 86. lt turned out there 
that simple docks gene rally run slower to either side of an optimum environment. 
Given that this optimum is normal, we have plateau around normal, which might 
be looked on as a homeostatic adaptation. An analysis of this sort is used by 
Daan and Pittendrigh (1976b, p. 278) in connection with homeostatis offrequency 
in nocturnal rodents. Such parabolic rate laws are not uncommon in circadian 
rhythms (Hastings and Sweeney, 1957, Figure 2; Caldarola and Pittendrigh, 1974, 
Figure 2). 

Homeostasis offrequency thus seems to result "naturally" by a variety ofsimple 
mechanisms. In many observed cases, there is no obvious selective press ure for 
such homeostasis. In this connection, it would be of interest to examine denizens 
of constant temperature environments such as the abyss and deep caves. To me, 
the evolutionary question of greatest interest about temperature compensation in 
circadian rhythms, is, "Why aren't they even bett er adapted to keep step with the 
earth's rotation in the midst of daily temperature jluctuations?" It would also be 
of interest to compile a catalog of temperature-compensated and of temperature
sensitive features of circadian docks, of their photoreceptors, and of the systems 
they drive. Is anything but the period at constant temperature regulated? If so, 
what adaptive significance do those features have in common? 

Topological Properties 

Even before knowing about mechanisms, one can ask about dynamies. To 
this end it is essential at some point to find out about the topology of the state 
space in which the dock process carries out its circadian routine. At the simplest 
level, one needs to know whether the dock has access to only a one-dimensional 
continuum of states, like a repetitive knitting machine, internal com bustion engine, 
or wind-up music box. Alternatively it might have access to states offthe standard 
cycle, returning toward that cyc1e between perturbations. If so, how many dimen
sions are there in the state space, and how many other attracting cydes or equilib
rium states coexist in it? And how does the system move from one to the other? 
Questions of this sort have been posed by chemical engineers and electrical and 
mechanical engineers concerned with the dynamics of control systems important 
to industrial daily life. They have also been posed by physiologists striving to 
understand respiration, hormonal balance, tissue differentiation, and the pathol
ogies to which each is susceptible. In the area of circadian physiology, attempts 
at such system-level description have mostly started with the control of phase. 
People studied the resetting of phase by a single stimulus, and then by two succes
sively, and in the limit (as in the natural outdoors) by prolonged periodic light 
cydes. 

The study of dock dynamics has progressed most notably through investi
gations of the way in which stimuli inflict a phase shift on a circadian rhythm. 
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Figure 1. The fruitfly's circadian dock shows 
increasing dclays following exposure to a light 
pulse at a later phase .. . up to the "break
point" at which the curve is conventionally 
dropped vertically to the complementary 
advance. Advances then decrease. Note that 
the slope docs not change in crossing the 
vertical segment. From Pittendrigh and Minis 

(1964, Figure 8) with permission. 
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In talking of daily schedules, clocks, and phase resetting it seems only natural to 
think of phase advances and phase delays. It has long been conventional to plot 
phase advances and phase delays against the phase at which aresetting stimulus is 
given. This plot is called a phase-resetting curve (PRC) (Figure 1). It characterizes 
the clock's rhythm of sensitivity to the given stimulus. It may seem to some less 
natural to plot, instead ofthe phase shift, the new phase to which the clock is reset. 
Of course the two representations are 100% equivalent, so a preference for one or 
the other may seem rather a crochety affectation. Nonetheless the reader will 
have noted by now that I have a definite preference. Let me declare here, in con
text of circadian rhythms, why I think you will find it much easier to understand 
the principles underlying phase resetting if you think in terms of phase rather 
than phase differences. My remarks on this subject are collected in the next two 
sub-sections. 

Real vs. Artifactual Discontinuities 

As noted in Chapters 1 and 14, the PRC is a cut-out unit square from a more 
complete description ofthe experiment. This cutting severs type 0 re setting curves 
in such a way that they appear discontinuous. The choice of where to locate the 
unit square's cut edges is arbitrary. It is usual to pI ace these cuts in such a way 
that the smooth trail of data points is interrupted where the re set rhythm is shifted 
one-half cycle from a control rhythm. Alternatively one might cut the da ta where 
a driven rhythm changes its habit from catching up to the reset clock to faHing 
back into the preceding cycle (as in Zimmerman et al., 1968). Another option is to 
cut the data where the reset rhythm has shifted through a fuH 3600 back into syn
chrony with the control rhythm (as in Pittendrigh, 1967). Whatever the choice, 
it determines a phase at wh ich an apparent jump occurs from a large delaying or 
advancing response to something that differs by exactly one period. This discon
tinuity is an artifact of description but is commonly treated as a reality. For 
example, when asolid curve is put through the data points it is turned vertical at 
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this point as though threading (nonexistent) data points on a very steep segment. 1 

Discussions of this "phase jump" (example Wiedenmann, 1977) seldom make the 
critical distinction that it is really "phase shift jump" from a big delay to the 
complementary advance. This means that it is no phase jump at all unless one 
imagines that the doek reaehes a given phase only by passing through all the 
intermediate phases, as in a ring device (Chapter 3). 

Much of the literature gives the impression that "what goes up must come 
down" in the world at phase shifts: that if a system gives delays at one phase and 
advances at one later phase, then at some intermediate phase the curve must rise 
from delaying, through zero, to advancing. This is true of real numbers, i.e., points 
on the realline IR 1. But we are concerned with phases, i.e., points on the ring § 1. 

On a ring there are two ares "between" any pair of points, not only the one that 
indudes zero. Thus one can go smoothly from the delayed semicirde of phases to 
the advanced semicirde of phases either through 0 or through 180 . 

In the ca se of a simple dock (the most popular, if implicit, mental model of a 
smooth physiological dock), the transition has to occur through zero. This is 
because the basis for advancing and delaying in a simple dock is a phase-dependent 
angular velocity which cannot go from minus to plus without passing zero unless 
the mechanism itself is discontinuous. Thus the "observed" data-free jump is 
sometimes interpreted (I believe incorrectly in most cases, though possibly correctly 
in some particular organisms) as a physiological jerk or discontinuity in the 
oscillator's mechanism or in its mechanism of response to the perturbation used. 
For example: 

1. It was apparently within this context that Frank and Zimmerman (1969) 
chose to determine action spectra for phase shifting at phases only two ho urs 
apart: an hour be fore and an hour after the phase jump. They sought different 
photoreceptors mediating advancing and delaying resets of the fruitfly's circadian 
rhythm. This is an important experiment and a very sensitive experimental design 
if one believes that the circadian dock is phase-shifted by advancing or delaying 
along its cyde, or that the phase jump represents a physiological discontinuity. 
However, no difference in photosensitivity was deteeted. This would be expected 
under any hypothesis about the photoreeeptor if one interprets the adjacent big 
advanee and big delay as two ways of plotting essentially the same physiologieal 
process. 

2. Zimmer (1962) obtained a smooth dependenee of the phase of Kalanchoe's 
f1ower-opening rhythm on the timing of a rephasing stimulus (see Figure 2 in 
Chapter 21). But the curve she sketches through the da ta (Figure 1 in Chapter 21) 
does not follow the smooth path: It leap aeross a cyde to join points in adjaeent 
smooth trails of rhythmic data. The resulting diseontinuity is preserved as a 
conspicuous feature of Kalanchoe's eircadian eyde when later writers plot the 
curve without data points in phase shift format. 

1 There is one instance in which data points do appear on the vcry steep segment 01' a type 1 curve 
(Pittendrigh and Bruce, 1959, Figure 8). However, the raw data (Pittcndrigh and Brucc, 1959, Figure 4) 
shows that these dots represent multiple recurrences of the monilored event clLlring an interval of 

transient irrcgularities. 



A: Some Characteristics of Circadian Rhythms 385 

3. Karve and Salanki (1964) follow the same procedures in repeating Zimmer's 
experiment in a different physiological context. Here a geotropic stimulus is used 
to upset a two-hour bending rhythm of a plant seedling. The resulting oscillations 
have their maxima at nearly the same interval after the stimulus, but the curve 
threaded through them is made to jump almost a full cycle between data points 
in order to preserve the appearance of type 1 connectivity. The phase jump thus 
imposed on the data is reckoned to be an important physiological event. 

4. Hastings and Sweeney (1958) show smoothly varying data on the rephasing 
of Gonyaulax by a light pulse. But in Christianson and Sweeney (1973, Figure 3) the 
plotting is switched to phase shift format and a large phase jump is assumed in 
order to make the curve look like a magnified version oftype 1 resetting. Sweeney 
(1974) suggests that the phase jump may reflect an abrupt change from active to 
passive transport in the plasma membrane of Gonylaulax. In my opinion the per
vasive not ion that there is a phase jump which needs to be accounted for derives 
less from any data than from interpreting them within the simple-clock paradigm. 
If one does so then it appears that the simple clock's cycle is not continuous but 
has a sharp break in it. This is accounted for by supposing that a chronogen 
accumulates during a prolonged tension phase up to a threshold concentration, 
at which an abrupt change in cell dynamics brings on the complimentary relaxa
tion phase. This may be quick or protracted, but when completed it re starts the 
tension phase. This idea goes back at least to Rasmussen and Zeuthen's (1962) 
division protein model, to the mitogen accumulation model ofSachsenmaier et al. 
(1972) for cell cycle timing and to models of rhythmicity in pacemaker neurons 
in which a generator potential accumulates toward a threshold for membrane 
conductivity (Hill, 1933). In context of circadian rhythms Bunning (1960), Wagner 
and Cumming (1970), Wagner et al. (1975), and Wagner (1976) associate the 
chronogen with energy metabolism. 

Though I look askance on such interpretations, it must be recognized that the 
sparseness of data points along the vast majority of circadian response curves 
precludes any very rigid inferences about the topological types of resetting thus 
observed. Type 1 has been widely assumed tacitly, but in only a few cases in the 
earlier literature [e.g., Figure 1, the Drosophila curve of Pittendrigh and Minis, 
(1964)J were the curves clearly enough resolved to make the reality of type 0 
resetting arguable. (See Box C of Chapter 4.) 

Advance vs. Delay Ambiguity 

By classifying all phase responses as advances or delays we force ourselves to 
violate the topology ofthe phase ring as folIows. On the phase ring a small advance 
and a sm all delay are nearly the same thing. Also any advance (or delay) and a 
slightly sm aller advance (or delay) are nearly the same thing. A 90U advance is 
quite different from a 90U delay. But a 179 0 delay is not as-different-as can be from 
a 179' advance. They are in fact virtually the same thing, so far as the end result 
is concerned. The same is true not only of the end result but also of the process of 
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Figure 2. (a) Delay and advance are oppo
site directions along a cycle. (b) If perturba
tion is not restricted to a one-dimensional 
cycle then the largest delays and advances 

can be indistinguishable. 

rephasing (except in the special ca se of simple docks: Chapter 3). A sm all displace
ment of state by some amount in some direction (to the left in Figure 2) is inter
preted either as a small advance or as a small delay, depending only on the prior 
phase of the oscillator. Large displacements of state that result in the biggest 
advances or delays not only change the state in the same direction by the same 
amount but also are very nearly identical in the sequence ofstates passed through. 
These two diagrams may look like mystic symbols here, but they acquire opera
tional meaning in terms of the presumed multiplicity of equivalent oscillators in 
multicellular organisms in Chapter 4, in terms of hypothetical underlying bio
chemistry in Chapter 6, and in terms of experimental manipulations ofthe fruitfly's 
edosion rhythm in Chapter 7. 

The language of advances and delays suggests that advance and delay are 
opposites, but they are not, since a big enough delay is an advance. It suggests 
that advancing and delaying are opposites, but they are not except in the special 
case of simple docks. Moreover, an advance or delay can be obtained without 
advancing or delaying by simply freezing the oscillator for the duration of a pro
longed stimulus. The very not ion ofadvance or delay is ambiguous. The following 
three nonequivalent definitions are in current use: 

1. If the perturbed rhythm leads the unperturbed control rhythm by less than 
one-half cyde, then one speaks of an advance, or if it lags by less than one-half 
cycle, one speaks of a delay. 

2. A net delay can come about by accumulation of abnormally short intervals 
until the accumulated advance exceeds one-half cycle. Zimmerman (1969, pers. 
comm.) obtained a four-hour-delayed eclosion rhythm in the fruitfly by way of a 
progressive 20-hour advancing transient. In general, the re setting of a clock which 
can both advance and delay might register with the external world by way of a 
unidirectional process that can only be advanced or only delayed. See Christi ans on 
and Sweeney (1973, p. 98) for another example. 

3. The net effect of a stimulus changes as its duration is prolonged. If (8 + M), 
the event time measured from the start of the stimulus, increases with M, the 
stimulus duration, then the stimulus is delaying the rhythm, and if (8 + M) de
creases with M, then it is advancing the rhythm. Saunders (1976a) obtained both 
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advance and delay phase shifts by convention 1 but only delays according to this 
convention 3. And if one measures the new phase at the end of the stimuli, then 
all of Saunders's shifts are obtained by advancing. 

For such reasons I have adhered to the conventions of full data presentation 
originally fostered by Hastings and Sweeney (1958, Figure 8), Pittendrigh and 
Bruce (1957, p. 95 and 1959, p. 486), and Zimmer (1962, Abb. 2). I avoid the more 
recent convention of data reduction in the notation of phase shifts. Neurophys
iologists in the 1970s, encountering problems of phase contral similar to those 
first tackled by circadian physiologists in the 1950s, follow similar practice (see 
Chapter 14, the second part of Section A). 

Looking Behind the Adaptive Facade 

If dues to dynamic organization are to be sought in behavioral experiments, 
it is essential to know something of the adaptive value of that behavior, and so 
about the evolutionary origin of the mechanism to be explored. Pittendrigh and 
Bruce (1959) succinctly stated the essential principle that features with adaptive 
value must be avoided: 

Again there are difficulties here which stern from the fact that diverse physical 
systems can be devised (or evolved) to behave in a formally similar way. In 
the comparison of living dock systems for instance, we can take neither 
temperature independence nor entrainability by light as evidence ofa common 
mechanism; selection must have demanded both these features as functional 
prerequisites of dock systems and will, of course, have been indifferent to the 
particular physical mechanism by which the functional end is met. If we are 
to test the proposition of a common mechanism and use only formal prop
erties, these must be of such a nature that selection can reasonably be dis
missed as the agent responsible for their universal association with cellular 
dock systems; in short, the properties must lack adaptive value. 

Or as Pavlidis (1971) put it: 

Therefore, their study can provide little insight into the structure ofthe system 
which regulates the daily rhythmicity of organisms. On the other hand, one 
may expect more from the study of features which do not seem to have any 
survival value and therefore may be indicative of the structural properties of 
the system. This point may be illustrated by the following example. Consider 
a passenger on a train who wants to find out whether the locomotive is steam, 
diesel or electric. (One may assurne that the engine was attached to the train 
after he boarded it and therefore he did not see it). He may try to do so by 
observing the details in the changes in velocity while the train goes through 
curves or stops at stations. While it is theoretically possible to achieve iden
tification in this way, it is quite difficult because alliocomotives tend to show 
rather similar functional characteristics. On the other hand, the identification 
could be quite easy by observing non-functional features, like smoke, noise, etc. 

Rephasing experiments probably serve this purpose admirably, so long as the 
stimuli used are quite unlike natural daylight photoperiods. For example we will 
see in the next chapter that the phase singularity of Drosophila' s dock can only be 
revealed by exposure to light whose energy is a million times attenuated relative 
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to natural photoperiods, and only if it is given just once, not repeated daily as 
in nature. 

But what are the evolutionary origins and purposes of circadian rhythmicity? 
The next section explores this question, leading to recommended experiments and 
observations. 

B: Clock Evolution 

I list here three alternative conjectures, aU in need of development, about the 
evolutionary origin of circadian dock dynamics. These threc make different as
sumptions about the selective press ures dominant at the time. The flrst starts with 
a timer selected to anticipate the dawn by degrading or accumulating a substance 
during the night. The second starts with the cells' daily cyde of activities, imposed 
by the daily cyde of light and dark, warmth and cold. The third starts with the 
cell metabolizing steadily in a constant environment, and asks how stable this 
situation might be. 

First Dream: Dawn Warning 

In the Archaezoic Seas. Suppose it were necessary for cclls in the primor
dial slime to coordinate their biochemical activities on a diurnal schedule. In a 
stimulating speculative essay, Pittendrigh (1967b) suggested advantages that would 
accrue to whatever mutants could best anticipate the rising of the sun: 

... it is a reasonable speculation that the daily alternation of light amI 
darkness was the historical cause (selective agent) of circaclian oscillations in 
the first place. 

This line ofthought derives from reealling the prerequisitcs for organization 
in a chemieal system. The prineipal or these is that the constituent reaetions 
cannot proceed spontaneously at the prevailing levels of frce encrgy. Thermo
ehemieaIly, this means of course that the reactions the cell employs involve 
energy barriers unsurmountable at prevailing temperatures; they proceed 
only on eommand whieh rests with enzymes and ultimately with the nuclear 
store ofinformation. Little attention secms to have been givcn inthis general 
eontext---to the problem ofvisible radiation as an energy sourcc that thrcatcns 
organization. 

Of course, the fact is that the majority orthe cells' constituents are colorless; 
and uneontroIled aetivation by the visible is thus excluded. It may weIl be 
that in the history of the cell there has been selection for colorless moleculcs. 
but if that is true (and it seems likely) it is a fact that for some functions. 
colorless moleeular devices have not been found. The f1avins ami cytoehromes 
are examples of ubiquitous fundamentally important moleCldes that are 
colored--and where color has no detected function. 

No attention seems to have been given to the consequences ofilluminating 
these molecules whose color is without ohvious function. At any rate it is 
surely reasonable to consider, at least. the likelihood that some subroutines 
in these ceIls' overall tasks are impaircd hy the activation of moleCldar piece
parts in the f100d of visible radiation to wh ich it is subjectcd cach day. To 
that extent, the routine delegation of some chcmical activity tn thc reeurrcnt 
darkness of each night wOltld be an ohviolls escape from the photochemical 
threat to organization. 
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If a tim er is needed to anticipate the dawn, it seems reasonable to expect that 
the simplest timer would be invented first. This would presumably be a relaxation 
oscillator, the same as has been widely invoked to account for the timing of cell 
division (Chapter 22) and for the timing of rhythmic contraction in nerve and in 
muscle and in heart muscle (Chapter 14). Specifically, some byproduct would 
accumulate during the dark, up to a threshold. At threshold, a conversion is 
undertaken from metabolism appropriate to darkness to metabolism appropriate 
in the glare of sunlight. It is to be assumed that the sunlight and/or the cells' 
preparation for it turns off the accumulator and allows the product to dissipate 
until next darkness. (The reciprocal version is similar, in which a product decays 
in the night and is restored to a standard concentration by the end of day.) A 
sophisticated accumulator might even adjust the threshold or the rate of accu
mulation to improve timing tomorrow if the threshold was reached a litde too 
early or too late today. 

Conservative Evolution of a Simple Mechanism. If cells need to invent a 
timer, here is a simple beginning. Such a single-variable hourglass mechanism 
has appealed to many investigators of contemporary circadian rhythms. From 
the viewpoint of evolution, its most conspicuous features are its responsiveness 
to the environment and its one-shot relaxation character under hypothetical con
ditions of constant daylight or constant darkness. 

Given enough mutants, it is easy to imagine the prosperity of the cell's descen
dents who have the most reliable hourglass and engineer the cleverest attachments 
to general metabolism. If all this confers a selective advantage, then woe be unto 
the apostate cell who attempts radical innovation or abandons altogether this 
valued heirloom. Inheritance may weil be conservative and we could end up with 
a universal circadian clock or hourglass as faithfully replicated as the mechanisms 
of glycolysis, of oxidative phosphorylation, and of protein synthesis. In multi
cellular organisms, the indispensible tim er might weil be expressed in a specialized 
tissue that serves to coordinate the whole organism. 

This case is the most favorable for scientists. An accumulator mechanism with 
a single most important variable, marked by sudden transitions once or twice a 
day, would be the easiest to pinpoint biophysically, especially if one is free to 
choosc the most favorable organism in which to explore each aspect of the mech
anism, and if it functions most conspicuously in a certain organ (let us say, the 
brain or thc pineal gland). 

On the Other Hand.... Unfortunately, I see rather !ittle evidence to 
encourage this outlook. It is by now weil established that many cell types in each 
organism exhibit circadian timing. Moreover, though there are exceptions (Lees, 
1972), the timer's cycle most commonly does spontaneously repeat at 24-hour 
intervals despite the lack of obvious selective press ure for such a contrivance. A 
primordial hourglass easily could have mutated to turn itself over, but given the 
regularity of sunrise and sunset, no clear advantage would accrue to such cells. 
Saunders (1976b) notes of the fly's dock that "only when the night is extended to 
more than 24 ho urs is the oscillatory nature of the system revealed", and that 
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seldom happens in nature. Remmert (1962) and Hoffmann (197Ia, p. 199; 1976) 
are perplexed by the apparition of a spontaneously recycling internal timer. After 
all, organisms were selected only for ability to cycle in a reyularly cycliny environ
ment. Enright (1970) in a particularly valuable essay addresses the question, "What 
selective advantages led to the evolution of internal timing mechanisms, and in 
particular to an internal timing mechanism wh ich is rhythmic and self-sustaining 
rather than to a one-cycle timer which must be reinitiated by environment al 
stimuli each day?" At this time there seems to be no very persuasive answer. I 
suspect that this feature is not an adaptation at all, but an accident of neutral 
selective value. (For a contrary opinion, see Pittendrigh and Daan, 1976.) As such 
it may provide some clue that the origin and mechanism of the clock do not lie 
in this class of mechanisms. Finally, reinforcing this conclusion, I know of no 
indications of a physiological jump in the normal cycle, as assayed by resetting 
experiments. 

Second Dream: Indirect Selection 

Back to the Archaezoic Seas. This one starts clock evolution not with the 
need for a single timer, but with a preexisting cycle of biochemical activity, driven 
by the daily alternation of light and dark, ofwarmth and cold. With many meta
bolie pools driven into reasonably predictable diurnal fiuctuations, the cell could 
be regarded as executing a regular cycle of activities, e.g., photosynthesis by day, 
heat prostration by evening, perhaps mitosis by night, starvation by morning. 

Given an alternating environment that intrudes forcibly into the cells' internal 
affairs and the consequently inevitable internal rhythms, a cell needs no additional 
clock. But it could improve itselfby optimizing the transfer from one predominant 
metabolie activity to the next. T 0 economize waste, to anti ci pate changes and 
bridge them smoothly, to resist diversions during vicissitudes such as an eclipse 
or the passage of a cold front, the successful cell would accumulate modifier genes 
to facilitate each handoff of control during this imposed cycle. Impelled by se
lection to gather more and more fail-safe backups to guarantee efficient state 
transition, the cell might surprise itself to discover, two billion years later when 
some scientist first puts it into constant conditions, that it shuffles its way spon
taneously through alm ost the same cycle. Yet the ability to do so was never of 
any use and was never selected for. 

A Critical Experiment. If cells can actively internalize environmental rhythms 
in the way here vaguely suggested, then it should be possible to demonstrate the 
effect by bacterial selection experiments in a chemostat. By alternating the nutrient 
infiux from glucose without oxygen, to oxygen without glucose, to alanine and 
oxygen, cells would be forced into a three-point metabolie cycle. With generation 
time adjusted to several cycle durations, mutants could be sought which prosper 
better in that milieu, and then tested for spontaneous cycling on nutrient agar with 
suitable color indicators. By reversing the order of the driving cycle, it should 
be possible also to select cells whose clocks run backward. 
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On the Other Hand. . .. This vision of the origin of clocks seems well fitted 
to models of dock dynamics in which there are no states accessible to the cell apart 
from one or a few discretely different sequences of transformations. Such one
dimensional models have enjoyed much success in connection with the cell cycle, 
which in fact might have arisen in circumstances similar to those portrayed above, 
the composition of cytoplasm being rhythmically changed by the recurrent 
replication and phased transcription ofthe nudear genome (Goodwin, 1966; Ehret 
and Trucco, 1967). One-dimensional models have also heavily influenced the de
vising of experiments and interpretations in circadian physiology (see Chapter 3). 
However once again I doubt their suitability to account for circadian rephasing 
behavior: Type 0 resetting does not come naturally to such mechanisms. So let's 
at least think of one more dass of plausible model for dock evolution. 

Third Dream: Steady-State Start 

The Statistics of Stability. This one starts not with an engineering goal, 
nor with a forced cyde, but with steady-state operation of ceIl chemistry, supposing 
perfect homeostasis in a constant environment. Our outlook here may be taken 
from Bunning (1973, p. 27), who cites Oatley and Goodwin (1971). 

Statistical explorations of the kind of equations that describe reaction kinetics 
suggest a difficulty about steady-state operation (cited by Goodwin, 1963, May 
1973). The more complex the reactions, and the more regulatory coupling to 
other reactions, the less the chance that any one steady state will be stable. Of 
course there may be more steady states in a complex kinetic scheme, but probably 
not enough to guarantee one being an attractor. In other words, mutants of com
plex regulated pathways almost all exhibit instabilities of the homeostatic steady 
state. Departure from a steady state need not lead to regular oscillations, but that 
is one possibility, and mutants of this sort must be expected in vastly greater 
abundance than mutants whose steady-state is weIl regulated. 

Instability May be Desirable in Itself, Even in a Constant Environment. Are 
there intensive selective pressures against such mutations? I doubt it. There is 
presumably some advantage to homeostasis, but only to keep fluctuations within 
livable bounds. I see no virtue in perfect stationarity per se. In fact, several loose 
arguments suggest the contrary. Chemical engineers are finding more and more 
examples in which process control is improved by rhythmic departure from average 
conditions. This might be expected, in general: Deviation from monotony is one 
more degree of freedom in which to search for optimization. In reactions with 
sharply nonlinear rate laws, excursion to extreme conditions may "allow every 
dog his day": A cyde facilitates segregation in time of conditions conducive to 
incompatible reactions. Cells commonly accommodate such processes by com
partmentation in space, but another possibility is to compartmentalize in time. 

It seems worth noting in this regard that steady pressure on a nail accomplishes 
less than a rainfall of sharp hammer blows. A steady subthreshold level of sexual 
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tension is less conducive to mating than the familiar build-up 10 a sudden release. 
Similarly nature has designed us to sleep and wake, but not to practice moderation 
in a11 things by groggily intermingling the two. 

In short, there may be reasons why evcn if organisms didn't live in a f1uctuating 
external environment, they might benefÜ by inventing one internally. The statistics 
of ordinary differential equations suggest that much more intense selection would 
be needed to avoid inventing one. 

None of this specifically implies regular f1uctuations, nor is regularity neces
sarily to be expected of kinetic schemes involving more than the two variables so 
familiar in theoretical journals (see Box B in Chapter 13). Nor is regularity widely 
observed in the physiological rates of organisms except in certain preferred se
lection windows along the frequency axis. But f1uctuations that happen to occur 
regularly, and at frequencies that closely match dominant regularities of the nat
ural environment, may have special uses. Having started clock evolution by simply 
not counterselecting the inevitab1e instabilities of homeostasis, we now turn to 
the rhythmic environment for refining selective pressures. For example, the effec
tive value of any rhythmic environmental parameter can be adjusted to any value 
within the range of daily variation by locking the organism's experience of that 
parameter to a particular phase of the cycle. If an organism ventures from its 
underground burrow only by night, then daytime temperature is unimportant. 
This principle of phase locking has been put to spectacular use in the laboratory 
by scientists from Michael Faraday (item 33 of Experimental Rl.'sl.'urches in Elec
tricity, to prove that voltaic and galvanic electricities are equivalent), to Henry 
Cavendish (the experiment to demonstrate gravitational attraction), to Richard 
Dicke (detection of the primordial fireball). It should be no surprise if organisms 
have exploited it almost since the fireball cooled down. 

Ifso, then we may expect accumulation ofmodifier genes to augment the ampli
tude of such selected spontaneous f1uctuations and to phase-lock them to the 
environment through a photoreceptor or other sensor. 

From this perspective, one might anticipate a diversity of circadian rhythm 
mechanisms as great as the diversity of homeostatic feedback schemes ... evcn 
within the single cel\. There may have been many independent evolutionary starts, 
and no one had to win out. Moreover with several independently competent sys
tems oscillating within each cell, the clock is fail-safe, so each part is free to mutate 
without imperiling the function collectively subserved. Thus, no aspect of mech
anism need be conserved during the radiation of species. On this basis, one would 
rather solve the mechanism of one cell completely, than to select clues to a universal 
mechanism from experiments on diverse cell types. 

ConcIusion 

These three "dreams" are not mutually exclusive. They suggest three distinct 
principles that might have contributed to the origin of circadian clocks under 
different conditions. Which ones would work fastest under any given conditions? 
Did docks of different sorts evolve under different conditions? We don't yet know. 
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A Critical Observation to Make. None of these three conjectures make 
any distinction between procaryotes ("Iower" organisms, lacking subcellular 
organelles) and eucaryotes (made of one or more cells, with nuclei). Nor do 
they discriminate between cells with generation times exceeding 24 hours and 
those that divide more frequently. But a strong generalization among circadian 
physiologists has it that circadian rhythms occur only in eucaryotes with cell 
divisions more than 24 hours apart (Ehret and Wille, 1970). Counterexamples 
have been sought (Rogers and Greenbank, 1930; Halberg and Connor, 1961; 
Sturtevant, 1973) but not convincingly followed up. An implication of the con
jectures risked above is that better counterexamples will be found. I would begin 
with a survey ofthe colonial eubacteria (Actinomycetes), e.g., streptomyces or the 
tuberculosis germ, mycobacterium. Other promising candidates among the pro· 
caryotes might be the nitrogen-fixing photosynthetic bacteria. If no circadian 
elocks are found, then the scenarios elaborated above have overlooked some 
major factor. For example, it might be that procaryotes typically enjoy much 
quicker biochemical responsiveness to environmental changes than do eucaryotes. 
If so then maybe no significant improvements of efficiency accrue to procaryotic 
mutants with long-period timers of any sort, so no single frequency band is 
favored among mutations to spontaneous oscillation. 

The Importance of Choosing One Case to Solve. My own initial enthusi
astic belief in a universal mechanism perished during the 1960s by counter
examples to alm ost every specific proposal. Some creature physically lacks a 
substance or structure postulated to be essential, or can be functionally deprived 
of it be a suitable poison, yet perseveres in its circadian time keeping. Like many 
others, I am a true believer turned apostate in this matter. But, disliking middle 
courses, I now believe at the opposite fanatical pole, i.e., that circadian mech
anisms are as diverse as species, or even as diverse as their cell types, or even as 
diverse as the modes of operation in each cell in different hormonal and nutritive 
surroundings, or even more diverse, if there are several independently competent 
circadian oscillators within the cell's regulatory mechanisms under any given 
conditions. 

It therefore seems to me of first importance to complete1y solve the mechanism 
in one cell type, forsaking for the present elues gathered eelectically from diverse 
phyla, and then to solve it completely in another cell type, or to look for involve
ment ofthe first found mechanism in another cell type. Thanks to Max Delbruck's 
advocacy of this strategem for virus genetics a quarter-century ago, surprisingly 
rapid and cross-fertilizing progress became the hallmark of that field. Why not 
in circadian physiology too? 

Until a few years aga it was easy to indulge in speculation about the biophysical 
mechanism of any particular circadian elock because almost any parücular 
physiological system X is involved: Either a disturbance of X disturbs the moni
tored rhythm or better alters its period or permanently re sets its phase (perhaps in
directly), or disturbance of the elock alters the behavior of X. This game can be 
played both physiologically and genetically. Wh at is needed and what has been 
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lacking is a proof of both simultaneously: that X affects timing, and timing affects 
X, so that X is implicated as apart of the timer. But even given this, there remains 
one more necessary step: to show that X is an indispensible part of the tim er. 

These feats are not beyond the capacities of modern biochemical physiology, 
but they do require concerted effort focused on a single cell. The day is at hand 
when that effort will be made. From its origin in field naturalism and evolutionary 
biology, and from its confusion with astrology and biorhythm fads, the exploration 
of circadian rhythms has come a long way. Nowadays, even molecular biophysicists 
have heard of the "dock" and believe that it might have some definite universal 
properties. As indicated above, I think that is amistake, if one means biochemical 
properties. But the point is that we are now in a position to find out. 

It is my belief not only that one organism should be chosen, but additionally 
that it should be either a single cell or a cell population in which both autonomy 
ofthe individual and synchrony among individuals can be monitored (a big order). 
Obviously the dynamical behavior of a population of interacting oscillators can be 
quite different from the behavior of one alone. This point was belabored in Chapters 
4 and 8. We also saw in those chapters that collective measures on a sufficiently 
incoherent population, even of noninteracting oscillators, can be very misleading 
about the basic type of dynamics underlying oscillation in each independent 
individual. 

C: The Multioscillator View of Circadian Rhythms 

This section is intended to gather indications that circadian rhythmicity may 
typically reflect the collective circadian activity of many independently competent 
sourees, each oscillating at a circadian period with or without its neighbors. Ifthis 
be true, then we have two new sources of dynamic complexity to explore above 
and beyond the behavior of the single oscillator: 

1. The interactions among such physiological oscillators and 

2. The manner in which their influences are pooled in a rhythm of activity, 
body temperature, or what-have-you. 

Moore-Ede et al. (1976) provide a useful brief statement ofthe problem. In collect
ing the evidence, I omit two categories of information: 

1. Experiments showing that single-cell organisms exhibit circadian rhythms. 
Circadian rhythmicity does not require multicellular organization, but the fact 
argues neither one way nor the other in the question as to whether circadian 
rhythmicity is structurally and functionally composite in multicellular organisms. 
Experiments with unicellular organisms might ultimately contribute with a 
demonstration that behavior attributed to composite structure in multicellular 
organisms is found only in multicellular organisms (e.g., "transients"). But for the 
present, the most pertinent observations involve multicellular organisms and their 
isolated tissues. 

2. Experiments showing that multicellular organisms have many rhythmic 
activities wh ich readjust to new phase at diverse rates. In this respect a multicellular 
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organism does comprise a population of transiently separable rhythmic functions 
but such indications do not in themselves argue for independently competent 
sources of rhythmicity. 

I gather the evidence into two sets of experiments. The first set indicates that 
the dock is structurally composite in multicellular organisms. The second set of 
experiments indicates that it is functionally composite. 

That "The" Circadian CIock is Structurally Composite 

We turn now to experiments indicating that there are separate circadian oscil
lators physically distributed throughout the many organs and tissues of a multi
cellular organism. 

1. In mammals, the dearest demonstration comes from Andrews' (1971) 
discovery that hamster adrenal glands, isolated in tissue culture, persist in distinct 
circadian rhythmicity of endocrine secretion for many days in ostensibly constant 
conditions. A similar effort by Tharpe and Folk (1965) to exhibit circadian rhyth
micity in rat heart and in isolated rat heart cells in tissue culture produced only 
rather unconvincing evidence of rhythmicity. Hardeland (1972, 1973) reported 
dearcut rhythmicity of enzyme activities in suspensions of isolated rat liver cells, 
and Ashkenazi et al. (1975) have reported very conspicuous rhythmicities of 
enzyme activity in stored human red blood cells. No convincing results have yet 
come of attempts to repeat these experiments in other laboratories. 

2. Arechiga (1977) reported several experiments exhibiting circadian rhyth
micity in isolated ganglia, limbs, eye stalks, etc., of crustacea. Nishisutsujii-Uwo 
and Pittendrigh (1968a,b), Page et al. (1977), and Page (1978) using cockroaches; 
Konopka (1972) using genetically mosaic flies; Engelmann and Mack (1978) 
using flies; and Koehler and Fleissner (1978) using beetles reported evidence of 
at least two major circadian oscillators, physically distinct, in the individual insect. 

3. Jacklet and Geronimo (1971) and Benson and Jacklet (1977) showed that 
each eye of the mollusk Aplysia constitutes a self-sufficient circadian oscillation, 
as in fact do isolated pieces of the retina. Besides the two eyes, at least one other 
structure, the parietovisceral ganglion, has its own circadian dock (Strumwasser, 
1974; Lickey et al., 1976). 

4. Fora long time it has been realized that the individual leaves of plants are 
capable of circadian rhythmicity independent of the rest of the plant; the same is 
true offlower petals (Bunning, 1973). Simon et al. (1976a, b), exploring the causes 
of the leaf moment rhythms typical of many plants, showed the oscillation to be 
self-sufficient in isolated pulvini of Samanea. Wilkins and Holowinsky (1965) 
reported circadian rhythms of respiration in cultured bits of callus tissues taken 
from the succulent plant Bryophyllum. Mergenhagen and Schweiger (1975a) found 
circadian rhythms of photosynthetic activity in fragments of a single cell of 
Acetabularia. 

5. Circadian rhythmicity persists in pieces of diverse fungi. 
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That "The" Circadian Clock is Functionally Composite 

Next, we examine the most convincing cases presently available that circadian 
docks are functionally composite in multicellular organisms. 

1. In plants, as noted above, individualleaves and petals maintain rhythmicity 
on locally altered schedules, even when not physically separated from the rest of 
the plant. Mayer and Sadleder (1972) found the primary and secondary pulvini of 
legumes to function with different circadian periods. 

2. The several docks of Aplysia show no indication ofmutual coupling, so far. 

In cases 3 through 7 to follow, only two components have been observed. 

3. In insects and in mammals, there are numerous indications that circadian 
docks originate in nerve tissue. The bilateral symmetry ofthese organisms suggests 
two physical docks. Can they function independently? The lasting alteration of 
future re setting behavior that accompanies phase resetting in flies' edosion 
rhythms can be accounted for in quantitative detail in terms of: 

a. Two independent attractor-cyde oscillators, possibly located in the left and 
right sides of the brain (Winfree, unpublished computations, 1974) or 

b. A population of many docks, in this ca se not necessarily with attracting 
cydes (Winfree, 1975b, 1976) or 

c. Two coupled attractor-cyde oscillators of the sort envisioned by Pavlidis 
(1976). 

Koehler and Flesissner (1978) show functional dissociation of left-right docks in 
insects. In bees, Medugorac and Lindauer (1967) and Beier et al. (1968) re port 
experiments suggesting bimodal dock activity, possibly originating in experimental 
desynchronization of two docks. 

In cases 4 to 7 to follow, the two oscillators are not imagined to be equivalent 
as above but are thought to have quite different properties. 

4. Salisbury and Denney (1971), King (1975), and Bollig (1977) point to 
different docks regulating leaf movement and f10wering in three kinds of weed. 

5. Engelmann and Mack (1978) report that two docks of 6% different period 
oscillate simultaneously in Drosophila pupae: One governs edosion and the other 
governs the rhythm of adult activity. 

6. Pittendrigh (1960, Figure 12) was the first to report a peculiar splitting of 
daily activity rhythms in rodents, wh ich has since become a fruitful subject of 
investigation not only in rodent species (Pittendrigh, 1967a, Figures 1-4; Daan 
et al., 1975; Pittendrigh and Daan, 1976c; Rusak, 1977) but also in other vertebrates 
(Hoffmann, 1969, Figure 3, 1971b, Figure 4 in the tree shrew; Gwinner 1974 
in birds; Underwood, 1977 in lizards). In the latter case, the demonstration is 
particularly spectacular: Two components ofthe activity rhythm run through each 
other without synchronizing, just as they do in Koehler and Fleissner's beetle. 
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7. Wever (1975), Aschoff and Wever (1976), and Sulzman et al. (1977b) con
vincingly showed that there are two oscillators of quite different period in man 
and other primates, one predominantly affecting the activity rhythm and one 
predominantly affecting the body temperature rhythm. The two have been induced 
to scan through each other repeatedly: 

the human circadian system consists of a multiplicity of oscillators that are 
usually coupled to each other but [which] may change their phase relationship 
depending on conditions, and if they ever became desynchronized, free
running with different frequencies ... The rhythms of activity and of tem
perature are both infiuenced by two different classes of self-sustaining 
oscillators, but to different extents. 

Aschoff and Wever, 1976 

Note that the experimental physiologists ci ted under 6 and 7 above all surmise 
that the "two" oscillators observed might each consist of many interacting oscil
lators, normally well-synchronized into clusters. (See suggestive rodent activity 
records in Pittendrigh and Bruce, 1959, their Figure 7; DeCoursey, 1961, her 
Figures 3, 9; Swade and Pittendrigh, 1967, their Figure 9; Morin et al., 1977a, her 
Figures 2 and 3.) Stimulated by such conjectures, I looked for similar behavior in 
a deliberately contrived population of electrical oscillators (Winfree, 1965, 1967a, 
and Chapter 11) and in computer simulations of better characterized oscillations. 
It turned out that both the coherence of each cluster and the splitting of a popula
tion into two clusters with somewhat different properties can be mathematically 
rationalized in terms of similar oscillators symmetrically coupled through a 
metabolic pool (Winfree, 1967a). Disaggregation into three or more clusters was 
also observed from time to time. It is also seen in rodent activity rhythms (e.g., 
Pittendrigh 1960, Figure 12 and Rusak, 1977, Figures 2 and 5). Pavlidis (1971, 
1973) also constructed models of such phenomena. 

The next section summarizes to the best of my knowledge what litde information 
is presently available about interaction within aggregates of circadian clocks. 

Interaction Among Circadian Oscillators 

CelI Populations in a Shared Nutrient Medium. It is c1ear that in some 
cases circadian oscillators do interact to maintain mutual synchronization. For 
example, Page et al. (1977) found strong interactions between the left- and right
side clocks in the brain ofthe cockroach. Synchrony is normally maintained within 
the enormous cell of Acetabularia despite the fact that isolated pieces of the cell 
are capable of sustained circadian rhythmicity (Mergenhagen and Schweiger, 
1975a). What about populations ofseparate individual unicellular organisms, such 
as Acetabularia, Gonyaulax, Paramecium, Tetrahymena, and Euglena? Rhythmicity 
in collections of Acetabularia plants promptly decays as individuals drift out of 
synchrony, but in the other four populations it persists without conspicuous 
damping for a long time in the absence of known external synchronizers. In 
Euglena, it persists for months (Brinkmann, 1966, 1967; Terry and Edmunds, 
1970; Edmunds et al., 1971). 
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The latter cases could be accounted for in three ways: 

1. The rhythm is actually driven by a covert periodic influence; but this seems 
unlikely since the period seldom exactly matches the 24-hour period of the most 
plausible candidates. 

2. The members of the population all have very nearly the same period so 
that their initial coherence persists without need of mutually synchronizing 
interactions and without need of an external pacemaker. Njus (1975) estimates 
that in order to account for the continued narrowness of Gonyaulax's daily glow 
peak without invoking synchronizing interactions, one must assume a standard 
deviation of period not exceeding 1-4% (I5 minutes to an hour). (The higher 
figure represents a standard deviation ofthe period within each cell ofa population 
of statistically identical individuals; the lower figure represents the standard 
deviation of period between cells of a population of perfect oscillators.) This order 
of precision is not implausible. The circadian clocks of individual Drosophila pupae 
have periods which differ by only ab out this much (Winfree, 1973a, Appendix). 
But it is hard to account in this way for observations of undamped rhythmic 
settling or phototaxis in Euglena populations over the course of months 
(Brinkmann, 1971). 

3. The individual cells could interact in such a way as to maintain mutual 
synchronization. Suspensions of yeast cells maintain synchrony of glycolytic 
oscillations by metabolic interactions (Chapter 12). Southeast Asian fireflies 
maintain synchrony of flashing through the phase-shifting effect of a light flash 
on each individual's flashing rhythm (Buck and Buck, 1976; Hanson, 1978). 
Individual cells of the heart's pacemaker achieve the same electrically (Watanabe 
et al., 1967; Jongsma et al., 1975; Clay and DeHaan, 1979). 

Empirically, one could test for such interactions among circadian clocks in 
three ways: 

a. As in Aldridge and Pavlidis (1976), using yeast cell suspensions, one could 
dilute the suspension in search of a threshold at which coherence is abruptly lost, 
i.e., the collective rhythm suddenly begins to decay (see Chapter 12). Such experi
ments have not been reported in circadian systems. 

b. As in Ghosh et al. (1971), using yeast cell suspensions once again, one could 
combine two populations of cells with different phases to sec whether the combined 
result is simply a superposition ofthe two populations mixed or something different 
which might indicate interactions. 

Nonsuperposition would prove interaction, though not necessarily of the kind 
that favors mutual synchronization. If the observed rhythms were conspicuously 
nonsinusoidal (e.g., aspike every 24 hours) then superposition might also prove 
noninteraction. But, with smooth sinusoidal observables, as in the cited cases, 
superposition is indistinguishable from aresetting of amplitude, an interpretation 
that can be excluded only by showing that the circadian clock in question adheres 
closely to a standard cycle. Such few circadian rhythms as have been examined 
in the required detail do not seem to adhere closely to a standard cycle (Drosophila, 
Chapter 20; and Kalanchoe, Chapter 21). 
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c. Alternatively, one could try phase-shifting a cell suspension by adding 
supernatant from a differently phased population. In this way an interaction might 
be discovered. It would remain to be proven that such interaction would result in 
stable mutual synchronization. 

Experiments oftypes band c have been reported: Mergenhagen and Schweiger 
(1974) using Acetabularia; Hastings and Sweeney (1958) using Gonyaulax; Brink
mann (1966, 1967) and Edmunds (1971) and Edmunds et al. (1971) using Euglena. 
In these trials exact superposition was not the usual result. But neither did the 
combined rhythm indicate immediate synchronization by taking up the large 
amplitude typical of a coherent population. Nor did addition of supernatant from 
another phase cause an obvious immediate phase shift. Gooch, Sulzman, and 
Hastings (1979 pers. comm.) using Gonyaulax did obtain mere superposition. 

What these experiments show is that there are no violent and immediate 
mutually synchronizing interactions. More systematic and prolonged mixing 
experiments are required to ask ab out gentle and slow-acting interactions. 

It mayaiso be noteworthy that these tests have been applied not to the somatic 
cells of a multicellular organism, but to populations of anarchists, possibly not 
designed for cooperation. Moreover the populations studied all consist of green 
cells, necessarily exposed to the diurnal light-dark cyde in nature. Even if there 
were some advantage in synchrony, one would not necessarily expect selection 
for mutually synchronizing interactions, as there is no functional requirement for 
them. Support for this speculation comes from the leaves and petals of flowering 
plants, which are indeed capable of independently phased circadian rhythmicity: 
Whatever interactions may exist, they don't quickly induce synchrony. It might 
be that only the cells of nocturnal animals, cave fungi, the inner tissues of large 
animals etc. are sufficiently isolated from the environmental day-night cyde to 
experience some selective advantage in mutual synchronization. As noted above, 
Page et a!. (1977) found strong synchronizing interactions between the two circadian 
pacemakers in the brain of a nocturnal anima!. 

Mutual Entrainment vs. Mutual Synchronization. I might note here that it 
seems to be widely assumed that if rhythmic interactions occur between circadian 
oscillators, then, supposing only that the coupling is strong enough relative to the 
dispersion of periods in the population, mutual synchronization is the natural 
outcome. It is crucial to distinguish here between mutual entrainment, which only 
implies phase locking at a common frequency, and mutual synchronization, which 
means that, additionally, the phases are all nearly the same. Mutual entrainment 
is commonly achieved between two similar oscillators, given strong enough 
coupling. Surpringly, this was found not to be the case in a study of idealized 
oscillator populations (ofmore than two) by mathematical analysis and computer 
simulation (Winfree, 1967a). It was found that mutual interactions can either 
contribute to mutual synchronization or oppose it, depending on phase relations 
between each cell's rhythm ofmutual influence and each cell's rhythm ofsensitivity 
to that influence (see Chapter 4, Section B; Chapter 8, Section B; and Chapter 14, 
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Section B). The reason is basically that although mutual entrainment is commonly 
found between similar coupled oscillators, it does not Llsually consist of mutual 
synchronization. The mutually entrained oscillators may, e.g., bc 180 out ofphase. 
In a population, mutual entrainment is more difficult to arrange without mutual 
synchronization because the entraining rhythm feit by each oscillator, being a 
sum over all the others, is weaker to the extent that synchronization is imperfect 
(unless there is only one other). Thus, interacting mutants might be selected both 
in situations requiring mutual synchrony, and in situations such as Richter (1965) 
suggests might require collective arrhythmicity of individually rhythmic units. 
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... indeed what reason may not go to Schoole to the wisdome of Bees, Aunts, 
and Spiders? wh at wise hand teacheth them to doe what reason cannot te ach 
us ') ruder heads stand amazed at those prodigious pieces of nature, Whales, 
Elephants, Dromidaries and Camels; these I confesse, are the Colossus and 
Majestick pieces of her hand; but in these narrow Engines there is more 
curious Mathematicks, and the civilitie of these little Citizens more neatly 
sets forth the wisedome of their Maker. 

Sir Thomas Browne, physician, regular correspondent of Henry Power 

Understanding the circadian timing of eclosion in insects is a pretty big 
undertaking. A lot of technical detail is essential and a lot of close reasoning 
from meticulous experiments stands in the place of direct observations on the 
"cloek's" unknown physiological mechanism. In that respeet clockology has some 
of the intellectual delight of the earlier years of genetics. However, the whole 
argument has never been spelled out for publication in one plaee. This chapter 
onee again attempts only an outline of the essentials. The story presented here 
seems to be generally valid for butterflies and moths, flies and mosquitos, wasps 
and bees (i.e., Lepidoptera, Diptera, and Hymenoptera), but I emphasize my own 
experimental beast, the fruitfly. For a review of insect eclosion systems from the 
viewpoint of physiology and ecology, see Remmert (1962). 

A: Basics of Insect Eclosion Clocks 

The Life Cycle 

An insect starts as a fertilized egg. Within the egg, development culminates in 
the emergence of a larva (caterpillar, maggot, "worm"). The larva eats by burrowing 
through semisolid food until it attains suitable maturity. At this point, feeding 
stops and the animal sheds and hardens its outer cuticle, now called the pupal 
case. Then the next miracle begins : construction of the adult by metamorphosis. 
Prior to the pervasive transformations that metamorphosis comprises, the organs 
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of an adult lie among the larva's organs as rudimentary bag-like sheets of un
differentiated cells. These are called imaginal disks. Most of the larva's organs 
dissolve during metamorphosis. The materials thus made available are used as 
nutrients by the growing imaginal disks. Some larval organs do survive into the 
adult though they undertake extensive remodeling. Examples include the brain 
and the insect's equivalent of a kidney, the Malphigian tubules. It is to these few 
that we must look for an understanding ofthe timer that schedules, well in advance 
of metamorphosis, the hour at which the winged adult will emerge from the former 
worm's coffin, the pupal case. This opening of the pupal case, called ec1osion, 
happens all of a sud den at the appointed hour. This is a time of great vulnerability 
and conspicuousness for the young adult, so it is all gotten over with as quickly 
as possible. The wings are hardened, the cuticle tanned, and the adult is ready to 
go within the hour. Mating and fertilization normally follow an eight-hour fast. 
The life cycle is then complete. 

The gating of pupal ec1osion time has been used to experimentally study cir
cadian c10ck resetting in the cotton bollworm, Pectinophora (Pittendrigh and 
Minis, 1971); the silkworm moths Antheraea, Hyalophora, and Ci'cropia (Truman, 
1971,1972); the fruitflies Drosophila pseudoobscura and melano{.jaster (Skopik and 
Pittendrigh, 1967; and references throughout this chapter); the mosquito, 
Anopheles (Reiter and lones, 1975); the midge, Clunio (Neumann, 1978); the 
Queensland fruitfly, Dacus (Bateman, 1955); and the fleshfly, Sarcophaga (Saunders, 
1976b). For a review, see Saunders (1976). Most ofwhat follows is about flies. 

Clock Physiology and Development 

Every line of evidence today suggests that the insecCs ec1osion clock is in its 
brain (Saunders, 1976): 

1. The c1ock's photosensitivity, in flies and in moths, is at the head end, 
specifically in the brain. 

2. Behavioral mutations affect the circadian rhythm of adult activity if and 
only if(in genetic mosaic flies) the brain tissue has the mutant genotype. 

3. In moths, transplanting the brain is equivalent to transplanting the ec1osion 
schedule. 

The circadian clock that ultimately governs ecIosion timing already exists 
when the egg hatches. In fact Minis and Pittendrigh (1968) in an elegant series of 
experiments showed that it exists in the egg prior to its acquiring the sensitivity 
to light by which its phase is normally determined. They achieved this in the moth 
Pectinophora gossypiella by using a single temperature pulse to induce rhythmicity 
in otherwise arrhythmie populations reared in constant conditions. But even so 
nonspecific a stimulus as a temperature pulse failed to "set the c10ck in motion" 
in eggs fertilized less than 5t days earlier: Evidently the cIock had not yet formed. 
In the fruitfly Dacus, according to Bateman (1955), there is no arrhythmie stage: 
Larvae inherit the phase of their mother's clock. Brett (1955) and later Zimmerman 
(1969, 1971) showed that in Drosophila the clock persists in a regular cycle, from 
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the youngest larvae straight through metamorphosis, once it is started by ter
minating an exposure to visible light. Remarkable as it may seem, the circadian 
dock appears to evade any substantial involvement in the developmental revolu
tions taking place all around it, at least up to the last few days before the adult 
emerges. It might have been expected that dock properties would change with 
developmental age, but to an excellent first approximation this is not the case 
during larval and pupal stages. It might also have been reasonably anticipated 
(and it was: Harker, 1958; Skopik and Pittendrigh, 1967) that the dock that governs 
the nominal termination of metamorphosis would also regulate the timing of 
intermediate steps. It came as a disappointment (especially to me, having switched 
universities in the middle of graduate study in order to explore developmental 
regulation by circadian docks) to find that this is not the ca se in Drosophila 
(Pittendrigh and Skopik, 1970). This circadian dock seems less a synchronizer 
of developmental and epigenetic dynamics than a behavioral device seated in the 
nervous system. 

Behavioral Output 

Pupating insects are a great convenience for laboratory investigations. The 
pup al ca se endoses a self-contained "life capsule" requiring only oxygen (and 
not much ofthat) from outside. The animals are weil protected in their life capsules 
and can be handled almost as casually as so many rice grains. They do not move 
around, so cages are dispensible. They don't need food and water, and accordingly 
extrude no excreta. Best of all, the life capsule contains within it all the instrumen
tation req uired to assay the phase of the circadian dock within, covertly marking 
time in cydes of 24 hours. 

MATURITY 

TIME 

Figure 1. The timing of eclosion peaks in a mixed-age population betrays the phase of an oscillation 
here imagined to determine a fluetuating threshold of developmental maturity at which the fly eleets 
to step forth and bc counted. Pupae starting metamorphosis at various tim es during the darkened 
interval at the left side on the time axis first encounter threshold along the darkened are and so con
stitute the darkened eclosion peak. Their younger and older siblings fall into diseretely separated peaks 
unless the threshold rhythm's slope is everywhere shallower than the eurve of maturation (here plotted 

as a straight line without loss of generality). 
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FLIES 
1000 PER 

HOUR 

o 72 144 
HOuRS PAST UGHT/OARK 

216 

Figurc 2. Summation of over 100 un
perturbed control experiments col
lected from 1968 through 1976. Each 
rccordcd the numbcr of flies emerging 
hourly after pupae were taken from 
prior continuous light into everlasting 
darkncss. We are conccrned with peak 
I imilllJ (horizontally in multiples of 
24 hOHrs). not with thc number of flies 
emcrging in each peak. 

My belief is that it works like this. Each animal's developmental readiness to 
emerge increases continually with its age during metamorphosis. At some point, 
let's say when readiness reaches some threshold, the hormones are released which 
trigger eclosion. Suppose the threshold ffuctuates diurnally. A Figure 1 suggests, 
individuals starting their climb to maturity as fertilized eggs at different times would 
then acquire threshold maturity in bunches 24 hours apart. These bunches con
stitute the train of discrete packets, or eclosion peaks, typically seen in populations 
of mixed age (Figure 2). Other things equal, the phase of this ecJosion rhythm is 
taken to indicate the phase ofthe threshold rhythm, itself driven by the underlying 
photosensitive cJock. This may be indirect, but there you have it. 

In contrast, with a constant threshold, each individual would acquire threshold 
maturity a fixed time after fertilization, and the eclosion distribution would there
fore exactly parallel the age distribution. This is in fact wh at happens in pupae 
whose clocks are suppressed by continuous light (Skopik and Pittendrigh, 1967) 
or otherwise induced to ftuctuate much less conspicuously (see Box A). 

There are two important facts to note about this diagram in present context: 

A. The size of an ecJosion peak is determined entirely by the age distribution. 
All pupae starting in the shaded range of the time axis emerge as adults in the 
shaded eclosion peak. The size of an ecJosion peak has oceasionally been eonfused 
as some measure of the "amplitude" of the circadian oscillation. But this is quite 
a different matter, as elaborated in Chapter 7. Only the timing of peaks, not their 
size, is determined by the phase and amplitude of the threshold rhythm. 

B. The putative threshold rhythm must not be confused with "the waveform 
of the circadian oscillator", on at least t wo accounts: 

1. The very notion of the waveform is ill defined and, I think, more nearly 
a troublesome fiction than helpful eoncept. 

2. The ecJosion peaks are not always regularly spaced along the time axis 
immediately after a phase-resetting stirn ulus. It would appear that ecJosion is 
determined not directly and immediately by the re set cJock, hut by some physio
logieal rhythm indirectly driven by a more nearly periodie cJock, and that this 
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Box A: Rhythmic Gating and Arrhythmicity 

Figure I pre el1l one vi ion of how a mooth rhythm can determine the timing of a 
di crete event. In a population of organism tarting development at time strewn 
continuously along the tim axis, this vision providcs a way to think abollt "gating" of 
developmel1lal evcnts. Ifthe rh thmic variation in the thre hold has sufficient amplitude, 
then dllring part ofcach cycle the thre hold is rising fa ter (han developmental readiness 

(a) 

(bl 

(cl 

(a) Wilh haSlened maluralion or allenualcd cir adian rhylhmicily of Ihreshold 
(rela ti ve 10 Figure I). ome pupile reach Ihreshold i1l every hour. Eclosion peaks 
abruptly broadcn and ru e al lhi point. (b) Wilh developmeOl ufficienlly slowcd 
down. each pupa crosscs rcpealedl above Ihreshold and back under. The dilrkened 
intcrval mighl be dClcclablc. (c) polar oordinale conlour map of age al eclo ion 
as a functiol1 of the thre hold rhythm' amplilude A (relative 10 rale of maturation) 
and its pha e I/! at ilny chosen rcfcrcncc age (or age al pha e zero). oIe the region 
around I/! = 0 al A- I where Ihe urface rolds into lhree layer . repre eOling the three 
possible iOler ections in Figure I. The edge of lhis cusp are involule of lhe unil 
circle. Al any amplilude > I lhe age i1l eclo ion changes abruplly allhis crilical 
value of ""age al pha e zero", cleaving a mixed-age p pulalion inlo discrele peaks. 
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can catch up. The re ult i a complete ab ence of event at rhythmic interval . All event 
occur in di crete peak of activity with more mature animal arriving fir t at each gate. 

Thi diagram i only an art form, with little scientific ub tanee. However, one could 
playa game of taking it eriou Iy by a king how event timing, thu under tood, would 
be affected by a change in the amplitude of the thre hold 0 cillation, or of thc rate of 
development. Amplitude in Drosophila's circadian dock can apparently be re et tably 
bya uitably timed light pul e and perhap by rearing in continuou dim light of uitable 
inten ity. And the rate of development can be increa ed or decrea ed by adj u ting the 
temperature without affecting the dock' period. 

uppo e that development were peeded up or the clock' amplitude were 0 reduced 
that thre hold no longer ri e fa ter than developmental readine (Figure a). Then 
evcnt would occur at al/ times. no longer bunched into diserete packet. Thi abrupt 
running-together of peak a a critical amplitude or developmental ratc i reached 
might pro ide an interpretation for the arrhythmicity ob erved in eclo ion experiment 
when the dock i in ome way inhibited or suppressed. 

Suppo e the developmental rate were such thatthe ri ing readine 5 crossed thre hold 
et'eral time (Figure b). uppo e eclo ion were temporarily inhibited during the first 

cro ing (e.g., by expo ing pupae to to 0 chloroform vapor). The diagram ay edosion 
would again be po ible at ccrtain times (where the readine curve remain in the 
unshaded region above the threshold) but not at other times(where it is below threshold). 
Thi implication could be testcd. 

Suppose one were to work with single animals of known developmcntal age. Ac
cording to the e figure , theage ofeclo ion (i given a a function oftheclock' amplitude 
A and it pha e 4> extrapolated to ome tandard rcference age. Edo ion time would be 
determined by the olution of an equation qualitatively similar to 

( = A sin(4) - (). 

The graph of uch olution i a urfacc in three dimen ion : a plot of age I at edo ion 
abovc the (phase. amplitude) plane or. equivalently, above the (T. M) plane de cribing 
the light pulse used to set 4> and A. (Figure c) The surface turns out to be built around 
the infamou "cu p cata trophe" (Zeeman, 1977). 

h turn out that a con iderable diver ity of dynamic model for dock mechani m 
and their interactions with developmental timing can be reduced to picture of thi 
ort. 0 it might be worthwhile to find out whether we have here some general rules 

for the qualitative beha ior of rhythmically controlled evenl . 

rhythm (the B oscillator of Pittendrigh and Bruce, 1957, or the threshold rhythm 
of Figure 2) catches up to dock phase only after a few days of transient irregulari
ties. (Incidentally, this sort of thing is unknown in unicellular docks.) 

The careful reader will note here that the interpretation oftransients is presently 
a weak link in this whole story, but potentially a very important one. After all, the 
organism's behavior in nature is probably !ittle more than a continual renewal of 
transients. Only in the laboratory does physiology continue in a perfect1y periodic 
way. At present it appears that the character of the transient irregularities varies 
a lot [rom one lab to the next (Pittendrigh and Minis, 1964; Engelmann, 1969; 
Chandrashekaran and Loher, 1969b; Winfree and Gordon, 1977). 
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Accordingly all measurements of phase reported in this volume are conducted 
at least three days after the last change in the environment that might have any 
effect on the circadian clock, so that transients are over, by the criterion that 
emergence peaks recur at regular intervals of approximately 24 hours. 

A Rhythm of Responsiveness to Stimuli 

In the insect eclosion systems described in this chapter, rhythmicity is initiated 
by transfer from constant light into constant darkness. One's first impression is 
that something periodic has been disinhibited. Further investigation reveals that 
it is even more exactly periodic than it looks in that variations in peak size merely 
indicate population size in successive one-day age classes, and transient variations 
in the intervals between peaks dissipate within a few days after a disturbance. 

Using this rhythm of eclosion gating in a slightly more involved experiment, 
one can monitor a second rhythm, a rhythm of rephasing. This is done by inter
rupting the dark with a single pulse of light and then monitoring the phase of the 
poststimulus train of eclosion peaks relative to the prestimulus rhythm. This 
phase depends on the phase at wh ich the light pulse was given. This rhythm of 
sensitivity has been much studied. It reveals, among other things, that the oscilla
tion initiated by the light-to-dark transfer is less strictly periodic than appears 
from watehing eclosion timing alone. By examining not only the rhythm of 
eclosion after a delicate light pulse, but also the rhythm of sensitivity, it has been 
found (see Chapter 7) that in the first 16 ho urs the clock deviates from exact 
periodism quitc conspicuously in a systematic way. The circadian clock in 
D. pseudoobscura, released from inhibition under continuous bright light, does 
not enter into strictly periodic motion from an initial state that recurs at 24-hour 
intervals. lt seems to approach a more strictly repetitious behavior after one or 
two cycles in the dark, or after one or two cycles of an entraining light cycle. 

Thus we have now two independent aspects of transient deviations from 
periodism (see Figure 3): 

I. Periodism is irregular along the vertical time axis in each experiment for 
two or three days before intervals between ec1osion peaks revert to 24 hours. 
These are the old transients, believed to reflect peripheral physiology mediating 
the c1ock's control of ec1osion (see Pittendrigh et al. (1958) and Kaus, 1976). 

2. Periodism is irregular along the horizontal time axis in aseries of experi
ments for about one day while the freshly started oscillator settles down to regular 
cycling. These are the new transients, distinct from the above and from any 
possible transient changes in photoreceptor sensitivity (because this effect is 
observed even with saturating exposures). 

DeL'elopmenta/ changes would constitute a third and distinct kind of transient, 
distinguishable as an age-dependent changing ofFigure 3. In studying experiments 
that deviate systematically from repetitiousness, one must take care about in
ference on the basis of the "circular logic" of Chapter 1, which is appropriate 
only to strictly periodic systems. 
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Figure 3. Two kinds of transients, portraycd in the format 01' Figures 31 through 33 of Chapter I. 
(a) Transients in the source of rhythmicity, C.g., gradual incrcase of amplitude after startup. (b) Tran
sients in peripheral mechanisms causally downstream from thc source of rhy!hmicity. Such rhythmi
cally-driven mechanisms commonly requirc a few cycles !o cntrain stably tn the recently started 01' 

rese! source of rhythmicity. 

Input to the Clock: Light and Temperature 

So much for the output side of the dock. Since our experiments consist of 
varying the light intensity, it is also necessary to dweil brieflyon the peculiarities 
of the input side. 

The circadian dock in birds and mammals takes its cues in part from sophis
ticated sensory systems, e.g., hearing, vision, and social interactions. In lower 
organisms, we find only a very primitive sensory transduction. For example, 
the severe impact of sudden temperature changes on dock kinetics in the fruitfly 
Drosophila (Winfree, 1972a) is presumably through the temperature dependence 
of all reactions involved. There seems no reason to imagine a specialized thermo
receptor. Slower temperature changes are commonly buffered out (see Section A 
of Chapter 19). 

Is the response to visible light this primitive? The visual nervous system is 
involved in some organisms, but this is not usual in the invertcbrates. I know no 
persuasive evidence that dock photosensitivity in invertebrates attaches to any 
selectively specialized structures or pigments, nor that the absorbing substance 
is apart of the oscillating mechanism. 1 In fact, there are some reasons to think 
otherwise; e.g., some circadian docks seem to lack photosensitivity altogether 
(Tweedy, 1970; Saunders, 1976a). Other hints in this direction come from detailed 
study of dock photosensitivity in the fruitfly D. pseudoobscura: 

1 Though it might be in green plants (see Heide, 1977 abou! phytochrome). 
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1. It doesn't take much light to rephase. My standard light source provides 
0.1 wattjm 2 near 450 nm. This is 4 x 10- 7 moles of photonsjm 2js. Multiplying 
by the maximum conceivable absorption cross-section (l05 Ijmole-cm2 = 106 mj 
mole as in rhodopsin, chlorophyll, phytochrome) we find that 1% ofthe molecules, 
at the very most, absorb a photon each second. But in only several seconds, 
far less than the minimum expected waiting time for any given molecule to absorb 
a photon, the phase response saturates in dark-adapted pupae. Evidently, then, the 
phase response does not saturate for want of any surviving excitable or photo
labile molecules; the vast majority of them don't even know the light is on before 
the phase response is saturated, and continued exposure, though it must result 
in more absorptions, does !ittle more to the dock so far as I am aware. 

While this observation might be compatible with the notion that the photo
receptor is itself a rhythmically fluctuating component of the dock mechanism, 
it is not compatible with the imp!ication sometimes invoked, i.e., that phase 
shifting is accomplished directly by substantially changing the amount of that 
substance. (However, many other circadian rhythms are far less photosensitive.) 

2. In D. pseudoobscura (but not in D. melanogaster) prolonged illumination 
reduces the dock's photosensitivity during its next cyde by 10- to 20-fold. Sub
sequent dark adaptation takes days and is reversible by light that seems not to 
affect the dock. This suggests to me bleaching of a photoreceptor which is not a 
necessary part of an oscillating mechanism. I believe this possibility was first 
suggested in a mathematical model by Pavlidis (1967b) and in context of fruitfly 
experiments by Chandrashekaran and Loher (1969b). Similar "dark adaptation" 
has been no ted in quite diverse species, e.g., in Gonyaulax (Christianson and 
Sweeney, 1973); in Kalanchoe (Engelmann et al., 1978); in Chaoborus (Bradshaw, 
1972). However, in Sarcophaga (Saunders, 1978) and in Pharbitis (Bollig, 1975) 
photosensitivity decreases after transition from constant light into constant 
darkness. In this connection, note that Chandrashekaran and Engelmann (1973) 
suggest a correction on Winfree (1972b,e). They believe that dark adaptation occurs 
not smoothly but by stages at each successive T* of the dock. 

3. Even at the wavelength of greatest effectiveness (Frank and Zimmerman, 
1969; Klemm and Ninnemann, 1976) 10 thousand 1jm2 is required for the 
"bleaching" in D. pseudoobscura (Winfree, 1972e). Given a photoreceptor with 
absorption cross-section comparable to rhodopsin or chlorophyll or phytochrome, 
that much light would hit each moleeule 1,000 times on the average.1t may be that 
only a rare hit permanently bleaches the molecule. But if bleaching is the usual 
concomitant of absorbing a single photon (as in rhodopsin, chlorophyll, and 
phytochrome), then the molecule's absorption cross-section or extinction coeffi
cient at the optimum wavelength falls below that ofgood biological photoreceptors 
by a factor of 1,000, discounted by whatever attenuation factor the overlying 
opaque tissues might provide. This is scarcely above the range typical of colorless 
organic molecules, a fact compatible with the failure of many attempts to see and 
isolate a dock pigment. This suggests to me that the extreme sensitivity of some 
circadian docks to visible light is due less to efficient photon capture per mole 
of photoreceptor than to specific involvement of the excited molecule in dock 
chemistry. 



410 20. The Circadian Clocks of Insect Eclosion 

4. I know of no conclusive studies establishing whether a circadian clock has 
"a" photoreceptor pigment, i.e., is color blind, having a single color receptor. 
Alternatively (as in the case of temperature sensitivity), the oscillator might be 
affected in different ways through a variety of not-quite-colorless molecules. 
Bunning and Joerrens (1960) suggested as much for an insect. There are stronger 
indications of this in plants. The action spectrum for rephasing seems to depend 
on the phase at wh ich it is measured, i.e., the re setting curve shape depends on the 
color oflight used (Bunning and Moser, 1966; Halaban, 1969; Schrempf, 1975). In 
other words, the clock in plants has color vision. Frank and Zimmerman (1969) 
specifically tested for this possibility in D. pseudoobscura and found no indication 
of a phase-dependent action spectrum. However, their test was not delicate, 
comparing photoresponses at phases separated by only two hours. Moreover, 
their measurements (and those of Klemm and Ninneman, 1976) used pupae 
whose photosensitivity would have been an order of magnitude greater had they 
been exposed a day later; this increase might reflect the appearance of a second 
pigment. (In this connection see Winfree, 1975c.) 

Do action spectra provide an efficient inroad to the clock's molecular mecha
nism if the photoreceptor only affects the clock while illuminated, but isn't part 
of the mechanism in the sense of affecting and being affected even in the dark? 
Or if the action spectrum is compounded of more than one absorption spectrum? 
I think not. 

The circadian clock in most insects functions differently while exposed to sudden 
changes of temperature andjor to light, even quite dirn light, of a suitable color. 
In no case has the photoreceptor been identified. In no case has its impact on the 
clock mechanism been described, except in terms of analogies to electronic 
oscillators, chemical effects on glycolytic oscillations, differential equations, and 
so on. Nonetheless, the clock does function differently while illuminated, so we 
can use abrief interlude of illumination to explore its state space, by starting from 
different phases in the usual cycle and continuing from there to various durations 
before reverting to darkness. 

Under prolonged illumination, the clock mechanism approaches a time
independent state. (Pavlidis, 1978a, neutralizes arecent challenge to this inference.) 
The eclosion distribution is then no longer gated into discrete bursts. Prolonged 
illumination provides the standard initial condition for almost all our experiments. 
Upon transfer to darkness, oscillating kinetics is resumed from that initial state 
and the eclosion rhythm's phase is determined by the time of transfer. This trick 
was discovered by Bunning (1935). 

Why Use Populations? 

Having assembled a provision al picture of the individual physiological clock, 
in context of its sensory inputs and outputs to the timing of eclosion, we have 
finally to contend with the fact that eclosion measurements are typically conducted 
in populations. In principle, populations should not be necessary. Using cohorts 
of pupae collected as prepupae formed within a two-hour interval, Skopik and 
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Pittendrigh (1967) showed that edosions occur in a peak less than three hours 
wide (measured as twice the RMS deviation of counts about the mean). They 
showed that the time of the peak reveals the phase of something (the dock) that 
varies periodically after transfer to darkness. In principle, phase shifts of the dock 
could be assayed with adequate precision by comparing the edosion time of a 
single fly against Skopik and Pittendrigh's series of control experiments, in which 
the mean edosion time was measured in cohorts after the clock was started (by 
transfer to darkness) at different ages. But a technical difficulty intervenes. The 
control se ries would have to be rerun in each experiment because as little as a 
toe difference in mean temperature during metamorphosis is equivalent to a 5% 
change of developmental rate (and almost no change in dock period). In the 
200 ho urs of D. pseudoobscura metamorphosis this amounts to a major fraction 
(10/24) of a 24-hour cyde. Nutritional differences caused by crowding presumably 
also affect the mean rate of development. Since edosion time is jointly determined 
by dock phase and developmental readiness (Figure 1), any uncontrolled influence 
on developmental rate spoils the single-pupa phase assay. So the usual expedient 
is to use populations spanning a range of at least several days of age. This way, 
even if pupae achieve ade qua te maturity some hours or days earlier or later than 
usual, there are still some mature pupae available at any given time during the 
week when eclosion is monitored. Ideally, one would record the age distribution 
in aseparate control experiment and correct edosion peak times for the influence 
of departures from flatness using an algorithm suggested by Figure 1. It was 
my habit to do so, by routine computer processing of data, but it didn't make much 
difference in experiments that terminated in several discrete and narrow edosion 
peaks. It suffices to ignore peak shape and accept any measure of central tendency 
as the phase of the dock, if one can live with the one- to two-hour irreproduci
bility of that measure. 

Numerous warnings about interpretation of population data have been issued 
in the circadian rhythm literature since the mid-1950s (Harker, 1958; Wever, 
1963, 1965b; Skopik and Pittendrigh, 1967; Ehret, 1971; Karlsson and Johnsson, 
1972; Engelmann et al., 1973; Johnsson et al., 1973). Most ofthese prove irrelevant 
for insect edosion systems producing discrete sharp peaks. However, population 
inhomogeneity does become a crucial factor for interpretation of experiments 
that produce vague or irregular rhythmicity, as discussed below. 

Recapitulation 

F or present purposes, the central facts to bear in mind are: 

1. The eclosion dock is started by transfer from constant illumination to 
everlasting darkness (perhaps punctuated by one or two light pulses weIl be fore 
edosion time). 

2. The position of the eclosion peak sequence along the time axis reveals the 
phase ofthe underlying clock ifthe edosion peaks are sharp and uniformly spaced 
at 24-hour intervals. 
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3. "Phase" means the fraction of a cycle elapsed, or 1 minus the fraction 
remaining. Thus two conventions must be specified: 

a. The time at which phase is evaluated: I evaluate old phase at the beginning 
of the first stimulus; I evaluate new phase (alias final phase) at the end of the 
last stimulus, wh ich is the beginning of the final dark free-run to cclosion. 

b. A phase reference point to call phase zero on the eclosion assay: Let this 
be the center of mass (centroid) of the daily eclosion peak. Thus time T = 0 (the 
light-to-dark transition) is phase 1 - (17/24) = 0.2 in my strain of D. pseudoohscura, 
because eclosions follow the transition after 17 hours and thereafter at multiples 
of nearly 24 hours. The phase after some stimulus is 1 - (0/24), where () is the 
number ofhours (modulo 24) from the end ofthe stimulus to recurrent eclosions. 

Much of the circadian rhythm literat ure uses a different convention, defining 
"subjective circadian time" (SeT) as hours elapsed (modulo the period) since the 
dark-to-light (not light-to-dark) transition in a 12 hour-light-12 ho ur-dark cycle. 
Since eclosion in D. pseudoohscura occurs at SeT 3 under these conditions, 
SeT is sometimes redefined as 3 plus the number of hours since eclosion, or 3 
plus 24 minus the number ofhours until next eclosion, assuming regular periodism. 

B: Phase and Amplitude Resetting 
in Drosophila Pseudoohscura 

All this is a dream. Still, examine it by a fcw experiments. Nothing is too 
wonderful to be tfue if it be consistent with the laws of nature. And in such 
things as these experiment is the best test of sueh consistency. 

Michael Faraday, J 9 March J X49 

Technology 

In D. pseudoohscura the technology of eclosion monitoring centers around the 
fact that the freshly emerged tly is wet, white, weak, and wingless for about ! 
hour after eclosion. During this time, it stands motionless, clinging to the pupal 
case or some nearby object while wings inflate and other cuticle tans and hardens. 
So tenaciously do they cling that Pittendrigh found it necessary to use the auto
mated hammer blows of a heavy-duty solenoid at frequent intervals to shake them 
loose into a vial of soapy water. As a student in the lecture hall under Pittendrigh's 
laboratory at Princeton, I was accustomed to solving mathematics puzzles while 
"the Army of Science marched overhead", compelling the lecturer to briefly 
shuffie his papers in silence. Always alert to potential improvements oftechnology, 
Pittendrigh contrived a "superbang" machine in 1967. While optimizing the num
ber and magnitude ofbangs, I noticed that "banging" is necessary only in the light. 
In the dark, flies fall spontaneously, and if mounted over a teflon-lined funnel 
(an innovation by W. Engelmann), they fall all the way to whatever fate one intends 
for them. Thus one can assemble a light-weight, compact fraction collector to 
handle as many as 100 separate pupal populations within the space of a desktop. 
Under an array of funnels slowly guides a lucite tray of chemically wetted water, 
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Figure 4. The time machine. Twelve brass cups house as many populations of pupae mounted to 
receive a measured exposure of blue light from a central rotating mirror when a timer activates the 

corresponding solenoid a bove each cup. 

divided into compartments, each of which accumulates the flies emerging during 
one hour from one population. These hourly body counts underlie all the fly 
clock da ta plotted in this book. A ruby red safe-light, also introduced by Engelmann 
following Brett (1955), enormously facilitated manipulations originally conducted 
in absolute darkness (often with refugees from Pittendrigh's cockroach experiments 
crawling up my arm). The safe-light was eventually upgraded to the sodium 
doublet, improving visibility for flies and men both, without effect on the circadian 
clock (Winfree, 1975c). Blue light exposures were automated by a Rube Goldberg 
contraption of relays, mirrors, and solenoids called the "time machine" (Figure 4) 
for its responsibility to shift pupae into the past or into the future oftheir otherwise 
undisturbed cycles (see Materials and Methods, Winfree, 1973a). Data process
ing was automated first for an IBM 7094 at Princeton (1967), then for an IBM 
360/50 at the University of Chicago (1970), and finally for a desk-top HP 9830 
at Purdue (1973). During its 10 years of evolving operation, this system executed 
altogether 4,100 separate experiments (approximately one megafly), each experi
ment measuring the phase of one population's eclosion rhythm in darkness after 
suitably scheduled exposure to light by recording the eclosion time of each in
dividual to within ±!- hour. The majority were diverse control experiments, 
repeats on several different strains of Drosophila (all of which behaved in very 
nearly the same way), repeats or attempted repeats of other people's published 
experiments, and several unpublished expensive boondoggles. 

But the remainder proved informative and enter significantly into our explora
tion of biological phase singularities: 

1. The pinwheel experiment Chapter 2, Example 5; see next section, this 
chapter. 

2. The time-machine experiment for plotting trajectories in Chapter 7. 
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3. Experiments exploring conditions required to induce arrhythmicity, and 
the nature of that arrhythmicity (see below). 

These experiments used about 1,200 populations of females of a sex-ratio strain 
that I assembled in 1967 from wild D. pseudoobscura kindly brought back from the 
Arizona desert by Ronald Quinn, following a suggestion of Pittendrigh, and 
cuticle marker mutants kindly provided by T. Dobzhansky. r allowed this strain 
to perish in 1975. 

4. Another 600 experiments went for the singularity trap experiment (Chapter 
2, Example 6 and Box C) using males and females of R. Konopka's 19-hour 
clock mutant of D. melanogaster (see below). 

The Timing of the Screw 

This section describes an algebraic surface contrived to fit smoothly through 
the D. pseudoobscura data points obtained by hit-and-run experiments with a 
single pulse. The pulse of magnitude M is given T hours after the clock is started 
by transfering pupae from light into darkness. We then record the eclosion time 
e, in ho urs measured from the stimulus or from stimulus anniversaries at multiples 
of 24 hours after the stimulus. The results were described in Figures 13 and 14 
of Chapter 2, where a stereo plot of unadorned data was promised. Here it is 
(Figure 5). The coordinate axes are three : 

1. Horizontally to the right, the time or phase at wh ich the light pulse was 
given, or the east-west location of a pupa on the imaginary desk top of Example 5, 
Chapter 2. 
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Figure 5. Stereographic views 01' X79 measurements 01' ec\osion time in Drosophila pseudoobscura 
following a brief light pulse. (For viewing see Chapter 12, Box A.) Coordinates and perspective as in 
Figure 14 ofChapter 2. The two interior uprights depict the presumcd singularities, poles around which 
da ta points climb in corkscrew fashion. The second singularity is furt her in the foreground mainly on 

account of dark adaption in the c1ock's photoreceptor during thc first 31 hours of darkness . 
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2. Horizontally in depth, the duration or energy (the magnitude M) of the 
exposure. (In this range of durations, the dock is responding to energy, no matter 
how quickly or slowly it is delivered (Engelmann, 1969; Chandrashekaran and 
Engelmann, 1973). This is also the north-south location ofa pupa on the imaginary 
desk top. These two coordinates constitute the stimulus plane: Each point on 
the desk top represents a unique combination of the two parameters that define 
a stimulus. These are the independent variables of the experimental question 
posed to the flies. 

3. Vertically downward, the times of edosion. This is the flies' answer, the 
dependent variable, aseries of times spaced 24 hours apart along the vertical 
axis above each stimulus point. In this plot time is measured from the stimulus 
downward. This is a simple, direct way to plot the rhythm's new reset phase 
upward. (See Chapter 1, Section D. Figures 31-33 in Chapter 1 are only two
dimensional because M takes a single fixed value in each. Here M varies in depth.) 

Jt would be easier to grasp the dependence ofthe phase resetting on the stimulus 
parameters T and M if we could fit a smooth surface 8(T, M) to the complete 
doud of 1,574 centroid data in the same way as we usually like to fit a smooth 
curve to our data on two-dimensional graphs. I did this by hand in Figure 14 of 
Chapter 2. I also contrived an algebraic expression to fit the data points almost 
as weil as their reproducibility allow. The emergence times vary randomly with 
standard deviation 1~ hours in unperturbed controls, whereas the reset peaks 
vary about this fitting function with standard deviation of only two hours. The 
surface is described by the following equation: 

2n sin(2nj24)(T - 7) 
tan Ü(O + 1.1) = 1 _ e M(1 + cos(2nj24)(T - 7))' 

where 
exposure duration 

M= . 
(6 + 140 exp( - Tj8)) 

M is the "subjective" exposure magnitude, proportional to physical energy 
scaled by an exponential dark-adaption factor (Winfree, 1972b).2 Note the singu
larity at M = M*("M star") = log 2, T = T*("T star") = 7 + 24n hours. 

As noted above, the data stray from this surface by ± 2 hours, on the average. 
Some of this discrepancy is systematic due to my choice of a very simple fitting 
equation. But as the reproducibility of a phase measurement is only ± 1.5 hours 
anyway, it didn't seem worthwhile to tailor the fit more meticulously. 

Plotted above the (T, M) plane, this 8(T, M) is a single surface wound around 
aseries of screw axes, scarcely distinguishable from Figure 14 of Chapter 2. It 
resembles a vertical corkscrew or a spiral staircase linking together tilted planes. 
As it is periodic along both the T and 8 coordinates, it resembles a two-dimensional 
crystal lattice. I call it a time crystal because its two periodic dimensions both 
represent time in units of one day. 

2 Chandrashekaran and Engelmann (1973) suggested replacing this smooth function by a stepwise 
increasc in photosensitivity with steps at each T*. That would produce a tear in the resetting surface. 

an edge dislocation in the time crystal. I see no such tear in my Figure 5. 
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The surface in Figure 14 ofChapter 2 is in the same graphie format as developed 
for simple docks in Chapter 3. N otice how different its shape iso Simple-dock reset
ting surfaces consisted of separate sheets, whereas here each unit cell of the crystal 
lattice contains one turn of a screw surface and these all fit together into a single 
periodic surface. Let's examine one of these unit cells in detail by serial sectioning, 
as though running it through a microtome for microscopy. Figure 13 of Chapter 2 
shows serial sections through three consecutive unit cells of the idealized surface 
(the equation) at 12 levels of fixed edosion time O. These are successive positions 
ofthe edosion wave on the stimulus plane (the desk top ofthe pinwheel experiment 
of Chapter 2). In other words, a pivoting wave, plotted in terms of wave arrival 
time above the plane on which it rotates, resembies a screw, a ·'helicoid". The 
axis of the screw stands vertically above the rotor's pivot at T = T*, M = M*. 
Thus a piecemeal resetting experiment, whose outcome resembles a crystallattice 
of screw surfaces, is equivalent to a pinwheei experiment in which the graded 
stimulus evolves a rotating wave. 

Figure 13 of Chapter 2 shows serial sections cut perpendicular to the e axis. 
If we now instead cut perpendicular to the M axis, we have re setting maps, as 
described in Chapters 1, 3, 7, 14, and 19. As the composite in Figure 6 shows, 
they are all type 1 up to a critical stimulus magnitude M*. At M*, type 0 resetting 
abruptly emerges. The critical dose M* turns out to be remarkably small by the 
standards we were accustomed to in the circadian business, viz less than aminute 
of dirn blue light. Given at T* to elicit singular behavior, M must be within 20;:, 
ofthe exact value M*, and it has to be administered within ~ hour of T* (though 
T* and M* vary from one batch ofpupae to the next). It is not hard to understand 
how this effect was overlooked until a theoretical model predicted the existence 
of a critical combination of time and dose and prescribed a reeipe for finding it. 

Figure 7 re-presents Figure 6 as phase response curves: Instead of plotting the 
new phase or edosion time vertically, we plot the amount by which the stimulus 
changed it, the phase shift. 
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Figure 6. Using the particular formula here 
adoptcd tn approximatc phase-resetting in 
D. pseu(/oohscura pupac, these are resetting 
curves for aseries (lf stimulus magnitudes 
ranging from 0 to 64 scconds cxposure to 
0.1 W/m 2 light at abollt 41 () nm. Each relates 
time T past LLDD (or old phase (jJ) to time () 
UJltil eclosion (or new phase (1/. neglecling I 

multiples of 24 h). 
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Figure 7. Phase shift (advanccs upward) vs. 
initial phase for aseries of stimulus durations 
up to 64 scconds. This is Figure 6 sheared 
down ward to the right by 45' without sub
tracting stimulus duration, since even 64 

seconds is a negligible [raction of 24 hours. 
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In the next section we examine the singular (T*, M*) where no phase can be 
assigned to the clock. 

Arrhythmicity in Fruitfly Populations 

Circadian rhythms are usually monitored in populations of independently 
rhythmic clocks, be they individual organisms or single cells of a tissue. If they 
interact in unknown ways, then not much can be learned without monitoring 
each individual's rhythm, at least well enough to establish that the population is 
always coherent in phase on a common cycle. It commonly happens that popula
tions created and reared in constant conditions are arrhythmic, raising the ques
tion as to whether collective arrhythmicity is just a consequence of incoherence 
among normally oscillating individuals. Brett's (1955) conclusion in respect to 
arrhythmic eclosion in populations of dark-reared D. melanogaster was "yes". The 
same conclusion was accepted for D. pseudoobscura (Pittendrigh, 1954, footnote 
10; Pittendrigh and Bruce, 1957; 1958, pp. 251-252; 1960, p. 102; 1961, p. 116; 
Bunning, 1957). All the facts seemed consistent with this belief up through 1968, 
as Beck (1968, p. 62) summarized: "It is though that the light signal has the effect 
of synchronizing the rhythmic functions of all the members of the population." 
As Zimmerman (1969) noted, this belief meshes well with 

A. The general notion that the maintenance and entrainment of circadian 
oscillations is essential to the normal physiology and the development of eu
karyotic organisms (Pittendrigh, 1960, 1961; Bunning, 1964) and 

B. The more specific hypothesis of Ehret and Trucco (1967) that the 
mechanism for circadian oscillations inheres in the physical organization
and therefore transcription-of the DNA is eukaryotic cells. 

Zimmerman goes on to note that this belief had never been seriously tested in 
an animal, even after Bunning (1959, p. 522) had reported both cases in plants. 
Kalmus and Wigglesworth (1960) challenged that belief via a non-simple-clock 
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model and Sweeney and Hastings (1960, p. 1(2) called for such a test, both at 
the first circadian dock symposium at Cold Spring Harbor. 

In August of 1968 Zimmerman, at Amherst, submitted his paper criticaUy 
testing and disproving this assumption by a trick using D. pseudoobscura's type 1 
resetting. In the same month I submitted a paper from Princeton achieving the 
same result by a different trick using type 0 re setting in the same organism 
(Winfree, 1968). Both unequivocally excluded the possibility of interpreting the 
arrhythmicity of dark-reared populations in the customary way. This outcome, 
in Zimmerman's words, "considered in conjunction with the fact that most orga
nisms can reproduce and function normally in aperiodic environments, presents 
definite difficulties for ... " notions A and B. 

The question is important enough to lend interest to an examination of the 
evidence. What does it consist of, and how broad is its pertinence? 

Zimmerman's Experiment 

Zimmerman's experiment used type 1 resetting by a temperature pulse to 
implement the suggestion of Sweeney and Hastings (1960) that after a small phase 
shift, a population of clocks initially covering the cycle would still be spread 
completely around the cycle, so eclosion should still occur at all hours. As the 
experiment turned out, such a pulse applied to dark-reared arrhythmie pupae 
evokes sharp discrete daily bursts of eclosion. Therefore these dark-reared pupae 
could not have had normally running clocks. Zimmerman goes further, con
cluding that the clocks "were inherited at rest". This inference rests on a notion 
that has never been checked, i.e., that the clocks in dark-reared pupae are no 
more temperature-sensitive than the rhythmic populations on which the type 1 
re setting was calibrated. Even the more conservative conclusion that the clocks 
could not have been running normally needs reinforcement at three points: 

1. It implicitly supposes that pupae do not interact, e.g., to synchronize to 
the phase 01' a majority. They do in other species, e.g., in eclosing silkworm moths 
(Truman, 1972) and in another species offly (Saunders, 1976a). Noninteraction in 
Drosophila had been explicitly supposed since Kalmus (1940), but the question 
had never been of real concern in Drosophila eclosion experiments because pupal 
rhythms had always been forced to synchrony anyway. So I checked it by three 
independent experimental tests (Winfree, 1970c appendix), none of which reveal 
any conspicuous or reproducible interactions. So this supposition seems safe. 

2. My subsequent efforts to repeat Zimmerman's experiment failed because 
in my control experiments with rhythmic populations, the temperature pulse he 
used (28"C for 12 hours) did not give the same small phase shifts as in his con
trols. Even with much briefer incubations, I obtained large steady-state phase 
shifts (Winfree, 1972a), compatible with a type 0 curve and incompatible with 
Zimmerman's argument, which was based on the phase shifts being small. 

3. Zimmerman's (1969) Figures 1 and 2 are incompatible in a way that 
suggests some confusion about the time scales. I have not been able to reproduce 
the reported timing of the eclosion rhythms according to either figure. 
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Supplementary Experiments 

All this, together with widespread difficulties in working with temperature 
effects, leads me to doubt the proof while accepting the result. I accept the result 
because it also emerges from experiments using light instead of temperature: 

1. After learning of Zimmerman's experiment, I repeated his format but used 
a very brief light pulse to evoke the required type 1 resetting. The outcome was 
qualitatively the same as his (Winfree, 1970c). It is also subject to the same quibble, 
that the light pulse might seem subjectively longer or brighter to dark-reared 
pupae than it does to the rhythmic pupae used to assay its potency. In fact, this 
now seems quite likely, in view of the subsequent discovery of 20-fold dark adap
tation in D. pseudoobscura (Winfree, 1972b and e). A pulse that much brighter, 
like the more effective temperature pulse, would have qualitatively the same syn
chronizing effect as is observed even if the population were indeed composed of 
randomly phased, normally running clocks. 

2. My 1968 experiment had employed a different trick, using the type 0 re
setting evoked by a light pulse of saturating intensity and duration as in Pittendrigh 
and Bruce (1957). Thus questions of sensitivity are bypassed. The trouble with this 
experiment is that no one seems to understand it. So let me try to explain it in a 
different way this time, without belaboring quantitative details. Type 0 resetting 
necessarily has two ranges of old phase in which the new phase scarcely varies. 
Given an initiaUy uniform distribution of old phase, the distribution of new phase 
should therefore exhibit two peaks, with lesser densities in between (Figure 8). 
N ow there is a subtlety: We do not directly observe clock phase in an emergence 
distribution. Even a perfectly coherent population produces an eclosion peak six 
hours wide at two standard deviations, and wider at the base. (Skopik and 
Pittendrigh, 1967, showed that most of this breadth is due to the population's 
heterogeneity in regard to developmental age.) So what we really want to ask of 
the observed eclosion distribution is, "How can I represent these data as a super
position of 24 standard eclosion peaks phased around the clock, each with the 
fight number of pupae in it to account for the observed distribution?" Resolving 
the observed eclosion distribution into standard peaks is valid if and only if: 

a. Pupae at different phases do not interact. As noted above, this was verified. 

Figure 8. Any smooth distribution of old 
phase covering the cycle, transformed by type 
() resetting, becomes a distribution of new 
phases according to the conservation law 
p(,!J)dep = p'«/J')dep'. Because 'W/dep = 0 at 
one or more pair of phases, the new phase 

distribution has one or more pair of horns. 
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b. Even if docks were not running normally prior to the type 0 light pulse, 
they are afterwards. There is no way to be sure of this but the result of the experi
ment turned out to be an edosion rhythm indistinguishable from those obtained 
simply by moving pupae from the light into the dark. Also Honegger (1967) mea
sured aresetting curve on such a population and this too looks the same as in 
pupae whose docks were running normally after light-to-dark transition. 

c. It can be done without using negative densities at any phase, and in such 
a way that the results match observations within the expected statistical fluctua
tions associated with counting error. 

A computer program was contrived to produce the best-fitting representations 
and chi-squared estimates of the match. It worked quite reliably in a variety of 
control experiments. For example, it resolved the phase distributions in popu
lations artificially constructed by transferring batches of pupae from light to dark 
at different times of day, and then counting their edosions together. It produced 
excellent matches to all the experimental data, and it failed on made-up data. 
Essentially the same trick, called "inverting the convolution integral", was used 
by Njus (1975) to extract the distribution of cell dock phases from the broadened 
glow rhythm of a Gonyaulax population. In the control experiments with pupal 
populations deliberately constructed to be arrhythmic (12 aliquots taken to dark 
at two-hour intervals around the dock, then exposed to the saturating light pulse) 
the result was as expected: a two-peaked distribution ofphases within a few hours 
of the expected phase. In contrast, finally getting around to the results sought, 
dark-reared populations treated in the same way produced a phase distribution 
resembling a single narrow spike: a condusively different result condusively 
showing that dark-reared populations are homogeneous in their behavior. 

ConcIusion 

In this case, it does seem legitimate to infer with Zimmerman that the pupae 
inherited their docks at rest. At rest? Stuck at what phase? Dark-reared pupae 
react to a temperature pulse or to a light pulse much as do pupae made phaseless 
by a singular perturbation. This observation is awkward for any simple-dock 
model in which arrhythmicity is interpreted as arrest at some special phase on the 
cyde, as in experiments on the cell cyde. It suggests an alternative interpretation, 
i.e., that dark-reared docks are created near a steady-state and linger there until 
kicked into oscillation about the steady-state. 

The question as to whether ostensible arrhythmicity is only a matter of inco
herence among individuals or cells of a population must be answered yes in order 
to sustain the view that lured me into this business, viz that the circadian dock 
plays a crucial organizing role in the machinery oflife. But at the population level, 
we have just seen that Drosophila answers no. Then wh at at the cell level? If the 
edosion rhythm can be regarded as an observation on the population of pupae 
then it can also be regarded as an observation on a larger population of cells. 
Does the inference made above carry through to the cellievel? The answer is no 
because we would have to show that the cells do not interact. They probably do 
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interact. The many cells of an individual pupa's brain somehow jointly determine 
the moment at wh ich it takes adecision to open its pupal case. Here we know 
nothing. It could be that arrhythmicity in the individual pu pa is only a mani
festation of incoherence among its normally rhythmic cells. If so, then cytological 
incoherence is a major uncontrolled variable in dock experiments, and many 
years of experimentation may be ripe for a critical review of interpretations. If not 
then the belief that circadian rhythmicity is an essential principle of physiological 
organization must be abandoned, and so must be hypothetical mechanisms which 
have no place for a phase singularity. Since the consequences are interesting 
either way, I consider this high-priority business for the laboratory. 

Other Modes of Arrhythmicity 

There are at least four other contexts in wh ich edosion rhythmicity is lost. All 
four challenge the notion that circadian docks are essential for temporal coor
dination: 

I. There are mutants in which chosen observables are arrhythmie. As in the 
case of rhythmic morphogenesis in fungi (Chapter 18), this may prove to be a 
matter of altered permissive conditions (some change of diet or of temperature 
might disinhibit the dock or restore coupling to the few aspects of physiology 
that we monitor) or it might be that an essential component of the mechanism is 
simply absent (Hastings and Schweiger, 1976, Part 5). 

2. Saunders (1976a) finds relatively arrhythmie edosion in Sarcophaga follow
ing exposure to light-dark cydes in which L + D = 12, 36, 60, ... , hours. He 
thinks this may reflect incoherence among oscillators within each fly. 

3. The transition from type 1 to type ° resetting is made through a phase 
singularity: An exposure of this size given at a critical phase induces lasting 
arrhythmicity in each pupa. There is some reason to conjecture that this state is 
the same as the dark-reared state (Winfree, 1968, 1970b) but proof is stilliacking. 

4. Bright continuous light inhibits circadian rhythmicity in many organisms, 
induding flies. This is what Zimmerman (1969) calls secondary arrhythmicity: 
imposed by continued exposure to nonpermissive conditions. Pittendrigh (1966) 
produced the first really convincing demonstrations that the dock actually stops 
in each pupa after 12 hours in the light. This not ion is frequently challenged (e.g., 
Brady, 1975, p. 18), especially since the advent of experiments with dim continuous 
light (Chandrashekaran and Loher, 1969a; Winfree, 1974a; Pittendrigh, 1976). 
However, I know of no observations incompatible with suitable models in which 
sufficiently intensc illumination does indeed stop a non-simple dock (Pavlidis, 
1978a). 

The Fruitfly Clock is Not a Simple Clock 

Thc question is sometimes raised (I think first by Pittendrigh and Bruce, 1957, 
in context of experimental tests) as to whether the circadian dock is affected more 
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by the abrupt transition from dark to light or light to dark ("differential action"3) 
than by the continual impact of photons on some ultimately photochemical mech
anism ("continuous action"3). So long as these alternatives were only considered 
in connection with the widespread but implicit notion that the circadian dock 
is a simple dock (Chapter 3), it seemed most reasonable to adopt the differential 
action outlook (Pittendrigh, 1958 and especially 1960, p. 175). Yet it remained 
difficult to understand in these terms the lasting arrhythmicity observed forever 
after a transition from darkness to continuous light: Did the moment oftransition 
(putatively the only stimulus perceived) switch the dock into some state ofindeter
minate phase? No such state exists in the cyde of a simple dock. 

1. Pavlidis' Model. Pavlidis (1967b) first resolved this difficulty explicitly 
in context of D. pseudoobscura da ta by postulating a disk of states inside the cyde 
of conventional phases.4 In other words, Pavlidis adopted the alternative inference 
overlooked in Pittendrigh's experiment of 1960 cited above, i.e., that the circadian 
dock in Drosophila is not a simple dock. Moreover, acceptance of "continuous 
action" is the premise underlying Pavlidis' second model (1967b) and all the 
topological inferences in this volume. We owe to this paper the critical reestablish
ment of continuous action as a reasonable interpretation of Drosophila dock 
experiments, but now in the enlarged context of a dock whose state can vary in 
two ways, not only in phase. 

On this basis Pavlidis (1968) first anticipated something that makes no sense 
in terms of simple-dock models: the possibility of stopping the Drosophila dock 
by a delicately timed light pulse. Pavlidis seems to have mistakenly thought his 
inference was in error, an exorciseable artifact of mathematical modeling: 

... the model should be designed in such a way as to exclude the possibility 
that a smalllight stimulus would bring the system into R ... therefore while 
a strong light stimulus would fail to damp out the oscillation, a weak one ... would 
damp it. This is completely in contrast to the experimental findings and 
therefore we conclude that the critical point should be unstable ... 

[The citation is restricted to the italicized parts in Pavlidis, 1978aJ 

But the necessity of some such singular event could be inferred from fragments 
of published data on model-independent topological grounds (Winfree, 1967b). 
Shortly thereafter it was experimentally verified in D. pseudoobscura (Winfree, 
1968) and then in other species (Kalanchoe: Johnsson et al., 1973; Sarcophaga: 
Saunders, 1976a; D. melanogaster: Winfree and Gordon, 1977). 

3 In the more recent notation of Pittendrigh and Daans' five major papers of 1976, continuous 
action equals parametric and differential response equals nonparametric. 

4 As with most other innovations, one could point to earlier independent discoverers: Kalmus and 
Wigglesworth (1960); Wever (1962-3-4); Moshkov et al. (1966) applied the same ideas in the same 
format to circadian rhythms in general, but they failed to pin this model explicitly to one data set. 
Strahm (1964) (cited only in Pavlidis, 1967a) had all the essentials, applied specifically to 

D. pseudoobscura; but he neglected to publish after submitting his thesis (see Chapter 7, Box A). 



B: Phase and Amplitude Resetting in Drosophila Pseudoohscura 423 

Acceptance of these inferences and of the experimental demonstration was 
retarded by the simple-cJock concept, in ways typical of assumptions long and 
widely accepted, but never explicitly articulated. For example, the model
independent inference of a singularity rests on demonstration of type 0 re setting 
(Box B of Chapter 2 and Boxes Band C of Chapter 4) but up to that time it was 
common to stretch type 1 resetting curves through type 0 data, even if it was nec
essary to run the curve through more than 18 hours without a data point: only 
type 1 re setting was sensible in terms of the implicit simple-cJock paradigm. Even 
Pavlidis once misrepresented in this way the type 0 re setting behavior of his 
potentially revolutionary model (1968, Figure 6b; Pavlidis and Kauzmann, 1969, 
Figure 7) bringing it into line with the published type 1 representations of type 0 
experimental data. Such is the power of an idea. 

As noted above, the Drosophila dock's peculiar behavior in dirn continuous 
light (Winfree, 1974a; Pittendrigh, 1976) is also implicit in this dass of dock models 
(Winfree, 1972e; Pavlidis, 1978a) but poses paradoxical difficulties in terms ofthe 
simple-dock assumption. 

2. Amplitude Resetting Accompanies Phase Resetting. Finally, there is the 
question of dock behavior after a prior rephasing stimulus. According to the 
simple dock idea, implicit in the definition of phase shift for one circadian docks 
symposium (Aschoff, 1965b, p. xii: "Phase shift: a single dis placement ofan oscil
lation along the time axis") the dock's reaction to a second stimulus should 
exactly follow the same phase-specific schedule as be fore. This is the prediction 
of any model in wh ich the circadian pacemaker, whatever its concrete nature, is 
limited to a cyde of fixed amplitude. 

The assumption of a constant amplitude inherent in Pittendrigh's method of 
dealing with two successive phase-shifting stimuli, though reasonably successful 
with large stimuli eliciting sm all phase shifts, has been questioned and put to 
experimental tests by Johnsson et al. (1973). Their experiments using Kalanchoe 
(next chapter) did not give a concJusive result. However, experiments I carried out 
simultaneously using D. pseudoobscura did (Chapter 7). I found that the answer 
depends on the stimulus magnitude in the way expected of a non-simple-dock 
mechanism: 

1. Saturating stimuli take the oscillator from one phase to another on the 
cycJe. 

2. More deli ca te perturbations reveal the presence of states "inside" the stan
dard cyde of phases (Winfree, 1973a). These smaller stimuli, still causing phase 
shifts of all sizes but not saturating the response, reveal the continuum of alterna
tive cydes that so distinguish the fruitfly's circadian dock from the earlier simple
dock models. Following such a stimulus, the edosion rhythm looks entirely 
normal, only being displaced along the time axis as in the definition above. But 
its reaction to a stimulus offered up to two days later (i.e., the sensitivity rhythm) 
is systematically different in a way that makes sense in terms of a cyde of altered 
amplitude. 
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C: Other Diptera 

How Different Is D. Melanogaster? 

D. melanogaster, the geneticist's pet since Morgan adopted it around 1905, was 
introduced into the circadian rhythm business by Kalmus in 1935, largely for 
studies of the temperature dependence of the eclosion rhythm. From these experi
ments, Kalmus first introduced the idea of an endogenous oscillator as the cause 
of rhythmic behavior in this fly. Bunning (1935) discovered that although contin
uous light suppresses rhythmicity, rhythmicity can be reinitiatcd by simply turning 
off the lights, even after 14 arrhythmie generations have passed. Kalmus (1940) 
established the arrhythmicity of dark-reared cultures, and that a single one-minute 
light pulse suffices to elicit persistent 24-hour rhythmicity. Brett (1955) showed 
that all larval and pupal stages are susceptible to synchronization by light. Brett 
was also the first to use cohorts (populations ofnarrowly dcfined age) to investigate 
the development of clock properties. 

loteTest in D. melanogaster waned soon after Pittendrigh (1954) introduced 
D. pseudoobscura, which res ponds to light pulses with a much larger phase shift 
[though not because it is any more sensitive to light: The response saturates at 
about the same energy in both species (Zimmerman and Goldsmith, 1971; Winfree 
and Gordon, 1977)]. This diminished melanogasler's attractivcness during years 
of emphasis on phase control and entrainment. However, in 1971, during a renais
sance of interest in clock genetics, Konopka and Benzer produced melanogaster 
mutants of long and short period. The "per'" mutant has thc advantage that its 
rephasing is "disinhibited" relative to the wild type and is in fact scarcely dis
tinguishable from the rephasing pattern of D. pseudoobscura except that its period 
is compressed to 19 hours (see Chapter 2, Example 6, Box C. and Figure 1 X). 
Otherwise, the most conspicuous difference is a mere technical annoyance: freshly 
emerged flies, hanging by their feet in the dark, do not fall down before their wings 
inflate. Having built a light-weight plastic eclosion monitor without moving parts, 
I had no option to revert to banging to dislodge them. Fortunately, it turned out 
that a puff of carbon dioxide puts them to sleep without affecting the uneclosed 
pupae, so the eclosion monitor was "air-conditioned" with carbon dioxide, regu
lated for temperature and humidity, entering and being blown out at half-hour 
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Figure 10. Stereographie views of 622 measurements of eclosion time in Drosophila melanogaster 
(19h mutant) following a brief light pulse. (For viewing, see Chapter 12, Box A.) Coordinates and per· 
spective as in Figure 18 of Chapter 2 but without reduplication of data points from T < 19 to T + 19. 
The two interior uprights depict the presumed singularities, poles around which data points climb in 

corkscrew fashion. (Data from Winfree and Gordon, 1977). 

intervals. With this modification, the edosion assay works almost indistinguishably 
for the two species (Figures 2 and 9). Phase-resetting results are also much the 
same, as Figure 18 of Chapter 2 showed. Figure 10 presents the same data in stereo 
for those who will take the trouble to locate a hand mirror. Note that no time
dependent distortion of the energy scale is conspicuous in this case, perhaps 
because D. melanogaster's dock dark-adapts very much more quickly or slowly 
than does D. pseudoohscura's. 

How Different Is the Flesh Fly? 

The principles of edosion timing and of its regulation by a circadian dock are 
quite similar in the fly Sarcophaga, whose maggot begins life not in a potato meal 
mush but, as its name suggests, in decaying meat. Saunders first cultivated this 
Ily as a host for the parasitic wasp N asonia during his ingenious studies of the 
wasp's seasonal diapause (hibernation). It turned out that the flesh fly has a cir
cadian dock of great interest in itself, quite similar to the edosion docks of fruit
tlies (see Chapter 2, Example 7). The salient differences reported by Saunders 
(I976,197Xjare: 

I. Light pulses are administered only in the larval stage because the pupal 
stage is insensitive to light; even so, three orders of magnitude more light is re
quired to elicit phase resetting of a magnitude similar to Drosophila's. 

2. Sarcophaga edoses three weeks after experimental interventions are com
pleted and the pupae are put away to metamorphose. So transients are not observed 
and do not complicate the data analysis. 
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Figure 11. Stereographie views of P;8 measurcments (courtesy of D. Saundcrs) of eclosion timing in 
Sarcophaga after a light pulse of some hours duration. (For viewing, see Charter 12, Box A.) Coordi
nates and perspective as in Figure 19 of Chapter 2. The two interior uprights depict thc presumed 
singularities, poles around wh ich the data points c1imb in corkscrew fashion. All data are double-plotted 

both to the right and top-to-bottom (i.c., you sec four identical copies of a unit cell). 

3. Sarcophaga pupae seem to interact to stimulate each other at eclosion time, 
as do silkworm pupae (Truman, 1972) and quail eggs (Vince et al., 1971). Saunders 
minimizes this effect by housing each animal separately in thc eclosion monitor. 

4. Like the fruitfly's, the fleshfly's clock changes sensitivity, but apparently 
more with developmental age than with time in the dark. Figure 11 here corre
sponds to Figure 19 of Chapter 2. As with the other stereo pictures, the left eye's 
view is identical in perspective to the picture in Chapter 2. 



21. The Flower of Kalanchoe 

The tiny red flowers of Kalanchoe blossfeldiana open and dose at 23-hour 
intervals. They do this for a week even when plucked from the plant and placed 
in a vial of sugar water under constant green light, at a constant temperature. 
Though blind to green, the ftower's dock is sensitive to red light. By exposing the 
ftower to red light ofintensity several watts per square meter for minutes to hours, 
one disrupts the normal rhythmicity. In most cases, it recovers sufficiently within 
four days so that a phase shift can be measured. 

A: Type 0 Resetting 

The first systematic experiments ofthis sort were conducted by Zimmer (1962). 
Her results show wh at I take to be type 0, or "strong", re setting in response to a 
two-hour light pulse. The original publication draws a type 1 curve through the 
data (Figure 1) by inserting an 18-hour data-free discontinuity through the phase 
measurements. This seems to me an exaggerated concession to the theoretical 
prejudice that, in connection with phase shift plots, what goes up must come down. 
If the data must be construed as type 1 resetting, then there must be an extremely 
steep part ofthe curve and one would expect more variance ofthe measured phase 
shift near this point. As this is not observed, it seems to me that the phase jump 
probably doesn't exist and that the data fit better in the pattern oftype ° resetting. 

Phase shifts can also be measured substantially in advance ofthe petal rhythm's 
settling down to a steady cyde (wh ich, in fact, it never does in Figure 2). This is 
because of the fortunate circumstance that, unlike many circadian rhythms such 
as the eclosion rhythms of Chapter 20, Kalanchoe's petal movement rhythm can 
be monitored almost continuously. Instead ofhaving to wait for an event to signal 
passage of phase 0, at every moment we have at least two measurements in hand, 
namely, flower openness and the rate of change of that measurement. Let's call 
these position P and velocity V. If the mechanism of petal movement involves 
no more than two important variables then by measuring any two functions of 
state we should be able to distinguish the system's state from nearby other states. 
This should sufllce to distinguish the latent phase (Chapter 6) of the rhythm while 
still far from an attracting cyde. 
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Figure 1. An early resetting experiment using Kalanchoe's petal movement rhythm. Alternating 
maxima and minima of openness are plotted to the right following a light pulse given at the time indi
cated along the diagonal slash. Prior to the stimulus (left), all flowers were synchronous. After stimulus 
and transients, these rhythms fall into the type 0 pattern, paralleling the stimulus rather than the 
controls. Zimmer's dotted curve, however, adheres to the type 1 pattern, progressively distorting a 

parallel to the controls (the prestimulus pattern). From Zimmer 1962, Abb. 2. 

15 15 3 15 3 Hf 

Figure 2. The raw data from which the previous figures was derived 
(Zimmer, 1962, Abb. 1). The triangles and inverted triangles of Figure 1 
mark the limes of maxima and minima, respeclively, on these curves. 
Note that the stimulus resets the amplitude of the rhythm along with 

its phase. 
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To test this notion, I plotted position vs. velocity for Zimmer's (1962) 13 cycles 
of unperturbed control rhythm (her curves 1-20 up to the light pulse, and Control 
curve, all in Figure 2). Much as in Chapter 7, each such plot constitutes a trajectory 
winding part way around the origin, or 2! times around in the case of Contro!. 
From the common start at "light out", I proceeded forward along each winding 
trajectory, writing down the present phase at three-hour intervals, using integers 
I ~8 repeatedly in a 24-hour eycle. (The rhythm's period is closer to 23\ but 
3 x 8 is close enough for present purposes.) All these numbers turn out to make a 
reasonably coherent pattern (Figure 3). For example, the region of the (position, 
velocity) plane extending upward in a narrow wedge from the origin turns out 
to be oceupied by measurements taken from ftowers at phase three-eighths of 
a eycle (plus whole cycles) after the beginning of darkness. These are the points 
at which the position is almost a loeal maximum (ftower fully open) and its rate 
of change is near O. The region extending to the left in the narrow wedge from the 
origin turns out to be oecupied by measurements taken from ftowers at phases 
five-eighths of a eycle (plus wh oIe cycles) after the beginning of darkness. These 
are phases at which leaf position is neutral and its rate of decrease is almost a 
loeal maximum. 

By plotting position vs. velocity at any moment, one can operationally define 
the phase ofthat ftower in terms ofunperturbed eontrols. Ifthe (position, velocity) 
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Figure 3. As described in the text, the prestimulus P(t) data of Figure 2 were plotted against their 
own rates of change, v(1) = P(1 + 3 hours) ~ P(t) at intervals of three hours. Successive (P, V) points 
were numbered 1,2, 3, ... from the final dusk. The digits outline isochrons (dashed) by wh ich a phase 

can be assigned to any (P, V) state without waiting for transients to subside. 
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Figun; 4. Each poststimulus datum in Figure 2 
is plot tcd on Figure 3 to assign it a phase and 
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in a type () pattern. 
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plane is some kind of distorted image ofthe clock's state space as argued in Chapter 
7, then the numbers 1-8 must correspond to equispaced latent phases. The clouds 
of numbers must be images of isochrons. So by plotting a perturbed rhythm in 
the same way, we should have a measure oflatent phase from each successive data 
point. These numbers should increase consistently, i.e., by I every three ho urs 
after the stimulus. Zimmer's da ta permit a test ofthis method. She provides about 
40 cycles of raw data from 20 resetting experiments, each following a two-hour 
red light pulse given at a different initial phase. These were digitized and individ
ually used to evaluate latent phase according to the numbered regions in the 
(position, velocity) plane. The first three data (the first nine ho urs) after each light 
pulse gave inconsistent latent phase readings, suggesting that more than 2 degrees 
of freedom were involved in these early transients. The remaining measurements 
came out quite consistently along a type 0 curve (Figure 4). This is nothing excep
tional. A type 0 curve is obtained by simply following the maxima on Figure 2, 
which run roughly parallel to the stimulus diagonal rather than running vertically, 
parallel to the control maxima. 

However by using all the laboriously collected da ta instead of using only the 
times of maxima, it gives a clearer impression of the variability of measured phase. 
This makes it plainer that there is no phase of particular variability, as would be 
expected near a steep segment of the re setting curve. My infcrence is aga in that 
Zimmer's measurements outline type 0 resetting rather than type Iresetting with 
a near-discontinuity in the curve, as it was depicted in Figure land by subsequent 
authors (e.g., Aschoff~ 1965, pp. 98, 109, and 279). 

B: Resetting Data at Many Stimulus Magnitudes 

The implication of type 0 re setting is that the complete resetting surface must 
contain a discontinuity. (Having exorcised one discontinuity, we have conjured 
forth another!) The most localized form it could take would be a phase singularity. 
Kalanchoe's resetting surface was measured by Engelmann ct al. (1973), repeating 
the format of the Drosophila experiments which has first shown the complete 
helicoidal resetting pattern of a circadian rhythm (Winfrec, 1968). They published 
their data most completely in terms of phase shifts (their Figure 3); only a sm all 
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subset of their data are given in the more direet stimulus referenee format in their 
Figure 5. Ireplotted it all in the laUer format for Figure 20 of Chapter 2. How 
were these figures obtained from those data points? The idea is to plot vertieally 
the observed times of greatest f10wer openness, so the first step is to reeonstruet 
the original observations from the reported phase shifts. The phase shift, by eon
vention, is the differenee in hours between the time of greatest opening in the 
experimental rhythm and in the nearest such time in an undisturbed eontro!. 
Sinee the latter are not explieitly reported, it is in prineiple impossible to reeon
struet observations from phase shifts. However, maxima normally oeeur at 23-hour 
intervals in the eontrol rhythm, at about hours 20, 43, 66, ete., after transfer from 
light into the darkness. Thus a phase shift reported as a seven-hour delay indieates 
maximum openness at hours 27, 50, or 73 (ete.) after transfer to the dark, i.e., at 
hour 27 ~ (T + M), 50 ~ (T + M), 73 ~ (T + M) (ete.), after the end of a light 
pulse which began at hour T after transfer into the dark, and lasted M hours. But 
which one of those times is right? Their Figure 3 eolleets data taken in eydes 3 
and 4 after the light pulse ends. Not knowing whieh is whieh, I plotted half the 
points, taken at random, in eyde 3, i.e., in hours 46 through 46 + 23 = 69 after 
the light pulse ends. The remaining points were plotted in eyde 4, that is in hours 
69 through 93. Engelmann also generously provided me with unpublished plots 
of data taken in eyde 1 and in eyde 2, also in phase shift format. These are ae
eordingly used to reeonstruet the original observations in the same way, namely: 
e (hours after stimulus end) = 20 + delay (0-12 hours) or ~ advanee (0-12 hours) ~ 
(T + M) + 23N. 

N is an integer chosen to reeonstruet 0 in the appropriate range 0-23, 23-46, 
46-69, or 69··92 hours after the light pulse ends . 

• • 'J . ~, : 

Figure 5. Stereographie vicws of 1.536 measurements ofthe timing of Kalanchoe ftower opening after 
a light pulse. (For viewing. see Chapter 12. Box A.) Coordinates and perspective as in Figure 20 of 
Chapter 2. Thc two interior uprights, and one exterior on the left, depict the presumed singularities 
around which da ta c\imb in corkscrew fashion. () values in the bottom two cycles are randomly altered 

by ± 23 hours relative to assignments in Figure 20 of Chapter 2. 
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These reconstructed data were plotted repeatedly, as seen from various per
spectives, until I could see the shape of a surface that approximates the 1,536 
data points. They are shown in Figure 5 and in Figure 20 of Chapter 2 from the 
viewpoint of an ob server at T = 20 hours, M = -15 hours, () = 20 hours. The 
box around the data consists of planes T = 0 (= transition into darkness) and 
T = 69 hours (= three cydes later), () = 0 (end of light pulse, beginning of un
disturbed free run), and () = 92 (= four cydes later), M = (undisturbed controls), 
and M = 3 hours. 

Within this box the idealized surface was constructed as follows: 

1. At M = 0, T + () = 20 hours plus multiples of 23 hours. These are the 
undisturbed controls. These loci are drawn as diagonals on the front wall in 
Figure 20 of Chapter 2. 

2. At T = 0, the flower has been in the light for 12 hours and the phase of its 
rhythm in subsequent darkness is approximately set by the time of transfer from 
light to dark: T + () = 20 hours plus multiples of 23 hours independent of M. These 
loci are plotted as horizontals on the left wall. 

3. If the dock is really periodic, then item 2 above is repeated at 23-hour 
intervals of T. These loci are the horizontals in the remaining unit cells of this 
3 x 4 lattice. [Actually, Kalanchoe's dock is not quite periodic: Like Drosophila 
p.'s, it grows more photosensitive with time in the dark. But that doesn't matter 
for locating a phase at which phase (if not necessarily amplitude) is utterly insen
sitive to light.] 

4. The data appear to wind around two vertical screw axes. If this plant's 
dock behaves like the only other circadian docks for which we presently have 
such complete re setting data (the three kinds of fly, Chapter 20), then we might 
expect: 

A. Near the screw axis T = T*, M = M*, this surface resembles a spiral 
staircase. 

B. T* is about one-quarter cyde and M* just measures the organism's sen
sitivity to the light used, wh ich might increase as the organism dark adapts. In 
Kalanchoe using red light of 2.3 wattsjm 2, Engelmann et al. find T* = 7 hours 
plus multiples of 23 hours. At three successive T*'s, they find M* = 4 hours, 2 
ho urs, and 1t hours. 

C. At T*, a light of duration M < M* has little effect on phase and a light 
of duration M > M* hours inverts phase. This situates the spiral staircase verti
cally: Radii extend at fixed T and () to the M = 0 controls on the front surface 
and to the large-M resetting curve on the back surface. 

5. These features can be visualized in terms of the contour map of () above 
the (T, M) plane (Figure 6). It seems that features A, B, C can be linked smoothly 
by joining the contour lines as shown in dashes. The linking surfaces are then 
sketched on the three-dimensional plot. This part was done on tracing paper over 
the data, trying both to follow the data and to make the surface as smooth as pos
sible and as nearly as possible the same in each vertical repeat. 
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Figure 6. A sketch oftext items 4A, B, C in terms 
ofthe level contours ofO (or of cp') on the stimulus 
plane. The dashed segments constitute one pos si
ble way to smoothly join the described features. 
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Figure 5 and Figure 20 of Chapter 2 show these results plotted in the three
dimensional time crystal format used elsewhere in this book. The data cloud looks 
Iike a screw with a phase singularity ne ar two hours ex pos ure, beginning about 
1± cycles after transfer of the flowers to constant darkness and aga in at 23-hour 
intervals later (Engelmann et al., 1978). As in Drosophila's circadian clock, photo
sensitivity increases in the dark: The helicoid in cycle 1 has its singularity one
quarter cycle after the Iight-to-dark transition, but at twice the exposure duration 
needed in cycle 2. There is little further change in cycle 3. 

Engelmann et al. (1978) show that rhythmicity of pet al movement is commonly 
lost after near-singular exposure. This exposure inflicts a discontinuity on the 
phase response possibly because it extinguishes the oscillation until such time as 
a second stimulus reawakens it. 

In some of these experiments there is a substantial dispersion of phase among 
the 16 individual flowers collectively monitored for rhythmicity. Engelmann et al. 
(1973) note that the singular stimulus magnitude M* might be underestimated 
from such population data. In fact the apparent type 0 resetting, and so the whole 
helicoid, could be artifacts of phase scatter within a small population of flowers 
each ofwhich exhibits only type 1 re setting (Johnsson et al., 1973, p. 158; Winfree, 
1976). However, Engelmann et al. (1978) verify type 0 resetting on individual 
flowers, and M* in individual flowers turns out to be nearly the same as in popu
lations. 

Engelmann et al. (1974) obtained quite similar results in less extensive experi
ments replacing the red light by exposure to 30°e. The point here, I think, is that 
these phenomena reflect the basic dynamic structure of the circadian clock and 
have !ittle to do with the particular mode by which its functioning is disturbed. 

D: Arrhythmicity Not an Artifact of Populations 

What happens at the screw axis ? This singular stimulus is found to annihilate 
rhythmicity in each Kalanchoe flower (Englemann et al., 1978). Does it do so by 
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arresting rhythmieity in eaeh eell of the ftower or by merely indueing ineoherent 
rhythmieity in the population of cells whose collective behavior comprises the 
gross movement of the petals ? This latter possibility is suggested by the unlimited 
steepness of the resetting surfaee at its singularity. The slightest variation of 
initial phase or of photosensitivity would seem sufficient for large variations in 
the new phase of a cellular dock. 

In the format Zimmerman and I used for fruitfty pupae (Chapter 20, Seetion B), 
Engelmann et al. (1978) pose the quest i on of ineoherence to the eells of a single 
ftower in which the petal-opening rhythm had been annihilated by singular per
turbation. A type 1 resetting stimulus was then given, whieh should have only 
slightly synehronized eell doeks if eaeh were independently rhythmic on the normal 
eyde. As in the Drosophila experiments, high-amplitude rhythmieity was immedi
ately evoked. If the rhythm in the whole ftower is a mere superposition of eell 
rhythms of turgor, then this result is more readily interpreted as displaeement 
from a homogeneous equilibrium state than as resynehronization from seattered 
phases on the usual cyde. Bunning (1959, p. 523) was the first to diseover (in a 
plant) that the rhythm evoked by a single stimulus derives not from synchronization 
of preexisting rhythms in single eells, but from initiating rhythmieity in eaeh eell; 
the same seems to apply to the Kalanchoe ftower returned by a prior singular 
stimulus to an arrhythmie eondition. 

E: Amplitude Resetting 

The range of petal movement in Kalanchoe fiowers provides a more direct 
measure of amplitude than the laboriously aequired measure based on re setting 
eurves, applied using Drosophila in Chapter 7. This range measure ean be used to 
plot eontours of re set amplitude just as we have often plotted eontours of reset 
phase on the (T, M) stimulus plane. Engelmann et al. (1978) show that amplitude 
falls offby eoncentric rings around the singularity. In this respect also, Kalanchoe's 
pattern resembles Drosophila's. 
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Rules of Reasoning in Philosophy. Rule JI: ... We are certainly not to 
relinq uish the evidence of experiments for the sake of dreams and vain fictions 
of our own devising; nor are we to recede from the analogy ofNature, which 
is wont to be simple, and always consonant to itself. 

Isaac Newton, The System of the World 

In no case is the process weJl understood whereby the growing ceJl "decides" 
to replicate its genome, segregate its chromosomes into two nudei, and waJl them 
off from each other by cell fission. Such a fundamental biological process pre
sumably has some universal aspects. Its appeal as an object of investigation is 
further enchanced by the seductive belief that the mechanism of replication is 
constrained to some kind of simplicity these facts: 

1. The end state is dose to the initial state (namely, a freshly divided ceJl); and 

2. The whole process repeats at fixed intervals oftime, at least in certain kinds 
of ceJls in optimal growth conditions. 

Abrief foray into this intriguing puzzle is induded here for three reasons: 

A. At least three infiuential notions about dock-like dynamics arose first 
in this context and later found application in studies of circadian rhythms (Chapters 
19-21). 

B. There is a dose but poorly understood causa I link between circadian 
rhythms and the mitotic cycle. 

C. Techniques of analysis evolved in circadian experiments later stimulated 
paraJlel enq uiries into the ceJl cyde, (mostly by Kauffman et al.: see below), with 
results that bear upon our exploration of phase singularities (Chapters 2 and 10). 

I devote a few pages to each of these three topics. Section D goes into a little 
more detail about one specific experimental system, the true slime mold Physarum. 
Like the three other members of kingdom fungi celebrated in this Bestiary (yeasts 
in Chapter 12, ceJlular slime molds in Chapter 15, colonial ascomycetes in Chapter 
18), the true stirne mold is conspicuously periodic in its biochemical habits. In 
this case a clock-like regularity of mitosis is most prominently featured. With 
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this periodism comes the by now familiar crisis of circular logic. It is resolved 
in this ca se not by a phase singularity but by a discontinuity that appears to reveal 
an honest physiological cataclysm. 

A: Three Basic Concepts and So me Models 

A Sequence of States 

The earliest inquiries into the cell cycle provide a paradigm that seems to 
pervade much ofthe circadian literature, though only in recent years has it become 
explicit and articulate. This paradigm is best summarized graphically in the 
diagrams used by people professionally involved in unraveling the mechanisms 
of rhythmic mitosis (Figures 1 and 2). As generally envisioned, the cell cycle is a 
se ries of discrete steps or states that a cell must execute in sequence if it is to replicate 
normally. Pictured abstractly, these steps constitute a one-way cycle, a ring device, 
though possibly adorned with baroque appendages. There may be loops in the 
cycle, or alternate pathways here and there. There may be stopping places at 
which the cell is unable to go on to the next step until some permissive signal is 
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Figure 1. Diagram of a generalized cell cyde. The four dass
ical phases are shown: GI (gap 1), S (synthetic), G 2 (gap 2), and 
M (mitotic). In addition, a number of arbitrarily chosen points 
are designated by dots in order to illustrate possible alternative 
pathways, branched network, loops, and blockage points. Any 
precise resemblance to a particular cell is purely coincidental. 

(From Edmunds, 1974, Figure 1 with permission.) 

Slorl~ _ 

i O,S.. \' 

Figure 2. The circuitry of the yeast cell cycle. 
Events connected by an arrow are proposed 
to be related such that the distal event is 
dependent for its occurrence upon the prior 
completion of the proximal event. Numbers 
refer to cdc genes that are required for pro
gress from one event to the next; HU and TR 
refer to the DNA synthesis inhibitors hydro
xyurea and trenimon, respectively; MF refers 
to the mating factor, CI. factor. (From Hartwell 
et al, 1974, copyright 1974 by the American 
Association for the Advancement of Science. 
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given. But the central point for my purpose here is the intrinsically one-dimensional 
character of the process. The dynamics more resemble driving a car on roadways 
than piloting a sailboat or airplane in continua with more degrees of freedom. 

It is this vision of the cell cycle that gave rise to the concept of a simple clock 
(Campbell, 1964, and Chapter 3), and, by analogy, to much thinking about cir
cadian clocks, and to my experimental efforts to ask whether a circadian clock 
is a simple clock. 

Phase-Specific Arrest Within the Cycle 

If the cell cycle consists of a sequence of processes, some of which are necessary 
and sufficient causes of others, then the first job in preparing a "trouble shooter's 
manual of the cell cycle" is to construct a flow chart of these cause-and-effect 
connections, similar to a flow chart of metabolic pathways (Figures 1 and 2). 
With the normal cycle thus verbally divided up into stages, it would be illuminating 
to seek mutants incapable of each process named, just as biochemical geneticists 
unraveled the intricate contingencies that constitute the manufacture of small 
molecules in intermediary metabolism by finding out wh ich subsequent events 
are also arrested in such a mutant. 

HartweIl et al. (1974) discovered in this way that the cell cycle in yeast consists 
of at least two parallel sequences of events, one of which can proceed, even repeti
tiously, while the other is blocked. One involves DNA synthesis and nuclear 
division, and the other involves budding and cytoplasmic division. 

Rephasing as a Quantitative Test 

Systematic phase-resetting experiments to probe the mechanism underlying a 
physiological rhythm made their first appearance in the cell cycle literature. 
The protocol was typically as follows: 

a. Synchronize mitoses by selecting cells that are a certain size or sticky in a 
certain range of phases, or by synchronous release of a population from arrest by 
an inhibitor, or by fusion of randomly phased plasmodia. 

b. At some initial phase rP (measured as hours elapsed since mitosis), interfere 
with normal operation of the cell cycle by changing the temperature, introducing 
a poison, or whatever. 

c. Continue the stimulus for a time M (for magnitude of disturbance) and then 
return the cells to standard culture conditions. 

d. Observe the set back or excess delay of mitosis time beyond what would be 
expected if the cell cycle were simply paralysed during treatment time M. Excess 
delay D is defined as the actual period P (measured in units of one normal cycle) 
from the last mitosis be fore perturbation to the first mitosis after perturbation 
minus the usual period between mitoses (which we take for our unit oftime) minus 
stimulus duration M: 

D = P - 1 - M = P - M (modulo 1 period). 
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Converting to terms used elsewhere: 

1. Phase shift, with advances taken as positive, is 

,1cp = 1 - (D + M) = I - P = - P (modulo 1 period). 

2. Final phase at the end of M, 

cp' = 4) - D 

where cp is the initial phase at which the stimulus begins. 

3. Cophase at the end of the stirn ul us is 

e = 1 - 4>' = D - cp. 

e. Plot D against the initial cp (when the treatment began). Many such plots 
are available in the literature since Thormar published the first in 1959. For 
example see Figure 3. Their main uses are: 

1. To indicate whether or not a given treatment affects the mechanism of the 
mitotic timer, and if so during what phases, and 

OBSERVED 

NOT 
OBSERVED 

PRE -STIMULUS 
MITOSES 

STIMULUS 

POST-STIMULUS 
MITOSES 

Figure 4. Two kinds of discontinuity in the 
eell cycle's phase resetting as a funetion of 
initial phase. This diagram is in the format 
of Figures 31 through 33 01' Chapter 1. Dis
continuity (i) is relatively superficial. Dis
eontinuity (ii) signals a discontinuous event 
in the meehanism of rhythmieity. The lower 
shaded region is seldom sam pled for data 
points, but this is clearly essential for distin
guishing (i) from (ii). Does (i) normally coin-

eide with either (0) or (ii)" 
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2. To detect any physiological discontinuity in the cells' sensitivity. There 
are typically two discontinuities (Figure 4): 

(i) A point ofno return in the cycle, beyond which the very next mitosis occurs 
on schedule, though phase shifts may be evident in subsequent mitoses; 

(ii) And, near mitosis time, an abrupt change in the new phase to which the 
whole sub se quent rhythm is re set if the stimulus is given near that time. 

Testing Models 

Before passing on to Section B, I would like to elaborate a bit on rephasing 
as a quantitative test of models. Though re setting curves are available, it is not 
usually possible to make rigorous use of the circular logic presented in Chapter 1 
and subsequent chapters on dynamics because: 

1. These mitotic re setting curves usually leave a substantial gap surrounding 
mitosis, so it is impossible to determine the topological type of resetting. 

2. Measurements usually neglect mitoses after the one that immediately 
follows the stimulus, leaving us to assurne that this first mitosis reflects a rephasing 
of the mitotic timer for all cycles to follow. In circadian rhythms, in glycolysis in 
yeast, and in neural pacemakers, this is not always asound assumption. Nor is 
it in the case ofmitosis in Physarum (Brewer and Rusch, 1968; Devi et al., 1968; 
Sachsenmaier et al., 1970; and Kauffman and Wille, 1975). It is sound and requires 
no empirical check if and only if (as seems widely assumed) the mitotic cyde is a 
simple dock and mitosis is part of its mechanism. 

3. At present, there is no complete set of measurements in which both initial 
phase c/J and stimulus duration Mare varied. 

4. It is not always dear that the population of cells observed were perfectly 
synchronous to start with, nor that their mitoses were unimodally distributed 
when the re set phase was later determined. Chapters 4 and 8 underscore that this 
is essential for interpreting the topological features of resetting curves. 

The Simple Clock 

Setting aside these caveats for amoment, it would appear that excess delay data 
might nevertheless be capable of exduding the notion that the cell cyde is a simple 
dock, i.e., a continuum or finely spaced sequence of successive states along which 
the cell moves more quickly or slowly according to environmental conditions. 
If the cell cyde were a simple dock, then the slope of a final phase versus ini
tial phase plot could not be negative anywhere (proof in Chapter 3, page 83). 
In other words, using the conventions of this field together with formula d2 of 
Section A above, the excess delay curve's slope could not exceed 45° anywhere. 
In fact, it usually doesn't. (For example, see Mitchison (1971), pp. 204-240.) One 
gets the impression from looking at a lot of these curves that there is a distinct 
limit at 45° against which many excess delay curves press, without transgressing it. 
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To this extent, the cell cycle in several organisms does give an appearance of 
restriction to a fixed cycle, varying only its rate of progress or of retrogression in 
response to external conditions. 

But there do ex ist counterexamples in which the slope runs as high as 2 or 3; 
specifically, (1) sea urchin eggs irradiated with X rays (Rustad, 1970); (2) Tetra
hymena shocked with chemicals, heat, etc. (heat: Frankel, 1962, Figures 4 and 5; 
chemicals: Rasmussen and Zeuthen, 1962, Figures 9 and 11; Hamburger, 1962; 
and Frankel, 1969). 

Unless these can be somehow explained away (e.g., on the basis of population 
schism as in Chapters 4 and 8, or interpreting the apparent phase shift as only a 
transient of the first cycle after treatment), then they constitute clear violations 
of the simple-clock model. Thus, for example, we cannot think of mitosis in these 
cells as being governed by any single "division protein" or "mitogen" accumulating 
or decomposing at a rate which is merely altered, direct1y or indirect1y, by these 
stimuli, nor as governed by any complex of chemical factors that always change 
in strict mutual co ordination, at varying rates, along the closed ring of states. 

The simple-clock paradigm has served so weIl that subversive observations 
such as these should not be allowed to pass unchallenged. 

Feedback Oscillation 

Alternatives have been prepared for consideration, as we see in Chapter 5. 
Goodwin (1963) finds periodic dynamics implicit in the regulation oftranscription 
and translation, which he suggests may have aperiod long enough to account for 
the cell cycle or for the circadian cycle. Goodwin's principal innovation is emphasis 
or feedback regulation as a source of instability in a biochemical steady-state: 
quite a different notion from progress around a ring. In this respect, this notion 
resembles (1) the cytoplasmic oscillator proposed later by Goodwin (1966) to 
account for the serial ordering of enzyme activities in E. coli during its repeated 
fission;1 (2) the circadian oscillator which commonly gates successive rounds of 
mitosis; (3) the growth cycle distinguished from the DNA division sequence in 
Mitchison 1971, pp. 244~249; (4) the cell clock biochemical attracting cycle pro
posed by Selkov (1973); (5) the "budding" oscillator proposed by HartweIl et al. 
(1974) from his observations of mutant yeast; (6) the cytoplasmic oscillator ob
served by Mano (1975) in association with early divisions ofthe urchin egg; (7) the 
cytoplasmic attracting cycle proposed for mitosis in the acellular slime mold by 
Kauffman (1974), Kauffman and Wille (1975), and Tyson and Kauffman (1975); 
and (8) the attracting cycle of 4-hour period supposed by Klevecz et al. (1978) to 
underlie mitosis in mammalian cells. 

From these papers, it would appear that if there is anything about the cell 
cycle that resembles an oscillator, it plays a role accessory to the one-dimensional 
sequence of processes that constitute nuclear replication: Perhaps the oscillator 
governs cytoplasmic replication and division, and initiates the next start of nuclear 
replication. 

1 Note that this chapter concerns mitosis in eucaryotes exclusively. The corresponding process, called 
"cell division" in procaryotes, need not have similar dynamies. 
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It should be no ted that, apart from Goodwin's first heresy of 1963, all the 
investigators cited above built their mitotic timers outside the actual mechanisms 
of nuc1ear replication. 

These models, and less specifically detailed suggestions toward the same ends 
by Engelberg (1968), Burton (1971), Burton and Canham (1973), and Gilbert (1974), 
all emphasize continuous aspects of biochemical dynamics. 

Biochemical Switching Networks 

At the opposite extreme, one could emphasize switch-like aspects of reaction 
kinetics involving, say, allosteric enzymes and/or mechanical events (like poly
merase attachment) on the DNA itself. This interpretation is encouraged by the 
observation of stepwise doubling of membrane transport in mammalian cells 
(Jung and Rothstein, 1967; and Sander and Pardee, 1972) and ofenzyme activity 
in E. coli and in yeast (see reviews by Halvorson et al., 1971 and Tyson, 1979), each 
enzyme showing its increase at a characteristic phase. 

This idea was pioneered in Kauffman's Boolean logic network model of the 
cell (1969). According to the logical net model, everything important about the 
state of the cell is known when one knows which genes are active and which are 
inactive. There are no intermediate levels of activity. Each activity state results in 
biochemical processes which directly or indirectly shut off some genes and induce 
or derepress others. As in a switching network, the cell's state keeps changing until 
so me prior state recurs, completing one cyc1e of gene activity and of gene replica
tion, and thus permitting one cell division. There are many alternative cycles, 
each corresponding to a different state of differentiation (liver cell, musc1e cell, etc.). 
According to this model, cyc1ing persists in nondividing cells, but each gene is 
transcribed without being replicated. Further exploitation of this stimulating 
suggestion awaits evidence of such regularly periodic genetic activity in non
dividing cells. 

A related model by Ehret and Trucco (1967) suppose a unique order ofreplica
tion of the genome, its stages separated by delays while substances diffuse across 
the nuc1ear membrane. Each stage consists of processing one "chronon", tailored 
by natural selection to the right length for the required timing. 

B: Regulation of Mitosis by the Circadian Clock 

The average rate at which cells run through their cyc1e of division is governed by 
many factors inc1uding hormones, some of which (e.g., adrenalin) are secreted 
in a daily rhythm. Adrenalin has been shown to affect the average rate of mitosis 
in the epithelium of a mouse's ear (Bullough and Lawrence, 1964). The result is 
that while mitosis continues at all hours ofthe day, the mitotic index ofthis tissue 
is very much greater during some parts of day than during others (Moller et al., 
1974; and Taguchi and Tabachnick, 1974). Circadian regulation of mitotic rates 
can even go to the extreme of completely suppressing division during part of the 
circadian cyc1e. Mitoses in Euglena (Edmunds, 1974a, 1975) and in Tetrahymena 
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(Edmunds, 1974b) and in Gonyaulax (Sweeney and Hastings, 1958), for example, 
occur only during certain phases oftheir circadian cyde. In these cases it is inferred 
that only a small fraction of the population divides during any one daily oppor
tunity. The same inference follows from the extreme daily variation of mitotic 
index in rat cornea (and other tissues), in which a cell divides only every month 
or two but finally does so at a particular time of day (Scheving and Pauly, 1973). 

Complete inhibition ofmitosis during certain hours ofthe day can be important 
for therapeutic applications (Llanos and Nash, 1970). Timed administration helps 
cytotoxic medication to discriminate between two tissues, selectively killing a 
proliferating tumor tissue while leaving the normal healthy tissue unpoisoned. 
See Halberg, 1977, for applications. 

The cell dock models of Selkov and Sozinov (1970), Selkov (1970, 1973) and 
Wille (1979) look on the circadian cyde and the mitotic cyde as essentially the 
same biochemical process. Similarly, the chronon model, also mentioned above, 
envisions a dose relationship between the mechanisms of the eucaryotic cell's 
mitotic cyde and of its circadian cyde. Admittedly not very much is known about 
the mechanisms of either cyde. Still one might take the fact that the circadian dock 
can go while the cell cyde is inhibited and vice versa (Bruce, 1965; Barnett, 1966; 
and Edmunds, 1975) to suggest two distinct coexisting mechanisms, each capable 
of affecting the other under suitable conditions. Mitosis is sometimes gated at 
circadian intervals as we saw above, and eucaryotic cells are incapable of circadian 
output while mitosing at intervals shorter than 24 ho urs (Ehret and Wille, 1970; 
Ehret, 1974; Wille, 1979). 

For an excellent review of the relationships between the mitotic and circadian 
cydes, see Edmunds (1977). 

C: Further Developments in the Area of Circadian Rhythms, 
Applied Back to the Cell Cycle 

A Phase Singularity? 

It was in context of circadian rhythms that type 0 re setting (see Chapter 4, 
Boxes B, C) was first noticed as something qualitatively distinctive and impossible 
to account for in terms of movement along a fixed cyde. This led to development 
of experimental criteria for distinguishing between qualitatively different kinds 
of dock mechanisms, in terms of topological features of their resetting behavior. 
Such methods are capable of revealing whether the cell cyde really ought to be 
thought of strictly as a cyde (as in Figures 1 and 2). An alternative would be to 
endow it with "insides", necessarily including astate of indeterminate or ambiguous 
phase as in Chapter 6. Such astate would have no dear interpretation in terms of 
the sequence-of-stages interpretation of the ceB cyde. During the past decade at 
least seven models of this sort have been advanced in the scholarly literature. 
Though there are some experimental grounds for taking this possibility seriously 
(see Seetion D), aB the results I know of seem compatible with a notion advanced 
in several forms by Rasmussen and Zeuthen (1962), Rusch et al. (1966), Zeuthen 
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and Williams (1969), Pritchard et al. (1969), Sachsenmaier et al. (1972), Cohen 
(1972), Fantes et al. (1975) and Sudbery and Grant (1976). According to this dass 
of models, some single structure (division protein) or substance (mitogen) accu
mulates or is diluted steadily during the cell's growth. When enough has accu
mulated or when cell volume has sufficiently increased, mitosis is triggered and the 
substance is made anew or accumulation is restarted, initiating the next cyde. 
An appealing version due to Sachsenmaier is that the accumulating initiator 
substance combines with nudear receptor sites, which double stepwise at each 
mitosis. M itosis is triggered as often as all available sites are saturated. Thus the 
control mechanism of mitosis acts like an hourglass or relaxation oscillator. 
In terms of the categories of model mentioned above, it acts like a simple dock 
with a single switch. The abrupt resetting characteristic of such models is inferred 
from the abrupt change typically observed in the plasmodium's response to fusion 
with another plasmodium at a particular phase in the cyde. 

This is not a necessary inference from the observations, since the same data 
could indicate a phase singularity associated with a smooth cyde of a correctly 
chosen shape (Winfree, 1974c; and Kauffman, 1974). But experiments have not 
yet produced compelling reasons to doubt the earlier interpretation (see Section D). 

Chaotic Dynamics Outside the Nucleus? 

Advocates of oscillator mechanisms for mitotic timing usually place the oscil
lator outside the nudeus, leaving the nudeus to initiate its chain of necessary 
events upon signal from the triggering oscillator (see the list above under "Feedback 
Oscillation"). It seems to me likely that such a parochial "gatekeeping" aspect of 
the cell cyde might vary in behavior and in mechanism from one cell type to the 
next. In the extreme case ofvery complicated or irregular (chaotic) dynamies, such 
a gatekeeper dynamic might account for the great variability of intervals between 
mitoses typical of mammalian cells. Conjectures of this sort began with Engelberg 
(1968), who suggested that mitosis might be triggered when the sum of many sep
arate harmonie oscillations in cell metabolism momentarily exceeds a threshold. 
Burton (1971) and Burton and Canham (1973) elaborated on this not ion. Leigh 
(1965), studying superimposed predator-prey oscillations in ecological context, 
worked out the statistics of such threshold crossings. But comparisons with data 
on mitotic variability have not yet been carried out. The first explicit efforts to 
distinguish between models on the basis of their statistical behavior are due to 
Burns and Tannock (1970) and Smith and Martin (1973). They suggest that the 
variability of mitotic intervals is almost all due to a variable delay of unknown 
cause between the completion of one cyde and the initiation of the next. They 
found that the delay can be described by a Poisson process. Subsequent experi
ments bear this out: Minor and Smith (1974); Brooks (1975,1976); Shields (1976, 
1977); and Shilo et a!. (1976). 

Models have thus far attempted most combinations of continuity versus dis
creteness of state; of involvement vs. independence ofthe stages of nudear replica
tion; of one state variable vs. two; of determinism vs. probablism. The next 
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innovation will probably have to exploit the fashionable behavior of "strange 
attractors" and "cusp catastrophes", by accounting for both mitotic repetitiousness 
and for variability in terms of three state variables, two of which cycle smoothly 
while the third undergoes a jump at mitosis time. The raw materials for such a 
model can be found in the papers of Zeeman (1977) and of Rössler (1976~ 1978) 
(see also Box B of Chapter 13). The stochastic-start models originated by Bums 
and Tannock (1970) and Smith and Martin (1973) sound like natural candidates 
for formalization in terms of a chaotic cycle or an attraeting eycle tangent to a 
homoclinic point. 

It should be noted in connection with such a phylogenetically eclectic literature 
that experiments on bacteria, slime molds, yeasts, and mammalian cells might 
not all require the same interpretation. 

D: Physarum Polycephalum 

Synchronous Nuclear Division 

F. L. Howard discovered in 1932 that the true slime mold, Physarum poly
cephalum, behaves in mitosis much like a single gigantic cell. All its nuclei coexist 
in one blob of jelly, undivided by plasma membranes or cell walls. A similar 
situation obtains in other members of the kingdom fungi, in multinucleate tumor 
cells, in multinucleate frog eggs, in the malaria plasmodium, in artificially fused 
cells, and in early insect eggs. In all these cases, nuclear division among the several 
nuclei occurs synchronously. In Physarum, the effect is more dramatic and bio
chemically more convenient for its sheer massiveness, as millions of nuclei cleave 
within 15 minutes during a 9- to 12-hour mitotic cycle. Such synchrony is difficult 
to obtain and is ephemeral in suspensions of independent cells. 

The fact of nuclear synchronyencourages belief that division is triggered by 
soluble factors equally distributed throughout the cytoplasm. The causes of the 
observed synchrony are still not understood, but have been subjected to much 
experimental study, especially since Guttes et al. (1969) discovered the technique 
for fusing two plasmodia. Though eaeh of the two parent plasmodia is synchro
nous within itself, their phases may be quite different. Fusion results in thorough 
mixing of the two parents. As they now eonstitute one plasmodium, nuclear 
fission is again synehronous. Rao and Johnson (1970) and Rao et al. (1974) carried 
out fusion in the same format using mammalian cells, with results much like those 
obtained in the more extensive experiments with Physarum. 

Phase Compromise Experiments 

One question asked in such experiments is, "Wh at will be the eompromise 
phase?" 

Guttes et al. observe that the compromise phase is simply the average of the 
parent phases, or a weighted average in ca se of unequal weights of the two parent 
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Figure 5. Fusion of plasmodial pieces derived from two differently phased macroplasmodia (A) and 
(B) at various time intervals. Small plasmodial pieces (-1.5 cm 2 ) were excised from (A) and (B) and 
placed on top of each other. The horizontal projection of each point onto the oblique line indicates the 
time when fusion was started. Three ex am pies are marked with double arrows (a, b, cl. Fusion is campiere 
within approximalely 1 hour. Time unit: duration of one division cycle (-10 ho urs). (I) Time ofmitoses 
in parent culturcs (telophase); (0) mitoses in mixed plasmodia. (shaded areal Entire period of mitosis 

(B 1) from prophase to telophase. (From Sachsenmaier, 1976, Figure I, with permission.) 

plasmodia. In taking this average, they eonsider phase as a number from zero 
just after mitosis inereasing to one just before mitosis. A unit diseontinuity oeeurs 
at mitosis. In a eritieal series of experiments Saehsenmaier et al. (1972) took two 
plasmodia one-half eyde apart, and fused sampies of eaeh from time to time 
throughout the lO-hour eyde. For the first five hours of fusion time, the fused 
plasmodia eventually mitosed at a eertain fixed eompromise time (Figure 5). But 
fusion after the leading pa re nt reaehes mitosis resulted in eventual phase eom
promise five hours shifted relative to that observed in the first half of the experi
ment. F or the remaining five hours of fusion time, the result stayed the same, then 
it shifted back after the lagging parent reaehed mitosis. This aB suggests a star
tlingly simple interpretation. In the words of Tyson and Saehsenmaier (1978): 

An unstable activator, which is synthesized at a rate proportional to cell mass, 
binds reversibly to certain nuclear sites. When enough activator has accu
mulated to titrate all these sites, mitosis and another round of DNA synthesis 
are initiated .... (or) ... an unstable cytoplasmic inhibitor is in equilibrium 
with a nuclear component so that its total amount is proportional to the 
number of genome equivalents in the plasmodium. During growth, inhibitor 
concentration decreases until it reaches a critical value below which nuclear 
divisions and DNA synthesis are no longer suppressed. 

The question of phase eompromise is made even more tantalizing by the 
observation (see Chapter 1, last seetion) that it is impossible to construet even a 
hypothetieal table of eompromise phase as a funetion of parent phases without 
induding either a large diseontinuity or a phase singularity. 
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I recall the excitement of Sachsenmaier's year at Princeton in 1969 and our 
conversations about the prospects of someday completing the phase compromise 
measurements. The experiments we outlined would fill out the (cfJ A, cfJB, weight 
ratio) cube, plainly exposing the anatomy of the unavoidable discontinuity. When 
these laborious experiments are done in such a way that fusion is prompt and 
synchrony is complete, then the critical quest ion will be: 

1. Does the dependence of compromise phase on parent phases and bulk 
ratios have 

a. A diagonal discontinuity plane (two-dimensional), indicating a perfectly 
circular attracting cycle with a perfectly centered stationary state (Chapter 1, 
Figure 26). Or, 

b. Two perpendicular discontinuity planes (two-dimensional) near mitosis 
time, indicating a critical phase, as in the hourglass or sawtooth relaxation os
cillator model? (Chapter 1, Figure 24). (Note that both this case and (a) may be 
viewed as extreme limiting cases of an attracting cycle.) Or, 

c. A filament-like (one-dimensional) phase singularity indicating an asym
metric attracting cycle? (Chapter 1, Figure 25). Or, 

d. Some other presently unforeseen shape, possibly because some state vari
ables equalize much more slowly than others after plasmodia are fused? (Box A). 

2. Is there any locus of fixed cfJ A or cfJ/l crossing the (cfJ A, cfJfl) unit cell at equal 
parent weights along wh ich no discontinuity is encountered (Figure 6)? This 
would be awkward to account for by any model involving a physiological jump 
at a critical phase in the mitotic cycle; and if not, 

3. Does the compromise phase vary along that locus with winding number 
W = 0, implicating a phase singularity? 

This measurement would be unbelievably laborious if carried through the 
second or third mitosis following fusion, as a purist would require. So it is 
unlikely ever to be done. However, enough data have been available in the 
v = ! plane since 1972 to strongly suggest (I b) and practically rule out (I c): Remy, 
1968; Sachsenmaier et al., 1972; Chin et al., 1972; summarized in Tyson and 
Sachsenmaier, 1978). Contour lines through these measurements clearly show 
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Figure 6. Thc «PA. <PHI torus. skinned and Ilattened as 
a unit eell in a square lattice. Does thc compromise phase 
jump discontinuously somewhere in every band crossing 

the square. C.g .. the shaded zones') 
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Bo A: Pha e Compromise mong Pltysarum Nuclei 

In Section C of Chapter I, in Example 9 of Chapter 2, and in Box F of Chapler 6, 
we aw that the dependence of hybrid pha e on parent pha c cannot b continuou. 
In those arguments we assumed that the hybrid' pha e typically varies smoothly as 
one parent' pha ei aried through a full cycle. Thi wa a umed becau e the alternative 
i to a urne a di continuity at the out et, leaving nothing to prove. But that may be 
exactly what Phy arul1I olfer u. It appear that there i a pha e omewhat before 
mito i when Physarlllll' mitotic clock change it reaction to perturbation 0 rapidly 
that no experiment has yet succeeded in resolving the change as a process in time. For 
practical purpo e of mea urement it i a di ontinuity. 

Ooe thi mean that attractor cycle interpretations are excluded in favor of ingle
variable relaxation oscillator? othing ofthe ort. or doe a rapidjump in the course 
of an attracting cycle nece arily imply anything about dynamics el ewhere in state 
pace, or about i ochron geometry and ingularitie. lt only prevent our u ing the 

purely topological argument of hapter land 2. 
Box F ofChapter 6 took an alternative approa h by uppo ing a particular dynamic, 

interpreting the tate variable a chemical concentration ,and upposing that oscillators 
combine by pooling their corre ponding chemical . That particular model could be 
modified to give the altracting cycle an abrupt jump of ome sort at pha 0 (e.g., Ty on 
and Kauffman, 1975). Then the ontour map of hybrid pha e cfJ3 would re emble 
the figure below: cfJ3 ha a pha e ingularity in each triangle al/d a di continuity along 
the perpendicular cfJ I = land cfJ2 = O. Thc c feature are by no mean mUlually cxclu-
ivc. Finding one doe not eliminate the other. 

Bul Pilysarul1I evade thi te t 100, for whatever may be the nuclear tale variable 
governing the mitotic clock, it eem unlikely that they all mix freely when plasmodia 
are fu ed. That mean that the hybrid' tate i given unambiguou Iy only in the prodllCl 
pace. of two 0 cillator : a pace of at lea t four dirnen ion in wh ich the geometry of 

i ochron and thcir ingularitie i harder to vi ualize. Hence category (Id): If there is 
another di cOl1linuity be idc the one a ociated with the jump in the normal mitotic 
cycle, it may take unforeseen forms. 

For thc pre cnt, no uch objcct have been found in any hape or form. But the data 
are impreci c and much remain for eager hand to undertake. 

~2 
o 
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perpendicular one-half cycle discontinuities as in Chapter 1, Figure 24. The data 
are sometimes irregular but there is no clear hint of a phase singularity (1 c) pene
trating the u = ! plane. 

More recently Kauffman et al. (see below) reexamined the question with 
particular alertness to evidence of attractor cycle kinetics in the mitotic cycle. 
They pursued the two main classes of experiment that have be co me tradition al 
in this field: 

1. Two plasmodia at different phases are fused, resulting in a phase com
promise as their two mitotic rhythms synchronize to one. The results are examined 
for evidence of critical phases, at which either cell's physiology abruptly changes, 
or for a combination of phases such that the compromise phase is unpredictable 
in the ways anticipated from the attractor cycle conjecture (Chapter 6) (Kauffman, 
1974; Tyson and Kauffman, 1975; Kauffman and Wille, 1975). 

2. A physiological shock, such as incubation at 37°C, retards or advances the 
next mitosis. Clues are sought in the amount and direction of phase shift as a 
function of the initial phase when the shock is administered (Wille et al., 1977). 

Both experiments are potentially capable of revealing a phase singularity if 
one exists, and both are capable of demonstrating type 0 resetting. 

However, at this writing neither phenomenon has emerged from Physarum. 
[I he re spare the reader by deleting most of wh at I prepared for this chapter, viz 
an extensive examination of the data obtained in those experiments, and the 
interpretations given them. A sufficient part of this has appeared independently 
in Tyson and Sachsenmaier (1978), who came to the same conclusion.] In fact, 
those of the fusion data from Kauffman and Wille (1975) in which thorough 
mixing and synchrony are reported do fill out the 1972 picture more thoroughly 
and quite consistently. Kauffman and Wille (1975) conclude that mitosis in 
Physarum behaves more like a relaxation oscillator than does their model. 

In this circumstance I fee I compelled for the present to abide by the first of 
Newton's two exhortations at the opening of this chapter, despite the attractive
ness of theoretical schemes involving phase singularities. At the same time it must 
be remembered that Physarum fusion experiments can never resolve events more 
closely than the 45 minutes required for plasmodia to fuse. Any number of singu
larities might lurk unresolved in the hour of ostensiblc discontinuity preceding 
mitosis. 

Who Cares? 

Knowledge of cell dynamics has obvious practical importal1Ce and obviously 
involves considerations of circular logic akin to those outlined in Chapter 1. I 
remember with pleasure recurrent discussions on this fact with Graeme Mitchison 
in 1971, continuing hours after ta bl es had been cleared in the Cambridge MRC 
Lab cafeteria. We wondered whether phase singularities could reasonably be 
pursued in this matter, and decided against it. But Stuart Kauffman decided on a 
more aggressive approach to the question, taking it to the master, Physarum. If 
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Kauffman and friends have accurately interpreted Physarum's answer, then cell 
division is regulated by a continuous attractor cycle oscillation which operates 
independently of nuclear division itself. Such a discovery would belong in a 
conspicuous pi ace in the main text of this volume as perhaps the main fruit of the 
search for phase singularities. I have chosen not to put it that much in the spot
light because I am apprehensive that Physarum's behavior may be very much 
more complicated than any of the simplistic models here entertained. But more 
data may come and I do recommend the matter to your attention, as the outcome 
may be important. 



23. The Female eycle 

Depend upon it: there is nothing so unnatural as the commonplace. 

Sherlock Holmes, 
The Ca se oIIdentity 

A: Women, Hormones, and Eggs 

Monthly bleeding may have been commonplace among nuns, spinsters, and 
the infertile centuries ago, but it could hardly have been common among the 
women to whose uteri we all owe our existence. When they were not pregnant, 
their breast feeding encouraged lactation, which suppressed ovarian cycling. Short 
(1976) estimates that it may have been uncommon to experience three consecutive 
menstrual cycles in a lifetime under these conditions. Accordingly, the female 
endocrine system's menstrual cycle has not been subjected to selection pressure 
for its clock-like attributes. In fact, there are diverse clues that some fraction of 
women are reflex ovulators, not spontaneous cyclers at all (Clark and Zarrow, 
1971).1 In a reflex ovulator, mature follicles await rupture by a surge of hormone 
which is elicited only by sexual stimulation. The ovum then starts its journey down 
the fallopian tube, and pregnancy (or, less likely, recycling) ensues. 

One of the stranger byproducts of improved survival of infants and of western 
sexual mores is that lactation is discouraged in industrialized societies. Conse
quently, the female endocrine system nowadays commonly functions in a periodic 
mode. It cycles only because after an ovum works its way into the well-prepared 
uterus without finding a sperm, there is little alternative but to start over with the 
next follicle. 

The one baffiing mystery in this glib story surrounds the fact that the next
ripest follicles are so immature that they will take weeks to ripen, thus ensuring a 
definite minimum interval between ovulations. No one seems to have a clue as to 
the mechanism that selects a single ovum out of a teeming ovary and encourages 
its growth for a full month. In fact, a multiplicity of candidate follicles are initially 

1 Rats tao (Taleisnik et al., 1966: Moss et al.. 1977). 
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Box The Mechanisms of the ormal Human Female Cycle 

The chief actor in thi drama are two glands, the ovary and the anlerior piluitary. 
either alone i intrin ically cydic in its activity. orre ponding to the two gland are 

two pair of hormones. 
First, there are the two glycoprolein gonadotropins, so called because they affect 

the gonad (the ovary). These are luternizing h rmone (LH) and follide- timulating 
hormone ( SH). These are sec re ted by pecifie eell in the anterior pituitary in re pon e 
to hormonal relea ing faetor from the hypothalamus. 

Then there are the two classes ofsteroid sex hormone aimed at the anterior pituitary 
(by way ofthe hypothalamus) and at the uteru ( ee below). The e are e trogenie steroids 
(E) and progestational teroid (P) all ynthe iud in the gonad (the ovary) and secreted. 

The principle gland of the ovary is the follide, of wh ich there are many, all being 
matured under the stimulation of gonadotropie hormone to eerete estrogen. Some 
mature a far a to relea e an egg then eerete mixed estrogen and progesterone. 
The fir t tep of the eyde, when the follides are only making estrogen, i called the 
follicular pha e. After one of them ovula te , it turn into a yellowi h body ealled the 
corpus luteum which, in addition to e trogen, ynthe iu and releases progesterone. 
Thi po tovulatory half of the eyde is therefore ealled the {!/Ieal pha e. Thc e ovarian 
steroid eeretions in turn control the pattern of pituitary gonadotropin relea e both 
directly and by way of the hypothalamu , thu do ing the eau al eyde. In human , the 
eorpu luteum ha a built-in lifetime of about 14 days, toward the end of which its 
pro ge terone and estrogen outputs dedine. Thi di inhibit pituitary gonadotropin 
release with the re ult thaI a new follide b gin il equence of e trogen production 
rupture, and combined e trogen and proge lerone ecretion. while its predecessor 
degenerale . 

ot linked in this clo ed chain of cau e and elTect. the lining ofthe uteru proliferat 
under the equenlial timulation fir I of e lrogens and Ihen of progeslerone. The luteal 
proge terone ay, 'The follicle ha ruplured. prepare for implantation". When the 

corpu luteum begin to fade after two weeks it no longer provides enough progesterone 
to support the uterine deeidum, \ hieh thu earn it name by sloughing off. This marker 
even! is the on et of monthly flow, conventionally indicating day one of the cyde. 
Becau e it i affected by, but doe not affec! the hormonal interactions, it is not properly 
apart of the dock-lik mechanism. (According to another convention of labeling, 
men e tarl not on day I bul on day 14, ovulation tak ing the preferred position ofday 1 
in the cycle.) 

Women differ from animals with a breeding ea on in that gonadotropin are ecreted 
all year round in amounls adequate to encourage follicles to develop. In seasonal 
breeders, gonadotropin levels are kept below a minimal level, thus inhibiting cycling, 
except when the photoperiod is right (and the photoperiod is monitored by a circadian 
dock). Most women also differ from reflex ovulators in that gonadotropin secretion 
reaehe a peak when the follide is mature, causing it to release its ovum. In a reflex 
ovulator, in contra t adequate LH output and rupture of the follide oceurs only upon 
command to the hypothalamu by timuli a ociated with mating. In rodent that 
cycle pontaneou Iy thi timulu to the hypothalamu and thence to the anterior 
pituitary may be provided dai ly by an interna I circadian dock in or mediated by the 
suprachiasmatic nudeus. In humans the hypothalamic stimulus seems independent of 
circadian factors and independent of sexual stimulation. 
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The ketch provided above i obviou Iy mi leading in its over implification. The 
female cycle, like many biological regulalOry mechanism , is characterized by re
dundancy, by multiple fail-safe device . Thi make it hard to unravel any one 
"mechanism". [t also allow great evolutionary diversification ince many part of the 
interacting machinery can mutate independemly without imperiling the main function 
lhey collectively ub erve. Thus, every publi hed experiment on female cycle mechanism 
must necessarily be tlagged with a label: "guinea pig", "ham ter", "rat", "mar upial " 
"ungulate", "primate", or "human". 

recruited but most of them eventually wither, yielding to the one chosen. This 
competition may contribute to the notorious variability of the female cycle, most 
of which is confined to the preovulatory, follicular half of the cycle. It is not even 
certain that release ofthe egg is an essential part ofthe causalloop that constitutes 
the female cycle at all. According to one view, it is only a peripheral process 
governed by, but not importantly affecting, the female cycle. The evidence is 
basically that anovulatory cycles take about the same length of time whether ovu
lation occurs or somehow fails to occur. To me, such evidence speaks rather for 
two parallel alternative pathways of cycle completion, one with a follicular estrogen 
spurt and subsequent progesterone manufacture by the corpus luteum, and one 
without. The hormonal receptors of the female endocrine system might be indif
ferent to these alternatives only in the limited sense that both paths might happen 
to take about two weeks. Fuller understanding awaits clarification of the mech
anisms of competition and selection among follicles in the ovary. 

Though ovulation may or may not be a peripheral, gated process, monthly 
sloughing of uterine decidua definitely iso The human female cycle proceeds 
normally in the absence of the uterus and there is no known hormonal or neural 
feedback from the uterus to the endocrine glands (see Box A, outlining the normal 
endocrine cycle). 

B: Statistics ("Am I Overdue?!") 

Oblivious to our uncertainties about mechanism, the human ovary in non
pregnant, nonlactating women releases an ovum every four weeks or so. The 
consequence in modern society is monthly flow. So widespread and long estab
lished is this phenomenon that women compluin of menstrual irregularities and 
even prefer birth control pills that artificially induce periodic bleeding (perhaps 
as reassurance that pregnancy has in fact been forestalled for another 28 days). 
How regular is the female cycle? It appears that successive intervals between 
recurrences of menstrual onset (the most obvious phase marker) are nearly inde
pendent sampies from a probability distribution. The mean interval depends in a 
regular way on the individual age (Treloar et al., 1967). F or women aged 20 to 40 
the standard deviation is typically a few days (that is, about two-thirds of intervals 
fall within a few days of the mean and about nineteen-twentieths fall within twice 
that range). 
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Figure I. Vertically, intervals between 189 succes
sive menstrual onsets, in days, recorded by DSW. 
Note the four long intervals caused by pregnancies. 
Ovulation was not regulated by "the pill" or other 
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In the example shown in Figure 1 (data collected by my mother from age 22 to 
age 37), 189 consecutive cydes (interrupted by three pregnancies and terminated 
after a fourth) have a mean of 25.0 days with a standard deviation of 3.2 days, 
most of whieh is presumably (according to Presser, 1972) in the preovulatory 
half of eaeh eyde. These statistics do not vary markedly between the four segments 
punctuated by pregnancies (Figure 2). Figure 3 plots each interval against the 
next. If flow onset occurred sometimes early or sometimes late in a more regular 
underlying cyde, or if the calendar dates were inaccurately recorded, then this 
cloud of dots would be elongated along a - 45° slope, since errors that lengthen 
one interval would shorten the next by the same amount. If there were long term 
variations of period (for example, longer periods in winter or when older), the 
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Figure 2. As in Figure 1 but the vertical seale is cumulative days, spanning 15 years. The mean interval 
and standard deviation are indieated before each pregnancy terminates that reeord. The four me ans 
are about one standard deviation shorter than Presser's (1972, p. 150) population mean, and exhibit 

about the same variability as he found (op. eil., p. 154). 



454 23. Thc Fcmale eycle 

50 

40 

30 
.• " "i 

.: ... }':*~~~ .. " 
i· ", 

1; 

2°1 

':L --2-'-0---3-'-0---4-'-0---'50 

I; ., 
Figure 3. The successive intervals of Figure 1 are plotted each against the next (omitting the four 
pregnancies). The symmetry ofthe scatter indicates no positive or negative serial correlation ofintervals. 

cloud would be elongated along the +45 0 slope, since long intervals would tend 
to follow long intervals, etc. Neither effect stands out conspicuously in these data. 
Gunn (1937) reported little correlation between consecutive cycles on the basis 
of much larger sampies and more thorough statistical analysis. 

If a hormonal disturbance caused a sudden phase shift, how noticeable would 
it be? How many cycles N should we wait for passage of any transients be fore 
observing the asymptotic phase shift inflicted on the central timing mechanism? 
Using the same data base, Figure 4 portrays the unperturbed rhythms' probability 
distribution of times of next flow onset, of the se co nd flow onset, and of the third, 
all measured from a given onset at T = O. If there were no correlations between 
successive intervals, a phase shift of less than about twice the standard deviation 

Figure 4. On a horizontal scale ofweeks, the number ofintervals ofeach duration is plotted: Peak I, 
from one onset to the next, i.e., from i to i + 1. Peak 2, [rom i to i + 2. Peak 3, [rom i to i + 3. Peak 4, 

[rom i to i + 4. (Data from Figure 1.) 
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times the square root of N would be lost in the intrinsic variability of the period. 
With a standard deviation of 3.2 days and allowing two cycles in case the first 
per iod is abnormal, the minimum reliably measurable phase shift would be 
( ± 2 x 3.2 x )2) = 9 days out of 25. Figure 4 indicates that this is indeed approxi
mately the observed variability in the second cycle, and it gets worse after three or 
four cycles. This makes it difficult to work quantitatively with the female cycle's 
resetting curves. 

C: Rephasing Schedules 

Despite quantitative variability, at least one qualitatively essential feature 
should be discernible. We should be able to determine the female cycle's topological 
types of resetting. Does it achieve type 0, given a sufficiently strong perturbation? 
If so, then so me interesting discontinuities are implicit at lower doses. The possi
bility even exists that the fern ale cycle has a phaseless manifold (see Chapter 6), 
from which it never comes out again spontaneously, once perturbed into that 
range of states. Accidents of this sort could conceivably underlie some varieties 
of amenorrhea. Lasting amenorrhea, induced deliberately by a single f1eeting per
turbation, might have some advantages as a contraceptive technique. Preliminary 
evidence comes from limited clinical experiments, from computer simulations 
hopefully summarizing the best contemporary information on the hormonal 
mechanisms of the human menstrual cycle, and from more extensive experiments 
using the estrous cycles and menstrual cycles of large mammals. 

First, the clinical results: Hormonal phase shifting is possible and the first 
full cycle after perturbation seems normal. The phase shift is a sufficiently re
producible function of phase to permit reliable entrainment to perturbations 
administered on a regular schedule at periods close to the normal cycle duration 
(Cseffalvay, 1966; Boutselis et al., 1971. 1972; Yen and Tsai, 1972; Arrata and 
Chatterton, 1974; Abraham et al., 1974; Dhont et al., 1974; and Shaikh and 
Klaiber, 1974). There are some reports that visible light also serves this purpose 
(Lacey, 1975; Dewan, et al., 1978). Large phase shifts are possible, as is required 
for type ° resetting. For ex am pie, the large dose of estrogen commonly administered 
in cases of rape promptly dumps the uterine decidua and therefore presumably 
resets the female cycle to a standard phase; however, I have not seen data dem on
strating that subsequent cycles are normal nor that the reset is nearly independent 
of the initial phase in the follicular and hormonal cycle. 

Second, the results from reasoning through the detailed mechanism ofmenstrual 
rhythmicity: A variety of numerical models of the endocrine interactions thought 
to underlie the female cycle have recently appeared in the technicalliterature. The 
deficiencies of some of these models have been conspicuous and their evolution 
has been prompt. lt is by no means dear that reality is in hand at present. However 
no type ° resetting curves have yet been produced from these models. Using the 
model of Shack et al. (1971) and Stetz (1971), I tried progesterone doses of various 
sizes applied at various times throughout the cycle and obtained only smaltphase 
resets (1972, unpublished). Using the much more sophisticated model of Bogumil 
et al. (1972), my student Eric Best and I tested the effect of estrogen injections at 
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23. The Female Cycle 

Figure 5. Data from Cooper and Rowson, 1975, Figure I, replotted 
in the format of Figures 31 through 33 ofChapter I. Dots indicate onset 
ofbehavioral heat in heifers. The normal period length is 21 days; these 
experiments thus scan one cycle. Onsets occur two to three days 
after the standard stimulus regardless of when in the cycJe it was 

administered. 

Figure 6. As in Figure 5 but data are from Palmer and Jousset, 1975a, 
Tables 2 and 3. Dots represent the beginning of high progesterone 
phase in mares, which also have a 21-day cycle. In both Figures 5 and 6 
many of the single dots represent several duplicatc experiments using 

different individual animals. 

various times in the cycle, looking for a permanent rephasing of the subsequent 
endocrine rhythmicity. The data obtained (Best, 1975) showed conspicuous dis
continuities as a function ofthe initial phase and in many cases lapsed into strange 
cycles that seemed to raise doubts about the realism of our implementation ofthe 
model of Bogumil et al. (1972). Subsequent simulations by Bogumil examined the 
effect of estrogen infusions administered at various times in the cycle. The resulting 
resetting curve showed three glaring discontinuities in the follicular half of the 
cycle and none at ovulation or in the luteal phase (Bogumil , J 976, personal 
communication).2 

Third, the results from animal experiments: The best anima I data come from 
veterinary endocrinologists trying to optimize the efficiency of artificial insemina
tion in cattle breeding (Cooper and Rowson, 1975; Palmer and Jousset, 1975a,b). 
If discontinuities be disallowed apriori, then the problem of synchronizing a 
randomly phased herd amounts to the problem of obtaining a very flat type 0 

2 Note that real discontinuities in the rephasing response do not necessarily reveal discontinuities 
in the oscillator mechanism. If they did, one might have to look askance on BogumiJ's simulation 
because its discontinuities correspond to no conspicuous physiological event. For example, a smooth 
kinetic scheme whose attracting cycle is knotted has a phaseless set of peculiar topology in the pertinent 
state space. This results in suprising discontinuities of new phase over a whole range of (old phase, 

stimulus magnitude) combinations. 
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resetting curve. Resetting curve data obtained by these investigators in response 
to schedules of hormonal perturbation applied at various phases in the cycle are 
replotted in Figures 5 and 6. Close synchronization is obtained. The data look 
superficially like type 0 curves. However, it must be remembered that these 
observations terminated with ademonstration of excellent synchrony soon after 
the last of a sequence of injections. Confirmation of type 0 topology awaits a 
repeat with verification that subsequent rhythmicity is normal following injection 
at each phase. (It should also be noted that the estrous cycle of ungulates differs in 
mechanism from the human menstrual cycle.) 

D: The Question of Smoothness 

Another issue involved here is even more fundamental than ascertaining the 
reality of the type 0 resetting which is so important in theoretical constructions: 
Can the female cycle be thought of realistically in terms of smooth dynamics on 
a time scale of days, or at worst, hours? Most thinking on the subject of the female 
cycle employs approximate notions which though they may be appropriate for 
pioneering investigations of very complicated machinery, neglect considerations 
of continuity. Like the cell cycle (Chapter 22), the female cycle is commonly 
described much as people describe the operation of an internal combustion 
engine: as a sequence of discrete steps linked by thresholds and logical switches, 
all proceeding in a closed loop (e.g., Danziger and EImergreen, 1957). In this view, 
those parts of state space not visited along the attracting cycle are ignored as 
though they did not ex ist. But, if they do exist, they are important when the cycle 
doesn't pursue its normal course. Contemporary fertility technology ensures that 
states off the normal cycle will indeed be traversed, just as cancer chemotherapy 
ensures it for the cell cycIe: Nonetheless, it is possible that this language of discrete 
state transitions is not only a convenient artifice during an early stage of inves
tigation, but also an accurate reflection of the dynamics of the female cycle. If the 
female cycle embodies processes with radically different time scales then intervals 
of continuous dynamics may be joined in a switch-like way by means of thresh
olds, with the result that on a time scale of days and hours we face more dis
continuities than the minimum assortment required topologically. In that case 
many of the methods exploited in this book would be superfluous because they 
only serve to identify a discontinuity implicit in smooth kinetics. 

E: Circadian Control of Ovulation 

In co nt rast to the human menstrual cycle, the four- to five-day estrous cycle of 
some rodents has a short enough period to succumb to regulation by circadian 
rhythms. This may even have selective value in terms of optimal phasing for coor
dination of sexual activity in the day-night cycle. The principle that mammalian 
physiology is organized on a 24-hour basis manifests itself in this situation as a 
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regular time of day for ovulation in such rodents as the laboratory rat, the labo
ratory mouse and the golden hamster. The signal that ruptures the Graffian 
follic1e is an luteinizing hormone (LH) pulse from the pituitary, which is in turn 
responding to a daily signal from the suprachiasmatic nuc1ei (SeN) (Fitzgerald 
and Zucker, 1976; Moore and Eichler 1976; Stetson and Watson-Whitmyre 1976; 
Morin et al. 1977a; Rusak 1977). The SeN, located just in front of the crossing 
ofleft and right optic nerves, are in turn governed by the externallight-dark cyde 
by way of the retinohypothalamic projection. But if that nerve cable is cut, the 
SeN still exhibit circadian periodicity, now free-running at the individual's own 
period near 24 hours. The estrous cyc1e remains entrained four-to-one or five-to
one by a circadian LH pulse: only every fourth or fifth day does the daily pulse 
find a follic1e mature enough to rupture and produce a corpus luteum, whose 
secretory activity ultimately starts the next cyc1e. 

In this situation, the female cyde's phase shifts in a predictable way. In response 
to hormonal perturbation, it shifts by an integer number of circadian cyc1es 
depending on when in the four- or five-day cyc1e the hormone is administered. 
Note that because the phase shift is thus quantized, the resetting "curve" is dis
continuous. Topological arguments thus have no pertinence. To make any finer 
adjustment of phase than this, it is necessary to rephase the seN dock, e.g., by 
delaying or advancing the light-dark cyc1e. In constant darkness, resetting by a 
single light pulse would also work, but results are more variable (Daan and 
Pittendrigh, 1976b). 

Not only does the circadian c10ck regulate the female cyc1e, but also conversely, 
estradiol feeds back to the circadian c10ck to shorten its period (in hamsters) and 
also to alter the daily timing of its activity rhythm (Morin et al., 1977b). In birds, 
testosterone has recently been shown to "split" the circadian rhythm and to alter 
its period (Gwinner, 1974). The 1970s continue to treat us to a very exciting 
chapter of physiological investigation as the neural, neurosecretory and humoral 
interactions among the pineal gland, the SeN, and the sex glands are progressively 
revealed. 

In contrast, no substantial role of circadian fluctuations has been established 
in human or other primate female cyc1es, despite several deliberate inquiries. 

The circadian dock plays a dominant role also in the seasonal suppression and 
release of ovarian activity, not only in rodents but also in many other varieties of 
mammal, bird, and reptile as weH as in the invertebrate animals. 
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Hoffmann 1969b ....................... 380 
Hoffmann 1970 ........................ 396 
Hoffmann 1971b ....................... 396 
Hoffmann 1971a ....................... 390 
Hoffmann 1976 ........................ 390 
Holaday et al. 1958 .................. 326 
Holmes, Sherlock ..................... 73,107,178,344,450 
Honegger 1967 ........................ 110,420 
Howard and Kopell 1974 ............... 229 
Howard and Kopell 1977 ............... 229 
Howard 1932 .......................... 444 
Hoyle, Fred .......................... 72 
Hunter 1974 .......................... 200 
Huygens 1673 ......................... 150 
Ingold and Cox 1955 .................. 369 
Jac k et al. 1975 ..................... 233,316 
Jacklet and Geronimo 1971 ............ 395 
Jacklet 1977 ......................... 111 
Jacobson 1970 .............. , ......... 8 
Jalife and Antzelevitch 1979 ......... 172,274,318 
Jalife and Moe 1976 .................. 111,119,172,318,324,326 
Jalife and Moe 1979 ............•..... 172,322 
Jalife et al. 1980 ................... 168 
Jalife, Jose ......................... 119,318 
Jenerick 1963 ........................ 177 
Jensen 1966 .......................... 324 
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Johnson 1939 ......................... 93 
Johnsson and Israelsson 1969 ......... 111,188 
Johnsson and Karlsson 1971 ........... 164,262 
Johnsson and Karlsson 1972 ........... 262 
Johnsson et al. 1973 ................. 198,411,422,423,433 
Johnsson et al. 1979 ................. 156,198,265,275 
Johnsson 1976 ........................ 109,111,156,265,275 
Jongsma et al. 1975 .................. 324,398 
Jorne 1977 ........................... 229 
Jouvet et al. 1974 ................... 376 
Jung and Rothstein 1967 .............. 441 
Junge and Stevens 1973 ............... 319 
Jurgen ............................... 375 
Kaempfer 1727 ........................ 277 
Kalmus and Wigglesworth 1960 ......... 137.156.174.200.263.417,422 
Ka 1 mus 1935 .......................... 49 . 379 
Kalmus 1940 .......................... 92.379.418.424 
Karakashian and Schweiger 1976 ....... 111 
Karfunkel and Seelig 1975 ............ 233.234 
Karfunkel 1975 ....................... 240.246.341 
Karlsson and Johnsson 1972 ........... 411 
Karve and Salanki 1964 ............... 111.385 
Katchalsky and SpangIer 1968 ......... 169.233 
Katholi et al. 1977 .................. 209 
Katz and Pick 1962 ................... 333 
Kauffman and Wille 1975 .............. 34,173.261.274.319.439,440.448 
Kauffman et al. 1978 ................. 267.356 
Kauffman 1969 ........................ 173.441 
Kauffman 1974 ........................ 150.173.443.440.448 
Kauffman. Stuart ..................... 247.448 
Kaus 1976 ............................ 97.190,407 
Kaus, Peter .......................... 201 
Kawato and Suzuki 1978 ............... 148.150 
Kawato et al. 1979 ................... 208 
Ke 11 er and Se ge 1 1970 ................ 343 
Keller and Segel 1971a.b ............. 344 
Keller 1958 .......................... 251 
Ke 11 er 1960 .......................... 378 
Kepler, Johannes ..................... 1,11,95 
King and Cumming 1972 ............... 110 
King 1975 ............................ 396 
Kingma and Min 1975 .................. 329 
Kinosita 1937 ........................ 330 
Klein and Wegmann 1975 ............... 376 
Klein 1976 ........................... 341 
Klemm and Ninnemann 1976 ............. 409.410 
Klevecz et al. 1978 .................. 440 
Knight 1972 .......................... 171.318 
Koehler and Fleissner 1978 ........... 202.208.395.396 
Kolata 1977 .......................... 276 
Konijn et al. 1967 ................... 337 
Konopka and Benzer 1971 .............. 424 
Konopka 1972 ......................... 111.395 
Kopell and Howard 1973a .............. 124,125.213.220.229.305 
Kopell and Howard 1973b .............. 210,227.229.306 
Kopell and Howard 1974 ............... 229 
Koros and Orban 1978 ................. 300 
Kraepelin and Franck 1973 ............ 370 
Kraft et al. 1970 .................... 376 
Kramm 1973 ......... , ................. 147 
Krasnow. Richard ..................... 2.168 
Krinskii and Kholopov 1967a .......... 270.329 
Krinskii and Kholopov 1967b .......... 270 
Krinskii et al. 1967 ................. 270 
Krinskii et al. 1972 ................. 208 
Krinskii 1978 .............. ,., ....... 340 
Krinskii 1966 ........................ 249.270,331 
Krinskii 1968 ........................ 171.240.242.270 
Krinskii 1973 ........................ 340 
Kuffler and Nicholls 1976 ............ 316 
Kuhnert and Linde 1977 ............... 300 
Kuramoto and Tsuzuki 1976 ............ 230 
Kuramoto and Yamada 1975 ............. 229 
Kuramoto and Yamada 1976 ............. 83,85.129.229 
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Kuramoto 1975 ........................ 115.118.120.147.210.229 
Kuramoto 1978 ........................ 228.230.271 
Kuriyama and Suzuki 1976 ............. 319 
Lacey 1975 ........................... 455 
Lafontaine et al. 1967 ............... 376 
Lanzavecchia 1977 .................... 269 
Lasz 10. Andre ........................ 248 
Lavenda et al. 1971 .................. 169 
Lawrence et al. 1972 ................. 249.267 
Lawrence 1970 ........................ 249.267 
Lawrence 1971 ........................ 249.267 
Leao 1944 ............................ 335 
Lederberg. Joshua .................... 5 
Lees 1972 ............................ 389 
Leigh 1965 ........................... 443 
Leutscher-Hazelhoff and Kuiper 1968 .. 317 
Levin 1978 ........................... 150 
Lickey et al. 1976 ................... 395 
Licko and Landahl 1971 ............... 209 
Linkens and Datardina 1977 ........... 208 
Linkens et al. 1976 .................. 169.170.229 
Linkens 1974 ......................... 211 
Linkens 1976 ......................... 114.208 
Linkens 1977 ......................... 114.208 
Livolant et al. 1978 ................. 365 
Llanos and Nash 1970 ................. 442 
Loc ke 1960 ........................... 249 
Lotka 1920 ........................... 135 
Luce 1971 ............................ 376 
Lukat 1978 ........................... 362 
MacGregor and Lewis 1977 ............. 316.331 
MacKay 1978 .......................... 339.340 
Maden 1977 ........................... 356 
Magellan. Ferdinand .................. 11 
Maier 1973 ........................... 380 
Malchow et al. 1978 .................. 111.119.198.212.282.297.343 
Mano 1975 ............................ 381.440 
Marek and Stuchl 1975 ................ 208 
Martins-Ferreira et al. 1974 ......... 240.336 
Mathieu and Roberge 1971 ............. 319 
Maxwell. James Clerk ................. 41.71.131.145.359 
May 1973 ............................. 287.391 
Mayer and Sadleder 1972 .............. 396 
Mayer 1908. 1914 ..................... 330 
Mayeri 1973 .......................... 318 
McAllister et al. 1975 ............... 171 
McDonald and Sachs 1975 .............. 319 
McKean 1970 .......................... 129.234 
McWilliam 1887 ....................... 67 
Medugorac and Lindauer 1967 .......... 396 
Menaker and Zimmerman 1976 ........... 379 
Menaker et al. 1978 .................. 377 
Mercer 1965 .......................... 97.137 
Mergenhagen and Schweiger 1974 ....... 399 
Mergenhagen and Schweiger 1975a ...... 395.397 
Michelson 1911, ...................... 364.365 
Mi les et al. 1977 .................... 376 
Mills et al. 1977 .................... 376 
Mi I I s 1973 ........................... 376 
Milnor 1965 .......................... 28 
Mines 1913 ........................... 330 
Mines 1914 .....................•.•..• 271.;330 
Minis and Pittendrigh 1968 ........... 402 
Minor and Smith 1974 ................. 443 
Minorsky 1962 ........................ 133.169.208.234 
Misner et al. 1973 ................... 261 
Mitchison 1971 ....................... 439.440 
Mitchison. Graeme .................... 28.448 
MittenthaI . Jay ...................... 126.211.360 
Mobile medical team 1976 .............. 348 
Moe and Abildskov 1959 ............... 270 
Moe et al. 1964 ...................... 240.270.331.335 
Moe 1962 ............................. 270 
Moe. Gordon .......................... 271.272.332 
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Moller et al. 1974 ................... 441 
Moore and Eich I er 1976 ............... 458 
Moore et al. 1963 ............ .. .. 172 
Moore-Ede et al. 1976 ........... 212.376.394 
Moore-Ede et al. 1977 ................ 376 
Moore-Ede et al. 1978 ................ 376 
Morgan. Thomas Hunt .................. 424 
Morin et al. 1977a ................... 397.458 
Morin et al. 1977b ................... 458 
Morse and Feshbach 1953 .............. 71 
Moshkov et al. 1966 .................. 137.422 
Moss et al. 1977 ..................... 450 
Mrosovsky 1970 ....................... 91 
Mueller and Arnett 1976 .............. 242 
Murray 1975 .......................... 229 
Murray 1976a ......................... 219 
Murray 1976b ......................... 229 
Murray 1977 .......................... 126.229 
Nadeau and Roberge 1969 .............. 209 
Nagumo et al. 1963 ................... 240.331 
Nanjundiah 1973 ...................... 344 
Narl ikar 1970 ........................ 71 
Nayar 1968 ........................... 110 
Nazarea 1974 ......................... 229 
Nelsen and Becker 1968 ............... 170.208.229 
Neu 1979a ............................ 127.147.208.230 
Neu 1979b ............................ 114.147.230 
Neu 1979c ............................ 115.118.147.210.230 
Neumann 1966 ......................... 402 
Neville 1975 ......................... 365 
Newman 1956 .......................... 20.71 
Newton. Isaac ........................ 31.412 
Nickerson 1944 ....................... 368 
Nicolis and Portnow 1973 ............. 220.286 
Nicolis and Prigogine 1977 ........... 200.211.228.230 
Nishisutsujii and Pittendrigh 1968 .... 395 
Nitzan et al. 1974 ................... 129.210 
Njus et al. 1974 ..................... 380 
Njus 1975 ............................ 398.420 
Novak and Seelig 1976 ................ 229 
Nudelman and Glantz 1977 ............. 317 
Oatley and Goodwin 1971 .............. 391 
Offner et al. 1940 ................... 233.234.316 
Olsen and Degn 1977 .................. 303 
Orban and Koros 1978 ................. 300 
Ortoleva and Ross 1973 ............... 127.229.312 
Ortoleva and Ross 1974 ............... 229 
Ortoleva and Ross 1975 ............... 234 
Orto I eva 1976 ........................ 230 
Ostriker 1971 ........................ 242 
Ostwa I d 1900 ......................... 331 
Othmer and Aldridge 1978 ............. 297 
Othmer 1975 .......................... 233.306 
Othmer 1976b ......................... 226 
Othmer 1977 .......................... 227 
Ottesen 1965 ......................... 34.118 
Page et al. 1977 ..................... 202.208.395.397.399 
Page 1978 ............................ 208.395 
Palmer and Jousset 1975a.b ........... 456 
Palmer 1976 .......................... 45.93 
Palmer 1977 .......................... 376 
Parker-Rhodes 1955 ................... 243 
Pastelin et al. 1978 ................. 330 
Patton and Linkens 1978 .............. 229.304.326 
Pavlidis and Kauzmann 1969 ........... 156.379-381.423 
Pavlidis 1967a ....................... 137.172.188.199.200.262.379.422 
Pav 1 idis 1967b ....................... 137.188.199.200.261.262.409.422 
Pavlidis 1968 ........................ 262.422.423 
Pavlidis 1969 ........................ 211.378 
Pavlidis 1971 ........................ 117.281.387.397 
Pavlidis 1973 ........................ 34.117.132.150.199.211.281,397 
Pavl idis 1975 ........................ 230 
Pavlidis 1976 ........................ 208.262.263.396 
Pavlidis 1978a ....................... 262.410.421-423 
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Pav I idis 1978b ....................... 208 
Pavlidis. Theodosios ................. 211 
Pearson and McLaren 1977 ............. 276 
Perkel et al. 1964 ................... 111.118.164.170.172.317.318,322.323 
Peron. Madame ........................ 17 
Peskin 1975 .......................... 119.171.208.318 
Peterson and Jones 1979 .............. 161 
Petsche and Rappelsberger 1970 ....... 213 
Petsche and Sterc 1968 ............... 335 
Petsche et al. 1970 .................. 213.335 
Petsche et al. 1974 .................. 335 
Pigafetta (navigator) ................ 11 
Pinsker 1977 ......................... 34.111.150.171.172.318.319.322 
Pinsker 1979 ......................... 177 
Pittendrigh and Bruce 1957 ........... 32.93.94.172.209.378.380 

387.406.417.419.422 
Pittendrigh and Bruce 1959 ........... 49.94.110.384.387.397 
Pittendrigh and Daan 1976a ........... 147.390.422 
Pittendrigh and Daan 1976b ........... 147.390.422 
Pittendrigh and Daan 1976c ........... 147.261.262.390.396.422 
Pittendrigh and Minis 1964 ........... 118.164.383.406 
Pittendrigh and Minis 1971 ........... 402 
Pittendrigh and Skopik 1970 .......... 403 
Pittendrigh et al. 1958 .............. 407 
Pittendrigh 1954 ..................... 380.417.424 
Pittendrigh 1958 ..................... 417.422 
Pittendrigh 1960 ..................... 83.110.396.397.417.422 
Pittendrigh 1961 ..................... 417 
Pittendrigh 1966 ..................... 92.421 
Pittendrigh 1967a .................... 396 
Pittendrigh 1967b .................... 388 
Pittendrigh 1974 ..................... 209.282 
Pittendrigh 1976 ..................... 421.423 
Pittendrigh. Colin ................... 48.50.93.188.375.412-414 
Pizarello et al. 1964 ................ 376 
Plant and Kim 1975.1976 .............. 320 
Plant 1976 ........................... 320 
P 1 "nt 1977 ........................... 320 
Plant 1979 ........................... 209 
Plato ................................ 231.258 
Platzman 1972 ........................ 46 
Poincare. Henri ...................... 146.208 
Pollack 1977 ......................... 320 
Po I ya 1954 ........................... 91. 276 
Po I ya 1957 ........................... 367 
Power 1663 ........................... 285.401 
Presser 1972 ......................... 453 
Proc I us .............................. 91 
Pritchard et al. 1969 ................ 443 
Pye 1969 ............................. 289.291.297.378 
Pye 1971 ............................. 286 
Pye. E. Kendall ...................... 291.303 
Quinn. Ronald ........................ 414 
Rao and Johnson 1970 ................. 444 
Rao et al. 1974 ...................... 444 
Rapp and Berridge 1977 ............... 320 
Rasmussen and Zeuthen 1962 ........... 173.385.440.442 
Rastogi et al. 1977 .................. 313 
Rawson 1956 .......................... 93 
Rebbi 1979 ........................... 72 
Reinberg and Halberg 1971 ............ 376 
Reiter and Jones 1975 ................ 402 
Remmert 1962 ......................... 390.401 
Remy 1968 ............................ 446 
Rescigno et al. 1970 ................. 170.318 
Reshodko and Bures 1975 .............. 240.336 
Reshodko 1974 ........................ 330 
Reusser and Field 1979 ............... 229.306 
Richards 1971 ........................ 336 
Richter 1965 ......................... 118.400 
Rinzel and Keller 1973 ............... 233.234 
Ri tzema Bos 1901 ..................... 243 
Roberts 1962 ......................... 172 
Robertson et al. 1972 ................ 266.344 
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Robinson 1966 ........................ 13 
Rogers and Greenbank 1930 ............ 377,393 
Roos and Gerisch 1976 ............ . .. 340,341 
Roos et al. 1977 ..................... 342 
Ross 1976 ............................ 230,230,344 
Rossler and Hoffmann 1972 ............ 307 
Rossler and Kahlert 1979 ............. 228,335 
Rossler and Wegmann 1978 ............. 303 
Rossler 1972b ............. .. ....... 233 
Rossler 1972c ........................ 233 
Rossler 1974a ........................ 233 
Rossler 1974b ........................ 233 
Rossler 1975 ......................... 173,381 
Rossler 1976 ......................... 208 
Rossler 1976-1979 .................... 158,444 
Rossler 1978 ......................... 228,234,271,335,444 
Rossler, Otto ........................ 174,358 
Rossomando and Sussman 1973 .......... 341 
Rozenshtraukh et al. 1970 ............ 331 
Rusak 1977 ........................... 396,397,458 
Rusch et a1. 1966 .................... 173,442 
Rustad 1970 ....... '.' ................. 440 
Sachsenmaier et al. 1970 ............. 439 
Sachsenmaier et a1. 1972 ............. 173,443,445,446 
Sachsenmaier 1976 ........ . .......... 445 
Sachsenmaier, W. . .................... 446 
Salisbury and Denney 1971 ............ 396 
Sander and Pardee 1972 ............... 441 
Sanglier and Nicolis 1976 ........... 233 
Sano et a1. 1978 ..................... 318,324,325 
Sarna and Bowes 1976 ................. 330 
Sarna and Daniel 1973 ................ 329,330 
Sarna and Daniel 1974 ................ 329 
Sarna et al. 1971 .................... 229,304,326,329 
Sarna et al. 1972a,b ................. 229,304,329 
Saunders and Thomson 1977 ............ 111 
Saunders 1974 ........................ 209 
Saunders 1976a ....................... 34,59,111,386,408,418,421,422,426,426 
Saunders 1976b ....................... 389,402 
Saunders 1978 ........................ 34,58,79,264,379,409,425 
Scheving and Pauly 1973 .............. 442 
Scheving et al. 1968 ................. 376 
Scheffey and Wi I I e 1978 .............. 436 
Scheffey, earl ....................... 114,208 
Schmitt 1960 ......................... 378 
Schmitz et al. 1977 ..... . ......... 234 
Schmi tz et a1. 1979 .................. 303 
Schulman 1'l369 ........................ 34,172,317,318,323 
Scott 1970 ........................... 229 
Scot·t 1979 ........ ' ................... 172,318,322,324,325 
Skraba I 1915 ......................... 381 
Selfridge 1948 ....................... 240,249 
SeI 'Kov and Betz 1968 ................ 290 
SeI 'Kov and Sozinov 1970 ............. 442 
SeI 'Kov 1968a,b ...................... 289,290 
SeI 'Kov 1970 ......................... 173,442 
SeI 'Kov 1972 ......................... 299 
Sel'Kov 1973 ...... ' ................... 381,440,442 
Shack et al. 1971 ....... ,., .... , .... ,455 
Shackelford and Feigin 1973 .......... 376 
Shaffer 1957 ............. , ...... , .... 337 
Shaffer 1962 ................ , .... , ... 66 
Shaikh and Klaiber 1974 .. "., ...... ,.455 
Shaw, Napier ............... , ....... 290 
Shcherbunov et al, 1973 .,., .. , ....... 314,332 
Sheppard 1968 ........... , .... , ....... 17,41 
Shibata and Bures 1972, 1974 ., ....... 240,336 
Shields 1976, 1977 ........ , .......... 443 
Shilo et a1. 1976 .................... 443 
Shinbrot 1966 , .. , ......... , .. ,., ..... 7 
Short 1976 .,., .......... ,., .... ,., ... 450 
Simmons et al. 1974 ........ , ......... 376 
Simon et al. 1976a ............. 395 
Simon et al. 1976b ................... 111.395 
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Sipski and Wagner 1977 ............... 365 
Skopik and Pittendrigh 1967 .......... 402-404,410,411,419 
Slack and Savage 1978 ................ 358 
Slonczewski and Malozemoff 1978 ...... 72,365 
Smith and Guyton 1961 ................ 331 
Smith and Martin 1973 ................ 443,444 
Smoes and Dreitlein 1973 ............. 219 
Smoes 1976 ........................... 219 
Smoes 1979 ........................... 305 
Sollberger 1976 ...................... 376 
Spangier and Snell 1961 .............. 381 
Spanier 1966 ......................... 28 
Specht and Bortoff 1972 .............. 229,329,330 
Stah I 1967 ........................... 6 
Stanshine 1976 ....................... 229 
Stein 1974 ........................... 24,322 
Stern and Goodwin 1977 ............... 267 
Stern 1967 ........................... 368 
Stetson and Watson-Whitmyre 1976 ..... 458 
Stetz 1971 ........................... 455 
Stibitz and Rytand 1968 .............. 330 
Strahm 1964 .......................... 137,199,200,262,422 
Stratonovich 1967 .................... 120 
Strumwasser 1968 ..................... 319 
Strumwasser 1971 ..................... 319 
Strumwasser 1974 ..................... 395 
Stupfe I 1975 ......................... 376 
Sturtevant 1973 ...................... 377,393 
Sudbery and Grant 1976 ............... 443 
Sulzman et al. 1977a ................. 376 
Sulzman et al. 1977b ................. 376,397 
Sulzman et al. 1978 .................. 212 
Suzuki 1976 .......................... 240,331 
Swade and Pittendrigh 1967 ........... 397 
Swade 1969 ........................... 81,83,93,147,262 
Sweeney and Hastings 1958 ............ 442 
Sweeney and Hastings 1960 ............ 418 
Sweeney 1969 ......................... 110 
Sweeney 1974 ......................... 385 
Taddei-ferretti and Cordolla 1976 .... 111,318,322 
Taguchi and Tabachnick 1974 .......... 441 
Takimoto and Hamner 1964 ............. 209 
Taleisnik et al. 1966 ................ 450 
Tatterson and Hudson 1973 ............ 229 
Teorell 1971 ......................... 156,274,318 
Terry and Edmunds 1970 ............... 397 
Tharpe and Folk 1965 ................. 395 
Thoenes 1973 ......................... 124,125,129,213,219,220 
Thom 1975 ............................ 261 
Thomas 1967 .......................... 6 
Thompson and Hunt 1977 ............... 73,344 
Thompson 1973 ........................ 73 
Thompson, Francis .................... 74 
Thomson 1867 ......................... 256 
Thormar 1959 ......................... 438 
Thurber, James ....................... 274 
Torre 1976 ........................... 208 
Treloar et al. 1967 .................. 452 
Trelstad and Coulombre 1971 .......... 365 
Troy and Field 1977 .................. 307 
Troy 1977a ............................ 229,234 
Troy 1977b ........................... 229,234,329 
Troy 1978 ............................ 307,329 
Truman 1971 .......................... 402 
Truman 1972 .......................... 402,426 
Tuckwell and Miura 1978 .............. 335 
Turek et al. 1976 .................... 379 
Turing 1952 .......................... 228 
Twain, Mark .......................... 176 
Tweedy 1970 .......................... 408 
Tyschenko 1966 ....................... 209 
Tyson and Kauffman 1975 .............. 92,173,208,440,447,448 
Tyson and Sachsenmaier 1978 .......... 173,208,445,446,448 
Tyson et al. 1976 .................... 264,378 



520 Index of Names 

Tyson 1976 ........... .219,234,300,302,310 
Tyson 1977a .. .229,234,307 
Tyson 1978 ............ .303 
Underwood 1977 .396 
Urquhardt 1973 ....................... 376 
Van der Pol and van der Mark 1928 .... 169,208 
Van der Pol 1926 .................. ".153,170 
Varadi and Beck 1975 ................. 124,213,220 
Vavilin et a1. 1968 .................. 170,213 
Verzeano 1963 ..... , .................. 335 
Vince et al. 1971 """,,"",,""" 426 
Volterra 1926 ........................ 135,137 
Von Campenhausen 1969 ................ 17 
Wagner and Cumming 1970 .............. 385 
Wagner et al. 1975 ................... 286,385 
Wagner 1976 .......................... 286,385 
Wah 1 1932 ............................ 379 
Walker 1969 .......................... 119,318,322,323 
Watanabe ee al. 1967 ................. 325,398 
Watson 1976 .......................... 92 
Wegmann and Rossler 1978 ............. 176,303 
Wei 1962 ............................. 166 
Weitzman 1976 ........................ 376 
Wever 1962 ........................... 201,422 
Wever 1963 """"""""""""".84,201,411,422 
Wever 1964 ........................... 83,188,201,422 
Wever 1965a "'''''''''''''''''''''''' 84,188,201 
Wever 1973 ........................... 376 
Wever 1975 ........................... 376,397 
Whitehead, Alfred North .............. 358 
Wiedenmann 1977 ...................... 111,275,362,383 
Wiener and Rosenblueth 1946 .......... 130,171,242,245,246,249,333,336 
Wigner, Eugene ....................... 308 
Wilhelm and van der Werff 1977 ....... 229 
Wi 1 he 1 m 1966 ......................... 121 
Wilhelm et al. 1968 .................. 121 
Wilkins and Holowinsky 1965 .......... 395 
Wi 1 kins 1963 ......................... 13 
Wilkins 1965 ......................... 204 
Wille et a1. 1977 """"""""" ,,448 
Wille 1979 ........................... 442 
Wilson and Wachtel 1974 .............. 320 
Winfree 1942 ......................... 453 
Winfree 1965 ......................... 117,397 
Winfree 1967a ........................ 81,93,115,117,118,147,281.397.399 
Winfree 1967b ........................ 422 
Winfree 1968 """""""".""" ,,34,201.261.421,430 
Winfree 1970a ........................ 215,230,266 
Winfree 1970b ........................ 49,64,123,264,421 
Winfree 1970c ........................ 49,64,418,419 
Winfree 1971a ........................ 64 
Winfree 1971b ........................ 283 
Winfree 1972a ........................ 408 
Winfree 1972b ........................ 201.415,419 
Winfree 1972c ........................ 213,245,305,307,329 
Winfree 1972d ........................ 109,265 
Winfree 1972e ........................ 200,201,419,423 
Winfree 1973a ........................ 108,111,177,180.201.423 
Winfree 1973c ........................ 171,228,234,327 
Winfree 1973d ........................ 215,230,266,367 
Winfree 1974a ........................ 197,201,421,423 
Winfree 1974b ........................ 225,233,234,246,308.327.341 
Winfree 1974c ........................ 150,208,299,443 
Winfree 1974d ........................ 236,254,305,307 
Winfree 1974e ........................ 307,327 
Winfree 1974f ........................ 225,233,234,246,308,341 
Winfree 1975c ........................ 410,413 
Winfree 1976 ......................... 208,433 
Winfree 1977 ......................... 111,274,323 
Winfree 1978a ........................ 225,246,273,302 
Winfree 1978b ........................ 150,208,299,443 
Winfree and Gordon 1977 .............. 111,422,425 
Winfree. Dorothy ..................... 453,454 
Wisnieski and Fox 1976 ............... 380 
Wojtowicz 1972 ....................... 288 
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Wolken 1971 .......................... 362.364 
Wolpert 1969 ......................... 346 
Wongiwat et al. 1972 ................. 376 
Yakhno 1975 .......................... 234.314 
Yamada and Kuramoto 1976 ............. 227.230.246 
Yamakazi et al. 1978 ................. 303 
Yamakazi et al. 1979 ................. 303 
Yamanishi et al. 1979 ................ 111.318 
Yen and Tsai 1972 .................... 455 
Yoshimoto and Kamiya 1978 ............ 229 
Yoshizawa et al. 1971 ................ 240 
Young 1977 ........................... 17 
Young 1978 ........................... 303.376 
Young, Themas ........................ 41 
Zahler and Sussmann 1977 ............. 276 
Zaikin and Kawczynski 1977 ........... 234.314 
Zaikin and Zhabotinsky 1970 .......... 220.229.248.284.300.304 
Zaikin 1975 .......................... 233.234 
Zeeman 1972 .......................... 171.234.306 
Zeeman 1977 .......................... 406.444 
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Acetabularia, 111, 395, 397, 399 
Acetaldehyde, 60, 118, 265, 288, 295-298 
Acrasiales. See Dictyostelium 
Action potential, 70, 110, 315, 316 
Active scattering. See Mutual repulsion 
Adenosine phosphate~212, 256, 285-299 (Chapter 12), 341, 342. See also 

Cyc 1 ic AM? 
Advance vs. delay ambiguity, 385-387 
Advance vs. advancing, 49, 386 
Aether, 256, 359 
Aggregate: amplitude, 98, 206; phase, 96, 98, 206; rhythmicity, 84, 96, 97, 

206, 323, 398; rhythmicity, defined, 95-97. See also Mutual entrainment 
Alternating flows, method of, 137, 164 
Amoeba, social. See Dictyostelium 
Amphidromic poin~defined, 46. 260 
Amplitude of fundamental, zero. 98, 102, 106, 133, 260 
Amplitude resetting: in Avena, 198; i~ clock models. 83, 84, 95-106, 112, 

131-144 (Chapter 5), 262, 263, 398. 403-40~; in Dictyostelium, 198, 343; 
in Drosophila, 176-204, 208, 262, 263, 406, 423, 434; in Kalanchoe, 198, 
423, 427, 428, 433. 434; in yeast, 198. 293 

Angular velocity: in oscillator models, 79-94. 147; modulation of. 81, 85, 
143, 163; negative, 81, 82, 87. 99 

Animal navigation, 20 
Antiphase, 114, 116, 208, 281, 282 
Aplysia, 292, 318, 395, 396 
Archimedes' spiral, 64, 244, 245. 369 
Ascobolus immersus, 369 
Ascomycete fungi (also see by species name), 246-250, 266, 367-374 (Chapter 

18) 
Assay pulse, defined, 179 
Attracting cycle: deficiencies of models, 174; defined, 146; knotted, 456; 

mutual entrainment, 207-212; none observed in Drosophila clock. 189 
Attracting steady-state of oscillator. 156, 172, 174, 198, 263, 265, 274, 

275. 296, 455 
Attractor basin, 146, 157, 275, 296, 455 
Attractor-cycle oscillator. See Attracting cycle 
Attractor-repellor pair. 80,-sT. &7, 99. 100, 233 
Autophasing, 93 
Avena sativa. 109, 156, 198, 265, 275 
Azimuth, defined (fungus), 123 
Basidiomycete fungi, 243 
Belousov-Zhabotinsky reagent. See Malonic acid reagent 
Benham' s top. 16 --
Bi 1 atera 1 symmetry. See Syr.lmetry 
Black hole, 72, 26i 
Blastema, 267, 348. 353, 354 
Bloch points, 72 
Brain: electrical waves in, 213, 240, 256, 270-272, 335, 336; insect, 202, 

208, 402, 403 
Breakpoint. See Pllase jump, unreal 
Butterfield ;;Tor encoder. 17. 433 
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Calcium, 60, 79, 295, 296, 316, 320 
Cap (bounded by cycle), 68-70. 15'.', 158, 161, 162, 225, 235-242, 267, 273 
Cell division. See Mitotic cycle 
Cell wall architecture, 365 
Central disko See Rotor's core 
C"ntroid, 183,412 
Chaetomium robusta, 64, 222, 224, 370 
Chaos, 158, 174, 208, 228, 271, 272, 303, 443, 444 
Chemical oscillator. See Dictyostelium, Malonic acid, Glycolysis 
Chemical waves. See Waves 
Chitin fibrils, 269, 361-366 (Chapter 17) 
Chloride ions. in Merck ferroin. 201 
Chronon, 92, 262, 441, 442 
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Circadian clock: and estrous cycle, 451, 457, 458; and mitosis, 441-443; as 
relaxation oscillator, 172, 173, 283, 385, 389; at the South Pole, 45; 
dark adaptation, 188, 201, 403-406; evolution, 387-392, 399; general 
characteristics, 377, 378; in development, 64, 196, 264, 402-407, 411, 
420, 421, 426; in flies. See Drosophila, Sarcophaga; in fungi. See 
Daldinia, Neurospora, Pilobolus; in Gonyaulax, 21, 204, 385, 398, 409, 
420; in insect epidermis, 361, 362; in medicine, 376, 442; in plants. 
See Gonyaulax, Kalanchoe; in procal'yotes, 377, 390, 393; in rodents, 86, 
~ 117, 209, 282, 396, 397; inhibition by constant light, 197, 378, 
404-406, 421; initiation, 64, !96, 200, 201, 264, 265, 434; mechanism 
(conjectures), 378, 379, 392, 393, 417; models and dynamics, 172-174, 
199-204, 208, 209, 261-264. 277-294 (Chapter 11); mutual entrainment, 
263, 396-400; not compound~d 01' quioker clocks, 378; period unaffected 
by amplitude, 201; photoreceptcr, 113, 188. 201, 384, 408-410; 
physiologically essential? 417-421; probable diversity of mechanisms, 
379, 392, 393; splitting of the rhythm. See Splitting; temperature 
effects on period, 172. 173, 377-382, 42~temperature effects on phase, 
60, 408, 418, 433; trajectories, 176-204 (Chapter 7) transient after 
inhibition, 186-189, 201; two-oscii lator models, 94, 117, 202, 208, 209, 
282, 396, 397, 406; unstable-amplitude model, 200, 201 

Circadian, defined, 375 
Circular logic, defined, 25 
Circulating wave. See Circus wave, Waves on rings 
Circus wave, 67, 2~ 270, 271, 333-336 
Clockface model, 65, 250, 266-268, 345-380 (Chapter 16) 
Clockshop model, 84, 174, 203. 263, 281-284, 394-400. See also Incoherence 
Collective. See Aggregate ---
Color vision:-Tn circadian clock, 196. 410; in humans, 10, 15, 16, 40-42, 

259 
Color wheel, 42, 259 
Complete circle rule, 347 
Composite clock. See Clockshop 
Composition vs. ccncentratio~, 248, 249 
Continuity, defined, 7 
Continuous action, 422 
Contour line, defined, 8 
Co~volution, inverting, 420 
Cophase. defined, 34, 141, 149, 322, 438 
Cotidal contour, 46-48, 260 
Crickets, 119. 318. 322, 323 
Critical point, 115 
Crystal, fibrous, 13, 14, 25, 269, 364-366 
Cs, defined, 18. 138 
Cutic!e of arthropods, 65, 268, 269, 361-366 (Chapter 17) 
Cyciic AM? (not in. Dictyostelium), 290, 320; See also Dictyostelium 
Daldinia concentrica, 369 
Dark adaptation in circadian clocks, 188, 201. 403-406 
Dark-reared insects. See Naive 
Degrees of freedom, more than two, 132, 133, "57-159, 171, 201, 234, 260-

263, 297. 430 
Delay, defined, 386, 387 
Delay vs. delaying, 49, 386 
D9velopmental: fields, 65, 345-360 (Chapter 16); readiness, 200, 403-406 
Dictyosteiium discoideum, 86, 172. 233, 240, 246, 262, 269, 270, 281, 332, 
~344 (Chapter~ mutual entra:nment, 119, 343; type 0 resetting, 

172, 274, 343 
Differential action, 422 
Diffusion, molecular, coupling by, 121, 206-267 (Chapters 8 and 9), 297-

299, 302, 306 
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Diffusive instability, 211, 220, 228, 306, 308, 343, 344 
Dimension. See Degrees of freedom 
Direction maps, topologi-=al type, 20 
Directional derivative. 1:'.3 
Discrete state device. See Logical automata 
Dispersion. See Incoherence 
Dissipative strueture. See Diffusive instability 
Distal transformation, 347 
Division protein. See Mitogen 
DNA, eireular, 6, ~ 262 
DNA, helieoidally paeked, 365 
Dot eonvention for d/dt, 31, 76, 98 
Double periodieity, 36-38 
Dove prism, 22, 23 
Drosophila melanogaster: eloek ,54-58, 264, 379, 380, 424, 425; imaginal 

disks, 345 360 (Chapter 16), 402 
Drosophila pseudoobseura eloek: amplitude resptting, 176-204, 208, 262, 

263, 406, 423, 434; arrhythmieity, 261-264, 417-421; dark adaptation, 
188, 201, 408-410; isoehrons, 191-195, 416; gating, 403-406; phase 
resetting eurves, 108, 176-204 (Chapter 7), 383, 416; pinwheel 
experiment, 108, 180-196, 383, 416, 419; cemperature effeets, 60, 380, 
408, 418; time erystal, 51, 109, 414-416; time maehine experiments and 
trajeetories, 176-204 (Chapter 7); ~ransient5 (central), 185-189, 201; 
transients (peripheral), 94, 97, 406-408; two-oseillator 
interpretations, 94, 202, 208, 209, 396, 406; varianee, 113, 398 

Dynamies, defined, 76 
D2, defined, 5 
Eelosion, defined, 402 
Eeologieal eyeles, 135, 229 
Eikonal equation, 251 
Elastieity of image (symmetrie diffusion), 127, 225-227 
Emergenee (eelosion), 178-180, 401-406 
Entrainment: defined, 114, 399, 400; mutual. See Mutual entrainment; 

mutual, aetive resistanee to, 116-118, 281~24, 399, 400; not mutual, 
93, 143, 164, 201, 318, 322, 323, 455 

Enzyme kineties, 287-290, 381 
Epilepsy, 171, 336 
Epimorphosis, defined, 355 
Eq~ations: gating, 406; image elastieity, 226; involute, 245; isoehrons, 

150-157; oseillator resetting, 137-140' simple clock, 85; resetting 
surface. 415; wave broom, 121; waves on rings ,-- 127-129 

Equilibrium. See Steady-state 
Estrous cyele:-209, 450-458 (Chapter 23); and eireadian rhythms, 451, 457, 

458; no type 0 resetting, 70, 110, 455-457 
Evolution; of eireadian eloeks, 387-392, 399; of female eyeles, 452 
Exeess delay, 437-439 
Exeitability, 172, 231-257 (Chapter 9) 
Exeitable media: eontinuous vs. eellular, 339, 340; models, 130, 231-257 

(Chapter 9), 277-284. See also Erain, Dietyostelium, Glyeolysis, Heart, 
Malonic acid reageent, Reti~ 

Exeitable membranes, 68, 110, 153, 171, 208, 270, 271, 274, 307, 308, 315-
336 (Chapter 14), 340 

Exeitable oseillator, 231-233, 246, 247, 326-329 
Explanations as mappings, 258 
Eye. See Insect or Retina 
Fa.iry--rTng, 243 
Fate map, 351 
Female cycle. See Estrous or Menstrual 
Fibrillation, ~ 240, 270-272, 330-335 
Final phase, defined, 87, 438 
Firefly: eutiele, 362-364; flashing, 119, 120. 277, 279, 323, 325, 398 
Flutter, 67, 240, 270-272. 330-335 
Frontier, defined. 122 
Fruitfly. See Drosophila 
Fundamenta~ine wave, 96. 97, 206, 260, 27, 
Gating, 403-406 
Genome, 6, 91, 92, 262, 241 
Geometrieal opties, 251 
Geophysieal rhythms, 93 
Germination of spores. 222. 224 
Glyeolysis (anaerobic oseillalions): amplit'lde resetting, 196, 293; 

exeitability, 233, 295; mutual entrainme,t, 60-63, 212, 297-299, 398; 
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~scillator models, 156, 208, 209, 288-290; phase compromise, 24, 60-63, 
298; phase resetting, 60-63, 109, 291-297; steady-state repellor, 265, 
293-297; suppressed by oxygen, 161, 288; time machine experiment, 198 

Glycolysis: and neural pacemakers, 320; defined and diagrammed, 285-287; 
regulation, 288-290 

Gonyaulax polyedra, 21, 204, 385, 398, 409, 420 
Gradients: circular, 250, 346-348, 362; concentration, crossed, 231, 235-

237, 267, 273, 310; morphogen. See Morphogenetic; parameter, 213, 220, 
228, 305, 325-330; phase. See Phase gradients; stimulus magnitude, 64, 
109, 217, 235, 239, 294; vector cr0ss-product of, 273 
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Heart museie: models. See Hodgkin-Huxley; mutual coupling and entrainment, 
119, 208, 313, 324, 325, 398; rotor and singularity, 67, 240, 246, 271, 
318, 330-335 

Helianthus annuus, 188, 385 
Helical border, 54, 291, 296 
Helicoid. See Screw-like surface 
Heterogeneous nuclei. See Pacemaker 
Hit and run. See Phase-resetting 
Hodgkin-Huxley-equations, 68, 110, 153, 171, 208, 274, 307, 308, 315-336 

(Chapter 14) 
Homeostasis: instability , 287, 391, 392, 440; period, 86, 382 
Hourglass: 74-94, 389, 443; defined, 78 
Hue, 10, 15-17, 26, 42, 259 
Hue. combination, 25 
Huygens' principle, 245, 251, 308, 336 
Hysteresis, 211 
Image: of diffusion-coupled media, 124, 125, 127-129, 215, 225-227, 236-

241, 248; of embryonie tissues, 215, 3bl-360; of stimulus plane, 101, 
104, 160, 161, 167, 168, 218 

Image, elasticity of, 127, 225, 226 
Imaginal disks (fruitfly), 345-360 (Chapter 16), 402 
Impermeable barrier, 272, 305, 312, 315, 373 
Incoherence: circadian clocks, 84, 263, 281, 282, 396-400; computation of, 

113; Drosophila, 199-204, 410, 411, 417-421; Kalanchoe, 433, 434; neural 
tissues, 332335; simple clocks, 104, 112; yeast cells, 296-298 

Influence rhythm: 117, 147, 399; defined, 117 
Inhomogeneities, 68, 270, 271, 332, 333. 336, 340, 411 
Insect: cuticle, 250; epid~rmis, 345-360 <Chapter 16), 361-363; eye, 362-

364; limbs, 345-360 (Chapter 16) 
Instabilities, 207, 287, 320, 323. 356, 391, 440. See also Diffusive 
Integrate-and-fire model. 170 171. 2(8 
Intercalation. rule of, 347 
International Date Line. 10-12, 32, 45, 347 
Intestine, mammal, 208, 229, 325-329, 381 
In',olute description, defi:lencies, 809, 310 
Involute spiral, 242, 245, 246. 251, 308, 405 
Iridescence cf cutiele, 365 
Iron wire, 153, 240, 331 
I,.ochrons: 64, 100, 102, 109, 145-175 (Chapter 9), 218, 219; closed-ring, 

168; defined, 13, 98, 148-150, 190, 250; in a mycelium, 215; in malonic 
acid reagent, 250-252; measured (Drosophila), 191-195, 416; measured 
(Kalanchoe), 177, 191, 429, 430; measured (yeast), 294; radial VS. 

spiral VS. orn~te. 152-155 
11, 12, 13 defined, 5 
Kalanchoe blossfeldiana: 105, 380 384, 423, 427-434 (Chapter 21); clock 

transients, 188, 428 432; csochrons measured in, 177, 191, 429, 430; 
time crystal and singularity, 59, 60, 109, 264, 422, 431-434; type 0 
resetting, 427-430, 433 

Kinematic wave, 213, 220, 305 
Lambda-omega oscillator, 147, 210. 233 
Latent phase: 34, 141, 145-175 (Chapter 6), 215, 221, 407, 427, 438; 

defined. 146-150; list of properti"s, 158, 159 
Left and right brain clocks, 117, 202, 208. 209, 282, 396, 397 
Lens (exocone) of arthropod eye, 65, 268, 269. 361-366 (Chapter 17) 
Liesegang rings, 249, 250. 368 
Life cycle, 275 
Limbs, supernumerary, 347-349. 353-355, 359 
Limit cycle. See Attracting cycle 
Linear filter~7, 190 
Liquid crystal, 269, 364-366 
Logical automata, 70, 168, 171, 173, 240, 242, 270, 330, 331, 336, 339, 

340, 441, 457 
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Longitude. 18-20. 43 
Malonic acid reagent: and intestine, 329; as relaxation oscillator, 170; 

bibliography. 229; kinds of wave in. 213. 219. 220. 305. 306; mechanism. 
302-304; pacemakers. 312-314; recipes. 301. 302; resetting phase. 170; 
rotors in. 236. 240. 246. 248. 251. 253-256; wave singularity. 68-70. 
124. 125. 272. 273. 308-312 

Map: genetic. 6; topological. defined. 6 
Mariner's convention, 9, 31 
Mathematical metaphors fer inner clo:ks. 200 
Meandering of rotor's core. 228. 251. 270-272. 309. 335 
Measurement. 29. 75-77 
Menstrual cycle: and circadiar. rhythms. 451. 457. 458; human. 78, 175, 274, 

275. 319, 450-458 (Chapter 23); no type 0 resetting, 70. 110, 455-457 
Metric, lack of a, 163, 352 
Migraine headache. 336 
Minimum size for patterns. 227. 228. 310. 332 
Mitochondria. 212. 256. 285. 292 
Mitogen, 385. 440-443 
Mitotic cycle: 319.,435-449 (Chapter 22); as a relaxat.ion oscillator, 443-

448; as a simple clock. 78. 91. 92; no type 0 resett,ng, 70, 110; two 
oscillators. 208, 209; unsmooth. 173. 274 

Modulation of angular velocity: 81. 85. 143. 163. 320; inadequacy. 136 
Moire. 113 
Morphallaxis. defined. 355. 356 
Morpho~enesis. See Cuticle, Dlctyosteliurn. Nectria. Neurospora, er 

Regeneroat i on--

Morphogenetic gradient. 249. 250. 267. 346. 352. 361 
Multi-oscillator. See Clockshop 
Muscle fibers. helically striated. 269 
Mutual entrainment: actively resisted. 116-118. 281. 324. 399. 400; among 

slime mold cells. 119. 343; among simple clocks. 112-121; among 
relaxation oscillators. 210. 277-284 (Chapter 11); among yeast cells. 
60-63.297-299. 398; among attra.~to.r-cycle oscillators. 207-212; among 
circadian clocks. 263. 39B-ADO; among n2ural pacemakers. 119. 120. 277, 
279. 323~329. 398; critica. ?oint.115. 210. 281. 398 

Mutual repulsion among clücks. See Mutual entrainment actively resisted 
Mycelium. defined. 367 
Myxomycetes. See Physarum 
Naive flies. ~ 196. 201. 264. 418-421. 434 
Native per iod dis·ribution. 115-120. 210. 2~1. 325. 326. 398 
Nectria cinnabarina: 64. :21-,24. 2~5-2S0. 266. 344. 370-374; probably mis-

named. 370 
Negative resistance. 277. 278. 320 
Neon glow tube. 117. 169. 277-284 (Chapter 11), 304 
NerJe impulse. 70. 110. 315. 316 
Neural rhythms. See P&cemaker neuron 
Neurospora crassa-circadian Cjoc~. 63. 64. 12c-124. 213-230. 266. 368. 369 
New phase. defined. 31. 412 
Nicotinamide adenine dinucleotide (NADH). 60-62. 265. 285-299 (Chater 12) 
Notational change. 180 
Observables. 29. 72. 75-77. 170-179 
Observation window, defined. 179 
0ld phase. defined. 31. 412 
Organizer. 273 
Organizing waves. "66 
Oscillation and reaction complRxity. 287. 391. 392. 440 
Oscillators: chemical. See Ch~mical o~cillator; enumerating, 104, 205, 206; 

excitable. 233; independenl. 95-112. 121-125. 205-207. 212-224; long 
period, 378; relaxation. Se~ Relaxation oscillator; verbal 
rationalization of, 289 

Ovulation. 78. 175. 319 
Pacemaker: in gastro-intestinal tI·act, 330; in heart muscle (ectopic 

focus). 313; in malonic acid reaction. 310-314; in si ime mold. 66. 313; 
potential. 319. 325 

Pacemaker neuron: models. 153-156; mutual entrainment. 119. 120. 208. 209. 
277. 279. 323-329. 398; phase resetting, 24. 110. 111. 317-325; 
unsmooth. 70. 170-172. 274 

Paramete!. defined, 76 
Parameters. 79-82. 132. 228 
Parametrie pumping. 121 
Pasteur effect. 60. 161. 288. 289. 292. 294 
Pattern formation. minimum si=e for. 227. 228. 310. 332 
Penicillium diversum. 64. 222. 369. 370 
Periodism. See Rhythmicity 
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PeristaIsis. See Intestine 
Phase compatibiTity, 116-cc9, 208, 281 
Phase compromise, 24-28, 61-63, 123, c62, 163, 208, 298, 299, 444-448 
Phase dispersion. See Inccherence 
Phase distribution~wo-horned, 419, 420 
Phase gradients: 48, 109, 235. 294; in cuticle, 364; in fungi, 121-125, 

211-224, 370; in limbs, 250, 346, 347; in malonic acid reagent, 121-125, 
303-306, 312 

Phase jump, real, 98, 101, 10:'. 1f?3, 172, 173, 318, 383-385, 438, 439 445-
448, 456, 457 

Phase jump, unreal, 107, 173, 322, 346, 383-385, 427-430 
Phase map , defined, 13 
Phase reference event, 33, 35, 321, 412 
Phase resetting: by acetaldehyde, 60, 118, 265, 288, 295-298; by ADP-AMP, 

212, 291; by Cyclic AMP, 172, 274, 290, 342, 343; by divalent ions, 265, 
295, 296; by electrical impulses, 24, 109, 111, 274, 323-325; by female 
hormones, 455-457; by fusion with anQther oscillator, See Phase 
compromise; by light. See Avena, Circadian rhythm and species; by 
mechanical force, 134-137,~ 385; by osmotic potential, 109, 156, 
265, 275; by oxygen, 60-63. 161, 2B5, 287-289, 292-296; by pyruvate, 
296, 298; by repeated stimuli, i64. 176-204 (Chapter 7), 318. See also 
Entrainment, Phase 'compromise; by temperatl\re change, 60, 408,-.rr8-;-;i"33; 
curve (Drosophila), 108, 176-204 (Chapter 7), 383, 416; curVe 
(diagrams). See Phase resetting curve; curve, negative slope, 83, 85, 
89. 132, 133,-r63, 439, 440; data formats, 32-39, 110, 180, 182, 185, 
186, 317, 320-323; in glycolyt;c oscil;ator, 60-63, 265, 290-296; in 
malonir acid reaction, 170, 312; only types 1 and 0 found, 38, 39, 112, 
164-168; surface, defined, 89, 414-416; ty~es defined, 14, 37, 38, 107, 
322, 323; vs. phase shifts, 383-387. See also Phase resetting data 
for'mats -- ---

Phase resetting curves (diagrams): Dictyostelium, 34~; Drosophila, 108, 
180-196, 383, 416, 419; femal~, 456; Kalanchoe, 428, 430; models, 32-34, 
82-89, 142, 143, 408; Physarum, 438; reference list, 110, 111 

Phase response curve (PRC). See Phase shirt 
Phase scat t€l~. See Incoherence-
Phase shift: curves (diagrams), 87, 88, 142, 143, 383, 417, 438; defined, 

87, 143, 423; format, 107, 322, 323, 438 
Phase singularities, paired, 25-28. 58, 61-63, 162, 298, 299 
Phase singularity: at developmental origin of oscillator , 64, 196, 201, 

222, 264, 266, 417-420; at zero amnlitude, 103-106, 133, 260; defined, 
40; due to incoherence, 84. 104, 1:2, 203, 263. 420, 433, 434; existence 
theorem, 25, 26; geographical, 13, 260; imposscble in ring device media, 
234; in Avena, 109, 198, 265; :n D,ctYQstelium, 66, 269, 270; in 
Kalanchoe, 59, 60, 109, 264, 422,~21 434; in adjustable compass, 24-27, 
260; in chemical liquid, 68-70, 124, 125, 272, 273; in developmental 
fields, 65, 266, 267, 347, 349, 354; in excitable media, 130, 234, 235, 
238-252; in gl:'colysis, 60,,33, 265. 291-299; in heart museie, 67, 68, 
240, 270-272, 318, 333-335; in microtomed cuticle, 65, 269, 363-366; in 
mycelia, 215-230, 266; in p3cemaker neurons, 109, 318; not observed in 
mitotic cycle, 448; of loea, time, 43, 260; of maps, 25-30, 258; of 
navigator, 42, 43, 260; of pe~dulum-like models, 143, 144; of simple 
clock population, 103, 106; of the tides, 46-48, 260, 261; one
dimensional, 67-70, 162, 172, 230, 252-256, 272, 310-312, 446; split, 
206, 207; unpaired, 52; vs state singular:ty, 221, 222, 246, 267 

Phase transition: physics. 115. S~e also Ph~se resetting 
Phase, defined, 30, 122, 139, ,H2--
Phase, latent. See Latent pha: .• e 
Phaseless set, 146, 153-155, 216, 222. 265, 274 
Phaselessness vs. timelessness, 157. 260. 270 
Phosphofructokinase (PFK), 233, 288-292, 320 
Photoperiodism, 377 
Phycomyces.' 82 
Physarum polycephalum, 63, 114, 173, 208, 211, 229, 274, 319, 439, 440, 

443, 444 449 
Piecewise linear kinetics, 208, 210. 233, 234, 240-242, 273, 341, 342 
Pilobolus, 369 
Pinwheel experiment: attractor-cycle osciilator, 217-220; defined, 48; 

fluorescent, 294, 295; fly's eircadian clock, 48-64, 178, 194-198, 414-
417; simple clock, 90 

Plateaus of frequency, 326-330 
Poincare return map, 189 
Polarity, 250 
Poles. geographieal, 12. 43, 45, 63, 260 
Polymorphism in conidiation patterns, 216, 220-230, 370-374 
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Populations: of attractor cycle oscil:ators, 205-230 (Chapter 8); of 
relaxation oscillators, 210, 277-284 (Chapter 11); of ring devices, 95-
130 (Chapter 4) 

Projective plane, 25 
Pseudowaves (near-uniform peri0d), 124-127, 212-215, 220, 295, 304-307; 

Winfree errors, 305 
Pulsars, 242 
Pyruvate, 287, 296-298 
QUERIES, 38, 39, 64, 110, 112, 117, 129, 153, 166, 201, 203, 204, 223, 224, 

230, 264, 265, 266, 272, 273, 275, 295, 314, 329, 332, 340, 355-358, 
380, 382, 390, 393, 394, 398, 399, 406, 421, 440, 441, 446, 447, 457 

Recipes for malonic acid reagent, 301, 302 
Reflex ovulator, 78, 450, 451 
Regeneration: 58, 64, 65, 238, 250, 266-268, 273, 345-360 (Chapter 16); vs, 

reduplication, 356 
Regulatory kinetic? of enzymes, 287-290, 381 
Relaxation oscillator: 71, 163, 169-175, 273, 274, 298; circadian clock as 

a, 169-175, 277-284 (Chapter 11), 385, 389; female cycle as a, 457; 
glycolysis as a, 286; mitotic cycle as a, 443, 446-448; mutual 
entrainment, 210, 277-284 ,Charter 11); generalized, defined, 93, 94, 
147 

Repelling cycle, 156 
Rephasing. See Phase resetting 
Reschedulin~See Phase resetting 
Resetting curv~See Phase resett~ng curve 
R~setling map. See-phase resetting 
Resetting su,.faC;;-:- algebr",i.c description, 414-416 
Retina. eJectrical waves 1n, 240, 336 
Reverberator. See Roter 
Rhythmicity: imprecislon of, :85, 373, 398, 415, 443, 452-455; precision 

enhanced. 120; selective value oft 391. 392; systematic departures from. 
SeE> Transients 

Ring-devices, 74-94 (Chapter 3), :71, 247-250, 261, 436-440; defined, 7 
Ring, defined. 4 
Rotating waves: discontipuous in discontinuous models, 171. 338-340: not 

rotors, 50-52, 60, 109, 130. 2:8, 294, 295, 416 
Rotor; anatomy, 235-240; chemical, 66-70, 73, 124, 125, 272, 273, 308-312; 

defined, 235; impossible using ring devices, 247-250; in Dictyostelium, 
295, 338, 342; in brain tissue. 335, 336; in heart museie, 67, 270, 330-
335; multi-armed, 340; spontaneous generation, 270-272, 331, 332, 340; 
temperature coefficients, 246; three-dimensional, 250-257 

Rotor core: 66, 231, 235-252, 309 310; defined, 273; meandering, 228, 251, 
270-272, 309, 335 

Rowboat, 18, 42, 52, 260 
Rubber sheet geometry, 163 
Rl, R2, R3, defined, 5 
Saccharomyces carlsbergensis. See Yeast 
Salisbury cathedral, 244 
Sarcophaga circadian rhythm, 58, 59, 264, 402, 409, 421, 422, 425, 426 
Scatter. See Incoherence 
Screw-like-5urface: and type 0 resetting, 53, 109; in cuticle, 66, 365, 

366; in Drosophila c1ock, 51, [7, 414-417, 425; in excitable media, 254; 
in glycolysis, 61, 291, 295; in Kalanchoe, 59, 431-433; in model 
oscillators, 141, 161. 162; in neural pacemakers, 318; in Sarcophaga. 
58, 426 

Scroll ring wave: 251-257, 310-312; knotted, 254, 272; twisted, 253-256 
Self-sustaining vs. self-exciting .. 156 
Sensitivity rhythm, 117, 147, 399; defined, 117 
Separatrix, 154, 172 
Sequential t~anscription. See Chronon 
Simple clock: 74-130 (Chapters 3 and 4); and homeostasis of period, 86, 

382; circadian cloek as, 391; defined, 78, 147; Drosophila clock not, 
421-423; incoherence, 104, 112; mitotic oscillator as, 78, 91, 92, 436-
440; mutual entrainment, 112-121; Neurospora clock not. 224; phase 
resetting curves, 82-90, 143; population (phase singularity), 103, 106; 
re'axation oscillator, 169: three, 102-105; two, 97-101 

Single-factor description, 267, 268 
Single-factor dynamies, 248-250. See also Ring device, Relaxation 

osci llator -- --

Singularity: defined, 71-73, 261, 262; critical point, 115, 210, 281, 398; 
in a magnetic bubble, 72, 065; mere coordinate, 72, 260; of a map, 14, 
77, 261, 365; trap, 54, 55 275, 414; 

Slime mold: cellular. See DicLyostelium; true. See Physarum 
Slow waves, 319, 325 --
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Smooth, defined, 7 
Smoothness, 108, 164, 168-175, 273-275, 349, 457 
Sn, defined, 18, 138 
Social amoeba. See Dictyostelium 
Solar wind, 242---
Space defined: composition, 8; source, 6; target, 7; topologieal, 4 
Spike referenced, 317, 322, 323 
Spiral locus: of conidiation, 63, 64, 123, 215-230, 247-250, 266, 369-374; 

of electron density, 65, 66, 363-366 
Splral wave, 66, 236, 242-250, 308, 330-336, 338, 342; multi-armed, 250, 

370 
Splitting of rhythms, 106, 112, 113, 117, 202, 211, 281, 282, 323, 324, 

396, 397, 440, 458 
Spores. See Conidiation 
Spreading-depression, 68, 171. 246, 335, 336 
Star-formation, 242 
State space, 29, 132 
State, defined, 74 
Stationary state. See Steady-st~te 
Steady-state, 73, 153, 157, 162, 215, 225, 233, 235, 292, 343, 344, 391; 

attracting, 156, 1~2, 174, 198, 263, 265, 274, 275, 296, 455; of 
circadian clock, 261-265. See also Diffusive, Homeostasis, Phase 
singularity at developmentaland at zero anplitude 

Stereo viewing. instructions, 293 
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Stimulus: as a mapping, 100, 104-106, 135-140, 160, 161, 166-168, 191-195. 
212-223; latency, 34, 35, 141, 322; plane (diagrams), 50, 51, 53-55, 62. 
90, 101, 105, 142, 165. 195, 206, 219; referenced, 317, 322, 323, 431 

Stomach wall, 329. 330 
Stopping the clock, first ant"cipated, 422 
Stopwatch, 81 
Strange attractors. See Chaos 
Subthreshold rhythmicity. See Pacemaker potential 
Supernovae, 242 ---
Suprachiasmatic nucleus, 451, 458 
Symmetry, mirror: on circadian clocks, 202, 208, 396, 397; in development, 

266-268, 351, 357-359. Se .. also Phase compromise 
Synchronization. See Entr~inmen-t---
S:mchrony, define~114 
System, defined, 74 
Sl, S2, defined, 5 
Tachycardia, 67, 240, 270-272. 330-335 
Television, 17 
Temperature: dependence of reaction-diffusion systems, 246; gradients, 125, 

305, 327-329; Winfree, defined, 72; -compensated reaction rates, 380-
382; -sensitivity of circadian period, 173, 377-3~, 424; -sensitivity 
of circadian phase, 60, 408, 418, 433 -

The Geometry of Biological Time, 259 
Theorem, only: applications, 28, 53, 57, 72, 102, 103, 124, 125, 129, 157, 

161, 218-220, 249, 255, 269, 291, 298, 310. 334, 336 
Three simple clocks, 102-105 
Threshold (not in relaxation osci' lator): 139, 140, 148, 310, 319, 326, 

404-406; for mutual synchrnnization, 115, 210, 281, 398; of 
excitability, 233, 234, 308, 319, 326. See also Relaxation oscillator 

Thyroid follicles. 118 --- ----
Tides, 44-48, 260. 344 
Time crystal: Aven~, 109; Drosophila melanoga~ter, 56, 57, 109; Drosophila 

pseudoobscura, 51, 109, 414 416; glycclysis, 109, 292-297; Kalanchoe, 
59, 60, 109, 431-433; non-simple-clock models, 141-144; pacemaker 
neurons, 109; Sarc~phaga. 58, ~2a; simple clocks, 89, 90 

Time delay, 158, 262 
Time machine, 177. 178, 413 
Time machine experiment: defined, 178-180; Drosophila, 176-204 (Chapter 7); 

Kalanchoe, 198; yeast, 198 
Time, one-dimensional sense of, 131 
Timelessness vs. phaselessness, 157 
Tissue specificity: 346; space, 350-3RO 
Tn, defined, 18, 138 
Tornado, 72, 260, 272 
Toroidal coordinates for maps: from ring to rlng, 6, 15-26. e.g. phase 

resetting, 33, 37, 38, 88, 107: Crom a product of rings, e.g. phase 
compromise, 62, 446-448, e.g. two simple clocks, 97-101, 114 

Transients: in Drosophila (central), 185-189, 201; in Drosophila 
(peripheral), 94, 97, 384, 406-408; in female cycle, 454; in Kalanchoe, 
428-432; in mitotic cycle, 438, 440; only in multicellulars, 394 
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Transpiration. See Avena 
Trigger waves (near-uniform speed), 126, 127, 220, 234, 305-307 
Turbulence, 228, 271, 272, 335. See also Chaos 
Two attractor-cycle oscillators,-z56-209 
AWO simple clocks, 97-102, 112-116 
Two-osci Ilator model: circadiar. clocks (A-B). 94, 209, 406; circadian 

clocks (Jeft-right), 117, 202, 208, 209, 282, 396, 397; glycolysis, 290: 
mitotic cycle. 209, 440, 441 

Two-pulse resetting, 164, 176-204 (Chapter 7), 318 
Type 0 resetting: aggregate ~hythm, 105; bibliography, 110-112; defined, 

37, 38: Dictyostelium, 172, 274, 343; Drosophila, 52, 108, 182-196; 
glycolysis, 60, 291, 292, 296; impossible in models, 171, 391; 
Kalanchoe, 427-430, 433; Neurospora, 368; not found, 70, 110, 448: 
reality, 107-109, 385, 427-430, 457; Sarcophaga, 59; sheet of 
oscillators, 217, 266 

Type 1 resetting, defined, 37. 38, 107 
Ultraviolet light, 170, 213, 303, 312 
Van der Poloscillator, 114, 116, 208. 211, 326, 330 
Variability. See Rhythmicity, Imprecision 
Variables of state, 74-77, 132 
Vortex atoms, 256, 257 
Wave: broom, 121, 314; chemical, in 2i~cstelium, 66, 240, 246, 337-339, 

343, 344; chemical, in malonic acid reagent, 66-70, 73, 124, 219, 220, 
272, 273, 295, 304-312; colliding, 311-313, 344; creation of endpoint, 
236-238; eclosion, 49, 178, 416; fertilization, 246: front, 218, 219, 
24ß, 333; on rings, 22, 126~129, 227, 330; organizing, 66; rotating 
about a hole, 130, 236, 237, 242, 330, 335, 336, 339, 340; rotating (not 
rotor), 50-52, 60, 109, 130, 218, 294, 295, 416; shearing, 236-239, 313; 
temperature dependence of speed, 246 

Winding number: conservation of, "27, 215: defined, 14, 15; direction maps, 
18, 20; fungus polymorphism, 63, 64, 121-124, 215-230; hue maps, 17, 42; 
limb handedness, 266, 347, 348, 354; multiple resetting, 164; non-zero. 
See Theorem; optical maps,'22; spiral waves, 68-70, 247-250; three
oscillator singularity, 103 

Yeast mitotic cycle, 436, 437, 440. See also Glycolysis 
Zeitgeber. See Entrainment, not mutua-i-
Zhabotinsky-r;agent. See Malonic acid reagent 




