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I dedicate this book to my parents, Dorothy and Van, who
first gave me tools.

And I dedicate this book to those readers who, expecting
wonders to follow so grand a title as it flaunts, may feel
cheated by its actual content. I will be delighted if you take this
beginning as a serious challenge.



Preface

As I review these pages, the last of them written in Summer 1978, some retrospec-
tive thoughts come to mind which put the whole business into better perspective for me
and might aid the prospective reader in choosing how to approach this volume.

The most conspicuous thought in my mind at present is the diversity of wholly
independent explorations that came upon phase singularities, in one guise or another,
during the past decade. My efforts to gather the published literature during the last
phases of actually writing a whole book about them were almost equally divided
between libraries of Biology, Chemistry, Engineering, Mathematics, Medicine, and
Physics.

A lot of what I call ‘‘gathering’” was done somewhat in anticipation in the form of
conjecture, query, and prediction based on analogy between developments in different
fields. The consequence throughout 1979 was that our long-suffering publisher re-
peatedly had to replace such material by citation of unexpected flurries of papers giving
substantive demonstration. I trust that the authors of these many excellent reports, and
especially of those I only found too late, will forgive the brevity of allusion I felt
compelled to observe in these substitutions. A residue of loose ends is largely collected
in the index under ‘‘QUERIES.”’

It is clear to me already that the materials I began to gather several years ago
represented only the first flickering of what turns out to be a substantial conflagration.
According, I took a liberty with the reference list. You will notice that about 30% of its
entries are not to be found in the page index of publications cited. That is because they
are not explicitly cited. Readers who like to browse will easily find these extra papers:
they lie among papers on similar topics by much-cited authors. They lead in the
directions of significant expansion.

And what comes next? Well, one never knows; that is half the fun of doing science.
But one inevitable development is especially conspicuous by its absence here. In fact,
the original 30 chapters came down to 23 in purging it for a later volume. You will find
here almost no mention of rhythmic driving of biological dynamics. Plainly that must
contain the essence of any practical application, be it in hormonal gating of cell
division, in cardiac or gastric pacemaking, or in agricultural photoperiodism. Many
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surprises await discovery in connection with alternative modes of entrainment, the
consequences of synchronization, and evolution in periodic environments. This topic is
the natural successor to the present volume on autonomous periodicity. It is now
undergoing rapid development, mainly at the hands of neurobiologists, mathemati-
cians, and engineers, and will be riper for harvest a few years hence.

It has been my good fortune to visit lively investigators in many laboratories. I have
been stimulated by early exposure to their discoveries (which fill out so much of the
following chapters), and their critical attention to my own seminars has refined into
presentable form most of what is presented here. But I have never found an opportunity
to teach on these subjects, as you can see by the lack of problem sets in this presenta-
tion. I suspect that substantial improvements of content and clarity as well s significant
new directions would inevitably emerge through contact with students who are eager
and ready to study living systems in a mathematical spirit. That is a hard clientele to
locate; I could use some help.

I wish you good reading and wish you to send me marginal notations to collect on
my copy. Who knows? There might even be a second edition.

April 1980 Arthur Winfree
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Imagine that we are living on an intricately patterned carpet. It may or may not
extend to infinity in all directions. Some parts of the pattern appear to be
random, like an abstract expressionist painting; other parts are rigidly geometri-
cal. A portion of the carpet may seem totally irregular, but when the same
portion is viewed in a larger context, it becomes part of a subtle symmetry.

The task of describing the pattern is made difficult by the fact that the carpet
is protected by a thick plastic sheet with a translucence that varies from place to
place. In certain places we can see through the sheet and perceive the pattern; in
others the sheet is opaque. The plastic sheet also varies in hardness. Here and
there we can scrape it down so that the pattern is more clearly visible. In other
places the sheet resists all efforts to make it less opaque. Light passing through
the sheet is often refracted in bizarre ways, so that as more of the sheet is
removed the pattern is radically transformed. Everywhere there is a mysterious
mixing of order and disorder. Faint lattices with beautiful symmetries appear to
cover the entire rug, but how far they extend is anyone’s guess. No one knows
how thick the plastic sheet is. At no place has anyone scraped deep enough to
reach the carpet’s surface, if there is one.

Martin Gardner
Sci. Amer.
March 1976, p. 119



Introduction

Ubi materia, ibi geometria
J. Kepler

This is a story about dynamics: about change, flow, and rhythm, mostly in
things that are alive. My basic outlook is drawn from physical chemistry, with its
state variables and rate laws. But in living things, physical and chemical mecha-
nisms are mostly quite complex and confusing, if known at all. So I'm not going
to deal much in mechanisms, nor even in cause and effect. Instead I will adopt the
attitude of a naturalist-anatomist, describing morphology. The subject matter
being dynamics, we are embarked upon a study of temporal morphology, of shapes
not in space so much as in time. But by introducing molecular diffusion as a
principle of spatial ordering, we do come upon some consequences of temporal
morphology for the more plainly visible shapes of things in space.

This is a story about dynamics, but not about all kinds of dynamics. It is mostly
about processes that repeat themselves regularly. In living systems, as in much of
mankind’s energy-handling machinery, rhythmic return through a cycle of change
is an ubiquitous principle of organization. So this book of temporal morphology
is mostly about circles, in one guise after another. The word phase is used (over
1,200 times) to signify position on a circle, on a cycle of states. Phase provides us
with a banner around which to rally a welter of diverse rhythmic (temporal) or
periodic (spatial) patterns that lie close at hand all around us in the natural world.
I will draw your attention in particular to “phase singularities”: peculiar states or
places where phase is ambiguous but plays some kind of a seminal, organizing role.
For example in a chemical solution a phase singularity may become the source of
waves that organize reactions in space and time.

This book is intended primarily for research students. Readers who come to it
seeking crystallized Truth will go away irritated. I suspect that the most satisfied
readers will be those who come with revisionist intentions, seeking the frayed ends
of new puzzles and seeking outright errors that might lead to novel perspectives.
I am confident that you will find plenty of both, since this project has ramified into
more specialty areas than I can keep abreast of, ranging from topology through
biochemistry. I've done all I can to eliminate nonsense from earlier drafts, with



2 Introduction

indispensable help from my very critical friends, especially Herman Gordon and
Richard Krasnow. But the material is kaleidoscopic. As long as I work at it, the
pieces keep rearranging themselves into tantalizing new patterns. Most of these
dissolve under continued scrutiny but more remain than I can pursue. I have
chosen to lay them out in the one-dimensional way inevitable to written com-
munication as follows.

This volume has two roughly equal parts. The first half mainly develops a few
themes in an order natural to the fundamental concepts involved. The second half
is organized more like a “dramatis personae”. I call it the Bestiary. It tells about
the organisms or other experimental systems from which the conceptual themes
arose. In more detail:

Experiments with clocks and maps constitute the principal theme of this book.
Phase singularities figure prominently in these experiments. Secondary themes will
be played through again and again in different contexts: the progression from
dynamics in a single unit (a cell, an organism, a volume element) to collective
dynamics in populations of independent units, then to populations of promis-
cuously interacting units, and to populations arranged in space with interaction
restricted to immediate neighbors (as by molecular diffusion). New phenomena
emerge at each level.

Apart from those themes, the material gathered here may at first seem to have
few unifying features. I have chosen examples from a diversity of living organisms
and nonliving experimental models. Each recurs in several places, illustrating
different points. Our trial through this jungle of exotic flowers intersects itself in
several places as these themes surface again and again in new combinations, in
new experimental contexts.

The material is handled in three ways:

1. A single thread of text proceeds through the first half of the book under
10 chapter headings. By the following two devices this part is kept as lean as
possible to enable the reader to scoot through for perspective before choosing
where to invest more critical thought.

2. Along the way, frequent allusion is made to enclosed “boxes” of finer print,
each elaborating a particular point, raising questions for exercise or research, or
offering an anecdote. These stand aside from the main thread of text like scenic
overlooks along the toll road. I think they contribute interest and perspective, but
you may want to pass over them until you locate the chapters closest to your
particular interests.

3. The second half of the book is a Bestiary of 13 chapters about particular
experimental systems. These provide background facts about the organisms or
phenomena most frequently alluded to in the first half of the book. These might
be the most interesting chapters for readers with little use for theories and models
and for readers unfamiliar with the experimental laboratory. I had to put one or
the other perspective first and naturally some people think I should have chosen
the other way around. I think that only your taste should determine whether you
read this Bestiary first, or the preceding abstract notions that inter-relate its
contents.
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The whole is sandwiched between a table of contents and an extensive bibli-
ography.

In your first glance through these pages you will notice a mathematical flavor
about some topics. Though my aim is to avoid mathematical “models” wherever
possible, some reasoning with symbols seems inevitable to this subject matter.
Mathematics enters in four ways:

1. Simply using numbers to quantify experimental data for presentation as
graphs and for comparison with quantified ideas about their meaning (“models™).

2. Using digital computer languages to implement data handling and to
extract implications from numerical statements of an hypothesis. For example,
I might assume that in some useful approximation cells divide when some con-
stantly synthesized substance accumulates to a critical concentration, and digitally
seek the implications for a compact tissue in which this substance leaks between
adjacent cells.

3. Using standard undergraduate mathematics to extract such implications
when conjectures can be formulated in terms tractible to geometry, elementary
differential equations, and so on. I've made a big effort to avoid mathematical
equations. This is only in part because I seldom manage to get equations right.
My deeper motivation is a feeling that numerical exactitude is alien to the diversity
of organic evolution, and pretense of exactitude often obscures the qualitative
essentials that I find more meaningful. My aim is to get those right first. And that
purpose seems better served by words and pictures supplemented by occasional
numerical simulations and lots of experimental measurements.

4. Employing a little of the language of topologists in an effort to extract from
models or from observations what seems to be the essence of their behavior, inde-
pendent of quantitative variations. Such efforts are fraught both with technical
difficulties and with the ever present danger of extracting mathematically trivial
tautologies while discarding as “mere quantitative variations™ all that is of factual
interest about a particular phenomenon. Nonetheless, I believe such efforts con-
stitute an indispensable prelude to explanation: “What is the phenomenon to be
explained, as distinct from incidentals to be glossed over? What aspects require
explanation in terms of empirical cause and effect, and what aspects are merely
mathematical consequences of facts already known?”

It is my belief that the life sciences in particular have much to gain from, and
perhaps something to contribute to, mathematical developments in the general
area of topology. I wish the reader to consider this. Thus I will dwell on such
topological notions as I have found useful in designing experiments and in inter-
preting their results. From heuristic beginnings, my own efforts seldom go far
toward logical rigor, yet I have found much satisfaction in the fruitful dialog
between theory and experiment that this approach has fostered.

We turn now to the simplest abstractions about “rhythms,” “cycles,” and
“clocks,” with a few examples. Examples are merely mentioned here, pending their
fuller description in later chapters, where the context is riper.

G



1. Circular Logic

Philosophy is written in this great book— by which I mean the universe—
which stands always open to our view, but it cannot be understood unless
one first learns how to comprehend the language and interpret the symbols
in which it is written, and its symbols are triangles, circles, and other geometric
figures, without which it is not humanly possible to comprehend even one
word of it; without these one wanders in a dark labyrinth.

Galileo Galilei, 1623

My objective for this chapter is to draw your attention to a few peculiarities
inherent in the logic of periodic functions. I find a visual approach the most fruitful
for thinking about such matters. As the pictures involved consist mainly of map-
pings between circles and products of circles, I must first say a few words about the
notions of topological spaces and mappings. This chapter thus has four sections:

A. Spaces, with emphasis on rings (i.e., closed loops. To avoid the more exact
connotations of the word circle 1 use ring, trusting the reader do not confuse my
meaning with algebraic rings.)

B. Mappings, with emphasis on the winding number of mappings to a ring

C. Phase singularities of maps (Parts I and II), with emphasis on the con-
sequences of a nonzero winding number

D. Technical details on the application of circular logic to biological rhythms

The next chapter goes on to examine experimental examples of mappings to
the ring that contain phase singularities. Discussion specifically focusing on the
physical nature of phase singularities in each case is reserved to Chapter 10.

A: Spaces

As used in this book, a topological space is a collection of points connected in
some way. Spaces are distinguished by the distinctive manner in which these con-
nections are made, i.e., by the rules which associate to any given point an immediate
neighborhood of other points. Six examples follow:
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1. The real number axis, denoted by R!, is a topological space. Each real
number lies arbitrarily close to a slightly bigger number and a slightly smaller
number. This ordering of points stretches from minus infinity to plus infinity or
from zero to infinity, as in rays from an origin. Any endless open line or curve
that does not cross itself is topologically equivalent to R'. The great majority of
familiar variables of concern in science and in schools are represented by real
numbers: time, chemical concentration, temperature, energy, etc. A finite interval
of R' is called 1'. Geneticists, for example, derive from breeding experiments a
number between 0 and + that tells how far apart any two genes are along the
chromosome to which both belong. The space of genetic map distances is thus [*.
(For interesting exceptions, see Example 4 below.)

The variables of concern in this volume are of a fundamentally different sort
(Example 4).

2. The unlimited two-dimensional space of plane geometry, denoted R?, is
another topological space. Its connectivity is richer in that points can be neighbors
without being greater or less than each other. There are two dimensions, a north-
south axis in addition to an east-west axis. This is the space of complex numbers or,
if you like, pairs of numbers. It is the topological product of two independent R'’s
(e.g., two perpendicular real number axes), thus the notation R' x R! = §%. A
finite section of a two-dimensional space, a bed sheet or a blackboard, for instance,
is topologically equivalent to I' x I' = [2, and is also equivalent to the unit disk
D2, whose boundary is the unit circle S! to be considered below.

3. In three-dimensional space the neighborhood relationship is richer still:
Points can be distinguishable neighbors even when identical in respect to east-west
and north-south position. Unbounded three-dimensional space is denoted by
R!' x R! x R! = R A cubical chunk of it is [® (the product of three intervals).
A solid spherical chunk of it, a ball, is denoted S3. Topologically, S* and 1° are
equivalent (just round off the cube’s corners).

4. Returning to one-dimensional spaces, consider the isolated segment ['.
By joining together (or identifying, as topologists would say) the ends of the line
segment, one forms the circle or ring. The circle is conventionally denoted S! for
“one-dimensional sphere,” and is of paramount interest in this monograph. All
closed one-dimensional manifolds are topologically equivalent to S,

Several quantities of familiar practical science take their values not on the real
number axis R' but on the ring S': angles or compass directions, perceived hues
of colored objects, orientations of a receptive field of a ganglion cell in the retina,
and phases in a cycle, such as the time of day or the season of the year.

Shortly after Lederberg’s discovery of sex in bacteria made it possible to apply
the standard techniques of genetic mapping to bacteria, geneticists encountered
an amusing dilemma that could only be resolved by abandoning the notion that
genetic maps are mappings from an observable frequency of certain genetic events
to a segment 1! of the real line. That assumption implied that there is a unique
distance between any two genetic loci. The following experiment violated that
implication. Up until about 1961 it had always been found that if three genes lie in
order ABC (Figure 1) along the genetic map and if a fourth gene D is found to lie



6 1. Circular Logic

(Y (o)) Figure 1. Three loci on a genetic map assumed topologically
equivalent to [',

in order ADC, then it will necessarily lie in segment AB or in segment BC. But this
proved not to be true of bacteria and, later, of viruses! The genetic crosses often
showed that the genes lay in order DAB or BCD, seemingly incompatible with the
view that D is between A and C. More crosses showed that bacterial and viral
genetic maps have the connectivity of a ring. On a ring, D can lie between A and C
along any of three arcs (Figure 2). The surprising topological discovery that the
numerically constructed genetic map has the connectivity of a ring of course sug-
gested that the genetic material is physically ring-shaped. This was eventually
proved by direct observation of bacterial (Stahl, 1967) and viral (Thomas, 1967)
chromosomes.

\". Figure 2. Three loci on a genetic map assumed topologically
\. / equivalent to 5",

(D)

5. One two-dimensional analog of a ring is the surface of a doughnut, alias
torus, S' x S' = T2. (The one-dimensional torus T! is the same as S': a ring.)
This surface can be formed by swinging a ring around in a ring perpendicular to its
plane; such a surface is the product of two rings. Each point of T2 can be identified
by giving its position on its two generating circles as two angles or two phases.
This is the natural space for representing a state given by two independent angles,
€.g., the space of physiological times, compounded of the hour of the diurnal cycle
and the season of the annual cycle.

6. The alert reader may have noted that the product of S' by itself is called
T?, not S2 S? is reserved for the two-dimensional surface of a sphere. The
connectivity of S? is natural for representation of directions in three-dimensional
space, e.g., the orientation of a polar molecule floating in solution, or of a space
shuttle during maneuvers in orbit, or the direction to a star or the position of a
ship at sea.

There are many other finite-dimensional topological spaces which in a natural
way represent the possible values of quantities of concern in experimental science.
Those listed above constitute a sufficient catalog for our present purposes, so we
turn now to mappings.

B: Mappings

A “map” takes points in one space (the source space) to certain points which
the map identifies as the “corresponding points” in another space (the target space).
This could be done in a higgledy-piggedly way or it could be done continuously.
By continuous, I mean that sufficiently nearby points in the source space remain
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Figure 3. A map from one real number axis to another.

nearby in the target space.! Thus the mapping amounts to a distorted image of
source space in the target space. The maps we work with in this volume will always
be continuous, even smooth, except at isolated points or along a special locus. Such
points or loci constitute the main focus of all that follows. Before proceeding to
examine such irregularities, you may want to refresh your familiarity with smooth
maps by reading through the following 14 examples. A good Scientific American
reference is M. Shinbrot, 1966.

1. R'— R': Input a number, output a number. This kind of map, a function
of one variable, is most conveniently portrayed as a graph (Figure 3), depicting, for
example, the light emission as a function of time in a culture of glowing cells, or
land elevation above sea level as a funetion of distance along U.S. Route 90 from
Chicago.

Figure 4. A map from the real number axis to the plane, geometrically
viewed in the product space R?, seen in planar projection.

2. R! = R?*:Input a number, output a point on a plane. This kind of map maps
the line onto the plane (Figure 4). It could be represented as an image of the source
space R! in the product space R' x R? = R? of the source space and the target
space, as in the first example. Figure 4 is just this three-dimensional plot seen in
two-dimensional projection. (Any map can be so represented but it becomes
visually inconvenient except in the very simplest cases.) For example, R' might
be time and R? might be the concentration of two substances in a chemical reaction.
The map then constitutes a “trajectory” of the changing chemical composition.
(If the reaction is exactly cyclic, so that its state in concentration space moves in
a circle, then the map in R (time) x R? (concentrations) looks like a corkscrew or
helix.) Such trajectories will be useful in Chapter 7.

! Continuity defined: F(X) is continuous at X = 4 means that

1. Fis defined at A.

2. The limity ., F(X) exists.

3. The limit F(A) is the same when X approaches A from any and all directions.

Such a map is additionally “'smooth’” if the rate of change of F as X varies is also continuous.
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Figure 5. The xy plane is mapped into the uy
plane (not intended to portray specific features
common in retinotecal maps).

3. R?*— R?(or I? - 2 if finite): Input a point on a plane, output a point on
some other plane (or on some two-dimensional surface topologically equivalent
to a plane). For example, the source space might be the retina of a frog’s eye and
the target space might be the frog’s optic tectum. The map is then the retinotectal
projection of ganglion cell fibers onto their cortical targets. A convenient trick for
visualizing such a map (Figure 5) is to rule a coordinate grid on the source space
(e.g., retina) and then examine its distorted image in the target space (e.g., tectum),
or vice versa, as is in fact the habit of visual electrophysiologists (Gaze, 1970;
Jacobson, 1970). In Chapters 8 and 9, the source space will be a two-dimensional
disk of reacting fluid and the target space will be the composition space defined by
two concentrations. The map is the image of the disk in composition space. In this
format the kinetics of reaction interacting with molecular diffusion turns out to
be more readily comprehensible than in more familiar formats. We will find many
occasions throughout this book to think in terms of a two-dimensional medium’s
image in some state space.

4. R? - R!: Input a point on a plane, output a number. This is a simplified
version of the preceeding map, in that instead of associating two independent
numbers with each point in the source space (the plane), we pay attention to only
one target coordinate. The contour map is a familiar convenience for representing
such a mapping. Each contour line depicts the locus of points on the plane which
all map to the same point of the real number axis. In other words, a coordinate
grid has been ruled on the target space. This “grid” in one dimension consists merely
of equispaced tick marks. We examine its image in the source space. The grid
image in the R? — R? maps considered above is just a superposition of two contour
maps, one for the east-west coordinate in the target space, and one for the north-
south coordinate. In R* - R, we deal with only one of these. As an example
consider the temperature distribution in a sheet of encapsulated liquid crystals
used for temperature sensing. Each temperature corresponds to a color. The bands
of color on the plastic sheet constitute a contour map of the temperature field
showing how the two-dimensional sheet maps onto the temperature axis. Another
example is the familiar geodetic survey map of any two-dimensional area, showing
contours of altitude above mean sea level.

Dimension-reducing maps such as R?> — R' correspond in a natural way to
the process of measurement: Some aspect of a more richly variable phenomenon
is singled out for attention by such a map, typically by reduction to a single number.

5. S$* - R': Input a direction in space or a point on a sphere, output a num-
ber or a point on a line.
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The principle is the same as above. Examples: the familiar weatherman’s con-
tour map of barometric pressure around the globe, or the amplitude of radio
reception as a function of orientation of an antenna.

The next four kinds of map involve conversions to and from the circle or ring S!.
Topologists call the line R! (for one-dimensional real number) and the circle
S! (for one-dimensional sphere) because these are very different objects. This
book exploits the differences.

Few indeed are the instruments of modern science that report back a point on
a circle (compass, goniometer, circular counters) rather than a point on the line
(thermometers, volt meters, pH meters). The mainstream of experimental science
has always flowed along the real number axis R' and its product spaces. It wasn’t
until 1953 that anyone even went to the trouble to formalize an equivalent of
Gaussian statistics for observables on S! (Gumbel et al., 1953; Greenwood and
Durand, 1954). Nonetheless, just as the practical mathematics of engineering and
science is mostly about numbers on the real line, so the practical mathematics of
things periodic and rhythmic is mostly about points on the circle.

Figure 6. A map from each point on the ring to its own number
between 0 and 1.

6. S'—[': Input an angle or a point on a ring, output a number or a point on
a line segment.

Such a map is inscribed on every compass and protractor and on the face of
every clock. Around the circular edge one finds numbers from 0° to 360°, or from
0to 12 or 24 hours. If each point on the ring maps to a different number, there must
inevitably be a discontinuity, e.g., at the point in Figure 6 that maps to 1 or 0.

Note that in this volume I adhere to the navigator’s and clock maker’s conven-
tion when it is necessary to label points on the ring as though they were numbers:
We go clockwise from north at the top. Mathematicians and the makers of pro-
tractors tend to go anticlockwise from east at the right.

7. S'— R': Input a point on a circle, output a point on a line.
The tangent function of trigonometry is an example (Figure 7). It produces a
number ranging anywhere from — oo to + oo depending on the angle given. The

Figure 7. A two-part map from the ring to the infinite line.
There is a discontinuity at +3 cycle.
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@ Figure 8. A map from the real number axis to the ring, geomet-
rically viewed in the product space.

act of measuring a biological rhythm might be considered another example of this
kind of map; given a phase in the organism’s daily cycle, there corresponds the
numerical value of some quantity that we find it convenient to measure, such as a
diurnally fluctuating body temperature or a rhythmically varying chemical con-
centration or a rate of egg laying.

8. R'—S!:Inputa point on a line, output a point on a circle.

An example of such a map is the visual angle between the moon and the sun as
a function of time. As the year advances this angle varies through one full monthly
cycle and repeats itself during the next month and the next and the next. It can be
thought of geometrically as wrapping the real line (the time axis) around and
around the circle. As noted above, any map can be thought of as an image of the
source space in the product of source and target spaces. In this case the product
space is a cylinder, R! x S', and the source space’s image on the cylinder is a
helix (Figure 8).

9. ' > S':Input a number between 0 and 1, output a point on a circle or ring.

An example is the inverse of map 6, which necessarily suffers the same discon-
tinuity though in reverse: While nearby numbers always map to nearby points on
the ring, so do some quite different numbers near the extremes of the interval. This
underlies the necessity of an International Date Line (see Box A) and accounts for
the principal annoying feature of compasses and protractors: We have to remember
that 360° is the same as 0°. Figure 9 depicts this map as an image of I' in the
product cylinder 1' x S'. This picture is equivalent to Figure 6.

Any map to S! can also be colorfully depicted as a contour map on its source
space using bands of different hues. It is a curious fact of human vision that we
classify spectral distributions of light in a way that has circular connectivity:
Red is close to orange is close to yellow is close to green is close to blue is close to
indigo is close to violet is close to red is close to orange . . . . So the different kinds
of map from any space to S' can be represented by the qualitatively different ways
to paint that space with different hues.

Maps to S! are a primary theme of this book.

10. S?— S':Input a point on a sphere, output a point on a circle.

A weather depiction of worldwide wind directions is such a map. Some “homing”
and migrating birds apparently convert the three-dimensional orientation of the
earth’s magnetic field (which corresponds to a point on a sphere) to a compass

> 1

Figure 9. The map of Figure 6, geometrically
viewed in the product space.

END-ON SIDE VIEW
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besides there are so many different languages that it would be hopeless
to attempt to trace the name of any one day all round. But is the case
inconceivable that the same land and the same language should continue
all round the world? I cannot see that it is: in that case either there would
be no distinction at all between each successive day, and so week, month
&cc so that we should have to say “the Battle of Waterloo happened
to-day, about two million hours ago,” or some line would have to be
fixed, where the change should take place, so that the inhabitant of one
house would wake and say “heigh ho! Tuesday morning!™ and the
inhabitant of the next, (over the line,) a few miles to the west would wake
a few minutes afterwards and say “heigh ho! Wednesday morning!”
What hopeless confusion the people who happened to live on the line
would always be in, it is not for me to say. There would be a quarrel
every morning as to what the name of the day should be. I can imagine
no third case, unless everybody was allowed to choose for themselves,
which state of things would be rather worse than either of the other two.

Thus we have the International Date Line, established 180" from Greenwich, England
in 1878. When an astronaut crosses that line in the mid-Paciflc Ocean moving from
west to east, he pops back 24 hours into yesterday, so when he arrives back over San
Francisco it is 13 hours later today, not tomorrow. Each new date starts along this line
as it rolls through midnight. Tomorrow has then begun. The International Date Line
leads an expanding crescent of tomorrow around the east side of the earth into the
dawn light, around through noon and dusk and back to midnight (see figure below).
When the Date Line reaches the midnight point it starts the next day in the same manner.
Thus the citizens of Tafahi in the Tonga islands are among the first to report back to
work after each weekend. Meanwhile, their neighbors on Savia in nearby Western
Samoa, 150 miles to the east, greet the same day as a Sunday.

The earth viewed from a station above the North Pole (NP). Monday started when the
International Date Line (IDL) rotated through midnight. A satellite poised above
the midnight point can connect Sunday morning and evening with Monday morning.
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heading (a point on a ring). Another instance of such maps occurs in the crystal-
lization of synthetic polypeptides and polynucleotides (artificial analogs of bio-
logical proteins and genetic material). Such substances are fibrous, giving to each
point on the surface of a crystalline ball (S?) an orientation. The orientation may
be specified as a point on an abstract sphere ($?) or, given that the fiber lies in the
plane of the surface, on an abstract ring (S') of compass directions. There is no way
to carry out such a map smoothly. There must be at least one point of confused
orientation. These points are clearly visible by polarized light microscopy (see
Robinson, 1966; Wilkins, 1963; Anderson et al., 1967).

11. R*— S':Input a point on a plane or any curvy two-dimensional surface
topologically equivalent to the plane, output a point on a circle.

Consider, for example, a sheet of cells, all of which are regularly carrying out
some rhythmic function such as cell division. Given a sufficiently clear snapshot of
such a sheet of cells, one could write labels all over it indicating at each point in the
plane what stage of the cycle the cells have reached. Such maps will play a central
role in our discussion of peculiarities in the rhythmic morphogenesis of slime molds
and of fungi, and of the periodic organization of oscillating chemical reactions in
space.

Gilass (1977) calls such maps “phase maps” and uses them to interpret the pecu-
liar symmetries of regeneration and reduplication in the growth of embryos and
in the restoration of amputated limbs in lower animals capable of such tricks
(see Chapter 16).

Phase maps will also serve us well in discussing circadian rhythms in flies
(Chapter 20). The source space is either a two-dimensional physical space such as
a desk top or the more abstract two-dimensional space of different stimuli deter-
mined by two quantities at the experimenters’ disposal. The target space is the
phase of a circadian rhythm reset at that place or by that stimulus. Such a map is
drawn point by point by simply measuring the phase in S' associated with each
point in R?. It is convenient to run a smooth curve through all points in R? that
correspond to the same phase. I call such curves “isochrons” (“same-times”) on
account of the usual association of S! with a rhythm in time (see Chapter 6).

12. S$* - R?: Input a point on a sphere, output a point on a plane.
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Figure 10. Two ways of mapping the sphere on a flat surface. Mapping onto the unbounded plane
on the left requires a singularity (at the North Pole). Mapping onto a cylinder on the right requires
two singularities (one at each pole).

These maps include the many projections used by geographers to map the
globe, inevitably with some distortion, onto the flat page of a book. As we all
realize, perhaps with a residual twinge of perplexity since being intimidated by a
fourth grade geography teacher’s inadequate explanation, these maps never quite
cut the mustard. Unless the earth’s surface is printed as at least two disjoint regions,
there always arise points or curved paths at which the distortion is infinite (Figure
10). These are called singularities. They play a prominent role in this book, starting
with the next chapter.

13. R%*— S%:Input a point on a plane, output a point on a sphere.

In a microtome slice through a fibrous biological material, such as insect cuticle,
microscopic fibers at various points on the section plane can be characterized
by orientations in three-dimensional space. One geometrically convenient way
to visualize the pattern of fiber directions is to think of orientation as a point on
the sphere and to map each point of the section onto its corresponding orientation
by appropriately stretching an image of the section plane onto a spherical surface.
This map may be many-to-one if several regions (or even a one-dimensional locus)
of the section plane have the same fiber orientation. Just such maps provided a
key to a puzzle about the ultrastructure of the insects’ corneal lens (Chapter 17).

14. S'— S':Input a point on a ring, output another point on a ring.

Maps from rings to rings resemble the simplest maps treated above (example 1,
from the real line to the real line) but with a surprising new feature. The periodicity
inherent in a ring results in the kind of quantization which allows us to classify
continuous S' — S! maps into distinctly different types. (This is in fact precisely
the origin of quantization in the physics of hydrogen atoms around 1920.) Each
“type” is associated with an integer-valued “winding number”. The winding
number is the net number of times the output value runs through a full cycle
around a ring, as the input value is varied once forward along its ring. Because
these topologically distinct types arise again and again in our experimental
observations, I take time here to give eight examples and to dwell at some length
on the logic of maps among rings.

Just as the map from R' to R' is most conveniently displayed as a curve in
the plane R?, the product of R! and R', so any map from S' to S' is most con-
veniently displayed as a curve on the product space S' x S' = T2 the surface of a
doughnut. If there is a unique output value ¢’ (“phi-prime”) corresponding to each
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Figure 11. A map from S' to S?, viewed geometri-
cally in the product space.

input value ¢, then the curve relating ¢’ to ¢ is a closed ring, reaching once around
the ¢ axis and necessarily returning to the same ¢’ value after it is followed once
around (Figure 11). But notice that such a curve can link any number of times
through the hole. It can wind any number of times around the ¢’ axis during each
circumnavigation of the ¢ axis. This integer winding number distinguishes
qualitatively between the kinds of S to S! map.

Unfortunately, toroidal graph paper does not easily fit into a book. We must
map the torus onto the plane of the page. In Figure 11 I attempted this one way
but it leaves much to be desired since some regions are badly distorted and half
of the surface is hidden behind the other half. A convenient alternative is to map
S!' x S' > R! x R! by unrolling the two circular axes along perpendicular linear
axes. This is equivalent to cutting the torus open along two perpendicular circles
and stretching it into a flat square, then repeating these square unit cells in all
directions (Figure 12). It would suffice to present one unit cell since all the rest
are identical, except that to do so hides the continuity of the data from the right
side of one unit cell to the left side of the next. So I will usually present 2 x 2 unit
cells or one surrounded by fragments of the eight adjoining cells.

| —1 ] AT TN
NS\ / A
Figure 12. A ring on the torus, laid flat for con- v N N 1¢ \//‘\ | ,.’(
venient inspection. Repeated as 2 x 2 unit cells on 1 —_.{—\\, ){F_\_\_ N
the left, and on the right as a unit cell flanked by |/ \/ "‘-\ ll_ﬂr__,ﬁ
fragments of adjacent reduplications. B A LA AL ;_’__%'gui/

0 1 0 1

In this format, the winding number of a map is revealed by the number of unit
cells through which the data climb vertically in the space of one unit cell
horizontally. Examples follow:

Example A. Red is close to orange is close to yellow is close to green is close
to blue is close to indigo is close to violet is close to red is close to orange:
ROYGBIVRO. Thus hue (disregarding saturation and intensity) is a psycho-
physical quantity with the connectivity of a ring (see Box B). In a photograph
taken under a colored light, hues appear altered. The change of hue can be depicted
as a map from the color ring to itself: S! — S*. Suppose for example that a colorful
butterfly is taken indoors to be photographed by the bluish glare of fluorescent
lights. Each color on its wings is mapped to a similar, but not identical, color on
the photographic print through a combination of the emission spectrum of the
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lamp and the absorption spectra of the photographic emulsion and its dyes. If
we restrict our interest to hues, ignoring saturation, then the color map is S$* to
S'. It is continuous because similar colors similarly affect the emulsion. The map
might have winding number W = 1 if all hues still appear under the bluish light
[Figure 13 (right)] or it might have winding number W = 0 if the blue is so pure
that every color is captured as some shade near blue [Figure 13 (left)].

Example B. A rowboat in a strong current holds a compass heading in
direction ¢. It proves convenient to measure ¢ on a scale 0 to 1: north is 0, east
is 1, south is 1, west is 3. The boat’s actual track is a straight line in some other
direction ¢'. The map from heading to track is ' to $'. The character of this map
is determined by the speed of the boat in the water, relative to the current. Figure 14
depicts the rowboat R at a point in the stream. The stream’s velocity is indicated
by the vertical arrow. Its speed is v*. If the rowboat heads in direction RH (compass
heading ¢) at speed v relative to the water, while the water flows downstream at
speed v*, then the rowboat’s actual track is RR' relative to terra firma. The

IVROYGBIV

ROYGBIVROYGBIV

Figure 13. Two qualitatively distinct maps from the color ring to the color ring.
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Figure 14. A rowboat heads in
direction ¢ at speed v while being
carried south in current v*. Its ac-
tual track is in compass direction ¢'.

rowboat’s velocity component toward the shore, BH or AR’ is v sin(2r¢). Its
velocity component parallel to the shore, RA, is v cos(2rn¢) — v¥. The ratio of
these two components is AR’/RA = tan(2n¢’), so

tan(2n¢’) = v sin(2ne)/[ v cos(2neh) — v*|

or in terms of “slowness”, s = l/v, additionally adopting the more compact
notation sn ¢ = sin(2zn¢), and similarly cs for cos and tn for tan:
sn ¢
me =———1.
¢ cs¢p — s/s*

Figure 15 plots several of these heading vs. track or ¢’ vs. ¢ conversion curves
for various rowing speeds v. Note the qualitative transition at v*/v = s/s* = 1.
At this speed the boat cannot track upstream against the current and the map’s
winding number switches from 1 to 0. We will see this formula again in context
of circadian rhythms.

N N f f
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Figure 15. Four qualitatively distinct maps ¢’ = f(¢); the dashed curves represent the extreme cases
r=0,r- x.

Example C. Local time varies with geographic longitude. At any moment,
one is a function of the other: a map from S' (longitude) to S* (clock phase).
This map (Figure 16) constituted the whole motivation for the design of mechanical

Figure 16. Clock phase varies one-to-one with longitude.

LONGITUDE DI
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1759 John Harrison's #4 claimed the prize. On a storm-racked trip to the West Indies

it erred by only 1/17,000 of a cycle, corresponding to 13 miles at equatorial latitudes.
Those who, like myself, are stirred to transports of excitement by this sort of tale

will want to savor the marvelous essay entitled “The Longitude™ by Brown in vol. 2 of

The World of Mathematics (J. R. Newman, ed., Simon and Schuster, New York, 1956)

clocks with such accuracy as we take for granted today. Who would have cared
to monitor Greenwich Mean Time (GMT) precisely in a world still free of bus,
train, and jet schedules? Maybe astronomers. But the practical impetus to develop
clocks came from merchants, whose mariners could reckon a ship’s longitude
only by the four-minute-per-degree discrepancy between local noon and the GMT
chronometer on board (see Box C). It may be noted that San Francisco time
changes as GMT changes. The dependence of San Francisco time on GMT is the
same kind of map from S' — S! (Figure 17): Both have winding number W = 1.

Figure 17. San Francisco time varies one-to-one with Greenwich time.

(Examples A, B, and C are elaborated as Examples 1, 2, and 3 in the next chapter.)

Example D. A starling is ready to migrate south, a direction it knows relative
to the sun. A physiologist (Hoffmann, 1960) resets the phase of its circadian clock
by six hours (one-quarter cycle) and releases it. It flies off in some other direction
relative to the sun’s azimuth, specifically about 90° away (one-quarter cycle).
The map from clock phase to flight direction is §' — S'. It has been measured
in a few kinds of organism. A type 1 map (winding number W = 1) was found in
the sunfish (Figure 18). A type 0 map (winding number W = 0) was found in the
pond skater (insect) (Figure 19).

Figure 18. The direction of sunfish movement vs. time of

day (data replotted from Braemer, 1960, Figure 7). Note that

the left and right edges are the same (midnight) and the top
and bottom edges are the same (north).
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Figure 19. Angular orientation of a water strider to an

artificial sun vs. time of day (data replotted from Birukow,

1960, Figure 2). Note that the left and right edges are the

same (midnight) and the top and bottom edges are the same
(north).

Example E. A regular oscillation goes on in all the growing cells of a fungus.
The fungus is a thin sheet, growing only along its border. The border is a ring. The
phase of the oscillation varies locally. How does phase vary with position along
the ring-like border? The answer can be represented as a map from position
(along a ring) to phase (along a ring) (Figure 20). See Chapters 4, Section C; 8§,
Section C; and 18.

Figure 20. Each point of the frontier ring of a rhythmic fungus maps to the phase of the local rhythm
at that point. In this example every point maps within about one-fifth of the cycle. Points at the same
north-south latitude are mapped to the same phase.

Example F. Microorganisms sometimes make seawater glow around a swim-
mer at night. Hastings and Sweeney (1957) made the sensational discovery that,
when brought into a dark laboratory, such water glows again at 24-hour intervals.
Moreover, if exposed to light at phase ¢ of the rhythm, the suspended animals
reschedule their glow as though the phase ¢ had been some other phase ¢'. The
map from old phase ¢ to new phase ¢’ is S' - S'. This example is developed
further in Section D.

Example G. Consider an optical device, in outward appearance resembling
a telescope, in which you view a scene. As you rotate the eyepiece, the scene rotates.
The angle of eyepiece rotation ¢ is indicated against a degree scale by a fiduciary
black dot. The angle of scene rotation # can be read against the same scale by
projecting the obvious upward direction from the center of the scene (as in
Figure 21). Plot 6 vs. ¢ must be a smooth curve of some integer winding number.
By thinking of simple experiments (such as rotating yourself, rotating the degree
scale, rotating the scene), can you show that the winding number is necessarily
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Figure 21. A catalog ad for a Dove prism and a scene viewed through a Dove prism image rotator.

zero? If so, what do you make of the accompanying mail-order catalog advertise-
ment which makes it appear that one rotation of the eyepiece results in two
rotations of the scene: winding number +2? I was so perplexed by this paradox
that I ordered one of the optical devices advertised (in a less expensive version).
When it came, I looked through it at my page of notes purporting to prove that
winding number +2 is impossible. It was impossible to read the proof! The
reason for this and the reason for the irrelevance of the “proof” turns out to be
that the optical device presents a mirror image of the scene viewed through it
(see Box D).

Example H. Consider a wave circulating around a ring, such as a nerve
impulse going around and around a ring of heart muscle or around the circum-
ference of a jellyfish. For our simple purposes, we might think of each little piece
of tissue as repeatedly traversing a continuous cycle of states with landmarks
conventionally denoted “rest”, “excited”, “refractory”, “relatively refractory”,
“rest”, “excited,” and so on. At every instant each point on the physical ring is
somewhere in this cycle. At any instant (on a snapshot of the ring) the map from
ring to cycle is S' — S*. If a solitary wave revolves clockwise, the mapping has
winding number + 1. It has winding number —1 if the wave circulates anti-
clockwise. Two pulses chasing each other around a ring correspond to a map
of winding number +2, i.e., weaving around a line of slope +2, etc. (Figure 22).
If the ring beats almost homogeneously, then the map varies about the horizontal,

with mean slope 0, and so its winding number is 0.
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15. S!' x §' - S': Input two independent points on a ring (two phases, a
phase and an angle, two directions, etc.), output a point on a ring (a phase, a
direction, etc.).

These maps, like the S' — S' maps considered above, can be classified by an
integer winding number. Maps with different winding numbers have qualitatively
different properties. Such maps and their winding numbers play an essential role
in much that follows. We begin with four examples:
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Figure 22. Upper left: Distance around a ring of tissue is denoted by 0 < ¢ < 1. Upper right: Each

point of the ring maps to a phase 0 < ¢ < 1 in the cycle of local excitation and recovery. Given two

circulating pulses, the ring’s image wraps twice around the cycle of states. Lower: The same map from
¢ to 0 is diagrammed in starker format.

Example A. Suppose a smooth chemical oscillation, e.g., glycolysis in yeast
cells (Chapter 12), is going on in each of two equal volumes. Ghosh et al. (1971)
made the intriguing discovery that when such volumes are abruptly combined,
the hybrid volume continues to oscillate at some compromise phase somehow
determined between the two “parent” phases. This compromise would be most
naturally described by a mapping from the phase circle of parent A and the phase
circle of parent B to the phase circle of the combined volume: S' x S' - S'.

Example B. Suppose a motor neuron in a running insect fires at some phase
in the rhythmic cycle of locomotion as in the experimental studies of Stein (1974).
Let this phase be determined by the timing of two impulses received in each cycle:
one from a left leg proprioceptor and one from a right leg proprioceptor or one
each from fore and aft segments. The dependence of firing phase on the input
phases is most naturally portrayed as a function of two phases: ¢" = F(da, ¢p).
thatis, F:S!' x §' - S".

Example C. My airplane’s compass reads a direction, a phase on the horizon
circle. But before it can be useful, installed among the distortions of earth’s field
caused by the motor and radios, the compass must be adjusted. This is done by
moving two little screws, each of which rotates a pair of tiny magnets geared
together beneath the compass. With the plane facing in one fixed direction, the
compass reading depends on the orientations of the two pairs of magnets: once
again a map from §' x §' > S’

Example D. At the Kodak Museum in Rochester, New York, there is a device
in which two plastic wheels overlap in front of a diffuse light. Each wheel supports
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around its perimeter a continuum of colored celluloids, running through the whole
color circle ROYGBIVROY. By rotating these wheels, you can superimpose in
front of the light two filters of any chosen hues and observe the resulting hue.
The perceived overlap hue is determined by two hues: Once again this is a map
S! x §' s

Many other topological maps naturally organize little areas of experience.
Celestial navigation is largely about maps from the product of three circles (time,
season, and a sextant angle) to a sphere (position on the globe). The quantum
mechanics of electrons and other fermions concerns maps to and from the three-
dimensional projective plane RP?3, which is locally $* x S'. This is also the
topological space of fibril orientations in a wide variety of biological polymers
(e.g., see Chapter 17). But let’s stop with what we have and begin to investigate
some of the curious logical implications of maps among circles: what I call
“circular logic”.

C: Phase Singularities of Maps

A Phase Determined by Two Phases

“But that,” said Perion, “is nonsense.” “Of course it is,” said Horvendile. “That is probably
why it happens.”

Jurgen (Cabell)

I begin with item 15 above, S' x S! — S'. Call the two input phases or parent
phases ¢, and ¢y, and let the resultant or hybrid phase be called ¢'. As noted
above, the (¢, ¢p) plane goes on and on periodically like wallpaper, in principle
to infinity, but we need deal with only one copy of the repeated unit cell since
all the rest are the same. In a wide variety of physical and biological situations,
the following three axioms hold:

1. For almost all inputs (¢4, ¢p), a small change in ¢, or ¢y results in at
most a small change of ¢".

2. ¢4 and ¢y are interchangeable: They play equivalent roles.

3. When parent phases ¢, and ¢y are nearly the same, the hybrid phase ¢’
is nearly the same as both.

Referring to Figure 23, consider what happens to ¢’ if ¢, is increased through
a full cycle while ¢y is held fixed (at a value that we may as well call ¢z = 0).
If ¢’ changes, it must change in such a way as to return to its first value as ¢,
completes its scan of the cycle. As in earlier examples, the periodic dependence
of ¢" on ¢, has an integer winding number, the number of times ¢’ runs through
its cycle as ¢, runs forward through its cycle. Whatever it turns out to be, call
that winding number W and mark it on path off in Figure 23. Note that o, §, , ¢
all represent ¢, = ¢y = ¢’ = 0. Along path « and therefore along equivalent
path By, ¢’ changes through W cycles again, since this is the same experiment
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Figure 23. A phase ¢ varies as a function of position on the

(¢a, ¢p) torus. Along path off or fiy, ¢' scans through W cycles.

Along path ya it scans through —1 cycle. affyd all represent the
same point on the torus.

with the A and B labels interchanged. Now returning to « along diagonal ya, ¢’
backs up through one cycle according to axiom 3. Thus, from « to 8 to y and back
to o, ¢’ has changed through some nonzero integer number of cycles 2W — 1.
A contradiction is coming up; watch carefully.

Let us ignore the word “almost” in axiom 1. Then a slight deformation of path
af, for example, cannot change the behavior of ¢’ along the path enough to alter
the fact that it scans through W cycles (rather than W — 1 or W + 1) from « to f.
Since W cannot change except by integer jumps, and jumps are disallowed by
axiom 1, therefore W cannot change at all. We can thus deform path «fya as we
please. In particular, we can shrink it with impunity to as small a ring as we like.
But around that ring, ¢’ still changes through at least one full cycle in response
to arbitrarily minute changes of ¢, and ¢.

This is called a phase singularity, and it violates the edited version of axiom 1.
Without the “almost”, in other words, axioms 1, 2, and 3 are incompatible. One
cannot have a smooth symmetric dependence of phase on two other phases suck
that ¢’ runs through a full cycle with ¢, and ¢ when they are equal.

What does this mean in terms of the four examples under item 15 above?

Example A. Apparently there is at least one critical combination of parent
phases ¢, and ¢y near which the resultant compromise phase is unpredictable
and irreproducible. There might also be more than one. For example, there might
be a whole line of near-discontinuities along ¢, = 0 and along ¢, = 0 if at that
phase the oscillator changes its chemical composition suddenly (Figure 24). The
point of Figure 23 is that even if the mechanism is smooth, and is not such a
so-called relaxation oscillator, then there still must be a phase discontinuity.
And if it is not extended along a one-dimensional locus, then it must be the much
more violent and condensed kind called a “phase singularity” (Figure 25). In the

Figure 24. A relaxation oscillator’s contour lines of uniform ¢’

as a function ¢, and ¢y. Values are not indicated numerically

but increase along the arrow. In this case ¢’ changes abruptly
by one-half cycle whenever ¢, or ¢y = 0.
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Figure 25.  As in Figure 24, but in this case the inevitable dis-
continuity is compressed to a phase singularity point in each
triangular half of the unit cell.

Figure 26.  As in Figures 24 and 25, but the inevitable discon-
tinuity is placed along a 45° line. Here ¢’ jumps by one-half cycle.

simplest kinds of chemical oscillator, the phase singularity is a special combination
of parent phases whose intermingling forces the hybrid oscillation to its steady-state
(see Chapter 5). But in case of anything more realistic, the phase singularity is
not so easy to describe in terms of mechanism. We return to this topic in Chapter 6.

Example B. In the running insect, it might mean that when ¢, and ¢y are
a half-cycle apart, the third neuron cannot make up its mind whether to fire
between A and B or between B and A. This would be the right interpretation if
the inevitable discontinuity were a diagonal locus ¢y = ¢, + % cycle (Figure 26).
But if it were an isolated phase singularity, then some more subtle mechanism
would seem to be called for.

Example C. Few of us have ever taken the time to play systematically with
the two adjusting screws under a correctible compass. 1 did once, and sub-
sequently took the thing apart, while preparing an exercise for a course in “The
Art of Scientific Investigation”. It turns out that the compass follows rules 1, 2,
and 3 and that the compass reading becomes extremely sensitive at certain critical
combinations of screw angles. This is because at just those angles, the two pairs
of little magnets exactly neutralize the earth’s magnetic field, or whatever distortion
of it reaches the compass through the Plexiglas windshield. The slightest departure
from neutrality gives the compass a direction, but it can be any direction, depending
minutely on the orientation of each magnet. ¢’ turns out to have a phase singularity
(Figure 25) at a critical combination of ¢, and ¢5.

Example D. In the case of color perception, it means that on any color wheel
some combination of two hues must be exactly complementary, resulting in a
neutral gray transmission.
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These are glib interpretations, not obviously correct. The point I wish to make
here is only that there exists a wide variety of mechanistic possibilities underlying
the inescapable mathematical fact that there exists no smooth map of the sort
required, so we must settle for a map containing at least one isolated phase
singularity, or some more extensive kind of discontinuity. That much is mathe-
matics. The science comes in locating and making use of the discontinuity, and
discovering which of many alternative mechanisms underlie its particular
character.

My appreciation of this mathematical fact is the work of Graeme Mitchison,
who suggests a more compact statement which 1 paraphrase as follows:

Theorem. The only continuous maps from the disk (¢.g., the area inside triangle
afya) to the circle (the possible values of ¢') have winding number O around the
border of the disk. If the winding number cannot be 0 (e.g., because of axiom 3),
then the map cannot be continuous no matter what the underlying physical or
biochemical mechanism may be.

For general background and proofs of this theorem in its various guises, see
almost any textbook of homotopy theory, e.g., J. Milnor (1965) or E. H. Spanier
(1966).

A Phase Determined by a Phase and a Magnitude

With the topological essence of the phase singularity thus extracted and
crystallized, it is convenient to turn attention back to the less symmetric case
of a phase determined by a single other phase. as in items 14A to H above. For
example, in item 14F (page 21) the experimental system determines a phase. But the
independent variables at the experimenter’s disposal are now a phase ¢, as above,
and a stimulus magnitude M instead of another phase. The map is §' x [!' - S
Thus the resulting phase ¢’ is to be plotted over the ¢ by M plane rather than over
the ¢, by ¢ plane. Let us find a stimulus magnitude which maps ¢ to ¢’ with
W = 0 and use that as the unit M. Just as we circumnavigated a triangle in the first
part of this section, we now circumnavigate a square (Figure 27): Along line PQ
with stimulus magnitude 0, ¢ = ¢. If Q is placed one cycle beyond P, then along
PQ, ¢’ rises through one cycle. Along QR, ¢’ changes by some amount; call it x.

Figure 27.  Analogous to Figure 23 but one axis (M) is
a scalar variable rather than a phase. New phase ¢’ is
to be evaluated along path PQRSP.
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Figure 28. Contour lines of ¢’ are added to Figure 27
as in Figures 24-26. In this example the contours
are allowed to converge to a single point.

The winding number being 0 along RS, ¢’ rises and falls without net progression
in either direction. Then from S to P, the change x is undone because PS at phase 0
is identical to QR at phase 1 = 0. So the winding number of ¢’ around the box is
exactly 1 4+ x + 0 — x = 1. For the same topological reasons as encapsulated in
in the theorem, a peculiar discontinuity must lie within the box. The most localized
possibility is an isolated point phase singularity (Figure 28).

One can visualize the necessity of some such irregularity by trying to construct
a smooth surface of data points over the square, subject to the constraint that
along the boundary PQRSP it must rise up one floor like a parking garage
rampway. Think how this is arranged in the garage: It isn’t. The concrete apron
never closes, but has an inside edge everywhere. It’s the same in a helical staircase
or sliding board: The central upright is there not just for structural reasons, but
also to hide a discontinuity. Architects too, not only the Creator, must design
around the facts of topology.

In some cases, the discovery of this screw-like discontinuity constitutes only a
trivial insight into the physical mechanisms involved. In some cases, it constitutes
a more profound insight, which would be difficult to arrive at in any other way.
And in some cases, it has little to do with mechanism but rather points to a
fundamental limitation in the process of measurement. As noted above, measure-
ment consists of defining a suitably convenient observable of state and carrying
out the map from a system’s state space to the space on which that observable
is defined. But every experienced scientist knows that we are not free to define
observables arbitrarily. One way the use of language in science differs from its
everyday uses is that in science one cannot simply define a new term in an intuitively
convenient way, obtain consensus on a concise definition, and proceed to use it.
For terms refer to concepts, and concepts sometimes prove to harbor latent
ambiguities, irremovable ones, e.g., “simultaneity” in relativistic physics. Physicists
ran up against this problem, for example, in the 1920s when it was discovered
that no one could specify simultaneously the position and velocity of an electron,
although position and velocity had served as the basic independent observables
of mechanics since the time of Newton. In the same way, if we insist upon forcing
nature into a description in terms of phases, we may encounter ambiguities,
even paradoxes, implicit in the very definition of that observable because there
are situations in which phase is ambiguous or can only be defined by admitting
ghastly discontinuities into the description of our observations.
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This fact of topology provides us a tool for uncovering phase singularities in
a wide variety of contexts. In the next chapter we examine an assortment of such
singularities preliminary to entertaining notions in subsequent chapters about
their diverse origins in biochemical dynamics. We will then be in a position to
inquire into the physical nature of the phase singularity in each example in
Chapter 10.

D: Technical Details on Application to Biological Rhythms

This chapter has mostly concerned mappings among circles. As Chapter 2
mainly illustrates phase singularities by empirical data, it will be well to pause
before plunging into those examples to make sure that two much-used conventions
are clearly grasped. These are:

1. The correspondence between the ring S' and the phases of something
periodic in time

2. The format here used for portraying empirically measured maps from the
phase ring to itself

The Phase of a Rhythm

“Phase”, like compass direction, is a point on a circle, on S' We identify
directions by a number, on R', inscribed on the rim of a compass. We teach our
children to think of time schizophrenically both as a thread (R') along which we
inexorably progress from left to right, from a past lost in the mists of antiquity
into a future forever receding before our advances, and also as a circle (S') along
which we creep like the hour hand that creeps repeatedly around the face of a
clock somewhere in Greenwich. According to the Oxford English Dictionary,
the original Old English and Old Teutonic stem of our word “time” meant “abstract
extension”. There was no connotation of recurrence in daily or seasonal cycles
such as children now appreciate in asking, “What time is your piano lesson?”
The distinctive features of rhythmic systems seem perplexing, even paradoxical,
so long as our minds dwell implicitly in R'. Let us then plant them firmly on S*
in this chapter about circular logic and phase maps.

By “phase” I mean a point on a ring. But what point and what ring? Let’s use
the unit circle in the standard (x, y) coordinate plane:

x = sin(2nt)

x, nteR!
y = cos(2nt) (. )

or, in complex notation,
=X+ iy=iexp(—2mit) (zeR?).

As t runs from 0 to 1, the phase point runs clockwise around the circle from
north to north (see Figures 6 and 9). As in Example 6 in Section B, our convention
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for angles is taken from the mariner’s compass: clockwise from north, rather than
anticlockwise from east as in the mathematicians convention.

In connection with an ongoing rhythm, phase is a function of time: It is the
fraction of a period elapsed since the most recent recurrence of whatever event is
chosen to mark ¢ = 0. Thus we write:

_ (time ¢ since marker event)

o=J= (standard period T) modulo 1

which makes ¢ =1 equivalent to ¢ = 0. In an undisturbed, perfectly regular
rhythm of period T, this definition implies that ¢ constantly increases:
df (o)
——=1T.
dt /
For notational convenience, we take T as our unit of time henceforth and denote
d/dt by an upper dot. Then the above expression becomes

=1
Defined this way, “phase” is just a conveniently periodic measure of elapsed time.

To indicate the position of a rhythm on a time axis, we will sometimes speak
of its phase as though it were a fixed quantity, not increasing in time. This is
only shorthand. What is intended here is ¢(t,) at some time ¢, which must be
specified. For example, the “old phase” of a rhythm is its phase at the moment
when a stimulus begins, and “new phase” is its altered phase at the moment when
the stimulus ends.

In the preceding paragraphs, we deal in rhythms without giving a thought to
the mechanism of rhythmicity. Slipping a little further from pure observation
toward interpretation of mechanism, phase is used to denote the state of any
process which varies only along a ring or cycle (Chapter 3). Unlike almost any
rhythmic process outside the domain of classical mechanics, the only state vari-
able of any consequence in a mechanical clock is the angular position of its meshed
gears, as indicated by the position of its hour hand. For many purposes, the same
is true in good approximation for circadian clocks. The models of Chapter 3
emphasize this aspect. With such models in mind, one tends to think of the phase
¢ €S" of a clock mechanism. This is a subtle but weightly shift of meaning from
the more innocent use of “phase” above, merely to describe an observed rhythm.
It leads to paradoxes in certain kinds of experiments with biological clocks. Thus,
when pondering mechanisms we must stick to the purely descriptive definition
of phase with fundamentalist zeal; exception is made only in Chapter 3, where
the state space consists of no more than a ring, so each state can be unambiguously
associated with a phase of a rhythm, and vice versa. But in dealing with real
organisms, phase must be defined simply as an observable, a quantity you can
wring out of a measured rhythm, without assuming a one-to-one correspondence
with the state of the (unknown) mechanism that causes the rhythm. In terms of
mechanism, phase is a nontrivial function of state and our objective is to infer
from experiments the topological features of that function. Such features turn
out to have interesting implications.
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Figure 29. Phase, considered as a number rather

than as a point on a ring, cannot steadily increase. It

has to jog back to zero at unit intervals. This notation

carries with it the misleading connotation of abrupt
change.

I dislike to think of phase as a number from (" to 360" or from 0 to 24 hours
or from 0 to 2z radians or from 0 to 1 as in Figure 29. To do so gives the impression
of a relaxation oscillator, as though something physiologically unique must
necessarily occur sometime in the cycle, which point we single out to call p, =0= 1.
In general, nothing of the sort is so. For instance, no one feels momentary vertigo
in crossing the International Date Line (see Box A). The mathematical artifact
is the same in both cases: It comes of insisting that the circle should be mapped
onto a line. In fourth grade geography we learned not to insist upon mapping
the sphere onto a plane but every map in the book nevertheless did it, with apolo-
gies. In the same way, we do not always escape it entirely here. Just as we once
learned to think in spheres while staring at flat pictures, so in this book the reader
must try to think in circles while inevitably handling numbers.

A Format for Plotting Empirical Maps S' — !

We have one more task before going on to Chapter 2. If you are already familiar
with phase-resetting experiments, you may find it expeditious to skip ahead, but
I urge you at least to scan the following pages on data presentation. For the
present book I have committed myself to redundancy in this matter (e.g., see
Chapters 14 and 19) in order to be sure that the idea comes across to every reader,
but it might not work unless you suffer through some of the redundancy.

Recall Example 14F in which a biological rhythm is rephased from an old
(prestimulus) phase to a new (poststimulus) phase. Let’s develop this example in
greater detail. Experiments in this format will play a major part in chapters to
follow. This example focuses attention on the regularities of phase resetting. We
experience phase resetting when we cross meridians by jet travel. We inflict it on
a wristwatch by pulling out its stem and twisting it to adjust to the time at our
landing place. In later chapters (3, 4, 5, and 6) it will be important to deal with
the process of rephasing. But here we deal only with results: What is the new
phase arrived at given the initial phase? The format in which these results were
depicted in Example 14F was chosen for compatibility with one of the many
formats used to depict experimental results. This chosen format was first used
by Pittendrigh and Bruce (1957) and by Hastings and Sweeney (1958) to introduce
the notion of a resetting experiment to the field of circadian rhythms. As this is
the most direct representation in terms of experimental data and happens also
to mesh nicely with convenient theoretical diagrams to appear in later chapters,
I adopt it as the standard format for all presentations of resetting experiments in
this volume. Data drawn from experimental papers in several different formats
(e.g., see Box C of Chapter 4) will all be converted to this format.
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Before going into detail about the format, a word is in order about the basic
idea of a resetting experiment. The notion is that something rhythmic is going
on: Once started by some standard procedure, some event reliably recurs at unit
intervals of time. We could just sit and watch it, fascinated by the regularity. But
we are soon seized by an impulse to poke at it and see what happens. Very com-
plicated things can happen depending on when in the cycle we poke. We restrict
our attention here to just one aspect. In the aftermath of a poke the system even-
tually reasserts its prior rhythmicity with the event occuring at a time 0 (neglecting
multiplies of 1) after the stimulus. The whole idea of these “hit-and-run” experi-
ments is simply to record the time 6 and how it depends on the time in the cycle
when the poke is given. Remarkably enough, something can be learned by sys-
tematic attention to this simple observation. Moreover, it is an observation of
immediate practical relevance whenever one rhythm is to be synchronized by
another, or whenever the expected time of an event is to be changed. In order to
accomplish this rescheduling we need to know how the time 6 depends on the
time in the cycle when we do something about it. My objective here is merely to
lay out the format of such hit-and-run experiments in a standard way that will
lend itself to interpretation of real experiments in subsequent chapters.

Since the late 1950s, experiments of this kind have been published in diverse
formats, using rhythms as different as the cell division cycle, pacemaker neurons’
electric rhythms, the circadian rhythms of whole-animal activity, and the
periodic ovulation of female vertebrates. It seems as though every rationally
conceivable format has been employed, and then some. But if comparisons are
to be attempted, a convenient standard format must be adopted. This turns out
to be one of those intriguing problems for which our habitual reliance on cartesian
coordinates does not provide the optimum choice of format. Toroidal coordinates
prove most natural for visualizing the relationships of idealized rhythms. (See
item 14 of Section B above.) But let’s work our way around to that inference
gradually, starting with the familiar Cartesian graph format.

Figure 30 presents such a format for laying out the results of hit-and-run
perturbation of rhythmic processes. In Figure 30, we see a vertical time axis. The
origin of time is at the moment when rhythmicity is started by some standard
procedure. For example, circadian rhythms can be started by transfering cells
from constant light to constant darkness. Thereafter, some conspicuous event
recurs at regular intervals. We take that naturally given interval as our unit of
time. By choosing the event to call phase 0, we determine the quantity 0, between
the standard start and the appearance of phase 0. Thus, the standard procedure
starts the rhythm, by definition, at phase 1 — 6,. Bear in mind that we have two
time scales going now. We have absolute time ¢ measured from the start all the
way down the time axis. And we have periodic time ¢ measured modulo 1 from
the phase reference events. Further down the axis I have diagrammed a stimulus.
The stimulus need not be instantaneous. It can be any procedure, for example,
turning on the lights and letting them fade gradually back into darkness, or
exposing a cell to a series of action potentials 10 milliseconds apart for as long as
the stimulus lasts. The essential point is that up to stimulus time, and after the
stimulus ends, the rhythmic system is left alone in a standard environment where
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Figure 30. Defining quantities 0y, T, ¢, M, and 0 in a hit-and-run
rephasing experiment.

it is known to function rhythmically with unit period. As diagrammed, the sti-
mulus begins at a time ¢ in the cycle, lasts for duration M, and then ends. After
its end, normal rhythmicity is taken up again with the marker event recurring
after a time 8 plus multiples of 1. The main point of this diagram is to lay out the
format of an experiment and to define the quantity ¢ which, because it is the
complement of a phase, we call “cophase”. Cophase is the time (modulo 1) from
the end of a stimulus to the ¢ = 0 marker event. Just as “phase” always implicitly
means the phase of a process at a particular designated time, so “cophase” means
the cophase at a particular designated time. The cophase at the end of the stimulus
is 0, thus the phase at the end of the stimulus is a fraction 0 of a cycle prior to
¢ =0, that is, 1 — 6. Equivalently, the cophase at any time is 1 minus the phase
at that time. It is the “latency” time from end of stimulus to the rescheduled event.
This quantity has proven convenient to neurophysiologists (Schulman, 1969
Hartline, 1976, 1979; Pinsker, 1977), to circadian physiologists (Ottesen, 1965;
Winfree, 1968 et seq.; Pavlidis, 1973; Saunders, 1976a, 1978), and to cell biologists
(Kauffman and Wille, 1975), although under a variety of names. Unfortunately,
the names are sometimes ambiguous. For example, Kauffman and Wille (1975)
use the symbol ¢ not for the phase of a plasmodium but for the time until the
next mitosis, i.e., for a cophase. Pinsker’s (1977) cophase is measured from the
beginning of his stimulus (train of action potentials) rather than as originally
defined (Winfree, 1968) from its end, the beginning of free-run (see Chapter 6).
Figure 31 introduces a format for comparing the effects of stimuli given at
different phases in the cycle. In Figure 31, a large number of experiments are
displayed side by side, each in the format of Figure 30. They are laid side by side
with stimulus times aligned, so the starting time is systematically advanced along
a 45° line at the top in such a way that the phase at the beginning of the stimulus
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Figure 31. Many copies of Figure 30 (simplified). with “START”
at progressively earlier times before the stimulus.

systematically increases to the right. Stimulus time scans through two full cycles
in this diagram. The quantity ¢, the phase at the beginning of the stimulus, can
therefore be measured equivalently from the last phase reference event to the
stimulus, as in Figure 30, or to the right as diagrammed. The quantity 0 can be
measured from the end of the stimulus to the first phase reference event, or equiva-
lently, from any anniversary of the stimulus’s end, forward in time to the next
phase reference event. The complement of § is the phase of the rhythm at the
anniversary of the stimulus end or, equivalently, at the end of the stimulus. This
new phase is designated ¢’ in the diagram.

In Figure 31, the stimulus has no effect: The marker event occurs rhythmi-
cally all the way down each time axis, straight through the stimulus. Figure 31
thus diagrams an unperturbed control. In Figure 32 it is redrawn with the vertical
time axes suppressed and with continuous diagonal lines replacing the diagonal
trails of dots. In other words, Figure 32 is intended to represent a limiting case
of Figure 31 with infinitely many experiments, separated horizontally only by
arbitrarily small intervals of stimulus phase. Figure 32 introduces coordinate
frames:

1. At the upper left, the time T at which stimulus begins provides a coordinate
to the right, while the latency of the marker event after the stimulus provides a
vertical downward time coordinate 0.

2. In the lower right of the figure, the old phase axis, ¢ from O to 1, stretches
horizontally to the right, aligned by the marker event at stimulus time. The new
phase axis ¢’ stretches from 0 to 1 upward, aligned by anniversaries of the stimulus
end.

(All this sounds dreadfully complicated in words, but it isn’t. Please stare a
long time at the diagram to make it all come clear. Similar diagrams are re-
described in somewhat different context in Chapters 3, 7, 14, and 19.)
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Figure 32. A redrawing of Figure 31 with trails of dots replaced by
continuous curves (uninterrupted 45 diagonals: Stimulus has no
effect). Two equivalent coordinate frames are indicated by (6, T)

and (¢', o).

This being an unperturbed control experiment, the data points lie along the
¢ = ¢ + M locus: New phase equals old phase plus stimulus duration because
the stimulus did nothing, and the new phase is evaluated at the end of the impotent
stimulus of duration M. whereas old phase is evaluated at the beginning of the
stimulus.

The new phase vs. old phase coordinate frame is mobile: It can be moved
vertically or horizontally by unit steps. We expect our data in the present ideal-
ization to be periodic both horizontally and vertically, so that it makes no difference
which placement of the new phase vs. old phase axes is chosen. We will come to
exceptions later in the context of real experiments (e.g., see Chapters 7, 20, 21).

In Figure 33, Figure 32 is redrawn under a different assumption about the
effect of the stimulus: The stimulus is taken to restart the rhythm, no matter when
in the cycle the stimulus is presented. For example, the stimulus might force the
oscillator to a standard state, the rhythm restarting when the stimulus ends. This
stimulus serves as a repeat of the start procedure used above along the 45° line.
In this case, the new phase is always ¢, = | — 0, no matter what the old phase.
Thus, the data lie along a horizontal line.

How else might data lie on such a diagram? The essence of the diagram is
its double periodicity, taken together with our assumption of continuity, implicit
in replacing a trail of dots by an unbroken line. As that line is traced horizontally
through one full cycle, it must move vertically through some integer number of
full cycles, possibly 0 as in Figure 33, possibly 1 as in Figure 32, possibly some
other integer as in Figure 34. But if it doesn’t get back to the same new phase at
the same old phase, then it is telling us that the system was after all only super-
ficially periodic, or else that a given experiment can have two or more alternative
outcomes, depending on unknown factors not specified in this diagram.
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Figure 33. As in Figure 32 except that the stimulus
resets rthythms from any prior T (or ¢) to a fixed phase,
ie, 0 =0yo0r ¢ = ¢

But let us assume that the system really is periodic and well behaved. The
essence of its periodicity is captured more compactly by a topological trick. A
vertical sheet of wallpaper such as the bottom half of Figure 32 can be rolled up
horizontally, superimposing the repeated columns of identical unit cells. In this
form, our graph has an extended periodic ¢’ axis vertically and a single circular
¢ axis in which ¢ = 1 is identified explicitly with ¢ = 0 by joining them. We have
thus carried out explicitly the “modulo” operation implicit in our definition of
phase. We might have done the same for the ¢’ axis, rolling vertically to obtain
a horizontal cylinder. It is not too late (Figure 11). Conducted in either order,
these two rolling operations leave us with a doughnut-shaped piece of graph
paper, a torus. (Conducted in this order, the ¢’ axis threads the hole.) Figure 34

Figure 34. A mosaic of three different possible outcomes of resetting measurements, plotted in the

format of the lower parts of Figures 32 and 33. Resetting types are classified by an integer W: The

number of ¢’ cycles crossed per cycle of ¢. Figure 32 is an extreme case (flat diagonal) of W = 1. Figure

33 is an extreme case (flat horizontal) of W = 0. W = —1 (also shown here) or any other integer type
of resetting is possible.
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was just the single toroidal surface slit open along two perpendicular circles, laid
flat, and repeated for the sake of continuity (see Example 14: S' — S'). Though
redundant, the planar representation is useful and we will see it again in several
contexts because real world data are not exactly periodic and the departures
from exact periodism are sometimes systematic and meaningful. They would be
lost as “noise” in a strictly periodic procrustean bed such as Figure 11. But for
now, that is precisely what we want to do: We want to examine the strict implica-
tions of exact periodicity in order to generate a rigid skeleton of ideas and ex-
pectations on which to hang more flexible realities later.

Let us turn to the torus and inquire how a continuous trail of data points
might lie on its surface. If we concern ourselves only with the logic of continuity
and of periodicity, then the data trails must rise through an integer number of
unit cells in Figure 34 as they advance horizontally through one unit cell. In terms
of Figure 11, this means that the data form a closed ring, threading the hole in
the doughnut in one direction or the other some number of times. Such curves
fall into distinct groups, according to how many times and in which direction
they loop through the doughnut’s hole. Two limiting cases will serve as examples:

1. Suppose the stimulus is so brief (M — 0) that it has almost no effect as in
Figure 32, so ¢’ = ¢. The data then lie in a ribbon exactly superimposed on the
controls. This curve parallels the main diagonal on our toroidal graph paper,
forming a ring that winds once through the hole in what we henceforth take to
be the positive direction (as ¢ increases, so does ¢'). This is called type 1 resetting,
according to its winding number. The winding number is the same as the average
value of the slope, d¢'/d¢. Even if ¢’ differed from the controls by a fixed amount
independent of ¢ (e.g., if the stimulus does nothing but lasts a long time so ¢’ —
¢ = M is not negligible), the data would parallel the main diagonal and link
once through the hole. Even if ¢’ depended markedly on ¢ in certain ways (e.g.,
¢ = ¢ + 100 sin(27¢p) ), the topological type of resetting would still be the same:
The data ring passes many times through the hole, but each time except once it
turns around and comes back out again. And although the slope d¢'/d¢ reaches
great extremes, it averages out to exactly 1 on account of the requirement of
periodism.

2. Suppose the stimulus restarts the rhythm at phase ¢, whenever delivered,
so that ¢’ is equal to ¢, independent of ¢. This curve parallels the equator of
our toroidal graph paper, maintaining a fixed vertical level as it rounds the ¢
axis. It never loops through the hole. This is called type O resetting. Even if ¢’
were 100sin(2n¢), the topological type of resetting would still be 0, as the winding
number of the data through the hole remains 0 despite its passing in and out of
the hole (in opposite directions) many times. The mean slope d¢’/d¢ is also 0.
(For example, see Boxes B and C in Chapter 4.)

Curiously, no other resetting types have been reported from experimental systems
in which a reasonably smooth curve can be sketched through the data. In principle,
any integer type is compatible with the requirements of continuity and of period-
dicity. What further restriction constrains naturally occuring resetting curves
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to type 0 (¢’ vs. ¢ wiggling parallel to the stimulus) and type 1 (¢’ vs. ¢ wiggling
parallel to the start)? This question will be more approachable later, when we
have passed beyond classifying data into a discussion of kinds of dynamical
systems. It turns out (Chapter 6) that some kinds of oscillator mechanism can
yield only type 1 resetting, some kinds can yield both type 0 and 1, and other
kinds can in principle yield any integer type. At that point, we will also have to
deal with the realistic fact that in certain experiments there are systematic devia-
tions from periodicity along the ¢ axis, or along the ¢’ axis, or along both. Thus,
Figure 34 cannot really be strictly rolled up onto the doughnut coordinate system
of Figure 11. Such irregularities do not prevent our measuring phase and cophase
by extrapolating the poststimulus rhythm back to the first moment of free-run
after the stimulus. These particulars are dealt with later in connection with partic-
ular classes of mechanism, and in Bestiary chapters about particular organisms.

A second big assumption lurks scarcely beneath the surface here: An assump-
tion of continuity, glossed over earlier in stating that resetting curves thread their
way smoothly from one unit cell to the next, in Figures 32 through 34. In imagining
a smooth curve threading the data points, we suppose that a small change in the
time at which stimulus is given makes only a small change in the resulting ¢. In
other words, we neglect the possibility of a threshold phase at which the system’s
physiology changes discontinuously by a jump or a jerk. Counterexamples abound.
We take up some of these cases in connection with some kinds of neural pace-
maker in Chapter 6, Section C, in connection with the cell cycle in Chapter 22,
and in connection with the female cycle in Chapter 23.

In fact, a resolute pursuit of even the continuous cases with winding number
W # 1 leads relentlessly to a discontinuity of the monstrous sort called a “phase
singularity” (Chapter 2). But we cannot appreciate the inevitability of a dis-
continuity without first pursuing the narrow path of idealization, restricting
ourselves slightly to consider systems whose phase-resetting data appear to lie
on smooth curves.



2. Phase Singularities
(Screwy Results of Circular Logic)

... beware of mathematicians and all those who make empty prophecies.
The danger already exists that the mathematicians have made a covenant
with the devil to darken the spirit and to confine man in the bonds of Hell.

St. Augustine

A phase singularity is a point at which phase is ambiguous and near which
phase takes on all values. My purpose in this chapter is to give examples by
somewhat idealized description of phase singularities observed in several experi-
mental systems. In some cases, the phase singularity is at this writing only inferred
and not yet demonstrated. Some cases of purely hypothetical and trivial nature
are also thrown in to help clarify the principles that I take to be involved in the
more interesting biological examples. Much is glossed over here that should
disturb a thoughtful person acquainted with the physiology of any one of these
systems. These details are dealt with in Chapter 10 and in the Bestiary (Chapters
11-23).

The 15 examples I've chosen are organized in this chapter as follows:

First come three that are intuitively more familiar than the rest, to make the
geometry familiar. Examples 510 all concern biological time measurement: They
describe phase singularities of living clocks. Physical space is not essentially
involved, except maybe in Example 10, which features clocks in a growing fungus.
From there on, physical space plays an indispensible role. The singularity is
actually visible as the organizing center of a two-dimensional pattern. Example 15
describes the most sensationally visible example of all, an oscillating chemical
reaction in which colorful red and blue striations are organized around phase
singularities in three-dimensional space.

A: Examples
Example 1. Color Vision. My first example is at the same time the most

abstract and the most compellingly graphic. It concerns an oddity of human
color vision cited in the previous chapter as Examples 14A and 15D. Normal
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Figure 1. The plane x, 4+ x, + x3;=1 in the three-
coordinate positive Cartesian depiction of color receptor
excitations.

Figure 2. Thelocus of spectral hues (heavy); its psychophysical
closure through purples (dashed); and the uniform-hue con-
tours, all on the triangular plane of fixed intensity from Figure 1.

color vision in humans is based on three primary colors. Each color of light
falling on the retina excites three distinct receptor processes to different extents.
(Other animals may have different numbers of separate color sensors.) The infinite
variety of physical colors, each defined by a distribution of energy across the
visible part of the spectrum, is thereby reduced in human perception to three
numbers, three rates of nerve activity. Each color occupies a place in the three-
dimensional space so defined. This is a very simple model, ignoring as it does the
effects of surrounding color and texture. However, it is entirely adequate for pure
homogeneous color phenomena, the situation for which the colorimetric model
was invented by Isaac Newton, James Clerk Maxwell, Hermann Helmholtz, and
Thomas Young (see Sheppard, 1968).

If we neglect differences in overall brightness, i.e., if we confine our interest to
equally bright stimuli (e.g., by the criterion x; + x, + x3 = 1 in Figure 1), then
we need deal only with a two-dimensional section through this three-space
(Figure 2). The boundary of this section is a triangle, topologically equivalent to
a ring. Near the triangle’s center, we find the least saturated colors, the grays
associated with roughly equal excitation of all three receptors. On this triangular
section, the spectrally pure colors map to an open U-shaped curve which rep-
resents the wavelength axis from about 400 nm to about 700 nm. The corners and
edges of the triangle are normally inaccessible because (outside of dreams and
clever procedures in the psychophysical laboratory) it is impossible to excite one
receptor to the complete exclusion of others, on account of their overlapping
absorption spectra.

The peculiar fact about human color vision is that we subjectively perceive
mixtures of red and blue as a pure intermediate hue called indigo or purple. These
hues complete a ring between the end points of the spectral U locus. They complete
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it without repeating the spectral hues in reverse order. Thus red is close to orange
is close to yellow is close to green is close to blue is close to indigo is close to
violet is close to red is close to orange. The essence of any topological space is
its connectivity, and we have ring-like connectivity in the case of hues. The closed
U is the “color wheel” of grammar school.

Phrased otherwise, the peculiar fact about human color perception is that we
subjectively recognize colors not by the Cartesian coordinate system R that our
three receptor excitations define, nor by any topologically equivalent coordinate
system, but rather by darkness and brightness (topologically equivalent to radial
distance from the origin), by saturation (topologically equivalent to distance
from the gray diagonal x; = x, = x3), and by hue (topologically equivalent to
an angle about that diagonal). That is, we employ a coordinate system that
somehow maps R* — S’ so far as hue alone is concerned.

What this means on the color triangle is that the loci of uniform hue (neglecting
saturation and brightness) are curves each of which crosses the maximum satura-
tion ring (the color wheel, the closed U) at one point. Inside the color wheel these
curves can only converge. The color to which they converge evidently has all hues
or no hue: It is gray. It is a phase singularity, in an abstract sense that involves
no rhythms in space or in time, but only an irregularity in mapping the triangular
disk to a ring. No such map can be carried out continuously unless the winding
number is zero along every ring that can be traced on the disk. In this case, the
border ring has winding number W =1 so that continuity is precluded. The
inevitable discontinuity turns out to be the most localized and violent kind: a
phase singularity.

Example 2. Navigation in a Rowboat. In Example 14B of the previous chapter
we dwelt upon the relationship between the compass heading adopted by a
boatman and the actual track of his boat as altered by a steady current. We
arrived at a trigonometric formula relating track ¢’ to heading ¢ and the relative
swiftness of the current. We noted that this relation takes either of two qualita-
tively different forms, depending on whether the current or the boat is swifter.
This peculiarity is associated with a phase singularity implicit in the equation
when the boat heads directly upstream (¢ = 0) with the same velocity as the
current (v = v*). In this situation the boat hangs poised forever motionless in
midstream, depending for movement on fluctuations in the heading, the boatman’s
vigor, or the current. The slightest deviation from equilibrium gives the boat a

Figure 3. Taken from Figure 14 of Chapter 1 to indicate the
combinations of ¢ and ¢ that are compatible with any fixed
¢ and *
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Figure 4. The navigator’s mapping: The co-
ordinates are heading relative to the current
(horizontal) and velocity relative to the current
(vertical). The curves are level contours of resul-
tant track direction, relative to the current.

gentle drift in some direction ¢', and all directions are equally accessible. The
combinations of ¢ and v that result in the same ¢’ are indicated geometrically in
Figure 3. Figure 4 depicts this dependence as a contour map of track direction ¢,
plotted on the (heading ¢, velocity ratio v*/v) plane. The contour lines of each
given track direction are identified by their intersections with the heading axis
at v*/v = 0 (no current), where heading = track. At v*/v = 1 all contours converge
near a north heading (upstream). At greater currents or lesser rowing speeds, all
tracks are downstream regardless of heading.

Example 3. What Time isIt? What time it is depends on where you are,
doesn’t it? The clocks behind the newscaster’s desk say “Tokyo”, “Moscow”,
“New York”, and “Canberra” and each reads a different time. But this madness
has its method, as noted in Example 14C of the previous chapter. If we lay out a
ring of clocks along a globe-girdling path—Iet’s say the path of Pan American
Flight #2—then we have a big circle and along that circle, at any instant, local
time advances through a full day. This leads to a difficulty. Our ring of clocks is
a big circle lying on the surface of the planet (Figure 5). Let’s contract it a little.
If we think of it as a necklace of 40 million pocket watches, a meter apart, we can
envision taking up a meter of slack, pushing the watches apart, and doing it
again repeatedly. As the ring shrinks, we may have to walk a bit north to keep up
with it. If we take care that every watch moves north, then each stays in its local
time zone and need not be reset as it moves. Eventually, after all but 100 meters of
wire have been rolled up, the other side of the ring comes into sight over an ice
flow, dragging its millions of pocket watches. Gather up another 100 meters of
wire. Now, what time is it? All times, no time, summertime? Look at the sun if the
clocks don’t agree. When it is at its highest, in the south, call it noon. But the sun
is circling at fixed altitude along the horizon and every direction is south.

This place is a phase singularity.

Figure 5. A ring of pocket watches, initially on the Equator, during its
contraction toward the North Pole.
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Figure 6. A polar view of the North Hemisphere showing bound-

aries of (idealized) time zones. To assign a time to each place on

this hemisphere, the hemisphere must be mapped to the phase ring
(below). This cannot be done smoothly.

Let’s look at it more abstractly. At every instant the determination of local
time as a function of position on the globe is a map from $? — S'. Along the
equator the map is quite tidy: local noon advances four minutes for every degree
of east longitude. [This simple fact was the whole reason for development of
accurate chronometers: They were indispensible for global navigation (see Box B
of the previous chapter)]. So the equator is a convenient line along which to cut
the sphere open, the better to deal with each of the hemispheres separately as a
disk. The two-dimensional disk must be mapped to S' in such a way that winding
number equals 1 along the disk’s border (Figure 6). This cannot be done contin-
uously. The most localized form which the inevitable discontinuity could take
is a phase singularity: a point at which all phases converge, a point that the map
pulls apart to all phases. This is naturally placed at the pole, being both the earth’s
rotation axis and a place where almost nobody lives.

Because time and place are symmetrically measured on the earth’s two hemi-
spheres, there is a second phase singularity. Both have fascinated navigators since
the globe was first charted because both represent inevitable convergences of
meridian lines that were initially sketched to separate and to distinguish successive
arcs along the equator (see Box A).

Example 4. Timing the Tides.

It is even said (by footsoldiers returned from Alexander's expedition to the
Arabian Sea) that the many ebbings and risings of the sea always come
round with the Moon and upon certain fixed times.

Aristotle

Another phase singularity of the same kind is familiar to oceanographers
concerned with the prediction of local tides and with understanding the com-
plexities of their geographic variation along the world’s shorelines. This example
brings out more clearly the involvement of rhythms in time. The tides have many
harmonic components based on the earth’s period of rotation and on both the
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earth’s and the moon’s periods of revolution about their primaries, and on local
resonances determined by shoreline geography and depth profiles. The excellent
approximation provided by linear theory allows us to deal with each component
separately. The amplitudes of the components vary locally, but each component
is independently subject to the same principles. Consider for example the funda-
mental harmonic of the lunar semidiurnal tide M ,, which happens to be dominant
on the Isle of Palms where I am writing.
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i

Figure 7. The surface of a sphere mapped into a segment
of a circle.

In the very first approximation, the tide is a rotating pair of bulges of water
above the global mean sea level. Viewed locally, it is a rhythmic rise and fall of
the water surface, or a rhythmic advance and retirement of water along the sloping
shoreline. The tide cannot be globally synchronous because there is a fixed quantity
of water available. So there is a geographic pattern of phase. This is easy to mea-
sure along the shores, and it is possible to measure at sea using sonar depth
finders. Thus, the tidal pattern on an instantaneous snapshot of the globe could
be portrayed as a map of the sphere onto the phase circle (5% — S'). This poses no
problem to imagination. A sphere is easily mapped into a circle, e.g., as in Figure 7.
But the map I want also has to embody a special fact, namely, that the local
rhythm’s phase (measured relative to Greenwich Mean Time) scans through two
full cycles along any ring girdling the earth near its equator. Since the winding
number is 2, not 0, there is no such continuous map. Try to visualize every point
on a spherical rubber balloon assigned to a point on the circle while wrapping
the equator twice around that circle as required. Figure 8 shows this operation on
the Northern Hemisphere. The balloon has to be stretched flat like a pancake,
and to finish the job, its surface must be punctured in general at two points in
each hemisphere. The edges of each puncture fly out all around the equatorial
circle, so each puncture is a phase singularity. This would be the simplest possible
geographic pattern of tidal phase.

It turns out that there are quite a lot of phase singularities. Some of them
perhaps are lost inside the continental land masses, but there are thought to be
several in the open sea (Defant, 1961; Platzman, 1972). Oceanographers depict
these so-called amphidromic points by drawing “cotidal contours” on the ocean
map as in Figure 9 (from Chart 1 of Defant, 1961). A cotidal contour is the geo-
graphic locus of synchronous tides, the locus along which the tide crests simul-
taneously. Thus, each cotidal contour can be assigned a unique clock time, the
phase of the 12.4-hour cycle when this locus is at full tide. These contours radiate
from the amphidromic point. At the amphidromic point, the tide is full at all

Figure 8. Anattempt to map the North Hemisphere
onto a ring with the Equator wrapped twice around.
The hemisphere must be punctured at two points.
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Figure 10. Tidal circulation in a large
basin (exaggerated).

times or at no time. That is, there is no tide. The water surface pivots about the
amphidromic point like a rotating tilted plane, counterclockwise in the Northern
Hemisphere (Figure 10).

Example 5. The Fruitfly’s Body Clock. Most living organisms have an innate
tendency to repeat their behavior and physiological activities at intervals of about
24 hours. This tendency is ascribed to the working of an internal physiological
oscillator called a “circa-dian” clock or pacemaker (see Chapter 19). What little
is known of its mechanism in any species at present mostly comes from watching
the timing of behavioral rhythms that it indirectly drives. One of the best studied
of these is a neurosecretory rhythm that ultimately times the first appearance of
butterflies, moths, flies, and wasps after metamorphosis (see Chapter 20). Newly
hatched flies appear from a heap of metamorphosing pupae at 24-hour intervals.
These bursts of eclosion activity reveal the phase of an internal clock that can be
started, stopped, and reset in phase by exposures to light.

The Pinwheel Experiment. It was in such an experimental system, developed
primarily by Colin Pittendrigh, that 1 was first able to demonstrate a phase
singularity in a biological clock. The idea was to conduct the following rather
inconvenient experiment:

A lawn of young pupae is spread out on a desk top under constant light (Figure
11). By slowly moving a shadow from east to west like nightfall, oscillations are
started in columns of pupae as they fall under the shadow (see Chapter 20). If the
shadow takes three days to engulf the desktop, an east-west phase gradient
spanning three cycles of phase is established. With all pupae now steadily oscillat-
ing in the dark, they are exposed to light, almost simultaneously, by moving the
shadow southward, exposing first the north edge of the desk, and eventually the
whole desk. Just before the shadow reaches the south edge, it is suddenly moved
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Figure 11. A “gedanken experi-

ment” in which a rectangular field

of circadian clocks is manipulated

by light, obstructed by a moving
shadow.

back up to cover the whole desktop. Thus, each row of pupae was exposed for a
time proportional to its north-south position. Those at the north edge were
exposed for a long time and those at the south edge were not exposed at all. The
desk top now contains an orderly array of combinations of phase (0 < ¢ < 3,
east-west) and duration of exposure (0 < M < BIG, north-south). We wait to see
where pupae simultaneously emerge, and when. This was called the “pinwheel”
experiment because the anticipated result was a pinwheel-shaped wave of eclosion
or, rather, three identical pinwheels rotating side by side, one in each repeat of
the east-west phase gradient. Each should rotate clockwise. This forecast rested
on three well-established observations:

1. Of Kalmus (1935) and Bunning (1935): That eclosion follows the light-dark
transition by a fixed interval plus multiples of 24 hours thereafter. Thus, the eclo-
sion wave must move along the south edge of the desk from east to west (point D
to point A in Figure 12} in each of the three unit cells.

2. Of Pittendrigh and Bruce (1959): That early in the fruitfly’s subjective
night (point B), a brief but saturating light pulse delays eclosion somewhat whereas
early in the subjective morning it (point C) somewhat advances eclosion. It was
presumed (and subsequently verified by Engelmann, 1969; Frank and Zimmer-
mann, 1969; Chandrashekaran and Loher, 1969b; Winfree, 1970b and c) that a
lesser exposure gives lesser delays or advances.

3. Also of Pittendrigh and Bruce (1959): That with saturating exposures, the
transition from the delaying part of the cycle to the advancing part (point B to
point C) is made through a region in which the delay inflicted increases by about
two hours for each hour into the subjective night. In other words, eclosion follows
later after a light pulse given later in the subjective night.

What this adds up to is that if eclosion happens first at point A in Figure 12,
then a little while later it is occurring at point B and a little while after that at
point C and a little while after that at point D and a little while after that at point A
again. The sums of these times necessarily add to 24 hours since everything in
Figure 12 has a 24-hour period. In other words, the region of active eclosion
circulates clockwise around the borders of region ABCDA in each of the three
unit cells of the accompanying figure.
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Figure 12. Figure 11 is repeated after the shadow
covers all permanently, indicating the clockwise
sequence of activity expected along paths ABCDA.

But if the wave of eclosion rotates, then its pivot point has no definite phase.
The pupae in that region cannot be eclosing on a 24-hour schedule. This suggested
consequences that might be biologically interesting, so the experiment seemed
worthwhile not just to verify what seemed a foregone conclusion but to ask in
what manner rhythmicity would break down at the pivot of the anticipated rotor.
So it 1967 I relocated my graduate studies from the Biophysics Department at
John Hopkins University to the Biology Department at Princeton, where Colin
Pittendrigh allowed me to carry out this attempt in the constant-temperature
darkness of a basement animal room during his tenure as Dean of the Graduate
School. The job was finished in a well-insulated basement meat locker in the
University of Chicago’s Department of Theoretical Biology in 1969 and 1970.
Altogether, it required 510 separate experiments in a standard format (Recall
Figure 30 of Chapter 1):

1. The rhythm was initiated in young pupae by transfer from constant light
to darkness.

2. The darkness was punctuated T hours after initiation by an exposure of
duration M seconds.

3. The times of at least three consecutive emergence peaks were observed
several days after light pulse.

The 510 separate experiments in this format may be regarded as discrete samples
of one big experiment, the pinwheel experiment described above. There is no
difference in principle between these two descriptions because (unlike some other
insects) Drosophila pupae determine their eclosion time on the basis of individually
perceived light stimuli, without regard to neighbors™ clocks or eclosion time.
Thus, it doesn’t matter whether they are handled as separate homogeneous
populations or as areas in a continuous sheet of differently treated pupae.

The results are idealized in Figure 13 in the form of a computer-plotted contour
map. Each contour band indicates the locus in Figures 1 and 12 along which
flies are simultaneously active every 24 hours. It indicates the combinations of
¢ and M resulting in emergence peaks after the same delay. Thus after 0 + 24n
hours, eclosion is along the loci marked by a vertical curve. After 2 + 24n hours,
eclosion occurs along loci one band clockwise from there, and so on through the
12 bands representing 24 hours at each of the 3 pivot points. As anticipated by
the simplistic arguments resorted to above, activity revolves clockwise about
pivots disposed at 24-hour intervals in the direction of increasing ¢ (old phase).



Figure 13. Computer-printed level contours of new phase ¢’ on the plane of exposure time 7, to

the right, and exposure duration or energy M, upward. [¢ is T/24 modulo 1, offset by a constant; ¢’

is (emergence time 0)/24 modulo 1, offset by a constant. ¢’ approaches ¢ at small M.] Arrows indicate

wave movement. This is a contour map of a mathematically-defined surface very similar to the hand
sketch in the next figure.

Figure 14.  Six unit cells of the fruitfly clock’s time crystal. Data points are plotted larger in the fore-

ground, smaller in background. Stimulus magnitude M increases toward the background from 0 in

the foreground. M, T, and 6 in hours. ¢ and ¢’ in cycles of 24 hours from an arbitrary origin. See data
in stereo without the idealized surface in Figure 5 of Chapter 20.
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There is a more artistic and experimentally more direct way to present the
data summarized by Figure 13. Figure 13 is a contour map of the surface obtained
by plotting activity time (cophase) below the plane coordinated by stimulus time
(old phase) and stimulus magnitude. Why not just plot the data and draw the
surface in three-dimensional perspective, instead of resorting to a flat contour
map? Figure 14 does this. (The cloud of data points through which I sketched
the surface is presented in stereo perspective in Chapter 20, Figure 5.) The surface
climbs upward as in a spiral staircase winding around poles along the first two
singularities.

The essential point of all this is that the activity monitored appears on the
stimulus plane as a rotating wave. The position of the wave at any instant is a
horizontal cross-section through this screw-shaped surface at the corresponding
vertical level. Since the surface is screw-shaped, its cross-sections, at successively
lower vertical levels, (successively later times) appear to rotate about the central
vertical axis, which serves as a pivot point for the wave (Box B). Actually there
are three distinct pivot points spaced 24 hours apart along the east-west phase
axis in Figures 11 and 12. These correspond to three repeats of the screw-shaped
surface (only two of which are drawn in Figure 14). Since the data are periodic
both along the horizontal old phase axis and also along the vertical new phase
axis, we have here essentially a crystal lattice of data. Each unit cell of the lattice
contains one turn of a screw-shaped surface. I have sometimes referred to this
whole structure as a “time crystal” because it resembles a crystal lattice and all
three of its coordinate axes represent time. The characteristic screw-like appearance
of phase plots near a singularity gives this chapter its subtitle, “Screwy Results”,
following hard on the heels of our anticipating the phenomenon via “Circular
Logic” in the preceding chapter.

This example (the fruitfly clock) was included:

1. To introduce the equivalence of an abstract space of stimulus parameters
to real physical space, as a setting for rotating waves.

2. To introduce the equivalence of piecemeal resetting experiments to spatial
wave experiments, via the time crystal’s screw-shaped data surface.

3. To illustrate again the central role of the winding number in maps of
S' — S': The resetting of a rhythm’s phase constitutes such a map, and if it has
winding number O (type O resetting), then the winding number cannot be 0 around
a certain ring in stimulus space. Therefore that ring must enclose an unpaired
singularity (Box B).

4. To introduce a nontrivial context of application, namely, biological clocks.

The next few examples have the same format and similar results so far as the
topological essentials are concerned, each using a different kind of organism.
Quantitatively, these experiments do far more than just confirm the generality
of the picture first painted by D. pseudoobscura because each species has its own
surprising idiosyncratic distortions of the basic pattern. But for the sake of keeping
our exploration focused on principles in this chapter, these details are relegated
to Chapter 14 and to the Bestiary.
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Example 6. A Mutant Fruitfly’s Body Clock (The Singularity Trap Experiment).
Box C provides an algorithm for experimentally locating a singularity by checking
the winding number of phase along more and more constrictive rings of stimuli
on the stimulus plane. Its application was demonstrated using light pulses to
rephase a mutant Drosophila melanogaster’s eclosion rhythm. In 1972 Konopka
discovered type O resetting in this mutant whereas only type 1 had been observed
in the wild type. So according to Box C, a singularity is implicit in the mutant,
though not necessarily in the wild type. A series of rephasing experiments around
a box FBCEDGATF in the stimulus plane of Figure 15 produced the eclosion
rhythms laid out in Figure 16. Its phase drifts through one full cycle around the
box. Thus the winding number around the box is nonzero, betraying the presence
of a phase singularity inside that box. Dividing this box by a vertical partition
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Figure 15. Stimulus parameter plane: one cycle of old phase vs. stimulus magnitude. (a) The first
round of measurements is indicated by dots along loci BC and CD. In (b), experiments in the second
round of measurements are indicated by dots along loci EF and GH. In (¢), after the fourth round, the
singularity at old phase = ¢* and stimulus magnitude = M*, is known to be in the innermost square.
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Figure 16. 60 emergence rhythms in Drosophila melanogaster populations are plotted vertically

downward from stimulus time (exposure to light). Time is measured in periods of 19 hours. The rhythms

are stacked up from left to right in order around box FBCEDGAF. The rhythm’s phase scans through

one cycle in one tour around this box. You can reconstruct the box and the data above it by photo-

copying this figure and folding it into a cylinder, overlapping the terminally redundant histograms.

The data then ascend helically. On boxes not enclosing a singularity, the data form a stack of closed
rings instead.

Figure 17.  As in Figure 16 except that path FBCEDG is replaced by shortcut FHG. The rhythm still
scans a cycle around this diminished box, so the singularity is not in the omitted part.
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(a chain FHE of experiments at fixed phase in Figure 15b), we find that the right
half does not contain a singularity and the left half does. Subdividing the left
half by a chain GH of experiments at fixed duration, we find that the top half does
not contain a singularity. The bottom half does (Figure 17). Thus, by repeated
alternations between applications of the theorem and execution of the corre-
sponding experiments, we converge on a singular light pulse of 1,700 erg/cm?
applied five hours after the light to dark transition (or at 24 hours, or at 43 hours,
etc,, since this mutant has a 19-hour rhythm). This singular exposure terminates
rhythmicity. This is the phase singularity, (¢*, M*) (“phi-star, M-star”). Putting
all the data together in Figure 18, in exactly the format of Figure 14 for D.

Figure 18.  As in Figure 14 but for the mutant of Drosophila melanogaster used in Figures 16 and 17.

Also only four cycles of new phase are plotted vertically instead of three. All data in the first cycle

of old phase are double-plotted, being repeated in the second cycle. See unduplicated data in stereo

in Figure 10 of Chapter 20. T and 0 in hours. ¢ and ¢’ in cycles of 19 hours measured from an
arbitrary origin.
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pseudoobscura, once again we behold a single simple screw surface. Figure 10
of Chapter 20 plots the raw data as a stereo pair.

In starker form than any before it, this example illustrates the essential con-
nection between winding number and singularities of maps R* — S'. To make
the argument more strictly correct, I should note that although winding number 0
around a box is necessary for absence of singularities, it does not guarantee an
absence of singularities within the box. Phase singularities can be clockwise or
anticlockwise. Paired, they cancel each other’s contributions to a winding number
along any ring that encloses them both. The winding number only tells us the net
excess of clockwise or anticlockwise singularities. If that excess is nonzero, then
that many unpaired singularities must lie somewhere within the ring. But if it
is zero, there might still be any number of balanced pairs. This fact has a curious
implication for regeneration experiments in animals, namely, the occasional
production of superfluous left-right paired limbs, as we will see in Example 11.

Figure 19. As in Figure 14 but for the fly Sarcophaga. according to Saunders’s data (1978, with

permission). The published data cover only one cycle of old phase and new phase, here repeated twice

in each direction. See data in stereo in Figure Il of Chapter 20. M, T, and 0 in hours. ¢ and
¢" in cycles of 24 hours measured from an arbitrary origin.
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Example 7. A Fly that is 1,000 Times Less Sensitive. David Saunders in Edin-
burgh found type 0 resetting in the pupal eclosion rhythm of the fleshfly Sarcophaga
in 1976 (Chapter 20). In this case, as in adult fruitflies (Engelmann, pers. comm.),
the light pulse must continue for several hours at about the same intensity as above:
Stimuli less than four hours long elicit type 1 resetting, and stimuli more than
four hours long elicit type O resetting. The several resetting curves of various
durations are assembled to create Figure 19, which suggests once again a screw-like
dependence of new phase on old phase and stimulus magnitude. Figure 11 of
Chapter 20 plots in stereo perspective the data on which this guess is based. The
neighborhood of the screw axis has not yet been explored systematically.

Example 8. Resetting a Flower’s Clock. Turning to circadian rhythms in
plants, Engelmann et al. (1973), working in Tubingen, Germany, carried out

Figure 20. A time crystal of the plant Kalanchoe according to the data of Engelmann et al. (1973),

with permission. Three cycles of old phase are plotted to the right and four cycles of new phase are

plotted vertically. The format is as in Figures 14, 18, and 19 but the first singularity on the left lies outside

the range of these data. See data in stereo in Figure 5 of Chapter 21. T, M, and 0 in hours. ¢ and ¢’
in cycles measured from an arbitrary origin.
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measurements in exactly the same format using Kalanchoé blossfeldiana (Chapter
21). In this case, a red light pulse of some hours duration resets the rhythmic
opening and closing of Kalanchoé’s little red flower. My idealization of their
results is shown in Figure 20. Once again, we have a two-dimensional lattice of
screw-like unit cells. This is supposed to fit the data presented as a stereo pair
in Figure 5 of Chapter 21. In this data set, pulse durations varied only up to
three hours, but the critical stimulus magnitude M* is more than four hours at
the first T*. Thus the screw axis in this first column of unit cells is outside the
field of view.

The topological structure of these results is not dependent on the specific
mechanism by which light affects the circadian clock. The same basic structure
is obtained by repeating the above experiment, but with the light pulse replaced
by a prolonged temperature pulse (Engelmann et al., 1974). Chandrashekaran
(1974) obtained similar results using prolonged temperature shocks with the
D. pseudoobscura eclosion rhythm. However, his measurements don’t go quite
far enough along the stimulus duration axis: The plot of eclosion time vs. initial
phase and exposure duration looks like the first half of Figures 14 and 18, the
measurements extending only about as far as the screw axis (or so I interpret it).

Example 9: A Phase Singularity for Beer Drinkers. Energy metabolism in
brewer’s yeast proceeds without oxygen by breaking sugar molecules down to
alcohol. Due to a pecularity in the feedback regulation of its rate, the passage
of sugar through this pathway is commonly pulsatile, and the associated bio-
chemistry stably oscillates with a period in the order of a minute. Depending on
when in the cycle it is administered, a brief exposure to oxygen induces a phase
shift in this oscillation. Reasoning from the topological notions repeatedly used
above and from the Pasteur effect (Chapter 12), I proposed in 1971 that the resetting
should be type 0. My subsequent measurements verified this, together with the
full helicoidal resetting surface and its singularity (Figure 21; raw data in stereo
perspective in Figure 4 of Chapter 12). The critical dose is about 1 micromole
of oxygen per wet gram of cells, given a few seconds before the NADH maximum.
Projecting the screw-like data cloud onto the stimulus plane, we obtain a wave
of NADH fluorescence rotating about this point.

This kind of experiment was repeated by Greller (1977) using acetaldehyde
pulses instead of oxygen pulses and by Aldridge and Pye (1979) using Ca®" ions.
The results were the same in the qualitative essentials here emphasized.

The singularities discovered through type O resetting arise from an impossible
map from S' x R! - S' (from a cylinder to a ring, i.e., from the combination
of a phase and a stimulus magnitude to a resulting phase) or, as portrayed in
Figures 12 and 13, from the disk [ - S'. In Chapter 1 we also deal with maps
from two phases to a phase S' x S!' - $'. We saw (in context of color mixing in
Example 1) that regardless of any hypotheses about mechanisms, a certain sym-
metric format of experiment induces a map of this sort that cannot possibly be
continuous. It might include a phase singularity. This fact has its corresponding
expression in the chemistry of yeast cells because oscillating glycolysis in yeast,
so easily perturbed by exogenous chemicals, can also be perturbed by contact
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Figure 21.  Similar to Figure 20, but the data concern the 30-second NADH rhythm of yeast cells.

Prestimulus data are included at the top, clarifying the relationships of this (and previous perspective

drawings) to Figures 30 through 33 of Chapter 1. All data are double-plotted to the right. Also this one

plots M into the foreground, so the sense of the screw is reversed. See data in stereo in Figure 4 of

Chapter 12. T and § in seconds, M in units of oxygen dosage. ¢ and ¢’ in cycles of 30 seconds from an
arbitrary origin.

with differently phased cells. The two methods can be distinguished as follows:
A hit-and-run attack with a chemical stimulus (oxygen, calcium, or acetaldehyde)
is only one way to probe the reactions of an oscillator throughout its cycle. In
some ways, a more natural stimulus is another batch of cells, oscillating on the
same cycle, but at a different phase. Thus, instead of testing each part of a cycle
with a small to large dose of one of its chemical substrates, we could test each
phase by confrontation with each other phase: with a variety of stimuli varying
not in amount but in a quality that varies along a circle. In other words, two
batches of cells could be combined at different phases in the cycle. They interact
to establish mutual synchrony. What is the compromise phase?

This experiment was actually carried out (for other reasons) by Ghosh et al.
(1971). T have replotted their data in Figure 22. I divided the cycle into 10 equal-time
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Figure 22. Phase compromise experiments, plotting hybrid phase as a function of two parent phases:

The digits represent actual hybrid phase in one-tenth cycle intervals from the data of Ghosh et al, 1971.

The digits are placed within one-tenth cycle by one-tenth cycle boxes; their positions within each
box are arbitrary. The contours lines roughly link equivalent data.

parts and ruled a 10 x 10 square to represent the phases of the two “parent”
volumes of oscillating yeast cells. (The phase was observed as usual by following
the sinusoidal changes of NADH fluorescence; see Chapter 12.) The phase observed
in the mutually synchronized mixture is extrapolated back to the moment of
mixing when the parent phases were as indicated. I tabulated this resultant phase
in the appropriate little square, once again in units of one-tenth of a cycle. The
47 experiments shown do not give a clear impression but they are at least not
incompatible with a continuous map such as I have drawn on an overlay. The
continuous map was designed:

1. To fit the data as well as any smooth pattern could. (All but four out of
47 data fall within +¢ cycle from the contour map.)

2. To show the resultant mixture phase equal to both parent phases in the
case of control experiments (not actually reported) in which aliquots of equal
phase were recombined.

3. To reflect, in its symmetry about the main diagonal, the arbitrariness of
calling one aliquot A and the other one B.
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4. To confine the necessary discontinuity to as small an area as possible.
In this case, we end up with one isolated phase singularity in each triangle, above
and below the diagonal. (Using the cell division cycle in Physarum (Chapter 22),
the experiments in identical format seem to reveal a quite different sort of
discontinuity instead of a phase singularity.)

A caveat: These experiments have not been repeated. The uncommonly severe
variability of results in the pioneering study of Ghosh et al. leaves room for a
radically different interpretation, i.e., that cell mixtures don’t compromise at all
but always synchronize to one or the other of the parent populations. In all but
two out of the 47 trials shown, the “compromise” phase was within one-tenth
cycle of one parent’s phase. It might be that uncontrolled variables such as the
details of mixing determine which parent dominates.

However that may be, the phase singularities discovered by chemical pertur-
bation (oxygen, calcium, acetaldehyde) are distinctly visible in those data. I first
proposed the experiments shortly after finding the phase singularity in a circadian
system. Because of the temptation to believe that the phase singularity might
reveal something unique about a universal circadian clock mechanism, it seemed
incumbent upon me to demonstrate that the topological argument is really
model-independent by applying it to a chemically different clock. Glycolytic
oscillations seemed to qualify in view of their short period and acute temperature
sensitivity of rate. We know from the pioneering studies of Chance and Pye
(see Chapter 12) that yeast oscillations respond to AMP exactly as circadian
systems respond to light. Thus experiments could be carried through in identical
format using oxygen gas instead of blue light. The results were qualitatively
the same.

In the remaining six examples we turn to phase singularities involving physical
space in a more substantial way than in the pinwheel experiments previously
cited, which were actually carried out piecemeal. The first example is another
circadian rhythm which, because it shows type 0 resetting, is a strong candidate
for experimental realization of a phase singularity.

Example 10. Morphogenesis in Fungi. The creature I have in mind is the
fungus Neurospora crassa, the one Hamner took to the South Pole (see Box A).
Its rhythm is a banding pattern that marks the loci of the frontier of growth at
successive 22-hour intervals. Hyphae formed along the frontier at the same hour
of each successive circadian cycle turn out to mature into conidia, the asexual
spores by which Neurospora reproduces. Hyphae formed at intermediate phases
remain forever vegetative, without forming conidia.

Suppose the pinwheel experiment of Examples 5-9 were conducted on a square
sheet of Neurospora growing on a much larger bed of nutrient agar. According
to Figure 13, the winding number of new phase around the square ABCD must
be W = 1. Suppose phase increases steadily clockwise. That means that as the
square continues to grow at its edges, the locus of conidiation moves around
the edge, circumnavigating the edge every 24 hours as the frontier moves out.
Thus, the conidiation pattern is henceforth a spiral. Another way to visualize this
implication can be seen in Figure 23. The continuity of pinwheel experiments
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Figure 23.  An idealized colony of Neurospora 1s shown with

thirteen successive positions of its {rontier. Radial contour

lines indicate successive positions of phase 0 of the circadian

clock. The locus of (¢ = 0 on the frontier) is accordingly an
Archimedes’ spiral.

using other circadian clocks suggested that in Neurospora, too, phase should
vary continuously with the timing and intensity of a light pulse, i.e., with position
on the mycelium. The usual result in Examples 5-9 is that the contour lines of
uniform phase diverge from an internal singularity after the stimulus is given.
An hour later, the phase contours are all still there, but the phase each represents
is an hour later, as with the cotidal contours of Example 4. Alternatively, one
could say that the contour of maximum conidiation-induction moves clockwise
from one hour to the next, revolving around the singularity like a searchlight
beam as do the eclosion contours of Example 5. As it goes, it induces hyphae
along the expanding frontier to differentiate into conidia. Thus the conidia appear
along a spiral locus.

This experiment has not yet been tried.

The pinwheel experiment is only one way to arrange a nonzero winding number
around the frontier. According to one view of the underlying physiology
(Chapter ), the fungus is liable to fall into a habit of any small integer winding
number immediately after germination from a tiny dot of spores. In this way,
multiple spirals, both clockwise and anticlockwise, as well as concentric ring
patterns should arise spontaneously. This is in fact observed (at least up to winding
numbers +3 and —3) in Nectria, in Penicillium, and in Chaetomium (see Chapter
18). At present, nothing is known about the phase singularity (or multiple phase
singularities) that must lie within spiral or multiple-spiral mycelia. According
to one theoretical model (Winfree, 1970a), the rhythmic system of the germinating
spore begins in the phase-singular state. In D. pseudoobscura, as well, it seems
that larvae reared from the egg in conditions of constant temperature and constant
darkness remain in the phase-singular state (Zimmerman, 1969; Winfree, 1970b,c,
1971a).

The next three examples are drawn from the recent literature of developmental
biology.

Example 11. Regeneration of Limbs. According to one view of development
in higher organisms, each organ emerges from a little two-dimensional patch
of tissue that has some kind of organizational coherence. Such patches are called
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developmental fields. French et al. (1976) and Bryant et al. (1977) have recently
gathered an impressive body of evidence under the proposition that (at least
in arthropods, and maybe in some vertebrates too) each cell knows its role in the
developmental field by retaining within it a quantity defined on the ring—
something like a phase, or an angle. At present no one has the slightest idea what
this might mean biochemically. It might seem appropriate to remark, as Isaac
Newton once did in a similar case, that

To tell us that every Species of Thing is endowed with an occult specifick
Quality by which it acts and produces manifest Effects, is to tell us nothing.

Opticks, 1730

However, the complex mechanisms of evolved systems must be unraveled by
layers. In this case the deeper layers of molecular mechanism await another
generation, while our present concern is with the implications of the putative
phase-like quantity. French et al. (1976) argue in effect (and Glass (1977) recasts
their argument to bring out this aspect more forcefully) that the center of the
field is a phase singularity, and that if experimental manipulations so rearrange
blocks of tissue that additional phase singularities are inevitably created, then
additional organs of appropriate handedness must emerge at those sites. A number
of startling experiments are demonstrated which readily lend themself to this
“clockface” interpretation, as it has come to be called. This matter is clearly of
central importance in any discussion of the biological role of phase singularities.
The biological background and alternative interpretations of the data are elab-
orated in Chapter 16. The physiological nature of the putative singularity is
examined in Chapter 10 together with other kinds of singularity collected in
this chapter.

This example and the next are included to play the role of “straw men”. Their
apparent phase singularities are, in my view, particularly insubstantial. Although
these two examples can be described in terms of maps among rings, I believe
this language is inappropriate and misleading. I include them because if I am
right, the existence of such cases alerts the reader against mechanical application
of language: We are trying to do science, not just make mathematical metaphors.
[ include them also because I might be wrong, in which case they greatly enrich
the catalog of biological phase singularities.

Example 12. The Cuticle of the Arthropods. The lens of the insect eye might be
regarded as an organ, somehow assembled by a few underlying cells whose job
it is to secrete perfectly transparent cuticle in the right geometric pattern. This
pattern is periodic on the scale of wavelengths of light. This periodism was initially
ascribed to rhythmic secretion of cuticle (see Chapter 17). Electron micrographs
of microtome sections through the lens cuticle consistently exhibit a phase
singularity of rhythmic banding in sections transverse to the optic axis. A spiral
of more electron dense cuticle is plainly seen winding in toward this center. In
sections parallel to the optic axis, a periodic banding is seen. Every vertical line
penetrating into the lens parallel to the optic axis exhibits rhythmic alternations
of electron density along its length, ie., along the time-of-deposition axis. In
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sections perpendicular to the optic axis, the phase of this rhythm is seen to advance
through one full cycle as samples are taken at successive positions around any
ring concentric to the dark spiral’s center. Thus, we have a nonzero winding
number of a structural rhythm (originally a temporal rhythm in sequence of
deposition) and a phase singularity continuing in depth like a screw dislocation
in a crystal. Taken together, these perpendicular sections suggest a screw-like,
helicoidal surface of electron density within the block of sectioned cuticle that
was lens. Does this have some developmental meaning? Yes, but it is not at all
what it appears to be. This mystery is investigated further in Chapters 10 and 17.
(My objective for the present chapter is simply to present many cases of phase
singularities as phenomena without resolving interpretations; this is reserved for
Chapter 10 after a groundwork of theoretical concepts has been laid in intermediate
chapters, and after the reader has acquainted himself with more of the pertinent
experimental details in Chapters 11-23.)

Example 13. Cellular Slime Molds. My third example from the lore of devel-
opmental biology concerns the marvelous social amoeba Dictyostelium discoideum,
which has figured so prominently of late in the burgeoning literatures of cAMP
and of intercellular communication (Chapter 15).

It has been appreciated for a long time that the preamble to morphogenesis
of social amoebae consists of a gathering together of widely dispersed individual
cells, mediated by their periodic relaying of a chemotactic signal from a pacemaker
cell. This signal guides many thousands of other cells to the pacemaker (Shaffer,
1962). Here they contact one another and assemble a little jelly-like slug which
creeps away to find a place suitable for metamorphosis into a fruiting body.

The organizing waves emitted by a pacemaker cell are closed rings concentric
to their source, like ripples emanating from a rain drop in a puddle. Thus, some
interest attached to Gerisch’s observation (1965) of rotating spiral waves in the
same situation with the same consequences. The essential differences are that a
spiral wave consists of one continuous locus of cell movement rather than a series
of disjoint rings of moving cells, and that it requires no special cell at its source.
Thus spiral waves commonly arise just as soon as the maturing cells develop a
capacity for signal relaying, but before any cells begin to oscillate spontaneously.

How can a wave have no source? It would seem that each wave must first
appear somewhere, and that point is its source. But what is manifestly true of
concentric ring waves Is not necessarily true of rotating spiral waves. If we trace a
piece of a spiral wavefront backward in time, we never come to a clear source.
Rather, we end up in a vague region of indeterminate periodicity or end up cir-
culating endlessly about a tiny circle bounding such a region, concentric to the
pivot (see Section B of Chapter 9). The wavefront at any instant may be taken as
a locus of synchronous cells: all cells pulse periodically, at the regular intervals
of spiral rotation, and the wavefront is the locus of simultaneous pulsing. A
multiple-exposure photograph taken by opening the shutter at intervals of one-
tenth cycle would presumably show 10 equispaced parallel spirals, all converging
toward the pivot or its bounding circle. If these loci be the contours of uniform
phase, then that circle is (or contains) a phase singularity.
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Close observations of this interesting region have just begun to appear. In the
3-dimensional slug this singularity is thought to become a 1-dimensional rotation
axis. (Clark and Steck, 1979).

Example 14. Pathological Rotating Waves in Heart, Brain, and Eye. The
Dictyostelium cell’s sudden triggerable release of cAMP in many ways resembles
the sudden triggerable inrush of sodium ions through a nerve cell’s plasma mem-
brane. In both cases, the excited (permeable) state propagates once triggered by
a threshold-transgressing stimulus (Chapter 14).

Thus a pinwheel wave similar to Dictyostelium’s might be looked for in an
extensive planar expanse of nerve-like tissue. The obvious candidate is heart
muscle. At least since McWilliam (1887), medical physiologists have postulated
some kind of rotating wave, a “circus movement”, as an explanation for high-speed
rhythmic flutter, and for the much more pernicious mode of asynchrony called
“dementia cordis” or fibrillation. Though there are probably other mechanisms
too, some kinds of flutter and fibrillation do behave, in many ways, like a sourceless
traveling excitation which rotates simply because it got started somehow. But
until 1973, the best case for its existence rested on indirect physiological inference
and on a well-developed mathematical theory confined almost exclusively to the
Mexican and Russian scholarly journals. In 1973, Allessie et al. published the
first critical experiment, using a piece of rabbit atrium stretched out flat to accom-
modate the necessary array of 10 observing electrodes. Using a delicately timed
electrical stimulus to initiate the wave, he found instances of persistent, pernicious
rotation. Electrical activity circulates as a pinwheel wave, recurrently exciting

Figure 24. Map of the spread of activation in a piece of isolated left atrial muscle during a period of

sustained tachycardia as constructed from time measurements of the action potentials of 94 different

fibers. The impulse is continuously rotating in a clockwise direction with a revolution time of 105 ms.

At the left are shown the transmembrane potentials of five fibers which lie along the circular pathway

(A-E). The moments of depolarization, in msec, are given together with the action potentials and

the isochronic lines of the map (Allessie et al., 1977, Figure 1, by permission of The American Heart
Association, Inc.).
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every patch of muscle to contract (Figure 24). Every point is rhythmically active
except the central patch around what would be a pivot of the pinwheel wave. In
this central patch, activity is irregular, as befits a phase singularity. The nature of
fitful activity in this region poses extremely interesting questions for neuro-
physiology and for mathematics both. The question has mathematical interest
because the phenomenon is apparently not a consequence of the inevitable
inhomogeneities and physiological complexities of real rabbit myocardium. A
similar pivoting wave and similar irregularities near its “pivot” were observed by
Gulko and Petrov (1972) in a very simple computer simulation based on an
idealized notion of excitable membrane, a simplification of the Hodgkin-Huxley
equation (see Figure 5 of Chapter 14).

A much more slowly rotating wave of quite different pathological mechanism
occurs in the cortex of the brain and in the retina of the eye. Still another kind of
rotor, associated with seizures, has been observed in the cortex. See Chapter 14
for detail and references.

Example 15. Self-Organizing Patterns of Chemical Reaction. 1 conclude this
section with a remarkable example of recent vintage from physical chemistry. It
turns out that some kinds of chemical reaction are capable of sustained oscillation
and of excitability, very much as in Dictyostelium and in nerve membrane.
Chapter 13 elaborates in detail about the most convenient of these, a malonic
acid reaction in which chemical changes reveal themselves colorfully in water
solution at room temperature on a time scale of seconds to minutes.

Consider this reaction in a three-dimensional volume of liquid. Imagine that
you could wander through it, monitoring the phase of the red-blue alternation
going on everywhere. Let’s start at any place P in Figure 25 and follow a closed
path through the liquid, ending up back at P. The path PP is a ring. Let’s suppose
we could monitor phase instantaneously around the ring. The net change of phase
along path PP must be an integer number of cycles. Call this integer W, the winding
number of phase along ring PP. Unless W = 0, the path PP cannot be contracted
to a point without encountering a phase discontinuity. Only two possibilities
present themselves:

1. W is necessarily always 0. This is simply not true, as the photograph in
Figure 26 shows.

2. Locus PP loses its winding number by unit increments, necessarily abruptly
as some special loci are passed during the progressive contraction. These loci
would be phase singularities. Eventually there remains only one enclosed within

Figure 25. A closed path in three-dimensional space.
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Figure 26. A photograph of rhythmic patterns of chemical activity in a dish of malonic acid reagent.

Eight sources are visible. A survey of instantaneous phase along any one of the three closed paths

shown leads thus through the indicated integer number of complete cycles of phase. This is the number
of left-handed spiral sources minus the number of right-handed spiral sources enclosed.

PP, so PP can be contracted to a tiny ring of winding number +1 around that
locus, or pulled across and contracted to homogeneous phase. This is, in fact, how
it is. Figure 26 gives an example in two dimensions, each singular locus being just
a point.

In three dimensions, the phase singularity must be at least a one-dimensional
locus, a thread or filament of ambiguous phase in the reacting liquid. This is
necessary because each phase singularity must be encountered along any path
of contraction of PP. Such paths are surfaces bounded by PP. If every such surface

Figure 27. Three (out of a continuum of) caps bounded

by a closed ring (PP) as in Figure 25. Each cap is a locus

along which PP is contracted to a point. Each contains a

phaseless point. The locus of such points (**) is thus
one-dimensional.
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encounters the singular point, then the singularity must be at least a one-dimen-
sional locus (Figure 27).

This thread of ambiguity has been observed visually and I have reconstructed
several from chemically fixed serial sections of three-dimensional blocks of
malonic acid reagent. These threads typically close in rings for reasons perhaps
not evident here but elaborated in Chapters 9 and 13.

B: Counterexamples

That will be enough for examples of the smooth patterns of timing that lead
one to anticipate some kind of singularity at the center. A few counterexamples
now seem appropriate to forestall any impression that such patterns and their
phase singularities are topologically inevitable consequences of using a circular
measure, and therefore of no scientific interest. This inference has enough truth
to it that I have at times mistaken it for the whole truth. It comes especially close
to being the whole truth in connection with the rowboat navigation problem
As I elaborate in Chapter 16, much the same might be said of the case of limb
regeneration: There 1 believe the apparition of a phase singularity has more to
do with logic and the peculiar but convenient choice of a phase-like measure than
it has to do with questions of dynamics, of models, of mechanism.

It is essential in this business to attempt a segregation of issues of logic and
measure from issues of fact and mechanism; that comes in later chapters. For
now it will suffice to note that a phase singularity of some kind (though not neces-
sarily an isolated point) is a topologically generic consequence of continuity and
type O resetting (Box C). However, many kinds of rhythmic systems violate con-
tinuity or do not exhibit type O resetting. For example, experiments that might
have revealed type O resetting or phase singularities in the cycle of cell division
still leave those matters in doubt (Chapter 22). Resetting experiments on models
of the female cycle, and probably on the real mechanism too, exhibit gross dis-
continuities, possibly due to threshold processes assumed to underlie hormone
release, ovulation, etc. (Chapter 23). Many kinds of nerve, though rhythmic in
their firing, either in isolation or in response to specific stimuli, seem to suffer
such an abrupt alteration of membrane behavior during the action potential that
resetting maps are grossly discontinuous (though curiously, not always at action
potential time) (Chapter 14).

Turning from particular cases to more abstract categorics, there are mechanisms
in which rhythmicity is secured through abrupt transition from one state to
another, eventually leading back to a prior state. Such discrete state devices, or
logical automata as they are called, have been widely employed as metaphors
for biological rhythms. But there is no place in such models for resetting curves
or surfaces or, for that matter, for considerations of topological continuity.

The class of models taken up in the next chapter are completely continuous
and smooth in their behavior but, for reasons to be developed there, can only
support type 1 resetting. These too have enjoyed wide popularity as underpinnings
for experimental design and inference about biological clocks, but they have no
singularity.
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Another class of mechanism employs continuous kinetics up to a point at
which a fast mechanism, previously inconspicuous, intervenes like a deus ex
machina to abruptly restart the process at its beginning. These so-called relaxation
oscillators have traditionally provided the physiologists’ first recourse for explana-
tion of spontaneously rhythmic happenings (see Chapter 6, Section C). But on
account of the near-discontinuous jump, their resetting maps are not practically
classifiable, winding number goes undetermined, and topological arguments
cannot fence in a singularity. If one exists, it cannot be detected by examining the
geometry of timing relations elsewhere (but see Chapter 10, Section B.)

Thus, if we in fact observe a phase singularity, then we have some explaining
to do in the contingent terms of empirical science, not only by making the graceful
gestures of abstract topology.

C: The Word ““Singularity”

The appearance of singularities in a physical theory suggests inconsistency
and room for improvement.

Narlikar, 1970

Before departing this chapter, T wish to return to its opening lines, in which
the word singularity was defined. Let me elaborate on that definition. As used by
mathematical physicists and as I use it here, the word singularity means a place
where slopes become infinite, where the rate of change of one variable with another
exceeds all bounds, and where a big change in an observable is caused by an
arbitrarily small change in something else. As James Clerk Maxwell observed,

Every existence above a certain rank has its singular points: the higher the
rank the more of them. At these points, influences whose physical magnitude
is too small to be taken account of by a finite being, may produce results of
the greatest importance . . . .

Cited on p. 972 of Newman, 1956

According to the bible of theoretical physics (Morse and Feshbach, 1953) during
the years when those who taught me physics were learning it:

...singularities . . . are usually the most important aspects of scalar and
vector fields. The physical peculiarities of the problem at hand are usually
closely related to the sort of singularities the field has. Likewise, the mathe-
matical properties of the solutions and differential equations are determined
by the sorts of singularities which the equation and its solutions have. Much
of our time will be spent in discussing the physical and mathematical properties
of singularities in fields.

My involvement with singularities began at a desk in the Eisenhower library
in Baltimore, to which I retired each morning in the fall of 1965 with only a pencil
and pad to discover some questions natural to an interest in physiological
periodism. At length I fumbled to an interest in maps among rings and products
of rings. The essence of that subject, according to the quote above, lies in the
singularities of those maps. That led to noticing such objects between the lines of
current papers from experimental physiologists. A singularity is a kind of dis-
continuity. It might or might not be interesting. Interest goes with meaningfulness.



72 2. Phase Singularities (Screwy Results of Circular Logic)

Following Fahrenheit and Celsius, I might invent a new temperature scale called
Winfree, on which the temperature Winfree is defined as the reciprocal of tem-
perature Fahrenheit. Thus the temperature Winfree would have a singularity
somewhat below the freezing point of water, where temperature Fahrenheit goes
through zero. But this would have no possible physical significance. This is what
is called a “mere coordinate singularity”, a mathematical artifact of choosing a
peculiar coordinate system.

Other kinds of singularity cannot be removed by any reasonable change of
coordinates. In other words, they are defined in terms of variables whose physical
import is immediate. Such, for example, are the space-time singularities asso-
ciated with black holes. One of these is widely believed to be the creation of the
universe. That’s interesting. On a more modest scale, the singularity of heat
capacity that ushered in the quantum mechanics of crystal lattices under the
banner of “the ultraviolet catastrophe”™ was a nonremovable singularity inter-
relating basic physical quantities. Arguments about winding numbers and the
theorem of page 28 have been deployed recently to establish the existence of
elementary particles as singularities in quantum-mechanical continua (Rebbi,
1979) and the existence of Bloch points as singularities in magnetic bubbles
(Slonczewski and Malozemoff, 1978).

Yet according to one cogent viewpoint, singularities happen only in models.
In real life, the singularity is always somehow evaded. Wind velocity falls back
to zero in the core of a tornado, color mixtures vanish into grayness, and a
rhythm can simply go flat or become very wiggly with no fundamental-frequency
component. When a phase singularity results from feeding observed facts into a
soundly reasoned model, we know that something has gone wrong in this model
and that we are looking at a distillate of the logical contradictions implict in our
notions of how the real world operates. Experiments that seem to imply a sin-
gularity signal a contradiction borne of leaving something out The purpose of
dabbling in models and of contriving experiments is to find out what is left out
of our thinking, to see what hidden escape hatch a real system takes in evading
the demand that it achieve the impossible.

In the case of black holes, there remains a lively debate over the reality of
singularities in the space-time “continuum”. For example, during the month in
which I first wrote up Drosophila’s answer to the Pinwheel experiment for publi-
cation, Fred Hoyle (Bakerian Lecture, June 1968) accosted the Royal Society with
the question, “Do singularities exist in the real world or are they only metaphysical
entities?” I suspect that what is ultimately being asked is whether or not our
cherished observables (for example, distance, time, and mass) are in fact as funda-
mental as we imagined before finding that they can be involved in singularities.
Maybe they are only observables, poorly chosen in view of their peculiar behavior
near singularities, like the Winfree temperature scale. The question then becomes:
What are the proper quantities in terms of which the world functions rationally
and continuously?

My attempts to answer this question in the cases of biological and biochemical
phase singularities require additional familiarization with the experimental
systems (Chapters 11-23) and some elaboration of dynamic models (Chapters 3-9).
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Only in context of the very simplest dynamic models (next chapter) does the phase
singularity acquire an ineluctably paradoxical character. Subsequent chapters
provide amendments to the simplest models whereby phase singularities become
perfectly tame, though not uninteresting, biological phenomena. We reconvene
in Chapter 10 for a look at the physical origins of the phase singularities used as
examples above.

Because we must dabble in dynamical systems, I must issue advance warning
about a homonym. “Singularity” also means simply “a point where something
singular happens”. “Something singular” need not necessarily involve a discon-
tinuity. Thus, mathematicians in speaking of the singularities of maps may mean
nothing more sensational than the point in deforming a curve at which it first
acquires an extra bump. Developmental biologists identify the sites where a hair
will emerge on an insect’s cuticle as singularities. Engineers use the terms “singular
point” or ‘‘singularity” interchangeably in speaking of dynamical systems to
indicate that unique state at which all rates of change are simultaneously zero, as in
a chemical steady-state or the mechanical equilibrium position of a rocking horse.
This ambiguity contributes to the terrible confusion in many people’s minds
about “catastrophe theory”, which, in its presently best elaborated manifestation,
concerns the zeros of potential flows. This is a subject whose richest domain of
clear application seems to lie in engineering physics (Thompson, 1975; Thompson
and Hunt, 1977). The zeros of potential flows are the states at which all rates have
dwindled to nothing, the equilibrium states, commonly referred to as singularities
in the engineering literature. But the singularities of catastrophe theory are in a
different space altogether, the space of control parameters. They are the particular
combinations of control parameters (e.g., loads on a structure) at which the con-
figuration of equilibria (singularities in the engineer’s sense) undergoes a change.

The distinct uses of “singularity” create an opportunity for real confusion in
this book because in certain kinds of dynamic systems, described in Chapters 5
and 6, the state which is singular in respect to rates of change, being a state of zero
amplitude of oscillation, is also a part of the phase singularity, the locus of states
where phase does something singular. In fact, in special kinds of dynamical systems
(Chapter 5), it is exactly coextensive with the phase singularity. But in less
exactingly specialized kinds, e.g., in the chemical rotors described above, the
reaction steady-state is in no way related to a phase singularity (Chapters 6, 8,
and 9). To help preserve this distinction, I will usually say “phase singularity”
rather than just “singularity” in this book, and in referring to the steady-state of
reaction, 1 will say “steady-state”, not “singularity”.

The arguments explored up to this point have not in any way involved con-
jectures about dynamic systems or kinetic models. But because some of the most
intriguing phase singularities do arise from processes in time, we would like to
know what kinds of dynamic systems are at least compatible with the observed
facts and what those kinds would lead us to expect about the nature of the phase-
less state. As Sherlock Holmes was wont to enounce, “Singularity is almost invari-
ably a clue.” Thus we pass to the next chapter, about dynamics on rings.
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As scientists we do not merely read the book of Nature. We write it . ..
How much more so then the biologist, who deals with reality of such elusive
complexity that only deliberate simplification can cloak it with the appearance
of intelligibility. Nevertheless, this is the way our science progresses. But
we must accept our concepts for what they are, provisional approximations
that are as much fictions of our minds as they are faithful depictious of the
facts.

C. de Duve, 1969

A: Basic Principles, Paradigms,
Language Conventions, Epistemology

All things by immortal power
Near or far
Hiddenly
To each other linked are,
That thou canst not stir a flower
Without troubling a star.

Francis Thompson, 18601907

Although it may be fashionable to acknowledge that everything is connected
to everything else in principle, some things are more tightly connected to each
other than to all the rest. Such a little knot of causal interactions goes by the name
of a system. It is also fashionable to speak of one’s playthings as systems, and I
shall adhere to this convention. It will make life easier in the long run to clarify
some conventional jargon at this point, as follows.

The Instantaneous State

The state of a system consists of everything you need to know about it right
now in order to know what it will do next in response to select stimuli. A system’s
present state is determined by a collection of variables of state. Each one takes
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its values within some topological space, e.g.,

1. On the real line (e.g., temperature from —273°C to very high values, or
concentration from zero to a solubility limit), or

2. On the complex plane (e.g., the impedance of an electric circuit, or the
quantum mechanical wave function of a particle at a particular place and time), or

3. On a set of discrete points (e.g., the excited, resting, or refractory states of
a model nerve cell, or the on or off states of switches or of genes), or

4. Onaring(e.g., the phase of an alternating current or the color of a lizard), or

5. On a sphere (the position of a navigator’s boat on the globe, or the orienta-
tion of a flying bat)

Most systems have a lot of state variables; in principle any number if indeed
“thou canst not stir a flower without troubling a star”. But for specific interests
some few of these variables are more important than the rest. Call the state vari-
ables that you consider important X; (i = 1,2, ..., D). Ignore all the other state
variables that are involved in principle but which have little bearing on the
observables of interest. An observable is something you can monitor, measure,
or otherwise interact with. Like state variables, different kinds of observables
must be defined on different topological spaces (discrete points, rings, etc.). The
present value of each observable or measurement is determined by the present
state of the system and so it tells something about the system. If it doesn’t depend
on the state of the system of interest, it may still be observable and measurable,
but it won’t be in the list. Call the observables F; (i = 1,2, ..., N) with the under-
standing that F; = F,(X,,...,Xp). In special cases, an observable may depend
mainly on just one state variable. For example, it may be a direct readout of that
state variable: F; = X,. Nonetheless, it is important to preserve a clear mental
distinction between state variables and measures or observables that depend on
the system’s state. This may sound pompous and academic, but setting up the
format now will be helpful later on.

Any measurement or observation may be thought of abstractly in geometric
terms, either of two ways:

1. As a mapping or projection from the system’s state space onto some lower
dimensional space such as a single-coordinate axis which defines an observable.
For example, to each state of a chemical reaction in water (defined by many
concentrations) there corresponds an electrical conductivity of the solution
(defined on the positive half-line). We can think of observing the conductivity as
projecting state space into the half line or as looking into state space from such a
perspective that states of the same electrical conductivity are seen superimposed
and these sets of superimposed states are arranged along the line in order of
increasing conductivity.

2. As a contour map defined on the state space. For example, in the above
example we could write on each point in state space its electrical conductivity and
draw contour surfaces through points of the same conductivity. All points on the
same surface go to the same point on the conductivity line.
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Needless to say, we can invent any number of observables. (How many
“properties” does an organism have?) But if a system has only D state variables
(ie., its state space, whatever its topology may be, is D-dimensional), then the
first D independent observables suffice to determine the state. Any further observ-
ables are redundant because given the state, every function of state is determined.

Dynamics

This book focuses on dynamical systems: systems with the interesting property
of continually spontaneously changing state. At any instant, each state variable
has a rate of change which depends only on the current state of the system.

Here we encounter a linguistic choice. Obviously, any system’s behavior
depends on environmental conditions: its temperature, the voltage of its power
supply, the amount of light falling on it, the position of its knobs. We could con-
sider these as state variables that don’t change spontaneously. Then we can say
that the rate of change of state depends only on the state. Or we could say that
the state variables are those things that change spontaneously, and that things
that don’t change spontaneously are called parameters, not variables. Then the
rate of change depends on both. I choose this format. Notationally, then,

dX[,""d[ - Ri(x, P)

where R; is the rate function for the ith state variable. Its inputs are all the state
variables (X) and all the external parameters (P). Its output is the rate of change
of X;. As there is a rate function for each i, we might denote more compactly:

X = R(X.P)

using also the dot convention to indicate rate of change with time (- = d/dt).
Having thus divided our initial collection of state variables into those that

change spontaneously and those that don’t (parameters), we might back up and

note that observables also depend on both parameters and state variables:

FIZFI(X:P)

For example, the apparent color of a lizard may depend on its emotional state;
but the measurement is affected also by the color of the ambient light.

This frivolous example brings us to a crucial point: Not all observables are
numbers, or even combinations of numbers. Some observables, like color or
direction or the phase in a cycle, are defined not on the real number line, but on
a ring (or on more interesting topological spaces). It is usual to try to salvage the
more familiar form by representing such a measurement in terms of a number.
For example, it is conventional to map the ring onto a line by speaking of “degrees”
with the convention that 360° is equal to 0°. A less clumsy device is to map the
ring onto a plane (which is the product of two lines), and identify a point on the
ring by two numbers, X =sin¢ and Y = cos¢. This might be a natural device
and it might not be. We will look at cases of both sorts in context of rhythmic
patterns in space and time, in living systems, and in chemical reactions.
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In this chapter I dwell on cases in which it is not natural to think of the ring as
embedded in a space of more than one dimension. In these cases, the measurement
of phase (an observable) is most naturally regarded as a fairly direct mapping
from the system’s state space, which is in fact shaped like a ring, onto the abstract
ring on which phase is defined (F; = X). The topology of rings has some peculiar
consequences for the behavior of such systems, and of our measurements.

In Chapters 5 and 6 we dwell on cases in which it is natural to think of a phase
measurement (defined on a ring) as being embedded in a plane or higher dimen-
sional space. There we take the observable “phase” as a function of state, F; =
Fi(X, X,). It is natural to ask whether any meaning attaches to the inside of the
ring. Maybe not. Maybe the very question is nonsense. For example, what is
inside or outside of the four-dimensionally spherical three-dimensional continuum
of space-time? Only notime and nowhere. Or what is inside the circle of 12 hours
on a clock’s face? That might make a good Zen koan. But the question does make
sense in some cases. For example, what is inside the wheel of saturated colors?
Brown and grey. They are real. What's inside the sphere of latitude and longitude
coordinates? Gold, coal, and magnetic fields. They are real. Thinking of phase
measurement in terms of a continuous map in state space, we see no place for the
inside of the ring. Each point in state space has some phase value and the surfaces
of constant phase occupy state space completely. If there is a state that has no
phase, then it must correspond to some kind of disastrous irregularity in the
map: a singularity. The process of measurement being at heart a mapping from
one space to another, it seems natural that the singularities of maps should play
a vital role in science. This monograph exploits one aspect of this fact by gathering
together experimental systems where phase singularities play a conspicuous role.

B: Dynamics on the Ring

It will be seen that some cases definitely do not fit the theory. This is not
surprising since uncomplicated systems are seldom found by accident. One
function of theory is to define the properties of simple systems so that they
may be recognized when encountered.

Campbell, 1964

Hourglasses

The world abounds with processes whose states vary in only one way, for most
practical purposes, and whose last states are the same as the first. For example:

1. Nerve cells and their analogs in the plant world can be thought of as
“resting” until “excited” beyond some “threshold”, whereupon a standard sequence
of changes ensues by which the cell goes “refractory”, then through stages of
decreasing “relative refractoriness”, and then relaxes back to “rest” (Chapter 14).
Diagrammatically, the states of such a system constitute a ring.
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2. The cell cycle is sometimes thought of as an excursion, somehow triggered,
from a noncycling state called A or G, through the rest of the growth stage G1, a
DNA synthesis stage S, a second interval of growth G2, mitosis M, and back to
A (Chapter 22). At this level of abstraction, the human reproductive cycle of
ovulation, conception, gestation, delivery, and ovulation has the same form,
i.e., a one-dimensional developmental progression that returns to its origin and
is thus a ring.

3. In the female cycle, in “reflex ovulators” such as the rabbit, hormonal
events triggered by sexual stimuli precipitate an egg into the uterus and, if it isn’t
fertilized, they ripen a next egg in anticipation of next coitus (Chapter 23). This
cycle of states is a ring.

4. The circadian cycle in some organisms is thought of by analogy to an
hourglass (Chapter 19). It is “turned over” daily by some such event as sunset,
then runs through a process of standard duration, terminating with the original
pretriggering state.

Adopting the jargon of circadian physiologists, I will refer to such a process—or
more exactly to this idealization of such a process——as an “hourglass device”. It
is an especially simple kind of excitable system (see Chapter 9).

Simple Clocks

But in many systems of interest, that first and last stage is not a resting state,
so that cycle after cycle ensues without interruption, without need of an external
stimulus to initiate each new cycle. For example:

1. Most kinds of rotating or reciprocating machinery have a fixed cycle of
changes through which they repeatedly progress, at whatever rate the engineer
chooses. This seems to be how bacteria swim, their helical flagellae being driven
by a turbine rotor (Berg, 1974).

2. The astrophysical cycles that give us the seasons, the tides, and the day
repeat without interruption.

3. Inthe human menstrual cycle and in the female cycles of other spontaneous
ovulators, each hormonal event sets the stage for the next, eventually leading
back to another ovulation (unless pregnancy intervenes).

4. The circadian “clock” of many kinds of animals and plants, according to
one useful approximation, is always somewhere in its cycle and advancing under
its own power by roughly one hour of subjective circadian time per hour of real
time.

5. The cell mitotic cycle is so often thought of in this way that Campbell (1964)
was provoked to define the term “simple clock™:

We shall assume that with respect to the division cycle, the cell behaves
like a simple clock ... by simple we mean that there is a single variable on
which all the interesting properties of system depend; that any cell can be
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assigned a time on the clock, and that the expected behavior of any two clocks
which read the same time will be the same regardless of their histories.

Ring Devices

What both categories (the hourglasses and the simple clocks) have in common
is their restriction to a one-dimensional ring of states (e.g., the angular position
of the meshed gearworks in a mechanical clock). I will henceforth refer to hour-
glasses (which need to be turned over) and simple clocks (which turn themselves
over) as “ring devices”, emphasizing the essential fact that they run on a fixed
cycle. The notion of a ring of states is naive, and deliberately so. The purpose of
such gross approximation is to isolate one essential feature of one class of phenom-
ena. The ring idea constitutes the skeleton, the bare bones, of a realistic analysis
of its natural analogs. Chapter 5 hangs flesh on the bones, but to see what is gained
by thus complicating the picture, it is worthwhile first to examine carefully what
the skeleton alone can do.

I begin with the observation that some systems, and perhaps most, can fall
into either category of ring device (hourglass or simple clock) according to external
conditions. For example, the cell division cycle in bacteria proceeds apace with
regularity in a nourishing medium but is arrested at a certain phase in phosphorus-
poor medium (and so it can be gated by “ticks™ of injected phosphate; Goodwin,
1969). A nerve cell lingers in its resting state until a stimulus induces it to fire an
action potential, but if continually biased with a tiny electrical current or placed
in a calcium-deficient solution, it fires spontaneously and rhythmically (Guttman
et al. 1979). The circadian clock in the fly Sarcophaga cycles spontaneously when
warm but arrests at a certain phase when cold (Saunders, 1978).

Rate Equations and Stimuli

Let us put this fact into more general context and make something of it. The
point is that a ring device’s rate of advance through its cycle is conditioned by an
external influence, which we might denote as an influence or intensity parameter
I. For example, an alga’s cell cycle duration is shorter when it is grown under
brighter light (Edmunds, 1974). A sensory neuron fires at shorter intervals when
exposed to a stronger smell, hotter surface, brighter light, harder touch, or what-
ever it is specifically devised to sense.

In general, the effect of I may be different at different phases of the cycle, so
that we write:

& = v(d,])

or, in words, the instantaneous rate of change of phase (the clock’s angular velocity
v) is jointly determined by its instantaneous state (phase, ®) and by the external
influence parameter. In some standard environment I = I, in which we initially
calibrated the cycle to define “phase”, @ =1 by definition. In other words,
v(d,1,) =1 (Figure 1).
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Figure 1. The angular velocity (vertically) as a function of

phase (horizontally), using model & = | + I cos 2nd, with

I = 0. The circle above depicts by the length of the curved
arrow the angular velocity at each phase.

Figure 2. Asin Figure 1 but [ = 4.

Figure 3. As in Figure 1 but I = 14, past the bifurcation
at I =1. An attractor-repellor pair has opened up from
phase @ = %, inverting the angular velocity within that arc.
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But in any other environment I # I, the ring device’s angular velocity (ex-
pressed in the phase units of I = ) generally varies throughout its cycle (Figure 2).
Thus, the ring device runs faster or slower, depending on its current phase @(t),
so long as exposed to I # I,. This modulation of rate, expressed as a sensitivity
function (Winfree, 1967a) or as an angular velocity response curve (Swade, 1969;
Daan and Pittendrigh, 1976b, pp. 279-280, pp. 287-288) has been invoked to
account for several features of circadian rhythms (see Chapter 19).

With large enough I, v may even go negative during part of the cycle (Figure 3).
Phase then “sticks” stably at the beginning of this interval, at the attracting
stagnation point @,. Unless helped past the repelling stagnation point @, (e.g., by
changing back to I, for a while), it won’t do the next cycle. Thus, our simple clock
has become an hourglass (see Box A). Figures 1, 2, and 3 might have been taken
from Figure 4 at levels [, I,, and I,. The zones of negative angular velocity are
indicated as islands in Figure 4. At any fixed I, phase will stick on the upwind
shore of any such island.

Figure 4. Arrows depict & above
the @ axis at each level of I. The
levels of Figures 1 through 3 are
indicated on the I axis. Within the
shaded region, ¢ <0. The left
branch of the U is the attracting
phase. The right branch is the
repelling phase.



82 3. The Rules of the Ring

The shape of the function v of course depends on the I, chosen for the initial
calibration of phase. This arbitrariness in defining phase does not affect the
qualitative property essential for what follows, namely, whether ¢ is positive or
negative. A different choice of I, would only distort the horizontal scale of these
diagrams (see Daan and Pittendrigh, 1976b, Figure 10).

Is this Caricature too Simple-Minded?

A pause may be useful to put this ring model in perspective. We are developing
the simplest model of a repeatable continuous process. In this simplest case, we
have only one variable of state (the phase), only one observable (the same), and
only one parameter (/). More complicated models might introduce a second
variable of state. For example, in Chapter 5 we abandon the restriction to a unique
cycle of fixed amplitude and take amplitude of oscillation as a second variable of
state. Alternatively, we might find that our real experimental system responds
not so much to the physical parameters of its environment as to their rates of
change. For example, such rate-dependent stimulus transduction is important in
the light responses of the sporangiophore of Phycomyces (Delbruck and Reichardt
1956), in Dictyostelium’s response to cAMP (Gerisch and Hess, 1974; and Chapter
15) and in chemotaxis generally. According to our definitions, system behavior
depends only on its state and its environment, so that in such cases there must
be a second variable of state, a state of adaptation to the external stimulus. This
component of the state changes quickly, tracking the stimulus and buffering it
out so long as it doesn’t change.

One method is to try the simplest interpretation first. To be sure, it will not
long remain possible to evade more realistic complexities. But only after pin-
pointing the simple interpretation’s limitations can one recognize the most
economical amendment. We adhere in this way to the principle of Occam’s razor,
but not because of a naive hope that evolved dynamics are simple but rather
because the plainest interpretations are the most expeditiously testable. (This is
the strategy of looking for an object lost in the dark by working outward from a
lamp post while our eyes adapt to the darkness.)

C: Derivation of Phase-Resetting Curves

Figures 14 are all drawn using a simple representative model:
v(®,1) =1+ [cos2nd (1)

with 1, = 0. I might represent light intensity for circadian rhythms, or biasing
current or pressure for a pacemaker neuron. By setting [, = 0, we make I the
departure from standard conditions. So [ might represent deviations from stan-
dard temperature or standard ionic composition of the medium surrounding a
heart cell. The simple clock range of I is —1 < I < 1. Beyond that range, v goes
negative at certain phases and we therefore have an “hourglass”.
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In standard conditions, d®/dr = v(®,0) = 1. If we denote the beginning phase
by ¢, stimulus duration (magnitude) by M, and the final phase by ¢’, then a control
stimulus, at normal intensity I = 0, gives

<b’=<}5+f(j\“ji—([pdtqu—o-ﬁ;wdr:(ﬁ—ﬂ\/[. 2)

In this case, no phase shift is accumulated during interval M because the clock
advances normally.

With [ # 0, the algebra is a little clumsier, but without belaboring details it
turns out as follows. During the stimulus, d®/dt = v(®,1) # 1. Rearranging,

do

e e = (]t 3
(I + Icos2nd) ‘ 3)
M &' d@
M = dt = - 4
fo o | + Icos2nd @

This integral is a bit tricky to solve, but it is a standard lookup. For the case
—1 <1< 1 (simple clock) it takes one form, and for |I| > 1 (hourglass) it takes
another (see Box C). In either case, the messy algebraic result is M = (¢, ¢, I).
This can be used to calculate ¢’ as a function of ¢, M, and I.

A simple consequence of some utility is that the rate of change of ¢’ with ¢
is necessarily positive: A later final phase is reached at the end of a later starting
stimulus of given length. More exactly,

g o(@ 1)

dp — v(¢p. 1)
These two velocities necessarily have the same sign because the sign could only
change by going through zero; but when velocity = 0, nothing changes. Thus
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resetting curve slope is positive for all mechanisms of perturbation based on
modulation of angular velocity, as in simple clocks. This is not true of other
classes of oscillating kinetics. This fact is used in Chapter 22, pp. 439-440. It also
shows that resetting achieved by modulation of angular velocity cannot produce
type O resetting curves, which necessarily have a region of negative slope. See Box B.

Graphical Interpretation: How Phase Changes in Time

The curves ¢'(¢, M) tell what final phase ¢’ is reached by the end of a stimulus
of duration M that began at phase ¢. These dose-response curves are plotted in
Figure 5 for the cases I = 0, I = 4, and I = 11. Phase, @, starts at ¢ at r = 0 and
it increases to ¢’ at t = M. In the simple clock case [|I| < 1: Figure 5(a, b)] the
period t is indicated as the time elapsed from & = ¢ to @ = ¢ + 1. It is the same
for any choice of beginning ¢. The diagrams are sideways (time ¢ plotted upward
instead of horizontally as usual) to facilitate comparison with their source, the
velocity characteristic v(®, I) plotted above.

A very weak stimulus (I close to 0) has little or no effect even if prolonged.
In this case ¢’ = ¢ + M [Figure 5(a)]. Now, let I differ significantly from 0 so
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Figure 5. Parts (a), (b), (c) correspond to Figures 1 through 3. In each, the time dependence of @ is

plotted as a curve, starting from each of various initial phases. The phase axis runs horizontally and the

stimulus duration time axis runs vertically. Thus initial and final phases ¢ and ¢’ wrrespond to times
0 and M on the vertical axis. The time 7 from any phase ¢ to ¢ + 1 is the period 1//T — I%.

that v is not uniformly 1 as in the previous case, but varies above and below as
@ varies [Figure 5(b)]. So long as |I| < 1, the result is that @(r) rises along a sinuous
path from each initial ¢. It rises by one full cycle in time ¢ = 7, which was 1 at
I =0 but generally differs from 1 with [ # 0. This is because the ring device is
moving around its phase circle at a rate that varies locally. Thus it gets around
quicker or takes longer according to the sum of the times taken in each increment
of phase. The phase integral of 1/(this altered local velocity) is the period. The
mathematical result from Equation (4) (see Box C) is that if ¢’ — ¢ = 1 (i.e., for
completion of exactly one full cycle during M at |I| < 1), then stimulus duration
mustbe M = 1//1 — I°. 'l — I?. This M is therefore the period 7 obtained under chronic
exposure to I # 0. Note that a plot of this M against I looks like a potential
well with its bottom at I = 0 and vertical walls at I = + 1. It is flat at the bottom,
connoting homeostasis of period near I = 0. If v were chosen less symmetric,
or if the cycle had been calibrated at some I # 0, or if v happened to vary less
symmetrically about 1, then this well would have its flat part to one side of / =0
(cf. Daan and Pittendrigh, 1976b, p. 278 on the periods of rodents’ circadian
clocks).
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If I differs so much from 0 that the ring device almost stops at a certain phase,
then it takes a very long time to complete its cycle. Departures of velocity from 1
are weighted more heavily on the slow side because phase dawdles longer in the
slow regions. With any further increase in I we may pass the critical value for
transition to hourglass kinetics [ Figure 5(c)]. The ring device then lingers forever
where & = 0. The appearance of a range of negative velocities creates a pair of
stagnation points, one attracting (®,) and one repelling (®,). The ring device
approaches @, and sticks there.

Notice that on each of the preceding diagrams [Figure 5 (a, b, ¢)], above any
point ¢ on the horizontal phase axis the curves have the same slope. That is to
say, & = v(P, 1) is given by Equation (1) for that phase. From that phase, the
subsequent behavior is the same in every case (supposing constant I), regardless
of past history. In other words, the @(¢) curves differ only in their displacement
along the vertical time axis. This is what it means to say that in any given environ-
ment (i.e., exposed to a given stimulus, ie., given a fixed I), the instantaneous
angular velocity v depends only on instantaneous phase. This is the central fact
about ring devices, as here defined. It determines their most characteristic
properties.

For example, this implies that at any fixed I the paths ®(z, I) do not cross each
other. If they did, then & would not be uniquely determined by & and I at that
phase. This fact is put to work in Box B.

When the stimulus ends and I is changed back to 0, then @ carries on from
phase ¢ according to @ = v(®,0) = 1, i.e, in free run as defined in that standard
environment [ = 0.

Graphical Interpretation: Resetting Curves

Now let’s back up and look at this same model from a different perspective.
We ask how the new phase of a single ring device depends not on M at fixed
beginning phase ¢, as in the preceding section, but on its beginning phase ¢,
supposing fixed M. What phase shift ¢’ — (¢ + M) does the stimulus (I, M)
inflict, depending on the phase ¢ when it begins?

Mathematically, the answer is given above where we calculated a formula by
which duration M and beginning phase ¢ determine final phase ¢'. However,
it is helpful to summarize in graphical terms. This is done in Figure 6, which plots
a whole family of so-called resetting curves. Each resetting curve shows the final
phase ¢ as a function of initial phase ¢ for one fixed stimulus duration M. The
family of curves shows how this resetting curve changes as we use stimuli of
different durations from O up to infinity. The lower row of figures plots not ¢’
but¢’ — (¢ + M) = A¢p against ¢p. These curves have three conspicuous properties:

1. They are continuous: If the beginning phase ¢ is changed a little bit, then
the final phase ¢’ changes by only a corresponding little bit.
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Figure 6. (above): The information portrayed in Figure 5 is redescribed by plotting ¢' vertically

against ¢ horizontally, for each of several stimulus durations M. (below): As above but plotting

vertically the phase shift ¢’ — (¢ + M), which is the height of the curve above the corresponding

curve at | = 0. Advances are plotted upward, delays downward. The M = 0 curve lies on the 4¢ =
0 axis.

2. They are periodic along the ¢ axis, since starting a stimulus at phase ¢
in one cycle or in the next makes no difference to the results.

3. They are periodic along the ¢’ axis. The observed result is a rhythm, and
saying that its phase is ¢’ is the same as saying that its phase is ¢’ + 1 or ¢’ — 2
or ¢’ plus or minus any number of complete cycles.

Thus, our schoolboy habit of plotting things on perpendicular Cartesian
coordinates is not the most appropriate or natural in this situation. The Cartesian
coordinate in no way represents the fact that the end of the phase axis represents
exactly the same state as does its beginning. Actually both phase axes ¢' and ¢
are rings. This fact would be brought out more clearly if the Cartesian graph paper
were rolled up horizontally to close the horizontal ¢ axis in a ring with its endpoint
exactly superimposed on its beginning point. Or, if it were rolled in the perpen-
dicular direction to close the vertical ¢’ axis into a ring, bringing its endpoint
onto its beginning. If we do both operations, we have rolled the graph paper
into a torus, a doughnut-shaped space whose topology exactly captures the
logical structure of experiments on a rhythmic system. On this doughnut-shaped
graph paper, the resetting curve is a closed ring which links once through the
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hole in the doughnut. The fact that it is a ring comes from the fact that any ¢
determines a unique ¢’ in this kind of experiment. The fact that it is a closed
ring comes from the continuity property, Le., results of nearby experiments are
similar. The fact that it links once through the hole comes from the fact that as
the beginning phase ¢ is scanned through one full cycle, the final phase ¢’ likewise
scans through a full cycle in the same direction. In fact, not only does ¢’ advance
through a cycle as ¢ does, but more: ¢’ never decreases as ¢ increases. This is a
conspicuous hallmark of ring device kinetics.

Graphical Interpretation: The Resetting Surface

It is now time to parlay the notion of a resetting curve into the notion of a
resetting surface. This extension is necessary in order to incorporate stimulus
duration M as a second stimulus parameter, supplementing the time of application
¢. Take a family of curves in Figure 6, e.g,, take 6¢ at I = 13. Set them up side
by side on as many vertical coordinate frames, ¢’ vs. M, arranged in order of the
beginning phase ¢. Collectively, they outline a smooth surface ¢'(¢, M) which
tells what final phase ¢’ the ring device achieves (vertical axis) at any ¢ (horizontal
axis perpendicular to M). This is the resetting surface (Figure 7). It is a theoretical
prototype of the experimentally measured time crystal introduced in Examples 5
through 9 of the previous chapter. This is the time crystal of a simple clock. It
differs from those obtained experimentally in that it has no phase singularity
linking the (here) separate resetting surfaces stacked periodically along the ¢’ axis.

Think of it as embedded in a cube of clear plastic. The cube could be sliced
up into a stack of thin layers perpendicular to any one of its three edges:

1. We have already seen it sliced perpendicular to the ¢ axis. Each such slice
is a dose-response curve, showing how ¢’ changes during longer and longer
exposures started from a given ¢ (Figure 5).

Figure 7. The preceding figures are gathered into a single three-dimensional plot of ¢’ as a function
of ¢ and M at [ = 1}. The corresponding picture at I < [ differs only in that it has no range of phases
in which ¢’ decreases with increasing M.
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2. Consider now planes of constant M, i.e., ¢’ x ¢ planes, each cutting the
resetting surface at one fixed stimulus duration M. The curve along which it cuts
the surface is the resetting curve for stimuli of that duration, administered at
each beginning phase ¢ [Figure 6(c)]. Such curves are elaborated in experimental
context in Chapters 1, 7, 14, 19, and 20.

3. We can plot what the resetting surface tells us in one more convenient
way by sectioning along planes of fixed ¢'. These planes intersect the surface
in a locus of (¢, M) combinations that guide the ring device to the same final
phase ¢'. A composite figure such as Figure 8, showing the family of such curves
for stepwise increments of ¢, is a contour map of the resetting surface for one
fixed stimulus intensity I. Figure 8, like Figures 5 and 6, shows the qualitative
appearance at I = 0, = 4, and I = 13. In each panel, each curve is a level contour
of final phase ¢’ on the stimulus plane of beginning phase ¢ x stimulus duration M.

In the pinwheel experiments encountered in the previous chapter the stimulus
plane was in real physical space. In that context each level curve of ¢’ may be
regarded as the instantaneous position of a wave in space. This wave is marked
by appearance of a marker event E, which signals passage through phase @ = 0.
This is because all ring devices at a given final phase ¢’ when the stimulus ends
will encounter @ = 0 simultaneously, at a time 1 — ¢’ later. Those in the next
lower horizontal section plane, at ¢’ — ¢ when the stimulus ends, will reach
@ = 0 simultaneously at a time ¢ after that. The contour map representation
and the wave representation will both play conspicuous roles in later experiments
with yeast cells (Chapter 12), malonic acid reagent (Chapter 13), flies (Chapter 20),
and flowers (Chapter 21). For the present it will suffice to note that these contour
lines do not converge to a point. It can be shown mathematically that they cannot
do so, in the case of any resetting process that amounts to modulation of angular
velocity. In such a case, a pinwheel experiment cannot possibly evoke a rotating
wave.

(a) (b) (c)

Figure 8. Figures 5 and 6 represent two perpendicular cross-sections through Figure 7. Here is the
third perpendicular cross-section. Initial phase increases to the right as in all preceding graphs, and
stimulus duration M increases vertically as in Figure 5. The curves are level contours of uniform ¢'.
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The circle is the first, the most simple, and the most perfect figure.
Proclus’
Lo cerchio ¢ perfettissima figura.
Dante?

Applications of the Simple-Clock Idea in Developmental Physiology

It is not unusual for developmental processes to proceed through a sequence
of stages, each of which seems to be a necessary precondition for the next. The
development of a frog from egg through tadpole to adult to egg, for example,
progresses continuously through the Pollister and Moore stages like a train
passing stations along its track. Though its speed may vary according to tempera-
ture, hormonal supplements, and the availability of food, the stages and their
ordering are unchanged.

In the case of temperate zone animals which repeat an annual cycle within
their life cycles, Mrosovsky (1970) declared that a system “that could give rise
to annual cycles is a sequence of linked stages, each taking a given amount of
time to complete and then leading into the next, with the last stage linked to the
first again ...as in the case with pregnancy ...it should be possible to alter
frequencies by slowing down, speeding up, or reducing certain stages.” This is
the essence of a “simple clock™.

The same may be said of development on the level of a single cell. In this case,
there might even be a relatively simple structural analog to a railroad track.
Halvorson and Tauro (1971) reviewed experimental indications that the genome
(arailroad track) is transcribed in linear sequence, resulting in a sequential ordering
of biochemical changes during the cell cycle. The following excerpts from recent
research literature point to the fundamental role of simple-clock models in this
area:

Edmunds (1975) writes:

The cell cycle . . . comprises a series of relatively discrete morphological and
biochemical events, although the specific elements may vary among different
systems. These developmental sequences are not necessarily linearly ordered,
however, since branching networks (and even “nested do-loops™) may provide
several alternative pathways, some of which may operate concurrently . . . .
In this sense then, the cell cycle is a “clock”: the specific events correspond
to the numerals on the dial ... under a different set of conditions, the cell
cycle consists of the same sequence but . .. the relative time spent between
such stages is different.

1

Commentary on the first book of Euclid’s Elements; on Definitions XV and XVI. Cited in Polya
(1954), p. 168.
2 Convivio I XI11. 26. Cited in Polya (1954), p. 168.
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Hartwell et al. (1974) write:

Mitotic cell division in eukaryotes is accomplished through a highly repro-
ducible temporal sequence of events that is common to almost all higher
organisms . .. . How are (these events) . . . coordinated in the yeast cell cycle
so that their sequence is fixed? ... There may be a direct causal connection
between one event and the next. In this case it would be necessary for the
earlier event in the cycle to be completed before the later event could occur . . . .
A second possibility . . . invokes the accumulation of a specific division protein
and another a temporal sequence of genetic transcriptions . .. . No event in
this pathway can occur without the prior occurrence of all preceding events.

Tyson and Kauffman (1975) write:

The periodic event with which we shall be particularly concerned is cell
division. Mitosis is an event of short duration relative to the cell cycle. The
exact nature of the system controlling its regular periodicity is not yet known
for any organism . .. . Some have supposed that the cycle is a cyclic sequence
of discrete states, each causing the next. Evidence in bacteria and yeast that
the temporal sequence of genes transcribed during the cycle may be related
to the sequential linear order of the genes on the chromosomes have prompted
speculation that the cycle is controlled by sequential transcription around
circular DNA molecules in eukaryotic chromosomes.

Applications of the Simple-Clock Idea in Circadian Physiology

A tape-reading or railroad track analogy equivalent to those conceived of in
context of the cell division cycle (see above) was explicitly proposed by Pittendrigh
(1966, p. 305) and by Watson (1976, p. 510) as a possible basis for biological timing
and biological clocks in general. Ehret and Trucco (1967) elaborated just such a
molecular model of circadian clocks with the additional proviso that the genes
sequentially activated needn’t be physically consecutive along the genome. Their
clock is a sequential machine composed of concentrated lumps of transcribable
DNA. Emphasizing the one-dimensional character of this mechanism, they make
analogies to the one-dimensional clocks used in ancient times:

The chronon bears an interesting, though somewhat superficial, resemblance
to the calibrated candle clocks of the medieval period in which the end-to-end
consumption by a flame of carefully selected lengths of resined rope was a
standard measure of time,

They suggest that the spontaneous periodism of the clock might even have a
structural basis in the closure of the DNA track in a ring, as in the genomes of
bacteria and of viruses, and more appropriately, of mitochondria.

Even prior to this incarnation of the simple-clock paradigm in a physical
ring, elaborate developments of the idea were propounded by experimental
investigators of circadian rhythmicity. As early as 1940, Kalmus thought of the
circadian clock in fruitflies by analogy to a rotating, repeating gramophone
message or the drum of a music box. (See Chapter 20 for biological background
on fruitfly clocks, to which I will allude frequently in the next few pages.) Brett
(1955) likewise hung his observations of fruitfly clocks on a rotating wheel model.
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Bunning (1956a) compared the cycle of activity in plants to the playback of a
gramophone record. Enright (1975) continued this theme of tape recorder loop
analogies, in the context of the periodic fine structure observed in the activity
records of a marine isopod on his beach at La Jolla.

So profoundly did the simple-clock metaphor pervade thinking about circadian
rhythms during the 1950s and 1960s that alternative notions seldom seemed to
pose a challenge worthy of experimental test. One gains the consistent impression
from the literature that, apart from the few writers who do their modelling explicitly
by way of equations, most folks do theirs implicitly, in terms of ring devices.
The notion thus shapes the choice of descriptive language and the design and
interpretation of the experiments. This may be sound procedure: Simpler analogies
are easier to test than complex ones and so should be tried first. The clock metaphor
also has great appeal due to the fact that time is reckoned one-dimensionally
both in principle and in almost all human contrivances for time keeping. Intro-
duced by Hoagland (1933), the clock metaphor was adopted in the context of
24-hour rhythms by Johnson (1939). It was first popularized by Brown in the early
1950s in connection with his belief that circadian rhythms are in fact one indicator
of external geophysical clocks. Pittendrigh pursued the clock metaphor in the
later 1950s in connection with his beliefin an internal timepiece whose evolutionary
raison d’étre is to monitor the passage of time.

The idea that a circadian clock goes through a fixed cycle more quickly or
slowly according to its phase and environmental factors, such as visible light
intensity, was first suggested by Rawson (thesis, 1956) and later by DeCoursey
(thesis, 1959). The idea promised an interpretation simultaneously for resetting
curves and for the fact of entrainment to a fluctuating light schedule. Palmer’s
notion of “autophasing” (1959; see Palmer 1976, p. 250) invokes exactly this
principle-—that the rate of advance depends only on phase and environmental
conditions—to rationalize the supposed generation of a circadian rhythm by a
geophysical rhythm of different period.

The previously implicit simple-clock paradigm was first made explicit and
articulate by Campbell (1964) in the context of mitotic cycles, as noted above.
Stimulated by Campbell’s analysis and by six months with a population of
simple-clock-like oscillators in Pittendrigh’s Princeton laboratory (Chapter 11),
I contrived an analysis of a simple clock’s entrainment by a rhythmically fluctuating
stimulus (Winfree, 1967a). Swade (1969) applied similar principles to entrainment
of rodent activity cycles in the fluctuating light of the Arctic summer.

The simple clock interpretation of circadian rhythms was most vigorously
advanced by Pittendrigh, starting with Pittendrigh and Bruce (1957). Goodwin
(1976) reviewed:

The minimum number of variables assumed to be necessary for an oscillation
in biological system is two ... however, there is an even simpler type of
oscillation than this, dimensionally speaking, and that is what has been
referred to as a generalized relaxation oscillation [see Chapter 6, Box A; read
“simple clock™]. This is a periodic function of time which can have different
periods, but practically no change of amplitude. The state of such an oscillator
can be defined in terms of one variable only, which is its phase; i.e, it is like
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an ordinary clock which can be set to any time and will then run at fixed
speed with the only visible indicator of state being the position of the hands . . .
from very extensive and ingenious studies of the behavior of biological clocks
in response to various types of perturbation, Pittendrigh and Bruce (1957)
proposed a [two-oscillator | model in which the chronometer (A) was assumed
to be an oscillator of this relaxation type [i.e., a kind of simple clock ] whose
phase could be instantaneously reset by a light or other signal, but whose
amplitude remained unaffected. Any transients in the observable response
to the signal were then regarded as occurring in that process (B) which is
controlled by the clock (A) and by which its existence is made manifest. This
model is widely used and has had very considerable success.

(All bracketed insertions are mine.)

This A-B two-oscillator model has had a profound influence on the development
of circadian physiology. Its genesis lies, once again, in the simple-clock paradigm.
Pittendrigh and Bruce (1959, p. 491) argue:

Any model based on a single oscillator is unable to explain the concurrence of
the three features that strongly characterize resetting in the fly: (1) ultimate
determination of phase by a signal seen three cycles previous to the new steady
state, (2) the presence of transients, and (3) the dependence of transient length
on the time of the cycle at which the signal fell. These features are, on the other
hand, all explained by a model for the system based on two coupled oscillators.

These facts really place no constraint on an oscillator model unless by
“oscillator” one implicitly means a simple clock.

The point I am trying to make here is not that the simple clock interpretation
is wrong or an inconvenient approximation (although we will be more concerned
with its deficiencies in later chapters) but that it has been important in the develop-
ment of thought and experiments in several areas of physiology and biochemistry.
It might be added that ring devices lie at the very heart of any industrial society
for the simple reason that industry consists largely of automated productive
activities, and automation goes farthest quickest in processes that are repetitious.
In any repetitive fabrication, machines and their operators traverse again and
again stereotyped one-dimensional cycles of states. So it is from the internal
combustion engine to knitting and weaving machines to the distribution of power
synchronized to the rotation of innumerable dynamos.
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If thou (dear reader) art wearied with this tiresome method of computation,

have pity on me, who had to go through it seventy times at least, with an
immense expenditure of time . . .

Johannes Kepler, 1609,
Astronomia Nova, Chapter 16

My intent in this chapter is to direct your attention to several idealizations
of rhythmic behavior in collections of many similar ring devices. It turns out that
some of the peculiar limitations on the behavior of simple clocks do not apply
to populations of simple clocks. Here we also encounter our firstexample in which a
phase singularity emerges from an idealized model of the structure and mechanism
of a rhythmic system. The chapter is divided into four sections:

A. Collective rhythmicity in a population without interactions among con-
stituent clocks. This is mainly about phase resetting by a stimulus.

B. Collective rhythmicity in a population whose individuals are all influenced
by the aggregate rhythmicity of the community. This is mainly about mutual
synchronization and opposition to it.

C. Spatially distributed simple clocks without interactions. This is mostly
about patterns of phase in space.

D. Ring devices interacting locally in space. This is mostly about waves.

A: Collective Rhythmicity in a Population
of Independent Simple Clocks

Definitions
Before anything else we need a definition of collective rhythmicity. If we were

pooling sine waves of various phases and amplitudes, all with the same period,
the result would always be another sine wave. So there would be no ambiguity
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about its phase: Whatever is the measure of phase on a single clock, the same
measure is used for the aggregate (e.g., phase = fraction of a cycle past a maximum).
But what if the output of each clock is a sharp action potential as in the neural
oscillators of Chapter 14, or a sawtooth wave as in the neon glow tubes used
in Chapter 11? Then the sum of many bears little resemblance to the familiar
waveform in terms in which phase was defined. If we are going to ascribe some
“phase” to such a collective waveform, then we must have some additional rule.
The choice is essentially arbitrary, a matter of convenience, but it must be made
definite. I choose the following definition.

Any periodic waveform can be depicted as a superposition of sine waves of
suitable amplitudes and phases. This superposition includes one sine of each
frequency, from the fundamental on up by integer multiples. We want a number
to characterize the phase of a rhythm of unit period. (We take its period as our
unit of time.) A number at least as good as any other is the phase of the fundamental,
scaled to range from O to 1. Whatever the rhythm’s shape this measure changes
by ¢ (modulo 1) if the whole waveform is delayed by a time & This measure is
unaffected by changing the overall amplitude. In nearly synchronous populations
it registers the same phase as the phase of each single oscillator. In slightly less
synchronous populations, the collective phase is the mean of the phase distribution.

Geometrically this measure is especially convenient. If we represent the cycle
of each simple clock as a perfect circle traversed at uniform speed (letting the
central angle on this diagram be the fraction of the cycle elapsed), then a population
of clocks can be depicted as so many dots moving with constant angular velocity
around this circle (Figure 1) The circle represents the fundamental sine wave.
The X coordinate of each dot traces in time the fundamental sinusoidal component
of that clock’s rhythm. The superposition of all sinusoids contributed by the many
clocks of a population is traced by the center of mass (x) of the cloud of dots
on this diagram. The phase of that aggregate rhythm is the central angle of the
center of mass. We can rule the diagram with radial lines each of which corresponds

Figure 1. The outer circle represents unit amplitude of the first harmonic of any rhythm. Dots

represent clocks at various phases. The asterisk represents the phase and amplitude of their collective

rhythm (averaged). It follows the inner circle so long as the clocks are independent and unperturbed.
The radial lines link positions of equal phase.
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to a given phase, namely, the phase at which it intercepts the unit circle. Any
aggregate rhythm’s phase is read off by simply locating the population’s center
of mass on one of these radii.

This choice of a phase measure dovetails nicely with an analysis of physiological
“transients” put forward by Mercer in 1965 and more explicitly by Kaus in 1976.
According to this interpretation, the physiological observables that we choose
to monitor in the laboratory sometimes do not happen to participate directly
in the mechanism of the “clock”. Rather, they are only indirectly driven by the
clock mechanism. In some cases, it apparently suffices to regard the driven
observable as a linear filter, selectively transmitting the fundamental frequency
of the driving clock. Its higher harmonics vary too quickly to have much influence
on such a sluggish driven system. In such a case (and the fruitfly’s circadian rhythm
seems to be one of them) the observed rhythm would be determined by a population
of clocks in exactly the way suggested above.

Having chosen a collective measure of phase, we now apply it to the case of
two, three, and more noninteracting simple clocks.

Two Clocks: Unperturbed Kinetics

The state of a population of N clocks consists of the phases (¢, ¢, ..., Pn)
of its N members. The state space thus S! x S! x --- x S! = T", the N-dimen-
sional hypertorus. In the case of just two clocks, this is S* x S = T?, the familiar
surface of a doughnut. We unroll it to form a doubly periodic presentation on flat
paper in Figure 2. Let the horizontal phase coordinate be clock 1 and let the vertical
phase coordinate be clock 2. We have two things to draw on this surface:

1. Contour lines indicating the phase and amplitude of the pair (considered
as a unit) as a function of the two individual phases, and

2. The unperturbed trajectories of the pair of clocks in this state space

(1) Taking the two clocks to have equal periods and equal weight, the phase
of the pair is the central angle of a point midway between them on this circle
diagram (Figure 3). This can be written trigonometrically, but after a little algebra
it reduces to something geometrically obvious: The phase of the aggregate rhythm
of two equal clocks lies in the direction midway between the two, at an amplitude
less than either by an amount that increases with their phase difference. When
the two are one-half cycle apart, amplitude of the fundamental harmonic passes

Figure 2. The state space of a pair /',a:::__ \
of simple clocks, being a torus, canbe B, | (/A7 ) )
depicted on flat paper as one unit &

cell of a sheet of wallpaper.
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Figure 3. By the convention adopted in Figure 1, the phase of a
pair of simple clocks lies midway between their individual phases. The
amplitude of the pair is the radius of the dashed circle.

through 0 and phase is therefore ambiguous. If we move either oscillator’s phase
a little bit, the aggregate phase switches back and forth by one-half cycle through
amplitude 0. Note that amplitude 0 in this case means only that the fundamental
has vanished. All the even harmonics are still there but, because of the twofold
symmetry within each period, the aggregate rhythm’s phase is indeterminate,
Note also that (unless the two clocks are exactly one-half cycle apart) advancing
both in phase by any amount advances the aggregate rhythm in phase by the
same amount.

The aggregate phase depends on ¢1 and ¢2 symmetrically, with a discontinuity
along the 45° degree line where ¢1 and ¢2 are one-half cycle apart, as indicated in
Figure 4. Pending fuller definition in Chapter 6, let’s call any locus of uniform phase
an isochron (“same time”). We might also indicate amplitude contours as A =
cos 2n[(¢p1 — ¢2)/2]. The phase discontinuity is the “amplitude = 0” contour.

(2) Next we need to depict this system’s natural motion in its state space. If
both oscillators have the same period, then ¢, = ¢, = 1 (in which an upper dot
denotes the rate of change in time). So the system’s path, a trajectory from any
initial (¢;, ¢,) combination, is a 45° line. Aggregate phase thus advances uniformly
and aggregate amplitude is steady (Figure 5).

If one oscillator moves a bit faster than the other, then the path’s slope T,/T,
is no longer 1. It therefore slants at a different angle, slowly crossing amplitude
contours. It passes through the zero amplitude discontinuity at intervals
1/(1/T, — 1/T,). This path on the torus depicts geometrically the familiar beat
note seen or heard by superposing nearby frequencies.

Figure 4. Contours of ¢, and ¢, along which
the phase (¢, solid) or amplitude (A, dashed) of a
pair of simple clocks remain the same.
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Figure 5. Motion of a pair of identical independent

clocks across the (¢, ¢, ) torus in the environment [ = 0

used to calibrate phase in proportion to time. These
paths are closed rings of period t = 1.

Two Clocks: Perturbed

Thus far we have implicitly assumed undisturbed cycling of the simple clocks
in whatever standard environment was used to define phase in proportion to
elapsed time. In the notation of the previous chapter, this means I = 0. Let us
now consider 0 < I < 1. This is the range in which each simple clock continues
to cycle, but its positive angular velocity is greater or less at different phases.
Each clock lurches and pauses around the common cycle. If two clocks start at
different phases, then the phase angle between them constantly increases and
decreases back again with the period of each oscillator’s altered traversal of the
common cycle. Thus the pair’s trajectories on the (¢;, ¢,) torus are no longer a
series of parallel straight lines but now comprise a set of snaky lines (Figure 6).

If I > 1 then each clock will come to rest at ¢, before it has traversed a full
cycle. This ¢, is the front edge of the range of phases in which angular velocity
has gone negative (Figure 4 of Chapter 3). This behavior is shown simultaneously
for both oscillators in Figure 7.

Thus if I = 0 for a long time, but then we make I # 0 for a while, then during
that interval of exposure to the stimulus the oscillator pair is moved from its
prior 45” trajectory to a new one. When I reverts to 0, the pair continues in motion
along the new 45° trajectory. At that time it will generally be on a different phase
contour than is an unperturbed control for which I remained 0 during the same
interval. The new phase reached by the time the stimulus ends depends on two

Figure 6. Motion of a pair of identical independent

clocks across the (¢, ¢,) torus in an altered environment

I =%, which still permits cycling. These paths are closed

rings of period t = 1/\/1 — I2. This figure and Figures

7-9, 12 14, are sketched from grainy computer print-
outs and so are not quantitatively exact.
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Figure 7. Motion of a pair of identical clocks across
the (¢py, ¢,) torus with I = 13. Each gravitates to an
attracting phase ¢, .

things:
1. The stimulus (I and its duration)
2. The initial state (¢, ¢5)

Note in (2) that it is not sufficient to specify just the initial phase of the aggregate
rhythm. That external observable only locates the state on a certain ¢ contour
(isochron) but does not tell where the two-clock system is on that isochron.
During exposure to the stimulus, trajectories lead in various directions through
the many states on that locus of uniform aggregate phase. We have to expect a
different result from disturbing a pair of oscillators at phase ¢, depending on
whether the aggregate phase is ¢ because both are at ¢ or because one is at ¢ + x
and the other is at ¢ — x. We need to know the complete internal state of the
system. The external observable ¢ is a sufficient identification of a rhythmic
system’s state only in very special cases. In general, it is one convenient measure
of state but not in itself sufficient for design and interpretation of experiments
because two systems at the same phase can have quite different subsequent
behavior.

To know the complete internal state of a two-clock population, we could
know the phase of each oscillator or, equivalently, we could know which contour
of aggregate phase the population lies in and where it lies along that amplitude
locus in Figure 4. With the aggregate phase measure we have chosen, this means
knowing the mean phase of the two clocks and their phase difference. In popu-
lations with more simple clocks we would in principle need to know the phase
of each clock in the population or equivalently their mean phase and enough
higher moments of the distribution to specify the distribution unambiguously. If we
could assume that clock phases are unimodally distributed around the mean,
then the measures of most importance of our purposes would be the mean phase
and the range or variance of phases.

Let us now return to the two-clock case to determine how the mean phase
of such a population depends on the timing of the stimulus. It is convenient here
and will be convenient again in other contexts to think of the stimulus as a mapping
from the plane which describes the stimulus (its duration M and the initial phase
¢ when it starts) into the (¢, ¢,) state plane. This can be done as follows. Choose
an initial phase difference between the two clocks. The pair’s trajectory is then
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Figure 8. As in Figure 4-7 but a portion is shaded,
consisting of all states reachable from the chosen initial
unperturbed trajectory (¢, — ¢; = x) by increasing
durations of exposure to I = 13. The curves crossing
perturbed trajectories are loci of fixed duration M.

a diagonal that far displaced from the main diagonal, as indicated in Figure 8.
Points along this displaced diagonal are, trivially, the states reached by applying
a stimulus I # 0 of duration M = 0 at each initial phase ¢. This diagonal is the
¢ axis of an image of the (¢, M) plane in state space. Now expose the population
for a duration M at each ¢, marking off increments of equal duration along the
trajectory followed (Figure 8) during stimulation. Through each initial ¢ this
establishes an M axis. Collectively these measurements constitute a ¢ x M grid
on the state plane. It is an image of the (¢, M) plane on which we can immediately
read off the new phase values arrived at by reference to the overlying contour
lines of Figure 4. In imagination, stencil those contour lines onto this distorted
image of the (¢, M) plane, then pick it up and stretch it out flat and uniform and
you have Figure 9. All this can be done by trigonometric equations; in fact, that
is how Figures 6-9 were obtained. But the qualitative principles are evident
in the graphical methods described above and are independent of quantitative
details about the chosen dynamics.

Figure 9. On the (¢, M) plane, level contours of ¢’, the phase reached by maintaining I = 13 for

duration M (in units of unperturbed cycle period). starting at phase ¢, with ¢, — ¢, = 0.3 cycle initially.

The dotted U locus represents amplitude A4 = 0; other amplitude loci are omitted. As M — oc contours

near ¢, diverge to fill the whole space. The U becomes symmetric about ¢, and approaches width
0.3 as M — «. As M increases across the U, ¢’ jumps one-half cycle.
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You will note that so long as the phase difference was initially not 0, there is a
phase range within which a stimulus of sufficient duration carries the pair’s state
across the zero-amplitude locus, where the phase changes discontinuously because
the two oscillators are one-half cycle apart. This happens only within a certain
range of initial phases. The perturbed trajectory from other initial phases never
crosses the discontinuity locus. The phase map of Figure 9 on the stimulus plane
shows this piece of discontinuity locus as a U.

We have spent a long time belaboring a trivial example in order to lay the
foundations for understanding situations of greater biological interest. The next
step in that direction comes by looking at a system of three simple clocks. This
is as far as we will need to go with simple clocks because it turns out that three
do everything that a larger population can do, so far as our present interests
are concerned.

Three Clocks: Unperturbed Kinetics

The principles are the same but the state space is three-dimensional, being
S! x S' x S'. That could be thought of as a cube with its opposite faces identified
pairwise by analogy to the method of depicting a two-dimensional torus as a
square with its opposite faces identified pairwise. The trajectories followed by
a state point (¢, ¢, ¢3) within the cube are much the same. The only novel
feature is encountered in trying to depict the loci of fixed aggregate phase (the
isochrons) in this state space. In the two-clock case they were straight lines
transverse to the trajectories, abutting discontinuously along the zero-amplitude
locus. In a three-dimensional state space they must be two-dimensional surfaces,
once again transverse to all the trajectories because moving all oscillators forward
by amount ¢ must move the aggregate phase forward by the same amount.
A theorem often used before can now be invoked to show that something peculiar
must happen in the way that these isochron surfaces come together in the three-
dimensional state space. Consider Figure 10 and the gedanken experiment
indicated by the four-sided closed path ABCDA (heavy arrows). Along path
AB the phases of all three clocks increase equally and thus advance through
one full cycle of aggregate phase. Along path BC clocks 2 and 3 are held fixed
while clock 1 moves through a full cycle. This causes the aggregate phase to change
somewhat and change back to its original value without scanning through a full
cycle, because the single clock affected is in the minority in a three-clock population.
This feature of the collective phase measure chosen above is more obvious in a
population of thousands of clocks, only one of which is allowed to vary at a time;

Figure 10. The ¢, x ¢, x ¢3 hypertorus “unrolled and laid flat”
as a cubical unit cell of a three-dimensional crystal. Path ABCDA
is followed in a conceptual experiment.
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it turns out to be true for any number of identical clocks down to and including
three. At point C the phases are all the same as they were at point A and point B.
Next clock 2 is varied, holding clocks 1 and 3 fixed. Once again for the same
reasons the aggregate phase does not scan-through a complete cycle. The same is
true along arc DA (and along any number of additional arcs of the same sort
which would be required in describing a population of many simple clocks). The
upshot is that the aggregate phase has winding number 1 around the closed
path ABCDA. Now imagine any two-dimensional surface topologically equivalent
to a disk bounded only by path ABCDA. I intend to assign to each point on such
a surface some aggregate phase. Thus I propose a map from a two-dimensional
disk to a phase circle in such a way that its boundary maps around the circle
with winding number 1. Once again (see p. 28), this cannot be done without
accepting a discontinuity. Supposing that the aggregate phase function varies
only slightly in response to slight changes in the phases of constitutent clocks,
then the winding number remains 1 along any distortion of this path ABCDA.
By continuing to distort the path by shrinking it, I eventually localize the dis-
continuity to a unique state. Along a very tiny path around that state, all phases
of the aggregate rhythm are realized. Thus this is a state of ambiguous phase.
I could have carried out this argument using any surface of two dimensions,
bounded by the required closed-ring path. Each such two-dimensional surface
contains a point of ambiguous phase. The locus of ambiguous phase consists
of all these points, so it is one-dimensional. It is a curve along which all the isochron
surfaces converge.

In the three-clock case this is easy to understand in more mechanistic terms.
Situations of ambiguous phase will occur only when the three clocks are symmet-
rically disposed, so that their center of mass lies at the origin, at zero amplitude
and ambiguous angle. Figure 11(a) shows the three clocks at the corners of an
equilateral triangle. Any rotation of this configuration leaves the collective phase
ambiguous. This ring of positions of the triangle corresponds to the one-
dimensional locus of phase triplets which correspond to ambiguous phase in the
aggregate thythm. Any slight displacement of ¢1 or ¢2 or ¢3 from such a point
can radically change the aggregate rhythm’s phase. At that point, not only is
phase ambiguous but, additionally, all phases are near at hand. Why? Not just
because the aggregate rhythm’s amplitude is 0. That was true in the two-clock
case, but only a discontinuity, not a phase singularity, was obtained. The underlying
difference of mechanism is brought out in Figure 11(b). Figure 11(a) shows the
three-clock situation and Figure 11(b) shows the two-clock situation. In both cases
symmetry is required to attain the situation of zero amplitude and ambiguous

a) /N b)
—

Figure 11.  Symmetric dispositions of three clocks (a) and of two clocks (b) which may be arbitrarily
rotated while keeping aggregate phase ambiguous.
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phase. But in the two-clock case, minute adjustment of phases can only move the
aggregate phase off zero to the left or right. In the three-clock case, the center of
mass can be displaced from zero to any angle by minutely adjusting any two
phases. This feature, of course, also obtains with any greater number of clocks in
the population.

Three Clocks: Perturbed

What does this imply for the response of a three-clock population’s aggregate
phase to the timing of a stimulus? Precisely as in the previous case, we can visually
map the stimulus plane (¢, M) into the (¢1, $2, ¢3) state space. Let’s assume the
same simple clock kinetics as before for I > 0. Without going through the details,
the image of the stimulus plane turns out to fall across the convergence of all the
isochron surfaces. Thus a cross-section through their convergence appears on the
(¢, M) plane. Figure 12 shows the result of a computer calculation of this map using
the same simple-clock dynamics as in Figures 69, based on the models of Chapter
3. Figure 13 shows the result with 50 simple clocks. It is essentially the same’ (see
Box A).

Now I wish to draw out four aspects of this result.

1. The Role of Initial Phase Variance. In all these simulations the clocks’
phases were initially uniformly distributed across an arc of 0.3 cycle. During un-
perturbed operation the trajectory of the population is therefore parallel to the
main diagonal of the state space, but displaced from it. With a narrower distribution
of phases a population’s prestimulus trajectory is closer to the main diagonal
¢1 = ¢2 = ¢3. During exposure to the stimulus (I # 0) the population is driven
along trajectories initially diverging from that locus only very slowly. So a little
bit of initial variance in phase gives the population a big headstart toward the
discontinuity (with two clocks) or singularity (with three or more). With a narrower
initial distribution of phase, the phase singularity would occur only after a very
prolonged exposure to the stimulus. In the limit of initially perfect synchrony, the
population behaves just like a single simple clock: As we see in Chapter 3, it has
no phase singularity. In fact it can be shown analytically that the phase singularity
lies at critical duration of exposure M* proportional to the logarithm of the initial
variance of phases.

Given a wide initial range of phase scatter in the population, M* becomes very
short. The reason is essentially as follows. To obtain very low amplitude of the

' You might expect more fine structure in these maps, especially for small numbers of clocks. It is

there. The number of clocks can be counted by counting repeated features in the contour maps. But

these features are smaller the greater the number of clocks so they are easily lost in the variability

of data. Although they are plainly enough revealed by mathematical analysis, very fine-grained com-

putation is required to map them out numerically. The maps I present in Figures 9 and 12 and in
Chapter 8 are deliberately smoothed to emphasize only their gross qualitative structure.
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aggregate rhythm requires that clocks be distributed symmetrically around the
cycle. This is easily achieved if their phases are already dispersed, but if they are
initially close together on the cycle, then they can be scattered only by an exposure
that catches them all close to phase ¢,. Here slightly precocious clocks are forced
still further ahead by the stimulus while slightly retarded ones are drawn backward
(Figure 3 of Chapter 3). But in either case, phase velocities near phase 0 are very
small. Thus a very long exposure is required.

2. Type 0 Resetting. Figure 12 and 13 show that by varying through one full
cycle the moment at which the stimulus starts, the final phase of the aggregate
rhythm is made to vary also through one full cycle, if and only if M < M*. At the
end of a stimulus of duration exceeding M* only some final phases are obtained and
each is obtained from two different initial phases. In other words, we have type 0
resetting in the aggregate rhythm(see p. 38)even though no clock in the population
is capable of type O resetting! This phenomenon was first hinted at in the circadian
rhythm literature by Johnsson et al. (1973) in connection with populations of
Kalanchoe flowers, whose petal movement rhythms are customarily assayed

Figure 12.  Asin Figure 9 but with a population
of three clocks instead of two, spanning 0.3 cycle.
The U-shaped discontinuity typical of clock pairs
is replaced by the phase singularity typical of all
larger populations. The dotted curves show how
pieces of certain contours join up at higher M.

Figure 13.  As in Figure 12 but with a 50-
clock population.
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(a) Format as in Figures 30 through 33 of Chapter 2. Phase-resetting data can in
principle be threaded by curves of any “type™ if there is no strong reason to expect
smoothness.

(b) New phase vs. old phase measured by 593 eclosion peaks in about 200 separate

experiments with Drosophild’s eclosion rhythm. The stimuli were saturating light
pulses given any time during two consecutive cycles of phase. (Adapted from Figure 12

of Winfree, 1973a.)

- of any topological “type” (Figure a). What observations enable us to select the correct
~ type, if such classification is appropriate at all? The question is rhetorical. The answer
| is to improve data resolution (e.g., Figure b). The curves commonly threaded through
- plotted data often preserve the appearance of type I resetting by means of a very steep
- segment devoid of data points. If such a curve rightly interprets the data, then points can
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collectively in bunches of 16. The analytic basis for this startling phenomenon is
described in Winfree (1976).

Given type O resetting in response to a sufficiently prolonged stimulus, one can
turn the logic around to derive the phase singularity by a technique used repeatedly
in earlier chapters (e.g., see Chapter 2, Box B). The empirical basis for belief in
type O resetting in the real world is elaborated in Boxes B and C.

3. A Rotating Wave and a Screwy Surface. Given type 0 resetting and a phase
singularity (i.e., given a contour map like Figures 12 and 13), one can choose either
of two equivalent descriptions of the whole pattern of rephasing of each a popula-
tion’s aggregate rhythm:

1. Figures 12 and 13 have the same format as we found convenient to describe
a pinwheel experiment in Examples 5-9 of Chapter 2. Each contour line of new
phase (isochron) shows the locus along which ¢ = 0 recurs simultaneously. This
event moves from one isochron to the next, cartwheeling about the phase sin-
gularity. This interpretation presupposes a physical layout for the experiment in
which a phase gradient at zero stimulus duration lies transverse to a gradient of
stimulus duration.

2. Ifiinstead of watching waves circulate on the stimulus plane we plot event
time vertically above that plane, then each contour line lies higher than the one
before, as in interpreting the contour map of a ski slope. In this case, the surface
thus plotted pivots around a singularity as it rises, constructing a helical sliding
board. Thus we have a screw of many turns, each turn formed by one day of data.
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Konopka, 1972 5-2b ¢ —Pp—Mvs. ¢
Christianson and Sweeney, 1973 111 ¢ —¢d—Myvs. ¢
Engelmann et al., 1973 \Y K—¢vs.C+¢d—¢
Winfree, 1973a 5to 17 K+ ¢'vs. ¢
Engelmann et al., 1974 111d O+ M—¢ vs. ¢
Karakashian and Schweiger, 1976 S ¢ —¢p—Mvs. ¢+ M/2
Saunders, 1976a 8 ¢ —¢—Mvs. ¢
Simon et al., 1976b 3 ¢ — @' vs. ¢
Jacklet, 1977 2 O+M—¢ vs.p+ M/2
Winfree and Gordon, 1977 11 K+ ¢ vs. ¢
Wiedenmann, 1977 2 O+ M—¢ vs. ¢+ M/2
Saunders and Thomson, 1977 2 ¢ —¢d—Mvs. ¢
Harris and Wilkins, 1978 2 ¢—K+M2vs.C+¢p—¢
Neural rhythms 2 ¢—K+M2vs.C+¢—¢
Perkel et al, 1964 2b ¢ — ¢ vs. @
Walker, 1969 3 O+M—3¢ vs. ¢
Taddei-Ferettiand Cordolla, 1976 3 ¢— ¢ vs. @
Pinsker, 1977a 9E ¢ +Mvs. ¢
Jalife and Moe, 1976 9(5uA) O —pvs. d
Winfree, 1977 1 @' vs. ¢
Hartline et al., 1979 1 K—¢vs. C+¢—¢
Hanson, 1978 6 ¢ — ¢ vs. b
Yamanishi et. al., 1979 6 ¢’ vs. P
Biochemical rhythms
Chance et al., 1965a 4B ¢ —Pvs. @
Winfree, 1972d 7 K+ ¢ vs. ¢
Greller, 1977 28 ¢’ vs. ¢
Malchow et al., 1978 5 ¢ —¢p—Myvs. ¢
Aldridge and Pye, 1979a Sa @' vs. ¢
Other physiological rhythms
Karvé and Salanki, 1964 2 K—¢vs C+¢p—¢
Johnsson and Israelsson, 1969 5,6 K—¢vs.C+¢—4¢
Johnsson, 1976 4 @' vs. d

These experiments establish the reality of type 0 resetting. Some may lend themselves
to interpretation as population artifacts involving type 1 resetting by individual clocks of
an incoherent population. It is essential in such cases to enquire whether the individual
clock is by itself capable of type O resetting. In the case of circadian rhythms, only since
1977 has type O resetting even been documented directly in an individual organism
(Saunders and Thomson, 1977; Wiedenmann, 1977; Engelmann and Mack, 1978). In

The eight phase transition measurements in Aceta-

bularia (Karakashian and Schweiger, 1976, Figure 5,

replotted). A type O curve presumably lies somewhere

in the shaded area, but alternative constructions are
hard to rule out.

111



112 4. Ring Populations

4. Amplitude Resetting. The most conspicuous distinguishing feature of the
phase singularity deriving from incoherence within a population of independent
clocks is the amplitude resetting that goes along with rearrangement of phases.
After the perturbation each clock still follows the common cycle at the common
period. The distribution of phase does not change, apart from rotating around
the cycle. Thus the amplitude of the fundamental is permanently reset (so the
waveform is changed) without effect on the period.

It is worth noting that amplitude resetting in this context consists of dividing
a population of clocks into two distinct populations, one of which advanced while
the other delayed under the stimulus. This splitting of the population provides
the clearest experimental test by which to distinguish this mechanism (see Box D).

If the periods are not all exactly equal, then phases can disperse further and the
aggregate rhythm eventually runs down. Recovery to the standard amplitude of a
single simple clock is obtained only by restoring synchrony within the population.
In the absence of an external rhythmic stimulus to synchronize all the individual
clocks, this recovery can only be affected by mutually synchronizing interactions
among the clocks. This is our next topic.

B: Communities of Clocks

Mutual entrainment is a theme that recurs again and again throughout the
physiology of rhythmic systems. I've chosen to place our first encounter with it
here, in context of simple clocks. By thus restricting each rhythmic system to a
one-dimensional path through its state space, we enormously simplify the analysis,
so much so indeed that it becomes tractable. A few typical phenomena emerge that
appear to have some physiological interest.

Two Clocks

As in the previous section we begin with two identical simple clocks, but now
we let them affect each other: The angular velocity of each now differs from 1 by
an amount that depends on its phase and on the phase of its partner.

(lgl =1 +f(¢1a¢2)
by =1+ fldy,01).
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Figure 14. As in Figure 5 except that the two identical clocks affect each other’s rates of change in

a phase-dependent way. The result is that one or more trajectories become attracting closed rings at

the expense of others. (In this illustration f(¢y. ¢,) is chosen to be a function of (¢, — ¢) alone so the
antiphase diagonal is straight.)

This situation obviously has a certain symmetry, most readily brought out by
plotting the path of the pair of clocks in their toroidal state space as in Figures 5-8.
In Figure 14 the unperturbed trajectories curve because each clock’s rate is in-
fluenced by the other clock. But because clocks 1 and 2 are interchangeable, the
whole diagram remains symmetric about the main diagonal. The main diagonal
represents the path of perfect synchrony. Because there are mutual influences, the
synchronized clocks run faster through some phases and slower through others.
They might run faster or slower on the average than either of them would by itself.
Trajectories might converge to the main diagonal, conferring on it a local stability
as in Figure 14(a). The synchronized solution thereby becomes an attracting cycle
(Chapter 6). But the trajectories might alternatively diverge as in Figure 14(b).
In this case the synchronized solution is not stable. Due to the diagram’s symmetry,
there must be another closed path around the torus, midway between repeats of
the main diagonal in Figure 14(b). On this path the two simple clocks stay one-half
cycle apart on the average, though wobbling about this position as they push and
pull each other through the entrained cycle.” In Figure 14(b) I drew nearby tra-
jectories diverging from the path of perfect synchrony and converging onto this
antiphase path of entrainment without synchrony. (By entrainment I mean a
locking together of frequencies, though not necessarily with a stable phase rela-
tionship, let alone in synchrony. By synchrony I mean entrainment with, in addi-
tion, exact lock-step of phase.) This analysis proceeds without major revision in
the more interesting case of unequal periods. The main change is that if the periods
are too unequal or the mutual influence is too faint, then the mutual entrainment
is lost. For example see the exact analytic solution by Fujii and Sawada (1978)
and by Neu (1979b) in connection with chemical oscillators.

2 This is the case with two identical siphon oscillators such as are commonly assumed to imitate

the biochemical regulation of mitosis in blobs of Physarum (Scheffey, 1975, pers. comm. ; see Chapter 22).

In fact it is usual for the more realistically complicated oscillators taken up in Chapters 5 and 6 (e.g.,

van der Pol oscillators: Linkens, 1976, 1977) to have multiple stable modes of pairwise entrainment.
See Box F of this chapter and Box A of Chapter 8.
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Many Clocks

Now what about populations of many simple clocks, each faintly influencing
all the others in the general way considered above? One possibility is that the
pooled influenced of the many on any one amounts only to faint random noise
because the clocks are randomly phased around the cycle. This situation can be
stable if the mutual influence is too weak and/or the distribution of native periods
is too broad. Another possibility is that with stronger mutual influence or a
narrower distribution of native periods, such chaos is unstable. In contrast, mutual
synchronization could be stable because in that condition the coherent influence
of the many impinges upon each as a strong entraining rhythm, thus keeping them
sufficiently synchronous to generate a coherent influence rhythm. Unless all clocks
have identical native period, this condition occurs only above a critical point of
coupling intensity (see Box E). The first clocks to synchronize are those whose
native periods are so close together that their collective rhythm has sufficient
amplitude to entrain within that narrow band of periods. With a little increase of
coupling intensity, more oscillators are captured; their periods were a little further
removed from that of the densest nucleus. This adds to the aggregate rhythm’s
amplitude, so that the mutually synchronized nucleus expands a little more,
capturing a few more oscillators, and so on. This process limits itself when the
acquisition of additional oscillators requires a greater increase of collective
amplitude than their acquisition provides.
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As in the two-oscillator case, treated in the first part of this section and in
Box F, a mutually entrained population can run at any period, even faster than the
fastest individual in the population would in isolation, or slower than the slowest.

Now we are in a position to appreciate the pertinence of the two-oscillator case
in thinking about the pooled influence of the many on any one clock. Consider
“the one” to be clock 1 and “the many” to be clock 2. The lone clock 1 might
synchronize to the group 2, thus contributing to the aggregate rhythm as above.
But it might also entrain at some nonzero phase angle, depending on the detailed
shape of the aggregate influence rhythm and of the simple clock’s rhythm of
sensitivity (Box F). If clock 1 entrains without synchronizing, then it either leads
or lags the many. But this analysis pertains to every clock in the population. They
can’t all lead or lag the rest. One possible outcome is a schism in which about half
of the population plays clock 1 and the residue plays clock 2. In this “twinned”
mode the aggregate rhythm has two peaks per cycle one-half cycle apart on the
average, as in Figure 14(b). This is a common pattern in the activity rhythms of
mammals (Chapter 19). Similar behavior was observed in a population of mutually
coupled neon glow tube oscillators (Winfree, 1965 and Chapter 11). Pavlidis
(1971, 1973, pp. 154-156) offers additional analytic models of such splitting; Daan
and Berde (1978) offer still more.

I obtained these phenomena by computer simulations and reduced their quan-
titative analysis to a description of each simple clock by two properties: its phase-
dependent contribution to some aggregate “influence” and its phase-dependent
“sensitivity” (in terms of angular velocity) to that aggregate influence (see Box A
of Chapter 6). By plotting influence against sensitivity throughout one cycle (Figure
15), one obtains a closed loop whose area and moment of inertia determine the
phenomena described above (Winfree, 1967a).

So far asI'm aware no naturally occurring observation of mutually synchronizing
or mutually repelling clocks has been analyzed in these terms. Candidate systems
include glycolytic oscillations in yeast cell suspensions (Chapter 12) and circadian
rhythms in suspensions of single cells (Chapter 19).

The phrase “or mutually repelling” above refers to a surprising situation
implicit in the simple-clock model. As noted above, mutual synchrony may be
impossible if the influence and sensitivity rhythms are so phased that Figure 15
has negative area. In this case each clock interferes destructively with the entraining
rhythm. So not only does spontaneous synchronization fail, but even if it is esta-
blished as an initial condition, it fails actively. I mentioned above that there are
organized alternatives to mutual synchrony, e.g., the twinned mode with two
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a) ot + \/ E

Figure 15. (a) One cycle in the rhythm of influence X(¢); (b) one cycle in the rhythm of sensitivity,
Z{(¢); (c) X plotted against Z is a closed ring.

groups of clocks. But that doesn’t have to be stable either. If each clock’s rhythmic
influence is very smooth, it is nearly devoid of the harmonics which alone survive
superposition of symmetrically phased subpopulations. Then the amplitude of the
aggregate rhythm is quite low in two-group or three-group modes of temporal
organization. Commonly the amplitude is too low to entrain enough clocks to
maintain that organization. In such cases chaos prevails, but not just for want of
mutual coupling: it prevails actively, “bucking” any external would-be synchronizer
by developing a countervailing rhythm, to the extent that any synchronization at
all is imposed (Winfree, 1967a and later unpublished computer simulations).

1 know of no definite biological examples, but Ghosh et al. (1971) suggest that
acetaldehyde may be an agent of phase-scattering mutual influence among yeast
cells. Richter (1965) suggests a need for such mutual influence to maintain steady-
state output in the thyroid gland, which may be viewed as a population of rhythmi-
cally secreting follicles.

Unless a time delay mediates each oscillator’s effect on the others, active
scattering does not occur when oscillators interact in the special way typical of
chemical reactions coupled by diffusion. Thus no such possibility emerges from
Kuramoto’s (1975) and Neu’s (1979¢) reductions of this case to a simple-clock
approximation.

Communication by Rhythmic Impulses

In some kinds of natural oscillator populations, mutual influence does not vary
smoothly in time but is episodic and pulse-like.

In the case of pulse-like influence, the individual oscillator might be characterized
by a resetting map, showing what new phase it recovers to after receipt of an aggre-
gate pulse from the whole population. The analysis of entrainment by Perkel et al.
(1964) provides necessary and sufficient conditions on the S' — S! map from old
phase before one such stimulus to new phase after the stimulus. This analysis was
independently derived in context of circadian rhythms by Pittendrigh and Minis
(1964) and Ottesen (1965).
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Figure 16. New-phase ¢’ vs. old-phase ¢, double-
plotted from data of Walker (1969) from the chorusing
rhythm of crickets perturbed at various phases by the
sound of their own call. Phase 0 is the moment of calling.

Figure 17. The new phase of rhythmic activity in

cardiac pacemaker cells, electrically stimulated at each

old phase, replotted from unpublished data of Jalife
(1975). The action potential occurs at phase 0.

There arises a dilemma of internal phase compatibility similar to that en-
countered above. For mutual synchronization the phase shift (¢" — ¢) should be
changing from small advances to small delays at the phase of pulse emission. More
exactly, the resetting map, ¢’ vs. ¢, should cross through the ¢’ = ¢ diagonal at
slope between +1 and — 1 at the phase of pulse emission. Any other resetting map
would result in more complicated aggregate behavior than simple synchrony. In
four cases the ingredients of such an analysis have been obtained experimentally:

1. The mutual synchronization of ;CAMP pulsing in suspensions of slime mold
cells mentioned above gives a resetting map of the anticipated sort (Malchow et
al., 1978; see Figure 3 of Chapter 15.)

2. Mutual synchronization of chorusing in populations of tree crickets does
also (Walker, 1969; see Figure 16).

3. Electrical synchrony of cells in the pacemaker of the heart seems to be
mediated by a similar resetting curve (Jalife and Moe, 1976, Figure 9; Sano et al.
1978, Figure 5; also see Figure 17). Peskin (1975, pp. 250-278) analyze the mutual
synchronization of cells in the heart’s pacemaker in terms quite similar to those
alluded to above. Exact equations were derived for the two-oscillator case, but
the population problem awaits completion.
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Figure 18. The new phase of the flashing rhythm in fireflies of three species perturbed by the sight
of their own flash at various old phases. The flash occurs at phase 0 on this scale. Each box is exactly
one cycle by one cycle. Replotted from Hanson (1978, Figure 7).
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4. The same behavior has been obtained from studies of mutual synchroniza-
tion of flashing in two different kinds of southeast Asian fireflies, one with type 0
resetting and one with type 1 resetting [Hanson, 1978; see Figure 18(a, b)].
Hanson also found that entrainment cannot always be understood quantitatively
as repeated resetting a la Perkel, i.e, by iterating the appropriate resetting curve
(in his case 7c). This means that simple-clock models fail in at least this one species.
The next theoretical effort might entail a study of impulse response and entrainment
in attractor-cycle oscillators of the sort familiar to neurophysiologists (see Chapter
14), developing the consequences for a population whose aggregate output is
itself the entraining rhythm.

If each clock responds in a way describable neither as a jump along a fixed
cycle nor as a modulation of angular velocity along a fixed cycle, then this whole
format must be abandoned. We therefore return to this subject in Chapter 8§ after
developing a fuller appreciation of oscillating kinetics in Chapters 5 and 6.

Collective Enhancement of Precision

A little studied question of some physiological significance concerns the
precision of rhythmicity in mutually synchronized populations. It is often stated
in research papers (it is even alleged that I proved this in 1967, which I did not)
that mutual synchronization disciplines each oscillator to much improved re-
gularity of oscillation at the common frequency.

One argument might run as follows. Suppose mutual entrainment is stable with
deterministic oscillators of native period 7;, each entrained to the aggregate
rhythm at period 7,. Each locks to that rhythm at some phase y/(t; — 70). Suppose
small 7; — 74, weak coupling, and a strongly attracting cycle, so that y changes
slowly and little else changes at all. Then we can write iy = 1/t — 1/, + M(}) for
some suitably-invented function M. Entrainment requires that i = 0 and M’ < 0.
Now suppose we have not a population of individually precise oscillators of various
periods but rather a population of oscillators of identical statistical behavior,
individually somewhat irregular of rhythmicity. If they do achieve mutual entrain-
ment, does the aggregate rhythm drone on with a steadiness orders of magnitude
greater than any individual’s, disciplining each individual to adhere to the collective
rhythmicity? If ; should slowly change, then v # 0 nudges ¥ toward the equili-
brium typical of an oscillator with the revised ;. Should 7, fluctuate more rapidly
within the range of 7;’s characteristic of this population, then ¢ will fluctuate about
its stable position for oscillators of middling z;. Either way the situation remains
qualitatively the same. Thus it would appear that the aggregate rhythm does
discipline each individual to enormously enhanced regularity.

Some biologists are inclined to account in this way for the uncanny accuracy
of some circadian rhythms, but so far as I am aware, the mathematical essence of
such a mechanism has never been revealed. The matter awaits the attention of a
master of stochastic dynamics. Substantial beginnings are made in Stratonovich
(1967, Chapter 9) and in Kuramoto (1975). A valuable contribution could be made
by following them up.
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C: Spatially Distributed Independent Simple Clocks

In this section my intent is only to outline a format of description that receives
further development in later chapters. Our subject here is a population of simple
clocks distributed in space. We are not here concerned with pooling their outputs
nor with their local neighbor interactions. We are concerned with maps again, this
time from a physical space in which the clocks are distributed to a ring-like state
space on which each clock’s phase is described. Two examples will suffice (see
also Box G).

The Ascomycete Frontier as a One-Dimensional Population
of Simple Clocks Without Interaction

Some kinds of fungus grow across a food surface at uniform speed of several
millimeters per day (see Chapter 18). While the organism propagates in this way
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Figure 19. (a) An idealized sketch of a fungus colony on which spore density is rthythmic along each

radial growth path. The phase of the radial rhythm drifts through one cycle from north (0") to east

(90°) to south (180°) to west (270°) (b). In (c) each point on the frontier ring is mapped to its momentary
phase on the cycle.

at a fixed velocity, its internal metabolic rhythms affect the style of growth: The
mycelium becomes locally thick or thin, eventually making spores or not. The
moving frontier of the colony thus leaves behind a permanent record of its metabolic
rhythm in the form of periodically alternating bands of conspicuously different-
looking tissue. Time lapse movies of a disk of such a fungus show that the pattern
is laid down at the growing edge, the circular frontier of the colony. As in the
construction of rings in deciduous trees, or deposition of the colorful decorations
in sea shells, the pattern does not change after the foundations are laid at the
growing frontier (Winfree, unpublished movies).

The frontier is a ring, a one-dimensional continuum each point of which may
be regarded as harboring a physiological clock. The phase of this clock can be
evaluated by measuring back either in time or in space along the radial path of
growth to the most recent occurrence of some marker event chosen for convenience
to be called phase 0, for example, a maximum of sporulation density [(Figures
19(a), 20(a)]. As it happens, phase almost always varies continuously along the

Figure 20. As in Figure 19 but phase meanders back and forth without net effect from north (0)
to east (90°) to south (180°) to west (270°).
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frontier ring. (There are exceptions and some physiological interest attaches to
these exceptions as opportunities to observe the outcome of a natural experiment.
See below.)

It will be convenient to plot the observed dependence of phase on azimuth.
Azimuth is the compass direction from some internal origin to a boundary point.
A natural choice of origin is the inoculum from which the whole disk has expanded.
To help distinguish rings in physical space from the abstract phase ring, we
calibrate azimuth in degrees from 0 to 360, while phase is expressed in fractions
ofacyclefromOto 1.

Figure 19 idealizes the phase vs. azimuth plot from the frontier ring of a mycelium
on which a single spiral intersects the boundary in three places. Figure 20(b) ide-
alizes the phase vs. azimuth plot from the frontier of a mycelium on which con-
centric rings intersect the boundary in four places. (See Chapter 18, Figures 5 and
6 for real measurements.)

It would be more natural to conduct a measurement by mapping the ring-shaped
frontier onto the clock cycle, idealized as a ring as in Figure 20 of Chapter 1.
Choosing a point on the cycle to represent phase O (e.g., the phase at which sporula-
tion is fated in newly created tissue), we plot each frontier point on the ring
according to its radial distance (its time) from phase 0. This is done in Figure 19(c)
and 20(c). In Figure 19 phase increases more than it decreases as we traverse the
frontier clockwise. It increases exactly one full cycle more, resulting in winding
number W = 1. In contrast, in Figure 20 the image of the frontier has winding
number W = 0 around the phase circle. Phase increases and decreases through
more than a full cycle around the frontier, but it decreases back again exactly as
much as it increases. A completely synchronous mycelium has W = 0. Its frontier
maps to a point circulating around the phase ring. In this case sporulation patterns
consist of concentric rings. A map with winding number W = 41 corresponds to
clockwise or anticlockwise spiral morphogenesis. In the case of a two-armed spiral,
the map turns out to wind twice around the phase circle (W = +2) in a direction
(+ or —)determined by the handedness of the twin spiral.

The phase circle might portray the states of a ring device functioning in each
little patch of tissue, if each frontier point harbors a simple clock. Since phase
advances (by definition) uniformly in time, this map is to be thought of as rotating
rigidly once in each period of the ring device. This is 16 hours in the case of the
Nectria fungus, which provided the examples described above.

In all the foregoing, we have paid no attention to the likely possibility that
neighboring frontier cells interact to some degree. This seems particularly note-
worthy in cases where phase changes rapidly over a short arc of frontier, i.e., where
there is a radial edge dislocation in the periodic banding of the fungal disk. One
might reasonably expect that physically nearby cells (or hyphae, to be more exact)
would compromise in phase, smoothing over the steep spatial phase gradient.
Smoothing of near-discontinuities of phase does occur, but slowly. A discontinuity
typically lasts through many cycles before it is really smoothed out. So in this
first approximation we ignore interactions.

Note that this example deals only with the colony’s growing frontier. Suppose
we had certain proof (as Dharmananda and Feldman, 1979 might for the similar
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ascomycete Neurospora) that interior points (old frontiers) also retain the same
rhythmic activity as the present frontier more plainly exhibits. Then it would be
appropriate to map the whole disk onto the phase ring. As we have often seen
before, this cannot be done smoothly unless the frontier’s winding number is 0.
In the other cases, a violent phase discontinuity is implicit somewhere inside the
disk. There the phase gradient is too steep to permit neglect of interactions. In fact
it is too steep for any finite accounting. This will force us from simple-clock models
to a biochemically more realistic view in which the mapping is not a ring but a
two-dimensional state space (Chapters 5 and 6). The mapping to a two-dimensional
space is smooth regardless of winding number and it permits neglect of interactions
in a first approximation even in situations with W # 0. But for the present we
must confine our attentions to the frontier.

A Liquid Chemical Oscillator Viewed as a Population
of Simple Clocks Without Interaction

Imagine a fluid in which each tiny volume element periodically executes a cycle
of changes, returning to an initial state at regular intervals of time. If nearby
volume elements are in nearly the same state, then (apart from concern about the
stability of this situation) we can neglect coupling through molecular diffusion
because there are no significant concentration gradients to drive enough flux of
any substance from one volume element to the next.

Despite the abruptness of one stage in its reaction cycle, the best studied example
at present is the oscillating Belousov-Zhabotinsky reagent (Chapter 13). Using
one-dimensional columns of this reagent with sufficiently shallow phase gradients,
Beck and Varadi (1971, 1972), Thoenes (1973), Kopell and Howard (1973a), Varadi
and Beck (1975), and Beck, Varadi and Hauck (1976) studied wave-like patterns
of chemical activity in terms of spatial patterns of phase. As in the Nectria fungus,
disks of this reagent typically show concentric ring patterns and spiral patterns of
chemical activity, indicated by color. The color varies between red and blue. In a
ring pattern, all points along any ring map to the same point on the phase circle.
Adjacent rings map to adjacent phase points. The geometry is suggested by
Figure 21: The whole disk maps exactly as does each radial wedge of the disk.

PHASE
CIRCLE
Figure 21. A two-dimensional oscillating chemical medium momentarily has uniform phase along
closed rings concentric to point o. Each ring is shrunk to a point in imagination, identifying points of
equal phase. This collapsed image of the plane is mapped onto the ring of phases.
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If there are many cycles of phase along each radius, then the map winds many
times around the phase ring.

As indicated in the case of Nectria, a two-dimensional spiral wave cannot be
mapped continuously onto the ring. Apart from the theorem about winding
numbers, the problem can be visualized as follows. Consider the border of the
disk of reacting fluid. Having winding number W = 1, it maps once around the
phase ring. So does the ring of fluid just interior to this border, and so on by con-
centric rings inward toward the pivot. An arbitrarily small ring of liquid around the
pivot also maps once around the phase ring. Inside that, there is either a discon-
tinuity in the state of the fluid or the tiny disk at the very center covers the whole
inside of the phase ring. But this “inside” is not part of the state space and has no
conceivable interpretation in terms of a simple-clock mechanism. To avoid this
paradox, we will have to abandon interpretation of spirals in terms of phase in a
cycle, turning to a state space of two dimensions in order to support the required
map: a space which gives insides to the phase ring. This is reserved to Section C of
Chapter 8.

In the one-dimensional case, each point in a column of oscillating fluid maps to
a point of the phase ring ' — S'. The image of the column rotates steadily around
the ring. This picture was given more interest by contriving a temperature gra-
dient (Kopell and Howard, 1973a) or an acidity gradient (Beck and Varadi, 1972;
Thoenes, 1973) so that one end of the column cycles faster than the other. In this
situation the image of the column continually stretches out along the phase ring
as the leading (hot or acid) end wraps through more and more turns than the
lagging (cold or less acid) end. There are as many cycles of wave-like activity along
the column as there are windings of the image. Eventually there are so many, and
the waves are packed so close together, and the image is stretched so taut, that
local interactions can no longer be left out of the picture. At this point a new
phenomenon first appears: real propagating waves of chemical activity.

D: Ring Devices Interacting Locally
Linear Coupling to Neighbors

Consider a simple clock whose motion along the phase ring can be described
(vacuously) as ¢ = f(¢). Suppose as in example 14H of Chapter 1 that we have
a physical ring of such clocks in which the angular velocity of each is affected by
its fore and aft neighbors. To construct the simplest case, suppose there are so
many clocks on a ring that neighbors are at very nearly the same phase. Let the
influence of each clock on its neighbor’s rate then be simply proportional to the
phase difference between them:

do: _

il f(®) + k(-1 — @) + k(d;+, — ¢;) for each cell, i=1toN. (1)

In words, this rate equation says that each clock speeds through its cycle as it
would if alone but, additionally, it is hurried along or retarded by its two neighbors,
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depending on whether they lead or lag. Each clock then tends to take up a phase
midway between its neighbors. This set of N ordinary differential equations can
be iterated in a computer to follow the changes of each ¢;. I did this in 1973,
collaborating with R. Casten and J. Mittenthal over those aspects of the problem
that could be approached analytically. Before I tell what we saw, it should be noted
that problems of this sort have a tradition, and mathematicians know lots of
solutions, though apparently not for exactly the situations that caught our atten-
tion then. Equation (1) could be written:

<¢[“1 - ¢l> _ <¢l - ¢i‘rl>
Wi_ gy + Dt ! %)

dr h

in which h is the physical spacing between cells, D is a diffusion coefficient, and k is
written D/h%. Letting h — 0, the interaction term is seen to be the second derivative
of ¢ along the chain of cells. So dropping subscripts, we think of ¢ as a continuous
function of time and position along the line of cells, and write (2) as a parabolic
partial differential equation:

18] %

3)

where 0 is distance along the line. This is a familiar challenge. There exists a big
and rapidly growing literature of mathematical solutions for special forms of
f(¢) (e.g., see Murray, 1977 and Fife, 1979).

Surprisingly, however, not much attention has been lavished on the case in
which ¢ is a point on a ring rather than a point on the line (a phase rather than, let
us say, a voltage or a concentration) and 0 is also a point on a ring rather than on
a line (i.e., the physical medium [in which ¢ = f(¢) is going on everywhere] is a
closed loop rather than an open thread). Nonetheless the qualitative features
introduced by incorporating spatial interactions are the same in any context. The
main feature introduced is wave propagation.

Waves

Two kinds of waves invite distinction as extreme cases. In the first case suppose
f(¢) > 0 for all ¢ so that we have a simple-clock medium, and suppose D is so
small or that ¢ changes so slowly with 0 that Dd*¢/d0* can be ignored in Equation
(3). (In the limit, this case would belong in Section C: noninteracting clocks). The
medium can still give the appearance of conducting waves because wherever ¢
varies with 0, ¢ = 0 is reached first in one place, then a little further along, and so
on. These “pseudo” waves differ from real propagating disturbances (see Box C of
Chapter 13) in that their wave shape and velocity are determined only by ¢(6).
In fact that apparent velocity, being 1/(d¢/d0), varies locally and can even be
infinite. I speak of this case only to provide contrast with the real waves that I call
“trigger” waves. In a trigger wave a local displacement of ¢ tends to travel along
the 0 axis, eventually shaping itself into a certain waveform moving at a fixed speed.
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Both simple clocks and hourglasses behave similarly in this situation: Either kind
of ring device will conduct a trigger wave. Waves of this sort are quite unlike those
of classical physics. Unlike sound waves, light waves, and waves on water, they
vanish at the ends of the line instead of reflecting. They annihilate each other in
head-on collisions instead of passing through each other. In these respects they
resemble the waves of electrical activity typical of nerve, heart, and brain tissue
(Chapter 14) and their chemical analogs (Chapter 13).

Quite different mathematical approaches to waves in ring device continua are
detailed in the appendix of Goodwin and Cohen (1969), in Ortoleva and Ross
(1973), and in Neu (1979a).

Mappings and Their Winding Numbers (Again)

I now return to the special case in which Equation (3) represents a continuum
of identical ring devices arranged in a physical ring. As in the previous section it is
helpful to visualize this situation by mapping the physical ring onto the ring of
states, ¢(0):S' — S'. The image of the physical ring necessarily winds some integer
number W of times around the phase ring. Once established, there is no way that
winding number can change without cutting the image. Cutting the image is
forbidden so long as ¢(6) is continuous: Arbitrarily nearby points on the ring
cannot have finitely different phases so long as molecular exchange continues,
guaranteeing local uniformity. The diffusion term confers coherence on the ring’s
image. Equation (1) shows that diffusion is analogous to elasticity of the image
of the physical ring: Each element of length moves (on the phase ring) toward
its neighbors at a speed proportional to their separation on the phase ring (see
Chapter 8, Box D). The physical ring’s image then behaves much like a massless
rubber band, moving in a viscous medium which itself moves according to ¢ = f(¢b).
Each little piece of the ring follows this local rule of angular velocity but addition-
ally stretches to relieve tension in locally more taut places (where phase ¢ in
state space changes more quickly with distance € in real space). Each little piece,
traversing the same cycle as its fore and aft neighbors, is continually adjusting
its velocity to stay poised midway between them. That fact and the conservation
of winding number constitute the whole story of qualitative behavior of ring
devices with smooth kinetics interacting locally by such simple rules as Equation
(1) expresses.

Computational Experiments

Consider for example an hourglass ring device described by:
1(@) = ¢l — ¢)¢p — a) (4a)

flp) =1+ Icos2ne. (4b)

There is a repelling equilibrium ¢, [at ¢ = 1 = 0 in (4a); elsewhere depending on
I > 1in(4b)]and an attracting equilibrium ¢, [at ¢ = ain(4a);at ¢ = — ¢, in(4b)].

or
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0 Figure 22. Kinetics on the phase ring during strong perturbation,
analogous to Figure 3 of Chapter 3.

Za

Without spatial coupling, all volume elements of a ring of such a medium would
follow the ¢ arrow of Figure 22 to ¢,. But that would cause a rupture of continuity
at ¢,. Volume elements initially just to the left and just to the right of ¢, separate
increasingly as they approach ¢, anticlockwise and clockwise, respectively. If local
interaction is allowed, that cannot happen. What does happen now depends on the
winding number of the image. If W = 0 as in Figure 23(a), then the whole image
slides around to ¢,. If W # 0, that can’t happen. If W = 1 as in Figure 23(b), then
the image becomes tauter near ¢, and denser near ¢,, but the counterclockwise
circulation of f(¢) prevails. The whole image then continuously rotates. Thus
even though the local kinetics during perturbation describes an hourglass, in-
capable of oscillating by itself, yet the whole system still continuously oscillates
justasitdidat I = 0. Every volume element along the physical ring is pulled around
the cycle each time a wave of activity circumnavigates the physical ring. If W = —3,
there are three such waves, rotating clockwise, and they never stop.

We observed these behaviors for diverse choices of f(¢), using the computer
to iterate through Equation (1). It doesn’t much matter whether f(¢) describes

o

Figure 23. A ring of clocks (dots) mapped onto the phase ring. If W = 0 as in (a), then the ring can
homogeneously contract to ¢,. If W # 0 as in (b), then it cannot, but instead rotates forever.
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a simple clock, an hourglass, or something else. The velocities of wave propagation
and the wave shapes agreed well with analytic solutions for a single wave on the
open line when we made the physical ring large. For example, in Equation (4a)
the velocity is close to V =./2(1/2—a) and the wave shape ¢(0 — vt) =
1/(1 4 "2~y as Huxley found analytically (McKean, 1970) and as Nitzan et al.,
(1974) derived in more general context. More generally, covering cases which
cannot be approximated analytically, we found that as ring circumference is
increased, velocity increases toward an upper limit equal to the speed of a solitary
pulse on the open line. As ring circumference is decreased toward 0, wave speed
decreases toward 0. Without being able to make the mathematical proof completely
rigorous, Casten conjectured that the period of circulation (circumference/velocity)
should also increase with the circumference. This was found numerically in every
case. The reciprocal period appears to approach the mean ¢ as ring circumference
approaches 0:

2= [16)do.

In this limit the wave appears to flatten out to ¢(6,¢)=(t/T) + 0 x (any integer), as
might be expected with molecular diffusion averaging reaction rates throughout
the whole of a very small ring. Using the above expression for 7, it appears that the
stable solutions to Equation (3) as D — oo on a closed ring are:

9(0,0) = WO + 1§ f(9)do

for any nonzero integer W.
I present these fragmentary results because their apparently great generality
seems to invite a more elegant mathematical resolution.

From One Dimension to Two

Cases with W # 0 are important for biological applications such as the ring-
shaped frontier of a fungus engaged in spiral morphogenesis in Section C. But
the really interesting cases come when we try to treat two-dimensional media.
This could be attempted by expanding the physical ring to an annulus and filling
in its central hole until it is closed and we have a disk. If ¢ has nonzero winding
number around the edge of the disk, then there has to be a ring of discontinuity
inside the disk. In the simplest case this ring is as small as can be, namely, a point
phase singularity. This is unavoidable but it is an embarrassment to models in
which the local state can vary only along a one-dimensional state space because
then all these different phases which converge at the phase singularity represent
discretely different states. The phase singularity then represents a confrontation
of distinct states in an arbitrarily small space. This is physiologically and bio-
chemically unrealistic. Using Equation (4b), Kuramoto and Yamada (1976) tried
to account for spiral waves in chemical media (Chapter 13) but were frustrated
by the central phase singularity (their Sections 3.D and 4). Thoenes (1973) had
previously attempted a less mathematical argument of the same sort, overlooking
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the contradiction implicit at the pivot of a spiral wave in a medium whose state
varies only in respect of phase. Wiener and Rosenblueth (1946) had concluded
that rotating waves could not occur in excitable media with only a one-dimensional
state space unless by circulating around a central hole. They didn’t give reasons
in the form of a proof, but I presume that prominent among them was the un-
palatability of a phase singularity.

In the next chapter we begin to remedy these contradictions by widening our
view to encompass models whose internal state can vary independently in two ways.
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To bring a quality within the grasp of exact science, we must conceive it as
depending on the values of one or more variable quantities, and the first step
in our scientific progress is to determine the number of these variables which
are necessary and sufficient to determine the quality.

James Clerk Maxwell

My purpose in this chapter is to start “putting flesh on the bones” of the simple
clock metaphor. Up to this point, I've tried to hold your attention on “phase”
and its rate of change by confining discussion to the simplest metaphor of smooth
cyclic dynamics, namely, the ring device. I have studiously avoided allusion to
other degrees of freedom of the “state” of any biological clock. To make the tran-
sition to a broader perspective in an orderly way, I now wish to introduce just one
additional notion, i.e., that a rhythmic process might be adjustable not only in
phase, our exclusive preoccupation in previous chapters, but also in some measure
of its vigor, amplitude, range, or degree of variation during the cycle.

I do this by elaborating on a few strictly idealized examples, drawing out the
main features in which they differ from simple clocks. These new features are met
again in more realistic models in Chapter 6 and in several sets of measurements
on biological systems recently examined for such features in the laboratory.

A: Enumerating Dimensions

Just as people have asked how many components there are in the sensation of
color (three) or of taste (four) so it also seems basic to ask how many components
there are to the sense of time. Here that question is restricted to the particular sense
of circadian, rhythmic time. A commonly accepted answer is “one”, by analogy
to the unidirectional character of linear time. The inadequacies of linear descrip-
tions of time have been met by recognizing that the one-dimensional time axis, in
cases of rhythmic time measurement, describes a circle. No significance is attached
to the insides of the circle, just as we attach no significance to places off the one-
dimensional historical time axis. In preceding chapters we adhere to this viewpoint
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and test its limits by mathematical inference and comparison with observations.
The observations of negative slope in resetting curves, of type 0 resetting, and of
phase singularities present paradoxes for this paradigm. The result is that we are
forced in this chapter to contemplate the possibility that the sensation of time has
two or more components.

There are serious conceptual problems about enumerating the degrees of free-
dom of a real system. It is not obvious that there is any unique number of this sort
because every real system involves myriads of variables, some of dominant im-
portance, some of negligible interest. But neither is it usual for people to deal with
real systems. We deal instead with certain aspects of their behavior that we con-
sider “relevant”. In our heads, we deal with adequate approximations, caricatures,
metaphors, models which acknowledge only the dominant variables of real systems.
For a model system 1 use the term “degrees of freedom™ to indicate the integer
number of independently varying quantities which jointly determine its state, in
the sense that if and only if all are simultaneously known (together with any rele-
vant environmental parameters), then their immediate rates of change are all
unambiguously determined. This is the sense in which “degrees of freedom” is
used in thermodynamics and statistical mechanics. It is the dimension of the state
space. It is the number of oscillators only if each oscillator is a simple clock with a
single state variable (the phase). In certain other literatures usage differs. For
example, in mechanics the state variables always come in conjugate (position,
momentum) pairs, so “degrees of freedom” has come to mean the number of
pairs, i.e., half the dimension of the state space (Feynman et al., [ 49-6). This is the
number of oscillators if each is a simple harmonic oscillator with two independent
variables of state. In electrical engineering “degrees of freedom” means the number
of changing quantities in an equation, not counting their rates of change as distinct
degrees of freedom. This can be a much smaller number than the dimension of the
state space (for example, see Pavlidis, 1973).

In this chapter we entertain the notion of exactly two components, but the
qualitative inferences emphasized here are also valid for any greater number of
components.

B: Deducing the Topology

So long as we envisioned only a one-dimensional set of states with the connec-
tivity of a ring, there was no latitude of choice in selecting a state space. All one-
dimensional closed manifolds are topologically equivalent to a ring.

But if we are driven to recognize different flavors of each phase, then we must
choose one of many possible state spaces. The issues at stake are dimension and
connectivity. Consider some of the options for introducing just one more variable,
bringing the dimension of state space to two. We might consider involving a second
clock for the second degree of freedom. The state space would be the product of two
rings: (S' x S?), the two-dimensional torus. Without belaboring detail, this turns
out to entail some discontinuities not observed in practice. But a system of three
or more simple clocks would serve (Chapter 4, Section A). If our “system” is really
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a composite of many similar simple clocks, the required additional degrees of
freedom might lurk in the distribution of phase about the mean phase. In many
respects the narrowness of the distribution would determine an amplitude, in-
tensity, or vigor of aggregate rhythmicity.

Alternatively, we could supplement the “phase” description of a simple clock
with a second quantity, an “amplitude” of oscillation. Diagrammatically this could
be done by picturing the circle of phases as girdling a cylinder. The cylinder’s long
axis distinguishes oscillations of different amplitudes. Dynamics in systems with
cylindrical state spaces has been systematized by Minorsky (1962, Chapter 8) and
by Andronov (1966, Chapter 7) among others. Without belaboring detail, I also
reject the cylindrical state space because its qualitative features don’t correspond
to the qualitative behavior of the biological systems all this is supposed to be about.

Our state space might alternatively be a surface of a cone or its topological
equivalent, a disk. The cycles of different amplitude would be rings concentric
to an axis or point of zero amplitude. The singularity of zero amplitude might then
be regarded as a degenerate ring in which all phases are indistinguishable.

In principle there are lots of alternatives, each characterized by a topology and
corresponding idiosyncracies of behavior. If we want a state space of two dimen-
sions, the state might be described by two real numbers or by two positive real
numbers (like chemical concentrations) or by a phase and a real number (the
cylindrical state space) or by two phases (a torus or a Klein bottle) or in ways that
lend themselves less readily to verbal description (as on the surface of a sphere with
17 handles, six of which are knotted together). And if more than two dimensions
are countenanced, the possibilities exceed the capacity of human imagination. How
is one to choose the state space natural to a given phenomenon? If I may quote
Ambrose Bierce (on “sleep”, from The Devil’s Dictionary):

Itis hardly a burning question: it is not even a problem that presses for solution.
Nevertheless, to minds not incurious as to the future, it has a mild, pleasing
interest, like that of the faintly heard beating of the bells of distant cows that
will come in and demand attention later.

For present purposes I evade the whole issue by choosing R, in fact only its
positive part, as though the process with which we will be concerned is determined
simply by D chemical concentrations (D stands for “dimension”). By this choice
I conjecture that for the systems we will be concerned with there is a continuum
of realizable states between any two states and that any closed ring of states can
be contracted through realizable states to a point. (This is not true, for example,
of S'norof S' x S',norof S! x R' contemplated above.) Beyond that conjecture
I make no more. For example we have little reason to suppose that D = 2, as
though only two quantities suffice to adequately determine the state of a biological
clock. This is commonly assumed for reasons of convenience in constructing
mathematical models, but rarely is more substantial justification given. To assume
D =2 is to postulate the nonexistence of a number of pecularities that require a
third degree of freedom, as we will see in Chapter 6. The models in this chapter all
suppose D = 2 for simplicity but I will deal only in those properties of the models
that generalize straightforwardly to D > 2.
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C: The Simplest Models

Does this elaboration of what may seem an arbitrary descriptive language have
any meaning in terms of hard-nosed empirical science? What is gained by aban-
doning the simple traditional state space S*for some manifold of greater dimension
and different topology? What is gained in the end boils down to the existence of a
continuum of states connecting each point of the familiar cycle to a point of am-
biguous phase, not on the usual cycle. That may not seem like much but it allows
us at least to describe consistently the observed negative resetting curve slopes,
type O resetting, and phase singularities of biological clocks, all of which seem
perplexing in terms of the geometry of a single simple clock or even of a pair.

In short, the following models emphasize only two interrelated supplements
to the simple clock idea:

1. A second dimension of internal state

2. A state of ambiguous phase

Example 1. Consider a pendulum. It goes through a smooth cycle including
(in order) states of:
Lowest position in middle, maximum momentum to the right
Medium height on right, medium momentum to the right
Highest right position, zero momentum
Medium height on the right, medium momentum to the left
Lowest position in the middle, maximum momentum to the left
Medium height on the left, medium momentum to the left
Highest left position, zero momentum
Medium height on the left, medium momentum to the right

R B i e

Lowest position in the middle, maximum momentum to the right (etc.)

This is diagrammed in Figure 1. The pendulum executes its cycle with pretty
much the same period at any amplitude. The amplitude increases with the energy

Figure 1. One circular trajectory in the (position,

momentum) state space of a simple pendulum (inset

upper left). L =left, R =right, ¢ = phase, A =
amplitude.
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we impart to the pendulum in starting it. At zero amplitude (zero energy), the
phases are indistinguishable and the pendulum bob simply hangs straight down.

The simplest kind of perturbation of this motion is a mechanical impulse, a
kick. Such an event quickly alters the momentum without significantly changing
the position, as when you shove a child on a swing. This alters both phase and
amplitude in a coordinated way.

All the above (so long as it is restricted to low amplitudes) applies equally well
to any harmonic oscillator. Classical physics is built out of harmonic oscillators.

Example 2. Examples from mechanics are a bit misleading in that the two
ostensibly independent state variables, position and momentum, are secretly re-
lated in a way that is fundamental to the whole structure of mechanics: Momentum
is proportional to the rate of change of position in time. But similar diagrams arise
in context of chemical kinetics. In these diagrams the perpendicular coordinates
are concentrations of two distinct chemical substances. In 1920, A. J. Lotka pro-
posed purely theoretically that a chemical reaction could oscillate if two reactions
could be so coupled that the rate of each depended suitably on the other’s product
concentration. Diagrammatically, the state of the overall reaction can be indicated
by the concentrations C, and C, of two products. In the simplest caricatures
there is a steady-state at C, = C¥, C, = C%. If either concentration is disturbed
from that steady-state then C, and C, begin to change to new values. It transpires
that change persists rhythmically as C,; and C, bobble up and down along a
closed path in state space (Figure 2). The amplitude of this closed path is determined
by the initial displacement from steady-state, just as the pendulum’s amplitude
is determined by the energy of an initial mechanical displacement from equilibrium.

In terms of chemical kinetics, the simplest imaginable perturbation would con-
sist of selectively adding or removing one compound, e.g., by photolysis of sub-
stance 1, diagrammatically as in Figure 3. A quick dialysis that removes both in
proportion to their concentrations would change the state as diagrammed in
Figure 4.

Example 3. Also in 1926, Vito Volterra independently published an identical
scheme in which concentration C, represents the population density of animal
species 1 and C, respresents the population density of species 2. His intent was to
abstract the essential features of ecological dynamics in fisheries. Thus he con-
sidered the consequences of perturbations such as temporarily introducing a

Figure 2. A pendulum-like oscillation in the state space of a
chemical reaction determined by two concentrations C; and C,.
(Note that this caricature is unsound both thermodynamically
and kinetically, due to general peculiarities of real chemical kinetics.
But it suffices for now to introduce the notion of amplitude.)
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Figure 3. Figure 2 is altered to depict revised kinetics during a
perturbation which quickly destroys substance 1.

Figure 4. Kinetics during removal of both species at a rate
proportional to their abundances.

harvestor that selectively removes species 1 (reduces C, Figure 3) or unselectively
takes species 1 and 2 in proportion to their abundances (reduces C, and C,
together, Figure 4). The timing of rhythmic fluctuations in species abundance is
governed by the same geometric relations as in the previous cases.

D: Mathematical Redescription

The purpose of this section is to articulate more exactly the very simplest models
of phase resetting in an oscillator characterized by an amplitude as well as by a
phase. Modulation of angular velocity, the mechanism explored in Chapter 3, is
inadequate to describe or analyse the phase control of such an oscillator. We will
see why and how that is by doing as we did in Chapter 3: We will write equations
for a few general styles of perturbation (such as Figures 3 and 4) and graphically
examine their implications. The four models to be presented here all resemble a
pendulum in that under unperturbed conditions (I = 0) trajectories are concentric
circles traversed clockwise at uniform angular velocity, the same on every circle.
The radius of the circle is the oscillation’s “amplitude”, and angular position along
the circle (measured clockwise from the positive Y axis) is the oscillation’s instan-
taneous phase (Figure 1).

The four models to be presented here differ in the ways they react to a stimulus
I # 0. During an interval when I # 0, the oscillator does not behave as it does
when I = 0. Its state changes in a different way. Our analysis proceeds by following
the state along a trajectory of unperturbed dynamics (I = 0) up to a certain phase,
then following it from there along trajectories of perturbed dynamics (I # 0)
during the stimulus, then reverting to unperturbed dynamics (I = 0) after the
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stimulus. This is essentially what we did in Chapter 3 for simple clocks except
that there the trajectories were geometrically identical, all being limited to a
common one-dimensional path. They differed only in speed along that path. Now
we admit perturbations of speed in two directions. The perturbed path in state
space thus differs geometrically. To keep the story simple we consider only one
nonzero value of I without describing how the dynamic depends continuously
on I.

This method of alternating flows has been used in diverse contexts that involve
perturbed oscillators; by Danziger and Elmergreen (1956) in connection with
an endocrine cycle and its control by hormonal stimuli; by FitzHugh (1960,
1961) to analyze the effects of electrical stimuli on nerve membrane; by Kalmus
and Wigglesworth (1960) to describe the impact of daylight on a circadian clock;
by Campbell (1964) to analyze mitotic synchrony; by Strahm (1964), by Moshkov
et al. (1966), and by Pavlidis (1967) to rationalize resetting experiments in the
fruitfly’s circadian clock.

Example 1. Let us suppose that the stimulus removes substance C, at a con-
stant rate k. If this rate is large and the stimulus is brief, then we can ignore other
processes occurring during the stimulus and write:

dc,

0 =—k so C;=C,—kt

where the prime indicates the new, reset value of C, after a stimulus of duration
t. Let’s call kt the “magnitude” M of the stimulus. (Note that usage is a little
different in Chapters 3 and 4, where stimulus magnitude is interpreted strictly as
duration at fixed 1.)

In the case of a pendulum, C; might be the momentum coordinate, the stimulus
being a shove; the magnitude of the stimulus is then the mechanical impulse, the
momentum change. In ecological context C; might be deer population density,
the stimulus being the hunting season. Continuing to use unprimed symbols to
represent the state at the beginning of an interlude of perturbed dynamics and
primed symbols to represent the state at the end of that interlude, i.e., at the begin-
ning of unperturbed dynamics after the stimulus, we have (see Figures 2 and 5):

L =C,=C% + A'sin2n¢’ = C§ + Asin2ng.

Figure 5.  An impulse changes the momentum of a pen-
dulum or the density of a species by amount M. The vector
M from the initial state to the final state determines the new
phase and amplitude trigonometrically. Essentially the
same diagram can be found in Mercer (1965, Fig. 12).
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Letting the initial amplitude be our unit so that 4 = 1 and adopting the more
compact notation sn ¢ = sin(2n¢) and similarly cs for the cosine and tn for the
tangent and moving the origin to (C¥, C%), we have

Y =sndg
and
Ci=Acs¢p' =csp — M,

where M is the momentum change. Thus

md),:C;:_snd)
C, cs¢o¢—M

for the new, reset phase. At the same time, the amplitude is changed to A’, which
can also be written in terms of ¢ and M if desired.

Notice the same formula, for essentially the same geometric reasons, in Example
14B of Chapter 1 and Example 2 of Chapter 2.

Example 2. We now suppose a more complicated effect of the stimulus. Sup-
pose the perturbed trajectories resemble Figure 6(a), with velocities adjusted so
that after a time ¢ any oscillator started on the unit circle at phase ¢ is on a small
circle of radius R(r) and centered at D(t), at angle ¢ from the center of the smaller
circle [ Figure 6(b)]. Suppose for example that R(t) and D(t) both decrease with ¢
in such a way that D/R = kt = M. The geometry says (Figure 7):

Rsn¢ sn¢

tn¢ = =
n¢ Res¢p—D cs¢p— M

as in model I above.

Figure 6. (a) Curvy trajectories toward an attracting state during perturbation of the hypothetical
oscillator of Example 2. (b) Geometric construction of the trajectories in (a) by defining R(r) and
D(1), functions of duration t of perturbation.

Figure 7. Enlargement of a triangle in part (b) of Figure
6 to clarify trigonometric relations.
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Figure 8. Trajectories toward an attracting state during perturbation
of the hypothetical oscillator of Example 3. The circles are loci reached
from the initial (outer) circle after equal durations of exposure.

Example 3. Instead of supposing D/R = kt as in model 2, suppose that as ¢
goes to infinity D goes to 1 and R goes to 0. Then we have a stimulus that forces
the oscillator toward a unique equilibrium on the unit circle (Figure 8). Turning
off this stimulus releases the oscillator back into its unperturbed dynamics along
the unit circle. Such a stimulus imitates the suppressing effect of visible light on
the circadian rhythm in fruitflies (Chapter 20) or of molecular oxygen on the
glycolytic rhythm in yeast cells (Chapter 12). The expression for ¢’ in terms of ¢
and M becomes

Rsn¢ sn ¢

M= Resh—D s — M)

where f increases from 0 to oo as M increases from 0 to co. This case differs only
trivially from that of Figure 4, in which the stimulus wipes out both substances
1 and 2 in proportion to their concentrations.

Example 4. As a last example consider a different definition of phase. In all
the above we took phase in the sense of time past the maximum of C; on a cycle
of any amplitude. The loci of uniform phase were therefore simply radii from the
center of rotation. For some purposes (examples: Pavlidis and Kauzmann, 1969;
Kauffman and Wille, 1975) it might be more realistic to define phase as the time
after the upward crossing of a threshold as in Figure 9. In such a case the loci of
uniform phase are not radii but rotational translations of that arc of the threshold
as in Figure 10. (Phase goes undefined on cycles of less than threshold amplitude
inside the black hole, Figure 10). In this model the phase ¢* of an oscillator at a
state given in polar coordinates as (¢, A) is (Figure 11):

sn(¢pf —¢) =€ A

Figure 9. The locus of phase ¢ = 0 might be the up-

ward crossing of a threshold level C; = ¢ + C¥. Phase is

thus undefined for oscillations of amplitude A <e
(shaded).
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Figure 10. The ¢ = 0 locus of Figure 9 is rotated to

consecutive positions one-fifth cycle apart to construct

isochrons (supposing the angular velocity of trajectories
on this diagram is everywhere the same).

Figure 11. Given threshold level € and amplitude 4 of oscillation.
the two alternative definitions of phase ¢ and ¢* are geometrically
related.

SO

s . €
¢* = ¢ + the correction term sn~ ' 0

where 4 is the amplitude expressed in terms of ¢» and M.

E: Graphical Interpretation

Now what does this little game get for us? It gets us equations by which to
instruct a computer to draw the anticipated consequences of experiments in which
a single harmonic oscillator is perturbed for any duration at various times in its
cycle. The behavior of such an oscillator presents a marked contrast to that
of the simple clocks examined in equal detail in Chapter 3. This new behavior
is intuitively accessible in terms of pushing on a pendulum, just as the simple
clock’s behavior was intuitively accessible in terms of modulating the angular
velocity of a rotating machine. In certain qualitative essentials the new behavior
found here resembles the behavior typical of a much wider and more realistic
variety of biochemical and physiological oscillators. The reason for this resem-
blance will come out in the next chapter. This chapter finishes with a display
of some of the computer plots alluded to. These plots have three main qualitative
features:

1. ¢' = ¢ in the limit of very brief stimuli, M — 0.

2. Near phase ¢ = 1 cycle, near stimulus magnitude M = 1, the new phase
¢' has a singularity. Writing ¢ as 1 +x and M as 1 —y, we have in good
approximation for small departures x and y,
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Figure 12.  Asin Figure 7 of Chap-

ter 3 except that new phase is deter-

mined by old phase and stimulus

magnitude according to the equa-

tions of Examples 1, 2, and 3 rather

than according to simple-clock
kinetics.

In other words, the new phase of the oscillator is entirely determined by the ratio
of the tiny departures from ¢ = 1 and M = 1. The slightest error in approximating
that stimulus timing can therefore evoke any phase, but at a very small amplitude
(in models 1, 2, 3; in model 4 phase is undefined at amplitudes less than threshold).

3. Atvery large M, tn ¢’ — 0, i.e., a sufficiently prolonged stimulus essentially
resets the oscillator to a unique phase regardless of the initial conditions.

The easiest way to see how ¢’ jointly depends on ¢ and on M is by plotting ¢’
in three dimensions above the (¢, M) plane. It is a screw surface repeated in each
repeat of ¢’ along the vertical axis and in each repeat of ¢ along the horizontal
axis. It all consists of one single surface wound around vertical poles at ¢ =
any integer, M =1 (Figure 12 and Figure 4 of Chapter 2). The corresponding
plot of new, reset amplitude A’ of oscillation would show a deep pit descending
to zero at ¢ = any integer and M = 1, rising to unity (by definition) along the
front wall at M = 0 and taking other values elsewhere according to the particular
dynamics adopted.

It is convenient to portray these surfaces as contour maps on the stimulus
plane as we did for the new reset phase of a simple clock in Chapter 3. These
contours depict the (¢, M) combinations along which ¢, and therefore tn ¢/,
is constant. Thus their shapes are given by asn¢’ = cs ¢’ — M. These are arcs
of sinusoids, all converging to M =1, ¢ = 1 and all touching the M = 0 line at
¢' = ¢. Figure 13 shows the contour map of new reset phase and amplitude for
Examples 1 through 3.

The new phase ¢ at the moment the stimulus ends is the complement of the
event latency 0, the time until phase ¢’ = 0 recurs after the stimulus ends. I call
this latency the cophase because phase plus latency (cophase) is necessarily one
cycle. Thus a plot of event latency downward from the stimulus plane is identical
to a plot of new phase upward.
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Figure 13.  Asin Figure 4 of Chapter 2
the (¢, M) plane is depicted with the
contour lines of fixed new phase, ¢, at
intervals of 1/10 cycle. In the simple
clock case (Figure 8 of Chapter 3) they
were parallel displacements of a com-
mon curve whereas in this case they are
various pieces of sine curves con-
verging to a singular point.
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Figure 14.  The top two panels (a, b) show type 1 resetting; on the left (a) as a resetting curve, plotting

new phase upward (or cophase downward) against old phase to the right, and on the right (b) as a

phase response curve (PRC), plotting phase advances upward and delays downward, also against old
phase to the right. The bottom two panels (c, d) do the same for type 0 resetting.

Figure 15.  As in Figure 13 except that the contours represent (¢, M ) combinations resulting in the

same phase shift, A¢, rather than the same new phase. The phase shift is the new phase minus the old

phase minus the stimulus duration. Stimulus duration is taken to be negligible in this figure. Contoured

at intervals of one-tenth cycle as in Figure 13, using equation M = tn A¢/(sn ¢ + cs ¢ tn 4¢) from
Examples 2 and 3.
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Figure 16. Similar to Figure 6(c) of Chapter 3, showing phase shift (advances A, upward) vs. phase

for several stimulus magnitudes ranging from M = 0 to co. Curves of this sort are more commonly

depicted in various experimental literatures as indicated in the lower left. The dashed segment should
not be interpreted as part of the curve, but is commonly drawn or even drawn solid.

In some fields it has been convenient to think instead in terms of phase shifts.
This is a convenience, for example, in thinking about one model of entrainment,
according to which an oscillator of native period t keeps up with a periodic driving
stimulus of period T by doing a little phase shift 4¢ = T — 7. In terms of old
phase and new phase, the phase shift 4¢ is ¢’ — (¢ + stimulus duration). Thus a
plot of 6 or ¢’ is readily converted to a plot of A¢ by shearing it 45° along the ¢
axis (Figure 14). A contour map of A¢ on the stimulus plane is sketched in Figure 15
for Examples 1-3. Figure 16 plots the same A4¢ vs. ¢ for several stimulus magni-
tudes ranging from M =0 to M = 2. Note the abrupt change of topology at
M =1, where the phase singularity is encountered at ¢ = 1. This family of phase
response curves (PRCs) should be contrasted with the family of phase response
curves following from simple clock models, in which phase shifts accumulate
by modulation of angular velocity on the ring [Figure 6(c), Chapter 3]. In that
family there is no topological change. The simple clock’s strong stimulus PRC is
simply an extreme version of its weak stimulus PRC. It includes a very steep
narrow upslope region. Nothing of the sort is seen in the models of this chapter.
Instead, all the steepness is packed into that one critical stimulus duration M = 1
at the phase singularity.

The reason for this qualitative difference of behavior lies in the qualitatively
different mechanisms of rephasing. The simple clock achieves its big advance
or big delay to the opposite side of the cycle by advancing or delaying through
half the cycle. Because the choice between advancing and delaying depends on
whether the initial phase was just before ¢ = 1 or just after ¢ = 1, large stimuli
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applied sufficiently close to this phase can have extremely variable results. In
contrast, the pendulum-like oscillator achieves both big advances and delays
by a process that entails a reduction of amplitude toward zero, and through zero,
and a rebuilding of amplitude on the opposite side of the cycle. The only sensitive
stage is the passage through zero amplitude, where phase is ambiguous.

F: Summary

In Chapter 3 we thought of a single simple clock as behaving differently along
its cycle according to the intensity of some environmental parameter such as
light intensity. Here we see the same principle in a two-dimensional state space.
In the presence of some external modifier of the system’s dynamics, its state
changes along different paths in state space. In Chapter 3 we calculated the
consequences in terms of phase-dependent phase resetting. The result was a
“time crystal”: a periodic lattice of unit cells composed of old phase and new
phase repeats along two axes, with a third perpendicular axis depicting some
measure of stimulus magnitude. Within each three-dimensional unit cell lies a
two-dimensional surface describing new phase as a function of stimulus magnitude
and the old phase at which that stimulus was given. This “surface” proved to be
a stack of separate surfaces repeating along both phase axes.

We redo the calculation in this chapter to see whether a topologically different
kind of dynamic model implies a qualitative difference in resetting behavior. If
so then resetting behavior might provide a useful criterion for rejecting models
that are inappropriate to given experimental system. It transpires that there is
one conspicuous qualitative difference: Resetting in this two-dimensional state
space consists of a resetting of phase and a conjugate and equally stable resetting
of amplitude. There is a peculiarity of the phase response when the amplitude
is reset to zero. A specific, exacting combination of stimulus timing and magnitude
is required to guide the system to this steady state and leave it there. At this special
old phase and magnitude, new phase is arbitrarily sensitive to details of the
stimulus. The new phase surface tilts vertically and winds around a screw axis
at that point. This phase singularity links all repeats along ¢ and ¢’ directions
into one single surface quite unlike the stack of separate surfaces that characterize
a simple clock. We have seen this pattern in experimental data. Chapter 4 gives
us one interpretation for it in terms of internal incoherence among many clocks.
Here we have another in terms of the dynamic steady-state of a single oscillator.

In coming chapters we ask which features of Figures 1 through 4 are essential
for this result. It turns out that the behavior exhibited in Figures 12 through 15
is typical of a much broader class of less idealized biochemical dynamics and has
little to do with the equilibrium state or with stable resetting of amplitude. But
this simplest example is convenient for introducing the result, preliminary to
perceiving it in less contrived models. (It also turns out that the fruitfly’s circadian
clock behaves remarkably like this simplest caricature: compare Figures 13 of
this chapter and Chapter 2.)
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In Section A of this chapter we associate a phase with each state of a limit
cycle oscillator during dynamics in the absence of any perturbing influence. In
Section B a stimulus smoothly alters the trajectories so that phase changes in
peculiar ways, even discontinuously. This analysis is intended to apply to smooth
dynamics. Accordingly, in Section C references are compiled to models which
violate this precondition and thus do not fall within the purview of this chapter.

A: Unperturbed Dynamics
Introduction

By referring everything to the purely geometrical idea of the motion of an
imaginary fluid, I hope to attain generality and precision, and to avoid the
dangers arising from a premature theory professing to explain the cause of
phenomena. If the results of mere speculation which T have collected are
found to be of any use to experimental philosophers, in arranging and inter-
preting their results, they will have served their purpose, and a mature theory,
in which physical facts will be physically explained, will be formed by those
who by interrogating Nature herself, can obtain the only true solution of the
questions which the mathematical theory suggests.

James Clerk Maxwell, 1856, “On Faraday’s Lines of Force”

We saw in Chapter 4 that the collective amplitude of a population of simple
clocks can be arbitrarily small. It is determined by the distribution of phase
within the population. But this distribution is stable only in the limiting case of
complete independence among identical simple clocks contributing to an aggre-
gate rthythm. If any interaction is allowed and/or if the simple clocks’ periods
differ at all, then the phase distribution does change in time and with it the shape
of the collective rhythm changes. The collective rhythm might damp out altogether
as phases gradually randomize. Or it might approach an attracting cycle as the
many simple clocks entrain one another to a common frequency in a self-stabilizing
phase distribution. Under various assumptions about the manner of interactions
there might be several different attracting cycles.
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Chapter 5 is built around the idea that a single oscillator also can have an
amplitude as well as a phase. But only in physical situations characterized by
symmetry principles and conservation laws is it usual that dynamic systems can
oscillate persistently at arbitrary amplitude, as in the simple idealizations exploited
in Chapter S.

Attracting Cycles

We pass from Chapter 5 to this Chapter through the idea that an oscillator
can have a preferred amplitude from which it can be perturbed and to which it
regulates back again. This type of behavior is typical of oscillators that tend to a
stable periodic behavior. Such an oscillator’s degrees of freedom, be they few or
many, affect each other’s rates of change in such a way that all eventually settle
into a regularly repeated cycle. Poincaré called this a “limit cycle” because it is
asymptotically approached in the limit of infinite time. For application to experi-
mental science we are concerned only with attracting (as opposed to repelling)
limit cycles. Because we seldom await the limit of long time, and for brevity, [
drop the word limit. Thus we embark upon a study of attracting cycles. Geo-
metrically, an attracting cycle is a closed ring in state space. It may be quite
irregular, even knotted, in a space of many dimensions, but the essential feature
for our purposes is that it is a closed ring path and that all nearby paths gradually
funnel onto it. The region occupied by paths leading onto an attracting cycle is
called the cycle’s attractor basin. Any states not in the attractor basin comprise
that cycle’s phaseless set.

A geometrically simple example is shown in Figure 1. In polar coordinates
the system is described by instantaneous phase ¢ and instantaneous amplitude
R. The angular velocity ¢ depends on the instantaneous amplitude and so does
the rate of change of amplitude R:

$=AR)
R = B(R).

If R = KR(I1 — R) then the amplitude R regulates to the unit circle R = 1.
It does so quickly if K is big, or spirals more gradually toward the unit circle if
K is small [ Figure 1(a); see also Box A]. If K = 0, then R = 0, s0 that any amplitude
is stable forever as in Figure 1 of Chapter 5.

If ¢ is constant, then the period is the same at any amplitude, as in a pendulum
or a population of simple clocks. If ¢ is not constant, then the period depends on
the amplitude.

The attractor basin is the whole plane minus the origin. The phaseless set
consists only of the steady-state and the origin.

Latent Phase

I draw attention to this geometric caricature of an oscillator because it helps
introduce, in an exact way, a generalization on the notion of phase which proves
crucial for much that follows. In Chapter 5 we defined phase as the fraction of a
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cycle elapsed since some phase marker event such as the maximum of C, or the
upward crossing of a threshold. That definition supposed that behavior was
strictly periodic following any initial conditions. But in attractor cycle dynamics,
behavior is not initially periodic. It is strictly periodic only in the undisturbed
system and only in the limit of long time. So a more practical definition is called
for. A notion that naturally recommends itself is the latent phase: One waits until
the perturbed system reverts to regular periodism, and then extrapolates that
rhythm back to the time in question to discover its latent phase at that past
moment. Equivalently, one might start a “test” system at time 0 in some state
whose latent phase we wish to know and simultaneously start another on the cycle
at phase zero. After a long time both are on the attracting cycle but the test system
is some fraction @ ahead of the control. Then @ is the latent phase of that initial
condition.!

This is in fact how physiological experiments are conducted. For example,
suppose a periodically firing nerve cell is electrically stimulated. During that
stimulus the cell’s rhythmicity is disrupted. When the stimulus is removed the
membrane is left in some peculiar state not necessarily on the cycle. From that
initial condition, its normal rhythmicity recovers during the subsequent un-
perturbed free run. The phase of that recovered rhythm is recorded. By com-
parison with the control rhythm or by extrapolation back to the moment when
the stimulus ended, the latent phase reached at the end of that stimulus is measured
(Chapter 14, Section A). The same format has been used to explore the dynamics
of circadian clocks (Chapters 19, 20, 21), of biochemical oscillations (in the slime
molds of Chapter 15; and in the yeast cells of Chapter 12), and of the cell cycle
(Chapter 22). In these and many other cases, attractor cycle models have been
proposed to link the observed rhythmicity to plausible biochemical kinetics.

It is useful to develop a little bit of abstract geometry about the relationship
between latent phase and an attractor cycle oscillator’s state. The pair of equations
above gives us a way to start thinking about it. Now that we have quit thinking
of the state space as a ring, phase and state are no longer synonymous. Now
phase is some function of state. What kind of function? The next section defines
it analytically for the special case of polar symmetric two-variable kinetics rep-
resented by the pair of equations above. [ Guckenheimer (1975) gives a far more
general, precise, and rigorous treatment for state spaces of arbitrary dimension
and topology. He also treats examples of the sort to which we now turn. Also see
Kawato and Suzuki (1978).]

The Isochrons of Symmetric Attracting Cycles

We resort once again to useful jargon: Any set of states having the same latent
phase @ is called an isochron, specifically “isochron @ (see Box B). Suppose as

' Existence proofs for ordinary differential equations are to be found in Coddington and Levinson

(1955, Theorem 2.2, p. 323); Hale (1963, Theorem 10.1, p. 94); Hale (1969. Theorem 2.1, p. 217); in
Fenichel (1974, 1977) and, for functional differential equations, Hale (1977, Theorem 3.1, p. 242) where
it is called “asymptotic phase.”
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above that

¢ = A(R) with the unit of time chosen so that A(Ry) = 1
and

R = B(R) with B = 0 and dB/dR < 0 at some positive R,.

This is the simplest attractor cycle oscillator. If there is only one such R, then
R, is a unique attracting cycle and we may as well scale R to make R, = L.
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Since the dynamical flow has polar symmetry, the isochrons must also have
polar symmetry:

9(¢, R) = ¢ — f(R).

Now the latent phase @ necessarily increases at unit angular velocity as the
oscillator follows its kinetic equation. Thus we write

iR,
b=1-¢-" 7R
SO
g de
dR R

This is a differential equation for f(R). We can integrate it and then obtain

g(¢, R).

Example 1. Suppose

R =51 — RR Figure 1(a)
=1 Figure 1{b)
then
daf
—=0
dR
SO
S(R) = constant, chosenso ®=0at R =1and ¢ =0
SO

® = g(¢, R) = ¢ Figure 1(c)

Figure 1. (a) R = SR(1 — R).(b) A single trajectory of the dynamical scheme described in the text. The

unit circle is an attracting limit cycle. (c) Isochrons of the same dynamic, marking off intervals of one-

fifth cycle along all trajectories in the attractor basin of the cycle. Trajectories begun on any isochron
reappear on it at unit intervals of time, closer to the point R = 1.
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In this case, the latent phase corresponds perfectly with the simplest local
instantaneous definition of phase, viz the fraction of a cycle elapsed between
extrema of x or y. This is exceptional. Isochrons are more commonly complex
curves. They usually differ from such local definitions of phase as one might be
tempted to invent. This is illustrated in the next example.

Example 2. Suppose

R = 5(1 — R)R?> Figure 2(a)
$=R Figure 2(b)

Here the trajectories have the same geometry but the state traverses these
trajectories at speeds R times faster than in Example 1. In this case the angular
velocity ¢ is no longer independent of amplitude but increases in proportion to R.
Thus

df R -1 1
dR  SR(1 — R)R  5R?
SO
Ry | ,
f(R) = SR + constant
SO

1 .
®=g(p,R)=¢ — SR + 0.2 Figure 2(c).

Thus the isochron structure close to the repelling focus of this two-variable
kinetics consists of tight spirals. In contrast to the straight-in radial isochrons of
simple clocks (Chapter 3), clockshops (Chapter 4), and harmonic oscillators
(Chapter 5), those associated with attracting cycles typically exhibit ornate
structure near their convergence (see Box C). Only in perfectly symmetric models
with only two variables is this structure as simple as the bundle of spirals derived

(a)
Figure 2. (a) R = 5R(1 — R)R. (b) As in la except both components of velocity are multiplied by a
scalar field, leaving directions unaltered. (c) The changed isochrons reflect the radial dependence of
angular velocity.
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above. And in such cases, the spirals degenerate to radial lines as in Example 1

only if the angular velocity A is independent of amplitude (see Box D).

Example 3. Suppose
R = (1 — R)R] Figure 3(a)

¢ =1+ &1 — R)] Figure 3(b)

SO
df e
dR R
$O
f =¢InR + constant
S0

@ = ¢ — ¢In R] Figure 3(c).

This example shows that the isochron spiral can turn either way relative to tra-

jectories, depending on the sign of ¢.
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Figure 3. (a) R = R(1 — R). (b} As in l1a but radially five times slower and azimuthally somewhat
dependent on radius. (¢) The isochrons make exponential spirals into the origin, in contrast with the
hyperbolic spirals of Figure 2¢.

Example 4. Suppose
R = 5(1 — R)(R — %)R] Figure 4(a)

$=1+¢e(l —R)] Figure 4(b)

The point here is to examine a self-sustaining oscillator that is not also self-
exciting (examples: the circadian clock models of Kalmus and Wigglesworth
(1960) and of Pavlidis and Kauzmann (1969); Teorell’s (1971) mathematical
model of pressure sensitive neural pacemakers; Best’s (1976, 1979) computation
of isochrons for pacemaker nerve and the subsequent measurement by Guttman
et al. (1979); Aldridge and Pye’s (1979) theory and measurements of oscillating
glycolysis in yeast; Johnsson’s (1976) and Johnsson et al.’s (1979) on oscillatory
transpiration):

A S S SR
dR  SRR-1Y) \R-1 R/) 5

)

Figure 4. (a) R = 5R(1 — R)(R — }). (b) The azimuthal equation is as in Figure 3a, while the radial

equation is modified to create a repelling cycle at R = 4. Trajectories inside that radius wind into the

attracting equilibrium. (c) The phaseless manifold is the disk R = }. Along its border all isochrons
converge (as they did in Figures I¢, 2¢, and 3¢ but with R = 0).
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For R < }, ® will go undefined. For R > }

2¢,. R—1
fzggln R ° + constant

SO
2% 1
®=¢— gln <2 - §>] Figure 4(c).

The phase singularity in this case is not a point but the whole circular border of
a black hole. (This provides an alternative mechanistic basis for Example 1V of
the preceding chapter).

Phaselessness vs. Timelessness

In all the above examples, the phaseless set is an equilibrium or its attractor
basin. Ambiguous phase is achieved by timelessness in these cases: the system
ceases to change state. Do not be deceived by simple examples to imagine that
this is necessary or even usual. Even in kinetics involving only two variables as
above, the phaseless set could consist in part of quite lively states, e.g., it could be
the attractor basin of a different cycle. A phase singularity is not necessarily
timeless, but only indeterminate in respect to the phase of a rhythm of specified
period.

To assume that any given physiological oscillator has exactly two important
degrees of freedom is of course a rather special assumption. It is a common as-
sumption because two is the minimum number needed to describe an attractor
basin around a cycle. Two is also the maximum number of dimensions compatible
with a number of widely used analytic and graphic techniques required for exact
mathematical solution of models. However, the features that I would bring out
do not rely on this restrictive ad hoc assumption. They do not rely on the ge-
ometry of the plane, and they do allow us to treat the more complex models
which are becoming common in the recent literature of physiological and bio-
chemical control systems (Box E).

Oscillators of Greater Complexity

The main principle involved in generalizing to an arbitrary number of dimen-
sions has been encountered before (p. 28). It is that a disk cannot be mapped
continuously onto the phase ring unless the winding number of phase along the
disk’s rim is zero. This principle applies as follows in context of latent phase in a
D-dimensional state space. Suspend from the attracting cycle any simply con-
nected two-dimensional surface, i.e., a cap whose boundary is the attracting cycle.
Now ask what is the latent phase @ of each point in this cap? Around the boundary
¢ = ¢: Its winding number is 1. Thus @ cannot be assigned in a continuous way
to all points in the cap. There must be a discontinuity. This is true of every cap
that can be hung on the cycle (as on pp. 28 and 69). Thus the necessary point of
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discontinuity in each cap is that cap’s intersection with a phaseless locus of at
least D-2 dimensions. That locus threads the cycle, in the sense that it penetrates
every cap.

How does this peculiarity of @(x) relate to anything observable in the phase
relations of perturbed oscillators? This is the subject of the next section, but let’s
first tidy up this section by summarizing the essential and generalizable features
of latent phase seen in the foregoing examples:

1. Within the region of state space from which all trajectories lead to the
cycle (its attractor basin), every state has a unique latent phase @.

2. States having the same latent phase lie in a single connected continuum of
dimension one less than the dimension of state space. I call these continua iso-
chrons, meaning same-time loci. The isochrons fill up the attractor basin of the
cycle.

3. The isochrons never intersect except on the basin’s boundary.

4. Each of these isochrons cuts the cycle at one and only one point, in order
around the cycle.

5. @ changes at unit rate along all trajectories in the attractor basin. Therefore,
the isochrons are transverse to trajectories everywhere inside the attractor basin.
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6. Initial conditions (states) outside the cycle’s attractor basin have no latent
phase. This set of states includes all steady-states of the dynamics as well as the
trajectories leading to such steady-states (their “attracting manifolds™).

7. Along the boundary of the attractor basin all isochrons typically converge
in such a way that they all become arbitrarily close together. This boundary has
either one or two fewer dimensions than the state space. A piece of it also threads
the cycle.

8. The phase singularity has nothing necessarily to do with timelessness. It
only indicates failure to return to the standard mode of rhythmicity.

In the above models we used unperturbed dynamic equations (I = 0 implicitly)
to determine the latent phase function of state @ = g(x): R* - S*. Then we plotted
its contour map in state space by plotting the locus of states (the isochron) corre-
sponding to each @. We did not inquire into behavior during perturbation (I # 0).
The next section does this and in so doing shows how to transfer the isochrons
onto a space of experimental stimuli, which is our only window into the state space
of a system whose mechanism and state variables are still unknown.

B: Perturbing an Attractor Cycle Oscillator
Introduction

In most of the experimental situations gathered into this book we deal with
systems that are eventually regularly rhythmic. Because we don’t know what
complexities of physiological dynamics mediate between the oscillator we wish
to study and our more peripheral rhythmic observable, we cannot easily interpret
any observations preceding establishment of that standard rhythmic state. But
once that condition is achieved, a phase displacement of the observable rhythm
may be taken to reflect an equal phase displacement of the underlying oscillator.
In other words, in the last analysis our only reliable observable is the oscillator’s
latent phase. This function of its state was deduced from sample dynamic equations
in Examples 1-4. The states of equal latent phase were there plotted as isochrons.
Having drawn the isochrons in state space, we can now forget about trajectories
and their equations.

But all this pertains only to the standard environmental conditions, the un-
perturbed condition we denote by I = 0.

Perturbed Trajectories

In the presence of a stimulus (by definition), the oscillator’s dynamic is altered.
Its state no longer moves from one isochron to the next at unit rate. How does it
move? We must draw trajectories again as we did in Chapter 5, Figures 3, 4, 6, 8.
Nothing of those diagrams is changed in principle in this chapter about attractor
cycles. The only new feature introduced in this chapter is that the isochrons are
generally wiggly curves instead of straight lines. The topological outcome is the
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same. Whether we consider cophase 0(the event latency after stimulus) or latent
phase @(a function of the state reached at the end of the stimulus) or new phase
¢’ (of the poststimulus rhythm, extrapolated back to the end of the stimulus), the
graphs above the stimulus plane (¢, M) all resemble a lattice of screw surfaces when
plotted in the three-dimensional time crystal. Recall also that we may conveniently
speak of that three-dimensional graph in terms of its contour map on the stimulus
plane. The contours being loci of equal time of an event, latent phase resembles
a pinwheel wave when plotted as a contour map on the stimulus plane.

The purpose of this section is to put those observations in a more general
context. This seems to be called for because the qualitative features of resetting
behavior seem remarkably independent of many quantitative details of model
equations and because in real physiology we seldom have equations anyway, nor
do we know how to define the state space in which to draw the trajectories and
isochrons that such equations would describe. Can we set aside these hypothetical
constructs to deal only with what we can observe? The following argument may
provide a step in that direction, to be pursued experimentally in Chapter 7.

We suppose a dynamical system whose state may be represented by a point in
RP. We suppose the system tends to an attracting cycle which is some closed ring
in R?, not necessarily circular, possibly even knotted. The essential feature is only
that it has the topological connectivity of S'. We suppose also that every point
x in that cycle’s attractor basin in principle has a latent phase ¢ = g(x), defined
on the circle S'.

Let us suppose that when a stimulus begins at time ¢ = 0 the oscillator is
somewhere on the attracting cycle. In general it departs from that cycle during
the stimulus. After a time At, oscillators initially on the cycle have moved to other
states as schematically indicated in Figure 5. Assuming continuity and smoothness
of the dynamics, those new states at time ¢ = At also lie on a ring: a distorted
version of the ring of initial conditions along the attracting cycle. If the stimulus
continues (and so the perturbed trajectories extend to t = 24¢) then the set of
states arrived at is another ring, further displaced from the attracting cycle. We
are defining a two-dimensional surface in the state space R”. This surface is
fibered by the perturbed trajectories, each from a different initial phase ¢, and,

Figure 5. (a) Points initially on the attracting
cycle at time r = 0 are “blown” off it during expo-
sure to a stimulus. The trajectory from one initial
point is shown with arrows. The ring of all initial
points progressively deforms and moves to a new
attracting cycle as t — =¢. (b) As above, but the cycle
degenerates under continued exposure: The stimu-
lus forces the system to a steady-state regardless of

“" e its initial phase. For examples in context of cir-
3 cadian rhythms, see Peterson and Jones (1979).

(o]
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criss-crossing that ruling, by the rings, each for a different duration t of per-
turbation. The surface is an image of the stimulus plane (¢, 1) mapped into state
space. Topologically it is a cylinder like a windsock blowing from the attracting
cycle. Where it intersects the isochron surfaces in state space we have the isochrons
of stimulus space, the loci of stimulus combinations (¢, 1) that are equivalent
in that they evoke synchronously reset rhythms.

Suppose some kind of rhythmicity persists under indefinite prolongation of the
stimulus, as is the case for circadian rhythms exposed to dim enough continuous
light and for pacemaker neurons biased by a small enough electrical current.
Then the rings approach a limiting ring along which the state continues to circulate
at a new period. This is the system’s attracting cycle under conditions of continual
exposure to the stimulus. The set of states reached by such stimuli thus constitutes
a cylinder, as in Figure 5(a).

But suppose the perturbing stimulus is such that the system is eventually
brought to rest at a unique equilibrium. This is the case for some circadian rhythms
exposed to prolonged artificial daylight, and for nerve in a voltage-clamp device
and for oscillating glycolysis suppressed by oxygen (the Pasteur effect). In geo-
metric terms all trajectories converge to that rest state, the standard starting
state from which trajectories approach the attracting cycle again in permissive
conditions. So the two-dimensional cylindrical surface converges to a point,
like a cone [Figure 5(b)]. Incorporating that point, the surface is closed. It is a
two-dimensional cap bounded only by the attracting cycle (attracting under
unperturbed conditions, in the absence of the stimulus). This cap is topologically
equivalent to a disk whose boundary (¢, 0) is that cycle.

Topology to the Rescue

We know a theorem about mapping such a disk to S?,as we implicitly do in
assigning a latent phase ® € S' to each stimulus (¢, t): the map cannot be con-
tinuous unless the winding number of ¢ around the boundary (¢,0) is 0. But it
isn’t. By definition, @ = ¢ around the cycle: The winding number is 1. So @
cannot vary with stimulus coordinates (¢, t) in a continuous way.

What kind of discontinuity might be expected? Since there is no discontinuity
along the boundary, it must be a closed locus inside the cap. That locus could
be as small as a point at which the isochrons converge. This is our minimum
phase singularity. It does not commonly lie at the apex of the cap in Figure 5(b):
If it did, the rhythm would start at no definite phase upon reversion to permissive
conditions. So in general, the phase singularity can be reached by following some
a perturbed trajectory from a particular phase, ¢* for a particular finite stimulus
duration *. In other words, regardless of the complexity with which any number
of variables may be interacting in a rhythmic system, some point of the phaseless
set can be reached by varying stimulus parameters in only two ways.

What does a point in the phaseless set correspond to physically? It is most
likely not an equilibrium of the unperturbed dynamics. This is because for D > 2,
any two-dimensional cap of trajectories altogether misses most points (e.g., the
equilibria) in R”. There seems little to be said about it apart from discussion
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of a specific dynamic system. It is just a point in the attractor basin’s boundary
through which the unperturbed trajectory, wherever it may lead, does not return
to the attracting cycle.

The take-home lesson seems to be that observing a phase singularity in the
stimulus plane (observing a helicoid in each unit cell of the time crystal or observing
a rotating wave in a pinwheel experiment) in itself suggests nothing very specific
about the underlying mechanism. It may be interesting that more complicated
phenomena are not observed, but the observation of only this much scarcely
indicates more than: (a) that the physiological dynamics tends to a unique cycle
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when unperturbed; (b) that it tends to a steady-state under the stimulus used;
and (c) that both these processes behave in reasonably smooth ways.

In fact it turns out that convergence to a steady-state is by no means necessary:
Displacement toward a new attracting cycle as in Figure 5(a) can serve the same
purpose. The same result also emerges from an entirely different style of per-
turbation (see Box F). Nor is smoothness of the dynamics really necessary (see
Section C and Box G). In fact, the same behavior has been found even in oscil-
lators which are not describable by finite-dimensional state spaces (Johnsson and
Karlsson, 1971). It should also be noted that our interpretation of the ¢ coordinate
as stimulus duration is more restrictive than necessary. First of all, the stimulus
need not be a fixed parameter change. If the stimulus program is a concatenation
of simpler stimuli as in Box H or a wildly time-varying schedule of influences,
it still drives the system’s state along some path. The only geometric change
induced by this generalization is that such paths can now intersect each other
and themselves. That only means that the (¢, ) surface may be folded and may
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pass through itself, but this is of no concern to our topological results. ¢ may
also therefore be interpreted as dosage of a substance or magnitude of a per-
turbation delivered all at once, which only gradually dribbles into the dynamic
system. As in Chapter 5, M here refers to stimulus magnitude, thus generalizing the
usage in prior chapters where a stimulus was described as lasting for duration M,
fromr=0tot=M.

Oscillators of Greater Complexity

Given at least three state variables to play with, one can obtain rather complex
patterns of phase response. Depicted as isochrons on the stimulus plane, these
patterns typically amount to arrangements of singularities smoothly connected
together as in Figure 6. Note that in the M ranges indicated, the dependence
of ¢ on ¢ can be type —1, 0, 1, 2, etc. In the simpler models considered up to
now we have seen only types 0 and 1. Let me explain briefly how these things
can happen.

In all the following, we will assume as a stimulus some fixed change in the
oscillator’s dynamics. This is applied for a while then removed. During such a
stimulus the rate of change of state is the same at any given state no matter how
or when that state was reached. (This is the definition of state, not an assumption.)
The trajectories in state space therefore cannot cross through each other. We
saw in Chapter 3 that simple clocks respond to such stimuli with type 1 resetting.
In Chapters 4 and 5 we saw that by introducing a second variable of state we
can also obtain type 0 resetting. The “type” is the winding number of latent phase
around the ring along which all the perturbed trajectories end, starting from the
attracting cycle. This ring, being a distortion of the cycle under nonintersecting
flow in two dimensions, either encircled the phaseless set with winding number 1
(as at stimulus duration 0) or was pushed beyond the phaseless set to obtain winding

Figure 6. Isochrons as they might appear
in the (¢, M) plane of initial phases and
stimulus magnitudes. The trajectory fol-
lowed as M increases from initial phase 0
passes through a succession of encounters
with phaseless sets. At these critical M’s,
the resetting “type” changes by +1. See
also Chapter 2, Box B.
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Figure 7. Ringsa, b, cdepict states reached during flow toward pointd

from the attracting cycle of an oscillator with only two independent

degrees of freedom (the two-dimensional analog of Figure 5(b)). The

radial strokes indicate isochrons. Rings a and b wind once through the

cycle of isochrons. Ring ¢ has winding number 0. These are the only
two choices for non-self-intersecting flow in the plane.

number 0 (as in the limit of approach to equilibrium under prolonged exposure
to the stimulus) (see Figure 7).

What if there are more degrees of freedom than 2?7 Can other resetting types
be obtained? First, note that invoking additional degrees of freedom might be
the same as invoking a more complex pattern of perturbation: A constant stimulus
such as considered above might appear to an oscillator as a time-varying pattern
of interference in its operation if there are internal degrees of freedom that slowly
move in response to the fixed stimulus and, as they change, affect the working of
the oscillator. In physiological systems it would be quite astonishing to find only
two state variables and the corresponding elementary resetting behavior. Up to
now only such simple resetting behavior has been found in the several systems
examined in detail. But the observations are all crude and are less than a decade
old, so it seems to me timely to indicate in broad strokes some other behavior that
undoubtedly awaits discovery.

To begin, recall that in a two-dimensional state space the phaseless set is at
least an attracting or repelling steady-state point and that in a three-dimensional
state space the phaseless set is at least the extension of that point into a one-
dimensional curve. This curve consists of the two trajectories leading toward or
away from the steady-state.> This phaseless set is the convergence point for all
the isochrons, arranged in order around the cycle. It threads the cycle. Latent
phase has winding number 1 around the phaseless set along any closed path near
the attracting cycle. We will now proceed by considering how oscillators initially
on that cycle might be moved to new states under a stimulus. We thus consider
distortions of a ring of initial conditions assumed to coincide with the cycle at
stimulus magnitude M = 0. Figure 8 suggests how a stimulus can change this
winding number from 1 to 0. Viewed in projection along the phaseless locus,
Figure 8 would look a lot like Figure 7. Figure 9 suggests how a somewhat different
geometry of change during the perturbation could induce a winding number of
2, i.e., type 2 resetting. Figure 10 suggests another alteration of the flow during
perturbation which would result in winding number 0 and then, with a further
prolongation of the stimulus, would result in winding number — 1. In fact any
of the integer winding numbers, all of which are allowed so long as we consider
only the abstract logic of phase resetting, can also be achieved by appropriately
contrived smooth dynamical flow involving no more than three state variables.

* Which must exist, supposing the trajectories point inward from infinity, as they must in all real

chemical systems (Wei, 1962).
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Figure 8. Figure 5(b) is elaborated to include pieces of several isochrons to show how they converge

along a curve which threads the attracting cycle from which the cone hangs like a wind sock. Isochrons

acquire their phase labels in the order of intersection with states along that cycle at t = 0. At any t > 0

the ring of states reached either does or does not encircle this locus. The resetting type is the winding
number of this ring around the phaseless set.

Figure 9. During perturbed dynamics, oscillators initially on

the attracting cycle at ¢t = 0 are displaced only slightly (mostly in

region abc) to achieve W = 2. The horizontal line is supposed to
be the convergence locus of isochrons, i.e., the phaseless set.

Figure 10. Suppose the dynamical flow during the stimulus is a

clockwise rotation about an axis indicated by the dot, perpendic-

ular to the page. Then a ring of states initially with winding

number W = | around the phaseless locus next convertsto W = 0
and thento W = — 1.

a
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Figure 11.  Similar to Figure 8, but the tube of

displaced rings of initial conditions (the (¢, M)

surface of Figure 6) intersects some isochrons in

closed rings (the ring isochrons of Figure 6). This

can only happen in a state space of at least 3
degrees of freedom.

Figure 8 shows not just distortion of the initial ring of states achieved at the end
of the stimulus, but the whole continuum of progressive distortion, comprising
the cylinder of states that can be reached by stimuli of increasing magnitude
beginning at any phase on the cycle. This can be made to intersect the phaseless
set any number of times in a great variety of ways as in Figures 9 and 10. The two-
dimensional surface in Figure 8 is a mapping of the stimulus plane into state
space. So isochrons on the stimulus plane (¢, M) can in principle converge to
any number of phase singularities of either clockwise or anticlockwise orienta-
tion. No one has yet observed such behavior experimentally* but I feel confident
that it only awaits the investment of labor. R. Krasnow (unpubl. ms) argues that
almost any circadian oscillator should exhibit multiple phase singularities in the
stimulus plane for very dim light at durations comparable to the circadian period.

In Figure 11 we switch emphasis from the phaseless set to examine how a
single isochron surface in state space might intersect the (¢, M) cylinder. The
geometry of three dimensions allows intersections along a closed-ring locus with
the consequence that isochrons in the stimulus plane can present the appearance
of a bull’s eye, a nest of concentric rings as in Figure 6. This is impossible in the
case of only 2 degrees of freedom.

C: Unsmooth Kinetics

In deriving the existence of phase singularities from simple observations in
Chapters 1 and 2, we relied on topological arguments. We have now seen that
phase singularities are also implicit in a variety of dynamical models. In both cases
smoothness (in space, in time, in state space) was an indispensible ingredient of the
argument. But in some kinds of data and in some kinds of dynamical model, things
do not change so smoothly; things sometimes change quick as lightning. The
theory of discrete state automata, catastrophe theory, and the like provide an
abundance of intoxicating perspectives on processes involving abrupt change,

+  Note added in proofs: Jalifé et al. (1980) have demonstrated a sequence of resetting types 1 — 0 — 1

with increasing stimuli in the sinus node of the kitten’s heart. I thank Stuart Hastings for the observation
that no third variable is required for this: a concave arc in the planar limit cycle is sufficient.
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but my purpose here is only to examine the discontinuities implicit even in
smoothness. Accordingly, the remainder of this chapter provides no more than a
brief survey of the role played by quick changes of pace in the experimental systems
most involved in this volume.

The main points I would submit to your attention in these examples are:

1. Systems exhibiting abrupt changes have commonly been described by
discontinuous models. Most commonly, these models involve only a single internal
variable of state. They are essentially simple clocks with a discontinuity in their
rate functions. Such models have no place for phase singularities.

2. Nevertheless, the experimental systems in question commonly turn out to
exhibit one or more phase singularities.

3. A big improvement of realism in modeling is achieved by recognizing
the necessary existence of at least one other internal variable of state. This at
least makes it possible to consistently describe a dynamical mechanism without
invoking magic at the discontinuity. For examples in biophysical contexts see
van der Pol and van der Mark (1928), Fitzhugh (1960, 1961), Katchalsky and
Spangler (1968), Franck (1968), Lavenda et al. (1971), and Linkens et al. (1976).
In more general context, see Chapter 8 of Andronov et al. (1966) and Chapters 26
and 31 of Minorsky (1962).

4. Such models are topologically equivalent to their smoother relatives and
their phase behavior is qualitatively the same as that of smoother models except
that a lot of it is compressed into the very brief interval during which lightning
changes transpire.

5. Such models often exhibit phase singularities similar to those considered
in prior chapters. But sometimes no singularity is evident because it is squeezed
into the brief interval of rapid change, where data resolution is particularly poor.

Let us now turn to some examples in order of their appearance in the Bestiary.

Relaxation Oscillators

The neon glow tube used in the coupled oscillator population of Chapter 11
provides an example of a relaxation oscillator. It works by accumulating a voltage
on a capacitor. The voltage rises toward a limit. If the voltage exceeds a threshold,
then the tube discharges before reaching the limit, and the cycle restarts. If the
threshold exceeds the limit, then the tube waits to fire until stimulated and then
restarts its accumulation. This caricature invokes arbitrarily rapid change in one
state variable at a certain phase in the cycle, in every cycle. In ring devices it occurs
only in returning toward the cycle after a disturbance (Box A). These are two
different limiting cases of a smooth attractor cycle, both of which eliminate all but
one state variable (corresponding to phase) by turning the others into a seldom
invoked “deus ex machina”. Such approximations usually do violence to the model’s
accuracy in situations other than routine circulation along the attracting cycle.
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The Malonic Acid Reaction

Though the kinetics of any reaction are necesarily continuous, certain steps
can go very much faster than others. In the malonic acid reaction (Chapter 13)
the transition from red to blue, with all that it entails, is so abrupt that we may as
well think of it as a discontinuous change at a threshold, or so it would seem. But
cutting corners in this way leads to contradictions when we come to consider
reaction geometries in which phase has a nonzero winding number around some
ring. This is because such a ring necessarily contains a phase discontinuity, as we
have often seen. If phase is identified with some chemical concentration, that means
a concentration discontinuity. But that is impossible in a physically continuous
medium. So it is necessary to retain the more complex description involving rapid
but continuous changes in two or more mutually regulating reactions.

The malonic acid reaction can be thought of as a relaxation oscillator whose
primary variable of state is bromide concentration. Bromide concentration falls
exponentially as bromide is consumed. At a threshold, it is recreated during a
momentary explosion of oxidative activity. But within this small fraction of a
second, a second variable of state HBrO, increases 100,000-fold (according to the
carefully fabricated kinetic scheme of Field et al. (1972)). Hastings and Murray
(1975) showed an attracting cycle implicit in this scheme. Vavilin et al. (1968) also
showed that the system can be phase-shifted without permanently altering the
reaction’s parameters, using a pulse of ultraviolet light. Thus the malonic acid
reaction presents us with all we need in order to find a phaseless manifold: an
enterprise that makes no sense in terms of single-variable relaxation oscillator
models. By locating the singular combination of dosage and timing that puts the
system in its phaseless manifold, one might discover whether the steady-state is
locally an attractor or a repellor. However, such matters have not yet been pursued
in the laboratory so we don’t really know how much of the topological logic of
resetting actually will prove useful in an oscillator with such stiff kinetics.

Electric Rhythms in Cell Membranes

Relaxation oscillators are widely used to depict nerve kinetics. In fact it was in
context of neural rhythms that A. V. Hill (1933) initially declared that all biological
oscillations are of this sort, a remark echoed in contemporary papers even as
sophisticated as Nelsen and Becker (1968) and Linkens et al. (1976). In the latter
paper the relaxation oscillator is really continuous, following a tradition instigated
by van der Pol (1926), in which a periodic jump can be made as swift as desired by
choosing a parameter in a differential equation. But another tradition makes no
compromises with continuity. According to this interpretation of pacemaker
activity in neurons, the membrane voltage slowly falls as sodium leaks in. Mean-
while the threshold for sudden increase of sodium permeability gradually rises,
recovering from a previous action potential. When the two meet, an action poten-
tial occurs and both are discontinuously reset to widely separated values, resuming
their approach to equality. For example, see models in Perkel et al., 1964; Rescigno,
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1970; Knight, 1972; Fohlmeister et al., 1974; Peskin, 1975; Hartline, 1976; Pinsker,
1977; Allessie et al., 1976, 1977; and Glass and Mackey, 1979. This kind of model
of a neural oscillator resembles a leaky bucket in which a single quantity accumu-
lates until the bottom springs open momentarily, after which accumulation resumes.
In such models there is no place for type O resetting nor for rotation about a pivotal
phase singularity.

Nerve kinetics has also been caricatured in terms of the other kind of single-
variable discontinuous kinetic scheme, the ring device. The first well-developed
model came from Wiener and Rosenblueth in 1946. Wiener envisioned the heart
cell as having an excited state followed by a prolonged refractory period, which
terminates in a resting state. With the resting state and the excited state identified
as adjacent, and the refractory state portrayed as an interval along which state
advances at a steady rate, the model resembles a ring device. Krinskii (1968)
stretched the excited state out to a finite duration to recapture some phenomena
lost in Wiener’s more ascetic simplification, thus anticipating experimental results
which later induced a similar amendment of the Hodgkin-Huxley equations for
the heartbeat (McAllister, Noble, and Tsien, 1975). Those two early papers
led into substantial mathematical developments about the behavior of ring
devices in sheets, spatially coupled to admit the possibility of wave propagation
as in the heartbeat, in epileptic seizure, and in spreading depression (see Chapter
14). One upshot is that there cannot be a stably rotating wave of excitation.

The rotating wave and type 0 resetting are both admitted only when a second
variable is admitted. It is not necessary to exclude discontinuous kinetics though.
For example, Zeeman’s (1972) “cusp catastrophe” model of nerve membrane and
heart muscle, whatever its other defects, does support a rotating wave, given
suitable quantitative adjustments (Winfree, 1973c).

The fast kinetics of the threshold process is described in continuous detail by
the Hodgkin-Huxley equations using four variables of state. Along most of the
cycle two variables are changing slowly and the other two faster variables behave
almost like instantaneous functions of the slow pair. They exhibit interesting
behavior only during the moment of the nerve’s firing, which is reduced to instan-
taneous discontinuity in the more compact approximations.

Best in his dissertation (1976) inquired whether type 0 resetting and the phase
singularity are implicit in the Hodgkin-Huxley equations. Best computed resetting
curves for a periodically firing squid axon using the Hodgkin-Huxley equation
with parameters as measured on squid. He used a current bias to induce oscillation,
described by an attracting cycle in the four-dimensional state space. One of the
state variables is membrane voltage. At various times in the cycle, Best increased
or decreased this voltage by some fixed amount by charging or discharging the
membrane capacitance. He then continued the computation until the membrane
had returned close enough to its attracting cycle so that its phase was increasing
very nearly uniformly in time. Extrapolating back to the moment of the voltage
impulse, he plotted the new phase just after the stimulus as a function of the old
phase at which the stimulus was given. For stimuli of middling magnitude, either
positive or negative, the resetting curves looked discontinuous. But by enormously
increasing the time resolution in the ostensibly discontinuous region, Best was able
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to show that the curves are in fact continuous, and that they change topology from
type 1 to type 0 at a critical pulse magnitude.®

According to the Hodgkin-Huxley equation the singular depolarizing (excita-
tory) pulse and its actual discontinuity of phase are found in midcycle, between
action potentials. At nearby stimulus magnitudes the resetting curve has a region
too steep to distinguish experimentally from a discontinuity. For hyperpolarizing
(inhibitory) pulses, this lies near the end of the cycle, just before the action poten-
tial. Suggestively similar experimental results appear in Moore et al. (1963, Fig. 14),
Perkel et al. (1964, Fig. 2A), Schulman (1969), Jalifé and Moe (1976, Figs. 5and 9),
Pinsker (1977, Fig. 5E-1 Sec.), Ayers and Selverston (1979, Figs. 5, 6, and 11),
Jalifé and Antzelevitch (1979), Jalifé and Moe (1979, Fig. 14) and Scott (1979).
Discontinuities are not commonly associated with the action potential itself. Scott
(1979) argues that they represent encounters with the separatrix emanating from
the singularity (see Box C, pp. 153-154).

Best’s result also illustrates the importance of using a continuous causal model
for real dynamic systems, however quick some stages of their dynamics may be.
When we settle for a threshold relaxation caricature of membrane kinetics, we
invoke magic at the threshold to bring about the necessary changes. All questions
of process and of causation are obviated by collapsing that critical interval to a
single structureless instant. After resorting to such an approximation, it seems
difficult to understand the type O resetting observed in pacemaker neurons, in
which the Hodgkin-Huxley cycle is evidently very much smoother than it is in
squid.

Biochemical Excitability in Slime Molds

A sheet of aggregating social amoebae behaves as an excitable medium capable
of relaying a pulse of cCAMP (see Chapter 15). The triggering of CAMP synthesis
and release is abrupt. Nonetheless, pacemaker cells exhibit type O resetting. And
sheets of cells support rotating waves, pivoting around a phase singularity that
later becomes the assembled animal (Clark and Steck, 1979).

Circadian Clocks

Relaxation oscillators have been invoked as models for the mechanisms of
circadian clocks since the earliest days (e.g., Pittendrigh and Bruce, 1957, p. 84;
Bunning, 1960 and 1964; Roberts, 1962; and Pavlidis, 1967a). A recent addition to

Because Best chose parameters such that the steady-state is locally an attractor competing with
the attracting cycle, the geometry was not quite so simple in detail. Resetting curves too close to the
critical pulse magnitude are not either type, because each has a zone of old phase in which new phase
is undefined. This happens because the system falls into the locally attracting steady-state after any
such stimulus. Only along the boundary of this attractor basin does new phase behave in an honestly
singular way. A slight adjustment of the biasing current would presumably climinate this peculiarity
without affecting much else.
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this literature by Rossler (1975) ties the relaxation oscillator notion to a chemical
mechanism for temperature independence. But the reasons for adopting discontin-
uous models seem to me less than compelling. They are:

1. Tension discharge models are especially easy to visualize and to test
experimentally.

2. Resetting curves, when plotted in terms of phase shift, commonly suggest a
discontinuous change from one-half cycle advance to one-half cycle delay. This
“phase jump” was thought to be the “discharge” of a physiological accumulator.

Because smooth attractor cycle kinetics lead to the smooth screw surface
actually observed in the time crystal, I rejected the relaxation oscillator idea
(Winfree, 1970b). That was wrong too. Only the single-variable discontinuous
caricature is excluded by this observation. Nonsmooth kinetics can readily result
in smooth resetting behavior (see Box G), just as smooth kinetics can result in
nonsmooth resetting behavior (e.g., Figure 9 of Chapter 4).

The Cell Cycle

Extensive resetting measurements have been conducted using the 10-hour
cycle of nuclear division in the acellular slime mold (Chapter 22). These and other
experiments have led many to believe that cell division is governed by a cyto-
chemical oscillator which once per cycle triggers the sequence of processes required
for DNA synthesis and nuclear fission. Is the oscillator a relaxation oscillator,
constrained to a fixed cycle with an abrupt jump in it? Several mechanisms of this
sort have been proposed (e.g., Rasmussen and Zeuthen 1962; Rusch et al., 1966;
Fantes et al., 1975). Or might it be a feedback process that functions like a smooth
attracting cycle? Several models of this sort have also been proposed (Selkov,
1970; Burton and Canham, 1973; Gilbert, 1974; Kauffman, 1974; Tyson and
Kauffman, 1975). These two classes can be distinguished by examining their
resetting behaviors even prior to learning more about the physical mechanism.
Tyson and Kauffman (1975) and Kauffman and Wille (1975) have tried to put
Physarum in a position to reveal the smoothness of its cycle using such measure-
ments. Unfortunately, Physarum doesn’t cooperate. Most experiments up to now
show a sharp discontinuity in resetting behavior less than a hour before mitosis
(Sachsenmaier et al., 1972; Tyson and Sachsenmaier, 1978:) The particular simpli-
city of the discontinuity observed in Physarum strongly recommends a model in
which the concentration of a mitotic inhibitor or activator abruptly doubles or
halves when receptor sites on the DNA are doubled during replication.

More fundamentally discontinuous models have been elaborated. Kauffman
(1969), for example, envisions the cell cycle as a sequential machine not unlike
a digital computer, in which each configuration of gene activity induces a unique
next state until the whole dance has worked through to a new beginning. Nothing
like a phase singularity would be expected in such a case, either. In fact there
seems to be no compelling evidence to date that the cell cycle need be described
by anything more than the one dimension of phase.
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Rhythmic Ovulation

The female cycle (Chapter 23) has usually been described in terms of sudden
discrete changes of state (e.g., ovulation, hormone levels transgressing thresholds,
etc.) which eventually recreate a prior state. The early mathematical model of
Danziger and Elmergreen (1957) is typical in this respect. In such a case the cycle’s
rephasing by exogenous hormonal stimuli would be expected to reflect these
discontinuities. This is the case in experiments on Bogumil’s numerical summary
of the endocrine kinetics thought to underlie the human menstrual cycle. Estrogen
infusions of various sizes applied at various phases do reveal stark discontinuities
in the model’s response (Bogumil, pers. comm.). If there are any phase singularities,
they are well hidden in these discontinuities.

The only complete resetting curves presently available from living mammals
were obtained with such potent synchronizing stimuli that little can be inferred
about the smoothness or discontinuity of the cyclic mechanism (see Chapter 23).

Conclusion

In respect to phase resetting and patterns of phase in space, there seems to be
little qualitative difference between attractor cycle oscillators with smooth kinetics
and others which change state abruptly during the normal cycle. Resetting behavior
is really discontinuous only if the state space is one-dimensional or if the attracting
cycle has certain ungeneric exact symmetries (e.g., Box F). However a phase
singularity can be caught up in an interval of sudden change, where the time
axes are, as it were, very compressed. This can result in such severe distortion
of the bundle of converging isochrons that one sees only stark discontinuity.
This can happen, but need not, and apparently does not in some of the experimental
systems referred to above.

These last remarks are not just theoretical, but conjectural as well. With a
parting reference to Box I it now seems appropriate to depart from the extremes
of theoretical abstraction approached in this chapter. We will next pursue opera-
tional definitions and experimental methods for testing the utility of isochrons
and allied notions in connection with a particular physiological system. In the

next chapter I present such an attempt using Drosophila pseudoobscura’s circadian
clock.
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First get your facts; and then you can distort them at your leisure.
Mark Twain

A: Introduction

If, in context of real laboratory experiments, we wish to seriously contemplate
models with more than one degree of freedom, then we must find two or more
independent empirical measures corresponding to the movements of the system
in its state space. We must seek to plot a trajectory in a space of two or more mea-
sureable quantities. If we can find a way to do this, then we can distinguish the
quickly attracting cycle of Chapter 6 from the orbitally stable kinetic schemes of
Chapters 4 and 5.

In mechanical systems such as the pendulum of Chapter 5, position in space
and its rate of change (the velocity or momentum) comprise a natural choice of
coordinates for the state space. In chemical systems, this kind of plot is much less
natural because reaction rates depend only on concentrations, not on their rates
of change. Ideally we would monitor two or more concentrations or functions of
the concentrations and plot these against each other to measure a trajectory.
Observations in this style have been collected by Ghosh and Chance (1964), Betz
and Chance (1965b), Betz (1966), Degn (1969), Betz and Becker (1975a), Blandamer
and Roberts (1978), and Wegmann and Réssler (1978).

Lacking such complete information, people have resorted to plotting any single
accessible observable against its rate of change. The hope is that both quantities—
the observable and its rate of change—are reasonably smooth, independent func-
tions of the state variables (concentrations). If so, then a plot of the one function
of state against the other might constitute a recognizable, though distorted, image
of a two-dimensional projection from the state space.

The least risky attempt of this sort is a plot of concentration against its rate
of change in a system believed to be well understood and to involve only two
important variables of state, one of which is the measured concentration.
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A more adventuresome attempt with the same procedure might use a system
believed to importantly involve interactions among several quantities. Trajectories
of this kind are familiar to neurophysiologists using membrane voltage (one of
the four coordinates in Hodgkin’s and Huxley’s state space, essentially a ratio of
inside/outside ion concentrations) as the only direct observable (e.g., Jenerick
1963; Gola, 1976; Pinsker, 1979; and Guttman et al. 1979. See Chapter 14 for
background).

More precarious is the attempt to use a conveniently observable function of
state without the support of any well-tested idea of what the basic variables of
state might be or what kind of function of state the observable might be. In this
category we might consider any circadian rhythm in which some quantity can be
monitored continuously. For example, the openness of Kalanchoe's flower is such
a quantity. A plot of openness against its rate of change winds ‘round and ‘round
a center, with variations of amplitude, at reasonably uniform angular velocity.
Such plots provided the first direct measurement of “isochrons” (see Chapter 21).

Still more perilous is the effort undertaken in this chapter to use an observable
that is not even defined on the same kind of space as are the presumed variables
of state. The observable most natural to our interest in things rhythmic is the
phase of a circadian rhythm. Of course that makes a rather dull plot since phase,
being defined in proportion to elapsed time, has rate of change identically 1. But
persevering in this preoccupation with phase, we might instead take the reset phase
of a rhythm as our observable and plot this value against its rate of change as we
vary the time at which a stimulus is given. Those two observations presumably
constitute two independent measures of the unperturbed clock’s state. To put it
another way, we do as in the previous paragraph, but our rhythmic observable is
“the phase to which the rhythm would be reset if perturbed right now in some
standard way.” We plot that against its rate of change. This is simply the familiar
rhythm of sensitivity, the resetting map, plotted against its slope.

The labor involved in such an effort is nearly prohibitive. Why go to the trouble?
What will be gained by it?

The result will be some kind of distorted look into a circadian oscillator’s
dynamical space: the first ever obtained. In principle it might reveal any kind of un-
anticipated dynamical complexity, any unforeseen pattern of organization among
attracting and repelling steady-states, attracting and repelling limit cycles, thres-
holds, and separatrices, etc.: No one has ever before examined the dynamics of a
circadian clock for its essential, qualitative features. In fact, as you will see, what
emerges is startlingly simple and disconcertingly unlike the relaxation oscillator
model and quickly attracting limit cycle models previously entertained.

Such an experiment requires thorough automation. The remainder of this
chapter mostly presents the results of one such experiment, using Drosophila’s
circadian rhythm of pupal eclosion and my University of Chicago “time machine”.
{See Winfree, 1973a and Chapter 20 for background.) The analysis sketched here
was presented verbally at the Biophysical Society meeting in Philadelphia,
February 1975; the graphs were distributed at the Dahlem Conference on the
Biophysical Basis of Circadian Rhythms in Berlin in November 1975; both were
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presented together at the Circadian Clock Symposium in La Jolla in January 1976;
but they have not previously appeared in print.

B: The Time Machine Experiment

It is a capital mistake to theorize before one has data. Insensibly one begins
to twist facts to suit theories, instead of theories to suit facts.

Sherlock Holmes,
“A Scandal in Bohemia”

Background

To put the forthcoming trajectories in context of our earlier encounters with
Drosophila, let me remind you of the pinwheel experiment and its resulting time
crystal (Chapter 2, Chapter 20). The pinwheel experiment was contrived to dis-
tinguish the clock’s states by keeping it for a while in one environment (constant
dark or red light up to a time T or phase ¢) and then for a while in another (constant
blue light for a duration M). Eclosion timing then provided one measure of the
clock’s state at the end of that treatment. The measured dependence of the re-
sulting cophase, ), on T and M was depicted in two equivalent ways:

1. Asalattice of screw surfaces in which a screw axis is the only conspicuous
irregularity, and

2. As a contour map or a wave rotating on the stimulus description plane, in
which the pivot corresponds to the screw axis at T = T* M = M*).

This 6 provides one measure of the clock’s state at the end of the stimulus.
However, as we saw in Chapter 3, single-variable models proved inadequate to
account for all the facts of phase-resetting. So we need to discriminate some addi-
tional way the clock’s state can change. We thus need to figure out how to assay
the state of the clock as it follows some path possibly off its “normal” cycle. We
can then ask whether the path observed is or is not the same old usual cycle. If not,
how quickly does it return to the standard cycle? Or does it noticeably approach
the standard cycle at all? In performing this exercise I will abjure theory and
stick consistently to facts taken from a single circadian system, viz Drosophila
pseudoobscura eclosion.

It seems appropriate to start by defining observables in strict operational terms.
How can we monitor the state of a circadian clock without knowing what a
circadian clock is? We don’t know the clock’s biochemical state variables, but
we do have some observables that may qualify as functions of state (Figure 1):

A. For a first measure take the time from ¢ hours after the initializing stimulus
(T, M) until eclosion in continuous red light or darkness. So long as eclosion occurs
in reasonably narrow unimodal peaks, the center of mass of the peak (the daily
average eclosion time) will adequately characterize the interval from ¢ to ¢
That measure of the clock’s state x at time t will be called 0(x(1)) = ¢

eclosion*

— 1,

eclosion



B: The Time Machine Experiment 179

Figure 1. Defining 6 and 6’ (0" is d@'/dt). The horizontal time axis starts with transfer of pupae to
darkness (downstroke), then leads through a stimulus after T hours and the assay pulse (or its absence)
after t more hours, then ends in a sequence of eclosion peaks about 24 hours apart.

referring to eclosion in the singly pulsed pupae. Because this is merely proportional
to time the after the initializing stimulus, it is not an especially informative measure
of clock behavior after that stimulus.

B. For a second measure, do as above but also give the organisms a standard
exposure of blue light at time ¢, prior to leaving them undisturbed in red light.
Because of the blue light exposure, which we call an “assay” pulse, the time to
eclosion turns out to be different. Call that revised time 6'(x(t)) =t
referring to eclosion in the doubly pulsed pupae. Two details:

eclosion — [

1. The assay pulse should be strong enough so that variations in its duration
or intensity do not cause the resulting eclosion times to vary much. In other words
the assay pulse should saturate the phase response. This will prove to be an im-
portant technical convenience below.

2. The blue exposure maps the state x(r) to a new state x'(), so 6'((x)t) is the
same as 0(x'(t}). This relation will be useful because through it we will be able to
measure the mapping x — x’ imposed by blue light.

C. For a third measure evaluate the rate of change with time of the second
measure:
_dO'(x(1)) _ dO(x'(1))
T oAt T dt

(Note that I consistently use the upper dot for the time derivative. The prime has
no such connotation in this book.) Let me be clear about the actual operational
meaning of the time derivative. Because the measurement has to be done with
discrete aliquots of the population of flies, 6 and 6’ cannot be measured contin-
uously. 6 is measured once and 6’ is measured in replicate populations at two-
hour intervals of t. With 6’ plotted against ¢, we put a smooth curve through the
data points by hand, digitize it at intervals of one-fifth of an hour (i.e., at 10 points
between actual measurements) and define ' as five times the difference between
successive ' values.

There are obviously other possible measures. For example, we could take the
time to eclosion if we sprinkle cigarette ashes on the pupae at the same time as we

9./
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Figure 2. Treatment of one harvest of pupas to measure 0(t), '(r), and 0"(¢) following initial conditions
established by stimulus (T, M).

give a cold pulse or we could take the fifth time derivative of that measure, etc. But
three will be quite enough and the particular three observables detailed above do
lend themselves especially nicely to manipulation.’

Now how do we set up initial conditions at ¢ = 0, from which to follow 0(t),
0'(t), and 0'(t)? First of all, we need a standard starting state. Call it x,. This is
obtained by very long continuous exposure to white light. To obtain different
initial conditions, x(0) # x,, we start with this standard state x,,, wait a time T,
and then expose once again to standard light for a duration M. If M = 0 then
x(t) is still the trajectory from x,. If M # O then x(¢t < T) is still the same but
x(t > T+ M)isa trajectory from some new state reached at the end of M. Measures
0, ¢, ¢ monitor this x(t > T + M). Luckily these turn out to be smooth periodic
functions.

Implementing the Experiment

My aim now is to fit all these results together in an understandable way. This
is a nontrivial game because we are doing not mathematics but empirical science:
All the experimental results are estimates subject to diverse sources of error and
we have to find out what aspects of the data to regard as noise so that we don’t
base too sensitive a calculation on them. We need to find out how to bring out the
essence of the results graphically. Many ways were tried. 1 show the ones that
worked.

With that overview, we proceed through the experiment in finer detail. In
Figure 2 we examine the measurement of a single trajectory, starting from whatever
state the clock reaches after the initial stimulus (7, M). In Figure 2 time increases

' In Winfree (1973a) I used a slightly different notation. M was there S (stimulus seconds), avoided
here out of deference to topological notation for the circle. t was WAIT. 0 was ).
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through about two weeks from the left to the right. Beyond the far left, fertilized
eggs are laid during an interval of about four days. The maturing larvae are reared
and allowed to pupate under continuous light. At time T = 0 they are taken into
red light (equivalent to darkness). The bottom diagonal line represents the removal
of a tiny aliquot of these pupae to serve as an overall control, unperturbed by any
further exposures to light.

The rest of the pupae remain under red light until a time 7 when the blue light
is turned on for a duration M. This creates the initial condition following which
we intend to monitor a trajectory. The second diagonal line to the lower right
represents removal of a small aliquot of this population to serve for measurement
of 0, the time to eclosion in a subsequently undisturbed population. In this aliquot
and in all of those to be described below, the new “time zero” is located at the end
of a blue light pulse.

Eclosions occur only during an observation window (dashed box) during which
the eggs fertilized 20 days previously achieve sufficient maturity to hatch as adult
flies. The eclosion peaks and their previous anniversaries (E’s in Figure 2) mark
the times when 0 = 0. They measure observable A, the 6 associated with t = 0,
at the initial conditions set up by the end of the pulse (T, M). § at any later time is
that measured f minus the elapsed . This is because the time remaining until
eclosion is less by t after that much time has elapsed.

The top 24 diagonal lines represent a division of the remaining population into
24 equal aliquots. In each of these an assay pulse is given at a different time in
order to measure 6" at that time. These assay pulses are given at two-hour intervals
of t as diagrammed. Thus the assay pulses scan altogether two cycles of x(t) fol-
lowing establishment of initial conditions ¢ = 0. The times 6’ from assay pulse
until eclosion in each of these 24 populations are measured from a new zero of time
at the end of the assay pulse. Like 0 measurements, these measurements are avail-
able only during the observation window. They are taken only after a minimum
of three cycles have elapsed since the assay pulse; earlier rescheduled eclosions
are sometimes irregular. The observed times 6’ are indicated by dots on the top
24 horizontals in Figure 2. They most commonly lie along four smooth curves
during the four-day observation window. Note that the vertical axis can be taken
as the ¢ axis, spanning the two days scanned by the assay pulses. The £’s at which
(1) = 0 are indicated by E’s on the right.

Bear in mind that we have three consecutive regimes of time measurement here.
The first extends from 0 to T between the light-dark transition and the blue pulse
which establishes initial conditions. The second extends from 0 to ¢t between the
end of that pulse and the beginning of the assay pulse. The third extends from
0 to 6" at eclosion, starting at the end of an assay pulse and continuing under
constant red light or darkness until the flies have hatched and died, ending the
experiment. Twenty-four assay pulses are given, each two hours later than its
predecessor (except for the first, which is given sometime within two hours after
the initializing light pulse).

It is convenient now to remove the observation window and rotate it 90° as in
Figure 3(a). This lays the t axis horizontally to the right with the twenty four ¢’
axes extending vertically downward in the standard format of previous chapters.
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Figure 3. (a) Observation window from Figure 2, rotated 90°; (b) part (a) with the zeroes of the 24
time axes aligned horizontally.

Figure 4. Actual experimental results with M = 0, in the format of Figure 3(b). The shaded regions
represent missing data (mostly mechanical failures).
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0’ is plotted downward instead of upward so that the “new phase” axis extends
vertically upward on the same diagram.

In Figure 3(b), Figure 3(a) is sheared by one hour vertically per hour horizontally
in order to bring the zeroes of all 24 ¢ axes into horizontal alignment. Thus ¢’
is measured downward from a common zero. This shearing puts the data into the
format of Figures 31-33 of Chapter 1, in which type 0 resetting has average slope 0
and type 1 resetting has average slope 1.

Figure 4 shows the results of an actual measurement in this format, using
Drosophila’s eclosion rhythm. In this particular case the prior M = 0, therefore
T is arbitrary. It shows that the eclosion peaks are of uniform narrow width. (I
believe this is because the 120-second duration of the saturating assay pulse evokes
rhythmicity of standard high amplitude in the circadian clock. I disallowed myself
this approximation in the more rigorous exposition of Winfree (1973a) but for
our present purposes it works well enough). Thus we can use the centroid of each
peak (the average eclosion time) as a sufficient measure of eclosion behavior.

In Figure S for contrast, the assay pulse is omitted. The 24 eclosion records
are handled exactly as in Figure 4, i.e., the time when the assay pulse should have
been given is made time zero and all the zeros are aligned horizontally. The quali-
tative change in the data layout shows that the assay pulse is doing something in

Figure 5. For contrast, an experiment identical to the one shown in Figure 4, except that the assay
pulse was omitted.
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Figure 6. As in Figure 4 but M s 0. Specifically, a 20-second exposure was delivered 6.2 hours after
oscillation began, then 6" was measured by assay pulses at two-hour intervals for the next 48 hours, as
in Figure 4.

Figure 4. Without it in Figure 5 the 24 aliquots are indistinguishable, except for
the systematic displacement imposed on their time axes.

In Figure 6, T = 6.2 and M = 20 seconds. The point here is to show that the
prior pulse (T, M) does set up different initial conditions by showing the different
subsequent configurations of data. The §’ measurements differ systematically from
those encountered in Figure 4. Peaks are still of standard width, so the centroid
remains a sufficient numerical measure of the subsequent rhythmicity.

Figure 7 (right) simplifies the data more, focusing interest only on the centroids.
Because the centroids recur periodically along the 8" axis at intervals close to 24
hours, it will suffice to reduce them to a single collective measurement, viz ('
modulo 24 hours. Figure 7 (right) shows the data replotted in this way. At each
t there are now two or three dots representing the two or three successive eclosion
peaks, all reduced to nearly equal 6" values by removing multiples of 24 hours.
These 0" points lie in a reasonably well-defined corridor through which I have
presumed to draw a smooth curve by hand. [In my first approach to these data
I tried a “hands off” method, automatically fitting a ninth degree polynomial to
the digitized data points. But these polynomials proved to fit the data no better
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Figure 7. (right) As in Figure 4 but only the centroid of each peak is retained, and all centroid times
@ are reduced modulo 24 hours. The ¢’ scale is given on the left to minimize clutter. (left) The vertical
downward axis is ¢’ in units of 1 hour. Each dot projected from the right is located horizontally by its
¢’ (the local slope along the curve on the right). Eclosion time in the unassayed control is marked E on
the right.

than the hand-sketched curve (standard error = +0.6 hour) and they often had
unnecessary bumps and wiggles in them.] This is Figure 4 with M = 0. Thus
0, ', and the slope ' are being measured along the standard cycle initiated by a
light-to-dark or blue-to-red transition. Note that the curve is not strictly periodic
along the t axis. This is the reason why I use rectilinear measures T and ¢ rather
than circular measures such as ¢; and ¢, for the times of the first and second
pulses: The flies’ behavior deviates systematically from perfect periodicity and so
it is inappropriate to implicitly map our observations onto the phase circle. This
can be done later as an explicit approximation if that seems appropriate after we
have looked at the raw data without first coloring them by theory. Note the arrows
marked E for eclosion: These mark the times at which 6(t) = 0 along the t axis.
This is how the 0 measure is brought into this diagram. Now all 3 observables
(0,0, and 9’) are presented in a single plot.

C: Unperturbed Dynamics

As a matter of convenience we could eliminate the ¢t axis, plotting 6" against
¢ in Figure 7 (left) (redrawn in more convenient format as Figure 8). This kind
of plot necessarily gives us a clockwise rotation since ' is increasing (downward)
when its rate of change is positive (to the right). (If it is a rotation, does it rotate
about some point? If so, that point must be on the 6’ = 0 line. I have drawn an
asterisk at @' = 0 at @ = — 3 hours: watch this spot in the subsequent diagrams.)
This clockwise rotation provides some kind of picture of the standard cycle.
It might be called a trajectory in (¢', ") space. If 0'(x(t)) and 0'(x(t)) are functions
of the state x(¢) then this diagram must be some two-dimensional projection out
of x space. What kind of projection? There is no way to know in advance. May-
be 6 and 6’ are such peculiar functions of x that the projection will be twisted
and folded so that trajectories appear to criss-cross. Fortunately, this turns out
not to be so, as we will see by examining trajectories started from 30 different
initial conditions.

Note that no theory or models have been involved so far nor will they be in
what comes next.
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Figure 8. As in Figure 7 but rescaled. Letters E are placed on the trajectory where (1) = 0 by ob-

servation in the unassayed control. At states along locus (' = — 1,6 + = constant along trajectories,

i.e., the assay pulse inflicts the same phase shift whenever given. Note that the §' axis is really a circle:

—12 hours is the same as + 12 hours, modulo 24 hours. The inset coordinate arrows at the upper
right show how the (¢, §) directions are related to “new phase” ¢'.

Many Trajectories

The next job is to compare trajectories from other initial conditions, that is
(T, M # 0). These initial conditions might or might not prove to be on the standard
cycle. Let’s see. Figure 9 shows about half of the 30 experiments, in the format
of Figure 7, starting from diverse initial states by using diverse initial (T, M)
exposures. Even though we cannot define a metric on (¢', (') space, it seems clear
that x(¢), as assayed by (0'(¢), 0'(t)), does not follow a unique cycle. The changing
state of the clock cannot be regarded as a mere time displacement along one
preferred trajectory.

A big transient is seen in a few of these trajectories. In all cases it lies entirely
within the early parts T + ¢ < § cycle after pupae are removed from the prior
continuous light in which they were reared. This feature does not repeat at 24 hour
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Figure 9. As in Figure 7 but with diverse initial
(T,My's. T is in hours. M is in seconds’ exposure at
100 mW,/m? biue. All the labels and scale markings
are as in Figure 8. To minimize clutter I have left
them off all but the first experiment in this sample
of 15. They are arranged in order of decreasing
amplitude. All trajectories and curves start 48 minutes
after the 1st assay pulse. Trajectories all run
clockwise.
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intervals. It is a one-time transient. A number of other circadian rhythms and
other biological clocks have since revealed a similar transient upon release from
prior inhibition (e.g., in Kalanchoe, Chapter 21; see also Johnsson and Israelsson,
1969). The clock may be winding down from the initial state in which it was held
by whatever prolonged stimulus was used to arrest clock motion (in this case
continuous light). In Drosophila this feature is not due to the photoreceptor’s
dark adaptation, which also follows prolonged exposure to light; nor is it an
indication that the assay pulse is less than wholly saturating: A similar anomaly
is observed when the assay pulse exposure is easily 10° times greater (unpublished
experiments, and Pittendrigh, pers. comm. 1972).

It seems noteworthy that this 16-hour transient is all one would ever observe
in the wild, where clocks seldom run as long as 16 hours before daylight returns.

At first sight this big transient looks like a winding down to a unique attracting
cycle, as in Chapter 6. Such behavior was anticipated in the mathematical
metaphors of Wever (1964, 1965a) and Pavlidis (1967). However, there is no
corresponding trajectory winding outward toward the same cycle. Rather there
seems to be a continuum of parallel concentric orbits of smaller sizes that go
right down to zero. After the first 16 hours there is no conspicuous tendency
inward or outward, neither to a preferred cycle, nor to a steady-state. Thus the

Figure 10. The left-hand parts of
Figure 9 are superimposed, omitting
the inward transient characteristic of
the first 16 hours after release from
constant-light inhibition.



C: Unperturbed Dynamics 189

effect of the light pulse (T, M) is not just displacement of the rhythm in time but is
also something like a resetting of amplitude.

The tendency of each trajectory to repeat its previous path after the initial
transient is more conspicuous when all the initial parts of trajectories with
T + t < 5 cycle are omitted (Figure 10). Here we see that the trajectories sampled
in Figure 9 close more or less concentrically about the point ¢ = —3 hours
at 0’ = 0 (the asterisk).

It is also convenient to examine this behavior by constructing a Poincaré
return map as follows. Points along the first 24 hours of each trajectory are
connected by arrows each to its corresponding point along the same trajectory
24 hours later (Figure 11). In case of perfect periodicity these two points should
be identical. In case of perfect periodicity obscured by noise the arrow connecting
the two points should have some nonzero length but random direction. Figure 11
shows a distinct inward tendency of the arrows from high amplitude. This transient
in the first 16 hours is followed by essentially random variation around periodicity
at all subsequent points along the trajectories. There seems to be no systematic
dependence of the period on the amplitude.

Orbits are concentric to the asterisk. Viewing this (¢, ') plot as a projection
from the dynamic space of the clocks’ mechanism, we might take this as evidence

Figure [1. In the format of Figures 8 and
10, the trajectories of the left-hand parts
of Figure 9 are used to construct a 24-hour
return map. Each “nail” proceeds from a
(@, 0 point (at the blunt end) to the point
reached 24 hours later along the same tra-
jectory (at the sharp end). The initial
transient is distinctly inward but it is hard
to see any other tendency.
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that there is nothing like an alternative attracting equilibrium or a saddle point
or a repelling cycle between attracting cycles or a homoclinic point anywhere
within the accessible portions of the clock’s state space. In other words, its dynamics
seem very smooth and simple.

Isochrons

The next question we can approach through these data is, “At what states
is the clock found 24 N hours before eclosion occurs?” We used the § measurement
to put an E on the ¢ axis wherever 0(t) = 0 in Figure 7 (right). In Figure 8 these were
transferred to the trajectory plot as two E’s, one on each of the two cycles during
which the trajectory was measured by assay pulses. Collecting together the 30
trajectories, each of two cycles duration starting from a different initial condition,
we obtain a cloud of 60 E’s, shown as dots in Figure 12. These constitute a ray
projecting downward to the left from the singularity at the asterisk. This suggests
that eclosion does not occur at any fixed  value nor upon crossing any definite
@' threshold, but rather it occurs along a radius cutting trajectories of all amplitudes.

This might suggest that eclosion timing is determined by an extracted first
harmonic of the oscillator’s movement, as proposed by Kaus (1976).

Figure 12.  All 30 trajectories are super-
posed in the format of Figure 10, but only
the E’s are retained (as dots). All other
points are suppressed. This ray of dots
marks the states of the clock that precede
eclosion by multiples of 24 hours.
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Figure 13. Figure 12 is extended to show
eight isochrons by proceeding for the
appropriate number of hours along each
trajectory from E before placing a dot.
Contours are eyeballed through the dots
at three-hour intervals. The dashed parts
are extrapolated beyond the presently
available data.

More generally one can ask, “Where was the (', §') state any number of hours
before eclosion, or the complementary number of hours after one of the pre-
anniversaries of eclosion?” This is answered by marching along any trajectory
to that number of hours beyond the ray of E’s and placing a dot, and then another
one 24 hours further along. After we've done this for all 30 trajectories, each
of these new clouds of dots contains about 60 points (Figure 13). All extend
radially from the asterisk near the center of rotation of trajectories. Though
uncertain now whether the attractor cycle theory of Chapter 6 applies here,
I call these sets of states “isochrons”: equivalent time loci, so far as eventual
eclosion time is concerned. This is the second direct measurement of the isochrons
of a circadian clock. (In the first T used a simpler experimental technique with
data from the plant Kalanchoe; see Chapter 21.)

D: The Impact of Light

All the above was about the trajectories followed in darkness, the nominally
“unperturbed” trajectories. Now how does the individual trajectory’s shape depend
on the timing and duration of the stimulus (7, M) which was used to establish
its beginning state? One can ask about the stable amplitude after the initial



Figure 14.  As in Figure 8 but only the
first 18 hours of the M = 0 trajectory is
shown, and the axes are suppressed. The
circles mark the approximate starting
places of 30 trajectorics. These starting
places are successive points along
perturbed (blue light) trajectories, here
connected and numbered in order of in-
creasing M at fixed 7.

inward transient: Which preliminary stimuli lead to big cycles and which lead
to smaller cycles? In more detail one can ask, “How does exposure to light move
the state of the clock from the standard trajectory?” The way to ask the question
is to find out at what (¢',0') state each trajectory starts, immediately after the
initial conditions are set up by exposure for M seconds to a light that started
T hours after the oscillation began. At each T we have several durations of M,
from M = 0 up to the duration (120 s) of the assay pulse. The sequence of states
reached by longer and longer M is the clock’s trajectory during the blue light
exposure.

Figure 14 connects the initial points of 30 trajectories in order of duration
in blue light, at each initial T. The initial point of each red light trajectory was
obtained by extrapolating the trajectory backward from the first datum (typically
at t =1 to 2 hours) to isochron 0(0). In five cases the first few points along the
trajectory were too far apart to permit confident extrapolation: Those five are
omitted from this plot. Note that all the remaining blue light trajectories start
along the M = 0 trajectory (which is here given six “starting points”, since M = 0
can be assigned to any T.) The trajectories generally shoot leftward to lower ¢’
in blue light, remaining at roughly constant ¢'. This is as expected: the initial ('
is the time to eclosion after a saturating assay pulse: if instead we give a stimulus of
duration M followed without interruption by a saturating pulse, that combination
pulse is also saturating and should therefore result in the same eclosion time 0.
In fact what is peculiar in these data is that 0 is not quite constant as M increases.
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Figure 15. Intersections 6 = ' are esti-
mated using the isochrons measured in
Figure 13. At such points (marked by
circles) the assay pulse has no effect on the
clock’s phase. These points lie roughly
along the vertical line at " = — 1.

I do not know why it is not. Maybe the assay pulse is not really as thoroughly
“saturating” as I believed from earlier measurements. In any case the main point
to notice is that the blue light trajectories are not along the cycle, and cannot be
described as backing up (phase delaying) or hurrying ahead (phase advancing)
along the cycle.

The predominantly leftward trajectories must end up along a special locus
which can be constructed as follows. Saturating exposure by definition leaves
the clock in a state such that its phase is not affected by further immediate exposure,
so 0 = 0. The loci of fixed 0 are the isochrons in Figure 13. The loci of fixed ¢’
are horizontal lines. The intersection between a given isochron and the corre-
sponding 6 stratum occurs along the heavy arc in Figure 15. This has to be where
all the long exposures end up. In point of fact they don’t end up exactly along this
locus but Figure 14 suggests that they tend toward it as exposure duration increases.

So much for the direction of blue light trajectories. Now what about marking
off time along them? The 30 exposures given to initiate the 30 trajectories all had
durations 0, 20, 30, 40, 50, 60, 80, or 120 seconds. So time marks can be roughly
placed along the blue light trajectories by drawing links (Figure 16) between
the M = 20-30 second experiments (row 1), another row of links between the 40
second experiments (row 2), another row connecting the M = 50—-60 second
experiments (row 3), and another connecting the M = 80 second experiments



194 7. Measuring the Trajectories of a Circadian Clock

Figure 16. As in Figure 14 but initial

states reached after roughly the same M

are linked, regardless of T. Rows 0, 1, 2,
3,4, 5 are described in the text.

(row 4). We already have links connecting the M = 0 second experiments (row 0)
because this is the unperturbed red light trajectory. These rows of links get closer
and closer together as M approaches saturation.

E: Deriving the Pinwheel Experiment

Now, combining the trajectories at fixed T and their cross-links at fixed M
we have a (T, M) grid. This superposition of Figures 13, 14, and 16 tells what
isochron we get to by starting an oscillation with a light-dark transition, waiting
T hours, and then giving M seconds of blue. This experimentally determined
diagram (Figure 17) turns out to be essentially identical to the one I presented
as a theoretical inference in summer of 1968 at the Federation of European
Biochemical Societies’s meeting in Prague (Figure 11 of Winfree, 1968). It can
be regarded as a contour map of 6 above the (T, M) plane. This is made a bit
clearer by straightening out the distorted (T, M) grid of Figure 17 to create
Figure 18. We have seen this picture before as Figure 13 of Chapters 2, 4, and 5.
It is the contour map of one unit cell of the time crystal portrayed in Figure 14
of Chapter 2. The time crystal came from the pinwheel experiment, which I was
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Figure 17. The isochrons on a (T, M)
grid constructed by superposing Fig-
ures 13, 14, and 16.

Figure 18.  As seen in Figure 17, Fig-
ures 14 and 16 superposed constitute
a curvilinear (T, M) grid. Graphically
pulling Figure 17 into rectilinear shape,
the isochrons and initial points (circles)
are moved to the positions here shown.
(cf. Figures 13 in Chapters 2, 4, and 5,
and Box B of Chapter 12.)
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Figure 19.  As in Figure 6 but the prior stimulus was 40 seconds exposure at 6.2 hours after initiating

oscillations. This near-singular pulse resulted in almost arrhythmic eclosion. There is very little time

dependence of ¢ in rhythmic eclosion shown here after a second stimulus (e.g., the assay pulse). The
measured trajectory winds close around * (see Figure 20).

conducting while building the time machine to undertake this more elaborate
measurement of trajectories. The results of that earlier experiment (fortunately)
turn out to be implicit in the more comprehensive results. The phase singularity
is the point * about which all trajectories revolve in the absence of a perturbing
stimulus.

Note the trajectory starting (at M = 0) at T = 6.2 in Figure 17. It passes very
nearly across the singularity. If blue light (of the standard intensity used in all
these experiments) is terminated after only about 40 seconds, the clock should
be left in a state of uncertain phase. In fact the eclosion “rhythm” becomes virtually
aperiodic after such a stimulus (Figure 19) and the trajectory measured after
such a stimulus has exceptionally low amplitude (Figure 20). This is as much
as to say that whenever light again strikes the clock, it restores normal rhythmicity
at practically the same phase, specifically, the phase of the isochron which roughly
parallels blue light trajectories proceeding leftward from the environs of the
singularity. This is also the phase of rhythm initiation in “naive” flies, suggesting
that prior to some stimulus to mark “time zero”, the newly created clock in a
young fruitfly larva lingers near the * in its state space.
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Figure 20. As in Figure 8, replotting the
data of Figure 19.

What about trajectories under perturbing light of a different color or intensity?
If photons get into the clock through a single chromatophore (i.e., if the clock
lacks color vision), then color and intensity should be interchangeable. There
seems every reason to believe the same trajectories are followed under higher
intensity illumination, but faster: The net effect of brief (<1 hour) illumination
seems determined by energy. But what of much dimmer lights? As intensity
approaches zero the trajectories must approach the concentric rotation measured
in utter darkness. This part of the story has not yet been filled in. However from
Winfree (1974a) we know that Drosophila’s clock is arrested under prolonged
illumination brighter than & mW/m?, and continues to oscillate under illumina-
tion 10 x dimmer. From Chandrashekaran and Engelmann (1976) we know that
T* remains the same under illumination as dim as {5 mW/m?, even though M*
has increased to 14 hours in such dim light. Thus it would appear that the transition
from unperturbed to perturbed geometry occurs in the range between 355 and
£ mW/m? of blue light.

As noted in Chapter 2, several other circadian systems and at least one
biochemical oscillator all gave qualitatively similar results in a pinwheel experi-
ment. Do they also exhibit closed concentric trajectories when probed with a
second pulse as here described? Engelmann et al. (1973) repeated this two-pulse
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measurement using the plant Kalanchoe and obtained answers similar to
Drosophila’s, but more detail was needed for an exact comparison. Kalanchoe,
unlike Drosophila, provides a continuous readout of its clock’s activity (as opposed
to only one datum per cycle, at eclosion time). So it should be possible to construct
complete trajectories by the methods of Chapter 21, using only the existing
experimental records from which the published phase measurements were ex-
tracted. This remains to be attempted in detail, but Engelmann et al. (1978) do
report that the Kalanchoe clock’s amplitude, once reduced by a critically timed
stimulus, usually stays reduced for at least several days.

Turning now from circadian clocks to biochemical rhythms of shorter period,
we find measurements in the same format by Greller (1977) using the glycolytic
oscillation in yeast. Up to now the published data are too few to assemble a
convincing trajectory, but just as noted above in regard to Kalanchoe, the un-
published fluorimeter traces could presumably be used to plot trajectories more
directly by the method of Chapter 21 (in this case, plotting NADH fluorescence
vs. its rate of change).

Similar remarks apply to Johnsson’s (1973, 1976) and Johnsson et al.’s (1979)
recordings of oscillatory water transport in seedlings, perturbed for various
durations at various phases. This case is especially interesting because both the
steady-state and the himit cycle locally attract trajectories. Thus a second, and
repelling, cycle might be revealed when detailed trajectories are plotted from the
existing data.

Malchow et al. (1978) inflict single-pulse perturbations on the cAMP clock
of Dictyostelium (Chapter 15) while continuously recording optical properties
of cells in liquid suspension. They too note that recovery to an attracting cycle
is not swift: Effects on amplitude are conspicuous.

F: So What?

This is the end of my data presentation for this experiment. What good are
these results? First of all they fulfill the objective I proposed at the beginning,
namely, to elicit a picture in model-free form, a picture in which nature could
reveal herself directly prior to any attempt on our part to impose theoretical
interpretations. Any model that can draw this picture or any consistent distortion
of it gets by unexcluded. But in so saying, it should be noted that the (¢, §) plane
is an arbitrary projection from the assumed state space x. This projection could
be arbitrarily distorted. The data require only a relationship between the isochron
grid, the red light trajectories, and the blue light trajectories. Any distortion of
the space on which they are all drawn leaves those relationships intact and therefore
is as valid a picture of the dynamical flows as is any other distortion. The particular
choice of coordinates employed here happily presents an especially simple and
pleasing picture of smooth round concentric red light trajectories, parallel blue
light trajectories, and nearly radial isochrons. Though it is pretty, remember
it is not unique.
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To my mind the most noteworthy and previously unsuspected features of the
circadian clock which are brought out by these experiments are:

1. The time crystal with its helicoidal unit cell

2. The phase singularity (and its equivalence to the initial state of the clock
in organisms which have never been exposed to an environmental stimulus)

3. The smoothness of the concentric closed trajectories

4. The initial transient following prolonged arrest in a nonpermissive environ-
ment (e.g., under continuous light)

5. Lability of the apparent amplitude of oscillation, with very nearly the same
period at all amplitudes

6. An effect of perturbing stimuli which to a first approximation resembles
parallel displacements of state along one state variable, as though one particularly
labile substance were destroyed by the stimulus.

Here are three quite different classes of mechanism which typically exhibit
such features.

A Single Non-simple Oscillator

There are abstract dynamical models asserting (by analogy to mechanical,
electrical, or chemical kinetic equations; see Box A) that the clock has two or
more state variables that affect each others’ rates of change in such a way that
an oscillation is engendered. So far as Drosophila is concerned, the most successful
of these models to date emerges from the tradition begun by Danziger and
Elmergreen (1956), developed by Strahm (1964) as a masters thesis project
specifically to match Pittendrigh’s Drosophila pseudoobscura data, and further
refined by Pavlidis (1967, 1973). Several specific assumptions of this model have
been found awkward in the decade since its first publications, but the basic ideas
(feedback oscillations around an equilibrium state, lateral displacement of states
during perturbation) remain acceptable (see Boxes A and B). Recovery or decay
of amplitude in Drosophila (as assayed by the resetting curve) proved to be so
slow that two whole days can go by without noticeable (4+10%) change. This
can be accomodated by an ad hoc adjustment of descriptive parameters in such
a model to make its lower amplitude trajectories more nearly closed rings.

But it is not really necessary to abandon the now widespread assumption that
circadian clocks are typically rapidly recovering attractor cycle oscillators. Such
mechanisms may still be compatible with observations 1-6 above if we admit
the possibility of many relatively independent sources of circadian rhythmicity,
for example all the cells of some rhythmic tissue. Phase dispersion may at first
seem an outlandish possibility, scarcely worth checking. But the fact is that we
have precious little reason to assume that the circadian clocks in most organisms
necessarily oscillate as a functional unit, except under conditions of entrainment
by an external light-dark cycle. There exists considerable evidence to the contrary,
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especially in the vertebrates and in plants (see Chapter 19). One need not necessarily
expect strong mutually synchronizing interactions among circadian oscillators
in small, nearly transparent, non-temperature-regulating organisms, since all of
their circadian clocks would normally be independently entrained by the external
cycle of light and dark, hot and cold. In no experimental organism have we yet
resolved even the simple question whether type 0 resetting betrays scattering of
phases within the organism as in Chapter 4 or, as in Chapters 5 and 6, it reflects
a single oscillator’s dynamics.
Thus we come to the second of three classes of mechanism:

Bilateral Symmetry in the Fruitfly

Within the practical limits of resolution in biological phase-resetting experi-
ments, a smooth screw-shaped resetting surface and smooth concentric trajectories
would be expected of a population of three or more simple clocks (Chapter 4).
How many independent attractor cycle oscillators would be required to give this
appearance in the individual organism? Under the rule used in Chapter 4 to pool
the outputs of many oscillators into a single aggregate observation, the answer
is “just two”. Pair-wise redundancy of the circadian mechanism has long been
suspected in bilaterally symmetric organisms and is especially clearly brought out
in the recent experiments of Page et al. (1977) using the cockroach and of Koehler
and Fleissner (1978) using a beetle, and of many workers intrigued by the splitting
of activity rhythms in various vertebrates (see Chapter 19). The left- and right-brain
clocks of Koehler and Fleissners’ beetle apparently function independently.
Similarly, let Drosophila’s two oscillators be loosely enough coupled so that they
show no measureable tendency to synchronize during the two days throughout
which their composite trajectory was monitored. It turns out that an excellent
caricature of the data is given by combining the outputs of only two independent
oscillators, separately reacting to a light pulse in the ways characteristic of the
rapidly attracting oscillators explored in Chapter 6. In fact, I have quantitatively
fitted all my Drosophila data, both for the one-pulse perturbations used in the
pinwheel experiment and for the two-pulse perturbations used in this trajectory
experiment, to a very simple model of this sort. The root-mean-square fit is quite
as good as for any other models thus far contrived, and almost as good as the
reproducibility of phase measurements allows.

Lots of Attractor Cycle Oscillators

Chapter 4 presented the third class of models which mimic the trajectories of
Drosophila’s clock. In these models a population of very weakly interacting or
completely independent oscillators of almost any kind individually pursue a
common cycle, be that an attracting cycle or the unique cycle of a ring device. In
such a population, phase corresponds to the mean phase of the population and
amplitude corresponds to the dispersion of phase within the population. The blue
light trajectories reflect the changing phase and amplitude of the fundamental



F: So What? 203

harmonic of such a population’s aggregate rhythm during the independent changes
of phase of all of its many constituent oscillators.

In the first 16 hours after release from constant light, the clock’s trajectory
winds swiftly inward before repeating along a cycle of whatever amplitude it
finally adopts. This inward transient is hard to account for in terms of simple
clocks. But it could represent the collective behavior of many attractor cycle
oscillators individually winding inward to a standard amplitude. The final closed
cycle could be the collective behavior of those oscillators all moving on the common
cycle, but not exactly synchronously.

Demonstration that the period of the whole organism’s thythm depends on its
amplitude would suffice to exclude this notion of superposition of independent
cellular clocks.

Besides the initial transient, there is another way in which the resetting behavior
of a population of attractor cycle oscillators differs from that of a population of
simple clocks. In the simple-clock populations, the singular stimulus duration
goes to infinity as the initial dispersion of phases goes to zero. In contrast, the
singular stimulus duration in an attractor cycle population goes to a finite limit,
namely to the singular stimulus duration of the single oscillator.

This suggests an experiment, not yet undertaken so far as I know, in which an
organism would be subjected to a particularly severe entraining rhythm prior to
the phase-shifting experiment. The idea here is to impose the strictest attainable
synchrony on whatever oscillators might comprise the individual’s clock. If this
treatment fails to increase the singular duration then it might be supposed that
dispersion of circadian phases within the individual organism plays a negligible
role in determining the phase singularity. This would indicate at least that the
individual circadian oscillator does have a helicoidal resetting surface, unlike a
simple clock. It would remain to be determined whether this clock’s trajectories
approach an attracting cycle slowly enough to explain (without invoking phase
dispersion) the nearly concentric trajectories found above. A more direct resolution
of the question might employ a histological assay in which the pertinent part of
the fly’s brain would be microscopically examined for synchrony of its cellular
secretory rhythms. Ostensibly arrhythmic flies might show distinct rhythmicity
in their randomly phased cells or they might show arrhythmicitiy all the way down
to the cellular level (Figure 21). Suppose internal homogeneity and coherence of
circadian function or nonfunction could be established by some such assay. Then
phase-resetting experiments on whole organisms could be interpreted at face value,

Figure 21. Contrasting two microscopic causes of

macroscopic arrhythmicity: in (a) individual cells

remain normally rhythmic but are randomly phased;

in (b) each cell is arrhythmic. (Experiment suggested
by Bunning, 1959, p. 522.)
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providing much stronger constraints on interpretations of the clock mechanism
than they do at present. But suppose it were found that the cells or tissues of a
single organism can persevere in circadian rhythmicity at arbitrary relative phases.
Then phase singularities and less drastic changes of amplitude would not tell us
much about the individual clock in multicellular organisms or in populations of
single-celled organisms until a way is found to guarantee and monitor coherence
among their many clocks.

At least in the case of certain free-swimming unicellulars, the question lends
itself to resolution by a tidy experiment which seems more immediately feasible
than the above. Owing to the continual sedimentation of cells suspended in water,
it is not unusual for circadian rhythms of motility, density, adhesiveness, etc., to
manifest themselves as circadian variations in the vertical density distribution of
cells. Arrhythmicity induced by diversifying phases within the population could
then be distinguished from arrhythmicity of every cell by removing samples of
liquid from various depths into new bottles. This either will or will not isolate
observably more coherent subpopulations. The same kind of experiment could be
used to determine whether the type O resetting observed in such organisms (e.g.,
Gonyaulax) represents type 0 resetting of each cell or only a splitting into advanced
and delayed subpopulations.

All such experiments presuppose that the cells’ clocks do not influence each
other. Such interactions have been looked for and none have been found (see
Chapter 19).

G: In Conclusion

No one expected the phenomena demonstrated in Drosophila in this chapter,
least of all myself. Yet in retrospect they can be derived with almost no specific
assumptions on oscillator mechanisms, without even invoking interdependence
among the individually competent clocks. Going still further, Aldridge and Pavlidis
(1976) and Aldridge and Pye (1979a,b) point out that incoherence can last a long
time even with strong coupling among multitudes of clocks.

The moral seems to be that it is of the greatest importance to check for coherence
(e.g., among cells) in the circadian rhythms of multicellular organisms. This
remains the crux of the dilemma stressed by Wilkins (1965):

Unfortunately, nothing is known about the amplitude of the basic oscillating
system or how it is related to the amplitude of the rhythms in the physiological
or biochemical process used to monitor the behavior of the basic system.
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Chapter 4 provides a preliminary look at the phenomena to which we now
turn: the phenomena typical of aggregates of oscillators. Just as the oscillator
populations of physics comprise a very special case with very special properties
(associated with linearity, energy conservation, etc.), so did the simple clocks of
Chapter 4 comprise another very special case with very special properties (asso-
ciated with the one-dimensionality of their state space). My objective in this
chapter is to organize under the same four headings as in Chapter 4 some discus-
sions and examples of what I take to be the characteristic behavior of attractor
cycle oscillators in populations and communities. Such oscillators can have any
number (> 2) of variables mutually determining their rates of change in nonlinear
ways. Linear oscillators, conservative oscillators, and simple clocks are special
limiting cases of the attractor cycle oscillators considered in this chapter.

The chapter is organized in four sections:

A. Collective rhythmicity in a population without interactions among con-
stituent oscillators. Mainly about phase resetting by a stimulus.

B. Collective rhythmicity in a community with completely promiscuous inter-
actions (all individuals influenced by the aggregate rhythmicity of the population).
Mainly about mutual entrainment and mutual repulsion.

C. Spatially distributed oscillators without interactions. Mainly about pat-
terns of phase in space.
D. Oscillators interacting locally in space. Mainly about smoothing of con-

centration gradients that would become discontinuities were neighbors not
coupled.

A: Collective Rhythmicity in a Population
of Independent Oscillators: How Many Oscillators?

As in the case of simple-clock populations, we can ask of a population of
attractor cycle oscillators whether there are characteristic features of the collective
phase response by which to distinguish the type and number of independent
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Figure I.  Ten equispaced contours of new phase on

the (old phase, stimulus magnitude) plane, calculated

for a pair of independent attractor cycle oscillators

similar to Example 1 of Chapter 6. The two are

initially 0.3 cycle apart. At the dashed line, new
phase shifts by one-half cycle.

oscillators involved. For this purpose I adopt the same measure of collective
rhythmicity as before: the phase and amplitude of the fundamental harmonic of
the aggregate rhythm. This aggregate rhythm is simply the sum of the rhythms
f(¢) of N identical oscillators at phases ¢; on the attracting cycle. The scalar
function f of phase is arbitrary but might be one of the chemical concentrations
involved in the oscillation.

To recapitulate, we found in Chapter 3 that in a single simple clock new phase
depends on old phase and stimulus magnitude in an especially simple way: All
the contour lines of uniform new phase are parallel translations of a single mono-
tone curve. The behavior of a pair of simple clocks is characterized by a U-shaped
locus along which new phase jumps one-half cycle. A population of three or more
simple clocks dissembles as a single pendulum-like oscillator in that its phase-
resetting pattern is organized around a singularity and its amplitude is as labile
as its phase.

A single attractor-cycle oscillator also typically exhibits one or more phase sin-
gularities, but its amplitude recovers promptly to normal. Now a pair of such oscil-
lators, like a pair of simple clocks, turns out to exhibit a U-shaped locus of (old
phase, stimulus magnitude) combinations along which new phase shifts abruptly
(if the two clocks contribute exactly equally) by one-half cycle. But in this case the
locus does not go to infinity along the magnitude axis: It terminates at two half-
singularities as in Figure 1. The reason for this odd behavior is understandable.
At any time when the two oscillators straddle ¢*, there is a stimulus magnitude,
roughly M*, that sets them to opposite phases (Figure 2). Here collective ampli-

Figure 2. Figure 13 of Chapter 5 is repeated
with emphasis on resetting from two old
phases ¢ apart, straddling ¢*. New phase has
winding number W = 1 around path ABCDA.
The phase difference along BA at M =0 is ¢.
At sufficiently large M, along CBAD, it is close
to 1. If there are no discontinuities along this
path then the phase difference must pass
through 4 at some smaller M.
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tude 1s 0 and a slight change of stimulus magnitude makes it positive or negative
(ie, positive at either of two opposite phases). At either extremity of this range,
one oscillator can be placed on its singularity by M = M*. A suitable slight change
of ¢ or M will change that oscillator’s phase to any desired phase, as we saw in
Chapter 6, while negligibly altering the phase response of the other oscillator.
Now suppose that both oscillators recover to their attracting cycles, and suppose
that we continue to employ the collective phase measure introduced in Chapter 4.
Then the phase of the pair ranges through half a cycle in the near neighborhood
of each of these two points in the stimulus plane.

A more stringent test of the two-clock interpretation at the end of Chapter 7
might make use of Figure 1, in which the split singularity presents the signature
of a pair of independent oscillators. To test for this experimentally, the first thing
to do is to ensure that the putative two oscillators are well separated in phase. A
way to arrange this reliably in many replicate organisms remains to be contrived.

Three or more independent attractor cycle oscillators behave pretty much like
one, except that unlike the single oscillator, a population’s collective amplitude
does not recover from adjustment of the phase distribution. Also its apparent M*
is less than the single oscillator’s by an amount that increases with the initial
variance of phases.

As noted on page 104, the finer details of resetting behavior, if they can be re-
solved experimentally, do reveal the number of independent oscillators collectively
observed. However, if N > 3, such details are easily obscured, especially in data
collected from populations of individual animals or plants.

B: Collective Rhythmicity in a Community
of Attractor Cycle Oscillators

From populations of independent oscillators we now turn to consider com-
munities of (interacting) oscillators. Boxes A and B provide a compact literature
survey of recent physiology in which mutual entrainment between two coupled
attractor cycle oscillators is prominent.

We now turn directly to mutual entrainment among many clocks. This part
of the story is not much altered by exchanging the community of simple clocks
considered in Chapter 4 for the community of attractor cycle oscillators considered
here. However, owing to the additional degrees of freedom of the attractor cycle
oscillator, there do exist additional instabilities through which such a population
can escape the mutually synchronized state to other modes of organization in
time. So far as I am aware these have not been systematically explored.

Oscillators of Identical Period

A particularly tidy mathematical study of this sort was carried through by
Zwanzig (1976) using an idealization of a mechanical clock: a piece-wise linear
attractor cycle oscillator (Minorsky, 1962, Figure 26.2). He specified the conditions
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under which mutual synchronization is stable, at least for the case of identical
oscillators. Grattarola and Torre (1977) achieved the same for populations of
identical van der Pol oscillators, suitably coupled. Neu (1979¢) did it for chemical
oscillators with a circular limit cycle.

[ think the restriction to populations of identical oscillators is probably a serious
one. At least in simple clock communities (Winfree, 1967a), mutual entrainment is
a threshold phenomenon requiring contributions from a number of oscillators
proportional to the range of native periods they span. But in a population of
identical noise-free oscillators, that range is zero.

A Finite Range of Native Periods

Envision a two-variable dynamic flow with polar symmetry. As in Section A
of Chapter 6, suppose that phase increases at a uniform rate dependent only on
the amplitude and that amplitude also changes at a rate dependent only on the
amplitude. This is the /-w model exploited by Kopell and Howard (1973b), and
the A-B model of Ortoleva and Ross (1974). In the limit of very rapid regulation
of amplitude to the attracting cycle, this is almost a simple clock (see Box A of
Chapter 6). If the rate of change of phase is now made to depend instant by instant
upon the aggregate of all the oscillators’ outputs, then we have a close approxi-
mation to the situation encountered in Chapter 4. The main result there was that,
in a population of somewhat dissimilar native periods, interaction might encourage
or discourage synchrony, depending on the magnitudes and phase relations of an
influence and a sensitivity to that influence within the model oscillator. In the case
of encouragement, synchrony arises by a collective process, above a critical density.
I expect these features to carry over to populations of attractor cycle oscillators.
Kuramoto (1975) successfully dealt with this model, in the special case of inter-
actions similar to molecular diffusion between chemical oscillators. More recently
Grasman and Jansen (1979) generalized the results presented in Chapter 4 for
the case of mutually-coupled relaxation oscillators with at least two degrees of
freedom.

Systematic Reorganization of Amplitudes

Unlike simple clocks, any attractor cycle oscillator is able to deviate from the
common cycle during rhythmic perturbation. In the simplest cases each oscillator
adjusts not only its phase but also its amplitude, which depends on the relative
phase while entrained. This not only alters each oscillator’s contribution to the
aggregate rhythm but also alters its mode of response to further rhythmic influence
and, typically, its period too. One consequence is that mutual synchronization may
be stable, but only after it is initiated: If mutual coupling fails briefly, mutual
synchronization is lost and cannot again arise spontaneously from the disorganized
state (Winfree, 1967a, and unpublished computer simulation 1978-1979 circulated
privately). Another consequence of labile amplitude is that chemical oscillators,
mutually synchronized by free exchange of reactants through molecular diffusion,
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are susceptible to instabilities of a wave-like nature in space (Nicolis and Prigogine,
1977; Ashkenazi and Othmer, 1978). Through such diffusive instabilities, spatial
gradients of phase or even discontinuities akin to shock waves can arise (Howard
and Kopell, 1974, 1977; Neu, 1979a).

Prodded by instructive conversations with J. Mittenthal in 1969, I ran extensive
computer simulations of a population of van der Pol oscillators in order to explore
the range of validity of the simple clock approximation. Except in the limit of very
strong amplitude regulation (large u), new modes of behavior were readily de-
monstrable, all of which involve systematic dependence of the individual oscil-
lator’s entrained amplitude on its native period. These phenomena included
splitting of the population into two oppositely phased parts and inability of the
initially randomly phased population to approach mutual synchrony even though
synchrony was stable once achieved (by entraining the whole population to an
external rhythm). Informal circulation of these results, and discussions with
Mittenthal and Pavlidis, led to much mathematical analysis but no broad gen-
eralizations. You may wish to consult more recent analyses of special cases by
Pavlidis (1969, 1973), Linkens (1974), Aizawa (1976), and Aldridge (1976, p. 77).
Aldridge and Pye (1979a,b) point out that if the oscillators’ limit cycle and steady-
state both attract, then perturbations may have lasting effects on collective ampli-
tude even when oscillators are strongly coupled: by bumping some of them into
the steady-state’s attractor basin.

Hysteresis

Van der Pol oscillators are typical of attractor cycle devices in their well-known
habit of entraining to rhythmic input in more than one stable way. These alterna-
tives give rise to hysteresis if the driving frequency is varied up and down. They
also suggest that mutual synchronization in a population may admit almost as
many waveforms as there are oscillators to choose between alternative modes of
entrainment. Viewed in the aggregate, a population of many such oscillators woutd
then appear to have a continuum of neutrally stable waveforms and amplitudes,
rather like a Hamiltonian oscillator. We saw such behavior in populations of
coupled simple clocks in Chapter 4. And we saw it in the fruitfly’s circadian rhythm,
which might reasonably be suspected of a composite origin in many imperfectly
synchronized cells.

The Chemistry of Coupling

At a less abstract level of analysis, one would like to know what mediates the
interactions between biological oscillators of each kind.

The Physarum plasmodium, in which myriad nuclei synchronously fission,
seems to represent a case of very strong interaction (see Chapter 22, Section B).
The chemical nature of the coupling factor remains to be discovered. Nor does
anyone know what substances synchronize mitotic timing in yeast cells dividing
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in suspension culture (Halvorson et al., 1971) or cultured mammalian cells (Dewey
et al., 1973).

Turning to shorter period regulatory oscillations, Gooch and Packer (1971)
impute to the ATP-ADP ratio a dominant role in mutual synchronization of
respiratory oscillators in suspensions of mitochrondria. Aldridge and Pavlidis
(1976) and Aldridge (1976) consider certain oddities in the reaction of a well-
stirred suspension of oscillating yeast cells to chemical perturbation, from which
they reason that the cells are metabolically coupled in a phase-dependent way.
The troublesome challenge is to guess what molecular messenger couples the
cellular oscillators. None of the presently envisioned candidates satisfy all the
presently envisioned requirements (see Chapter 12). The adenyl cyclase oscillation
in social amoebae presents a well-studied example of attractor cycle oscillators
synchronizing through chemical coupling. The chemical is cAMP. Gerisch et al.
(1975) and Malchow et al. (1978) contrived ways to perturb this oscillation in
suspensions of single cells, with much promise for combined experimental and
theoretical investigation of mutual synchronization.

In the case of circadian rhythms, not much is known about the channels of
communication through which the various organs stay synchronized during pro-
longed residence in an arrhythmic environment (Moore-Ede et al., 1976, Sulzman
et al.,, 1978). It might be noted that sometimes they don’t stay synchronized.

C: Spatially Distributed Independent Oscillators
Oscillators Arranged in One Dimension Without Interactions

Aslongas they don’t interact and we leave to them to their autonomous kinetics,
attractor cycle oscillators run near a fixed cycle almost like simple clocks. Only
their reaction to perturbation reveals their lack of constraint to the one-dimen-
sional world of simple clocks. This section examines the spatial consequences of
a rephasing perturbation, building on the examples used in Section C of Chapter 4,
and leading to a reconsideration of wave-like patterns in space.

Reversing a Pseudowave

The first principle at work here is, again, the principle of a “pseudowave”. You
saw one of these the last time you noticed the chain of flashing strobe lamps at
the end of an airport runway. The lamps flash in quick succession, giving the
appearance of a ball of fire moving toward the runway threshold. This is not a
wave in the usual sense: It is not a propagated disturbance. It is just a spatial
gradient in the timing of strictly local oscillators. Its speed is simply — 1/(d¢/dz)z,
7 being the period. This ball of fire can “move” at any speed, even faster than the
speed of light if the phase gradient is shallow enough. Moreover it takes no notice
of whatever ostensible barrier might be erected across its path. That is why in my
first publication on chemical oscillators and their wave behavior, I distinguished
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Figure 3. A three-dimensional diagram shows how the ¢’

vs. ¢ resetting curve revises a phase gradient in space (x).

The resetting stimulus reverses the gradient between points
x=gand x =b.

this case as a pseudowave (Winfree, 1972c; see also Beck and Varadi, 1971;
Thoenes, 1973; Varadi and Beck, 1975). In the slightly more general context of
spatially graded period (from which emerges a changing gradient of phase), Kopell
and Howard (1973a) called it a “kinematic” wave. They demonstrated the irrele-
vance of an impermeable barrier inserted after the gradient was established.!

Now what would happen if a one-dimensional array of independent oscillators,
spatially graded in phase, were exposed to a phase-shifting disturbance, spatially
graded in magnitude? Consider, for example, exposing a dish of oscillating malonic
acid reagent to a flash of ultraviolet light. Vavilin et al. (1968) and Busse and Hess
(1973) showed that a phase shift results, though they did not systematically mea-
sure its dependence on phase and the energy of the flash. But let us suppose be-
havior typical of an attractor cycle oscillator. A sufficiently brief exposure would
induce only slight phase shifts and would therefore leave the geometry of pre-
existing pseudowaves qualitatively unaltered. Local phase gradients would be
changed in proportion to the ratio d¢'/d¢ (from d¢p/dx to d¢'/dx) resulting in a
proportional change of pseudowave speed in that region. The direction of propa-
gation would remain unaffected.

The story would end here were we still thinking in terms of ring devices, whose
response to a temporary disturbance consists entirely of a phase-dependent change
of rate along a fixed cycle. But in this chapter we deal in attractor cycle oscillators.
A somewhat larger perturbation can therefore elicit a resetting curve with a region
of negative slope d¢’/d¢ < 0. This inverts the local phase gradient in space and so
turns pseudowave velocity backward (Figure 3). (Note also that at the boundaries
of this region, where d¢’'/d¢ = 0, there d¢’/dx = 0 so pseudowave speed is infinite,
not 0). Figure 3 shows the old and new phases at time ¢ = 0 at each point x. We
transfer the new ¢'(x) curve from Figure 3 to Figure 4 now (dropping the prime)
and watch as ¢ continues to increase everywhere. The pseudowave can be visu-
alized by considering how phase changes everywhere as ¢ increases from 0: Every

' Their excellent paper in Science was delayed in publication by the referee’s {my) insistence on that
experiment; meanwhile Thoenes’s (1973) almost identical paper appeared in Nature, but without the
critical experiment. The same experiment, in this case proving that electrical wave trains in the brain
are not pseudowaves, was performed by Petsche et al. (1970) and Petsche and Rappelsberger (1970).



214 8. Populations of Attractor Cycle Oscillators

Figure 4. The revised phase pattern ¢(x) in Figure 3 changes
in time as all phases increase together. Pseudowaves appear to
emerge from point x = ¢ and vanish at x = b.

¢(x) increases in register. As the ¢(x) curve moves up the ¢ axis its points of inter-
section with any line parallel to the x axis are found to move. The points at which
¢ = 0 might be taken as wave front markers. At unit intervals of time two pseudo-
waves now emerge from point a, and at a later moment they annihilate each
other at point b.

Preliminary to incorporating nearest neighbor interactions into this picture,
we should note that in the preceding figure we made use of a map from the line
segment ' to the phase circle S* (rolled out along linear coordinate axes). It will
be convenient to draw pictures of the line segment mapped into the state space of
the oscillator. Let’s now put that map into context by changing the target space
to RP, the D-dimensional space of chemical concentrations (or whatever other
variables might define the oscillators’ state). Such a map can be visualized as an
embedding of I' in RP. Specifically [' maps along the attracting cycle in R in
Figure 5 as specified by ¢(x). Figure 6 shows this map transformed to ¢'(x) by a
stimulus. The ostensible source point a and collision point b are indicated.

Rhythmic Fungi Again

For more practice in thinking geometrically, reconsider the case of Nectria, the
fungus that makes spores only in periodic patterns of ring or spiral topology.
When we first considered these patterns it sufficed to think of phase maps from the
frontier ring to the ring of phases of a simple clock. The moving frontier left rhyth-
mic zonations in its wake. But how are we to think of the origin of pattern in a
germinating spore or very tiny mycelium? This question will be examined more
elaborately below in context of two-dimensional media, but we can make a begin-
ning here while thinking only about the one-dimensional outer border, the frontier
of the mycelium. Because it has the connectivity of a ring, its image in composition
space is also a ring. Recognizing that the ungerminated spore is dormant, we
might reasonably suppose that the oscillation encountered in the large, mature
mycelium began from some uniform state in the germinating spore or in the very
small mycelium. Thus the frontier’s image is initially very small, lying quite close
to the pregermination state. Suppose that state is the repelling equilibrium state
of whatever reaction engenders rhythmicity later on. The equilibrium lies within
the convergence of isochron surfaces (not shown) in composition space. In fact the
equilibrium state is the unique convergence point of the isochrons if we suppose
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for a moment that the oscillation is engendered by interaction between only two
variables, so that the composition space is only two-dimensional. In this simpli-
fication it is easier to see that the frontier ring necessarily has some integer winding
number around the ring of phases represented by the converging isochrons.
Each isochron indicates the latent phase of the oscillation prior to realization of its
destiny on the attracting cycle. So the winding number realized here and now fore-
tells exactly the winding number and therefore the pattern type of the mature
mycelium. In this two-dimensional simplification the unperturbed trajectories of
Figure 5 diverge from the repelling equilibrium, so that every oscillator on the
frontier is independently carried out toward the attracting cycle. [ In D-dimensional
space, they would diverge from the entire (D — 2)-dimensional phaseless set.] The
frontier image expands onto the attracting cycle without ever changing its winding
number (Figure 7). The winding number could only increase or decrease through
a stage in which some part of the frontier’s image crosses over the convergence
of isochrons. But the local reaction flow is away from that state.

The crucial point of this story is that because the initial conditions are arbitrarily
close to equilibrium, their winding number is determined by initially arbitrarily
minute fluctuations about that equilibrium composition (Figure 8). In that respect
this diagram rationalizes the observed polymorphism of pattern in mycelia grown
under seemingly identical conditions from genetically identical single spores
(Winfree, 1970a and 1973d; and Chapter 18).

Figure 5. The x axis of Figure 3 before perturbation is
mapped onto the attracting cycle of the local oscillation.

Figure 6. Figure 5 is revised in correspondence with the

resetting curve diagrammed in Figure 3. Note that after

perturbation point x = g leads the image around the cycle,
while point x = b is the last to experience each event.



216 8. Populations of Attractor Cycle Oscillators

Figure 7. A ring of 15 cells, initially near equilibrium and

encircling it, diverge toward the attracting cycle in Figures 5

and 6. The winding number of latent phase is unchanged
because the oscillators are independent.
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Figure 8. Situations analogous to Figure 7 are depicted at an carly moment when all cells are near to

equilibrium. A ring of cells (with north, cast, south, and west points indicated) has winding number

W =0, 1, or —2 about the phascless manifold (here shown simply as an cquilibrium point). At the

right we sec the rhythmic pattern that will form on an expanding mycelium whose frontier has cach
winding number shown.

Oscillators Distributed Across Two-Dimensional Space
Without Interaction

As in the one-dimensional case, the new features introduced by substituting
attractor cycle kinetics for simple-clock kinetics are (1) the attractor cycle os-
cillator’s different pattern of rephasing by a stimulus and (2) the existence of a
phaseless locus in the attractor cycle oscillator’s state space, where latent phase
(a function of state) can suffer a discontinuity while the state itself still changes
continuously.
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The new feature introduced by substituting two dimensions of physical space
for the single dimension to which we previously restricted our attentions is the
possibility of applying a stimulus gradient transverse to a preexisting phase gra-
dient. This is the format of the pinwheel experiment, by which the time crystal’s
helicoid and singularity were discovered in circadian clocks, in oscillating glycolysis,
and in transpiration in plants.

My purposes for this section are to describe the pinwheel experiment in terms
of a map from two-dimensional physical space into state space and to exhibit a
similar mapping derived from our consideration of Nectria’s growth rhythm.

Pinwheel Experiments: Two-Dimensional Arrays
of Independent Attractor Cycle Oscillators

Suppose an extended medium such as a two-dimensional rectangle in which
every area element is oscillating on a common attracting cycle. For example,
imagine a dish of malonic acid oscillator, as in Busse and Hess’ (1973) demon-
stration of local phase shifting by a focused beam of ultraviolet light. Let there be
an east-west phase gradient such as might have been established by the earlier
passage of a solitary wave of excitation from east to west. As a geometric conve-
nience, roll up the rectangle to superimpose any repeats of the full cycle of phase
along the east-west gradient. We now have a cylindrical piece of oscillating medium
with a cycle of phase around its circumference as shown in Figure 9. This is only a
pseudowave. It sweeps around the cylinder as indicated by the arrow. Now suppose
we apply a stimulus graded in magnitude M along the vertical axis, transverse to
the circular phase axis. At the bottom of the cylinder let M = 0. At the top let M
be “big” by the criterion that type 0 resetting is evoked. Consider the fate of a ring-
shaped element R of the cylinder, shown in state space in Figure 10. All points on
R receive the same stimulus, but these points are at all of the old phases ¢ on the
attracting cycle. R initially has winding number W = 1 around the circle of latent
phases because the attracting cycle does and R maps directly onto the attracting
cycle. If the stimulus acts in a way qualitatively resembling the models of Chapter 6,
then R is moved off the cycle during the stimulus. By the time the stimulus ends,
R’s image in state space may or may not still have winding number W = 1 around

Figure 9. Phase has winding number W =1 around a

cylinder of oscillating medium. It is exposed to a stimulus

for a longer time at higher altitudes, resulting in winding
number W = 0 along ring R.
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Figure 10.  After the stimulus of Figure 9 this
cylinder is mapped into a three-variable state
space. Isochrons of the dynamical flow are
schematically illustrated by the “paddlewheel”.
The attracting cycle is the heavier ring at the
bottom. Before the stimulus the whole cylinder
was on the attracting cycle (similar to Figure 8
of Chapter 6).

the convergence of isochrons. For big enough M, it doesn’t. It can have any other
interger winding number in general, or none at all in rare cases of discontinuity or
degeneracy. But let’s suppose W =0 at big M.

Figure 10 shows the terminal states reached by ring R for bigger and bigger M.
It is a mapping of the (¢, M) cylinder into state space. The convergence of the iso-
chrons necessarily lies within the stippled area. We know this because between
the ring M = 0 and the ring M = big, W has changed from 1 to 0. More formally,
if both boundaries are traversed in one sweep along path ABCDA in Figure 11(a),
then the winding number of new phase along the composite border of the stippled
area is 1. That means that a full cycle of isochrons enter the stippled area but do not
emerge from it. It also means that the stippled area cannot be mapped continuously
onto the phase circle. There must be an internal discontinuity. That is where the
missing isochrons vanish. The tidiest way to manage it would be a single point
where they all converge: a phase singularity. The models of Chapter 6 do it that
way. Figure 11(b) shows the isochrons in the shaded area, converging to an internal
phase singularity in agreement with Figure 10. The shaded area being an image
of the cylinder of Figure 9, these isochrons can be drawn on the cylinder. Slitting
the cylinder along vertical element and laying it flat, we have the stimulus
plane of the pinwheel experiment [ Figure 11(c)]. The isochrons may be regarded
as level contours of new phase ¢’ plotted above the (¢, M) plane. They therefore
describe a screw surface winding up around the critical stimulus (¢*, M*) as
observed in the several biological oscillators tediously overworked in this volume.

The isochrons may also be regarded as the successive positions of a wave front,
the loci of ¢’ = 0 on the cylinder. The wave front circulates around the base of the
cylinder, on ring M = 0, at the same time as it rotates, pivoting about (¢*, M*).
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) Sl !5
Figure 11. (a) The conical image of the cylinder ‘-:__ ”
after a graded stimulus (from Figure 10). Locus e
ab-dc is the cylinder element abdc in Figure 9. (b)

(b) Part (a) is redrawn to show intersection loci of
the cone with the isochrons and their phaseless
manifold. (c) Parts (a) and (b) unrolled and straight-
ened into the rectangular format of ¢ x M (cf. Box B
and Figure 13 of Chapter 2, Figure 13 of Chapter 4,
Figure 13 of Chapter 5, Figure 6 of Chapter 6,
Figure 18 of Chapter 7, Figure 2 of this chapter and
Box B of Chapter 12).

This (¢*, M*) remains stationary once all oscillators have independently re-
covered nearly to the common attracting cycle, because then phase advances by
the same increment everywhere in each increment of time.

We've been through this argument before, perhaps too often. In each previous
context the object of interest was the single oscillator. Here it is a population of
oscillators, specifically a two-dimensional continuum. The argument is the same
because the area elements of this continuum are here assumed not to interact.

This idealization has sometimes been adopted as a useful approximation to the
mechanism of periodic patterning in two-dimensional films of malonic acid
reagent (Chapter 13). Thoenes (1973), Smoes and Dreitlein (1973), and Smoes
(1976) have even gone so far as to suggest that all the wave phenomena, spirals
included, can be so interpreted. According to this interpretation every volume
element is at some phase on the attracting cycle. The two-dimensional wave
pattern is then a contour map showing where phase =0 at the moment. On
account of the phase singularity implicit in every rotating wave, this description
would be tenable only if it were acceptable to suppose (as Smoes’s model does)
that arbitrarily small adjacent volume elements can remain at finitely different
phases i.e., that the state variables of the oscillator do not diffuse. But they do, and
in fact diffusion of HBrO, and Br ™~ is the driving principle behind one kind of wave
propagation in this medium (Field and Noyes, 1972; Murray, 1976a; Tyson, 1976).
These diffusion-coupled waves are typically a few millimeters apart, or less, and
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travel relatively slowly, in the order of several millimeters per minute. These
“trigger waves”, first described by Zaikin and Zhabotinsky (1970), are probably
what Busse (1969) and Herschkowitz-Kaufman (1970) mistook for stationary
“dissipative structures”, and what Beck and Varadi (1971), Varadi and Beck (1975),
and Beck, Varadi, and Hauck (1976) mistook (I suspect) for pseudowaves or
kinematic waves. In contrast, the waves observed by Zhabotinsky (1968), by
Thoenes (1973), and by Kopell and Howard (1973a) were spaced apart by centi-
meters or more, and moved at speeds in the order of meters per minute. I think
these probably were the pseudowaves or kinematic waves expected theoretically
by Beck and Varadi (1971, 1972), Winfree (1972¢), Kopell and Howard (1973a),
and Thoenes (1973) i.e.,, phase gradients in a spatially distributed oscillating
medium. So far they have been examined in detail only in one-dimensional context.
See Box C of Chapter 13.

The Ascomycete Frontier as a Two-Dimensional Population
of Independent Attractor Cycle Oscillators

We turn back to the fungus Nectria for an example of attractor cycle oscillators
arranged in a two-dimensional spatial continuum. In Chapter 4, Section C the
colony’s frontier was idealized as a ring of ring devices. You may have wondered
at the time what is to be done about the interior of the colony which, after all,
constitutes both its overwhelming bulk and the whole of the area in which pattern-
ing is clearly visible. We mapped the frontier continuously onto the phase circle,
confident that this was only an act of selective attention, that the frontier map was
only a restricted part of the whole disk’s continuous map onto the phase circle.

1. A Point of Ambiguous Phase. But a paradox lurked in the circumstance that
Nectria makes not only ring-shaped formations but, alternatively, spirals. The
frontier map for spiral morphogenesis necessarily has nonzero winding number.
It is impossible to continuously map a disk onto the circle in such a way that its
boundary has nonzero winding number.

Must the map then be literally discontinuous? Very steep concentration gra-
dients pose no challenge to the imagination but an actual discontinuity would be
hard to accept in a fine-meshed mycelium of richly interconnected hyphae.
Moreover, there is typically no hint of phase discontinuity at any time during the
mycelium’s growth, as recorded in the visible zonations left by the moving frontier.
Is this discontinuity always kept away from the frontier? Even in the tiny young
mycelium? How could a tiny web of cytoplasm, less than a millimeter across,
harbor the fierce discontinuity of phase implicit in spiral zonations?

Rather than answer such riddles, we could abandon the single-variable simple-
clock model for a more complicated, but more realistic vision of oscillator dy-
namics: an attracting cycle in a state space of two or more variables, as in any of
the last decade’s reviews of biochemical oscillations (Higgins, 1967; Hess and
Boiteux, 1971; Nicolis and Portnow, 1973; Goldbeter and Caplan, 1976). In such
reviews, there is not one ring device to be found. In a previous section of this
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chapter our map of the mycelium’s frontier onto the phase ring was accordingly
revised, becoming a map into a space of at least two dimensions in which phase
is a function of state as in Chapter 6. We look to this state space of at least two
dimensions for the state of each tiny patch of tissue, small enough to be considered
homogeneous, but large enough to have a steady average composition.

2. Mapping R?> —» R®. Now it is time to quit restricting our attention to the
one-dimensional frontier. Figure 12 depicts a snapshot of the whole two-dimen-
sional mycelial disk mapped into a three-variable state space. I use three dimensions
instead of two because three is the most we can easily visualize, and restriction to
two implicitly assumes some rather special features that the fungus has not yet
exhibited. I call it a “snapshot” because Figure 12 only depicts each cell at its
instantaneous combination of chemical concentrations, and those concentrations
are all thought to be changing rhythmically in time.

The heavy ring represents the conjectured attracting cycle, and the finer curves
show how concentrations tend to that cycle “in the limit” of long enough time.

The chief assumption implicit in this picture is that concentrations vary
smoothly in space, i.c., nearby hyphae map as neighbors in state space. The fron-
tier maps wholly onto the attracting cycle. If its winding number is 0, then the
whole disk can map wholly onto the cycle. But Figure 12 shows a case with winding
number W # 0. Where is the continuity problem? Instead of a discontinuity
of state and the implicit infinite concentration gradient somewhere inside the
mycelium as required by the simple-clock conjecture, we have here a perfectly
smooth variation of concentrations across the mycelium.

If we insist on assigning a phase to each point in the mycelium, there still has
to be a phase singularity. But that no longer forces us to accept a singularity in the
biochemical state of the mycelium unless we insist on adherence to the attracting
cycle everywhere. The mapping to state space can be, and presumably is, perfectly
smooth. It is the further map from state space to the ring of latent phase values that
harbors the singularity, as explained in Chapter 6. And that poses no paradox:
There is no reason to expect an arbitrarily chosen function of state (“latent phase”)
to be free of pathological behavior. The fine trajectories of Figures 5, 6, 7, and 12
show how most sets of initial conditions lead onto the attracting cycle. The cycle’s

Figure 12.  Animage of a disk of oscillating medium
in state space, supposing its border has winding
number W = 1 around an attracting cycle.
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attractor basin is necessarily shaped like a doughnut surrounding the cycle. Even
if the doughnut is puffed up to enclose as much of composition space as possible,
a part of its boundary (what bounded the inner hole) must thread the cycle. In
the less graphic terms of topology: Any cap bounded only by a cycle must contain
at least one point (an initial state) from which trajectories never return to the cycle.
Guckenheimer (1975) further showed that trajectories from nearby initial states
reach the attracting cycle at every phase. This point is the phase singularity first
intimated by the simple-clock model of Chapter 4. This point is a part of the
“phaseless manifold”, the locus of at least D — 2 dimensions from which you
cannot get to the attracting cycle by spontaneous processes without help from
outside. In Figure 12, D =3, so the phaseless manifold is one-dimensional.
Specifically, it consists of the two trajectories labeled with an asterisk.

3. The Germinating Spore. A mycelium with nonzero winding number con-
stitutes such a cap, so somewhere inside it is a patch of tissue with ambiguous or
indeterminate phase. Following this line of argument back in time to the very
young and very small mycelium, scarcely more than a germinating spore, we infer
that the single spore from which emerged a spirally-patterned mycelium must
have been in or very close to the phaseless manifold.

In principle a spore could contain any concentrations of the relevant substances
and still not oscillate until a parameter change during germination disinhibits
their chemical interactions. In such a case, the initial concentrations would deter-
mine the latent phase of the whole mycelium, which would accordingly go onto the
attracting cycle homogeneously. A homogeneously oscillating mycelium makes
concentric rings. This is what most rhythmic ascomycetes do.

Therefore any fungus that spontaneously makes spirals must have had its
initial conditions near the phaseless manifold. That means little in terms of concrete
biochemistry until the oscillating mechanism is chemically isolated, but it does
predict a somatic polymorphism, as noted in the previous section and as observed
in Nectria.

So if spiral morphogenesis is observed, then genetically identical spores,
cultivated under identical conditions, must be expected to develop into mycelia
bearing rings, spirals of left and right handedness, double spirals, etc. This is just
what happens in Nectria. The other two ascomycetes known to make spirals
(Penicillium diversum, Chaetomium robusta) also make rings, but further details
of their behavior have not been reported.

Note that the pattern originates in every case from the relatively homogeneous
initial conditions required by our assumption of smoothness of concentrations in
a tiny mycelium. Such homogeneity in a simple-clock model would imply homo-
geneity of phase and therefore concentric circular zonations. But the phaseless
manifold of the attractor cycle model gives us the possibility of a phase singularity
without the biologically impossible state singularity. The state is initially relatively
homogeneous, but the divergence of trajectories from the phaseless manifold gives
us a deviation-amplifying device that soon puts points of the frontier at widely
different states on the cycle.
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4. Consequences. Three predictions follow from the foregoing (see Box C):

1. 1If a fungus makes patterns of only one winding number, then that winding
number must be zero and the pattern must consist of equispaced disjoint rings.
For example, there should be no mutant that makes only clockwise two-armed
spirals.

2. A fungus with spiral polymorphism should go on to make only rings if
shocked during germination. (A shock is anything that disturbs the oscillator’s
mechanism by the criterion that it inflects a phase shift on a rhythmic mycelium).

3. A fungus which mainly exhibits rings should sometimes convert to spiral
morphogenesis following a suitably timed shock.

3. Potential Difficulties. There exist alternatives to the central conjecture elab-
orated above that each tiny patch of mycelium harbors a continuous attractor
cycle “clock” which functions essentially independently in each patch and whose
state varies continuously across the organism.

For example, more might be made of the inevitable interactions between
nearby patches of tissue: The model elaborated above achieves its seductive
simplicity by ignoring molecular diffusion and cytoplasmic mixing. Particularly
in very young and small mycelia, spatial coupling of oscillators could dominate the
launching of morphogenesis into concentric ring patterns. In the next section of
this chapter, a beginning is made toward incorporating such interactions.

What about the many other internally rhythmic ascomycetes that do not
make spiral zones, but only concentric rings? Why the anomalous ability of
Nectria, Penicillium, and Chaetomium to make rings and spirals? Suggestions:

1. Conceivably the others, if they harbor biochemical oscillators at all, have
“simple clocks”. The simple clock can only have winding number W = 0 around
a very tiny mycelium, and this can only initiate morphogenesis in rings.

2. The critical feature of the attractor cycle model for spiral polymorphism
is that the steady-state changes from attractor (in spores and old, crowded, or
damaged hyphae) to a repellor (in rapidly growing hyphae) while staying fixed
at the same concentrations. For if it moved in concentration space, then all the
cells previously attracted would soon find themselves to one side of the repellor
and go into oscillation synchronously. Nearly synchronous oscillation means
W = 0. It might seem a bit too ad hoc to propose a model in which the steady-state
changes type, but does not move, while the metabolic rate increases. But this
idiosyncrasy is strictly necessary to account for spiral polymorphism in terms of
an oscillator model. It might thus account for the phylogenetic rarity of the
phenomenon.

Neurospora crassa (band, csp-1), which makes only rings spontaneously,
exhibits type O resetting, so (1) is excluded for Neurospora. Dharmananda and
Feldman (1979, Figure 2) report that the banding rhythm usually starts up from
germination within a predictable third of the cycle. Thus the initial steady-state lies
off to one side from the convergence of isochrons in the mature dynamics. So (2)
seems likely for Neurospora.
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D: Attractor Cycle Oscillators Interacting Locally
in Two-Dimensional Space

To ignore interaction among neighboring area elements of a reacting continuum
is to make a gross approximation. Sometimes that is exactly what we want to do
in order to abstract an essential principle out of an incidentally more complicated
context. The appropriateness of such an approximation sometimes depends on
the scale of time and space we are concerned with, in relation to the time and space
constants of reaction and of local interaction. But not here. In dealing with spiral
patterns we confront a topological difficulty that cannot be resolved without
invoking some kind of dynamical interaction between adjacent patches of tissue.
Why is that? According to the hypothesis of independent kinetics, every patch of
tissue promptly moves into the attracting cycle. The only exception is that single
cubic micrometer that initially happens to be poised exactly at equilibrium. If all
its neighbors soon begin to oscillate on the cycle, then this neighborhood ex-
periences oscillating concentration gradients of startling intensity. Unless the
tissue be divided up into largish chunks by nearly impermeable membranes, there
will be a rhythmic exchange of materials between differently phased neighbors, and
corresponding modulation of local kinetics.

Tying the Mycelium Together

Accordingly, we now add neighbor interactions. Specifically, let each area
element not only go about its own business according to its local kinetics but also
let it tend to adopt a state midway between its immediate neighbors, as in the last
part of Chapter 4. In terms of equations this is represented by adding a Laplacian
operator V'2¢ to the rate equation of each state variable c. Physically it is equivalent
to introducing molecular diffusion between adjacent area elements. Geometrically
it corresponds to conferring on the image of the medium in state space a coherence
or integrity which for many purposes resembles an elasticity (Winfree, 1974b.f;
1978a and Box D). Viewed in any of these ways, the essential result is that the area
elements can no longer depart freely from their neighbors in composition space.
Nearby points initially have, and continue to have, nearby compositions. Com-
position varies smoothly because extreme concentration gradients do not long
survive unless aided and abetted by an extreme irregularity in the kinetic rate
equations.

With this understanding, Figure 12 contains less to disturb the skeptical reader.
Without local exchange of reactants, the center of the mycelium’s image in state
space would be stretched infinitely thin and taut as almost all volume elements
independently approach the attracting cycle. With diffusion restraining the
divergence of neighboring states, the map stays smooth as sketched. In the absence
of neighbor interactions, area elements initially near the phase singularity would
independently diverge, tearing a hole in the image of the continuum or stretching
it infinitely thin. Only that infinitesimal area element that was initially exactly on
the equilibrium state would remain inside the cycle. But the effect of molecular
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exchange is to preserve continuity. The image stretches toward the attracting
cycle and thins out in the middle, but not forever. Beyond a certain point the
concentration gradients near the phase singularity are steep enough (area elements
have moved far enough apart in state space) that molecular exchange prevents
further divergence. The oscillation remains thus attenuated near the phase sin-
gularity, as it would not were every area element independent. The image of the
medium continues to rotate and every area element oscillates synchronously. But
full amplitude is achieved at only some distance from the phase singularity. Area
elements near the phase singularity are in close contact by molecular diffusion
with area elements at all phases of the cycle so that they scarcely vary in
composition.

Other Possible Outcomes and Interpretations

As described in the foregoing paragraph, this is a purely heuristic and conjectural
story. Its support comes mainly from numerical computations of specific examples
(Winfree, unpublished, 1973 and 1974; Yamada and Kuramoto, 1976; Erneux
and Herschkowitz-Kaufman, 1977; Cohen, Neu, and Rosales, 1978).

There are three main alternatives to the qualitative pictures presented above.
The first is that the whole situation could be subject to instabilities of a nonintuitive
sort in which the medium’s image, initially girdling the cycle, pulls across the
convergence of isochrons, defying the local kinetic trajectories. After this, all
rings have winding number W = 0, the whole medium oscillates synchronously,
and its entire image contracts to a point circulating on the attracting cycle. This
happens in my unpublished numerical solutions if the physical medium is too small
or (the same thing) if the reaction is too sluggish relative to the homogenizing
influence of molecular exchange.

In the case of one-dimensional media, the mathematics of Kopell and Howard
(1973b), Othmer (1977), Ashkenazi and Othmer (1978), and Conway et al. (1978)
can be invoked to show that in the presence of molecular diffusion (or random
cytoplasmic streaming), nonzero winding number of phase is unstable on too
small a physical ring, though it is perfectly stable on large rings [and this is borne
out quantitatively in numerical simulations (Winfree, unpublished)]. The critical
size depends on the ratio of the diffusion coefficient to a quantity related to the
vigor of radial divergence from the phaseless manifold. Given W # 0 in such an
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unstable situation, the rate at which it evolves towards a switch to winding number
0 depends on these two factors and on the frontier’s circumference, which is
meanwhile increasing as the mycelium grows, and might increase enough to
restore stability before winding number changes. But if it doesn’t then only
concentric rings will be observed.

At present, we lack figures to test this conjecture for Nectria. But estimating
the effective diffusion coefficient at 10~ ° cm? per second and assuming kinetics
such that the attracting cycle would be approached with a time constant in the
order of an hour, the minimum stable size for spiral morphogenesis should be
in the neighborhood of 1 cm of circumference. In Nectria, this represents an age
of about 50 hours. So it might be that in Nectria, unlike Ascomycetes that embark
only upon ring morphogenesis, intramycelial coupling is restricted during the
first 50 hours; or it might be that the instability doesn’t develop to completion
within that time; or it might be that the clock process is not disinhibited until at
least 50 hours after germination. In fact, this region never does develop clear
banding. I personally doubt that coupling by diffusion plays any important role
in Nectria, other than ensuring reasonable smoothness of the bands. But the
foregoing possibilities remain unexcluded alternatives to interpretations based
on strictly parochial oscillation.

The second conspicuous alternative to the simple ideas about Nectria under-
lying Figure 12 is that while W # 0 is preserved, the medium’s image does continue
to rotate, but not rigidly: Area elements near the phase singularity dart this way
and that irregularly, always tethered inside the attracting cycle by the requirements
of continuity, but not stably so. This makes a rotating wave whose apparent
“center” is forever meandering irregularly. Oscillating versions of the malonic
acid reagent exhibit such meandering centers (Winfree, 1973c; Rdssler, 1978,
Rossler and Kahlert, 1979).

Kuramoto (1978) points to still more ghastly irregularities of timing that can
arise in a field of oscillators coupled by diffusion. He calls these ““phase turbulence”
and “amplitude turbulence”. Like the “‘diffusive instabilities” pursued by the
Brussels School (Turing, 1952; Nicolis and Prigogine, 1977), these pathologies
can only occur where diffusion coefficients differ sufficiently. Mutants of Nectria
which typically exhibit irregular periodicity might conceivably represent this
parameter range.

Third, it could well be that only the frontier oscillates. Hyphae left behind
the frontier in crowded conditions on staled nutrient medium might not be
oscillating at all. If the pertinent metabolic parameters differ so drastically from
place to place, then it is wholly inappropriate to map all those places onto a
common dynamic flow as in the foregoing diagrams. However, at least in the
case of Neurospora, Dharmananda and Feldman (1979) recently succeeded in
showing experimentally that the oscillation does persist, only slightly altered
in period, at points sampled well behind the frontier.

My fourth conspicuous alternative occurs first to most people, ie., that the
local kinetics (neglecting transport) does not oscillate at all, but that the growth
rate at the frontier “stutters” due to an instability of the balance between inward
diffusion of nutrients and production of “staling” byproducts that locally inhibit
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growth. With the proviso that any such model must involve at least two mor-
phogens in order to accommodate patterns other than concentric rings (Winfree,
1970a, 1973d), this seems to me as plausible as the “local clocks” model. The
question simply awaits someone to explicitly formulate a plausible model, verify
that it exhibits the observed delicate polymorphism in two dimensions, and point
to a distinguishing observation.

And here we arrive at the badly frayed end of this story. There are good problems
here for those with a flair for mathematics. (See Box E for collected references
to the research literature.) As the takehome lesson from this chapter, I emphasize a
conjecture: that the usual mode of organization in a field of independent oscillators
is a wave rotating around a central pivot (a point in two dimensions or a curve in
three dimensions); and that this remains so if neighboring volume elements are
coupled by balanced diffusion. The following chapter asserts that it even remains
so if we now break open the attracting cycle so that the medium is merely excitable.
There we entertain kinetic schemes similar to the hourglass kinetics considered in
Chapter 3 in which oscillation is not spontaneous. Such media of course do not
support pseudowaves, but given neighbor interaction they do support real prop-
agating waves, even pivoting rotating waves similar to those we encountered
above. Some promising starts have been made in the last few years toward iden-
tifying the properties of these waves both by numerical experiments in digital
computers and by observing biological media of practical interest such as brain and
heart muscle.



9. Excitable Kinetics and Excitable Media

The beauty of life is, therefore, geometrical beauty of a type that Plato would
have much appreciated.

J. D. Bernal, The Origin of Life

Chapter 3 on ring devices is followed by Chapter 4 on populations and com-
munities of such single-variable units: both simple clocks and the nonoscillating
hourglasses. Chapter 6 on oscillators with more than one variable of state is
followed by populations and communities in Chapter 8. What about nonoscillatory
kinetics with more than one variable? That case is taken up briefly here, together
with consequences of interaction in spatially distributed communities. The upshot
is a new kind of oscillator and a new kind of phase singularity, both of which are
apparently exhibited in diverse chemical and physiological systems. Even though
no isolated piece of it may oscillate, an excitable medium can organize itself spa-
tially in a way that stabilizes oscillation at a characteristic period. Architecturally,
this configuration more resembles a clock than anything encountered in previous
chapters: It consists of crossed concentration gradients, any one of which might
be taken as the clock’s “hand”, a pointer that physically rotates about a fixed
pivot once in each cycle of oscillation. At the pivot, nothing changes; the pivotis a
phase singularity and all the rest is built around it.

A: Excitability
Clocks and Hourglasses Again

In Chapter 3 we encountered the simplest form of smooth oscillator, the simple
clock. We saw that a tiny, local change in its rate law converts it from a spontane-
ously recycling clock into an hourglass. An hourglass is a system which rests
poised at a delicate equilibrium, waiting to be helped across a shallow barrier to
complete one cycle on its own. Both simple clocks and hourglasses are ring
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Figure 1. Two ways for an attracting cycle to change locally, resulting in excitable kinetics without
spontaneous oscillation. Case (a) is always an excitable oscillator: case (b) is not initially excitable.
These are sketches, not computations.

devices. Any ring device is excitable if a tiny but finite disturbance triggers it into a
big excursion followed by spontaneous approach toward the original state. If
the recovering excitable system sticks at an attracting equilibrium, awaiting a
stimulus to trigger the next excursion from that original state, then we have an
hourglass. If it never quite stops but just creeps on to go spontaneously into another
excursion, then we call it a simple clock.

I called both by the name “ring device” to emphasize their distinguishing fea-
ture, that the state space is a one-dimensional loop. Real kinetic systems, however,
can seldom be realistically approximated in terms of a single degree of freedom.
So in Chapter 6 we generalize the ring device to a dynamic system with an arbitrary
number of degrees of freedom D. In such a higher dimensional dynamic system,
all trajectories can eventually funnel onto an attracting closed trajectory like the
unique cycle of a simple clock. The same sort of generalization is appropriate in
the case of an hourglass. In this larger world of D-dimensional composition space,
attractor cycle kinetics and hourglass kinetics can be closely related through a
small local change in the directions of trajectories. It is common for model bio-
chemical schemes or more abstract dynamic models such as the Hodgkin-Huxley
equations to exhibit either behavior, depending only on fine adjustments of some
parameter (Figure 1). Box A gives a bibliography of examples in biological and
biochemical contexts.
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Excitable Media

Consider now an extended line, surface, or volume, each point of which harbors
the excitable dynamic system. Neighboring volume elements are coupled so that
each can excite the next. Such a continuum is called an excitable medium. Just
as in the case of the excitable continuum of ring devices discussed in Chapter 4,
these dynamically more elaborate media turn out to support waves. Analytic
solutions are more challenging than when only a single rate equation is involved,
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but some examples have been solved explicitly. The most thoroughly explored
equations of course exploit some particular simplification. The commonest are

1. Elimination of all but one degree of freedom (examples in Chapter 4).

2. Incorporation of all the nonlinearities into a single threshold (piecewise
linear models: Offner et al. (1940), Minorsky (1962, Chapter 31), Andronov et al.,
(1966, Chapter 8), McKean (1970), Rinzel and Keller (1973), Winfree (1974b.f)
Zaikin (1975), Zwanzig (1976). The models of Tyson (1977a, Figure 3) and of
Zaikin and Kawczynski (1977, Figure 2) and of Goldbeter et al. (1978, Figure 1)
are geometrically essentially the same as the piecewise linear models.

3. Segregation of the dynamics into one or two slowly changing variables
and one other that moves much more quickly (Minorsky (1962, Chapter 26) and
Andronov et al. (1966, Chapter 10)). Cells are commonly coupled only through
this one variable [Hodgkin and Huxley (1952), Zhabotinsky and Zaikin (1973),
Karfunkel and Seelig (1975), Ortoleva and Ross (1975), Yakhno (1975), Hastings
(1976), Troy (1977), Zaikin and Kawczynski (1977), Collins and Ross (1978), and
Fife (1979)]. This class includes catastrophe theory models of excitable media and
their waves (Zeeman, 1972; Winfree, 1973¢; Tyson, 1976; Feinn and Ortoleva,
1977; Schmitz et al., 1977; and Rdéssler, 1978).

A variety of wavelike phenomena have been derived or simulated in these
approximations. Some of these waves propagate through the medium by means of
an effect of one area element on the next, like the trigger waves first encountered
in hourglass media in Chapter 4, Section D. A trigger wave can travel stably as a
single isolated event, tending to a standard waveform and velocity. In a trigger
wave, each volume element’s local dynamical excursion is triggered by encroach-
ment of the wave through neighboring volume elements. The triggering event
propagates like a grassfire, behind which the grass grows back after a while,
restoring readiness to conduct another trigger wave should one come along.

Rotating Waves

In Chapter 4, Section D, we saw that, given a suitable spatial distribution of
activity, nearest-neighbor interactions can gloss over the slight difference of
geometry (Figure la) that determines whether or not an excitable kinetics will
cycle spontaneously. The result is that a ring of potentially quiescent hourglass
material is enabled to sustain rhythmical activity. Looked at another way, this
is not remarkable. The period is just the circulation time of excitation propagated
as a wave on a ring of excitable medium.

Something more interesting arises when we carry over the same principle to
two-dimensional media. This was impossible in Chapter 6 because a rotating
wave has a nonzero winding number about an interior disk, and that implies
a phase singularity inside the disk. Phase singularities are verboten in continua
composed of coupled ring devices because they require infinite gradients of
chemical composition whereby all the different phases confront one another at
the singularity.
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As we saw in Section D of Chapter 8§, no such dilemma arises in continua
with two or more dynamic variables. A two-dimensional rotating wave arises
in every pinwheel experiment, and its geometry can remain much the same when
the adjacent oscillators are coupled by diffusion. It is not hard to imagine the
same thing happening in media whose isolated volume elements do not spon-
taneously cycle, if excitability is the dominant principle. Imagine how Figure 12
of Chapter 8 might change while we change the local dynamic as suggested in
Figure 1 of this Chapter. The alteration affects only a tiny domain of composition
space, occupied at anv moment by a small patch of the physical medium (the
wave front, roughly speaking). Because the medium is cohesive, adjacent patches
help along the patch that is temporarily tempted to backslide into equilibrium.
It is pulled away from equilibrium and stimulated into another cycle of excitation.
Thus the whole medium perseveres in rhythmic activity almost as though the
local kinetics were spontaneously oscillatory.

At the center of this rotation is a new kind of singularity. It is closely related
to the phase singularities previously described in two-dimensional continua of
attractor cycle oscillators such as the rhythmic fungi, circadian clocks in plants
and flies, and oscillating glycolysis. This new kind of singularity differs from
those encountered before in that it fundamentally involves coupling between
volume elements by molecular diffusion. It arises in excitable media such as the
malonic acid reagent (Chapter 13), heart muscle (Chapter 14), and slime mold
(Chapter 15). I call it a “rotor”.

B: Rotors

A rotor is the self-maintaining source of a rotating wave. It arises where the
phase singularity arose in the final section of the previous chapter. Initial conditions
for a rotor can be set up by executing the pinwheel experiment on an excitable
medium whether or not it happens (as in that section) to oscillate spontaneously.
This has not yet been attempted in the direct and obvious way, using a graded
stimulus transverse to a phase gradient or a traveling wave. Let me show how it
has been done and then show a few more pictures describing rotors in composition
space. Then we will turn to a brief romance about rotors in three-dimensional
excitable media.

The Basic Anatomy of a Rotor

What are the essential qualitative features of the situation in Figure 12 of
Chapter 8? I see two:

a. A piece of the physical medium maps smoothly across the interior of the
usual cycle realized elsewhere, and

b. (Which is the same thing) within that piece the level contours of one state
variable are not parallel to those of another state variable. At the moment captured
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Figure 2. Asin Figure 12 of Chapter 8 but geographic

labels are affixed to the image, rotating with it. Three

level contours are also indicated: one for A, one for B,

and one for C. These are fixed in concentration space

and therefore rotate in relation to the geographic labels
in physical space.

in Figure 2, 4 increases from north to south within the rotating center of the
disk’s image. B increases from west to east and C increases from southeast to
northwest. All three gradients rotate together.

I now argue backward to this situation from:

1. The observed existence of a spiral wave (see below)

2. An experimental method of creating a rotor by abutting a wave onto
another piece of medium not containing a wave (Winfree, 1974d, in malonic acid
reagent), and

3. An experimental method of creating a rotor by shearing a preexisting wave
(Winfree, 1972c, also in malonic acid reagent)

1: To show that the existence of a spiral wave implies features a and b.  Suppose
a wave rotates about a hole. On each ring concentric to the hole, nearly the same
sequence of states is realized in clockwise order around the ring. In other words,
each ring maps with winding number 1 onto a common ring of states in com-
position space. Now plug the hole with a disk of the same medium and assume
that the wave continues to rotate around the former border of the hole. Suppose
this central disk, this plug, adopts a distribution of compositions compatible
with the wave. How does the central disk map into composition space in such a

Figure 3. The disk whose image appears in Figure 2. In (a), contour lines of 4 rotate clockwise. At

this moment maximum A occurs in the southeast and minimum A occurs in the north. In (b), contour

lines of B rotate synchronously with those of 4. At this moment maximum B occurs in the east and

minimum B occurs in the west. The indicated wave front is the locus of 4 maxima on concentric rings.
Alternatively, a wavefront could be a certain level of 4 or B, etc.
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