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late Zdeněk Fencl (Prague), Arthur E.
Humphrey, Elmer L. Gaden and Godfred E.
Tong (USA) who influenced and shaped my
professional career (AP)



Contents

1 Introduction: Discovery and Development—New Facet
of Industry, New Tools and Lead Optimization . . . . . . . . . . . . . . 1
1.1 Scope and Content of this Review . . . . . . . . . . . . . . . . . . . . 2
1.2 Drug Discovery and Development . . . . . . . . . . . . . . . . . . . . 6
1.3 Defining SB: Key Components . . . . . . . . . . . . . . . . . . . . . . 7
1.4 A Brief History of Systems Biology (SB): In Terms

of Key Advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Perspective and Potential Impact of Systems Biology

on Academic Funding and Pharma R&D and Cost Savings . . . 9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Discovery: Use of Systems Biology for Identifying Targets . . . . . . 11
2.1 Identifying Targets and Druggability Space . . . . . . . . . . . . . . 12

2.1.1 Bioinformatics Inputs (BI Inputs) . . . . . . . . . . . . . . . . 14
2.2 Combinatorial Chemistry Tools . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Diversity Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Qualitative and Quantitative Screens and Filters . . . . . 19
2.2.4 Structure-Activity Methods (SAR/QSAR) . . . . . . . . . . 20

2.3 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Integrative Systems Biology I—Biochemistry: Phase I Lead
Discovery and Molecular Interactions . . . . . . . . . . . . . . . . . . . . . 25
3.1 Molecular Screens: Receptor–Ligand (R–L) Interaction

and Molecular Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Molecular Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Quantum Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Molecular Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Molecular Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 28

vii

http://dx.doi.org/10.1007/978-94-007-2849-3_1
http://dx.doi.org/10.1007/978-94-007-2849-3_1
http://dx.doi.org/10.1007/978-94-007-2849-3_1
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_1#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_2
http://dx.doi.org/10.1007/978-94-007-2849-3_2
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec13
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec13
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec15
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec15
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec16
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Sec16
http://dx.doi.org/10.1007/978-94-007-2849-3_2#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_3
http://dx.doi.org/10.1007/978-94-007-2849-3_3
http://dx.doi.org/10.1007/978-94-007-2849-3_3
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec5


3.1.5 Receptor Based QSAR Methods. . . . . . . . . . . . . . . . . 28
3.1.6 Biomimetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Collateral Efficacy and Permissive Antagonism . . . . . . . . . . . 29
3.3 Co-Drugging: Multiple Targets, Combination

Therapy & Multistage Targeting. . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Multicomponent Drugs . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Multi-Target Approach . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Multi-Stage Targeting . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Text Mining for Interactions . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Employment of Biochemical Networks . . . . . . . . . . . . . . . . . 32
3.6 Overview of Deterministic Models . . . . . . . . . . . . . . . . . . . . 32

3.6.1 Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.2 Reactome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Integrative Systems Biology II—Molecular Biology:
Phase 2 Lead Discovery and In Silico Screening . . . . . . . . . . . . . 39
4.1 OMICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Chemogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Morphogenics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Minimal Phenotype and Synthetic Biology . . . . . . . . . . . . . . 43

4.4.1 SB and BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Reconstructing Biological Networks . . . . . . . . . . . . . . . . . . . 44
4.6 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Discovery: Computational Systems Biology (CSB) in Health
and Disease I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1 Cellular Environment: Network Reconstruction

and Inference from Experimental Data . . . . . . . . . . . . . . . . . 52
5.2 Reconstructing Gene Networks. . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Data Mining and Heuristic Data Preprocessing Tools . . . . . . . 54
5.4 Analysis of Disease ‘Correlation NetworkTM’

and Concerted Metabolic Activation: Disease as a Systems
Network Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Challenges for Stem Cells: Control. . . . . . . . . . . . . . . . . . . . 58
5.5.1 SB and BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 Emergent Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.7 Computational Systems Biology . . . . . . . . . . . . . . . . . . . . . . 60

viii Contents

http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec8
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec8
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec10
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec10
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec11
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec11
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec12
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec12
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec13
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec13
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec14
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec14
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec15
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec15
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec16
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec16
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec17
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec17
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec18
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec18
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec19
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Sec19
http://dx.doi.org/10.1007/978-94-007-2849-3_3#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_4
http://dx.doi.org/10.1007/978-94-007-2849-3_4
http://dx.doi.org/10.1007/978-94-007-2849-3_4
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec10
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec10
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec11
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec11
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec12
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec12
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec13
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec13
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec14
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec14
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec15
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec15
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec16
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Sec16
http://dx.doi.org/10.1007/978-94-007-2849-3_4#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_5
http://dx.doi.org/10.1007/978-94-007-2849-3_5
http://dx.doi.org/10.1007/978-94-007-2849-3_5
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec8
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec8


5.8 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Development: In Vivo Pharmacology—Systems Biology
in Health and Disease II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Animal Disease Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.1 Gene Knockout Animal Models . . . . . . . . . . . . . . . . . 71
6.2 Pheno- and Genotyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 RNA Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.1 BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4 Pharmacogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1 SB and BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 In Silico Pharmacology: Future . . . . . . . . . . . . . . . . . . . . . . 74
6.6 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Development: Pharmacokinetics—Systems Biology
in Health and Disease III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1 Microdosing in PK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.1 BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Adaptive Trial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Equilibrium Versus Non-Equilibrium PK Models . . . . . . . . . . 79
7.4 Toxicity Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4.1 SB and BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5 In Silico Toxicity Prediction . . . . . . . . . . . . . . . . . . . . . . . . 81
7.6 Quantitative PKPD/Tox Modeling . . . . . . . . . . . . . . . . . . . . 82
7.7 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Development: Multiscale CSB—Simulation Tools . . . . . . . . . . . . 87
8.1 Defining CSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.2 Redefining (and Discovering) Emergent Properties

at Higher-Level Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3 Virtual Organs, Disease Models, Virtual Patient . . . . . . . . . . . 92
8.4 Population Level Model: Towards Individualized Medicine . . . 93
8.5 Targeting Networks: Towards Organismic,

Full-Scale Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.6 Redefining the Traditional R&D Paradigm . . . . . . . . . . . . . . 95
8.7 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9 Development: Drug Formulation and Delivery. . . . . . . . . . . . . . . 103
9.1 Targeting Concept and Mechanisms . . . . . . . . . . . . . . . . . . . 103

9.1.1 SB and BI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Contents ix

http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_5#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_6
http://dx.doi.org/10.1007/978-94-007-2849-3_6
http://dx.doi.org/10.1007/978-94-007-2849-3_6
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec8
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec8
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_6#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_7
http://dx.doi.org/10.1007/978-94-007-2849-3_7
http://dx.doi.org/10.1007/978-94-007-2849-3_7
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec8
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec8
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Sec9
http://dx.doi.org/10.1007/978-94-007-2849-3_7#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_8
http://dx.doi.org/10.1007/978-94-007-2849-3_8
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec6
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Sec7
http://dx.doi.org/10.1007/978-94-007-2849-3_8#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_9
http://dx.doi.org/10.1007/978-94-007-2849-3_9
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec2


9.2 Nanoscale Drug Delivery Systems . . . . . . . . . . . . . . . . . . . . 105
9.3 CSB at Formulation and Delivery. . . . . . . . . . . . . . . . . . . . . 105
9.4 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10 Development: Preclinical Model Based Drug Development . . . . . . 109
10.1 Defining MBDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.2 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

11 Systems Biology: Impact on Pharma and Biotech . . . . . . . . . . . . 115
11.1 SB Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.2 Key Technologies and Tools Needed for Development

of Systems Biology/CSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.3 Steps in System Biology/CSB . . . . . . . . . . . . . . . . . . . . . . . 120
11.4 Benefits of Systems Biology and CSB . . . . . . . . . . . . . . . . . 123
11.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

x Contents

http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_9#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_10
http://dx.doi.org/10.1007/978-94-007-2849-3_10
http://dx.doi.org/10.1007/978-94-007-2849-3_10#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_10#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_10#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_10#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_10#Bib1
http://dx.doi.org/10.1007/978-94-007-2849-3_11
http://dx.doi.org/10.1007/978-94-007-2849-3_11
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec1
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec2
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec3
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec4
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Sec5
http://dx.doi.org/10.1007/978-94-007-2849-3_11#Bib1


Abbreviations

3D Three-dimensional
3D/4D QSAR Three dimensional/four dimensional QSAR
3D-QSAR Three dimensional QSAR
ABC Bayesian computation
ABM Agent-based methods
ADMET Absorption, distribution, metabolism, excretion, and

toxicity
AMS Accelerator mass spectrometry
ANN Artificial Neural Networks
anti-CD40L Antibody raised against CD40L region
ARACNE Algorithm for the reconstruction of accurate cellular

networks
BI Bioinformatics
BLA Biologic application
BOSS Biological objective solution search
BSR Biochemical system (network) reconstruction
CCA Canonical correlation analysis
CD14-/- Type of mice
CDD Controlled drug delivery
CellML Mark-up language
CG Coarse-graining or CG computing
CNI Correlation network inference
COAST Complex automata for modeling and simulation of

complex systems
COMBINE Comparative binding energy
CSB Computational systems biology
CSDD Center for the study of drug development (Tufts)
DD Drug discovery
DDD Drug discovery and development

xi



DDS Drug delivery systems
DDv Drug development
DOS Diversity-oriented synthesis
dsRNA Double strand RNA
EBI European bioinformatics institute
ED Enrichment designs
EGFR Endothelial growth factor receptor
EPR Passive uptake
ERK Extracellular regulated kinase
FBA Flux balance analysis
FBDD Fragment based DD
FCR Fluorochromatic reaction fluorescence
FDA Food and drug association
FRET Fluorescence resonance energy transfer
GNR Gene regulatory network
GO Gene ontology
hPXR Humanized transgenic mice
HQSAR Hologram quantitative structure-activity relationships
HT High throughput
HTS High throughput screening
iFBA Integrated dynamic FBA
IFN-b Interferon beta
IL-12 Interleukin 12
IL-15 Interleukin 15
JWS Journal of web semantics
KEGG Kyoto encyclopedia of genes and genomes
KNN K-nearest neighbors
LDA Linear discriminant analysis
MARS Splines
MBDD Model based drug design
MCA Metabolic control analysis
MD Molecular dynamics
MINDy Modulator inference by network dynamics
miRNA MicroRNA
MM Molecular mechanics
MMR DNA mismatch repair
MoA Mode of action
MS Multiple sclerosis
MVDA Multivariate data analysis
NB Naïve Bayes
NDA New drug application
NME New medical entity
NMR Nuclear magnetic resonance

xii Abbreviations



NOD Nude mouse
OBRC Online bioinformatics resources collection
ODE Ordinary differential equation
OiCR Ontario institute for cancer research
OMICS Discipline of science and engineering for analyzing the

interactions of biological information objects
PAT Process analytical technology
PCA Principal components analysis
PD Parkinson disease
PD Pharmacodynamics
PEGylation Attachment of polyethylene glycol (PEG)
PEM Protein epitope mimetic
PET Positron emission tomography
PGN Pharmacogenomics
PhRMA Pharmaceutical research and manufacturers of America
PI3K Phosphoinositide-3-kinase
PK Pharmacokinetics
PKPD Combined PK and PD
PLS Partial least-squares
PM Pharmacometrics
PromoLign Simulation tool
PTEN Phosphatase and tensin homolog
PupaSNP Simulation tool
QbD Quality by design
QSAR Quantitative structure-activity relationship
R&D Research and development
R03 Rule of three
RA Entelos rheumatoid arthritis
RAW Mouse leukaemic monocyte macrophage cell line
RDD Re-randomization design
ReguLign Simulation tool
R-L Receptor-ligand
RNAi RNA interference
RNI Reaction network inference
RNIDD Reaction network inference for drug discovery
Ro5 Rule of five
ROT Rule-of-thumb
RPART Recursive partitioning and regression trees
SAR QSAR
SB Systems biology
SBML Systems biology markup language
siRNA Small nterfering RNA
SG Systems genetics

Abbreviations xiii



SNP Single nucleotide polymorphism
SSM Scale separation map
SVM Support vector machines
TGF-b Transformation growth factor beta
TNF-a Tumor necrosis factor alfa
uHTS Ultra high throughput screening
WW2 Second world war

xiv Abbreviations



Acknowledgments

The authors appreciate a critique by Béla Csukás (Kaposvar, Hungary).

xv



Abstract

Systems Biology (SB) is suite of technologies and methodologies that resulted,
conceptually, from the merging of two basic paradigms, reductionism and holism.
It represents a combination of reductionist and holistic approaches to the rela-
tionships among the elements of a system, with the goal of identifying its emergent
properties and defining, quantitatively, molecular, cellular, tissue, organ and whole
body processes. One manifestation of SB is as a tool for hypothesis generation
about a system that is typically too large and complex to understand by simple
reasoning.

The US is currently well ahead of the rest of the world in the development and
application of SB and its principles especially as they pertain to basic medical
research and development. This lead is largely due to an earlier start in the aca-
demic arena (7–9 years ago in US vs. 4–5 years elsewhere; Rubenstein 2008).
However, there is evidence of rapid development in both the UK/EU and Japan
and the gap is narrowing, particularly in UK. From an industrial point of view, the
Pharmaceutical Industry based in the US and UK can capitalize on these oppor-
tunities and gain the benefits of this technology. Early and sustained investments in
SB and its enabling technologies will likely produce financial rewards for any
pharma company so inclined. Many big Pharma companies have already invested
in SB and Bioinformatics (BI) (for definitions of SB and BI see Chap. 1) and are
set to maintain their lead. The industrial significance of SB is thus clear.

This review intends to educate a large population of cell and molecular biol-
ogists in the use of the quantitative tools that are available to them to solve the
critical problems they face. Many educational institutions (and particularly their
medical divisions) at present are heavily business-oriented realize that in this
particular industrial environment that dollar counts. It is thus important that
biologists recognize early in their research the utility of SB and how this approach
can help to generate new therapeutic leads and substances useful for human health.
Educational curricula in the life sciences have typically been based on the
atomistic belief that one can decompose complex systems into their components
and that a detailed investigation of each these components individually will in
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itself lead to novel biological insights. Indeed this is true in numerous instances.
However, increasing acknowledgment of the importance of studying whole sys-
tems, as well as their components, has led to an emphasis on teaching not just a
reductionist view of biology, but also a complementary constructionist view.
{Note: Bioprocess engineering issues, as related to a systems approach at manu-
facturing, are not included in this review. However, included in our broader def-
inition, we do incorporate some of the issues surrounding BI in this review}.
Overall, we attempt to answer a question: Can Systems Biology deliver on
academic funding and business profits?

xviii Abstract



Chapter 1
Introduction: Discovery
and Development—New Facet
of Industry, New Tools and Lead
Optimization

In the face of the challenges associated with expiring drug patents, the rising cost
of R&D, and payer pressure on pricing, most major pharmaceutical companies are
seeking ways to enhance productivity, reduce costs and augment their late-stage
pipelines. Recent technological applications have witnessed the development of
data-rich, genome-scale functional screens, large collections of reagents and
protein microarrays, and the addition of databases and algorithms for data mining.
Systems biology takes advantage of these technological breakthroughs to represent
a combination of reductionist and holistic approaches to the relationships among
the elements of a system. The obvious goal of this effort is to identify the emergent
properties of a system, and define, quantitatively, molecular, cellular, tissue, organ
and whole body processes that best lend themselves to external manipulation. The
emergent properties of complex systems are recognized in terms of species and
topologies, teaching us that one should target network states (resulting from
dynamic molecular and physiological networks and their emergent behavior) and
not just individual genes or proteins. While emergent properties are quite common
in science and engineering, they are rarely exploited in biology and medical R&D.

Definitions:

• In silico biology (also systems biology) is an expression used to mean ‘‘per-
formed on a computer or via computer simulation. The phrase refers to
‘experiments’ done outside living organisms’’.

• Multiscale modeling studies properties of a system over a wide range of length
and time-scales and hierarchies. Multiscale models include components from
two or more levels of organization (multiple length scales) or multiple time
scales.

A. Prokop and S. Michelson, Systems Biology in Biotech & Pharma,
SpringerBriefs in Pharmaceutical Science & Drug Development,
DOI: 10.1007/978-94-007-2849-3_1, � The Author(s) 2012
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• Systems biology (SB) employs a rational approach, a mix of analytical and
synthetic routes to delineate emergent properties relevant to higher hierarchy
levels, aiming to explain and predict, quantitatively, molecular, cellular, tissue,
organ and whole-body processes.

• Empirical approach: the prevalent trial and error approach, a highly inefficient
approach

• Bioinformatics (BI) the discipline that deals with the computational needs of
biology to decipher the genetic blue-print and to infer the structure and function
of gene-encoded proteins and RNAs, including data acquisition, storage, orga-
nization, archival, analyses and/or visualizations. It is a very computationally-
intensive field. Practical applications include design of biomimetic proteins,
quantitative diagnosis and the prognosis of diseases.

• Drug Discovery and Development (DDD), a collective term for drug discovery
(DD) and drug development (DDv).

1.1 Scope and Content of this Review

One of the most critical share-price drivers for drug companies is their ability to
innovate and create new patent-protected products. Unfortunately, the industry is
facing a serious R&D productivity problem. Most big pharma companies spend an
average of over 15% of sales on R&D, but recent years have seen diminishing
returns on this investment. The R&D productivity problem is exacerbated by the
rapidly increasing cost of R&D—in 2001 the Tufts Center for the Study of Drug
Development (Tufts CSDD) put the cost of developing a new drug and bringing it
to market at US $802 million. In 2006, Tufts CSDD estimated the average cost of
developing a new biotechnology product to be US $1.2 billion. The reasons for,
and extent of, the R&D productivity crisis, is controversial because of the different
metrics used and the problems associated with these as an accurate measure of
performance, given the long timeframe associated with developing and bringing a
product to market. Part of the problem is the need for larger and more complex
clinical trials, as well as expensive new enabling technologies. The mega-mergers
of the late 1990s promised that greater scale in R&D would increase the proba-
bility of successful product development with ‘more shots on goal’, but in reality
this has not translated into improved pipelines. As a consequence there is a lack of
genuinely innovative drugs to replace revenues lost through patent expiry; many
new drug launches are ‘me-toos’. Few in the industry would deny that it is facing a
serious problem in generating new products to replace those lost to generic
competition or product withdrawals.

One commonly-quoted piece of evidence for the R&D productivity crisis is
illustrated in Fig. 1.1 (1PhRMA Pharmaceutical Industry Profile 2007, FDA)
which compares R&D expenditure by the major players versus the number of new
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products approved annually by the FDA. These have been moving in opposite
directions since the mid-1990s, with fewer approved products every year despite
large increases in R&D spend. The latest figures, released by the FDA and the US
industry trade body PhRMA, show no change in this trend, with PhRMA mem-
bers’ R&D expenditure reaching an all-time high of US $44.5 billion in 2007.
Additionally, the global industry spent an estimated US $58.8 billion en toto, even
as the FDA approved just 19 NMEs and BLAs—the lowest number in a
generation.

Even the number of new biologics reaching the regulatory submission stage in
the US (as measured by the number of BLAs submitted to the FDA) has been
slowing down over the past 15 years, indicating that R&D productivity issues
affect both chemical-based and biological-based therapies.

On the other hand, recent technological advances have witnessed the devel-
opment of genome-scale functional screens, accumulation and validation of large
collections of reagents, and development of protein microarrays, databases, and
algorithms for data and text mining. Taken together, these newer technologies
enable unprecedented descriptions of complex biological systems, which are
testable by mathematical modeling and simulation. While the methods and tools
are advancing, it is their iterative and combinatorial application that defines the SB
approach.

SB represents a combination of analytical and synthetic approaches to uncov-
ering and quantifying the relationships between the elements of a biological
system, with the ultimate goal being a clear understanding of that system’s
emergent properties. SB seeks to describe all of the elements of the system, define
the biological networks that inter-relate the elements of the system to each other,

0

5

10

15

20

25

30

35

40

45

50

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

R
&

D
 s

p
en

d
 b

y 
P

h
R

M
A

 m
em

b
er

 c
o

m
p

an
ie

s 
($

b
n

)

0

10

20

30

40

50

60

N
M

E
s 

an
d

 B
io

lo
g

ic
s 

ap
p

ro
ve

d
 b

y 
F

D
A

Fig. 1.1 The industry’s declining R&D productivity is demonstrated by the declining number of
approved products, despite a huge increase in R&D investment
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and finally to characterize the flow of information that links these elements and
their networks. The resultant structure will describe and characterize the emergent
biological properties and processes of that system, which include molecular,
cellular, tissue, organ and whole body interactions.

SB aims to understand the operation of complex biological systems at a
fundamental level and then, based on these understandings ultimately develop
predictive models of human disease. A specialized branch of SB, dedicated to the
quantitative aspects of these efforts, is called computational systems biology
(CSB). Although meaningful molecular level models of human cell and tissue
function are a distant goal, SB efforts are already influencing drug discovery (DD).
Large-scale gene, protein and metabolite measurements (the OMICs) dramatically
accelerate hypothesis generation and testing in disease models. The latter integrate
knowledge of organ and system-level responses into a single unified context and
help to prioritize targets and to design clinical trials.

In addition, recent progress in CSB has had an impact on DD applications. The
focus is on novel in silico methods to reconstruct regulatory networks, signaling
cascades, and metabolic pathways, with an emphasis on comparative genomics
and micro-array-based approaches. Promising methods, such as the mathematical
simulation of pathway dynamics has proven useful during Drug Discovery,
especially with respect to target identification, target validation, and optimal
experiment design.

Coupling mathematical models across large ranges of length and timescales is
central to describing complex behaviors in multifaceted systems and is, therefore,
fundamental to making systems biology work. Such coupling may be performed
by means of hierarchical and hybrid multiscale modeling. ‘‘Hybrid’’ is meant to
represent both the merging continuous and discrete models, as well as quantitative
and qualitative results. These modeling methods are expected to bring numerous
benefits to biological and medical research, as the properties of a system may be
studied over a wider range of length and timescales, a key aim of SB. Multiscale
models couple behavior at the molecular biological level to that at the cellular
level, thereby providing a route for calculating many unknown parameters. It is
equally true that this multiscale environment enables investigation of effects that
might be expressed at the cellular level as they may be induced by small changes at
the biomolecular level. Such small changes might include, but are certainly not
limited to induction of a genetic mutation or the presence of a drug. The modeling
and simulation of biomolecular systems is itself very computationally intensive.
Hybrid models with their associated algorithms can point the way towards the
integration of molecular and more granular representations of matter.

SB is already being practiced in Pharma, and has come to represent an
encompassing tool for coupling the reductionist and holistic approaches to DDD
into a single unified conceptual structure. This report will discuss recent devel-
opments in both approaches and how they can be integrated into a single means for
improving the performance of the industry. It will largely focus on the quantitative
aspects and tools available to the biomedical researcher, and may include some
qualitative approaches that may be equally useful in DDD.
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Because of the huge literature of scientific papers on SB, this report will limit
the scope of our examples to those that have been approved for clinical use, or are
currently in clinical trials. We will also cite new, basic approaches which may
change this field in a near future. Even so, it is impossible to know of, and include,
all such examples and to properly credit all the key people who helped to bring the
various technologies and ideas to the clinic. The authors apologize in advance for
all omissions.

The systems approach, the umbrella methodology, emphasizes two sets of tools:
qualitative and quantitative, both equally important. Some qualitative tools (heu-
ristics) often substitute for the lack of quantitative tools and provide an order of
input for significant design criteria for decision makers involved in the R&D
project portfolio. The graphical overview of this structure is shown in Fig. 1.2.
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Fig. 1.2 Overview of the employment systems approach in pharma. Systems Biology in Pharma
is attempting to rationalize the DDD pathway by developing an integrated suite of qualitative and
quantitative rules. The goal is to change the current R&D paradigm and speed up the entire
process of bringing a medicine to market. Covered subjects in R&D (process development,
regulatory, R&D strategies, ethical issues and public–private partnership are not covered in this
review)
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Soft issues in R&D (those outside the purely scientific realm) are complementary
to the hard/scientific skill set required for systematic investigation. However, these
issues may be decisive in the overall process of putting a drug on the market,
potentially overriding any number technical issues in their impact. These ‘‘soft’’
aspects of the business could be included in a qualitative reasoning simulation
model, augmenting the hard science in a decision analytic context.

This report examines the status of SB within big pharma and the biotech
industry and looks at the different system tools available at each level of hierarchy,
while noting that the virtual chemical space does not belong to any kind of
structural biological hierarchy and the biochemical and molecular space is, of
course, part of the sub-cellular level. The report updates the drug discovery and
drug development (DDD) tools listed by the author in his previous review of the
industry [1, 2]. It identifies new areas of DD and appropriate associated tools,
paying special attention to quantitative approaches (in silico), which are now part
of this more global systems view.

The report does not provide a comprehensive list of approaches/tools as only
those considered relevant and with development potential are reviewed. The same
applies for the most recent iterations of each tool; they are described because they
play a significant role in helping to shape the systems view.

This report brings, for the first time, attention to the importance of the systemic/
holistic view to emphasize the two-directional pathway of the biological systems
approach in the pharmaceutical industry and its potential. It emphasizes two sets of
tools: qualitative and quantitative, both equally important. Some qualitative tools
(heuristics) often substitute for the lack of quantitative tools and provide an order
of input for significant design criteria for decision makers involved in the R&D
project portfolio.

1.2 Drug Discovery and Development

DD usually includes: conceptualization, determination of (hypothetical) mecha-
nism of effect, verification through assay (including assay development and
design), screening of compounds against the purported target, hit identification of
potential compounds, target validation, lead demonstration, and lead optimization.
It usually also involves a limited in vivo proof of concept in animals and con-
comitant demonstration of a possible therapeutic index (preclinical pharmacology
and safety/toxicology). Drug Development (DDv) begins when a decision is made
to put a molecule into phase I clinical trials. This report uses the collective term
Drug Discovery and Development (DDD) to encapsulate the entire evolution of a
medicine. DDD often features the following:

• The time from concept and patent to approval of a new drug entity is commonly
listed as 8–10 years but may typically be 15–17 years.

• The vast majority of molecules fail during discovery and development.
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The estimated cost of bringing a successful product to market is very high. The
amortized cost of approximately US $1 billion is commonly used, but the figure
for a major drug may now be even higher.

Development involves various phases that can be grouped in three stages:

• Pre-clinical investigation and characterization
• Clinical trials
• Marketing (or post-approval)

Most large Pharma companies usually have a number of compounds in their
pipelines. The drug pipeline is an important evaluator of future prospects of a
company. Usually the more compounds in the pipeline the better company is.
Assessing risk and eliminating compounds that may not eventually get approved is
essential.

The drugs themselves have a life cycle, beginning at the earliest stage of
discovery and leading through the development stages, regulatory review, market
authorization, and post-market activities. The market life cycle can be grossly
categorized into four stages:

• Introduction
• Growth
• Maturity and
• Decline

while brand life span can be divided into three stages:

• Launch
• Maintenance
• Retirement

Patent expiration is another impediment to successful brand sales. From 19% in
1984, generics’ prescription share of the market rose to more than 50% in 2004.

1.3 Defining SB: Key Components

We can define Systems Biology as a bi-directional process, linking integrative,
top-down, mechanism-based or deductive modeling with bottom-up hypothesis-
driven or inductive modeling. Only when inductive logic (bottoms-up model) is
iteratively linked to deductive reasoning (Mechanism-based) does true feedback
and learning accrue. Therefore, it is often necessary to find a middle ground
methodology to systematically study complex biological and biomedical processes
in the context of their experimental data. One way to do that is by developing a set
of tools (both qualitative and quantitative) to evaluate relationships and interac-
tions among various system components under multiscale and dynamic conditions.
The work product of this effort is typically an integrated phenotype at the whole
body level, which will, by definition, include lower level hierarchies, at molecular,
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cellular, tissue and organ levels. In a clear departure from the mechanism-based
reductionist approach, SB embraces both arms of scientific dogma, reductionist
and holistic, by employing an integrated, closed-loop learning middle ground. As
more SB global tools are developed and better extraction of emergent properties is
instituted, Biomedical R&D will experience a paradigm shift to this more systemic
approach. By closing the loop between induction and deduction in a systematic,
modeling context, the field will gain a deeper understanding of disease mecha-
nisms (including the upper level interactions), and derive benefits for expedited
DD and improved drug safety and efficacy profiles.

The in silico method (which SB mostly employs), refers to the fact that the
‘experiment’ is conducted within simulation software, rather than in vitro (i.e., in a
test tube or Petri dish), or in vivo (an animal model of human disease or more
spectacularly in the human subject him/herself). When combined with traditional
methods, this approach may allow molecules to fail early rather than late in the DDv
path, where the real loss is typically accrued. By employing the principles of closed
loop learning encompassed by SB, models of cell systems are produced that can be
used to analyze pathways in disease as opposed to normal conditions, enabling an
understanding of the effects of potential drugs on pathways. Virtual experiments
can then be run on systems that are both dynamic and can be customized for
different cell types. These system come pre-packaged with research-based proto-
cols that can be tweaked at various levels for in depth analysis and research.

This approach enables researchers to qualify the biological target and poten-
tially any associated toxicity at the nascent stage of discovery itself, producing
tremendous savings in time. In the highly competitive pharma industry, every year
saved in drug research could translate into many hundreds of millions of dollars in
realized revenues, besides giving a first-mover advantage in the market. To create
this type of functionality, one must compile a competent interdisciplinary team of
experts in biology, mathematics, chemistry and computer science. But if it were
really that easy, anyone would do it. It is a lot more nuanced and difficult than that.
However, given that the prevalent trial and error approach has a demonstrated
track record of being time consuming and inefficient, adopting technologies such
as these may be the best way forward. But it should also be noted that while SB
may improve the researcher’s understanding of human physiology and disease,
drug discovery remains a very slippery path.

1.4 A Brief History of Systems Biology (SB): In Terms
of Key Advances

• Weiss in 1924 introduced the term ‘systems biology’. Wiener in 1948 estab-
lished cybernetics and reinforced the feedback concept; earlier, Bernard (in the
19th century) and then Cannon in 1932 determined the importance of negative
feedback for maintaining homeostasis; molecular feedback in bacteria was
discovered by Yates and Pardee in 1956.
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• First numerical simulation in biology (neural cell action potential) was pub-
lished in 1952 by Hodgkins and Huxley.

• Quantitative enzyme kinetics flourished between 1900 and 1970.
• Noble in 1960 developed a computer model of a heart pacemaker.
• Biochemists (late 1960s) developed biochemical systems theory.
• Mesarovic in 1966 established the formal discipline of systems biology.
• Polyani in 1966 recognized that upper level behavior requires the lower level

behaviors.
• Kaczer and Burns established Metabolic Control Theory, 1973.
• Von Bertalanffy proposed General Systems Theory, 1976.
• The birth of functional genomics is marked for the 1990s, followed by bioin-

formatics development.
• Several microorganisms, mostly pathogens, were sequenced (1994–1998).
• Draft of the human genome sequence produced, 2000.
• Institute of Systems Biology was established in Seattle and Tokyo (2001).
• The first version of the Systems Biology Markup Language (SBML), used to

encode biological reaction sets, was released in 2001.
• Kitano in 2002 defined Computational Systems Biology.
• Steuer (2003) and Morel (2004) defined metabolic correlation network

TM.

• Barabasi defined network biology, while defining formal properties of networks,
2004.

• Westerhoff and Palsson in 2004 defined systems biology as a mixed reductionist
and holistic approach.

• Barabasi in 2007 defines disease as a network disorder.

1.5 Perspective and Potential Impact of Systems Biology
on Academic Funding and Pharma R&D
and Cost Savings

The following scheme of the SB paradigm (Fig. 1.3) is proposed as a modification
of the already existing standard R&D flow chart (not shown), with a detailed
discussion of the particular tools discussed later in the appropriate sections of this
Report.

The Systems Biology cycle requires a careful set-up of experimental cycles
enriched with quantitative tools. The inductive-deductive feedback loop consists
of perturbation (experimental design and assay development), measurement,
modeling, hypothesis generation, and feedback to perturbation, etc. This is a
standard science-learning cycle process. The precise order of the steps of the cycle
may vary depending on which facts are known, which observations can be made,
the strength of the evidence that backs up inferences that can lead to a robust
hypotheses (or educated guesses), and which components of the hypothesis can be
tested (i.e., which technology may or may not work in a particular assay design).
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Key design features of this Review: We will list all salient features of each
hierarchical level, starting with discovery, and discuss both qualitative and
quantitative phenomena observed therein; for those where quantitative tools are
available, they are underlined, their availability listed, and the state of the art
indicated. Both qualitative and quantitative modelling are discussed as part of
systems view, as the systems approach calls for coverage of all systemic phe-
nomena, regardless of their computational status.
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Chapter 2
Discovery: Use of Systems Biology
for Identifying Targets

In our introduction, we emphasized that a combination of reductionist
(mechanism-based) and holistic (hypothesis-based) tools in the drug screening
process may increase the efficiency of overall Drug Discovery. Among notable
holistic tools are screens that target discovery and characterization of molecular
probes (compounds) that will enable the investigation of fundamental biological
function at molecular, cellular and whole organism levels. Such screening usually
occurs at the earlier stages of drug discovery. However, sometimes the required
biological insights and understanding of both the normal physiology and the aeti-
ology of the disease process are too sparse to allow for an appropriate screening
effort. In those instances, exploratory experiments and ad hoc assay designs are
required to test and refine particular hypotheses regarding potential target viability.
To that end we discuss other holistic tools aimed at characterizing biological
dynamics at the biochemical and molecular biology levels in Chaps. 3 and 4.

An analysis of the druggable space suggests that pharma is reaching a saturation
point in terms of available targets, and mechanism-based screens may not repre-
sent an optimal strategy for targeting this very narrow point within the druggable
space. One hole in this technological strategy is that it avoids cross fertilization
between disease-modifying genes and the druggable genome [1]. Additionally,
drug pleiotropy (Chap. 4) may cause undesirable off-target effects. A rationale for
selecting drug combinations by systems tools is proposed in Chap. 3.

Combinatorial chemistry tools help to rationalize the DD process by exploiting
several chemical and informational tools (none of them being relevant to a systems
approach described in this report, however). The Achilles heel of the present
approach is a strong emphasis on high-affinity ligands (low affinity ligands are
important for cell–cell interactions and the immune system) and the failure to
detect molecules that bind covalently to the receptor.

Qualitative and quantitative screens and other filters only facilitate the identi-
fication of lead substances (i.e., those compounds that will lend themselves to
optimization by classical medicinal chemistry efforts). Since every hit will not
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necessarily translate into a marketable product, the aim of this stage of the search
is to seek a facility that will eventually enable virtual chemistry screening.

Definitions:

• Top-down is a reductionist approach analyzing a system down to the mecha-
nistic level.

• Bottom-up is a holistic approach, seeking to cross boundaries and hierarchic
organization to synthesize the knowledge to the cell, organ and organismic
levels. This is a novel approach, building up from mechanistic knowledge.

• Druggable genome represents a part of the genome which could potentially be
accessed by an effective drug candidate. It represents amenability to modulation
of a target by drugs.

• MoA (Mechanism of Action) refers to the specific biochemical interaction
through which a drug substance produces its pharmacological effect.

• SAR (QSAR) is the process by which chemical structure is (quantitatively) cor-
related with a well defined process, such as biological activity or chemical reactivity.

This part encompasses a short introduction to Chaps. 2 and 3, and covers target-
based and physiology-based approaches as well as combined systems approaches.
In a target or mechanism-based (top-down, or so-called reductionist) approach,
scientists first identify a protein or molecular mechanism relevant to a disease
process and then use screening to find compounds that interact with or modulate it.
The present effort may have swung too far in the direction of the reductionism
implicit in target and mechanism-based drug discovery.

Bottom-up (holistic) methods of identifying interesting targets and the compounds
that interact with them, often result in compounds that, in animal systems or in humans,
show that the underlying mechanism is more complicated than was previously thought.
This is an argument for less reductionism. On the other hand, earlier, a lot of DD was
driven by phenotypic screening, in which compounds were tested for a desired readout
in cell or animal systems and their target and mechanism were typically unknown at
first. This is called a phenotypic cell and organism-based (holistic) approach.

The mechanism-based approach is unlikely to be abandoned anytime soon, but
some people believe that the traditional cell- and organism-based strategy (also
called the physiological strategy) should not have been discarded completely and
should now be given renewed emphasis. The combined reductionism and holistic
approach is most germane to the systems approach, utilizing both directions in the
feedback loops [2].

2.1 Identifying Targets and Druggability Space

Since the early 1990s, the target-based drug discovery paradigm has been the
dominant approach in the pharma industry. It takes a rational approach by defining
the specific molecular mechanism or Mechanism of action (MoA) to be targeted by
the treatment from biological and clinical findings. However, it does not translate
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into a high success rate for novel targets, presumably because our level of insight
into disease dynamics and their associated biological processes is not sufficient to
predict the therapeutic value and druggability of a novel target. Figure 2.1 shows a
logical Venn diagram depicting how targets can be classified and/or eliminated from
a potential search. Note, the Bakheet and Doig estimate may look very pessimistic.
However, targeting proteins is likely a better approach since nearly all drugs act at the
protein level (except transcription process inhibitors). Fortunately, the proteome is a
much better target than the genome, owing to alternative splicing and post-transla-
tional modifications. Mechanism-based approaches select a single known mecha-
nism and are represented by a single Point; it limits the effort to an unreasonably
small sampling of target space. Physiology-based and function-based approaches do
not employ any assumption regarding the MoA and operate within their respective
disease-modifying spaces. Disease-modifying genes are those involved in disease
onset or progression. More on global mapping of pharma space is in Paolini et al. [3].

The characteristics of druggable compounds should be such that they can be
delivered effectively to the target tissues and cells [6]. These authors estimated that
the upper limit of molecular targets in the human genome that represent an
opportunity for further therapeutic treatment is approximately 6,300 human pro-
teins that are similar to sequences of known protein targets collected from the
DrugBank database (about 20% of human proteome). On the other hand, Drews
[7, 8] identified about 5,000–10,000 potential targets on the basis of number of
disease-related genes. Theoretical prediction of protein function from the gene
sequence computationally remains an excruciatingly imprecise science. Despite
these hurdles, CuraGen’s Golden (in 2002) was in no doubt that deciphering the
druggable genome sequence will ultimately restock the therapeutic pipeline.

Disease model 
space: 

disease-modifying 
genes

~2,000-3,000

Therapeutic 
space:

Druggable
genome

~3,000

Human genome number of predicted genes
~21,000-23,000

Cross-section of several 
hundred potential targets

~600-1,000

Mechanism-based

Space of entire biological targets
Homology screen limits 

the cross-section into 668 protein targets

Fig. 2.1 Number of drug targets depicted in Venn diagram The effective number of possible targets
can be determined by a homology subset of the intersection of the number of disease-modifying
genes and the druggable subset of the human genome [4, 5]. A cross-section between druggable and
disease-modifying space represents the most promising targets for DD. Of those, Bakheet and Doig
identified 668 proteins as a narrow target, based on a vector machine homology screen
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It is clear from the distribution of the gene-family populations that there are no
undiscovered large protein families, which indicates that remaining targets will be
members of very small families. Clearly, the number of potential protein targets
could be larger than the number of genes, owing to post-translational modifications
and the assembly of functional complexes; however, this is not likely to increase
the number of specific drug-binding sites.

Furthermore, the question then becomes which specific target will be druggable
and disease-modifying. It is estimated that about 10% of the entire human genome
is involved in disease onset or progression, resulting only in approximately 3000
potential targets suitable for therapeutic intervention. The key is to discriminate
between the disease-associated versus disease-modifying genes. Hajduk et al. [9]
suggested a way to employ Systems Biology to identify potential disease targets.

All drugs somehow interfere with signal transduction, receptor signaling and
biochemical equilibrium. Additionally, for many drugs we know, and for most we
suspect, that they interact with more than one target (pleiotropy). So, there will be
simultaneous changes in several biochemical signals, and there will be feedback
reactions from the perturbed pathways. In most cases, the net result will not be
linearly deductible from single effects and SB tools must be applied. In addition,
this phenomenon is a source of off-target effects.

For drug combinations, this is even more complicated. Thus, a clinically rel-
evant ‘target’ might consist not of a single biochemical entity, but of simultaneous
interference of a number of receptors (pathways, enzymes and so on). And, only
the net clinical effect will be beneficial. Such target definition, not derived from a
single direct chemical interaction will require input from systems biology [10].
Clinical input is crucial: the ability of a protein to bind a small molecule with the
appropriate chemical properties at the required binding affinity might make it
druggable, but does not necessarily make it a potential drug target, for that honor
belongs only to proteins that are also linked to disease.

The results of screening in the pharmaceutical industry and the limited number
of druggable targets suggest that, within the next decade, the industry could reach
a position in which ‘hits’ or chemical leads are available for most potentially
druggable targets. The challenge for the industry will then not necessarily be in the
discovery of leads, but in discovering and assessing the therapeutic utility of its
leads and druggable targets (indications) [11]. Furthermore, filtering of targets
will become imperative as the space for potentially biologically relevant phar-
macophores is enormous, and even large libraries populate it only sparsely, and
attrition remains severe.

2.1.1 Bioinformatics Inputs (BI Inputs)

Drug-likeness and the Ro5 (see below) has been used to advantage, but as our
knowledge of SB grows there is a need to move towards more predictive
approaches. This will require prediction of where and how drugs interact with
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metabolism, which can be addressed by cheminformatics methods to assess
molecular similarity between a putative drug and reactive metabolites. Conclud-
ing, the inputs of SB at identifying drug targets and BI are clearly needed in order
to arrive at a target identification and validation.

2.2 Combinatorial Chemistry Tools

Combinatorial Chemistry methods facilitate:

• The synthesis of large libraries of small organic compounds and peptides
• The evaluation of these libraries against molecular and cellular targets
• The computer simulation of a large number of different but structurally related

molecules

Combinatorial chemistry has contributed significantly towards the evolution of
the DD process with the major emphasis in the field evolving towards methods to
accelerate lead generation/lead optimization, focused parallel synthesis, high
throughput technology, and chemical biology. It is justified on the assumption that
the estimated size of the synthetically tractable space is in the order of 1020–1024

molecules [12].
The latest report from a series of combinatorial chemistry surveys is available

[13], providing bioactive libraries of different types. A new grouping highlights
discovery and characterization of molecular probes or tool compounds allowing an
investigation of fundamental biological function at molecular, cellular and whole
organism levels. Such probes may be defined as small molecules that elicit a
cellular event or phenotypical result through the specific interaction with a target
protein, pathway or analyte. A good example is a breast cancer cell migration
probe [14].

2.2.1 BI Inputs

Various computational tools are available as decision support tools for medicinal
chemists involved in compound library synthesis programs [15]. These methods
can be used to assemble a flexible library consisting of a structure-based library
design followed by property-biased library refinement and final selection
according to structure-activity-relationship considerations. Parallel Computing
has facilitated the development of structure-based tools that are able to screen
hundreds of thousands of molecules [16].

Further lead improvement is achieved with the help of diversity-oriented
syntheses and asymmetric (chiral) compound preparation methods (see below).
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2.2.2 Diversity Tools

Diversity can be accomplished chemically and biologically while seeking tools
which can enrich the chemical space. Although purely chemically-based, diversity
tools will have reached their full potential once the SB and BI tools are applied
(as to any other OMICs) and explored.

2.2.2.1 Diversity-Oriented Synthesis and Discovery

Diversity-Oriented Synthesis (DOS) aims to prepare (mostly via solid-phase
chemistry) collections of structurally complex and diverse compounds from simple
starting materials, typically from ‘split-pool’ combinatorial chemistry. The DOS
concept is typically applied through four elements of diversity:

• Building block
• Functional groups
• Stereochemistry, and
• Skeleton branching

Mimicking the broad structural features of natural products may allow the
discovery of compounds that modulate the functions of macromolecules for which
ligands are not known [17].

A simpler synthetic planning strategy is also available. In it a ‘‘retrosynthetic
analysis’’ of the desired target structure is employed (which means a step-wise
analysis of chemical transformations, starting from the complex target structure
towards more simple starting materials) [18].

2.2.2.2 Differentially Expressed Proteins

DNA microarrays have allowed researchers a tool to detect differential expression
of numerous, genes in a small sample and have clearly revolutionized the way
gene expression analysis is now carried out (differentially expressed protein
screen; detected against a normal background). These microarrays are, however,
confined to the detection of gene transcripts and do not permit the analysis of the
translational product (protein). The recent development of protein microarrays
now offers the ability to simultaneously analyze the protein expression of several
hundred proteins to measure the presence, biochemical characteristics and acti-
vation state of a considerable number of proteins in a single experiment.

2.2.2.3 Phage Display

Phage display (phage display screen) provides another diversity tool, based on the
exploration of the most natural and efficient DD process. Molecular imaging is at
the forefront in the advancement of in vivo diagnosis and monitoring of disease.
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New peptide-based molecular probes to facilitate disease/cancer detection are
rapidly evolving. Peptide-based molecular probes that target apoptosis, angio-
genesis, cell signaling and cell adhesion events are in place. Phage display
technology is commonly employed to identify peptides as tumor-targeting mole-
cules. Numerous peptides that bind cancer cells and cancer-associated antigens
have been reported from phage library selections.

Phage display screens have also been performed in live animals to obtain
peptides with optimal stability and targeting properties in vivo. To this point, few
in vitro, in situ, or in vivo selected peptides have shown success in the molecular
imaging of cancer, the notable exception being vascular targeting peptides
identified via in vivo selections. However, determining which peptide best trans-
lates into a useful drug is of particular importance. Examination of successfully
marketed drugs has highlighted key features of a winning agent, including low
molecular weight, high affinity, stability, solubility; lipophilicity and conforma-
tional rigidity (see Ro5).

A number of other platform strategies have been developed to screen poly-
peptide libraries for ligands targeting receptors selectively expressed in the context
of various cell surface proteomes (cell display, ribosomal display, mRNA display
and covalent DNA display) while phage display being by far the most utilized.

2.2.2.4 Chirality Tools

Advantages of using stereochemically pure drugs are that:

• Total dose could be reduced,
• The dose–response relationship would be simpler,
• A source of variability would be removed, and
• Toxicity from the inactive stereoisomer would be minimized.

Stereospecific interactions at recognition sites result in differences in both
biological and toxicological effects. This fact underlies the continuing growth in
chiral chemistry, rooted as it is in fundamental biochemistry.

The pharmaceutical industry has undergone a strategic shift and embraced the
wide spectrum of asymmetrical synthetic methods, leading to chiral compounds,
now available [19]. The use of these processes in developmental synthesis and
large-scale manufacturing has provided new challenges in DD, motivated by a
desire to improve industrial efficacy and decrease the time from the conception of
a new drug to the market.

Chiral compounds are typically synthesized by asymmetrical synthesis [20],
using a rapid screening method for monitoring specificity using both combinatorial
chemistry and mass spectrometry.

BI Inputs: Few quantitative features are included in the chirality screen.
Hologram quantitative structure-activity relationships (HQSAR) may be performed
on a set of structurally diverse molecules with known human oral bioavailability.
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The HQSAR model is useful for the design of new drug candidates with increased
bioavailability as well as in the process of chemical library design, virtual screening,
and HT screening [21].

2.2.2.5 Homology Tools at Discovery

Similarity metrics (homology modeling), and chemoinformatics are tools which
further reduce the number of hits. They all employ some degree of quantitative
data handling. Homology tools represent purely BI input.

Homology modeling (comparative modeling), refers to constructing an atomic-
resolution model of the ‘‘target’’ protein and an experimental 3D structure of a
related homologous protein (the ‘‘template’’). To cite the author—‘‘homology
modeling relies on the identification of one or more known protein structures likely
to resemble the structure of the query sequence, and on the production of an
alignment that maps residues in the query sequence to residues in the template
sequence. The sequence alignment and template structure are then used to produce
a structural model of the target. Because protein structures are more conserved
than DNA sequences, detectable levels of sequence similarity usually imply
significant structural similarity’’ [22].

2.2.2.6 Cheminformatics

Cheminformatics combines chemistry and computer science (e.g., chemical graph
theory) and mining the chemical space. Several selected tools are reviewed below:

• A data mining approach has been developed in order to construct a structure-
diverse sub-library from the large PubChem (http://pubchem.ncbi.nlm.nih.gov/)
database [23], suitable in silico virtual screening and in vitro HTS drug
screening.

• Immunoinformatics, represents an emergent sub-discipline of BI, proposed to
develop computational vaccinology as a potent tool in the quest for new vaccines.

• A text-based search engine allows efficient searching of compounds (in ChemDB;
http://www.chemdb.com; containing nearly 5 million commercially available
small molecules) based on over 65 million annotations from over 150
vendors [24].

2.2.2.7 Fragment Based DD

Fragment Based DD (FBDD) has developed over the last decade to take its place
as a standard tool in the pharma industry [25]. It has yielded numerous, well-
documented successes, and has proved to be the tool of choice for targets where
much structural information is forthcoming, and which possess a well-defined,
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reasonably-small binding site [26]. To enable screening, a useful parameter has
been introduced, the ligand efficiency, which is defined as the free energy of
binding divided by the non-hydrogen atom count [27]. Further improvement
follows, through so-called ‘fragment evolution’ and ‘fragment linking’.

The next few years should see a maturing of the area, and as our understanding
of how the concepts can be best applied increases. Undoubtedly, BI input will be
introduced here in order to optimize the fragment chemistry.

2.2.3 Qualitative and Quantitative Screens and Filters

Several exclusionary filters have been devised to reduce the number of hits to
manageable levels with the aim of identifying a lead substance. Rule of Five
(Ro5) and extensions represent one such tool. Some screens have been devised
that remove reactive chemical functionalities, on the premise that compounds
having covalent chemistry capabilities have no place in DD (a simple quali-
tative rule or rule of thumb). The original Ro5 (Lipinski rule) deals with orally
(lipidic) active compounds and defines the following simple physicochemical
parameter ranges:

• log P B 5
• H-bond donors B 5
• H-bond acceptors B 10,

These physicochemical properties are typically associated with 90% of orally
active drugs that have achieved phase II clinical status. Essentially they are
associated with acceptable aqueous solubility and intestinal permeability and
comprise the first steps in oral bioavailability. This concept has been extended to
include drug-like physicochemical properties [28]. Lead-like drugs refer to the
screening of small MW libraries with detection of weak affinities in the high
micromolar to millimolar range. A rule of three (Ro3) has been coined for these
small molecule fragment screening libraries.

Simple kinetics (binding kinetics) in post Ro5 optimization/screen parame-
ters in lead discovery and optimization is discussed below. Current lead dis-
covery is mainly focused on identification of novel active and selective
agonists, antagonists, or inhibitors that provide viable starting points into
subsequent lead finding and optimization campaigns. The determination of
binding kinetic profiles for efficacy and selectivity assessment in the context of
lead discovery is widely under-appreciated, even though increasing evidence
exists that renders compounds that exhibit long binary complex residence time
(in blood) better lead candidates (Chap. 7). This behavior will highlight the
underlying enzymological principles of so-called slow k (off) compounds (very
low dissociation constant from the complex) and will provide examples that
demonstrate that efficacious compounds display a distinct kinetic signature and
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will introduce a fragment-based lead discovery concept that guides medicinal
chemistry towards long residence time kinase inhibitors for next-generation
drugs.

2.2.3.1 BI Inputs

The use of computational rules as filters is an evolving field. A paradigm shift in
drug discovery has resulted in the integration of Pharmacokinetics (PK) and DDv
activities into the early stages of lead discovery [29]. In particular, in silico filters
are used to help identify and screen out compounds that are unlikely to become
drugs. Recent computational approaches towards the design of drug-like com-
pound libraries, the prediction of drug-likeness, as well as intestinal absorption
through passive transport, and the permeation of the blood-brain barrier serve as
examples. The PK properties should also be included as important filters in virtual
screening. Current development in theoretical models allows prediction of drug
absorption-related properties, such as intestinal absorption, and blood-brain
partitioning [30]. Both, chemical and computational methods serve as standard
filter tools in the pharmaceutical industry.

2.2.4 Structure-Activity Methods (SAR/QSAR)

Quantitative structure-activity relationship (QSAR) is the process by which a
chemical structure (a possible future pharmaceutical) is quantitatively correlated
with a well defined process, such as biological activity or chemical reactivity (this
effort has substantial BI and SB inputs). Biological activity can be expressed
quantitatively as a concentration of a substance required to cause a certain
biological response (this is just one aspect of the pure pharmacology, only half of
the story; the key to characterization is equally functional impact). When physi-
cochemical properties or structures are expressed by numbers, a mathematical
relationship or quantitative structure-activity relationship, between the two can be
established. The biological activity is usually measured in assays to determine the
level of inhibition of particular signal transduction or metabolic pathways.

Unger and Hansch defined good practice in QSAR [31]:

• Select independent variables
• Justify the choice of the variables by statistical procedures,
• Apply the principle of parsimony,
• Have a large number of objects compared to the number of variables,
• Try to find a qualitative model of physicochemical or biochemical significance

(chemical descriptors).
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At present, more subtle quantitative methods are available:

• Chemical Computing Group Inc. developed novel 3D-QSAR descriptors
allowing the 3D properties of compounds to be incorporated into traditional
QSAR models, including Probabilistic Receptor Potentials to calculate the
substrate’s atomic preferences in the active site [32].

• Newer QSAR approaches [33]. The method seeks to characterize molecules by
means of mathematical approaches used to establish a correlation between
descriptor values and biological activity.

• New mathematical tools of Multivariate analysis include Artificial Neural
Networks, Regression Trees, Random Forests, MARS (splines) and other
methods (statistical). Various molecular descriptors have been used.

• The newest developments involve descriptors of 3D/4D QSAR, allowing for
complex conformational methodology, covering a classification of drugs by
their activity, MoA, target and binding site [34].

2.3 Summarizing

• This chapter discusses a mix of mostly reductionistic, qualitative and quanti-
tative tools, at the chemistry discovery level.

• Chemical and other screening methods are a must because a typical compound
entering a Phase I clinical trial undergoes years of rigorous preclinical testing
but still only has about 8% change to reach the market.

• The number of druggable targets (number of specific drug-binding sites) is
becoming exhausted and saturated by discovered drugs.

• The present insight into disease and biological processes is not sufficient to
predict the therapeutic value of druggability of a novel target.

• While assessing the lead utility, the key is discrimination between disease-
associated versus disease-modifying genes.

• Despite the initial promise of combinatorial chemistry, particularly large library
combinatorial chemistry, to greatly accelerate drug discovery, this approach has
not been fully effective as a means to build the compound collections of
pharmaceutical and biotechnology companies.

• Combinatorial chemistry, though, has already had a great impact on DD pro-
grams and has contributed to the discovery of drugs that are currently in clinical
trials or already in the market. Its significance will grow.

• Further lead improvement/screen can be achieved with the help of diversity-
oriented syntheses and chiral compound preparation methods. Computer-based
guidance will help.

• Several chemical BP tools are available to guide similarity searches.
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• Application of qualitative rules such as rule-of-thumb (ROT) and computational
filters will become more efficient. The huge number of active motifs can be
reduced to a handful of promising lead series.

• QSAR is a well established tool where physicochemical and molecular
descriptors are correlated with bioassay outputs.

• In silico tools will need to become a part of every pharmacologist’s tool kit and
this will require training in modeling and informatics, alongside in vivo, in vitro
and molecular skills.

• A suite of QSAR models for making quantitative prediction of interactions of a
test molecule with important classes of human proteins should be integrated into
the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET)
modeling effort (see Chap. 7).
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Chapter 3
Integrative Systems Biology
I—Biochemistry: Phase I Lead Discovery
and Molecular Interactions

This chapter represents a mix of reductionist and holistic tools. Molecular screens
and Biomimetics represent advanced reductionist approaches—the former are well
established in the industry, although still developing. Similarly, the collateral
efficacy/permissive antagonism concept may add to this effort, possibly generating
new targets. Solving different co-drugging modalities represents a typical SB
approach. Likewise, text mining does add to the holistic (global) effort. Tools to
analyze biochemical networks and the phenomenon of emergence may lead to the
establishment of ‘new biology’ or computational systems biology (CSB). Reac-
tome analysis and bioinformatics tools only reinforce this effort. The level of
development of the above quantitative tools is not uniform: some are advanced and
mature (e.g., molecular screens), some require more inputs and are undergoing
rapid evolution.

Definitions:

• Molecular modeling is a collective term that refers to theoretical methods and
computational techniques to model or mimic the behavior of molecules.

• Receptor or host is the ‘receiving’ molecule, most commonly a protein, while
Ligand or guest is the complementary partner which binds to the receptor.

• Docking is a computational simulation of a candidate ligand binding to a
receptor, while Scoring is a process of evaluating a particular fit.

• Biomimetic compounds are synthetic materials with composition and properties
similar to those made by living organisms.

• Collateral efficacy is a new concept, featuring differential effects depending on
therapeutic niche.

• Co-drugging concept evolved from pleiotropy/redundancy effects on cell.
• Text mining refers to extracting knowledge from unstructured textual data.
• Biochemical network is an irreducible map of biochemical reactions. Similarly,

other networks may be defined: transcriptional, proteomic, etc.

A. Prokop and S. Michelson, Systems Biology in Biotech & Pharma,
SpringerBriefs in Pharmaceutical Science & Drug Development,
DOI: 10.1007/978-94-007-2849-3_3, � The Author(s) 2012
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• Chemometrics (e.g., Gemperline, 2006) involves, in very broad terms, classical
and newer methods of statistical analysis, such as Multivariate analysis, prin-
cipal components analysis (PCA), partial least-squares (PLS), followed by
regression, clustering, and pattern recognition, lately, application areas have
gone on to represent new domains, such as molecular modeling and QSAR,
cheminformatics, the ‘-omics’ fields of genomics, proteomics, metabonomics
and metabolomics (some covered in later chapters). Typically, it is applied to
solve both descriptive and predictive problems in experimental life sciences.

This section will discuss some theoretical, kinetic and quantitative concepts of
biochemistry relevant to DD. First, we will cover reductionist phenomena of
receptor-ligand interaction and molecular modeling, and then move onto biomi-
metic approaches at generating biologically active substances and onto collateral
efficacy. SB will include the co-drugging concept, and text mining for interactions.
In concluding, the chapter will review the current status of modeling of bio-
chemical, signaling and interaction networks, a basis of SB. Wherever relevant, we
will discuss quantitative tools, which are of great importance for building the
fundamentals of SB.

3.1 Molecular Screens: Receptor–Ligand (R–L) Interaction
and Molecular Modeling

This is an extension of the QSAR concept with the additional help of 3D phar-
macophore modeling. With regards to small-ligand-receptor, in silico screening
methods, one can usually distinguish two main strategies: ligand-based and
receptor (structure)-based methods. This part exclusively uses a variety of BI
tools.

The absence of a 3D receptor structure is the main reason for the application of
ligand-based methods: similarity search; clustering; pharmacophore alignment
(matching); 3D-pharmacophore modeling; and quantitative structure–activity
relationship (QSAR). It uses information to find compounds that are known to bind
to the desired target and then identifies other molecules in diverse databases with
similar properties. Receptor-based methods essentially search for a ligand whose
orientation and conformation achieves the highest degree of complementarity with
respect to all details of the receptor steric constraints and interaction geometries
(ligand docking) while the three-dimensional structure of the target is known either
by X-ray crystallography or NMR experiments or predicted by homology.

Pharmaceutical research employs computer docking techniques for a variety of
purposes, most notably in the virtual screening of large databases of available
chemicals in order to select likely drug candidates: protein structure prediction,
structural analysis, ‘definition of ligand binding site’ and in silico docking and
scoring (e.g., Villoutreix et al. [1]. Several protein–ligand docking software
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packages are available (e.g., in [2, 3]), and the benefit of machine learning tools is
that they are robust and model-free [4, 5].

Ligand binding to cell membrane receptors sets off a series of protein inter-
actions that convey the nuances of ligand identity to the cell interior [6]. To study
such interaction in living cells, different fluorescence imaging techniques are
available (FRET, FCM and others). The challenge is extracting the quantitative
information that is necessary to verify different models of signal transduction.

Complementary to experimental tools, we will cover detailed modeling of
receptor-ligand interactions as an objective of molecular modeling tools below.

3.1.1 Molecular Modeling

Molecular modeling is often referred to as structural genomics and consists of
determination of 3D structure of all proteins of a given organism, by experimental
methods such as X-ray crystallography, NMR spectroscopy or computational
approaches such as homology modeling. The simplest calculations can be
performed by hand, but inevitably computers are required to perform molecular
modeling on any reasonably sized system. The molecular modeling technique
features the atomic level description of the molecular systems while reducing the
complexity of the system. This is in contrast to quantum chemistry (also known as
electronic structure calculations). The benefit of molecular modeling is that it
reduces the complexity of the system.

3.1.2 Quantum Chemistry

Quantum chemistry mathematically describes the fundamental behavior of matter
at the molecular scale, employing many approximations for most practical pur-
poses. In quantum mechanics the Hamiltonian, or the physical state, of a particle
can be expressed as the sum of two operators, one corresponding to kinetic energy
and the other to potential energy. At present, quantum chemistry methods are
prohibitively expensive.

3.1.3 Molecular Mechanics

Molecular mechanics (MM) methods are based on classical mechanics, allowing
simulations to be performed on large systems containing more than 100 000
atoms. Free energy calculations derived from MM can account for flexibility for
both the protein and the ligand as well as solvation effects (interaction with water),
and accuracy and efficiency can be achieved within certain approximations. Huang
et al. [7] list different methods/tools available.
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3.1.4 Molecular Dynamics

Molecular dynamics (MD) simulations are now routinely applied to the study of
biomolecular systems with the aim of sampling the configuration space more
efficiently and getting a better understanding of the factors that determine struc-
tural stability and relevant biophysical and biochemical processes such as protein
folding [8], ligand binding, and enzymatic reactions. This field has matured
significantly in recent years.

3.1.5 Receptor Based QSAR Methods

Receptor based QSAR methods represent a computational marriage of structure
activity relationship analysis and receptor structure based design that is providing
valuable pharmacological insight to a wide range of therapeutic targets (Lushington
et al. [9]). One implementation, called Comparative Binding Energy (COMBINE)
analysis, is particularly powerful because of its explicit consideration of interatomic
interactions between the ligand and receptor as the QSAR variable space. Other
important methods account for covalent effects arising from ligand binding, as well
as successful application of a COMBINE model to high throughput virtual
screening. In many methods, lack of receptor flexibility considerations result in
meaningless ligand binding scores, even when the correct receptor structure is
obtained [10]. Modeling the role of the aqueous solvent in ligand–protein interac-
tions is achieved via employment of one of three main computational techniques:
free energy methods; ligand–protein docking and scoring; and the explicit inclusion
of tightly bound water molecules in modeling (protonation) [11]. Using receptor
conformations experimentally determined by crystallography or NMR or compu-
tationally, is a practical shortcut that may improve docking calculations. Binding site
flexibility and protonation are issues which have been neglected for too long and
require attention.

3.1.6 Biomimetics

Employment of natural compounds themselves should be the first modus operandi
and the screening of natural products was in the forefront of early pharma efforts.
Design of ‘‘mutein’’ proteins and biomimetic drugs (mimicking natural com-
pounds) is beneficial as such substances can exhibit selective and sometimes novel
biological properties. This is a purely chemical effort, not involving any modeling
at this stage of development.

Demand for modified peptides with improved stability profiles and PK prop-
erties are driving extensive research effort in this field. Many structural modifi-
cations of peptides guided by rational design and molecular modeling have been
established to develop novel synthetic approaches [12]. Tamerler and Sarikaya
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[13] adapted combinatorial biology protocols to display peptide libraries, either on
the cell surface or on phages, to select short peptides specific to a variety of
practical materials systems. The protein epitope mimetic (PEM) approach
(Robinson et al. [14]) considers folded 3D structures of peptides and proteins as a
starting point for the design of synthetic molecules that mimic key epitopes
involved in protein–protein and protein–nucleic acid interactions. PEM technology
became a powerful tool for target validation.

3.2 Collateral Efficacy and Permissive Antagonism

The efficacy of a drug is generally determined by the drug’s ability to promote a
quantifiable biological response [15]. In contrast to classical receptor-occupancy
theory, the concept that a single receptor can engage different signaling pathways and
various drugs binding to this receptor might differentially influence each of these
pathways led to the reassessment of the efficacy concept. Of particular note is the fact
that ligands that behave as agonists toward a given signaling pathway can act,
through the same receptor, as antagonists or even inverse agonists on a different
pathway in the same cell. Specifically, some agonists might only partially activate the
range of potential signaling systems in a cell or some antagonists might actively
induce receptor internalization without activation. There is no longer justifiction for a
linear view of efficacy whereby a single receptor activation state triggers all possible
receptor interactions with a cell. Instead, a view of collateral efficacy, in which
ligands can produce portions of the possible behaviors of receptors, is presented [16].
In practical terms, for example, a complex agonism is described, whereby a ligand
produces positive agonism in quiescent systems and inverse agonism in constitu-
tively active systems. Langmead [17] details a method for screening for positive
allosteric modulators to examine a concentration–response (C/R) curve to the
putative modulator in the presence of a single, low concentration of agonist.

There is a clear impact on DD, because the concept of permissive antagonism
(a simple alternative allosteric model whereby the agonist and antagonist interact
through conformational changes in the receptor protein) raises the possibility of
selecting or designing novel ligands that differentially activate only a subset of
functions of a single receptor, thereby optimizing therapeutic action. Very rigorous
kinetic and thermodynamic/equilibrium analysis and BI inputs will be required to
validate these allosteric effects.

3.3 Co-Drugging: Multiple Targets, Combination
Therapy & Multistage Targeting

Advances in SB are revealing a phenotypic robustness and a network structure that
strongly suggests that partial inhibition of a surprisingly small number of targets can be
more efficient than the complete inhibition of a single target. This and the success
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stories of multi-target drugs and combinatorial therapies suggest that systematic drug-
design strategies should be directed against multiple targets. The final effect of
multiple drug action might often surpass that of complete drug action at a single target.

3.3.1 Multicomponent Drugs

Multicomponent drugs are standard in cytotoxic chemotherapy, but their
development has required extensive empirical testing. However, experimentally
validated numerical models should greatly aid the formulation of new combi-
nation therapies, particularly those tailored to the needs of specific patients
[18]. Mathematical analysis is potentially powerful because many drug com-
binations can be explored computationally at much lower cost than in
preclinical or clinical experiments. Some success has been achieved in for-
mulating mathematical models of signaling pathways and oncogenic processes
relevant to human disease. Such computational approaches to pharmacology
require models that accurately recapitulate biochemical events in normal and
abnormal (diseased) states. Some qualitative rules-of-thumb for selection were
put forwards by Morphy et al. [19].

A clinical rationale for employing multiple ligands is based on the knowledge
that several mutations are required for the development of cancers and other
diseases, requiring several interventions. An enhanced (overlapping) toxicity of
combination drugs might necessitate dose reduction of individual agents to ensure
tolerability and reduced adverse effects. Clinical trials for combinations of novel
targeted agents are listed in Dancey and Chen [20]. These authors suggested two
different approaches:

• A single agent with multiple targets.
• A combination of agents with a single target (mixture of monotherapies).

3.3.2 Multi-Target Approach

Multi-target approaches suffer from the reductionist view as combination drugs are
optimized for target selectivity and not for specific physiological responses. This is
because our level of understanding of the effect of combination drugs is limited
and it is not possible to predict the physiological consequences of modulating a
novel (multiple) target. CSB offers a new solution, however. A real benefit will
only come when a drug combination simultaneously impacts the principal and
alternative target pathways of a disease. SB could provide excellent insights into
these complex dynamics as the effects of multiple perturbations to any system are
not obvious.
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3.3.3 Multi-Stage Targeting

Multistage targeting is a concept that uses a sequence of drugs administered at
specific doses and time intervals so that the dynamic state of target cells can be
selectively perturbed into the system state that is desired for therapeutic purposes
[21]. In such cases, it is important that the correct order and individual dose of the
drugs to be administered, as well as the interval between the administrations of
each drug, is examined. The multistage approach involves successively adminis-
tering a set of drugs to differentiate between target and off-target cells. Good
examples are sequential delivery of paclitaxel (Taxol; Bristol–Myers Squibb) and
oxaliplatin (Eloxatin, Sanofi–Aventis), also termed as cancer chronotherapy.
Another example is any compound that is cell cycle specific, e.g., acts to disrupt
the molecular machinery in the S- or G2-phase of the cell cycle. Typically, these
kinds of cycle specific compounds act optimally when the cell population has been
‘‘synchronized’’ to the target phase. In this case, Drug 1 inhibits progression
through cycle at the boundary of the target phase and then, with appropriate
timing, depending on the PK/PD of the Drug 1, Drug 2 can exert its maximum
influence on the ‘‘resynchronized’’ cell populaiton. This strategy has been
employed in cancer chemotherapy since the early works by Trucco and Rubinow
([22, 23]; see also Leith et al. [24]). Specifically, Mitomycin C in heterogeneous
tumor growth acts in a similar way [24].

The assumption behind this approach is that there might be differences between
target and off-target cells regarding their response to drugs, and that successive
intervention, rather than a single intervention, could better exploit such differences
to attain a greater level of selectivity. The next important step is the introduction of
quantitative approaches (BI and SB inputs).

3.4 Text Mining for Interactions

Text mining for interactions is an emerging field concerned with the process of
discovering and extracting knowledge from unstructured textual data, contrasting
it with data mining which discovers knowledge from structured data. Text mining
comprises three major activities: information retrieval, to gather relevant texts;
information extraction, to identify and extract a range of specific types of infor-
mation from texts of interest; and data mining, to find associations among pieces of
information extracted from many different texts. Text mining aids in the
construction of hypotheses from associations derived from vast amounts of text
that are then subjected to experimental validation by experts (Sarić et al. [25]).
Text mining relies entirely on BI inputs. Massive extraction databases are
available: e.g., WikiProfessional http://www.wikiprofessional.org. Open questions
remain on ontologies, database curation, on document processing and structure,
and evaluation [26].
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3.5 Employment of Biochemical Networks

Metabolism is based on elementary biochemical reactions, and forms the irre-
ducible elements of a dynamic and adaptive network. The simulation of metabolic
processes is based on specific models, which can be subdivided into abstract,
discrete, and analytical. The abstract models typically employ automata and
logical models, which permit the global discussion of fundamental aspects. The
goal of analytical models is exact quantitative simulation, where the analysis of
kinetic features of enzymes is important.

For example, glycolysis has been modeled by a set of differential equations.
Discrete models employ state transition diagrams. Simple models of this class are
based on simple production units, which can typically be combined. The graphical
model allows the discussion of metabolic regulation processes and is representa-
tive for the class of graph theoretical approaches.

The above approach can be extended to allow for modeling of dynamic pro-
cesses. In this case Petri Nets are used. Reddy et al. [27] presented the very first
application of Petri Nets in molecular biology; this formalization is also able to
model metabolic pathways. The highest abstraction level of this model class is
represented by expert systems (Brutlag et al. [28]) and object oriented systems
[29]. Expert systems and object oriented systems are developed by higher pro-
gramming languages (Lisp, C++) and allow the modeling of metabolic processes
by facts/classes (proteins and enzymes) and rules/classes (chemical reactions), by
using a grammatical formalization that is able to model complex metabolic
networks [30].

3.6 Overview of Deterministic Models

A quick overview of quantitative biochemical models (deterministic) is presented
below. A full reaction mechanism is the set of elementary steps that specify how a
reaction takes place. Elementary steps are those that cannot be decomposed into a
more detailed scheme. In fact, a biochemical system is a network of elementary
steps connecting various reactants, intermediates and products. A comprehensive
description of such networks determines the number of chemical species and
processes, the sequence of interactions and the rate laws governing the elementary
reaction velocities.

Mass action law and linearized form are key concepts. It is now common to
employ linearized forms of classical Michaelis–Menten enzyme kinetic equations
to tackle metabolic and signaling pathways (Crampin et al. [31]). The assumption
is that most reactions proceed at a high rate and no significant accumulation of
intermediates occurs. Exceptionally, modelers have used non-linear descriptions
for branching points at signaling or when crossing boundaries (transport), or when
concentration-dependent clearance and binding/dissociation (equilibrium) are
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considered. A linear system is easier to simulate because of easier parameter
identification and process simulation [32]. Additionally, linear systems allow for a
clearer and more in-depth analysis of system steady states and their stability
characteristics.

Assessing the bidirectionality of enzyme reactions and equilibrium is another
kinetic aspect which must be described. The major problem of biology, as well as
the ‘inverse problem’ of determining parametric causes from measured effects
(variables), to which it is related, is understanding, at a lower level, the time-
dependent changes of state that are commonly described at a higher level of
organization; an issue often referred to using terms such as ‘self-organization’,
‘emergence’, networks and complexity [33].

3.6.1 Emergence

Ricard [34] states that a complex state may, because of some novel unpredictable
properties, emerge as a consequence of the interaction of the components (parts) of
the system. For biochemical systems, a system composed of two components
displays negative or positive integration and is defined as a complex system. Such a
system structure implies it cannot be reduced to its components.

Several recently constructed detailed kinetic models of metabolism (glycolysis),
signal transduction (EGF receptor), and the eukaryotic cell cycle (Saccharomyces
cerevisiae) have been used to exemplify the Silicon Cell project. These models are
stored and made accessible via the JWS Online Cellular Systems Modeling, a
web-based repository of kinetic models, together with a user-friendly graphical
interface. The goal is to combine models on parts of cellular systems and ultimately
to construct detailed kinetic models at the cellular level [35], at this moment limited
to microbial systems. There is a need to develop and provide access to mammalian
systems models (note some signaling pathways have been studied in some detail,
see Oda et al. [36] on EGFR pathway maps). Curating repository models is another
challenge. This type of approach we call ‘reaction network’ analysis (see also
below in Chap. 5).

Although ODEs are commonly used to model signaling systems such as the
ERK, they have one major drawback, and that is they are reliant on high-frequency
sampling and absolute parameter data, such as kinetic rates and absolute initial
concentrations. However, a lot of the data generated by biologists, including data
generated from HT techniques, are not directly amenable to modeling, as they
often contain sparse time series, are qualitative rather than quantitative, and show
relative changes rather than changes in absolute concentrations.

Two additional (steady state) approaches are FBA (Flux Balance Analysis—
Bonarius et al. [37]) and MCA (Metabolic Control Analysis [38]). FBA is an
approach to constrain a metabolic network based on the stoichiometry of meta-
bolic reactions and does not require kinetic information. MCA is a quantitative
analysis of fluxes and concentrations, The relative control exerted by each step on
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a system variable is measured by applying a perturbation to the step and measuring
the effect on the variable of interest after the system has settled to a new steady
state. An extension of MCA has been recently suggested for dynamics of signal
transduction (Hornberg et al. [39]). Thermodynamically-constrained metabolic
flux analysis for network study has been proposed [40]. Other constraints include,
typically, reversibility, charge balance, redox balance, regulatory rules or volume
constraints (of the cell).

Some qualitative approaches are also available. Hybrid intelligent or rule-based
models (fuzzy logic, neural nets, genetic algorithms and statistical analysis) can
easily span several scales (time and length) and be used as a tool for aiding human
reasoning when many interacting variables participate in complex system [41].
Such approach enables the incorporation of (qualitative) biological expertise into
the modeling process. The employment of qualitative methods is warranted
because of tremendous difficulties in handling multiscale systems mathematically.

3.6.2 Reactome

The following paragraph represents a rather short survey of some database
resources one might use for his/her research. Reactome is an online bioinformatics
database of human biology described in molecular terms, covering DNA repli-
cation, transcription, translation, the cell cycle, metabolism, and signaling cas-
cades and can be browsed (in the public domain) to retrieve up-to-date information
about a topic of interest (http://www.reactome.org) and is periodically updated
(Matthews et al. [42]). However, it does not include metabolome data. KEGG
(Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/ is
hypertext-based information on biochemical pathways, including metabolic and
regulatory pathways, cell cycle and growth factor signaling. It is not, however,
queryable. BioMart (http://www.biomart.org) is a query-oriented data manage-
ment system developed jointly by the Ontario Institute for Cancer Research
(OiCR) and the European Bioinformatics Institute (EBI). The system can be used
with any type of data and is particularly suited for providing ‘data mining’ like
searches of complex descriptive data. The Online Bioinformatics Resources
Collection (OBRC) contains annotations and links for 2348 bioinformatics
databases and software tools (www.hsls.pitt.edu/guides/genetics/obrc).

3.7 Bioinformatics

Bioinformatics (BI) is a relatively new discipline dealing with the computational
needs of biology, which has become a highly data-intensive activity. Biology
databases must deal with both variety and scale, as well as be able to integrate the
disparate databases that are their information sources. At the same time they must
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provide flexible, friendly user interfaces for querying and data mining and cope
with incomplete and uncertain data [43]. BI tools are very different from SB.
However, both BI and SB, though somewhat different are complementary.
Specifically, various BI computational methods address a broad spectrum of
problems in functional genomics and cell physiology, including; analysis of
sequences (alignment, homology discovery, gene annotation), gene clustering,
pattern recognition/discovery in large-scale expression data, elucidation of
genetic regulatory circuits, analysis of metabolic networks and signal transduction
pathways, which may in some instances overlap with SB’s goals.

In our view, bioinformatics is a part of larger field, computational biology:

• BI (incl. computational genomics).
• Structural modeling: molecular modeling and protein structure (some people

consider structural tools as part of BI).
• Biophysics: molecular dynamics (Physical Biology of the Cell).
• Computational modeling of systems: CSB.

An overview of branches of computational biology is presented in Fig. 3.1. The
question is: where is there an overlap between SB and BI? And though the
disciplines exist in parallel, some of the tools are used interchangeably. Bio-
medical informatics (BMI) is another branch of CB, like biophysics.

Biophysics focuses on physical concepts and phenomena that cut across mul-
tiple biological structures and functions (Phillips et al. [44]), and three distinct
approaches have been identified:

1. Mechanical, chemical equilibrium, entropy, statistics and tensegrity tools for
resting cells;

2. Statistical, chemical rate, and electrochemical tools for cell dynamics; and
3. Networking in space and time.

Computational biology

Bioinformatics

Computational 
systems biology

(algorithms)

Systems biology tools

Biomedical 
informatics

Biophysics
(dynamics)

Structural
modeling

Fig. 3.1 Computational biology and its branches
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The SB inputs (via the systems approach) are evident in all disciplines. Although
the distinction is used by NIH in their working definitions of Bioinformatics and
Computational Biology, it is clear that there is a tight coupling of developments and
knowledge between the more hypothesis-driven research in computational biology
and technique-driven research in bioinformatics.

3.8 Summarizing

• Molecular screens based on receptor-ligand interaction and molecular modeling
represents an extension of the QSAR concept (with or w/o 3D structure).

• Binding site flexibility and protonation are issues which have been neglected for
too long.

• Molecular dynamics tools will be soon integrated into QSAR methods.
• Biomimetic drug design is a purely chemical effort, not involving any modeling

at this stage of development.
• Selective compounds, compared with multitarget drugs, may exhibit lower than

desired clinical efficacy, as network analysis shows (see Chaps. 4 and 5).
• Real benefit will come only when a drug combination simultaneously impacts

the principal and alternative targets of a disease.
• Collateral efficacy and permissive antagonism concepts may provide new DD

leads once verified in vivo and established as a kinetic tool.
• Text mining aids in the construction of hypotheses from associations derived

from vast amounts of text that are then subjected to experimental validation.
• Further effort is warranted to unify (and curate) repository network models.
• Many computational tools exist for visually exploring biological networks (35

existing tools reviewed by [45]).
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Chapter 4
Integrative Systems Biology
II—Molecular Biology: Phase 2 Lead
Discovery and In Silico Screening

Many different OMICs/HTS techniques now allow huge amounts of molecular
signatures to be collected and then analysed further by system tools. Among them,
ChIP-on-chip is used to investigate interactions between proteins and DNA in vivo
[1]. Chemogenomics, morphogenics and synthetic biology are only in the early
stages of development, but may contribute to target identification. A key SB tool,
the reconstruction of biological networks, represents an emerging field, undergo-
ing explosive expansion, and will likely enable efficient mapping of gene onto
function.

Definitions:

• High throughput screening (HTS) is a method of high-productivity
experimentation.

• OMICs mean a study of the totality of biology: e.g. genomics, proteomics, etc.
• Metabolomics: experimental study of global metabolite profiles in a system

(cell, tissue, or organism) under a given set of conditions.
• Chemogenomics: the study of the interaction of functional biological systems

with exogenous small molecules; the intersection of the biological and chemical
spaces.

• Library: a collection of molecules in a stable form that represents some aspect
of an organism. A common type of library is a DNA library or genomic library.

• Morphogenics: a platform process that employs a dominant negative MMR
gene to create genetic diversity, a purely experimental tool.

• Minimal cell/genome: an experimental cell model having the minimum but
sufficient number of components to be defined as living, while Synthetic
Biology combines science and engineering to design novel biological functions.

• Reconstructing biological networks in the sub-cellular environment: network
reconstruction via simulation allows for an in-depth insight into the molecular
mechanisms of a particular organism while correlating genome with physiology.

A. Prokop and S. Michelson, Systems Biology in Biotech & Pharma,
SpringerBriefs in Pharmaceutical Science & Drug Development,
DOI: 10.1007/978-94-007-2849-3_4, � The Author(s) 2012
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• Reverse and forward genetics: ‘reverse’ genetics starts with a purified target,
then moves to the chemical library for binding activity and finally tests a
molecule in vivo for physiological effects. Classical forward genetics starts with
a mutation phenotype and works towards identifying the mutated gene.

4.1 OMICs

The ability to sequence whole genomes has taught us that our knowledge of gene
function is rather limited with typically 30–40% of open reading frames having no
known function. Thus, within the life sciences there is a need for determination of
the biological function of these so-called orphan genes, some of which might
possibly become molecular targets for therapeutic intervention. The search for
specific mRNA, proteins, or metabolites, useful as diagnostic markers has also
increased, as has the fact that these biomarkers may be useful in following and
predicting disease progression or response to therapy.

At present, functional analyses include gene expression (transcriptomics),
protein translation (proteomics), metabolite network dynamics (metabolomics) and
more recently phenomics (to determine the phenotypic response of whole bio-
logical systems to environmental, pathophysiological and genetic perturbations).
In addition, techniques for DNA methylation pattern, microRNA and siRNA
knockdown OMICs are being developed.

HTS leverages developments in the areas of modern robotics, data analysis and
control software, liquid handling devices, and sensitive detectors, allowing one to
efficiently screen millions of compounds and to potentially identify tractable small
molecule modulators of a given biological process or disease state and advance
them into high quality leads [2]. HTS is commonly defined as automatic testing of
potential drug candidates at a rate in excess of 200,000 compounds per week
(uHTS). The aim is to test large compound collections ([500,000 compounds and
as many as 2,000,000) for potentially active compounds (‘hits’) in order to allow
further development of compounds for pre-clinical testing (‘leads’). HTS tech-
nology has emerged over the last few years as an important tool for DD and lead
optimization.

4.1.1 BI Inputs

HTS is not just an experimental platform, but is subjected to several BI tools to
analyze data effectively. Computational advances in image analysis and techno-
logical advancements in general cell biology have extended the utility of HTS into
target validation, including siRNA screening.
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Transcriptomics, a genome-wide measurement of mRNA expression levels
based on DNA microarray technology is one of the main fields of study. It can also
be applied to the specific subset of transcripts present in a particular cell or the
total set of transcripts in a given organism.

Proteomics can be used for characterizing alterations in protein abundance,
finding novel protein–protein and protein–peptide interactions, investigating for-
mation of large macromolecular complexes, and elucidating temporal changes in
protein composition and phosphorylation in signal transduction cascades. Further,
quantitative proteomics can directly compare the activation of entire signaling
networks in response to individual stimuli and discover critical differences in their
circuits that account for alterations of cell response (in disease). This method now
allows investigation of cellular mechanisms at the organismic level. At present the
OMICs technologies still:

• Lack the proper dynamic range in quantitative assays,
• Lack the capacity to scale up to proper size of data and measurements, and
• Display inadequate specificity/sensitivity, failing to avoid inflated false negative

and positive results.

4.1.2 Metabolomics

4.1.2.1 SB and BI Inputs

Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or
organism) under a given set of conditions. Metabolites are the result of the
interaction of the system’s genome with its environment and are not merely the
end product of gene expression, but also form part of the regulatory system in an
integrated manner.

4.1.2.2 Metabolic Profiling

SB and BI Inputs

Metabolic profiling (metabolomics/metabonomics) is the measurement in biolog-
ical systems of the complement of low-molecular-weight metabolites and their
intermediates that reflects the dynamic response to genetic modification and
physiological, pathophysiological, and/or developmental stimuli. The measure-
ment and interpretation of the endogenous metabolite profile from a biological
sample (typically urine, serum, or biological tissue extract) have provided many
opportunities to investigate the changes induced by external stimuli (e.g., drug
treatment) or to enhance our knowledge of inherent biological variation within
specific subpopulations. Such efforts are now being integrated into SB [3].
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4.1.2.3 Peptidome

The low-molecular-weight range of the circulatory (blood) proteome is termed the
‘peptidome’, and may be a rich source of disease, and especially cancer-specific,
diagnostic information because it is a ‘recording’ of the cellular and extracellular
enzymatic events that take place at the level of the tissue/cancer-tissue microen-
vironment [4].

4.1.2.4 Proteome Analysis

‘‘Inverse labeling’’ of proteome analysis, is a strategy is based on the principle of
protein stable isotope labeling and mass spectrometric detection, a procedure to
evaluate protein expression of a diseased or a drug-treated sample in comparison
with a control sample. Two inverse labeling experiments are performed in
parallel. The perturbed sample (by disease or by drug treatment) is labeled in
one experiment, whereas the control is labeled in the second experiment, while
compared differentially using mass spectrometry. This enables the detection of
protein modifications responding to perturbation [5]. 18O and 15N labels are
typically used.

BI Inputs

The PathoGenome Database facilitates DD by providing potential drug targets for
new anti-infectives derived from high-quality DNA sequences, annotation, search
tools and powerful bioinformatics platforms. It covers medically important
microbial organisms. Internet access is established through the LabOnWeb.com
search engine (http://pathogenome.net/index.php/Main_Page).

4.2 Chemogenomics

4.2.1 BI Inputs

Chemogenomics is the study of the interaction of functional biological systems with
exogenous small molecules, or in a broader sense the study of the intersection of
biological and chemical spaces [6]. The biological space is analyzed at various
postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level).
The goal of chemogenomics is the rapid identification of novel drugs and drug
targets embracing multiple early phase DD technologies ranging from target
identification and validation, through compound design and chemical synthesis to
biological testing and ADME profiling [7]. By integrating all information available
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within a protein family (sequence, SAR data, and protein structure), chemoge-
nomics can efficiently enable cross-SAR exploitation, directed compound selection
and early identification of optimum selectivity panel members. Successful exam-
ples include two major protein families: protein kinases and G-protein-coupled
receptors [8].

4.3 Morphogenics

The ability to modulate the DNA mismatch repair (MMR) processes (referred to as
morphogenics) in model systems offers a powerful tool for generating functional
diversity in cells and multicellular organisms via the perpetual genome-wide
accumulation of randomized point and slippage mutation(s). Morphogenics is a
platform process that employs a dominant negative MMR gene to create genetic
diversity within defined cellular systems and results in a wide range of phenotypes,
thus enabling the development and improvement of pharmaceutical products and
the discovery of new pharmaceutical targets.

MMR is a highly conserved biological pathway that plays a key role in
maintaining genomic stability [9]. Defects in MMR are associated with predis-
positions to certain types of cancer including hereditary non-polyposis colorectal
cancer, resistance to certain agents, and abnormalities in meiosis and sterility in
mammalian systems [10].

The maintenance of genomic stability is the prime requirement for the stem cell
phenotype and its normal functioning [11]. The increased mutation rate and
absence of MMR may give rise to stem cell failure, a proliferative advantage and
cancer stem cell formation. The importance of MMR in designing the therapeutic
strategies specifically targeting tumor stem cells is being explored and pursued in
clinical trials (e.g., in chronic myeloid leukaemia) [12].

The molecular mechanisms of the DNA MMR system have been uncovered
over the last decade, especially in prokaryotes [13]. This is a rapidly developing
field. The selective manipulation of the MMR process is a platform technology
that offers many advantages for the discovery of druggable targets, as well as for
the development of novel pharmaceutical products [14].

4.4 Minimal Phenotype and Synthetic Biology

Projects aiming at simplifying living cells converge with efforts to make synthetic
genomes for minimal cells. Here, the aim is to synthesize a cell model having the
minimal but sufficient number of components to be defined as living. One of the
key aims of synthetic biology is to design and build a viable cell with a minimized
genome that can serve as a platform for the construction of microbial factory cells
for biotechnological applications.
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4.4.1 SB and BI Inputs

Comparative genomics, using computational and experimental methods, enables
the identification of the minimal set of genes that is necessary and sufficient for
sustaining a functional cell [15]. For most essential cellular functions, two or more
unrelated or distantly related proteins have evolved; only about 60 proteins,
primarily those involved in translation, are common to all cellular life.

For example, a codon-optimized synthetic gene cluster of polyketide synthase
genes has been synthesized to enable combinatorial makrolide (a group of anti-
biotics) biosynthesis [16–18]. Such an approach offers a synthetic route for pro-
duction of pharmaceutical intermediates. Cell-free synthetic biology, via discovery
by design is now available.

Modeling can facilitate the design of engineered biological systems by allowing
synthetic biologists to better predict system behavior prior to fabrication of self-
replicating biosystems, such as in vitro genome replication, in vitro transcription,
RNA processing and RNA modification, and, post translation, integration into a
minimal cell for development of new drugs [19]. Synthetic biological engineering
is emerging from biology as a distinct discipline based on quantification [20, 21],
with enhanced emphasis on system behavior. This field is only just emerging and
is very new.

4.5 Reconstructing Biological Networks

Both BI and SB contribute to network reconstruction, which is defined as a process
of integrating different data sources into a unified representation of the chemical
(and physical and mechanical) events that underlie a biochemical network [22].

Biochemical system (network) reconstruction (BSR) is emerging as an
important tool as systems analysis of metabolic and growth functions in microbial
organisms is rapidly developing and maturing. Such studies are enabled by
reconstruction, at the genomic scale, of the biochemical reaction networks that
underlie cellular processes. The network reconstruction process is organism spe-
cific and is based on an annotated genome sequence, high-throughput network-
wide data sets and bibliomic data on the detailed properties of individual network
components, as noted by the authors [23]. BSR consists of automatic genome
annotation and automatic reconstruction. In parallel, high-throughput expression
data paired with computational algorithms can be used to infer the structure of
network interactions and the existence of causal relationships capable of repro-
ducing the observed experimental data [24]. Additionally, graph-theoretical
analysis of these networks, and the extension of static networks into various
dynamic models capable of providing a new layer of insight into the functioning of
cellular systems is now available [25, 26]. Qualitative and continuous or hybrid
models, as well as stochastic Petri Nets models, have also been applied [27, 28] to
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these networks. Sackmann et al. defined a signal transduction pathway based on
the network structure only. For this purpose, they introduced the new notion of
feasible t-invariants, which represents the minimal self-contained subnets that are
active under a given input situation. Each of these subnets stands for a signal flow
in the system and represents a net decomposition into smallest biologically
meaningful functional units.

A flux balance analysis (FBA)-based strategy, requiring an integrated stoichi-
ometric reconstruction of signaling, metabolic, and regulatory processes [29], and
referred to as integrated dynamic FBA (idFBA) simulates cellular phenotypes
arising from integrated networks. Network reconstruction can be approached in
three different ways, the last being the only quantitative route:

• Reconstruction of nodes, modules and pathways,
• Structural analysis via connectivity and casual reconstruction by means of linear

pathways that connect signaling input to signaling output [30, 31], and
• Stoichiometric reconstruction [32].

In their 2007 paper, Zhang et al. [33] discuss the advent of generalized
reconstruction methodology. They suggest that the gene network reconstruction
can be improved by combining ontology with a clustering algorithm based on
similarity. Mapping function to gene products in the genome consists of two
steps: ontology building and ontology annotation. Ontology building is the for-
mal representation of a domain of knowledge; ontology annotation is the asso-
ciation of specific genomic regions (including regulatory elements and products
such as proteins and functional RNAs) to parts of the ontology. Typically, two
complementary representations of gene function are employed: the Gene
Ontology (GO) and the pathway ontology. Various theoretical constructs of
mapping genes to functions, as derived from molecular observations, are
depicted in Fig. 4.1. Note, crosstalk is a combination of pleiotropy and redun-
dancy. Many phenotypic traits are properties that emerge from the collective
action of several individual genes. Two of the nodes are perturbed (small red
arrow) in this example. In case of cancer, a combination of two ligands (drugs)
can shift the whole network into a more desired state, apoptosis and
differentiation.

The employment of network analysis could be problematic for multifactorial
diseases, as is the case of cancer [34]. If there is very little understanding of
molecular components in the disease process and their dynamic associations,
computation might be useless. However, when a fair amount of relevant infor-
mation is available, computation can be quite good at assigning the pertinent
functions. Another problem stems from the fact that the present GO annotations
are poor for cancer genes. Because cancer can result from numerous multi-stage
processes, trying to assign a function to an uncharacterized gene one at a time is
hampered by the fact that the underlying correlation structure changes with time
during cancer progression.
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4.6 Summarizing

Different experimental techniques (OMICs), allow efficient collection of huge
amounts of molecular signatures for each of the systems studied. HTS in target
validation is now expanding its format to include data from many different OMICs
environments, to better characterize targets and put them into a more biological
context. Likewise, label-free technologies have recently attracted significant
interest for sensitive and quantitative multiparameter analysis of biological
systems. Chemical genomics is a new term that describes the development of
target-specific chemical ligands and the use of such chemical ligands to globally
study gene and protein functions. In the near future, identification of MMR
(microsatellite instability-positive) profiles for tumors will enable targeting of
MMR-deficient cells that are more tolerant to drugs. Interaction, biochemical,
transcriptional and signaling network analysis may facilitate DD and guide
delivery targets, while cellular pathway analysis is currently the prevalent method
of SB. On the other hand, many signaling network models are still not available.
The networks can be modeled by a variety of continuous, stochastic and discrete
techniques, although differential equations are most common. Serious steps have

Function

Protein

Gene

(a) (b) (c) (d) (e)

Emergent properties

Apoptosis             Invasiveness  
Differentiation        Cancer 

proliferation

Fig. 4.1 Mapping of Gene to Function and Emergence. a Traditional linear genome-phenome
relationship. b Divergent relationships may cause undesired side effects when acted upon in
isolation. Alternative transcription may produce two distinct gene products or functions. Multi-
component drugs can specifically inhibit two downstream pathways. c Pleiotropy when more than
one gene product contributes to the same function. It can evoke unintended drug side effects, but
might create an opportunity for multiple indications. d Redundancy (convergent relationships)
when more than one gene product can compensate for inhibition of another pathway. Multi-
component interventions must simultaneously inhibit both arms. e Crosstalk as an exhibit of
emergence: the interaction between distinct signaling/regulatory pathways so that an input to one
pathway has some effect on the output of the other
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been taken to provide a framework for quantitative characterization of kinetic,
metabolic, regulatory and signaling networks. The next step, largely neglected, is
to integrate these processes into a coherent qualitative and quantitative modeling
tool(s) to devise a macroscopic (systems) description. However, huge gaps exist in
terms of quantitative experimental characterization of networks in both normal and
disease states, and the efforts are hampered by several key limitations in the
accessible data [35]: small signal–noise ratios, insufficient time resolution, insuf-
ficient spatial resolution, and too few signals being measured. In the absence of
rigorous data, initially, one should seek to qualitatively reconstruct pathways
instead of aiming at developing fully detailed kinetic models; the task of detailed
kinetic reconstruction based on time-series data alone is extremely difficult and
often remains underdetermined (Chap. 5). Consequently, a large number of
reconstructed systems are consistent with any given set of time-series data. To deal
with this non-uniqueness, the solution space is often limited by a priori, reasonable
assumptions such as linearity (in kinetic terms), sparseness (where sparseness
refers to a representational scheme where only a few units—out of a large pop-
ulation—are effectively used to represent typical data vectors) or model structures
are incorporated with predetermined constraints. A computational approach is
available to deal with some experimental imperfections. Satish Kumar et al. [31]
proposed systematic methods to identify and fill gaps in genome-scale metabolic
reconstructions, by making modifications in the existing models and by adding
missing reactions to allow for connectivity by comparing databases rich in reac-
tions with existing genome-scale models. To enable discoveries, methods of rig-
orous experimental validation of computational tools finding need to be developed
and introduced, particularly in terms of providing quantitative dynamic (pertur-
batory, time-course response profiles often referred to as metabonomics) mea-
surements. By repeating the model building/learning and experimentation process,
generation of more robust system descriptions will emerge as our understanding of
the system (disease state) evolves.
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Chapter 5
Discovery: Computational Systems
Biology (CSB) in Health and Disease I

To date, few cellular and gene networks have been reconstructed and analyzed in
full. Examples include some prokaryotes and few eukaryotes for cellular networks.
The methods currently used to analyze single database genomic sets are usually
mature and refined. Network reconstruction is also enabled by analysing the
molecular connectivity of a system by using correlation analysis. Additionally,
monitoring the dynamics of the system and measuring the system’s responses to
perturbations such as drug administration or challenge tests can yield insights into
the dynamics of the system. Microbial cells are fairly well characterized, but the
status of similar efforts for mammalian cells is rather poor. While emergence can
be conveniently studied via computational tools, the phenomenon of emergence is
the single most important benefit of CSB.

Definitions:

• Inferring network (reverse engineering) is identical to cellular network
reconstruction by means of computational and statistical methods.

• Data mining in informatics is the process of extracting hidden patterns from
data into useful information to enable scientific discovery.

• Gene regulatory network (GRN) is a collection of DNA segments in a cell
which interacts with others and with other substances, thereby controlling the
rates at which genes in the network are transcribed into mRNA.

• Cellular network governs the basic processes of cell proliferation, differenti-
ation and cell death.

• Stem cells are cells found in many multi-cellular organisms; they are charac-
terized by the ability to self-renew through mitotic cell division and differen-
tiation into a diverse range of specialized cell types.

• Computational Systems Biology (CSB) overlaps with SB, while applying
computer science, applied maths and statistics to address biological problems.

A. Prokop and S. Michelson, Systems Biology in Biotech & Pharma,
SpringerBriefs in Pharmaceutical Science & Drug Development,
DOI: 10.1007/978-94-007-2849-3_5, � The Author(s) 2012
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This chapter looks at how SB-enabled reconstruction of cellular networks could
be inferred from dynamic biological experiments, and how BI in data mining can
prioritize targets and expedite biological knowledge discovery. Then we describe
the network clusters of diseases and discuss stem cell compartments as important
targets for discovery and manipulation. The discussion then defines emergent
properties in terms of interacting species, teaching us that it is network states that
should be therapeutically targeted (defined on the basis of molecular and physi-
ological networks and emergence) not individual genes or proteins. Finally CSB
will be addressed and several important disease examples presented demonstrating
the utility of the concept.

5.1 Cellular Environment: Network Reconstruction
and Inference from Experimental Data

Biological networks are presented as nodes (proteins, genes and metabolites) in
vector algebra connected by edges (protein–protein interaction, protein-gene,
protein-compounds interactions and metabolic reactions). Depending on the type
of data and interaction mechanisms, the edges are either directed or undirected.
The network as a whole can be described as the average degree of edges, the
average clustering coefficient, the shortest path between nodes and diameter (the
longest distance). The analysis of yeast (and other) interactomes revealed that
biological networks are remarkably non-random and the distribution of edges is
very heterogeneous, with few highly connected nodes (hubs with 5–25 nodes)
and the majority of nodes having very few edges. Such topology is defined as
scale-free. The hubs are predominantly connected to low-degree nodes, a feature
that gives the biological networks the property of robustness. A removal of
substantial fractions of nodes still leaves the network reasonably intact. Few
highly connected proteins in hubs, typically, contain a fairly high frequency
mutated genes (particularly in the dysregulated network in diseased cells such as
cancer) and play a central role in mediating interactions among numerous, less
connected proteins (the less frequently altered ones). In addition, it is now
recognized that these hubs (protein or gene hubs) are essential to biological
function, preferentially encoding disease states and might be new prognostic or
diagnostic biomarkers, and/or candidate therapeutic targets for intervention and
targeting [1, 2].

The key property of biological networks is their modular nature, meaning that
various kinds of cellular functionality are provided by relatively small tightly
connected subnetworks of molecules. Network analysis and identification of the
component modules is the key to network computational restructuring. Measures
to determine overall network characteristics include the degree of clustering and
the clustering coefficient, which identify networks that possess random, scale-free,
or hierarchical structures. The latter two are frequent in biological systems.
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Hierarchical networks account for the coexistence of modularity, local clustering
and scale-free topology in real systems. The traditional attributes of network
topology are depicted in Fig. 5.1. Typically, nodes feature tree architecture, while
hubs have star architecture.

The reverse engineering of biochemical networks (uncovering gene or gene
regulatory function) is a central problem in SB. In recent years several methods
have been developed for this purpose, using techniques from a variety of fields
[3]. To date, few cellular networks have been reconstructed and analyzed
in full. Examples include some prokaryotes and a few eukaryotes, such as
S. cerevisiae. Important network properties include hubs, modularity, motifs
and clusters, and redundancy. Lee et al. [4] proposed six basic network motifs
in the yeast transcriptional regulatory network, representing the simplest units
of the network architecture (auto-regulatory, feed-forward, single input, multi-
input, etc.).

There has been considerable attention paid in recent years to network motifs,
which are characteristic network patterns, or subgraphs, in biological networks that
appear more frequently than expected given the degree distribution of the network
[5]. Such subgraphs have been found to be associated with desirable (or unde-
sirable) biological function (or dysfunction). It is now commonly understood that
motifs constitute the basic building blocks of cellular networks [5, 6].

Pathway maps and process ontologies tools, as well as network mining tools
have been listed in Nikolsky et al. [7]. More systematic effort is need to develop
metabolic pathway, signaling pathway, protein interaction and gene regulation
databases, for querying, visualization and analysis, in a standard exchange formats
to allow their integration on a large scale [8].

Fig. 5.1 Star, tree, ring and
connected topologies
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5.2 Reconstructing Gene Networks

While forward genetics aims to identify mutations that produce a certain pheno-
type (organisms or animal) reverse genetics seeks to determine the phenotype that
results from mutating a given gene. Reverse engineering of genetic regulatory
networks (GNR) from experimental data is the first step toward the modeling of
genetic networks [9].

A growing number of quantitative tools for reverse engineering of GRN have
been reported [10]. While a decomposition strategy to break down the entire
network into a set of unit subnetworks is typically adopted, due to a very limited
number of data points, this often means that for one to infer a whole GRN one
must perform several separate regressions.

Several methods of analysis of time-series of gene expression exist: continuous
spline function method [11], autogressive equations method [12] and hidden
Markov models [13], the latter two to analyze gene expression dynamics. Others
have modeled such data using mechanistic modeling via differential equations
[14], the dynamic Bayesian networks approach [15] and singular value decom-
position [16]. Ernst et al. [17] proposed an input–output hidden Markov model. A
similar approach can be adopted for signaling pathways (e.g., for mechanistic
modeling see [18]).

The methods currently used to analyze single database sets (e.g., only genomic)
are quite mature and refined. Typical algorithms are those of ARACNe (([19–21]
or from [20]). To infer network models that describe how a network responds to
stimuli, as well as through what molecular interactions and mechanisms in this
sensing and response occurs, comprehensive response profiles must be measured
following perturbations. Typically, three methods to perturb the system are: RNAi,
drugs, and natural variation. However, tools for integration of different platforms
and approaches are still in their infancy [1].

5.3 Data Mining and Heuristic Data Preprocessing Tools

In general, data mining is the process of extracting hidden patterns from data. As
more data is gathered, with the amount of data doubling every 3 years, data mining
is becoming an increasingly important tool for transforming this data into infor-
mation. In the area of human genetics, the goal is to understand the mapping
relationship between the inter-individual variation in human DNA sequences and
variability in disease susceptibility.

Heuristic (from Greek ‘‘discover’’) is an adjective for experience-based tech-
niques that help in problem solving, learning and discovery. A heuristic method is
typically used to rapidly come to a solution that is hoped to be close to the best
possible answer, or ‘optimal solution’. Heuristics are ‘‘rules of thumb’’ (ROT),
educated guesses, intuitive judgments or simply common sense and are a general
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way of solving a problem. SB and BI data analysis toolboxes need general-pur-
pose, fast and easily interpretable preprocessing tools that perform data reduction
and integration during exploratory data analysis, prior to rigorous CSB modeling.
The data mining technique that is used to perform this task is known as multifactor
dimensionality reduction [22, 23]. Whilst accepting that heuristics provide less
accurate processing of information compared to the solution of analytical equa-
tions, the intelligent choice of the simplifications coupled with the empirical
verification of the resulting heuristic has proven itself to be a powerful systems
modeling paradigm.

Several heuristic methods are analyzed below. The multivariate data analysis
(MVDA) overcomes challenges associated with multidimensionality of the data-
set, multicollinearity, missing data, and variation introduced by disturbing factors
such as experimental error and noise [24]. Principal component analysis (PCA),
partial least-squares (PLS), and multiple regressions are some of the commonly
used projection methods.

MVDA is usually a multistep technique. A suitable set of statistical tools allows
us to choose rationally between different mechanistic models of signal transduc-
tion or gene regulation networks. This is particularly challenging in SB where only
a small number of molecular species can be assayed at any given time and all
measurements are subject to measurement uncertainty. For the case of parameter
estimation when likelihoods are intractable, approximate Bayesian computation
(ABC) frameworks have been applied successfully [25].

Canonical Correlation Analysis (CCA) focuses on mutual dependencies and
eliminates source-specific ‘‘noise’’. However, it does produce a separate set of
components for each source. It uses a new way for dimensionality reduction, and
inherits its good properties of being simple, fast, and easily interpretable as a linear
projection. CCA usefulness has been demonstrated on differentially expressed
genes in leukemia. The software package is available at http://www.cis.hut.fi/
projects/mi/software/drCCA/ [26]. A non-linear version of PCA has also been
described [27].

5.4 Analysis of Disease ‘Correlation NetworkTM’
and Concerted Metabolic Activation: Disease
as a Systems Network Property

Novel insights into biology and biomedicine can be obtained by evaluating the
molecular connectivity through correlation networks. This is usually achieved by
monitoring the dynamics of a system, or by measuring the system responses to
perturbations such as drug administration or challenge tests. In addition, cross-
compartment communication and control/feed-back mechanisms can be studied
via correlation networkTM analyses [28]. This is sometimes referred to as ‘pattern
recognition’. In fact, in the process, the emergent properties are delineated as well.
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There is now good evidence from BI and SB analyses that human genetic
diseases can be clustered on the basis of their phenotypic similarities and that such
a clustering represents true biological relationships of the genes involved [29].
Such phenotypic similarity can be used to predict, and then test for, the contri-
bution of apparently unrelated genes to the same functional module.

This concept is now being systematically tested for several diseases [30, 31].
Moreover, BI can be used to make predictions about new genes for diseases that
form part of the same phenotypic cluster. A modular view of disease genes should
help the rapid identification of additional disease genes for multi-factorial diseases
once the first few contributing genes (or environmental factors) have been reliably
identified. Using the same concept Paolini et al. [32] proposed a global mapping of
the pharmacological space.

Expanding further, new avenues for DD are available, based on network
analysis. Brakhage et al. [33] mentioned that the ongoing exponential growth of
DNA sequence data will lead to the discovery of many natural-product biosyn-
thetic pathways by genome mining for which no actual product has been
characterized. New technologies based on genetic engineering are available to
discover otherwise silent genes. Heterologous expression of a gene cluster under
the control of defined promoters can be applied. Most promising is the activation
of pathway-specific regulatory genes, which was recently demonstrated [34]. Such
genes are frequent in many secondary metabolite gene clusters. This approach is
rendered feasible by the fact that all of the genes encoding the large number of
enzymes required for the synthesis of a typical secondary metabolite (a typical
product of the fermentation industry) are clustered and that in some cases, a single
regulator controls, to a certain extent, the expression of all members of a gene
cluster. The activation of gene clusters by genetic engineering will lead to the
discovery of many so far unknown products and therefore represents a novel
avenue for DD.

Regulatory gene activation has been also identified in mammalian systems [35].
Notch, initially discovered and well characterized in Drosophila, plays a key role
in cell–cell communication, which involves gene regulation mechanisms that
control multiple cell differentiation processes during embryonic and adult life,
including timely cell lineage specification of both the endocrine and exocrine
pancreas.

A novel computational approach (multicomponent fitness algorithm, which
includes several statistical criteria) for revealing key transcription factors that may
explain concerted expression changes in specific components of the signal trans-
duction network by knowledge-based analysis of gene expression data with the
help of gene regulatory network databases is now available [36]. ExPlain
(www.biobase.de) was developed for causal interpretation of gene expression data
and identification of key signaling molecules.

It is important to note that correlation networkTM analysis works mostly for
microorganisms (including yeasts), worms and flies, where good compendium data
exist. It is important that these data span all kinds of OMICs and fluxome
observations. The status of similar efforts for mammalian cells is rather poor. It is
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even more problematic for cancer cell lines and other more complex, physiolog-
ically based diseases. However, extensive evolutionary conservation of ortholo-
gous genes will allow extending such computations to more important model
species. So far there have been only limited attempts to specify functions of key
mammalian cells and cancer genes by computational correlation networkTM

analysis [31]. The complex disease network (Fig. 5.2a, b) of suitable type, pref-
erably via OMICs, can provide a first step towards a ‘‘network-based explanation
of the emergence of complex polygenic disorders’’ [37, 38].

Fig. 5.2 Disease network. Courtesy of Nature [76]. Network in health (a) and disease (b). An
oversimplification of network modules suggested by [76]. In disease network, some genes can be
upregulated, while others are downregulated. Blue circles—physiological genes (products); Red
circles—disease genes (products); line—bidirectional interaction; arrow—directed interaction.
Figure 8b Disease network Courtesy of Elsevier [38]
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On a similar note, in a first success story reported, Faratian et al. [39] have
shown how the SB approach can generate hypotheses that can be tested experi-
mentally in preclinical models and which can then be applied to clinical evalua-
tion. Predictions from this model are consistent with known findings, and add
weight to the use of PTEN as a biomarker for stratifying patients for a HER2
inhibitor or combinatorial therapy, particularly a RTK inhibitor and PI3K inhibitor
in cancers with low PTEN/PI3K ratio. SB approaches, particularly deterministic
kinetic models based on experimental data, offer a new approach for integrating
molecular pathology and computational modeling to more rationally interrogate
cancer pathways and predict responses to therapy.

5.5 Challenges for Stem Cells: Control

Stem cells are characterized by their ability to renew themselves through mitotic
cell division and to differentiate into a diverse range of specialized cell types (valid
for embryonic and adult stem cells). In adult organisms, stem cells and progenitor
cells serve as a repair system for the body, replenishing specialized cells, but also
maintaining the normal turnover of regenerative organs. Progenitor cells are
already far more specific: they are developed to differentiate their ‘‘target’’ cell.
There are some systems quantitative approaches, reviewed below, which may help
research into the cell biology of stem cells.

5.5.1 SB and BI Inputs

Most adult tissues consist of stem, progenitor, and mature cells, and this hierar-
chical architecture may play an important role in the multistep process of carci-
nogenesis [40]. The authors developed and discuss the important predictions of a
simple mathematical model of carcinogenesis (cancer initiation) and early
progression within hierarchically structured tissue. This work presents a model that
incorporates both the sequential acquisition of phenotype altering mutations and its
interaction with a tissue-specific hierarchy. A novel aspect of the model is that
symmetric self-renewal, asymmetric division, and differentiation are all incorpo-
rated, which enables the quantitative study of the effect of mutations that dereg-
ulate the normal, homeostatic stem cell division pattern.

Small molecule libraries have been used successfully to probe several biolog-
ical systems that have potential for cell manipulation control [41]. More recently,
several small molecules that control self-renewal and differentiation in stem cells
have been identified. These small molecules provide useful chemical tools (i.e.,
probes) for both basic research and practical applications [42, 43]. The screening
of stem cell control functions is the key to regenerative medicine.
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Finally, additional challenges concern the construction of mathematical models
to guide the design of an improved or modified stem cell niche for the desired
alteration of cell fate (differentiation). Individualized treatment algorithms for
regenerative medicine will feature quantification of the inherent reparative
potential to identify patients could potentially benefit from stem cell therapy. This
would be useful for prediction, diagnosis, prognosis, and targeting of safe and
effective stem cell therapies at the earliest stage, the most natural therapeutic
approach [44].

5.6 Emergent Properties

The central dogma of SB is that it is the dynamic interactions of molecules and
cells that give rise to biological function (emergent property) via computational
modeling to reconstruct complex systems from a wealth of reductionist, molecular
data (e.g., gene/protein expression, signal transduction activity, metabolic activity,
cell–cell interactions, etc.).

A number of deterministic, probabilistic, and statistical learning models are
used to understand sophisticated cellular behaviors such as protein expression
during cellular differentiation and the activity of signaling networks (Bhalla and
Iyengar 1999). However, many of these models are bimodal. In contrast, tensor
models can analyze multimodal data, which capture much more information about
complex behaviors such as cell differentiation.

Many phenomena at subcellular/cellular levels, typically described in bio-
chemistry and cell biology textbooks could be considered as phenomena resulting
from interaction between different compartments and hierarchies (e.g., example,
cell growth, division/proliferation, apoptosis, cell activation, homeostasis, cell
death, differentiation, bacterial sporulation, system robustness, redundancy, system
bistability, multiplicity of steady-states, hysteresis, oscillations, etc.). The scope of
computational biological research should be to redefine such properties in terms of
mechanisms and quantify them via the SB approach. That is, to elucidate these
properties in terms of interacting species and topologies of lower levels. The
systems view then dictates that one target network state resulting from dynamic
molecular and physiological networks and their emergent behavior, rather than
individual genes or proteins as a new strategy for DD, suggesting that we explore
multitarget drugs or non-additive combination therapies (see Chap. 3).

Complexity is a property of systems with interacting parts. And when the
interactions are nonlinear, it is not possible to reduce the system’s behavior to a
simple sum of those parts. Closely related to complexity is the concept of emer-
gence [45]. Emergence (strong) is generally taken to mean simply that the whole is
more than the sum of its parts, or that system-level characteristics are not easily
derivable from the local properties of their constituents [46]. This implies that
though higher level phenomena are not reducible to physical laws, they may still
be consistent with them [45]. Therefore, the modeling of some biological
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processes can not solely follow a bottom-up approach, but must eventually include
high-level organizing principles and even downward causality. As such, complex
systems are hard to analyze using traditional mathematical and analytical methods.
However, emergence can be studied and revealed computationally [47, 48].
Rasmussen et al. [49] have presented a simple two-dimensional molecular
dynamics lattice model for interacting chemical species capable of generating
higher-order emergent properties. Marsh et al. [50] have adopted a quantitative
measure of EP based on information theory. The concept of emergence may serve
as one of the most unifying themes across scientific disciplines, notably in biology.

In a relatively simple way, mechanistic, stoichiometric formulation allows the
computation of extreme pathways that in turn enable the study of the emergent
properties of the signaling network. The emergent network properties that can be
analyzed in this way include [51]:

• Feasible input/output relationships,
• Crosstalk,
• Pathway redundancy,
• Reaction participations in the systemic pathways, and
• Correlated reaction sets.

These are integrated network properties that are non-obvious and impossible to
derive intuitively from a simple visual inspection of reaction maps. At a higher
level of organization, interaction between modules, in mathematical terms, can
produce novel behavior.

Complexity and emergent properties in biology derive from several features:
first, a multitude of complex inputs that stimulate multiple pathways; second,
multiple outputs that present an integrated network response to inputs; third,
interactions between multiple cell types; fourth, multiple environmental contexts
for each cell type or combination of cells at the whole body level [52]. The
immune system has been modeled as a complex system, exhibiting emergent
properties [53], as well as cell size at S phase initiation (cell cycle) as an emergent
property [54]. The phenomenon of emergence is the single most important benefit
of CSB.

5.7 Computational Systems Biology

Computational systems biology (CSB), a subset of SB, aims to develop and use
efficient algorithms, data structures and communication tools to allow for the
integration of large quantities of biological data with the goal of modeling and
simulation of the system as a whole so as to allow for the generation of testable
hypotheses and pathway interrogation in silico. To restate this: we define
‘‘Computational Systems Biology (CSB) as quantitative, post-genomic, post-pro-
teomic, dynamic, multi-scale physiology’’ [55]. In this context, the emergent
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property of a complex system results from the interplay of the cause-and-effect
among simpler parts. In another way, CSB could be also defined as quantitative
biology of function (physiology).

Traditional study of biological systems requires reductionist methods in which
quantities of data are typically obtained in the form of concentrations over time in
response to a certain stimuli. Computers are critical to the analysis and modeling
of these data. The goal of CSB is to create accurate real-time models of a system’s
response to environmental and internal stimuli, such as a model of a cancer cell, in
order to find targets for therapeutic intervention. Two important markup model
representation languages for systems biology are the Systems Biology Markup
Language (SBML) and CellML.

Elucidating complex biological networks is of central interest for understanding
cellular function and the mechanisms of disease. Genetics and chemical biology
have emerged as powerful techniques for dissecting cellular circuits through the
controlled perturbations of protein function (stimulus–response approach), and
traditional studies have been successful in elucidating the roles of core pathway
components. Interrogating biological networks, vulnerability analysis, hypothesis
inference, knockdown in silico experiment, network rewiring, etc. are typical terms
used to describe such activity leading to the determination of global network
properties.

Often, an in silico reconstituted network is disturbed by removal of reactants or
inactivation of a poorly connected node that disrupts the specific function of the
subsystem to generate hypotheses of metabolite, regulatory or signaling network
function, some of which are then subsequently verified experimentally. This is in
opposition to empirical (intuitive) reasoning which may be unable to grasp the
complexity of the task owing to non-obvious interactions and effects.

CSB can either be approached from a top-down or bottom-up perspective. The
latter is a more global attempt to identify and understand all component molecules
and how they interact, whereas the former is a more focused, targeted analysis
examining mechanisms. The reality is that most often a hybrid approach is
adopted [56].

Although the emphasis formally lies on inductive discovery science, such
discoveries rarely lead to molecular knowledge. These studies must either trans-
form into or associate with the more mechanism-based, bottom-up SB. The
reductionist approach may generally be most effective for acute and simple
diseases, whereas a systems approach may be most applicable to chronic and
complex diseases (arthritis, cancer, schizophrenia, metabolic syndrome and
chronic pulmonary disease).

The in silico SB platforms allow cost-efficient experimentation and hypothesis
exploration, computationally uncovering the behavior of molecular species that
would be difficult, impossible, or too expensive to carry out in wet-lab settings.
The very first hierarchical cancer apoptosis cell model has been put forward by
Gene Network Sciences [57], featuring an interconnected signal transduction, gene
expression network, together with cell proliferation and apoptosis. Interpolating

5.7 Computational Systems Biology 61



regulatory networks from genomics data is an important solution with applications
spanning all of biology and biomedicine [58].

A novel method called Biological Objective Solution Search (BOSS) for the
inference of an objective function of a biological system from its underlying
network stoichiometry as well as experimentally-measured state variables has been
presented [59]. This new approach allows for the discovery of objectives with
previously unknown stoichiometry, thus extending the biological relevance from
earlier methods. This procedure could be applied to mammalian systems as well as
to disease states).

Dasika et al. [60] introduced optimization-based frameworks for elucidating the
input–output structure of signaling networks and for pinpointing targeted disrup-
tions leading to the silencing of undesirable outputs in therapeutic interventions. The
frameworks are demonstrated on a large-scale reconstruction of a signaling network
composed of nine signaling pathways implicated in prostate cancer. The proposed
computational frameworks can help elucidate the input/output relationships of
signaling networks and help to guide the systematic design of interference strategies.

Here is a short list of steps to be performed when employing gene network
reconstruction and interrogation (correlation networkTM inference (CNI), Chap. 8):

• Collect disease-based HTS-genomic data from the in vitro or in vivo environ-
ment (normal cells, disease cells and drug-perturbed disease cells), including
transcriptomic, proteomic and metabolomic data,

• Integrate databases (thresholding, normalization, dataset alignment),
• Identify correlation substructures
• Define functional classes of data and carry out annotated functional correlation

networkTM analysis (co-expression cluster, co-regulated, nodes/modules),

• Link gene ontologies with process ontologies, metabolic and signaling maps,
• Based on an association coefficient assign confidence scores (or weights) to

each pair, both for positive and negative correlations, for functional processes
or canonical maps and remove weak associations,

• Define a correlation networkTM (relevance network),
• Validate the significance of the correlation networkTM by text mining and

additional biological data,
• Generate a hypothesis and potential drug targets (or biomarkers) while defining

novel sites for intervention (see Figs. 8.11 and 8.13 in Chap. 8).

In this case, the outputs of CNI are mostly qualitative (except confidence
scores), in terms of full network resolution maps. The main output is in terms of
defining the network topology, particularly in targeting motifs and modules.
Practical examples are in Morel et al. [61] and Yan et al. [62] and the methodology
in Nikolsky et al. [63] and Ekins et al. [64, 65].
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Likewise, metabolic network reconstruction methods, reaction network infer-
ence (RNI) (Chap. 8), follows similar steps to the above, but the tools are more
elaborate and quantitative, with emphasis on metabolic flux analysis. Some details
on software tools are in Plaimas et al. [66], Jamshidi and Palsson [67] and Liu and
Neelamegham [68]. Besides the above applications, several tools employed and
representative examples demonstrating the power of CSB are listed below:

• Fault diagnosis Boolean modeling was proposed for analysis of vulnerability of
interconnected signaling pathways to assess functionality; this is often then
experimentally confirmed [69].

• A mathematical model for combination therapy (for EGFR signaling network),
pursuing hypothesis verification [70].

• Transient and permanent signal control (and of signal dosing) for TGF-b sig-
naling model was studied in silico by Vilar et al. [71].

• Single-pair interactions, crosstalk and signaling pathway clustering in RAW
macrophages have been studied experimentally and computationally [72].

• A computational approach to detect crosstalk among pathways based on protein
interactions between pathway components (network-based method) was devel-
oped [73].

• The minimum knockout problem (solved by means Petri Net model) seeks
a minimum size set of molecules whose removal (or knocking out) from a
biological network makes the production of a set of molecules impossible, a
problem of importance for the identification of molecular targets for therapies,
especially cancer [74].

5.8 Summarizing

Systematic effort is needed to develop metabolic pathways, signaling pathways,
protein interactions and gene regulation databases, for querying, visualization and
analysis. The existing network models are inherently incomplete. The predictive
value of any simulation depends on the quantitative empirical data that is needed
to drive, validate and refine the model.

• Employ as many facets of all HTS-OMICs technologies, including the fluxo-
some, so as to improve the predictive power of correlation networks. Note: Part
of the data will be used for model identification, and the other part for model
validation.

• Change the parts, iteratively with random replacements.
• Expand on data, using more sophisticated information platforms as needed

recognizing that inference and mining maybe hampered by heterogeneity of data
formats.

• Unify various databases sources, formats and types so as to standardize the
approach.
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• Integrate over multiple knowledge pockets instead of following expensive
experimental rediscovery noting that much relevant knowledge remains buried
in literature [75].

• Evaluate the molecular connectivity within a system through a correlation
network analysis, which represents a unique method for identifying therapeutic
targets that can alter disease expression. Note: Motifs and modules should be
more frequently incorporated into the network inference methods, with further
emphasis on function definition of cellular parts, in relation to one another,
particularly in terms of higher hierarchies [76].
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Chapter 6
Development: In Vivo Pharmacology—
Systems Biology in Health and Disease II

This chapter covers qualitative in vivo approaches in animals and man, which will
help to develop in silico pharmacology and PK positions. Additionally, we cover
RNA interference in this chapter even though it is largely an in vitro method for
characterizing the dynamics of cell physiology. And though in silico pharmacol-
ogy is only in a rudimentary state, it is vitally important for clinical model based
drug design (MBDD) development (see Chap. 10).

Definitions

• Pharmacology is the study of drug action, of interactions that occur between a
living organism and exogenous chemicals that alter normal biochemical func-
tion. Substances having medicinal properties are then considered pharmaceuti-
cals. Pharmacology deals with how drugs interact within biological systems to
affect function.

• Pharmacokinetics (PK) studies time dependency and is a branch of pharma-
cology. PK is often exploited with pharmacodynamics (PD). PK includes the
study of the mechanisms of absorption and distribution of an administered drug,
the rate at which a drug action begins and the duration of the effect, the chemical
changes of the substance in the body (e.g. by enzymes) and the effects and
routes of excretion of the metabolites of the drug (ADME).

• ADME is an acronym in PK and pharmacology for absorption, distribution,
metabolism, and excretion, and describes the disposition of a pharmaceutical
compound within an organism. Often, toxicology is included (ADMET).

• Pharmacodynamics (PD) explores what a drug does to the body, whereas PK
explores what the body does to the drug.

• Disease model is a pathological condition resembling a human disease that
either develops spontaneously or is induced by distinct manipulations (surgery,
antigen, or toxin). It can be also accessed or formulated as a virtual model.
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• Xenobiotic receptors are orphan receptors (such as PXR and CAR) that have
been established as species-specific, regulating the expression of Phase I and II
enzymes and drug transporters.

• RNA interference is a post-transcriptional gene silencing method, mediated by
short fragments of double-stranded RNA.

• Conditional gene knockout is a technique that allows eliminating a specific
target gene from a single organ in the body.

• Pharmacogenomics is the branch of pharmacology which deals with the
influence of genetic variation on drug response in patients by correlating gene
expression or single-nucleotide polymorphisms (SNP) with a drug’s efficacy or
toxicity.

• Phenotyping and genotyping represent analysis of phenotype and genotype,
respectively.

• In silico pharmacology (also known as computational therapeutics and com-
putational pharmacology) represents an extension of QSAR concept.

This section will cover phenomena at the pharmacology and PK levels, in the
hierarchy of a living organism. The field encompasses drug composition and
properties, interactions, toxicology, dynamics, therapy, and medical applications
and anti-pathogenic capabilities. We will review animal disease models, gene
knockout animal models, polymorphisms, and RNA-based modifications, at the
qualitative level. Pharmacogenomics is reviewed next. Several possible quantita-
tive tools are reviewed at the end of this section.

6.1 Animal Disease Models

Disease researchers use animal models to study different pathophysiologies and
treatments. Such models must be predictable, emulating human conditions, and
produce results that can be extrapolated and transposed and are often better than in
vitro studies or computer models, but still have limitations. Animal models are
difficult to maintain and quite costly. To develop animal models, numerous
methods are used including chemical exposure, genetic ‘knockout’ or ‘knock in’,
or forward genetic modeling. Particularly valuable are transgenics expressing
dominant oncogenes, siRNAs and those with telomerase inserts. A special class of
transgenics is called a ‘reporter’ animal, classified into those giving specific pro-
moter activity, reporters of drug availability and distribution and reporters of drug
activity. Typically, such animals are accessible via imaging.

The mouse is a key model organism for the study of mammalian genetics,
development, physiology and biochemistry [1]. Comparative analysis of the mouse
genome sequence with that of the human and other genomes has revealed a wealth
of information on genome evolution in the mammalian lineage and assisted in the
annotation of both mouse and human genomes. Systematic mutagenesis of the
mouse genome will be an important step towards the first comprehensive
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functional annotation of a mammalian genome and the identification and char-
acterization of models for the study of human genetic disease.

The culmination of decades of research on humanized mice is leading to
advances in our understanding of human haematopoiesis, innate and adaptive
immunity, autoimmunity, infectious diseases, cancer biology and regenerative
medicine [2]. The development of these new generations of humanized mice will
facilitate translational research in several biomedical disciplines.

6.1.1 Gene Knockout Animal Models

Genetic modification of mammalian model organisms, particularly the mouse, has
the greatest potential to shed light on human development, physiology and
pathology. Here, we review some of the techniques for knocking out (inactivat-
ing), mutating and knocking in (inserting) selected genes into the mouse genome
[3]. Transgenesis consists of the addition of foreign genetic information to animals
and specific inhibition of endogenous gene expression. Recently, these techniques
have proven to be invaluable tools for target discovery, validation, and production
of therapeutic proteins.

However, despite the generation of several transgenic and knockout models,
obtaining relevant models still provides several theoretical and technical chal-
lenges. Indeed, genes of interest are not always available and gene addition or
inactivation (often not complete) sometimes does not allow clear conclusions. The
creation of xenobiotic receptor transgenic and knockout mice has provided an
opportunity to dissect the transcriptional control of drug metabolizing enzymes, in
addition to offering a unique opportunity to study xenobiotic receptor-mediated
enzyme regulation in both drug metabolism and diseases (‘‘Humanized’’ hPXR
transgenic mice).

The generation of knockout animals is the method of choice to probe the
function/impact of single genes, even in polygenic diseases as in cancer and
autoimmunity [4] in order to better understand the mechanisms of disease
development and progression. To achieve a ‘conditional gene knockout’ [5] a
commonly used technique employs the Cre-loxP recombinase system.

6.2 Pheno- and Genotyping

Phenotyping assays of blood enzyme activities (if feasible) are generally more
successful than DNA genotyping for predicting unequivocal outcomes of drug
therapy in each and every patient [6]. While genotyping can, to some extent,
predict drug disposition, efficacy, toxicity, and clinical outcome, success in
individualized drug therapy currently appears unlikely because of the many
shortcomings (e.g., ethnic differences) and complexities observed in an
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environmentally unconstrained and outbred human population. The same can be
said for transcriptomics and proteomics, which also rely on available tumors,
biopsies and excreta. Typically, a single nucleotide polymorphism (SNP) is
determined as a DNA sequence variation occurring when a single nucleotide in the
genome differs between members of a species. SNPs are genome-wide genetic
markers which can reveal disease-relevant pathways and possible new targets. In
addition, there is a hope that HTS methods will reveal information on the distri-
bution of these polymorphic alleles in the target population and will enable the
broad characterization of the drug candidate in in vitro systems. There are a
number of potential fields in the therapy of major medical conditions in which
genotyping (or phenotyping) of genetically polymorphic drug-metabolizing
enzymes (DMEs) might be beneficial for drug safety or therapeutic outcome [7].

6.3 RNA Interference

RNA interference (RNAi) is a system within living cells that helps determine
which genes are active and how active they are. Two types of small RNA mole-
cules, such as microRNA (miRNA) and small interfering RNA (siRNA) are central
to RNA interference. The selective and robust effect of RNAi on gene expression
makes it a valuable research tool, both in cell culture and in living organisms
because synthetic double strand RNA (dsRNA) introduced into cells can induce
suppression of specific genes of interest.

RNAi may also be used for large-scale interference screens that systematically
shut down each gene in the cell, and which can help identify the components
necessary for a particular cellular process or an event such as cell division to occur.
This is primarily due to siRNA’s ability to silence previously un-druggable targets
in the cytoplasm. This approach tremendously (by number) extends the concept of
druggable targets as defined above (Chap. 2). The number of potential small
molecular intervention sites, although unknown, is likely to be quite large.

Although therapeutic nucleotides and nucleosides (e.g., ribozyme and antisense
oligodeoxynucleotides) that interfere with nucleic acid metabolism and DNA
polymerization have been successfully used as anticancer and antiviral drugs, they
often produce toxic secondary effects related to dosage and continuous use.
Immunostimulatory oligodeoxynucleotides represent the most successful group of
therapeutic oligonucleotides in the clinic. A newer group of therapeutic oligonu-
cleotides, the aptamers, is rapidly advancing towards early detection and treatment
alternatives that have commercial interest [8].

Despite the very high in vitro efficiency of small interfering RNAs (siRNAs)
they present issues with intracellular target accessibility, specificity and delivery.
They are likely to be developed into reagents for treating cancer and viral diseases
in the near future [9].

Delivery strategies for siRNA become the main hurdle that must be resolved
prior to the full-scale clinical development of siRNA therapeutics. Several delivery
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strategies for synthetic siRNA, focusing on targeted approaches show potential to
become a useful and efficient tool in cancer therapy [10]. Attention will also be
given to how RNA interference (RNAi) may become the method of choice to
perform both target validation and identification within the industry. The use of
RNAi-targeted biomarkers for proof of MoA is becoming an important tool in
validation efforts in the preclinical phase of DD, helping to reduce the attrition rate
of candidate drugs once they have entered the clinic [11].

6.3.1 BI Inputs

At present, computational siRNA design markedly reduces the costs of reagents
and labor in early stage pharmaceutical research. Improvements in our ability to
predict cross-silencing and immunostimulatory activities will facilitate the pro-
gression of siRNA-based drugs to clinical trials [12, 13]. Computational optimi-
zation may encompass target sequence input, generation of reverse complement
and simulation of space guide sequences. At the same time, selection might
include a rejection of off-target sequences. This approach demonstrates that BI
could enhance the application potential of these tools.

6.4 Pharmacogenomics

Pharmacogenomics (PGN) operates at the intersection of the fields of pharma-
cology and genetics.

Utilization of PGN information has the potential of improving treatment out-
comes and markedly reducing the rate of attrition of drugs in clinical development.
A major gap that limits our ability to utilize PGN information in DD, DDv or
clinical practice is that we often do not know the genetic variants responsible for
inter-individual differences in drug metabolism or drug response. Several emerg-
ing genomic methods that can fill this gap have been reviewed [14]. These
methods can be used to generate new information about drug metabolism or MoA,
or to identify predictors of drug response.

6.4.1 SB and BI Inputs

SB can help us understand the key issues in PGN at different levels [15]. These key
issues include the associations between molecular structure and function, the
correlations between genotype and phenotype, and the interactions among gene,
drug, and environment. At the molecular level, the detailed features of a gene and
the relationship between genetic structure and function need to be further explored.
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At the cellular level, the interactions and networks among those molecules should
also be further examined. Better understanding at the tissue and organism levels
can help establish the correlations between genotype and phenotype. The appli-
cation of BI methods in PGN and SB should allow a more profound understanding
of diseases at these different levels and lead to both individualized and systems
medicine. Several tools are freely available at http://sysmed.pharmtao.com. PGN
marker discovery projects are increasingly incorporated into Phase II clinical trials
in the hope of identifying molecular predictors of response to therapy. It may be
more productive to use PGN, or other molecular data, from small Phase II clinical
trials to assess the clinical utility of previously defined putative markers rather than
to use the data primarily for discovery. The FDA has advocated the use of PGN as
a means to spur the discovery of new biomarkers for use in DDD. Seminal to this
strategy is the ground breaking work of Sheiner [16] in the development of the
‘Learn and Confirm’ model for drug development. Basically, Sheiner structures
the development space as a response surface, dimensionalized by patient hetero-
geneity (as defined by accessible biological markers) and dosing schemes (both in
total dosage and dosing schedule). By sampling the support space of this surface as
optimally as possible, one can deduce the structure of the response and charac-
terize the patient subpopulations in a systematic fashion. This deductive reasoning
and sampling strategy forms the ‘‘Learn’’ phase of the process. Once clarified, an
inductive hypothesis-generated study is performed to ‘‘Confirm’’ one’s findings
about the surface and its characteristics. This basic strategy, as proposed by
Sheiner has formed the basis for adaptive trial design and execution in the genomic
environment (see for example, the work in enrichment designs for clinical trials,
Simon [17]).

6.5 In Silico Pharmacology: Future

Several quantitative tools are reviewed in this section as they relate to the future of
pharmacology. In silico PK is a rapidly growing area that covers the development
of techniques for using software to capture, analyze and integrate biological and
medical data from many diverse sources with SB and BI inputs. The intent is to
use of this information in the creation of computational models or simulations that
can be used to make predictions, suggest hypotheses, and ultimately provide
discoveries or advances in medicine and therapeutics. It also includes similarity
searching, pharmacophores, homology models and other molecular modeling,
machine learning, data mining, network analysis and data analysis tools that all use
a computer. Ekins et al. [18] lists additional approaches as virtual ligand screening,
virtual affinity profiling (ligand-based and target-based) and data visualization
methods. Ekins et al. [19] lists applications, flow charts and limitations. Overall,
QSAR is a well developed tool, still undergoing changes with new modern
approaches.
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Several BI tools (e.g., PromoLign, ReguLign, PupaSNP, etc.) can complement
experimental investigations of regulatory polymorphisms, allowing investigators
to interpret whether polymorphisms exist in a sequence region with predicted
functional importance [20, 21].

Novel genes can also be identified in silico, while their function can be pre-
dicted and characterized by virtue of sequence homology to other known proteins.
Genomic DNA sequence data can be exploited to predict target genes and their
modes of regulation, as well as identify susceptible genotypes based on SNP data.
In addition, gene expression profiling technologies will allow toxicologists to mine
large databases of gene expression data to discover molecular biomarkers and
other diagnostic and prognostic genes or expression profiles.

Although in silico pharmacology is still a way off, the approach has great
potential for linking the genome and proteome to pathophysiology (http://
www.physiome.org) [22, 23]. It is also important for MBDD (see Chap. 10).

6.6 Summarizing

The inability of animal models to correctly predict some human responses and
toxicity is acknowledged. Large animal models of human genetic diseases will
become increasingly important because of physiological similarity with humans.
Conditional gene targeting to restrict gene knockout to specific cells and time
scales is a powerful tool for investigating the molecular basis of diseases. The
generation of genome-wide sets of conditional knockout mice will become a large
project applying two strategies: gene trapping based on random integration of
trapping vectors into introns leading to truncation of the transcript; gene targeting,
representing the directed approach using homologous recombination. It can be
expected that in the near future genome-wide sets of such mice will be available.
Transgenic siRNA is becoming a simpler, cheaper and faster alternative to the
gene knockout approach by homologous recombination. Computational siRNA
design markedly reduces the costs of reagents and labor in early stage pharma-
ceutical research. For PGN, quantitative simulation demonstrated that pharmac-
ogenomics improves clinical trial design and treatment outcome. Incorporation of
a genetically guided dose adjustment strategy into a clinical trial significantly
increased treatment efficacy and reduced toxicity [24]. Likewise, genetic factors
regulating the disposition, mechanism of action and toxicity of many commonly
used medications can be identified by several methods, including mouse genetics.
A mouse haplotype-based computational genetic analysis method may accelerate
the rate of discovery of these clinically-important PGN factors. Finally, in silico
pharmacology is still a way off, but of importance for MBDD (see Chap. 10).
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Chapter 7
Development: Pharmacokinetics—
Systems Biology in Health and Disease III

In silico PKPD/ADMET and biochemical-mechanistic methods will become a
standard approach in the coming few years via the employment of BI and SB tools
at the multiscale whole-body level. So far, the overall impact of toxicity markers
on preclinical safety testing has been modest. The greatest benefit of PBPK models
is they may allow for individualized health care.

Definitions

• The post-WW2 R&D Pharma paradigm (initially valid for the fermentation
industry) involved a DD phase from nature, organismic modification by tradi-
tional selection and over-expression, rather than the chemical discovery phase
described in Fig. 1.3.

• Microdosing is a technique for studying the drug fate in humans through the
administration of low doses that are unlikely to produce whole-body effects, but
are high enough to allow cellular response to be studied, with almost no risk of
PK side effects.

• Adaptive clinical trials allow for modifications to the on-going trial based on
either the observed data from the trial or external information, with the goal of
improving the efficiency of trial design and increasing the probability of success.

• The non-equilibrium PK model is a phenomenon featuring a long residence time
of the drug molecule on its molecular target.

• A biomarker can be any kind of molecule whose detection indicates a particular
disease state.

• A toxicity biomarker is a characteristic that can be measured and evaluated as an
indicator of pathological process in response to a therapeutic intervention.

• In silico PKPD is experimentation via simulation to represent the kinetics and
dynamics of drug behavior.

• Multiscale CSB involves CSB integration carried out over a large span of
multiple times and spatial scales.

A. Prokop and S. Michelson, Systems Biology in Biotech & Pharma,
SpringerBriefs in Pharmaceutical Science & Drug Development,
DOI: 10.1007/978-94-007-2849-3_7, � The Author(s) 2012
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First, this section will discuss microdosing and adaptive design, the latter at the
quantitative level. The non-equilibrium model of pharmacological activity may
shift R&D focus to different areas while toxicity biomarkers and associated in
silico ADMET prediction is becoming an important tool to guide the DD process
at the organism level. Finally, physiology-based PK (PBPK) modeling is dis-
cussed, mathematically describing all physical and physiological processes.

7.1 Microdosing in PK

Microdosing will permit smarter candidate selection by taking investigational
drugs into humans earlier. This is a purely experimental technique. Microdosing
depends on the availability of two ultrasensitive techniques of positron emission
tomography (PET) (PD information) and accelerator mass spectrometry (AMS).
Microdosing allows for safer human studies as well as reducing the use of animals
in preclinical toxicology. A direct test of linearity between microdoses and ther-
apeutic effect should be sought as well as between the microdose and therapeutic
doses at a later stage.

Microdosing studies are used to select drug candidates for Phase I clinical trials
on the basis of their PK properties, using subpharmacologic doses (maximum
100 mlg) [1, 2]. Data to support the utility of microdosing are beginning to
emerge, as 15 of 18 reported drugs demonstrated linear PK within a factor of 2
between a microdose and a therapeutic dose. The goal of a microdosing study is to
assess human exposure in order to extrapolate the PK of higher, clinically more
relevant doses. This strategy allows early evaluation of systemic clearance and oral
bioavailability as well as sources of intersubject variability and questions of
specific metabolite formation.

7.1.1 BI Inputs

Dose-related target activation and recognition of opposite thresholds between
beneficial and toxic effects requires elucidation of underlying events [3]. Improved
information on drug logistics and target PK enables effective drug selection, dose
determination and prediction.

7.2 Adaptive Trial Design

Adaptive designs (Bayesian) promise the flexibility to redesign clinical trials at
interim stages [4]. This flexibility would provide greater efficiency in DD [5].
Based on modifications, adaptive designs can be classified into three categories:
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prospective, concurrent (ad hoc), and retrospective. An adaptive design allows
modifications to be made to ongoing trials and/or the statistical procedures of
ongoing clinical trials. In other developments, enrichment designs (ED) [6, 7] and
randomized discontinuation designs (RDD) [8] have been proposed as a means for
using personalized response profiles to adaptively align a therapy and dosing
schedule to the therapeutic needs of a target subpopulation (e.g., ‘‘responders’’).
For example, there is a vast literature in the clinical realm aimed at subpopulaton
segmentation using both molecular and physiological readouts in pain manage-
ment and migraine prophylaxis (see, for example [9]).

7.3 Equilibrium Versus Non-Equilibrium PK Models

The importance of determination of binding kinetic profiles for efficacy and
selectivity assessment in the context of lead discovery is well appreciated by
Pharma, even though increasing evidence exists that renders compounds that
exhibit long binary complex residence times are better optimization candidates.
The enzymological principle of so-called slow k (off) compounds is well recog-
nized and that efficacious compounds display a distinct kinetic signature. In
standard equilibrium models of drug action, the pharmacological activity of a drug
is dependent on the establishment of an equilibrium between the free concentration
of the drug and the concentration of the drug bound to its pharmacological target
receptor, while in the non-equilibrium model the pharmacological activity of a
drug is most dependent on a departure from equilibrium conditions with respect to
the drug and its pharmacological target receptor.

Copeland et al. [10] suggested that the most crucial factor of sustained drug
efficacy in vivo is not the apparent affinity of the drug for its target per se, but
rather the residence time of the drug molecule on its molecular target. A simple
residence time for the binary complex between receptor and ligand is referred to as
the period for which the receptor is occupied by a ligand. A slow dissociation of
the drug from the primary target (intracellular receptors) continues to result in
nearly complete retention of this ligand for a long period of time. One disad-
vantage of such long residence times is that they may enhance toxicities due to
collateral drug binding.

A multitude of weak, or transient, biological interactions (dissociation constant:
K(d) [ microM), either working alone or in concert, occur frequently throughout
biological systems [11]. This realization has important implications for DD as it
can help to question the current paradigm of drug design to find the highest
possible binders (drugs) to a given target (receptor). Development of transience
can be based on several approches: employment of high-off-rates, multivalent
approaches or multiple targets. The method itself requires a very strong grounding
in the kinetics of enzyme reactions (BI input).
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7.4 Toxicity Biomarkers

A biomarker often indicates a change in the expression or the state of a protein that
correlates with the risk or progression of a disease, or with the susceptibility of the
diseases to a given treatment. Once a proposed biomarker has been validated, it can
be used to diagnose disease risk, the presence of disease in an individual, or to tailor
treatments for the disease in an individual (choices of drug treatment or adminis-
tration regimes). Selecting, evaluating and applying biomarkers in DD and explor-
atory DDv may substantially shorten the time to reach a critical decision point [12].
Biomarkers are most useful in the early phase of clinical development when mea-
surement of clinical endpoints or true surrogates may be too time consuming or
cumbersome to provide timely proof of principle or dose-ranging information.

Toxicity biomarkers are only a part of a larger biomarker family. Danhof et al.
[13] proposed a new classification of biomarkers. Mechanism-based PK/PD
models have much improved properties for extrapolation and prediction, based on
the scientific basis for rational DDD. A biomarker attempts, in a strictly quanti-
tative manner, a process, which is on the causal path between drug administration
and effect. The new classification system distinguishes seven types of biomarkers
as indicated by authors: type 0, genotype/phenotype determining drug response;
type 1, concentration of drug or drug metabolite; type 2, molecular target occu-
pancy; type 3, molecular target activation; type 4, physiological measures; type 5,
pathophysiological measures; and type 6, clinical ratings. As such, biomarkers
should be considered at the early DD process (and along the discovery pathway),
as indicated in Fig. 11.2.

It is widely perceived that the early screening of chemical entities can signif-
icantly reduce the high costs associated with late stage failures of drugs due to
poor ADMET properties. Drug toxic effects include, a broader sense, toxicity,
mutagenicity, carcinogenicity, teratogenicity, neurotoxicity and immunotoxicity.
Toxicity prediction techniques and structure–activity relationships rely on the
accurate estimation and representation of physicochemical and toxicological
properties. Most major organ systems have been explored through single cell type
models or co-cultures. Simple cell-based assays exist for the liver, kidney, brain,
immune system, heart, and co-cultures of multiple cell types from the same organ.
The next major step is to develop animal and human stem cell-derived systems for
major organs, expressing functional properties of the in vivo cells for predicting
toxicity [14].

7.4.1 SB and BI Inputs

Understanding mechanisms of drug toxicity is an essential step toward improving
drug safety testing by providing the basis for mechanism-based risk assessments
[15]. Despite several decades of research on mechanisms of drug-induced toxicity

80 7 Development: Pharmacokinetics—Systems Biology in Health and Disease III

http://dx.doi.org/10.1007/978-94-007-2849-3_11


the overall impact on preclinical safety testing has been modest. Assessing the risk
of exposing humans to new drug candidates still depends on preclinical testing in
animals, which in many cases may not predict outcomes in humans accurately.
Targets have been identified for the application of new technologies, including in
silico screening, biomarkers, surrogate assays, computational toxicology and SB,
along with other emerging HTS methodologies. Powerful integrative SB software
and growing open-source data repositories offer new ways to share, reduce, and
analyze data from multiple sources.

7.5 In Silico Toxicity Prediction

In silico predictive ADMET screening of compounds is one of the fastest devel-
oping and most important areas in drug discovery [16]. To provide predictions of
compound drug-like characteristics early in modern DD decision making, com-
putational technologies have been widely accepted for developing rapid high-
throughput in silico ADMET analysis with many SB and BI inputs.

Recent advances in technology have added several new tools to the biomarker
screening toolkit and have improved the throughput of existing quantitative assays.
Genomics, proteomics, and metabolomics have provided a wealth of data in the
search for predictive, specific biomarkers. Multiplexed ELISA assays, silicon
nanowire arrays, and patterned paper present unique abilities for fast, efficient
sample analysis over a broad dynamic range. Powerful integrative SB software and
growing open-source data repositories offer new ways to share, reduce, and
analyze data from multiple sources [17].

In the past few years, computational toxicology prediction systems have much
increased their predictive power, but still have not achieved a major breakthrough
due to lack of sufficiently large datasets covering more complex toxicological
endpoints (e.g. hepatotoxicity) [18]. In silico techniques for the prediction of
toxicological endpoints are extremely appealing because of their rapid and
effective return of results and their low cost. Moreover, these techniques can be
used in the very early phases of DD, even before the molecule is synthesized.
Numerous commercially available and free web-based programs for toxicity
prediction are available (see 18]). One should, however, use caution: most do not
explicitly account for the toxicity of the reactive metabolites as well as of the
parent compound itself.

In silico prediction methods that are widely used in the pharmaceutical industry
can be roughly classified into so-called ‘expert systems’ and ‘data driven systems’
[19]. Data driven systems are most commonly used to make predictions for
compounds with similar structures to those contained in the database and that most
probably produce toxicological effects through the same mechanism (e.g., data
driven QSARs). Clearly this approach is limited and highly dependent on the way
the chemical ‘‘shape’’ is captured in the database (Michelson, unpublished).
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Several public efforts are aimed at discovering patterns or classifiers in high-
dimensional bioactivity space that predict tissue, organ or whole animal toxico-
logical endpoints. Novel tools to simulate complex chemical-toxicology data sets
and to evaluate the relative performance of different machine learning methods
have become available: Artificial Neural Networks (ANN); K-Nearest Neighbors
(KNN); Linear Discriminant Analysis (LDA); Na Bayes (NB); Recursive Parti-
tioning and Regression Trees (RPART); Support Vector Machines (SVM).
Recently, a breakthrough has been reported, as Jenwitheesuk et al. [20] proposed
and tested virtual screening of drug-like compounds simultaneously against the
atomic structures of multiple protein targets (molecular modeling, see Chap. 3),
taking into account protein–inhibitor dynamics.

In silico ADMET is emerging and rapidly evolving as a co-decisive discipline
in pharma R&D. ADME data are important in (pre)clinical strategies and for early
PK evaluation. Integration of these approaches will contribute towards building an
SB tool for toxicology that will provide mechanistic understanding of the effects of
chemicals on biological systems and aid in rational risk assessments.

7.6 Quantitative PKPD/Tox Modeling

PK-PD (PKPD) integration is essential for target validation, optimization and
development of lead compounds (lead generation and lead optimization) and
scaling these to human physiology. PKPD is nowadays discussed together with
ADME/Tox (ADMET) and PBPK. A view of the process is illustrated in Fig. 7.1.

There have been considerable advances in the last few years in both the quantity
and the quality of in silico ADMET property predictions, as most ADMET
properties are now computable. Drug metabolism information is a necessary
component of DDD. The key issues in drug metabolism include identifying the
enzyme(s) involved in drug metabolism, the end product of that metabolic activity
(e.g., glucuronidation, methylation, etc.), the site(s) of metabolism, the resulting
metabolite(s), and the rate of metabolism. Methods for predicting human drug
metabolism from in vitro and computational methodologies and determining
relationships between the structure and the metabolic activity of molecules are also
critically important for understanding potential drug interactions and toxicity.

Physiology-based pharmacokinetic compartmental (PBPK) modeling is used to
describe, mathematically and in as much detail as possible, all physical and
physiological processes which determine the PK of a substance. PBPK attempts to
sub-divide the organism into single organs and to describe the disposition of a
substance in each of the compartments obtained in terms of physical and physi-
ological processes. The most commonly regarded processes are transport with
blood flow, permeation processes (e.g. passive diffusion or active transport across
the gut wall or into the cellular space of an organ), partitioning between blood (and
plasma) and organ tissue, and metabolism and excretion. Several commercial
software tools for PBPK modeling exist on the market [21].
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Whole-body physiologically-based pharmacokinetic (WB-PBPK) models
mathematically describe an organism as a closed circulatory system consisting of
compartments that represent the organs important for compound absorption, dis-
tribution, metabolism and elimination, defined by authors [22]. Several methods
are used at basic as well as clinical research at Pharma. This tool is primarily used
as a means to allometrically scale PK from animals to humans based on physi-
ology. Physiologically based PK models provide an estimate of the potential
changes in internal dose that may occur throughout the life cycle [23]. These
models require inputs describing changes in physiology, metabolism, and exposure
with age and life stage. The growth of SB is expected to change this over the
coming decade [24].

7.7 Summarizing

While microdosing is appropriate for peptide and protein therapeutics, a database
will need to be built to compare PK parameters at microdosing and pharmaco-
logical doses. Furthermore, there is a need for additional biomarkers to predict
toxicity in preclinical studies for making efficacy and cost-dosing decisions or
terminating drug development more quickly. Rapid progress is expected at
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prediction of the metabolic fate of a compound. The end products of this advance
will be derivation of metabolite structure and abundance which in turn will yield
the concomitant insights needed in ADMET modeling. Taken together with a
major effort in collecting reliable and meaningful data from general toxicity
studies and, even more challenging, from clinical trials, these technologies should
help to establish more reliable toxicity prediction in silico. To speed clinical
development, a combination of in silico approaches with mechanism-oriented in
vitro toxicity testing panels is recommended, because of failures to predict rarely
occurring events (idiosyncratic toxicities). This step is facilitated via the PBPK
modeling, readily now used [21]. Further refinement of the physiological and
anatomical description of the organism will lead to even more complex and
detailed PBPK models in the future. A comprehensive database on human and
mammalian metabolic and regulatory pathways needs to be coupled with PBPK
modeling effort. The PBPK modeling allows distinguishing between different
groups of individuals by accounting for typical physiological differences due to
age, gender or race. To individualize therapy, Bayesian dosing and covariance
screening is applied. The combination of predictive physiology-based PK models
with a description of the PD effect—either in a phenomenological manner or by
means of detailed biochemical networks—will shift the endpoint of a simulation
from a concentration versus time-curve towards PD outcome and gaining of
mechanistic insights. However, it is important to note that phenomenological
models are always incomplete, and that they are deliberately oversimplified con-
densations of the current state of knowledge (an abstract representation of the
decisive relationships). In this way, though, they may represent a good starting
point.

Several small and large Pharma companies are working on computer models for
complex biological network models [25]. It is expected that SB will narrow the
gap between data sources and data analysis. To speed up this development mea-
surements at systems level for large set of human population is needed.
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Chapter 8
Development: Multiscale CSB—
Simulation Tools

In order to cover bottom-up and top-down phenomena multiscale SB simulation
tools should include organ-level considerations, and should be used in con-
junction with multiscale modeling tools which have the ability to handle many
orders of magnitude in both length and timescale. Several new R&D paradigms,
based on CSB, are proposed, while some are already in the research stage. This
effort will lead to virtual organ/disease models, emerging as important tools.
Identifying and targeting a system’s emergent properties is a major goal for
coming years. This will cause a paradigm shift in R&D activity in Pharma
yielding a move from population models to models of individualized medicine.
The importance of multiscale CSB is underlined here as a great attention is
given here in this section.

Definitions

• Virtual organ/disease is a computer-generated simulation (model) of organ
state or disease.

• Pharma paradigm is a key method or algorithm used to achieve specific
industry aims.

• Population model includes all kinds of variability within a population group in
terms of disease status, including gender and metabonomics.

• Systems genetics relies on statistical methods, advanced computational algo-
rithms, visualization, and high-performance computing and has a goal and
potential to dissect and reassemble complex molecular and phenotypic networks
in the context of natural genetic variation in a clinical setting.

A. Prokop and S. Michelson, Systems Biology in Biotech & Pharma,
SpringerBriefs in Pharmaceutical Science & Drug Development,
DOI: 10.1007/978-94-007-2849-3_8, � The Author(s) 2012
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8.1 Defining CSB

More advanced modeling of complex biological systems requires the employment of
multiscale models—length and timescale—which span many orders of magnitude.
The level of biological organization (biological scales) includes atomic (quantum),
molecular, molecular complexes, sub-cellular, cellular, multi-cell systems, tissue,
organ, multi-organ systems, organism, population, and behavior [1, 2], from 1 nm to
1 m (10 orders of magnitude). Multiscale CSB seeks the development of computa-
tional models that must incorporate substantial representations of the underlying
biological mechanisms from several biological scales and linkages between scales, as
well as dynamic processes which span multiple time scales (from 1 ls to 109 s). They
provide a fundamental infrastructure for predicting biological processes, diseases,
and human behavior patterns. The discussion of chapter involves SB and BI tools,
both of importance for building in silico PK, PD and toxicology.

Multiscale CSB requires:

• A definition of molecular species and of their pathways
• Identification of functional hierarchies and compartments and the specific

molecular and modular architecture
• Characterization of the interaction between compartments (emergent

properties),
• Dynamic model description
• The possibility of reducing compartment complexity
• Model validation
• Simulation tools that can handle widely different time and length scales.

Coupling models across large ranges of length- and time-scales is central to
describing complex systems and biology [2]. Such coupling can be performed in
hierarchical and hybrid multiscale modeling [3]. The question is how to combine
detailed mechanistic model of lower elements with phenomenological elements of
higher levels to link scales in models of cell/organism processes. Multiscale
models couple behavior at the molecular level to that at the cellular, organ,
environment level, etc. Levels thereby provide a route for calculating a quanti-
tative description of the functioning organism, in both normal and pathological
states. Spatial, temporal and spatio-temporal organization will result in emergent
properties at higher levels. In a hierarchical multiscale approach, the model at the
shortest length-scale is run to completion before its results are passed to the model
describing the next level. One can arrange for a suitable matching of parameters at
different levels. However, if there is significant feedback—that is, if changes at the
larger length-scale affect behavior at the smaller length-scale—then this approach
is no longer valid and one must use a hybrid or coupled multiscale approach where
schemes are constructed with the physics, chemistry or biology dynamically
coupled across the length and time-scales involved as suggested for cancer [4, 5].

A critical first step to approaching modeling at the systems level is to build a
conceptual framework. This framework rests on current knowledge and hypotheses,
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and defines the levels of discretization (i.e., resolution). The modeling can be
approached either from the bottom-up, or from the top-down. Bottom-up models
require precise knowledge of each mechanism involved in the individual parts that
will be linked together in network representations. The top-down approach dissects
the available observations into the modular entities. Since a current challenge is to
integrate knowledge from the fundamental physiological properties of different
species, as they change with disease, with data from molecular and cellular
investigation, we envision a more comprehensive framework that accommodates
both approaches to study the complex processes of biology.

The vast majority of models that have been constructed for signaling networks
are based on solution kinetics, neglecting a spatial heterogeneity. However, a
compartmental model or a reaction–diffusion model is often needed when
phenomena such as trafficking, transport and cellular geometry are of interest [6].
Like solution kinetics models, compartmental models are usually described by a
system of ordinary differential equations (ODEs). A compartmental model treats
the exchange of molecules between compartments as a flux, which can either be
determined from a priori knowledge or be fitted to empirical observations, using
the reaction–diffusion equation. A theoretical framework for scaling has been
developed by Auffray and Nottale [7].

Since the availability of tools to quantify CSB represent the most important task
of present biocomputing, we mention two basic approaches in more detail below:
Agent-based methods (ABM) and coarse-graining methods.Agent-based methods
(ABM) is a computational model for simulating the actions and interactions of
autonomous individuals with a view to assessing their effects on the system as a
whole with the objective of developing accurate methods and algorithms to cross
the interface between multiple spatiotemporal scales. ABM combines elements of
game theory, complex systems, emergence, and evolutionary programming. Monte
Carlo Methods are applied to introduce randomness. This method provides both
quantitative and qualitative approaches and is non-mathematical in nature. The
models simulate the simultaneous operations of multiple agents in an attempt to
re-create and predict the actions of complex phenomena, while the lower (micro)
level of the system emerges at a higher (macro) level. Individual agents are typ-
ically characterized as boundedly rational, and are presumed to be acting in what
they perceive as their own interests, such as reproduction, using heuristics or
simple decision-making rules. To implement such models, several agent-based
modeling software packages (Java based), typically in the public domain, such as
SWARM (www.swarm.org), Ascape (www.brookings.edu/dynamics/models/
ascape), and RePast (http://repast.sourceforge.net/).

ABM agents models exhibit ‘‘learning’’, adaptation, and reproduction. Most
agent-based models feature:

• numerous agents specified at various scales (typically referred to as agent-
granularity);

• decision-making heuristics;
• learning rules or adaptive processes;
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• an interaction topology; and
• a non-agent environment.

Chavali et al. [8] applied ABM to discover an emergent behavior that arises
from the immune system and discovered novel insights into immunological pro-
cesses. Zhang et al. [9] introduced a multi-scale tumor modeling platform that
understands brain cancer as a complex dynamic biosystem, based on ABM.

Coarse-graining (or CG computing) employs the granularity concept to the
extent to which a system is decomposed into smaller components. CG systems
consist of fewer, larger components than fine-grained systems; a coarse-grained
description of a system regards large subcomponents while a fine-grained
description regards smaller components of which the larger ones are composed.
The main problems when developing big computational systems are that mathe-
matical concepts appropriate at a certain level in the hierarchy of models are not
generally applicable at the levels up or down in this hierarchy and new criteria for
crossing the hierarchies must be developed.

CG has been used to describe molecular dynamics, to replace an atomistic
description of a biological molecule with a lower-resolution coarse-grained model
that averages or smooths away fine details, while investigating the longer time-
and length-scale dynamics that are critical to many biological processes, such as
the impact of lipid membranes and protein dynamics.

At the other end of the detail scale, coarse-grained and lattice models are used.
Simulations of processes on long timescales (beyond about 1 microsecond) are
prohibitively expensive, because they require so many time steps. Coarse graining
methods have been used in molecular dynamic simulations of biological mem-
branes. The aliphatic tails of lipids are represented by a few pseudo-atoms by
gathering 2–4 methylene groups into each pseudo-atom and to examine a wide
range of questions in structural biology. For example, Tozzini (2009) used coarse-
grained simulation to describe events at protein dynamics that occur on different
scales, from the nano- to the macroscale, spanning about 10 orders of magnitude in
the space domain and 15 orders of magnitude in the time domain. McCarty et al.
[10] used a first-principle multiscale modeling approach for the coarse-grained
representation of polymer liquids.

Another tool is also available. Models that focus on cell state transitions and
their consequences for intercellular communication—as opposed to details of
intracellular biochemistry—are frequently formulated in terms of finite state
automata (e.g., [11]). Authors state that by ‘‘adding a spatial aspect to automata
models, cellular automata consist of grids of ‘cells’ that switch between states
based on the states of their neighbor ‘cells’. The modeler has to search for the most
useful definition of the different scales, their functional components and, in par-
ticular, of the ways information is exchanged between different scales of a model.’’
Multiscale models are frequently of a hybrid type containing a combination of
phenomenological elements and detailed mechanistic parts. Complex Automata, a
generalization of Cellular Automata, allow for coupling of all spatial and temporal
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scales present in a complex system. The nature of the coupling and mutual distance
on a scale separation map is a key factor to foster simulations crossing length and
time scales. The application of so-called lattice-gas cellular automaton models is
also advisable. This framework may also include agent-based models. Specifically,
COAST has been developed as a multiscale framework coined ‘Complex
Automata’ for modelling and simulation of complex systems [12]. The key tenet of
COAST is that a multi-scale system can be decomposed into a number of single-
scale Cellular Automata or agent-based models that mutually interact across the
scales. Decomposition is facilitated by building a Scale Separation Map (SSM) on
which each single-scale system is represented according to its spatial and temporal
characteristics. Processes having well-separated scales are thus easily identified as
the fundamental components of the multi-scale model [12]. Executable software is
available (Simmune, run on Linux, MacOS 10, and Windows XP).

8.2 Redefining (and Discovering) Emergent Properties
at Higher-Level Hierarchies

Emergent properties have readily been defined, via modeling, at subcellular and
intercellular levels (see Chap. 5). Higher hierarchies are rarely included in these
constructs. At this stage, emergent properties originating from higher level inter-
actions have only been deduced rather intuitively [13]. Quantitative tools for
extracting the emergent properties of such high-level hierarchies are still lacking.
Several examples below exemplify the utility of such an approach.

Quaranta et al. [14] summarized recent efforts using mathematical modeling
and computation to simulate cancer invasion, with a special emphasis on the tumor
microenvironment. They considered cancer progression as a complex multiscale
process and approached it with three single-cell-based mathematical models that
examined the interactions between the tumor microenvironment and cancer cells at
several scales. As a result, experiments were proposed to test the hypothesis that
invasion is an emergent property of cancer cell populations adapting to selective
microenvironment pressure, rather than the culmination of cancer progression
producing cells with the ‘‘invasive phenotype’’.

Robertson et al. [15] presented a new computational framework that integrates
intracellular-signaling information with multi-cell behaviors in the context of a
spatially heterogeneous tissue environment which could be applied to mesoderm
migration in the Xenopus laevis explant model. The model structure itself
recapitulates many features of this process during development in humans. The
simulation includes intracellular Wnt/beta-catenin signaling with an agent-based
model of mesoderm migration across a fibronectin extracellular matrix substrate.
The emergent cell behaviors in the simulation suggest that certain properties,
particularly maintaining a delicate balance of integrin and cadherin interactions is
needed to experimentally reproduce observed migratory behaviors. This model
couples two different spatial scales in biology: intracellular with multicellular.
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A theoretical framework for neural systems in which the dynamics are nested
within a multiscale architecture has been proposed [16]. The dynamics at each
scale are determined by a coupled ensemble of nonlinear oscillators, which
embody the principle of scale-specific neurobiological processes. The dynamics at
larger scales are ‘slaved’ to the emergent behavior of smaller scales through a
coupling function.

8.3 Virtual Organs, Disease Models, Virtual Patient

Entelos, the leading company in this field, has various concepts and ideas that are
worth noting and discussing. The ability to predict clinical efficacy in silico can
save the pharmaceutical industry time and resources. Additionally, such an
approach will result in more targeted, personalized therapies. To date, a number of
in silico strategies using both SB and BI inputs have been developed to provide
better information about the human response to novel therapies earlier in the drug
development process. Some of the most prominent include physiological modeling
of disease etiology and disease processes, analytical tools for population PD, tools
for the analysis of genomic expression data, Monte Carlo simulation technologies,
and predictive biosimulation. These strategies are likely to contribute significantly
to reducing the failure rate of drugs entering clinical trials. Several virtual plat-
forms are briefly discussed below.

A large-scale mathematical model, the Entelos Rheumatoid Arthritis (RA)
PhysioLab platform, has been developed to describe the inflammatory and erosive
processes in afflicted joints of people suffering from RA [17]. The platform rep-
resents the life cycle of inflammatory cells, endothelium, synovial fibroblasts, and
chondrocytes, as well as their products and interactions. The interplay between
these processes culminates in clinically relevant measures for inflammation and
erosion. The RA PhysioLab platform has been used to systematically and quan-
titatively study the predicted therapeutic effect of modulating several molecular
targets, which result in a ranking of putative drug targets and a workflow to
confirm the simulations experimentally, in addition to presenting case studies of
therapies directed against IL-12 and IL-15.

A skin sensitization PhysioLab has been used to construct a computer-based
mathematical model of the induction of skin sensitization, in collaboration with
Entelos, Inc. [18]. The biological mechanisms underlying the induction phase of
skin sensitization are represented by nonlinear ordinary differential equations and
refined using data from over 500 published papers. By using the model, it was
determined that one key factor with a major influence on the induction of skin
sensitization is TNF-a production in the epidermis. This information provides a
biologically-relevant rationale for the interpretation and potential integration of
diverse types of non-animal predictive data.

The Entelos Type 1 Diabetes PhysioLab platform, a dynamic large-scale
mathematical model of the pathogenesis of type 1 diabetes, was used to study the
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effects of anti-CD40L therapy in silico [19, 20]. An examination of the impact of
PK variability and the heterogeneity of disease progression rate on therapeutic
outcome provided insights that could reconcile apparently conflicting data in the
literature. Optimal treatment protocols were identified by exploring the dynamics
of key pathophysiological pathways. In a similar direction, a large-scale dynamic
mathematical model of the female NOD mouse was developed. In this model,
virtual NOD mice are constructed by mathematically representing components of
the immune system and islet beta cell physiology important for the pathogenesis of
type 1 diabetes [21, 22].

A few other examples are below. Dopaminergic neurodegeneration during
Parkinson disease (PD) involves identification of several pathways involved in the
pathogenesis of the disease [23]. Vali et al. [24] have utilized SB to build a
dynamic model for understanding and linking the various events related to PD
pathophysiology.

A C57Bl/6-specific model, recalibrated for inflammatory analyte data in
CD14-/- mice was proposed to elucidate altered features of inflammation in
animals [25]. Mathematical modeling may provide insights into the complex
dynamics of acute inflammation in a manner that can be tested in vivo using many
fewer animals than has been possible previously.

We conclude with a statement from a recent report (Anonymous Pricewater-
houseCoopers 2007):

Bioinformatics (note a correction by the authors of this Review: meant to be ‘‘Sys-
tems biology’’) experts aim to create a complete computer/mathematical representation
of the molecular and cellular components of the human body—a ‘‘virtual’’ man—which
can be used to simulate the physiological effects of interacting with specific targets,
identify which targets have a bearing on the course of a disease and determine what sort
of intervention is required (i.e. an agonist, antagonist, inverse agonist, opener, blocker
etc.). However, developing such a model will require a monumental global effort far
exceeding that of any similar work, e.g., the Human Genome Project.

The virtual patient is already coming: besides Entelos, Optimata (Israel) is
developing a virtual patient model, based on virtual physiology, disease and
treatment modules [26, 27]. This would require a standardized modeling language
as well as a well-organized web-based collaboration with international support.

8.4 Population Level Model: Towards Individualized
Medicine

Personalized medicine will be the ultimate clinical application of SB, in which
biological parameter variability in individuals and their statistical description in
large populations (stratified patient population) can be used to interrogate the
outcomes of therapeutic interventions and global patterns of disease distribution.
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The differences between individuals also influence disease development and
possibly optimized therapeutic interventions in individuals and populations [28].
Clearly, SB and MBDD (Chap. 10) will make these models better by focusing on
the personalized aspects of that strategy that minimizes the adverse event profile
while maximizing the efficacy window. PGN may enable clinicians to prospec-
tively identify patients most likely to derive benefit from a drug, with minimal
likelihood of adverse events. It is likely to transform the way clinical trials are
conducted by allowing for the selection of a more homogeneous study population,
thereby reducing the size and cost of a trial (see Chap. 10).

Highly perturbed gene/protein networks become building blocks for con-
structing systems level representations of hypothesized network models of the
disease or condition being studied. Such a model can be loaded with multiple
conditions to discover the unique differences or commonalities between different
population groups as defined by genotypes, race, age, gender, and/or environ-
mental conditions. There are many different modeling approaches available. Some
examples are provided below.

Disease simulation models are used to conduct decision analyses of the com-
parative benefits and risks associated with preventive and treatment strategies [29].
Barendregt et al. [30] presented a simple generic disease model with incidence,
prevalent state, and fatality and remission, and derived a set of equations that
describes this disease process and that allow calculation of the complete epide-
miology of a disease given a minimum of three input variables: for example
asthma with age-specific prevalence, remission, and mortality.

8.5 Targeting Networks: Towards Organismic, Full-Scale
Design

Several novel approaches demonstrate the power of targeting networks in ana-
lyzing full-scale behavior and disease state/progression. Again, the appearance of
emergent properties, from such analyses, is the key issue. ‘Disease modeling’ and
‘in silico’ predictive methods are becoming more frequent, coupled with experi-
mental tools [31]. Two examples are presented below.

A network model of the gene network that controls T-cell activation in humans,
which is critical for the development of autoimmune diseases such as multiple
sclerosis (MS), has been proposed [32]. It was established on the basis of the
quantitative expression from 104 individuals of 20 genes from the immune system,
extracted from the Ingenuity database (IPA) and by Bayesian inference. In the MS
patient network there was an increase in the weight of gene interactions related to
Th1 function and a decrease in those related to Treg and Th2 function. Based on
these results, IFN-b therapy induced changes in gene interactions related to T cell
proliferation and adhesion. Likewise, a new therapeutic target has been identified
whose differential behavior in the MS network was not modified by therapy.
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In vitro treatment with an agonist peptide modulated the T-cell activation in
patients. This study illustrated how network analysis can predict therapeutic
targets for immune intervention and identified a new therapeutic target for MS.

System-level ‘onco-networks’ have been proposed to explain cancer develop-
ment and progression [33]. Analysis of the results of genome-wide experiments
suggests that a cell can be induced to persist in one state or in transition between
states, while the latter can be reversed when the high dimensional space of
extracellular and intracellular parameters is understood. Authors postulate that as
conditions change, certain cellular states (cell lines) are no longer supported, new
ones emerge, and transitions (cell differentiation or death) occur. It appears that
studying individual oncogenes may not be sufficient to understand cancer; rather,
‘‘onco-networks’’ (subsets of strongly coupled genes supporting multiple cell
states) should be considered. Thus, the huge number of theoretically possible gene
activity combinations of a disease can be greatly reduced to a relatively small
subset of characteristic gene activity profiles that satisfy regulatory interaction
rules. Such clusters may become drug targets.

Network Inference is often carried out by identifying groups of co-expressed
genes from gene expression data using clustering or biclustering algorithms.
Clustering of co-expression profiles allows us to infer shared regulatory inputs and
functional pathways. However, it is an underdetermined (underconstrained,
ill-posed) problem: we have many more parameters than data values to fit.
Different inference methods are discussed by De Smet and Marchal [34].

A new term has been coined for the gene network correlations described above:
‘Systems Genetics’ (SG) [35]. By integrating a diversity of data like DNA vari-
ation, gene expression, protein–protein interaction, DNA–protein binding, and
other types of molecular phenotype data, more comprehensive networks of genes
both within and between tissues can be constructed to paint a more complete
picture of the molecular processes underlying the physiological states associated
with disease. Thus, SG seeks to understand this complexity by integrating the
questions and methods of SB with those of genetics to solve the fundamental
problem of interrelating genotype and phenotype in complex traits and disease.
These more integrative, systems-level methods lead to networks that are predic-
tive, provide a deeper context within which single genes operate, such as those
identified from genome-wide association studies or those targeted for therapeutic
intervention.

8.6 Redefining the Traditional R&D Paradigm

Having introduced all aspects which are important for cell and organism based
therapies in previous sections it is now possible to propose SB Paradigm 2, a
physiology-based approach (Fig. 8.1). It includes both arms of the systems
approach, top-down and bottom-up, and stands in clear contrast to the classical
reductionist view. The emphasis on human cell lines (cell systems biology) and
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animal models (systems pathology/pharmacology) is advocated by Butcher [36]
and van der Greef and McBurney [37]. This biology-driven approach could
significantly reduce the time and cost of new drug development. This paradigm is
beginning to be understood and used in the industry with a good success rate.
By and large, it is still qualitative in nature, with limited modeling and simulation,
resulting in identification of important pharmaceutical leads. The approach
requires substantial BI input. Network integration, via CSB (quantitative) repre-
sents one possible extension, if sufficient data are available. The finite window
constructed by network analysis offers an unprecedented view into the molecular
dynamics underlying global responses to discrete inputs. For more details see
Hecker et al. [39]. One can easily visualize that Fig. 8.1 suffers from not covering
a multiscale approach (cell–cell, organ and whole body) and this should be
developed as soon as possible.

Another scheme is proposed with a more quantitative approach. It is a
modification, a zoom-in, of Fig. 8.2, with the emphasis on ‘correlation network

TM

inference’ (CNI, Fig. 8.3). This scheme is based on employment of combinations
of data from different OMICs technologies with the aim of extracting crucial
systems modules/clusters (tree-based correlation networks) as possible interven-
tion targets of drug the discovery effort. Correlation network analysis should be
performed on normal cell phenotypes and compared with disease (and drug-per-
turbed) states. In fact, this approach integrates various interactome and functional
relationship networks into a coherent and realistic context and has been applied to
reveal genes potentially involved in cancer [40]. Integrating a coexpression net-
work, seeded with four well-known breast cancer associated genes, together with
genetic and physical interactions, yielded a breast cancer network model out of

Clinical samples

Human cell 
module

Genome
Transcriptome

Proteome
Metabolome
Interactome

Animal models

Network
analysis

Drug Discovery
& Development

Forward genetics

Network
Integration CSB

PKPD etc.

Forward genetics

Reverse genetics

Disease tissue
Expression profile

Disease model              Target identification         Target validation  Lead identification

Patients

Reverse engineering
in molecular & cell models

(siRNA, protein 
over-expression)

Reverse engineering
In animal models

(transgenic & knockout)

PBDDD: 
Physiology-based drug discovery

& development

Fig. 8.1 Systems biology paradigm 2. Flow diagram of physiology-based drug discovery and
development (PBDDD), presented here as a truncated standard R&D sequence, utilizing both, top-
down and bottom-up routes, and both, qualitative and quantitative tools. Based on Lindsay [38]
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which candidate cancer susceptibility and modifier genes could be predicted [40].
A new term has been proposed for this strategy ‘Integrative network modeling’.
This strategy is equally applicable to other types of cancer and other types of
disease [41, 42].

Fig. 8.2 Systems Biology Paradigm 3 Zooming in on correlation network inference for drug
discovery (CNIDD), based mostly on information theory. Small blue arrows denote bioinfor-
matics inputs, while green arrows denote chemical reaction engineering inputs (limited). The
approach is largely qualitative. This scheme is very loosely based on Fig. 8.1 of Ng et al., 2006

Fig. 8.3 Systems Biology Paradigm 4 Zooming-in CSB, based on detailed reaction network
inference for drug discovery (RNIDD or NBDD) with emphasis on the fluxome
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The next level of zoom-in of Figs. 1.3 and 8.2 is the ‘reaction network infer-
ence’ (RNI) paradigm (Fig. 8.4) (reaction network inference for drug discovery,
RNIDD, also called network-based DD—NBDD paradigm [43, 44]). This extre-
mely ambitious effort encompasses whole cell complexity and is not likely to be
achievable in the near future for significant cell system targets. It covers extremely
large sets of yet undetermined components, with limited understanding of their
function and interactions. The computational demand for executing such an effort
is very intensive. Higher organ level will require yet further effort.

SB played an important role in understanding AstraZeneca’s Iressa (gefitinib,
Hendricks et al. [45]), and in identification of liver abnormalities by Pfizer [46],
while Gene Network Sciences/J&J demonstrated a MoA of anticancer receptor
kinase inhibitors [47]. In the neurological disease area, a coupling of biochemical
networks and electrical signaling was accomplished. Swedish researchers (the
Björkegren group) identified several cholesterol-responsive genes through
SB-based efforts [48]. Other major companies using SB include Merck, Lilly
(Singapore) and Roche, which uses in silico technologies in approximately 50% of
its projects, mostly in Phase II and Phase III clinical trial designs [49]. It appears
that most big pharma companies sponsor some level of SB research. A number of
biotech companies are exploring the DD route, licensing-out, services and soft-
ware focus.

A comparison between the current and virtual R&D paradigms is shown in
Fig. 3.5, and the implementation of such paradigms will require both qualitative
and quantitative tools (PricewaterhouseCoopers Report 2007). In vitro assays and
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animal disease models are often unreliable in predicting efficacy. Most promising
candidates are tested in animals before forwarding them to initial testing in man.
The work currently undertaken in the clinical environment can be tackled much
earlier within the discovery phase.

8.7 Summarizing

Integrating models of varying complexity presents a challenging task for com-
puting because of the many orders of magnitude they must span of time scales for
elementary events. Multiscale (hierarchical) modeling is a combination of bottom-
up and top-down approaches with the capability for automatic aggregation of
detailed lower level models, as well as with automatic decomposition of integrated
upper level models. This development will require tremendous effort to accom-
modate the complexity of the issues involved. Some tools are already available. In
many areas of biology and physiology, multiscale models are still in their infancy
[49], while CSB is much more than the conscious use of emergence. One limi-
tation to the wide spread use of these modelling techniques in pharmaceutical
R&D is the distinct lack of theory for how to integrate model selection with
constraint propagation across several layers of biological organization. Developing
a virtual patient model, based on virtual physiology, that must, per force, include
disease and treatment modules may soon become reality, while population-level
approaches that segment populations that seem to be responsive or unresponsive to
a medicine are presently being developed and implemented in the clinical trial
environment enrichment design [50]. These efforts typically require the identifi-
cation and validation of objectively based, quantitative screens. Correlation and
reaction network inference paradigms will be more effective once massive
amounts of experimental data are available for mammalian systems, particularly in
terms of mechanisms and reaction details. Finally, targeting the central hubs of a
disease disregulated network may prove more therapeutically effective.
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Predicting outcomes of prostate cancer immunotherapy by personalized mathematical
models. PLoS One 5(12):e15482

27. Agur Z (2006) Biomathematics in the development of personalized medicine in oncology.
Future Oncol 2(1):39–42

28. Nicholson JK (2006) Global systems biology, personalized medicine and molecular
epidemiology. Mol Syst Biol 2:52

29. Stout NK, Goldie SJ (2008) Keeping the noise down: common random numbers for disease
simulation modeling. Health Care Manag Sci 11(4):399–406

30. Barendregt JJ, Van Oortmarssen GJ, Vos T, Murray CJ (2003) A generic model for the
assessment of disease epidemiology: the computational basis of DisMod II. Popul Health
Metr 1(1):4

31. Fattore M, Arrigo P (2005) Knowledge discovery and system biology in molecular medicine:
an application on neurodegenerative diseases. In Silico Biol 5(2):199–208

32. Palacios R, Goni J, Martinez-Forero I, Iranzo J, Sepulcre J, Melero I, Villoslada P (2007) A
network analysis of the human T-cell activation gene network identifies JAGGED1 as a
therapeutic target for autoimmune diseases. PLoS ONE 2(11):e1222

33. Qu K, Abi Haidar A, Fan J, Ensman L, Tuncay K, Jolly M, Ortoleva P (2007) Cancer onset
and progression: a genome-wide, nonlinear dynamical systems perspective on onconetworks.
J Theor Biol 246(2):234–244

34. De Smet R, Marchal K (2010) Advantages and limitations of current network inference
methods. Nat Rev Microbiol 8(10):717–729

35. Sieberts SK, Schadt EE (2007) Moving toward a system genetics view of disease. Mamm
Genome 18:389–401

36. Butcher EC (2005) Can cell systems biology rescue drug discovery? Nat Rev Drug Discov
4(6):461–467

37. van der Greef J, McBurney RN (2005) Innovation: Rescuing drug discovery: in vivo systems
pathology and systems pharmacology. Nat Rev Drug Discov 4(12):961–967

38. Lindsay MA (2003) Target discovery. Nat Rev Drug Discov 2(10):831–838
39. Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R (2009) Gege regulatory

network inference: ata integration in dynamic models–a review. Biosystems 96(1):86–103
40. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V,

Kirchhoff T, Gold B, Assmann V, Elshamy WM, Rual JF, Levine D, Rozek LS, Gelman RS,
Gunsalus KC, Greenberg RA, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N,
Solé X, Hernández P, Lázaro C, Nathanson KL, Weber BL, Cusick ME, Hill DE, Offit K,
Livingston DM, Gruber SB, Parvin JD, Vidal M (2007) Network modeling links breast
cancer susceptibility and centrosome dysfunction. Nat Genet 39(11):1338–1349

41. Ergün A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ (2007) A network biology
approach to prostate cancer. Mol Syst Biol 3:82

42. Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, Li J, Hasina R, Cheng C, Lingen MW,
Gerstein MB, Weichselbaum RR, Xing HR, Lussier YA (2010) Network modeling identifies
molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS
Comput Biol. 6(4):e1000730

43. Zhao S, Li S (2010) Network-based relating pharmacological and genomic spaces for drug
target identification. PLoS One 5(7):e11764

44. Klipp E, Wade RC, Kummer U (2010) Biochemical network-based drug-target prediction.
Curr Opin Biotechnol 21(4):511–516

45. Hendricks BS, Griffiths GJ, Benson R, Kenyon D, Lazzara M, Swinton J, Beck S, Hickinson M,
Beusmans JM, Lauffenburger D, de Graaf D (2006) Decreased internalisation of erbB1 mutants
in lung cancer is linked with a mechanism conferring sensitivity to gefitinib. Syst Biol
(Stevenage) 153(6):457–466

References 101



46. Xu JJ, Hendriks BS, Zhao J, de Graaf D (2008) Multiple effects of acetaminophen and p38
inhibitors: towards pathway toxicology. FEBS Lett 582(8):1276–1282

47. Khalil IG, Hill C (2005) Systems biology for cancer. Curr Opin Oncol 17(1):44–48
48. Skogsberg J, Lundström J, Kovacs A, Nilsson R, Noori P, Maleki S, Köhler M, Hamsten A,

Tegnér J, Björkegren J (2008) Transcriptional profiling uncovers a network of cholesterol-
responsive atherosclerosis target genes. PLoS Genet 4(3):e1000036

49. Southern J, Pitt-Francis J, Whiteley J, Stokeley D, Kobashi H, Nobes R, Kadooka Y,
Gavaghan D (2008) Multi-scale computational modelling in biology and physiology. Prog
Biophys Mol Biol 96(1–3):60–89

50. Liu JP, Lin JR (2008) Statistical methods for targeted clinical trials under enrichment design.
J Formos Med Assoc 107(Suppl 12):35–42

102 8 Development: Multiscale CSB—Simulation Tools



Chapter 9
Development: Drug Formulation
and Delivery

Drug formulation and delivery is a rapidly developing field that is also a very
mature area of the R&D process. Novel methods continue to contribute to
improved modalities. The whole landscape will change very soon and it will have
a key role to play in replacing existing drugs with expiring patents. Nanoscale
delivery methods are in rapid development, and will allow for efficient cell
internalization and enhanced efficacy.

Definitions

• Drug delivery is the method or process of administering a pharmaceutical
compound to achieve a therapeutic effect.

• Drug targeting is the method of delivering a drug to a particular site in the
organ, cell or intracellular environment, usually via attaching a ligand to a drug
or delivery vehicle (nano or microsized).

• Nanoscale delivery employs nanosized vehicles to achieve cellular access or
internalisation.

• Formulation is achieved by combining a pure drug with other substances to
produce a final medicinal product.

• Sustained release is a process of drug release over time via the formulation of a
drug into a vehicle which dissolves slowly and releases the active ingredient
over time.

9.1 Targeting Concept and Mechanisms

Pharmaceutical companies have at least three broad strategies for protecting and
enhancing their drug franchises: legal/sales and marketing defenses; chemical
modification; reformulation. Reformulation strategies are more common than
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chemical modification strategies, and have generated significant value in life-cycle
management. Here, the same basic active ingredient is used, but changes in for-
mulation are made to improve compliance or, in some cases, efficacy. If formu-
lation changes are modest, reformulated drugs have the advantage of following a
shorter approval route than that required of new preclinical entities, needing less
clinical trial data, reducing the development process to about 2–5 years.

Several strategies of drug delivery systems (DDS) are available [1]:

• PK modification has been a successful reformulation strategy for small mole-
cules with the development of sustained-release technology.

• Changing the route of administration has also been a successful path for
improving drug profiles.

• Improving bioavailability by increasing solubility or permeability, e.g. via
nanoparticulate vehicles.

• Increasing the purity of the active pharmaceutical ingredient, via, e.g. the
employment of specific stereoisomers.

Controlled drug delivery (CDD) has succeeded because of the emergence of
three key technologies:

• Protein PEGylation.
• Active targeting to specific cells by ligands conjugated to the DDS.
• Passive targeting to solid tumors via the EPR effect (passive uptake).

A recent review article, Venkatesh and colleagues highlight the activities in the
field of biomimetic systems and their application in controlled drug delivery [2]. A
definition and overview of biomimetic processes is provided, with a focus on
synthesis and assembly for the creation of novel biomaterials. In particular, sys-
tems are classified on the basis of three subsets, which include biological, synthetic
and biohybrid approaches. Examples focus on current and proposed clinical sig-
nificance for systems that mimic processes where the underlying molecular prin-
ciples are well understood. Biomimetic materials have a great potential as they are
exceptional candidates for various controlled drug delivery applications and have
enormous potential in medicine for the treatment of disease.

9.1.1 SB and BI Inputs

The quantitative analysis of the physical, chemical and potentially biological
phenomena, which are involved in the control of drug release, offers another
fundamental advantage: underlying drug release mechanisms can be elucidated,
which is a pre-requisite for improving the safety of a treatment and for effective
trouble-shooting during production. Several empirical and mechanistic models
have been suggested [3]. One of the major challenges to be addressed in the future
is the combination of mechanistic theories describing drug release within delivery
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systems with mathematical models quantifying the subsequent drug transport
within the human body in a realistic way.

9.2 Nanoscale Drug Delivery Systems

Nanoscale particles/molecules are being developed to improve the bioavailability
and PK of therapeutics. Examples are liposomes, polymeric nanoparticles, nano-
suspensions and polymer therapeutics. These nanomedicinal drugs feature the
ability to cross biological barriers (capability of intracellular delivery and traf-
ficking to different organelles), or passive or active targeting of tissues [4].

Although affinity targeting has many limitations, targeted DDS represent the
future of therapy. A characteristic feature of nanotechnology is its ability to add
new functionality to existing products, making them more competitive. Versatility
is another feature, as nanotechnology has the potential to add innovative func-
tionality to many pharmaceutical products and medical devices. Besides, this
technology can deliver a combination therapy, as opposed to most commonly used
drugs. Integration is the key: drug entity, gene delivery, targeting, the delivery
vehicle itself and possibly a visualization agent (imaging) [5].

9.3 CSB at Formulation and Delivery

Multiscale computational modeling of DDS is poised to provide predictive
capabilities for the rational design of targeted drug delivery systems, including
multi-functional nanoparticles [6]. Realistic, mechanistic models can provide a
framework for understanding the fundamental physicochemical interactions
between drug, delivery system, and patient. Multiscale modeling, however, is in its
infancy even for conventional drug delivery. The approach relies solely on SB and
BI inputs.

The wide range of emerging nanotechnology systems for targeted delivery
further increases the need for reliable in silico predictions. Several computational
approaches at different scales in the design of traditional oral drug delivery sys-
tems are available. A multiscale framework for integrating continuum, stochastic,
and computational chemistry models has been proposed and a several successful
case studies are available [6].

Prokop and Davidson [4] identified, rather intuitively, emergent properties
relevant to drug delivery in the cancer environment. These are:

• Elementary cancer metabolic and signaling quantitative models, elementary
models of nanovehicular uptake, targeting, internalization and trafficking at a
subcellular level.
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• Model of tumor invasion and metastasis, model of capillary network growth at
cellular level.

• Comprehensive PK model at tissue level.
• Comprehensive model of cancer as a systems disease, at organism/system level.

The challenge is to integrate all of the relevant knowledge and data in a sys-
tematic way and thus devise the best therapeutic and diagnostic strategies.
Accurate models will require comprehensive experimental data at multiple levels
of complexity. Collecting the dose–response and PD profiles in vivo from
experiments encompassing perturbations for uncovering disease mechanisms will
allow for hypothesis testing and verification, including high resolution noninvasive
imaging of animals (and man) on targeted drug delivery within different organs by
means of near infra-red (NIR) and quantitative PET imaging.

9.4 Summarizing

Many small molecule drugs are taken orally, satisfying the Ro5 are more likely to
be ‘blockbusters’. The emergence of target-based drugs and improvements in
delivery methods may reduce off-target effects and change the present market
paradigm. It is expected that experimentally validated numerical models of DD
may aid in formulating drug design, selectivity and combination therapies. And
while this approach could be extended to delivery vehicles with feedback prop-
erties (responding to the organism’s need) future development will be required. In
particular, one new feature, intracellular delivery will have to be accounted for,
while nanovehicular delivery methods may change the way drugs are targeted,
delivered, and internalized. Mechanisms of nanoparticle uptake have not yet been
fully characterized. To advance this field, new modeling approaches that capture
the inherent properties of transport dynamics (drug/carrier) and predict spatio-
temporal behavior are needed [7]. It is expected that, in the near future, DDS will
become a more integral component of new medicine development than the role it
presently inhabits.
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Chapter 10
Development: Preclinical Model Based
Drug Development

Large scale in silico clinical development will only become a reality after some
effort is exerted; some partial solutions (SB and BI tools mentioned in previous
chapters) already exist and first attempts have been made. We acknowledge here
that we are NOT in square zero and that in silico technologies have been, and are
already being, used in clinical trial design and execution, used in simulation
studies for adaptive trials, and used to identify patient subpopulations and markers
for enrichment strategies. This goal will require a concentrated effort by all
players, with considerable investment from the pharma industry and governments.

Definitions

• In silico clinical trial attempts to employ SB and BI tools to define a possible
scenario and explore its strengths and weaknesses by simulation before the start
of human trials.

• MBDD is model-based drug development seeking to develop a model of
quantitative disease-drug-trial relationship.

10.1 Defining MBDD

Thus far, in this review, we have neglected the impact of SB and BI on clinical
research and drug development. Several quantitative tools have been developed
that can enable change in the current paradigm of clinical research and drug
launch.

This area has been labeled as model-based drug development (MBDD) [1].
Alternatively, pharmacometrics (PM) has been used as a descriptor of these
technologies [2, 3]. This effort is again viewed as a paradigm shift in DDD by
encouraging a change in emphasis from drug dose-exposure to concentration-
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response. Lalonde et al. [1] suggested six stages of implementation of MBDD: trial
performance matrix, quantitative decision criteria, data analysis model, PK–PD
and disease model, competitor information and meta-analysis and design and trial
exceution models.

MBDD is designed to influence decisions in the pharma industry by conducting
quantitative analysis of PK and PD (i.e., efficacy, safety). The approach creates or
confirms prior models of disease change, identifies and characterizes the placebo
effect, identifies and characterizes the impact of dropouts on trial design and
logistics, and measures/quantifies drug effect, to determine the value of biomarkers
for a given disease or drug class to reflect changes in primary disease end points.

Continuous development of disease and safety models will form the foundation
of DDD throughout the drug life cycle. Development of a new drug will start in the
preclinical phase by simulating human PK/PD using in vitro tools employing
human material, animal models, and any relevant prior knowledge to characterize
both the compound and the metabolic pathways involved in its ADME. The
clinical phase then proceeds through several learning and confirming cycles.
Reference to Sheiner’s early work is warranted here as a groundbreaking idea
since it was the basis of modern adaptive design strategies [4]. The learning cycle
starts with PK and PD-directed dose escalation followed by human proof of
principle. The confirming cycle begins with patient dose finding followed by
multicenter clinical trials. In the post-NDA phase, the learning cycle continues by
focusing on safety, resetting benefit/risk, and developing new indications.

It is envisioned that MBDD will increase clinical productivity through more
informed decisions. To facilitate corporate learning, the information generated
across DDv can be systematically compiled into centralized databases to guide
future drug development and regulatory decisions. The hypotheses generated via
systematic modeling and simulation-based trial design should then lead to more
successful trials.

The three components of MBDD are: disease, drug, and trial models. As a
baseline, a healthy-state model should be added. Disease-drug-trial models seek a
mathematical representation of the time course of biomarker and clinical out-
comes, placebo effects, a drug’s pharmacologic effects, and trial execution char-
acteristics for both the desired and undesired responses. The importance of SB is
clear as the characterization of the relationship between biomarkers (in molecular
terms) and clinical outcomes are sought, as well as a linkage between preclinical
and clinical biomarkers (see e.g., Allerheiligen [5], Wetherington et al. [6],
Suryawanshi et al. [7] and Keizer et al. [8].

At present, various methods to develop disease-drug-trial models are available.
These analyses are extremely time consuming and inherently multidisciplinary,
requiring large groups of diverse experts to work together. Industry and regulatory
processes are currently not organized to accommodate such collaborative research. A
potential solution could be public–private partnerships to achieve common goals [3].
It is clear that we can employ previously developed and discussed tools presented in
other parts of this report (Chaps. 2–8) and readily incorporate them into the suggested
scheme. Some other tools and models will have to be developed afresh.
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As a result of the above discussion we summarize the MBDD model into
another emerging paradigm (Fig. 10.1), also based on the systems approach.

Another important systems tool which could complement the MBDD is that of
‘‘Quality by design’’ (QbD), advocated by FDA. QbD has several attributes [9]:

• Product is designed to meet patient needs and performance requirements.
• Process is designed to consistently meet product quality attributes.
• Impact of starting raw materials and process parameters on product quality is

understood.
• Critical sources of process variability are identified and controlled.
• The process is continually monitored and updated to allow for consistent quality

over time.

Such programs will achieve an integration of patient needs based on robust
science and clear characterization of quality requirements. The impact will be
mostly felt during the development of a Pharma product and its manufacturing
process, and requires a close collaboration between the industry and regulators to
achieve a regulatory review based on a scientific understanding of the product and
its manufacturing process. The intended result of QbD is a reduction in regulatory
burden and more streamlined operations. The fruits of the program can bring a
higher success rate to commercial operations with its impact on cost of goods,
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reduced reporting requirements, or at least a reduction in the level of reporting for
supplements and less complex or stressful inspections.

Steps in QbD typically involve (adopted from Lutze et al. [10]):

1. Define the problem (critical product attributes), where the objectives for quality
by design are established.

2. Develop assays and analyses to measure the critical product attributes; incor-
porate process analytical technology (PAT) for monitoring of critical attributes
during processing; collect all known data for the system under consideration.

3. Understand the interaction between the process and the product and identify the
critical process attributes that influence product quality.

4. Develop and validate a generic model to be used for process–product analysis.
5. Generate the intensified alternatives using synthesis/design algorithms to

explore the process design space.
6. Verify the alternatives trough model-based simulation.
7. Develop a statistical model that describes the process design space; optimize

the feasible alternatives to identify the optimal solution.
8. Validate the optimal alternative for final selection.

10.2 Summarizing

MBDD is in an early stage of development and will require input from biotech,
pharma, government and the regulatory agencies. While some components
(modules) are ready to be employed (as discussed previously in this review) others
will have to be developed and integrated into the overall technology suite. It is
envisioned that this integrated strategy, once accomplished, will result in savings
of both cost and time in clinical trials.
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Chapter 11
Systems Biology: Impact on Pharma
and Biotech

SB is important for DD because it can be used to rapidly identify the MoA of novel
drugs, enabling companies to make go/no decisions earlier in the drug develop-
ment process by avoiding pathways associated with toxicological or pharmaco-
logical issues. SB can reduce the number of compounds synthesized and
manufactured owing to refined algorithms which avoid poor PK and toxic effects.
In the longer term investments in SB will enable research institutions and com-
panies to save time and money in the DD process by choosing drugs which are
more likely to succeed in clinical development.

Definitions

• Blockbuster drug: a drug with annual sales of at least US $1 billion.
• Niche drug is drug focused on the (often relatively small) targetable portion

(subset) of a market sector.

11.1 SB Impact

Because of stagnation in DDD, pharmaceutical R&D must adopt a basic change of
paradigm in the way it does business. In short, it must speed up the process and
achieve higher success rates in the clinic. SB and BI offer new tools to effectively
enable this paradigm shift, by analyzing the landscape of disease, starting from
observations in molecular biology and ending with manufacturing, sales and
distribution. The definition of the baseline healthy state is a prerequisite. And
though SB and CSB are not panaceas, i.e., they cannot possibly solve every
problem that affects pharma, they can make a real contribution to drug discovery,
development, and lifecycle management.

A. Prokop and S. Michelson, Systems Biology in Biotech & Pharma,
SpringerBriefs in Pharmaceutical Science & Drug Development,
DOI: 10.1007/978-94-007-2849-3_11, � The Author(s) 2012
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‘‘Drug development has been stagnant in terms of innovation; there exists huge potential
for innovation. Failure to innovate drug development will render the ‘‘big pharma’’ model
unsustainable’’[1].

In terms of the future role of quantitative tools, which are becoming ‘‘estab-
lished’’, in both pharmaceutical R&D and in the academic environment, it is clear
that optimizing therapeutic approaches to human disease will require the appli-
cation of networks (Chap. 8) to identify new drug targets (Chap. 2), and to
determine the appropriate dosing of a drug based on metabolomic profiling [2].
Together these efforts will yield insights and hypotheses that will enable the
investigation into the causes of resistance to therapies or enhanced toxicities. This
value added knowledge will help to characterize the robustness/fragility trade-off
inherent in the system. But most importantly, network biology promises to illu-
minate our understanding of drug action (MoA).

Advances in SB suggest that complex diseases may not be effectively treatable
by interventions at single nodes of the disease network due to robust phenotypes of
biological systems with compensatory signaling routes that bypass the inhibition
of individual proteins. Also, recent insights from network SB predict that modu-
lating multiple nodes simultaneously is often required to alter phenotypes.
Network biology teaches us that exquisitely selective drugs may exhibit a lower
efficacy than expected. Conversely, compounds that selectively act on two or more
targets of interest should, in theory, become more efficacious than single-target
entities.

Network analysis promises to yield multiple benefits [3]:

• SB-based network analysis can identify the determinants (nodes) or combina-
tions of determinants that strongly influence disease expression or phenotype,
providing unique insight into disease mechanism and potential therapeutic
targets.

• Network analysis of disease provides the opportunity to rigorously consider
relationships within the modular collection of genomic, proteomic, and meta-
bolomic networks that interact to yield the patho-phenotype.

• Disease network analysis ultimately provides a mechanistic basis for defining
phenotypic differences among individuals with the same disease through
consideration of unique genetic and environmental factors that govern inter-
mediate phenotypes contributing to disease expression.

• Disease network analysis offers a unique method of identifying therapeutic
targets or combinations of targets that can alter disease expression.

The current pharmaceutical industry business model is considered to be both
economically unsustainable and operationally incapable of acting quickly enough
to produce the types of innovative treatments demanded by global markets. In
order to make the most of these future growth opportunities, academia and
industry must fundamentally change the way they operate. PricewaterhouseCo-
opers anticipates the following changes occurring in the industry:
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• Health care will shift from treatment to prevention. The role of consciously
planned nutrition and food science is increasing.

• Pharmaceutical companies will provide total health care packages.
• The current linear phase R&D process will give way to in-life testing and live

licensing, in collaboration with regulators and health care providers.
• Systematic feedback and data mining for the useful and harmful effects of

various drugs and drug combinations is very important.
• The traditional blockbuster sales model will disappear.
• The supply chain function will become revenue generating as it becomes inte-

gral to the health care package and enables access to new channels.

In 2004 Hood et al. [4] suggested that preventive medicine will follow disease
perturbed networks to identify drug targets, first for therapy and later for pre-
vention. This will require building a fundamental understanding of the SB that
underlies normal biological and pathological processes, and the development of
new technologies to achieve this goal. Predictive and preventative medicine will
lead naturally to personalized medicine, which, in turn, will revolutionize health
care. Drug companies will find and use more effective means of DD guided by
molecular diagnostics, although the paradigm will shift to partitioning patients
with a particular disease into a series of therapeutic windows, each with smaller
patient populations but higher therapeutic effectiveness.

The paradigm shift is being actualized by a number of key factors:

• The phenomenal pace of technological advances, e.g. BI, combinatorial syn-
theses, HTS, and laboratories on a chip,

• The need for significant breakthrough discoveries
• Pressure to reduce costs
• The requirement to reduce cycle times
• Biotechnology acquisitions and mergers (survival in global markets)

This paradigm shift in design features the Innovative ‘‘experiments’’ that can be
made in silico rather than in vivo or in vitro, so that only essential experiments
need be undertaken.

Kola [1] states that the drug discovery process has enjoyed some significant
advances, which, among others, includes diversification of the chemical compound
collections, HTS for targets, important tools for target identification and valida-
tion, the use of human genetics and genetic animal models, the sequencing of the
entire human genome (as well as that of several other species), and the advent/
integration of new technologies such as transcriptional profiling and siRNA
interference. On the other hand, the process of DDv has been relatively stagnant
and pharmaceutical DDv is a highly inefficient process (one in which
approximately nine molecules in ten fail during development, and many of these
failures occur in the later stages). The major causes of failure in DDv have been
lack of efficacy and unintended toxicity. These failures are typically due to a lack
of understanding of efficacy and its proof of concept in humans and the lack of
objective and robust biomarkers capable of reporting such efficacy. The evidence
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for the former comes partly from the observation that compounds targeting novel
mechanisms fail more frequently than those targeting network sites, and innova-
tion in drug development must be focused on ameliorating these two significant
risks. Recent scientific and technological advances may provide the basis for that
innovation. Advances in scientific technologies such as imaging, transcriptional
profiling, and proteomics, provide fertile ground for exploitation of biomarker
development. Rapidly evolving technologies such as functional MRI may also
provide objective, robust proof-of-concept end points.

Another operational innovation is utilizing adaptive trial design more frequently.
Sample size is one element that can be modified dynamically, adjusting the
potential power of the trial (adding or subtracting treatment strategies, changing
end points or patient populations, and altering methods of statistical analysis).

Van der Greef and McBurney et al. [5] stated: ‘‘It would be inappropriate to
give the impression that the full incorporation of systems thinking into the phar-
maceutical value chain will provide immediate cost savings. The implementation
of such a new concept over the entire process can only take place gradually, given
the existing infrastructures that might need to be changed, the current development
pipelines and the regulatory constraints… Realizing the full benefits of a systems
approach to drug discovery and development might take 10 years, given the
infrastructures to be changed and the need to complete ongoing programmes. So,
the likely way forward is a stepwise implementation based on business-driven
opportunities from the clinic to discovery coupled with improvements in aspects of
the process that can have widespread benefits across different therapeutic areas.
Systems-based approaches provide new flexible steps into the future for improving
the efficiency of drug discovery.’’

However, PricewaterhouseCoopers suggest a more radical approach: ‘‘We
believe that incremental improvements are no longer enough; the industry will
need to make a seismic shift to facilitate further progress in the treatment of
disease’’ (PricewaterhouseCoopers 2007).

We conclude with an overview of R&D technologies as we view them
emerging going forward (Fig. 11.1). They are listed in progression from those
which are currently in use towards the more speculative ones (ones that still to be
developed and operationalized in full). A reaction-mechanism-based tool is readily
available for prokaryotes and will become standard for eukaryotes once more
complete data are available. A Correlation networkTM-based tool will become a
reality in few years, as well as quantitative clinical development tools. Virtual man
(VTDD) will become commonplace in the 2020’s.

Middle-ground models are forthcoming:

…‘‘Between the extremes of network models and atomistic simulation a spectrum of
models has been developed that might ultimately be able to bridge the daunting gaps of
spatial and temporal scale. …they also need to be coarse-grained enough to handle
organism-wide processes with computational efficiency’’[6]

Thus our adopted definition of Systems Biology is a two-directional, integra-
tive, top-down (mechanism-based) and bottom-up (hypothesis-driven), often
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hybrid, methodology to systematically study complex biological/biomedical
experimental data. These data can span the spectrum of experimental experience
from in vitro molecular biology to whole body levels. The characterization of these
data includes both qualitative and (preferably) quantitative tools. The impact of
this characterization helps us evaluate a functional organization that is dynamic,
defining within its scope relationships and interactions among various system
components and between living systems and their interaction with the environ-
ment. In a clear departure from the mechanism-based reductionist approach, SB
will embrace both arms of scientific dogma, reductionist and holistic, by
employing a well-defined middle ground. This scope and structure of this middle
ground may shift in time as more SB global tools are developed and better
extraction of emergent properties is instituted. This effort will allow us to obtain a
deeper understanding of disease mechanisms (including the upper level interac-
tions), and derive benefits for expedited drug discovery and improved drug safety
and efficacy.

Ozbabacan et al. [7] provided an important guidance for the selection and
characterization of potential therapeutic targets identified by systems biology:
‘‘Given the complexity of human disease and the importance of selecting the right
target to avoid costly late-stage drug development failures, advances in network
biology may prove to be integral to the long-term success of the pharmaceutical
industry.’’

Most Pharma companies have been less impressed with the past benefits of
investing in SB, particularly in the genomic area and OMICs technologies, and are
proceeding with caution. We suggest that one way going forward is they change the
present organizational structure, which is based on compartmentalized departments

Fig. 11.1 Overview of systems biology paradigms projection from current to future status.
Paradigms 1 and 2 presently in use. Note the pink arrow timeline indicates introduction of SB
paradigms
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in line with reductionism, and apply a more holistic, collaborative, and multidis-
ciplinary work model to SB. In this new paradigm, Pharma’s internal culture will
need to include a more strategic global way of thinking through out the organiza-
tion, including throughout upper and middle management. It is also important to
note, however, that these types of changes will likely only come gradually, and
what pharma must do so must academia.

11.2 Key Technologies and Tools Needed for Development
of Systems Biology/CSB

• Strong experimental base: OMICs
• Data storage, analysis and mining via BI tools
• Network Biology:

1. Pathway analysis and
2. Modeling, simulation and interrogation tools.

11.3 Steps in Systems Biology/CSB

• Define a preliminary, data-driven (prior knowledge and data mining), hypothesis
of a complex process (note that subsequent iterations will define this step
further).

• Collect global, dynamic OMICs data with a multitude of different technologies
for healthy and disease phenotypes over a range of environmental and genetic
changes (from perturbed experiments)

• Analyze them and confront with available information (mining)
• Identify a network model (by exploring the parameter space) that quantitatively

recapitulates prior observations and predicts behavior in new environments, and
validate it with data collected: reduce model into a correlation or reaction
network

• Simulate and interrogate data in silico and discover new targets
• Repeat the cycle (return to data collection in order to improve experimental

conditions, etc.) to distinguish between competing model hypotheses; repeat the
above steps to refine the model over successive iterations and resolve the model
inconsistencies and revisions in the topology and in regulatory circuits

The above is strictly an academic flowchart. For a real-life scenario, see below
Flowchart (Cookbook); called Systems Biology paradigm by Michelson (please
note this diagram represents a culmination of this review, in terms of practical
application of systems approach and SB). A description provided by Schadt et al.
[8] is structurally similar to what Fig. 11.2 provides.
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The following are detailed comments on Fig. 11.2. Remember, that Pharma
needs to not only find a molecule that works (efficacy) but that gets to the right
place in the right concentration for a long enough period (PK/PD) without causing

Chapter(s)

8

3, 5

4

6

Patient subpopulation/segmentation

Data mining Statistical
analysis

Hypothesis
generation

Pathway
interrogation

Identify molecular targets/network hubs

Modeling platform
Physiologic context

Compensatory dynamics
Unregulated subsidiary 

pathways

Perturb network: In vitro wet lab experimentation - OMICS/statistics

ChChcheHTS Data mining

Family of molecules

Identify in vivo model

2, 3, 4

3, 5

4

Optimize efficacy & PK/PD/T (top candidate)

Chemometrics

Disease model

Identify biomarker for
therapeutic intervention

Repeat inductive path
in vivo ADMET

External input

Experimental 
validation/statistics

Refine dose
Define off-target

Subsidiary damage
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6, 10

7

8
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subsidiary pathway

Enhance/retard efficacy 
Refine/enhance SB model

Define parallel
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Fig. 11.2 Systems biology paradigm (Flow Chart) by Michelson. A practical guide (flowchart)
for Systems Biology discovery (step-by-step)
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subsidiary damage (Tox). Then they must determine in which subpopulation of
humans those criteria are best met (biomarkers). This practical workflow (as
captured in the flowchart in the Fig. 11.2) can be repeated as a learning feedback
loop returning to the beginning as necessary.

Identifying and characterizing the patient subpopulation identification and its
segmentation is a first step. The key is to use either deductive logic (from data
mining and/or statistical analysis) or inductive logic (hypothesizing as to the extent
and impact of a pathway), identify a candidate molecular target for a particular
kind of intervention. Then assure yourself of its potential viability both with a
modeling platform of the physiological context (as complete as possible) that will
identify possible (hypothetical) compensatory dynamics (e.g., unregulation of
subsidiary pathways, etc.). Then, using a highly focused wet lab experimentation
strategy, explore the hypothetical landscape (at any level that is feasible, but
typically in vitro). Then, when you think you understand your target ‘‘well
enough’’, see if there is any molecule that will manipulate it to therapeutic
advantage. This can be done using on HTS machinery and robots, in silico data
mining and chemometrics, or both simultaneously. Once one has a family of
molecules (post screening—whether in silico or HTS), the leads are typically
‘‘optimized’’ by medicinal chemistry to insure ‘‘optimal’’ efficacy (i.e., are we
better—more potent, less toxic—than our competitor?) and that exhibit ‘‘optimal’’
PK/PD/Tox profiles to ‘‘insure’’ one is minimizing the chance of failure in Clinical
Development. This is typically an iterative process with close interactions between
the in vivo biologists and the medicinal chemists, but the output of this ‘‘con-
versation’’ is typically the top candidate compound and a few back-ups (just in
case). Once one has good reason to believe that there are a family of molecules (it
is NEVER just one) that might ‘‘work’’ in a more completely physiological
environment (i.e. in vivo), find an appropriate in vivo model (typically a lower
species like rodent) that you can make ‘‘sick’’ and then make better. Then, to close
the loop to SB even tighter, refine/enhance your model to uncover subsidiary
dynamics that might indicate subsidiary or parallel pathways that could either
enhance or, more likely, retard the efficacy of your candidate molecule. Then, use
the model to develop, refine, and posit more complete testable hypotheses (feed-
back back to induction again), and design the right experiment in the right way to
yield the most informative insight as to how the biology and chemistry are
interacting. The work product of this effort should yield some level of insight into
the dynamics underlying the disease process and its response to external manip-
ulation. That knowledge should, in turn, yield insights into the existence and
accessibility of any informative biomarkers one might use to design/optimize a
clinical trial and to eventually identify a subpopulation that will likely form the
best subject cohort for therapeutic intervention. Now, do it again for ADMET.
This loop of scientific induction/deduction and focused hypothesis generation and
experimental validation forms the Holy Grail of DDD.
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11.4 Benefits of Systems Biology and CSB

• Cut R&D time and costs
• Improve drug target identification
• Improve drug target validation
• Improve the quality of lead compounds
• Optimize lead prioritization
• Develop targets for combination drug therapies
• Identify biomarkets for:

1. DD and validation
2. Toxicity
3. Clinical trials

• Improve ADMET prediction
• Minimize failures due to toxicity
• Optimize strategy and efficiency of clinical trials
• Broaden drug indications in post-market development
• Improve diagnostics for complex diseases
• Target drugs to market segmentation (personalized medicine)
• Guide bioprocess engineering

Finally, we present Table 11.1 (modified from [9]) which summarizes different
mathematical tools of BI and SB as relevant to biomedical R&D. Note that not all
tools are mentioned in this monograph.

11.5 Summary

• The Achilles heel of the present approach is a strong emphasis on high-affinity
ligands.

• The full exploration of biochemical networks will dramatically change the drug
discovery process.

• A key systems biology tool, reconstruction of biological networks, represents an
emerging field, undergoing explosive expansion; it will enable efficient mapping
of genes onto function.

• Qualitative reconstruction of pathways may generate enough information for
lead discovery, rather than the current approach of attempting to build fully
detailed kinetic models.

• Computational Systems Biology (CSB) is rapidly evolving and will generate
very important therapeutically-significant targets soon.

• In silico pharmacology is only in a rudimentary state, but will be important for
clinical MBDD development.
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• In silico PKPD/ADMET and biochemical-mechanistic methods will become the
standard approach in the coming few years via the employment of BI and SB
tools at the multiscale, whole-body level.

• Identifying and targeting (therapeutically) systems emergent properties is the
major goal for coming years. This will cause a paradigm shift in R&D activity in
pharma and help the establishment of individualized medicine.

• Drug formulation and delivery is very mature area of the R&D process, while
targeting is a rapidly developing tool.

• Process design, optimization and scale up (not covered in this review) is an art
rather than a rigorous engineering discipline, although some quantitative
methods are available, e.g. in the bioreactor design area and scale-up. Process
engineering aspects are important part of the global systems approach.

• In silico clinical development will only become a reality after some effort is
exerted; some partial solutions (in SB and BI) and tools already exist and the
first attempts have been made.

References

1. Kola I (2008) The state of innovation in drug development. Clin Pharmacol Ther
83(2):227–230

2. Nicholson JK (2006) Global systems biology, personalized medicine and molecular
epidemiology. Mol Syst Biol 2:52

3. Grimaldi D, Claessens YE, Mira JP, Chiche JD (2009) Beyond clinical phenotype: the biologic
integratome. Crit Care Med 37(1 Suppl):S38–S49

4. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable
predictive and preventative medicine. Science 306(5696):640–643

5. Van der Greef J, McBurney RN (2005) Innovation: Rescuing drug discovery: in vivo systems
pathology and systems pharmacology. Nat Rev Drug Discov 4(12):961–967

6. Ridgway D, Broderick G, Ellison MJ (2006) Accommodating space, time and randomness in
network simulation. Curr Opin Biotechnol 17(5):493–498

7. Ozbabacan SEA, Gursoy A, Keskin O, Nussinov R (2010) Conformational ensembles, signal
transduction and residue hot spots: Application to drug discovery. Curr Opin Drug Discov
Develop 13(5):527–537

8. Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound
screening. Nat Rev Drug Discov 8(4):286–295

9. Materi W, Wishart DS (2007) Computational systems biology in drug discovery and
development: methods and applications. Drug Discovery Today 12(7-8)295–303

11.5 Summary 127


	Systems Biology in Biotech& Pharma
	Contents
	Abbreviations
	Acknowledgments
	Abstract
	1 Introduction: Discovery and Development---New Facet of Industry, New Tools and Lead Optimization
	2 Discovery: Use of Systems Biology for Identifying Targets
	3 Integrative Systems Biology I---Biochemistry: Phase I Lead Discovery and Molecular Interactions
	4 Integrative Systems Biology II---Molecular Biology: Phase 2 Lead Discovery and In Silico Screening
	5 Discovery: Computational Systems Biology (CSB) in Health and Disease I
	6 Development: In Vivo Pharmacology--- Systems Biology in Health and Disease II
	7 Development: Pharmacokinetics---Systems Biology in Health and Disease III
	8 Development: Multiscale CSB---Simulation Tools
	9 Development: Drug Formulation and Delivery
	10 Development: Preclinical Model Based Drug Development
	11 Systems Biology: Impact on Pharma and Biotech



