..

|
g\
o
v 4‘ % ‘i»d Dynamic

11 \r J'f"
W Working with
> /‘ | Crop Models

EDITED BY

D.Wallach, D. Makowski
and J.W. Jones



Working with Dynamic
Crop Models

Evaluation, Analysis, Parameterization,
and Applications






Working with Dynamic
Crop Models

Evaluation, Analysis, Parameterization,
and Applications

Edited by
Daniel Wallach

INRA, Castanet Tolosan, France

David Makowski
INRA, Thiverval-Grignon, France

James W. Jones
University of Florida, Gainesville, USA

Amsterdam ¢ Boston ¢ Heidelberg * London ¢ New York ¢ Oxford
Paris » San Diego * San Francisco * Singapore ¢ Sydney ¢ Tokyo



ELSEVIER
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

First edition 2006
Copyright © 2006 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions @elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13: 978-0-444-52135-4
ISBN-10: 0-444-52135-6

For information on all Elsevier publications
visit our website at books.elsevier.com

Printed and bound in The Netherlands

06 07080910 10987654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID Qi phre Foundation




Contents

Contributors
Preface
Overview

1 Methods

1 The two forms of crop models
D. Wallach
2 Evaluating crop models
D. Wallach
3 Uncertainty and sensitivity analysis for crop models
H. Monod, C. Naud and D. Makowski
4 Parameter estimation for crop models
D. Makowski, J. Hillier, D. Wallach, B. Andrieu and M.-H. Jeuffroy
5 Data assimilation with crop models
D. Makowski, M. Guérif, JW. Jones and W. Graham
6 Representing and optimizing management decisions with crop models
J.E. Bergez, F. Garcia and D. Wallach
7 Using crop models for multiple fields
D. Leenhardt, D. Wallach, P. Le Moigne, M. Guérif,
A. Bruand and M.A. Casterad

II Applications

8 Introduction to Section II
J.W. Jones, D. Makowski and D. Wallach
9 Fundamental concepts of crop models illustrated by a
comparative approach
N. Brisson, J. Wery and K. Boote
10 Crop models with genotype parameters
M.-H. Jeuffroy, A. Barbottin, J.W. Jones and J. Lecoeur
11 Model-assisted genetic improvement of crops
C.D. Messina, K.J. Boote, C. Loffler; J.W. Jones and C.E. Vallejos
12 Parameterization and evaluation of a corn crop model
D. Wallach
13 Evaluation of a model for kiwifruit
F. Lescourret and D. Wallach

vii
X1
xiii

11

55

101

151

173

209

249
251

257

281

309

337

349



vi

Index

14

15

16

17

Contents

Sensitivity and uncertainty analysis of a static denitrification model
B. Gabrielle
Sensitivity analysis of PASTIS, a model of nitrogen transport and
transformation in the soil
P. Garnier
Sensitivity analysis of GENESYS, a model for studying the effect
of cropping systems on gene flow
N. Colbach and N. Molinari
Data assimilation and parameter estimation for precision agriculture
using the crop model STICS
M. Guérif, V. Houles, D. Makowski and C. Lauvernet

18 Application of Extended and Ensemble Kalman Filters

to soil carbon estimation
J.W. Jones and W.D. Graham

19 Analyzing and improving corn irrigation strategies with MODERATO,

20

a combination of a corn crop model and a decision model
J.-E. Bergez, J.-M. Deumier and B. Lacroix

Managing wheat for ethanol production: a multiple criteria approach
C. Loyce, J.P. Rellier and J.M. Meynard

Appendix. Statistical notions

Answers to Exercises

359

367

377

391

399

409

419

429

437

441



Contributors

Bruno Andrieu INRA, Unité mixte de recherche Environnement et grandes cultures,
78850 Thiverval-Grignon, France

Aude Barbottin UMR INRA SAD APT-INA-PG, BP 01, 78 850 Thiverval-Grignon,
France

Jacques-Eric Bergez INRA, UMR INRA/ENSAT ARCHE, BP 52627, 31326 Castanet
Tolosan Cedex, France

Ken Boote Agricultural and Biological Engineering Department, University of Florida,
PO Box 110570, Gainesville, FL 32611, USA

Nadine Brisson INRA, Unité CSE, Domaine Saint-paul, 84914 Avignon Cedex 9, France

Ary Bruand Institut des Sciences de la Terre d’Orléans (ISTO), UMR 6113 CNRS UO,
Université d’Orléans, Géosciences BP 6759-45067 Orléans Cedex 2, France

Auxiliadora Casterad Centro de Investigacién y Tecnologia Agroalimentaria de Aragén
(CITA), Unidad de Suelos y Riegos, Apartado 727, 50080 Zaragoza, Spain

Nathalie Colbach Unité mixte de recherche Biologie et gestion des adventices, 17,
Rue Sully BP 86510, 21065 Dijon Cedex, France

Jean-Marc Deumier ARVALIS - Institut du végétal, 6, chemin de la cote vieille, 31450
Baziege, France

Benoit Gabrielle INRA, Unité mixte de recherche Environnement et grandes cultures,
78850 Thiverval-Grignon, France

Frédéric Garcia INRA, Unité de Biométrie et intelligence artificielle, BP 27, 31326
Castanet Tolosan Cedex, France

Patricia Garnier INRA, Unité d’Agronomie Laon-Reims-Mons, Rue Fernand Christ,
02007 Laon Cedex, France

Wendy Graham  Department of Agricultural and Biological Engineering, PO Box
110570, Rogers Hall, University of Florida, Gainesville, FL 32611-0570, USA

Martine Guérif INRA, Unité CSE, Domaine Saint-Paul, 84914 Avignon Cedex 9, France

Jonathan Hillier University College London, Department of Geography, 26 Bedford
Way, London, WC1H OAP, UK



viii Contributors

Vianney Houles Laboratoire GEOTROP du CIRAD/AMIS/Agronomie, Maison de la
Télédétection, 500, rue J.F. Breton, 34 093 Montpellier Cedex 5, France

Marie-Hélene Jeuffroy INRA, UMR Agronomie INRA-INA-PG, B. P. 01, 78850
Thiverval-Grignon, France

James W. Jones Agricultural and Biological Engineering Department, University of
Florida, PO Box 110570, Gainesville, FL 32611, USA

Bernard Lacroix ARVALIS-Institut du végétal, 6 chemin de la co6te vieille 31450
Baziege, France

Claire Lauvernet UMR INRA/Univ. Avignon et Pays de Vaucluse: Climat, Sol et
Environnement, Domaine Saint-Paul, Site Agroparc, 84914 Avignon Cedex 9, France

Jérémie Lecoeur UMR LEPSE, Agro M-INRA, 2, place Viala, 34060 Montpellier
Cedex 01, France

Delphine Leenhardt INRA, UMR INRA/ENSAT ARCHE, BP 52627, 31326 Castanet
Tolosan Cedex, France

Patrick Le Moigne Météo-France CNRM/GMME/MC2, 42, av. G. Coriolis, 31057
Toulouse Cedex, France

Frangoise Lescourret INRA, Unité Plantes et systemes de culture horticoles, Domaine
Saint-Paul - Site Agroparc, 84914 Avignon Cedex 9, France

C. Loffler DuPont Agriculture & Nutrition, 7200 NW 62nd Ave. P.O. Box 184, Johnston,
1A 50131-0184, USA

Chantal Loyce INA P-G Département AGER, UMR Agronomie, Batiment EGER, 78850
Thiverval-Grignon, France

David Makowski INRA, UMR Agronomie INRA-INA-PG, B. P. 01, 78850 Thiverval-
Grignon, France

Carlos D. Messina DuPont Agriculture & Nutrition, 7200 NW 62nd Ave. P.O. Box 184,
Johnston, IA 50131-0184, USA

Jean-Marc Meynard INRA, Département sciences pour I’action et le développement,
78850 Thiverval-Grignon, France

Nicolas Molinari TURC, 641 Av. Gaston Giraud, Montpellier, France

Hervé Monod INRA, Unité de recherche Mathématiques et Informatique Appliquées,
Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France

Cédric Naud INRA, UMR Agronomie INRA-INA-PG, B. P. 01, 78850 Thiverval-
Grignon, France

C. Eduardo Vallejos 1143 Fifield Hall, Program in Plant Molecular and Cellular Biology
and Horticultural Sciences, University of Florida, Gainesville, FL 32611-0690, USA

Daniel Wallach 1.N.R.A. Toulouse, UMRI248 ARCHE, BP 52627, 31326 Castanet
Tolosan Cedex, France



Contributors ix

Jacques Wery UMR INRA/ENSAM/CIRAD: Fonctionnement et Conduite des Systémes
de Cultures Tropicaux et Méditerranéens, CIRAD Avenue Agropolis TA 80/01, 34398
Montpellier Cedex 5, France

Acknowledgments

A number of scientists were willing to review various chapters and make suggestions
concerning both content and form. We gratefully acknowledge our indebtedness to
Dr. Senthold Asseng (CSIRO, Wembley, WA, Australia), Dr. Jean-Noel Aubertot (INRA,
Grignon, France), Dr. Frédéric Baret (INRA, Avignon, France), Dr. Patrick Durand (INRA,
Rennes, France), Dr. Carine Hue (INTA, Toulouse, France), Dr. Eric Malézieux (CIRAD,
Montpellier, France), Dr. Walter Rossing (WUR, Wageningen, The Netherlands), and
Dr. Jean-Philippe Steyer (INRA, Narbonne, France).






Preface

This book focuses on the methods for working with crop models, in particular, on math-
ematical and statistical methods. Most crop modelers are painfully aware of the need for
such methods. Parameter estimation, model evaluation, and sensitivity analysis are called
for in essentially every modeling project. Other methods treated in this book, related to
the use of in-season measurements for improving model predictions, to optimization of
management decisions, to the use of models on a large spatial scale or to the use of models
to aid in genetic improvement of crops, are also important but only in certain cases.

In crop modeling as in all fields, it is a challenge to keep up with progress, and this
is particularly difficult when it comes to mathematical and statistical methods, which are
developed outside the framework of crop models. The purpose of this book is to make
these methods easily available to crop modelers. We felt that there is a gap in the literature
in this respect. Many books treat the way to describe a crop system in terms of equations,
but none seems to provide an in-depth presentation of a large range of methods for working
with crop models.

This book is intended for use in a graduate level course in crop modeling (hence
the exercises), and for researchers who wish to use crop models. It should be useful to
biologists, agronomists, and plant physiologists who are comfortable with describing and
quantifying the soil-plant—atmosphere system, but are not familiar with rigorous methods
for dealing with complex dynamic models. Others who may benefit are students and
researchers with more mathematical and statistical backgrounds who are interested in the
applications of applied mathematics to crop models. The emphasis throughout is on crop
models, but in fact, much of the material applies more generally to dynamic models of
complex systems.

While preparing the contents of this book, we had three main goals. First, the book
should reflect the latest knowledge about the different topics covered. Second, the material
should be adapted to and applicable to complex dynamic models, in particular, crop
models. This is achieved by discussing each method in the specific context of crop models,
by using simple crop models to provide the illustrative examples in the text and by
furnishing case studies involving crop models. Finally, the material should be accessible
to someone who has had basic courses in statistics and linear algebra. To this end, we have
tried to explain each method simply, but without sacrificing detail or accuracy. To help
the reader, an appendix reviews the statistical notions that are used in the text.

The origins of this book go back to the year 2000, when a group of French researchers
began to prepare an intensive week-long school for modelers. The book began as a syllabus
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for that course. The years since then have gone into testing the material in other courses,
expanding the coverage and refining the contents.

Statistician G.E.P. Box once wrote, “All models are wrong, but some are useful”.
Our hope is that this book, by improving access to important methods, will contribute to
increasing the usefulness of crop models.

D. Wallach
D. Makowski
J. W. Jones



Overview

Herein is a brief overview of the contents of the book.

1. Methods

1. The two forms of crop models. This chapter is concerned with the mathematical form
of crop models. Crop models consist of a set of dynamic equations (form 1), which one
integrates to get predictions of responses versus inputs (form 2). The uses of the two forms
are quite different.

2. Evaluation. This chapter first presents and discusses different measures of the distance
between model predictions and observed values. It then discusses the notion of prediction
error and insists on the difference between how well the model reproduces past data and
predicts future values. There is also a discussion on how to evaluate a model when it is
used to propose crop management decisions.

3. Uncertainty and sensitivity. Such analyses are aimed at describing how variations in
input factors (variables or parameters) affect the output variables. The chapter begins by
reviewing the uses of such analyses. The rest of the chapter discusses different sensitivity
or uncertainty indices and how they are calculated, in particular, in the case where multiple
input factors vary.

4. Parameter estimation. There is a very large statistical literature about parameter
estimation, but most of it cannot be directly applied to crop models. The specific problems
of crop models include the large number of parameters compared to the amount of field
data and the complex structure of that data (several variables, at various dates). On the
other hand, there is often outside knowledge about many of the parameter values (from
controlled environment studies, similar crops, etc.). The chapter begins with a basic
introduction to the principles and methods of parameter estimation. Then the specific case
of complex crop models is considered. A number of approaches to parameter estimation
that have been or could be used are described and illustrated. Included here is the Bayesian
approach to parameter estimation, which is particularly adapted to the efficient use of the
outside information.

5. Data assimilation. In-season information about crop growth, for example from satellite
photos, is becoming increasingly available. This information can be used to adjust a crop
model to reflect the specific trajectory of the field in question. This chapter discusses and
illustrates how this adaptation can be done. In particular, variants of the Kalman filter
approach are explained and illustrated.
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6. Representing and optimizing management decisions. Improving crop management
is a major use of crop models. The first part of this chapter concerns how to express man-
agement decisions, and discusses in particular decision rules, which express decisions as
functions of weather or state of the crop. The second part of the chapter presents and dis-
cusses algorithms for calculating optimal decisions. The problem is very complex because
of the multiple decisions and the uncertainty in future climate, but efficient algorithms
exist.

7. Using crop models for multiple fields. One is often faced with the problem of running
a crop model for multiple fields, for example in order to predict regional yields or nitrogen
leaching for each field in a watershed. This chapter discusses the specific problems posed
by this use of crop models. A major problem is that in general one cannot obtain all the
necessary input variables for every field. The chapter presents the different solutions that
have been proposed for each type of input data.

I1. Applications

8. Introduction to Section II

9. Fundamental concepts of crop models. This chapter discusses the way crop models
represent a crop—soil system, with examples from five different crop models.

10. Crop models with genotype parameters. The existence of multiple varieties for each
crop, and the fact that many new varieties are developed each year, is a problem specific
to crop models. It is important that models be variety specific, but this raises the problem
of how to identify and estimate the variety specific parameters. This chapter discusses the
approaches that have been proposed.

11. Model assisted genetic improvement in crops. This chapter covers the very new
field of the use of crop models in plant breeding. It explains the different ways in which
crop models can contribute to selection and includes examples of such uses.

12-20. Case studies. These chapters illustrate a diversity of applications of crop models,
and show how the methods presented in Section I can be useful.



Section I

Methods
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Chapter 1

The two forms of crop models

D. Wallach

Introduction

A crop model is a dynamic system model
A crop model is a response model
Working with crop models. Which form?
Conclusions

Exercises 10

Nk W=
[N I NI

1. Introduction

Crop models are mathematical models which describe the growth and development of a
crop interacting with soil. They can be viewed in two different, complementary ways.
First, a crop model can be seen as a system of differential or difference equations, which
describe the dynamics of the crop—soil system. Second, the model can be thought of as a
set of equations for responses of interest as functions of explanatory variables. We present
and discuss these two viewpoints in this chapter. As we shall see, the different methods
described in this book may call for one or the other of these viewpoints.

2. A crop model is a dynamic system model
The general form of a dynamic system model in discrete time is
Uit + At) =Ui(t) + g1 [U(1), X(2); 0]
ey
Us(t + A1) = Us(1) + gs [U (1), X(1); 0]

where ¢ is time, At is some time increment, U (¢) = [U;(¢), ..., Us (t)]T is the vector of
state variables at time ¢, X (¢) is the vector of explanatory variables at time ¢, 6 is the vector
of parameters and g is some function. For crop models, At is often one day. The state vari-
ables U (¢) could include for example leaf area index (leaf area per unit soil area), biomass,
root depth, soil water content in each of several soil layers, etc. The explanatory variables
X (t) typically include initial conditions (such as initial soil moisture), soil characteristics
(such as maximum water holding capacity), climate variables (such as daily maximum and
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minimum temperature) and management variables (such as irrigation dates and amounts).
Chapter 9 contains an overview of the processes generally described by crop models.

The model of Eq. (1) is dynamic in the sense that it describes how the state variables
evolve over time. It describes a system in the sense that there are several state variables
that interact.

To illustrate, we present a very simplified crop model with just 3 state variables, namely
the temperature sum 77, plant biomass B and leaf area index LAI. The equations are:

TT(j + 1) =TT (j) + ATT(j)

B(j+1) = B(j) + AB(j)

LAI(j + 1) = LAI(j) + ALAI(j)

with
ATT(j) = max [TMINU ) ’;TMAXU ) T 0] @
AB(j) = RUE(1 — e~ K-LAIU) [ () TT(j) < TTwm
A3)
=0 TT(j) > TTwm

ALAI(j) = a ATT(j)LAI(j) max[LAImax — LAI(j), 01 TT(j) =TTL

(C))
=0 TT(j) > TTL

The index j is the day. The model has a time step At of one day. The explanatory variables
are TMIN(j), TMAX(j) and I (¢) which are respectively minimum and maximum temper-
ature and solar radiation on day j. The parameters are Tpase (the baseline temperature for
growth), RUE (radiation use efficiency), K (excitation coefficient, which determines the
relation between leaf area index and intercepted radiation), « (the relative rate of leaf area
index increase for small values of leaf area index), LAl,x (maximum leaf area index),
TT\ (temperature sum for crop maturity) and 777, (temperature sum at the end of leaf area
increase).

2.1. The elements of a dynamic system model
2.1.1. State variables U(t)

The state variables play a central role in dynamic system models. The collection of state
variables determines what is included in the system under study. A fundamental choice
is involved here. For example, if it is decided to include soil mineral nitrogen within the
system being studied, then soil mineral nitrogen will be a state variable and the model will
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include an equation to describe the evolution over time of this variable. If soil mineral
nitrogen is not included as a state variable, it could still be included as an explanatory
variable, i.e. its effect on plant growth and development could still be considered. How-
ever, in this case the values of soil mineral nitrogen over time would have to be supplied
to the model; they would not be calculated within the model. The limits of the system
being modeled are different in the two cases.

The choice of state variables is also fundamental for a second reason. It is assumed
that the state variables at time ¢t give a description of the system that is sufficient for
calculating the future trajectory of the system. For example, if only root depth is included
among the state variables and not variables describing root geometry, the implicit assump-
tion is that the evolution of the system can be calculated on the basis of just root depth.
Furthermore, past values of root depth are not needed. Whatever effect they had is assumed
to be taken into account once one knows all the state variables at time ¢.

Given a dynamic model in the form of Eq. (1), it is quite easy to identify the state
variables. A state variable is a variable that appears both on the left side of an equation,
so that the value is calculated by the model, and on the right side, since the values of the
state variables determine the future trajectory of the system.

2.1.2. Explanatory variables and parameters (X(t), 6)

The explanatory variables likewise imply a basic decision about what is important in
determining the dynamics of the system. In the chapter on model evaluation, we will
discuss in detail how the choice of explanatory variables affects model predictive quality.
Briefly, adding additional explanatory variables has two opposite effects. On the one hand,
added explanatory variables permit one to explain more of the variability in the system,
and thus offer the possibility of improved predictions. On the other hand, the additional
explanatory variables normally require additional equations and parameters which need
to be estimated, which leads to additional error and thus less accurate predictions.

Explanatory variables and parameters can be recognized by the fact that they appear
only on the right-hand side of Eq. (1). They enter into the calculation of the system
dynamics but are not themselves calculated. The difference between explanatory variables
and parameters is that explanatory variables are measured or observed for each situation
where the model is applied, or are based on measured or observed values. Thus for example
maximum soil water holding capacity is measured for each field, or perhaps derived from
soil texture, which would then be the measured value. Potentially at least, an explanatory
variable can differ depending on the situation while a parameter is by definition constant
across all situations of interest.

2.2. The random elements in the dynamic equations

We have written the dynamic equations as perfect equalities. In practice however they are
only approximations. The actual time evolution of a state variable in a system as complex
as a crop—soil system can depend on a very large number of factors. In a crop model
this is generally reduced to a small number of factors; those considered to be the most
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important. The form of the equation is also in general chosen for simplicity and may not
be exact. Thus the equations of a crop model should actually be expressed as

Uit +An) =Ui(t) + g lU@), X(1);: 01+ ni(), i=1,....§ ®)

where the error 7;(¢) is a random variable. This is a stochastic dynamic equation.

Another major source of uncertainty in the dynamic equations comes from the explana-
tory variables and in particular climate. When crop models are used for prediction, future
climate is unknown and this adds a further source of uncertainty about the time evolution
of the system.

3. A crop model is a response model

We can integrate the differential equations or difference equations of the dynamic system
model. Often we talk of “running” the model when the equations are embedded in a
computer program and integration is done numerically on the computer. For the difference
equations, one simply starts with the initial values at + = O of the state variables, uses
the dynamic equations to update each state variable to time ¢+ = Af, uses the dynamic
equations again to get the state variable values at ¢t = 2At, etc. up to whatever ending
time one has chosen.

The result of integration is to eliminate intermediate values of the state variables. The
state variables at any time T are then just functions of the explanatory variables for all times
froms = 0tor = T — At i.e. after integration the state variables can be written in the form

Ui(T)= fi.7[X(0), X (A1), X(QAD), X(BAL), ..., X(T—A1);0], i=1,....S (6)

In general, there are a limited number of model results that are of primary interest.
We will refer to these as the model response variables. They may be state variables at
particular times or functions of state variables. The response variables may include: vari-
ables that are directly related to the performance of the system such as yield, total nitrogen
uptake or total nitrogen leached beyond the root zone; variables that can be used to com-
pare with observed values, for example leaf area index and biomass at measurement dates;
variables that help understand the dynamics of the system, for example daily water stress.

We note a response variable Y. According to Eq. (6) the equation for a response variable
can be written in the form

Y=f(X;0) )

where X stands for the vector of explanatory variables for all times from ¢ =0 to whatever
final time is needed and 6 is the same parameter vector as in Eq. (1). When we want to
emphasize that the model is only an approximation, we will write ¥ in place of Y.
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3.1. The random elements in the response equations

Since the dynamic equations are only approximate, the response equations are also only
approximate. Including error, the equation for a response variable can be written

Y=f(X;0)+e ®)

where ¢ is a random variable. For the moment we ignore the uncertainty in X. Since
the response equations derive directly from the dynamic equations, ¢ is the result of the
propagation of the errors in Eq. (5). However, it is not obligatory to first define the errors in
the dynamic equations and then derive the errors in the response equations. An alternative
is to directly make assumptions about the distribution of €. In this case, Eq. (8) is treated
as a standard regression equation. If there are several response variables to be treated,
then one is dealing with a (generally non-linear) multivariate regression model.

The error arises from the fact that the explanatory variables do not explain all the
variability in the response variables, and from possible errors in the equations. In addition
there may be uncertainties in the explanatory variables, in particular climate when the
model is used for prediction.

4. Working with crop models. Which form?

In developing and working with crop models, both the dynamic equations and response
equations are used, though for different objectives one will in general concentrate on one
or the other.

During the initial development of a crop model one generally works with the dynamic
equations. Several reasons have led to the use of dynamic crop models. First, we have a
great deal of information about the processes underlying crop growth and development,
and the dynamic equations allow us to use this information in studying the evolution of
the overall crop—soil system. A second reason is that they allow us to break down the
very complex crop—soil system into more manageable pieces and to model each of those
pieces separately. It is possible to develop response models directly, without the interme-
diate step of dynamic equations. However, such models are in general limited to much
simpler representations of a crop—soil system than is possible with dynamic crop models.
The individual dynamic equations in crop models may also be quite simple, but their
combination and interaction in the overall model results in complex response equations.

Historically, researchers have had two quite different attitudes towards crop models.
On the one hand, a crop model can be considered a scientific hypothesis. Testing the
hypothesis involves both forms of a crop model. The dynamic equations represent the
hypothesis, which is tested by comparing the response equations with observations.
The second attitude is that crop models are engineering tools. They are useful in relating
outputs to inputs, but it is not necessary that the dynamic equations mimic exactly the
way the system functions. The dynamic equations are simply a way of deriving useful
input—output relationships. In this case, the response equations are of main interest and the
evaluation of the model measures the quality of the input—output relationships. Evaluation
is treated in Chapter 2.
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Especially from an engineering perspective, the general behavior of the model
responses as functions of the explanatory variables is of interest and importance. However,
the response equations are in general not available as analytic expressions, but only after
numerical integration of the dynamic equations. It is thus difficult to analyze the effect of
input variables on response variables directly from the model equations. This has led to
the use of sensitivity analysis, which is the study of how input factors (both explanatory
variables and parameters) affect the outputs of a response model. This topic is treated in
Chapter 3.

A major problem with crop models is obtaining the values of the parameters.
The complexity of crop models means that there are in general, many (often a hundred
or more) parameters. The amount of experimental data on the other hand is in general
limited because experimentation on crop systems is necessarily lengthy and expensive in
terms of land, equipment and manpower. If we consider just the response equations, then
we have a regression problem involving simultaneously all the parameters in the model,
and their estimation from the experimental data may be impossible or at least lead to
large errors. However, the fact that a crop model has two forms often leads to additional
information that can be used for parameter estimation. In particular, one often assumes
that the dynamic equations have validity beyond the range of conditions described by the
response model. This implies that one can do experiments on some processes under other
conditions than those where the crop model will be used. For example, the temperature
dependence of some processes may be studied in controlled temperature environments.
The result is additional data, independent of the data on the overall system, that can be
used to estimate parameters. The problem of parameter estimation for crop models is
discussed in Chapter 4.

A specific problem related to crop models is that for each crop species there are in
general many varieties, and plant breeders add new varieties each year. From a crop
model perspective, this greatly exacerbates the problem of parameter estimation, since at
least some of the model parameters vary from variety to variety. A possible solution is
to use both the dynamic and response forms of a crop model. Some varietal parameters
can be obtained from studies on the individual processes, others can be estimated from
the response equations. This approach is discussed in Chapter 10. One can also treat this
problem at a more fundamental level, by seeking to relate the model parameters more
closely to genetic information (see Chapter 11).

A very promising approach to improving crop models is data assimilation, where one
injects in-season data into the model and adjusts the values of the state variables or the
parameters to that data. Assimilation is based on Eq. (5). It is necessary to have an
estimate of error in the dynamic equations, in order to determine the respective weights
to give to the data and to the model when combining those two sources of information.
Data assimilation is treated in Chapter 5.

Testing different possible crop management strategies is a major use of crop models.
One aspect of this use is mathematical optimization of management strategies. Chapter 6
presents two different approaches to optimization. Optimization by simulation is based
on the response form of crop models. Here, management strategies are parameterized.
Optimization consists of calculating the values of the management parameters that maxi-
mize an objective function, which in general depends on a small number of model response
variables such as yield or grain protein content. The second approach treats optimization
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as a control problem. Here, the dynamic equations are used to calculate the transition prob-
abilities from one time step to the next, as a function of explanatory variables including
management decisions.

5. Conclusions

The fact that crop models exist in two forms, as dynamic equations and as response
equations, is both a complication and an advantage. One complication is that in general
this leads to quite complex models. A second is that model error must be treated at two
levels, that of the dynamic equations and that of the overall system response.

The advantage is that the model can be developed and analyzed at two levels. One
can study the individual processes and the overall system, and results from both can be
integrated into the model. This allows us to profit from knowledge of how the system func-
tions in order to better understand and manage crop—soil systems. The connection between
processes and the overall system can also be used to test and improve our knowledge of
the processes.
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Exercises

1. Write equations for the response variables B(2) and LAI(2) using Egs. (3) and (4).
The resulting expressions should depend on explanatory variables, including the initial
values of the state variables, but not on values of the state variables at other times.

2. On what explanatory variables does B(2) depend? Compare with the explanatory
variables in the dynamic equation for biomass. Explain the difference.

3. Let np(j) and nr(j) represent respectively the errors in the dynamic equations for
biomass and leaf area index at time j. Write the dynamic equations for biomass and
leaf area index as stochastic equations using this notation.

4. Write the equations for the response variables B(2) and LAI(2) including the error
terms 1 (j) and np (j) from the dynamic equations. The resulting expressions show
how the errors in the dynamic equations propagate through the system model.

5. Let eg(2) and &1 (2) represent the errors in the equations for the response variables
B(2) and LAI(2). Write the equations for B(2) and LAI(2) as a multivariate regression
model using this notation.
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1. Introduction
1.1. Definition

The dictionary definition of evaluation is to “ascertain the value of,” and that is the
meaning that we use here. The goal of evaluation is to determine the value of a crop
model, with respect to the proposed use of the model. The results of an evaluation study
can include graphs comparing observed and predicted values, numerical measures of
quality or qualitative conclusions about the quality of a model.

In the literature, one often encounters the term “validation” rather than “evaluation.”
A rather common definition is that validation concerns determining whether a model is
adequate for its intended purpose or not. This emphasizes the important fact that a model
should be judged with reference to an objective. On the other hand, this definition seems
to indicate that the result of a validation exercise is “yes” (the model is valid) or “no” (not
valid). In practice, it is rarely the case that one makes, or even wishes to make, such a
categorical decision. Rather one seeks a diversity of indications about how well the model
represents crop responses. We therefore prefer the term “evaluation.”

General discussions and reviews of evaluation for ecological or crop models can be
found in Swartzman and Kaluzny (1987), Loehle (1987), Mayer and Butler (1993),
Rykiel (1996) and Mitchell and Sheehy (1997).

1.2. The importance of evaluation

Model evaluation is important for several reasons. Firstly, the simple fact of deciding
to evaluate a model obliges one to answer some basic questions, including what is the
objective of the model, what is the range of conditions where the model will be used,
what level of quality will be acceptable.
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Secondly, model improvement is impossible without evaluation. In the absence of a
measure of model quality, how can one decide whether improvement is called for, and
how can one know if a modified model is an improvement? As we shall see, evaluation can
provide not only an overall indication of quality but can also quantify the errors resulting
from different causes. Then, further efforts can be focused on reducing the major errors.

Finally, evaluation is important for potential users of a model. The user needs infor-
mation about the quality of the model in order to decide how much credence to give to
model results.

1.3. The role of evaluation in a modeling project

Evaluation should not be envisioned as an activity that is undertaken just once, at the end
of a modeling project. It is rather an activity that, in its different forms, accompanies the
project throughout its lifetime.

Evaluation should begin at the beginning of a modeling project. At that time it is
necessary to identify the goals of the project, and consequently the criteria for model
evaluation. It is at the beginning of the project that the range of conditions to be simulated
is specified, that the output variables of interest are identified and that the acceptable level
of error is defined.

A second evaluation step involves the model equations, which will be compared with
results in the literature or with expert opinion. In general, the model is then embodied in a
computer program and there is the essential step of evaluation of the computer program.
Testing a computer program, to ensure that it performs the intended calculations, is an
important field with its own literature and we will not consider it here.

Once the computer program exists, one often continues with sensitivity analysis
(Chapter 3) and parameter estimation (Chapter 4). Both of these activities include elements
of evaluation. Sensitivity analysis allows one to evaluate whether model response to input
factors is reasonable, and also to see if the most important input factors are sufficiently
well known. Parameter estimation normally includes indications of the quality of the
parameter estimators, which is an important aspect of model quality as we shall see.

Once the parameter values are fixed, one can proceed to evaluate the model results.
This is the subject of this chapter. In general modeling is an iterative exercise. If the model
and/or the data are modified, then a new round of evaluation is required.

1.4. In this chapter

A first approach to the evaluation of model results is to compare model results with data.
Various approaches and criteria are discussed in Section 2. The real objective for a model is
often prediction. A criterion of predictive quality and its analysis are presented in Section 3.
Another possible objective is to use the model as an aid to decision-making. In Section 4,
we discuss how one can evaluate a model specifically with respect to this objective. The
Sections 2—4 treat the model as an engineering model, which relates inputs to outputs.
Evaluation here concerns how well the model reproduces input—output relationships, and
is not concerned with the realism of the processes included in the model. In Section 5,
we adopt a different point of view. Here, the model is used to test a hypothesis about
how the system under study functions. We wish to test the hypothesis that the processes
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as described by the model are identical to the way the real world functions. Here, it is
logical to use the term validation rather than evaluation.

2. Comparing a model with data

An essential part of model evaluation, probably the first aspect that comes to mind, is
comparison of model predictions with observed data. This can help to identify problems
with the model and give ideas for improvement. However, one must be careful in drawing
general conclusions from the comparison of data and predictions. If the observed situations
are not representative of the situations of interest, then comparison with past data may be
different from the agreement with future measurements. Also, if the observed data have
been used in model development, the degree of fit to that data is in general better than the
agreement with future measurements. We will return to these problems when we consider
predictive quality.

We first discuss graphical comparisons between measured and calculated values.
Graphs are extremely useful for providing a quick visual summary of data and of the
comparison between model and data. We then discuss numerical comparisons. Among
the many different measures of agreement that have been proposed, we present those that
seem to be most widely used or that offer some particular quality. We divide the measures
into 4 groups: simple measures of the difference between observed and predicted values;
measures which are normalized for easier interpretation; measures that can be decom-
posed into separate contributions, and which thus give additional information about the
sources of error; measures based on a threshold of model quality. Note that for many of
the measures of agreement between model and measurements, there is no standardized
vocabulary. In order to avoid ambiguity, it is important to give the equation that is used
in the calculations.

There is no single best method of comparison between a model and data (Table 2).
Different comparisons highlight different features of the data and of model behavior.
Therefore one should use a number of methods described below. The main difficulty is in
obtaining the data and then in obtaining the corresponding model predictions. Once data
and predictions are available, producing graphs or calculating measures of agreement is
in general quite simple, which is another argument in favor of exploring several types of
comparison. Software is also available to aid in evaluating model performance (Fila et al.,
2003).

To illustrate the methods of this section, we use the model and data set of Example 1.
This is not a dynamic crop model, but rather a static linear model between some output
and 5 input variables. It is legitimate to use this simple model because in fact the com-
parisons that we illustrate are not specific to crop models but rather apply generally to
any model.

2.1. Graphical representations of model error
2.1.1. Graph of model predictions versus observed values

Probably the most widespread graphical presentation of the agreement between measured
and calculated values for crop models is a plot as in Figure 1. For each measurement, the
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Example 1
Suppose that our model for predicting response Y for individual i is
Vi = f(Xi;0) = 6O 4 60xD 1 §Px@ 4 §OxB) 4 B D 4 4O ¢))

Table 1. Measured values (Y;), 5 explanatory
errors (D;) for 8 situations.

9= @Q,M 4@ 4® g FONT — (19 7.8,2.5,—0.2,0.1,0.7)T

The explanatory variables are X = (x(0, x®@ x® x® xONT The parameter vector is

The hat notation is used to indicate that the parameter values are estimates. We do not need
to bother here with the origin of these estimates. The data set for evaluating the model is
given in Table 1.

variables, calculated values (I?i) and model
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Figure 1. Calculated versus measured values, using the model and data of Table 1.
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x value is the measured value and the y value is the corresponding calculated value. It is
also usual to draw the 1:1 line on such a graph. If there is no model error the calculated
values and measured values are identical and then each point will be exactly on the
1:1 line.

The advantage of this type of graph is that one can see at a glance how well model
calculations and measurements agree. However, a word of caution is required. There
may be a tendency to underestimate the level of error. The eye tends to evaluate the
shortest distance from the point to the 1:1 line, but model error is given by the vertical or
equivalently the horizontal distance from the point to the line.

In some cases, one shows the regression line between calculated and measured values
in addition to, or instead of, the 1:1 line. Calculating the regression can be of interest,
as we shall see. However, to include the regression line on a graph of this type seems
more misleading than useful. If the points fall close to the regression line one can have
the impression that the model is quite good, but in fact that is not a measure of model
eITor.

A graph of measured versus calculated values can be used not only for output variables
that have a single value for each situation (for example, yield), but also for output variables
that are functions of time (for example, LAI). There may then be several points for each
situation (for example, several measurements of LAI at different dates).

As with any graph, it can be useful to distinguish (for example by using different
symbols) different groups of points. For example, if there are several measurements of
LALI per field, the use of different symbols for each field will make it easier to see if there
is a field effect on error. Another example would be where different levels of fertilizer are
studied. The use of different symbols for different levels will allow one to see if model
error tends to be different depending on fertilizer level.

2.1.2. Measured and calculated values versus time or other variable

In the specific case of an output variable which is a function of time, it is fairly common
practice to graph measured and calculated values versus time, for each situation separately.
In general, the model produces calculated values every day while the measurements are
much sparser. In this case, the graph takes the form of a regular dotted line (one dot
each day) for the calculated values, which can be compared with the occasional points
for the measurements. For example, Robertson et al. (2002) present graphs of this type
for comparing measured and calculated values of aboveground biomass and observed and
calculated values of leaf biomass. One can present more than one situation in each graph
(Robertson et al., 2002 present 2 situations in a graph), but such graphs quickly become
cluttered as more situations are represented.

Mayer and Butler (1993) discuss the difficulty of visual evaluation of model error
based on graphs like this when the output variable fluctuates with time. This is often
the case, for example for soil moisture. They present an artificial example where the
“measurements” are generated by a random mechanism, with no relation to the model.
Nonetheless, a rapid visual examination of the data seems to indicate that the model is
“reasonable.” The reason is that we tend to focus on the smallest distance between the
measured points and the calculated curve. However, error is in fact given by the vertical
distance between the measured value and the calculated curve. In the artificial example,
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there is always some part of the calculated curve fairly close to the “measured” values
because of the fluctuations in the calculated values. This is not to say that graphs of
measured and calculated values versus time are not useful. The conclusion is rather that
they must be analyzed carefully. The fact that such graphs may be difficult to interpret is an
additional reason for using several different types of graphs for assessing model agreement
with data.

The above discussion concerns graphs with time on the abscissa. It may also be
of interest to graph measured and calculated values versus some other variable. For
example, Pang et al. (1997) present total absorbed nitrogen as a function of applied
nitrogen. The general objective is to see how model error varies with the dependent
variable.

2.1.3. Graphing the residues

The classical method of examining model error in statistics is to plot model error (the
difference between measured and calculated values) on the y axis, against measured values
on the x axis. This type of graph is seen seldom for crop models, which is very unfortunate.
The data of Table 1 are plotted in this way in Figure 2. The advantage of this type of
graph, compared to Figure 1, is that the model errors appear directly. They are thus easier
to evaluate and to compare. For example, consider the point for individual 8 with the
response ¥ = 2.82. One can see from Figure 1 that this point has the largest error, but
the size of this error relative to the others stands out more clearly in Figure 2.

Residue graphs are very important for bringing attention to systematic patterns in the
errors. For example, a residue graph might show that the errors in yield are exceptionally
large for very small observed yield values. This might suggest analyzing in detail the way
the model handles extreme stresses.

It is also of interest to plot model error versus explanatory variables such as total
water input (rainfall plus irrigation), date of sowing, total applied nitrogen, etc. If the
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Figure 2. Residues for model and data of Table 1.
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model is correctly specified, there should be no trends in the residues. If the residues do
show some systematic trend, then there is an effect of the explanatory variable which has
not been taken into account in the model. Chapter 12 presents examples of this type of
analysis.

The residue graph will, furthermore, give indications about the variability of model
error, which is important for parameter estimation. The simplest assumption is that model
errors have zero mean and constant variance. Residue graphs allow one to examine visu-
ally whether such an assumption is reasonable. Specifically, the residues should then be
centered on zero and have roughly the same spread for different values of the variable
against which they are plotted.

2.2. Simple measures of agreement between measured and calculated values

The basic quantity for measuring the agreement between model and observations is the
difference between the two, noted

Di=Y; =Y 3

where Y; is the measured value for situation i and ¥; is the corresponding value calculated
by the model. The output variable Y can be any model output, for example yield, LAI
30 days after emergence, days to flowering, etc. It is the differences D; that are plotted
in a graph of residues.

A very simple way to summarize the D; values for several situations is to calculate
their average, also known as model bias.

. 1
Bias = N Z D; 4

where N is the total number of situations. The bias measures the average difference
between measured and calculated values. If on the average the model under-predicts, the
bias is positive, and conversely if the model over-predicts on the average, the bias is
negative. The interpretation is thus very simple, which makes this measure useful as a
guide for model improvement. For example, if yield is systematically under-predicted
(positive bias), one might start by examining whether final biomass or harvest index or
both are under-predicted. If one has information on yield components, one can examine
individually seed number and weight per seed to see which is under-predicted.

Bias alone, however, is not sufficient as a summary of model errors. A bias value near
zero may be the consequence of very small model errors in all situations, or alternatively of
large errors that approximately cancel each other between under- and over-prediction. The
interpretation of a sizeable positive or negative bias is also subject to some ambiguity.
A positive bias can arise because the model systematically under-predicts, or because
the model both under- and over-predicts but with a preponderance of under-prediction.
Negative bias has an analogous ambiguity.
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For the data of Example 1, bias = 0.48. An examination of the data shows that the model
rather systematically under-predicts, which is also apparent from Figure 2.

There are two classical measures of agreement that eliminate the problem of compen-
sation between under- and over-prediction. The first and most widely used is the mean
squared error, defined as

N
MSE = (1/N) Y " (D;)? 6)

i=1

Often it is convenient to work with the square root of MSE, called the root mean squared
error;

RMSE = ~/MSE (6)

The advantage is that RMSE has the same units as Y and thus is easier to understand.

Because MSE is an average of squared differences, large differences are heavily
weighted. It is worthwhile to verify if MSE is not essentially due to one or two large
differences. If this is the case, it might be more astute to examine those specific cases
(problem with the data? exceptional circumstances such as extreme stress?) rather than
the overall model.

For the data of example 1, MSE = 0.88 and RMSE = 0.94. The largest error Dg = 2.35
contributes 78% of the total value of MSE. This is a case where one might start by examining
the situation with large error.

The second measure which avoids compensation between under- and over-prediction
is the mean absolute error

1 N
MAE = NZI:|Di|
1=

The units of MAE are the same as for Y. Furthermore, there is no over-weighting of large
differences here. Thus MAE has advantages over MSE or RMSE, if the objective is simply
to examine overall model error. On the other hand, the important advantage of MSE is
that it can be decomposed into separate contributions, which is useful in identifying the
sources of error.

For the data of Example 1, MAE = 0.62. The largest error, Dg, only contributes 48% of
the total here.
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A variant of the above measures is obtained by dividing RMSE by the average of the
observed values. The relative root mean squared error is then

(N

where Y is the average of the Y; values. Robertson et al. (2002) for example calculate
RRMSE = 23% for their data on peanut yield, using the Agricultural Production Systems
Simulator (APSIM) model. An advantage of RRMSE is that it seems more meaningful
than RMSE for comparing errors based on different data sets. Another advantage is that
RRMSE is independent of the units used to measure Y. RRMSE will have the same value
whether yield is measured in kg/ha or t/ha.

Mayer and Butler (1993) propose a relative mean absolute error,

N A
1 |Y; — Y|
RMAE = — _ (8)
NZ [Yil

i=1

Note that here one divides each difference by the corresponding observed value.

For the data of Example 1, the relative root mean squared error is RRMSE = —56%. The
value is negative because ¥ is negative, and large because Y is small. The relative mean
absolute error is RMAE = 0.26.

In all of the above formulas, each observation enters just once, with no difference in
weighting for different observations. This may not always be appropriate. For example,
in the case of spatial data, one might want to weight each point by the area it represents
(Willmott et al., 1985).

2.3. Normalized measures

Here, we consider distance measures which have an upper and/or lower bound. Such
measures are easily interpreted and can be particularly convenient for comparing
completely different cases (different data, different models).

Probably the most widely used measure of this type is the modeling efficiency,
defined as

N 52
Zi:l (Y; = Yi)

S -y

EF =1— )
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Garnier et al. (2001) provide an example of the use of this measure. If the model
is perfect, then Y; = f’, for each situation i and EF = 1. If one uses the average
of observed values as the predictor for every case, so that Y; = Y for all i, then
EF = 0. Thus, a model that gives EF = 0 has the same degree of agreement with
the data as using the average to predict for every situation. A crop model with EF
close to 0 would not normally be considered a good model. There is in general no
lower limit to EF. A model can be a worse predictor than the average of observed
values (EF < 0).

A second normalized measure that is sometimes used is the correlation coefficient
between measured and calculated values defined by

where &3, 6; and 6“; are sample estimates of the variance of Y, the variance of Y and
the covariance of Y and Y respectively.

I
| —
=
|

~<
N
=

>
I

The range of ris —1 <r < 1. A value of r = 1 indicates that there exists a perfect linear
relationship between Y; and ¥;. Note, however, that this does not necessarily imply that
the model is perfect. Suppose for example that Y; = 0.1 Y; for all i. Then r = 1, but in
fact the model systematically predicts values that are smaller by a factor of 10. Thus r by
itself is not a good measure of how well a model agrees with measurements. Addiscott and
Whitmore (1987) suggest that one should use both bias and 7, in order to have measures
that concern two different aspects of model quality. A good model would have both small
bias and an r value close to 1. The idea of using more than one measure, in order to bring
out different aspects of model agreement, is important. In the next section we will go into
this in more detail.
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Willmott (1981) propose an agreement index defined as

N A
> i =Y)?

index =1 — ¥ - - — (11)
Yo (Vi =Y +1Y = 7))

The numerator is the mean squared error MSE. The denominator is related to the variability
in the measured and in the calculated values. If the model is perfect, then ¥; = Y; and
index = 1. If the model predictions are identical in all cases and equal to the average of
the observed values, i.e. ¥; = Y, then index = 0. These limiting values are the same as
for EF, but for other cases, the two criteria will have different values.

For the model and data of Example 1, EF = 0.98 and index = 0.99. Here the values of
EF and of index are very similar, and both seem to indicate that the model is much better
than just using the average of the observations as predictor. This can also be seen from
Figure 1, which shows that much of the variability in the observations is tracked by the
model predictions. However, we have also examined the residuals and so we know that in
at least one case the residual is actually quite large.

2.4. Measures for identifying different types of error

Certain measures of agreement between measured and calculated values can be decom-
posed into different contributions to the overall error. The effort for model improvement
can then be concentrated on the dominant source of error.

Kobayashi and Salam (2000) show that MSE can be decomposed as

MSE = (Bias)* + SDSD + LCS (12)
with

SDSD = (oy — 04)*

LCS = 20yop(1 —7)

r is the correlation coefficient defined in Eq. (10), o% and cré are the variances of the
measured and calculated variables respectively and their square roots, oy and oy, are the
corresponding standard deviations.

The first term in Eq. (12) is the bias squared. The cause of model bias is in many cases
relatively easy to identify and perhaps to correct. The second term in the decomposition
is related to the difference between the standard deviation of the measurements and the
standard deviation of the calculated values. Once again, the causes of the difference
can sometimes be identified. For example, if the model predicts that yield for different
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Table 2. Measures of agreement between a model and measured data.

Name

Equation

Bias
Mean squared error

Root mean squared error

Mean absolute error

Relative root mean squared error

Relative mean absolute error

Modeling efficiency

Correlation coefficient

Agreement index

Concordance correlation coefficient

Total deviation index

Coverage probability

1 N
Bias= — Y D;
ias Nigl ;
N
MSE = (1/N) }_ (D;)?
i=1

RMSE = /MSE
1 N
MAE = — D;
NEII il
RMSE
RRMSE = ——
Y
1N Y -7,
R — L3 =T
N5 1Yl
N 2
PR SFETC /S O
Zlil(Yi—Y)z

L N [ = D) — D)
\/Z N = DA NI - 1)2)

S —¥i)?

index =1 — ——— —
LY =Y+ Y —Y)

ZUY?

Pc =
o2 + G)% + (uy — py)?

TDI(p) = minimal value of d such that |D;| < |d|
for at least p% of the observed situations.

CP(d) = the smallest value of p such that, for a
percentage p of the observed situations, |D;| < |d|

situations varies only slightly whereas the measurements show a larger variation, one
might look at the effect of stress. Is the difference due to the fact that the calculated
values are not sufficiently sensitive to water stress, for example? The last term in the
decomposition is related to the correlation between observed and predicted values. This
term depends in detail on how well the model mimics the observed variation of Y from
situation to situation. As such, it may often be the result of many small errors rather than
a single major error, and thus be relatively difficult to analyze and correct.
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For the data of Example 1, Eq. (12) gives MSE (0.88) = Bias?(0.23) + SDSD (0.06) +
LCS (0.59). The major source of error is the LCS term, whose origin is often difficult to
ascertain. However, the squared bias term represents about one quarter of the total mean
squared error, so model improvement could begin by searching for the origin of the bias.

Gauch et al. (2003) suggest that it would be advantageous to have a decomposition with
terms explicitly related to the regression of Y on Y. The decomposition they propose is

MSE = (Bias)* + NU + LC (13)
NU = (1 = byy)*o?
LC=(-r)a]

O'2A
b N — YY
YY O‘?
Y

The term b, ; is the slope of the regression of ¥ on Y. The decomposition of Eq. (13)
is quite similar to that of Eq. (12). The first term is again the squared bias, and the last
depends in detail on how variation in ¥ and Y are correlated. The second term, NU,
depends on how close the slope of the regression of ¥ on Yistol.

For the data of Example 1, Eq. (13) gives MSE (0.88) = Bias?(0.23) + NU (0.04) +
LC (0.62). The numerical results, and conclusions, are similar to those for the decomposition
of Eq. (12).

Willmott (1981) proposed a decomposition of MSE based on the linear regression of
Y as a function of Y. The result is a regression equation )?,' =a+ b{/YYi where fi is the

value of ¥; calculated from the regression model. The regression parameters are given by
the standard formulas for linear regression,

oo
_ Yy
bYY_ 2
Oy

a:Y—b);yY

The decomposition is then

MSE = MSE, + MSE, (14)

with MSEs = (1/N) Y. (¥; — Y12 and MSEy = (1/N) " (F; — ¥)?
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The term MSEj is called the systematic part of MSE and MSE, the unsystematic part.

To understand the first term, suppose that a = 0 and b = 1 so that the regression line
is the 1:1 line. Then )?i = Y; and MSE = 0, i.e. the systematic contribution is zero in
this case. In general, MSE; is a measure of how far the regression line deviates from
the 1:1 line. The MSE, term on the other hand measures the variability of Y; around the
regression line. The systematic term is the contribution that is likely to be relatively easy
to analyze and perhaps correct. An example of the use of this decomposition is given in
Ben Nouna et al. (2000).

For the data of Example 1, a = —0.55, b = 0.95, MSE; = 0.31, MSE, = 0.57 and
MSE = 0.88.

Some authors propose using a statistical test of the hypothesis Ho: a = 0, b = 1. If Hy
is true then the regression line is the 1:1 line. However, the above decomposition shows
clearly that this test is related to only part of the model error. If the variability of the
predicted values around the regression line is large then MSE, and therefore MSE will be
large, regardless of the values of a and b. Thus, the hypothesis should not be regarded
as testing overall model quality. For this and other reasons, several authors (for example
Mitchell, 1997) have criticized this test as a basis for judging the quality of a model.

A third decomposition of the error is proposed by Lin et al. (2002). This is not based
on mean squared error but rather on a measure of error which they call the “concordance
correlation coefficient,” p., defined by

20,5
po= g ; (15)
Oy +U§ + (Hy — [y)
where oy, 0’}% and 0’1% have been defined above and wy and py are respectively the

averages of the Y and Y values. If ¥; = ¥; for all i, then Wy = [y, Opp = U% = aé
and so p. = 1. At the other extreme, if the observed and predicted values are completely
uncorrelated (r = 0) then oy is zero and so p. = 0. Lin et al. (2002) propose this
measure for comparing two populations, but it can also be used here for comparing two
samples (measured and calculated values).

pc can be decomposed as p. = rxa. The first term is the correlation coefficient.

The second is

2
~ (op/ov) + (ov/0y) + (uy — y)?/(oy0v)

Xa

It is this term that represents the systematic part of the error. More precisely, x, is equal to 1
if and only if the mean of the measured values is equal to the mean of the calculated values
and also the variance of the measured values is equal to the variance of the calculated
values.
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For the data of Example 1, p. = 0.9888 and the decomposition into two factors gives
Xa = 0.9963 and r = 0.9925. In this particular case, p. is very close to the best value of 1.0,
which limits the usefulness of the decomposition.

2.5. Measures based on a threshold of model quality

In some cases, one might accept a few large differences between measured and calculated
values as long as the agreement is good for the majority of situations. The two measures
presented in this section are adapted to this viewpoint.

In the first measure, one fixes the percentage p of situations which should show
acceptable agreement. The measure is the total deviation index;

TDI(p) = minimal value of d such that |D;| < |d| for at least p% of the observed
situations.

The second measure in this group fixes a maximum error |d| and measures the per-
centage of situations with errors smaller than that of threshold. This is called the coverage
probability, defined as

CP(d) = the largest value of p such that, for a percentage p of the observed situations,
|Di| < |d|

For the data of Example 1, if we set p = 80%, then TDI (p = 80) = 0.93, i.e. at least
80% of the observed situations (in fact 7 situations out of 8 or 87.5%) have | D;| values that
are less than or equal to 0.93.

Fixing the threshold of error at |d| = 0.5, we have CP (d = 0.5) = 62.5%, i.e. 62.5% of
the model errors (5 out of 8) are smaller than or equal to 0.5 in absolute value.

2.6. Treating complex output variables

The measures presented above apply directly to outputs like yield or time to flowering,
which have a single value for each situation. For more complex types of output, it is not
always clear how to apply the above formulas.

Consider first output variables that are functions of time, such as LAI or soil moisture
or root depth. One possibility is simply to apply the above measures to all of the obser-
vations, ignoring the fact that the observations are structured by situation, with several
observations corresponding to the same situation. However, the values at different times
may be very different, with small values shortly after emergence and much larger values
later in the season. This would often be the case for LAI and root depth, for example.
When this occurs, the results can be quite different depending on whether we consider
the errors themselves or relative errors (errors divided by the observed values). It will
then be important to choose the more meaningful measure of agreement. A second note
of caution concerns the distribution of observations among situations. If a few situations
have most of the observations, then the measures of agreement may essentially concern
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those few situations. If this seems to be a problem, it might be worthwhile to first calculate
the measure of agreement for each situation and then average over situations. In this way,
each situation has the same weight.

A different difficulty occurs if the output is not a single variable, but rather a distribution
of values for each situation. An example would be the fraction of fruits in different size
classes (see Chapter 13). One possibility here is to convert to a single output variable.
For example, from the distribution of fruit sizes one could calculate an average fruit size.
Then one can apply the measures that are appropriate to a single output variable per
situation. In other cases, the major interest is in the distribution itself, and so one wants
a measure of model agreement that specifically measures how well the calculated and
observed distributions agree. A useful measure in this case would be the statistic used in
the Kolmogorov—Smirnov test for comparing two distributions (Sokal and Rolf, 1981).
Let H be the variable that is being subdivided into classes, for example fruit size. Let
Fy (h) be the fraction of observed items with H < h, and Fy (h) be the fraction of items
with H < h according to the model. Let Hp,,x be the maximum value of | Fg (h) — F g (h)|.
Hpax is the value of our measure of agreement. If there are several situations, one might
use the value of Hp,x averaged over situations.

The final special case that we mention is that of stochastic models. In this case, each
run of the model gives a different value of the output variables. The problem then is to
compare the distribution of values calculated by the model with the single observed value
for each situation. Waller et al. (2003) suggest that in this case the question is not whether
the model is consistent with the measurements, but rather whether the measurements fall
within the observed variability of the model. They suggest a Monte Carlo approach to
evaluate the probability of a value as large as or larger than the measured value, assuming
that the measured value is drawn from the distribution of calculated values.

3. Evaluating the predictive quality of a model
3.1. Introduction

In the preceding section, we presented measures that summarize the agreement between the
model and past measurements. In general, however, our real interest is not in how well the
model reproduces data that has already been measured, but rather in how well it can predict
new results. The assumption, often implicit, underlying the use of past measurements is
that the agreement of the model with those data can inform us about how the model will
perform in the future. However, that assumption is not always founded. In this section,
we consider in detail the definition, analysis and estimation of prediction error.

3.2. A criterion of prediction quality

The standard criterion of prediction quality in statistics is the mean squared error of
prediction or MSEP. For a model with fixed parameter vector 6, MSEP is defined as

MSEP(@) = E([Y — f(X; )18} (16)
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This is the squared difference between the observations Y and the corresponding values
calculated with the model, averaged over situations of interest. The notation Ié means that
the parameter vector estimator is treated as fixed, so the expectation is not over possible
values of the parameters. The notation MSEP(@H) emphasizes that the mean squared error
of prediction is specific to the parameter vector that is used in the model.

The definition of MSEP(0) is superficially very similar to that for MSE in Eq. (5).
Both involve the squared difference between true and calculated values. However, MSE
concerns just the situations that have actually been measured while MSEP(6) concerns all
possible situations of interest. This implies that MSE can be a poor estimator of MSEP ()
for two reasons. First of all, if the measured situations are not representative of the full
range of situations of interest, then MSE may be very different than MSEP(6). Secondly,
if MSE involves data that was used for model development, then model error for those
data will not be representative of model error for other situations of interest. We will go
into both of these subjects in more detail.

The units of MSEP(6) are the units of ¥ squared. Often one uses the root mean squared
error of prediction in order to deal with a quantity that has the same units as Y. The
definition is

RMSEP(9) = / MSEP(9)

3.2.1. A criterion for the prediction of a time-dependent variable

The definition in Eq. (16) assumes that there is a single model output of interest, like
yield or days to flowering. Suppose, however, that one is interested in predicting a model
output that varies with time such as leaf area index. A criterion often used in this case is
the integrated mean squared error of prediction, defined as

IMSEP(9) = E {/ Y1) — f(, X;é)]zdt}

where we have shown explicitly the time dependence of Y and of the model predictions.
For crop models with a time step of 1 day, the integral would be replaced by a sum
over days. Wallach et al. (1990) studied a very similar criterion for evaluating models of
nitrogen uptake over time by the root systems of young peach trees.

3.2.2. Prediction for what range of conditions?

A prerequisite to evaluating the predictive quality of a model is to specify the situations
for which predictions will be made. We will speak of the “target distribution” to refer to
the distribution of situations of interest.

Often the target distribution is defined implicitly, by describing the physical types
of situations that are of interest. For example, the target distribution might be fields with
irrigated corn in southwestern France, with standard management practices. This defines a
joint distribution of soil characteristics, weather, initial conditions, management practices,
weed, disease and pest levels, etc.
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The definition of a target distribution is very important. It is closely related to the
notion that a model should be evaluated in relation to the projected use of the model.
If for example, the model is intended for use with corn that is irrigated to obtain near-
potential yields, the model should be evaluated for such situations. The target distribution
will then not include situations with extreme water stress. The value of MSEP(é) for the
same model might be quite different depending on the target distribution.

It is useful to distinguish two aspects of the target distribution. First of all, the target
distribution concerns all the explanatory variables that appear in the model. This will often
include initial conditions, soil characteristics, daily climate and management variables
such as sowing date and density, irrigation dates and amounts, etc. The target distribution
also concerns all variables not in the model that affect the output variables in question.
This might include pest damage, disease incidence, initial phosphorous level, the spatial
variability of soil characteristics, etc.

We need not only define the target distribution, we also need to sample from it or
generate values from it. To estimate MSEP(6), we need a sample from the target distribu-
tion. For crop models two difficulties often arise. First, often one does not draw situations
independently from the target distribution. Very often one has measurements from several
fields in the same year, and/or measurements in the same field over several years. In the
first case, the year and thus the climate are not chosen independently for each field. In
the second case, fields are not chosen independently. The structure of the data set may
be quite complex and difficult to take into account in the estimation of MSEP(H). The
second difficulty is that in general the number of situations sampled is fairly small, while
the diversity of situations in the target distribution may be very large. As a result, even if
we have a truly random sample, whole sections of the target distribution may be missing
from it. For example, the target distribution may include average spring temperatures that
cover a wide range, while the available sample only includes years with warm spring
weather. Another example would be where the target distribution includes a range of soil
depths, while the shallow soils are not represented in the available data. In such cases, one
must be aware of the limitations of the sample, and be very wary of drawing conclusions
about situations that are far removed from those sampled.

We will also want to generate samples of model explanatory variables representative
of the target distribution. A simple assumption is that initial conditions, weather, soil
and management decisions are independent. Then we can generate samples from each
independently. A more complex but often more realistic assumption is that the management
decisions depend on the other variables, through decision rules (Chapter 6). Then one
would first generate the other variables and from them deduce the management decisions.

Example 2
The Y values in Table 1 were generated using the relationship

Y = 0@ 4 g0 (D) 4 9@, @) 1 g3, B) L 9@ @ 4 g ) 4 ¢
(17)
0 =00, 00 9@ g3 g® gONT — (28 2 0.05,0.01,0.002)T.

where ¢ has a normal distribution ¢ ~ N (0, 0.04). The 8 values of ¢ required for Table 1 were

drawn independently from the distribution of ¢. We will use this true relationship between
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X and Y to evaluate MSEP(9) for various models. Of course this is only possible in an
artificial example like this one. In practice the true relationship between X and Y is unknown,
and so MSEP(@) cannot be calculated exactly but only estimated.

Note what is meant by a “true” relation between Y and X. Equation (17) does not allow
us to calculate Y exactly, given X. The extent to which Y is not completely determined by X
is represented by the random variable €. The relationship is “true” in the sense that we have
given the true distribution of ¢.

We will also need the target distribution for the explanatory variables X. We suppose that
the components of X are independent. Then the joint distribution is the product of the distri-
butions for each component of X, so that fx (X) = fx, (x1) fx, (x2) fx; (x3) fx, (x4) fx5(x5).
We also assume that fx, (x;) ~ N(0,1) fori = 1,...,5. Finally, we assume that X and ¢
are independent.

We can now calculate MSEP(6) for the model given in Example 1. Plugging Eqgs. (17)
and (1) into Eq. (16) gives,

MSEP(é) _ E{[(G(O) _ é(o)) + (9(1) _ é(l)) x x@® + (9(2) _ é(Z)) x x®
n (9(3) _ é‘(3)) 5 x(3) + (0(4) _ 5(4)) % x(4)
+ (09 -89y x x© 1 116 (18)

The expectation over the target distribution here involves an expectation over X, the explana-
tory variables in the model, and over &, whose variability results from the variability in
conditions not represented by the explanatory variables of the model. Taking the expectation
gives

MSEP(é) — (9(0) _ é(O))2 + (9(1) _ é(l))zl + (9(2) _ é(z))zl + (9(3) _ é(3))21
+©0W — )21 + (0O — §9)21 + var(e)

=0.90

We have used the fact that all the random variables are independent and have expectation 0
and that the components of X have variance 1. Thus E xDxDy = ExOYE(xW) = 0 for
alli # j, EcWe) = E@x@W)E(e) = 0 for all i and E(x®x®D) =1 for all i.

We can illustrate the importance of the target distribution using this example. To do so,
we evaluate MSEP() for a second target population. The distribution of X for this new target
population is the same as for the first, except that now the variance of x©® is 4 instead of 1.
For example, if x® represents (soil depth in cm — 100 cm)/10, then the soil depth for both
target populations is centered at 100 cm, but in the original distribution 95% of the soils
have depths between 80 and 120 cm (expected value + 2 standard deviations), whereas in the
new distribution soil depth is more variable, 95% of the soils having depths between 60 and
140 cm. For this new target distribution, MSEP() = 2.2 compared to 0.90 for the original
target distribution. The origin of the difference is the term (6 ®_9 ON2E(x®)2, which is
now equal to (0.002 — 0.7)% x 4 instead of (0.002—0.7)2 x 1. That is, in changing the target
population we have changed the way model errors (in this case the error in estimating >))
contribute to the error of prediction.
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3.3. MSEP( () ) and the choice of model complexity
We can develop the mean squared error of prediction as

MSEP@) = E{[Y — E(Y|X) + E(Y|X) — f(X; 6)]*}

= Ex{Ev{[Y — Ey(Y|X) + Ey(Y|X) — f(X; D)11X}?} 19
= Ex{Ey{[Y — Ey(YIX)NIX}*} + Ex{[Ey(Y|X) — f(X; )1IX}?}

=A+A
where

A= Ex{Ey{[Y — Ey(Y|X)]2|X}} = Ex [var(Y|X)] = population variance (20)
A = Ex{[Ey(Y|X) — f(X;0)1?} = squared bias (1)

(Bunke and Droge, 1984; Wallach and Goffinet, 1987).

The second line of Eq. (19) follows because one can take an expectation over X and
Y by first fixing X and taking the expectation over Y, and then taking the expectation
over X. (In the notation here, we indicate specifically which variables are concerned
by the expectation. Thus, Ey is an expectation over Y.) In the third line we develop
the square. The cross term is null because it involves Ex{Ey{[Y — Ey(Y|X)]|X}} =
Ex{Ey(Y|X) — Ey(Y|X)} =0.

The two components of MSEP(0) are noted A (lambda) and A (delta). The population
variance, A, depends on how much Y varies for fixed values of the explanatory variables
in the model. When X is fixed Y still varies, within the target population, because not
all the variables that affect Y are included in the model. That variability is then averaged
over X. Note that A does not involve f(X; é), i.e. the exact equations of the model are
irrelevant here. It is only the choice of the explanatory variables that is important. If the
explanatory variables in the model do not explain most of the variability in Y, then the
remaining variability in Y for fixed X is large and A is large. Consider for example, a
model which does not include initial soil mineral nitrogen. If Y (for example yield) for the
target population is strongly affected by initial soil nitrogen, then A will be large. We see
that the choice of explanatory variables is a major decision as far as prediction accuracy
is concerned. That choice sets a minimum value for mean squared prediction error. Even
if the model is the best possible, the mean squared error of prediction cannot be less than
the population variance A.

The squared bias term, A, does depend on the form of the model. Once the choice
of explanatory variables in the model is made, then the best model (minimum value of
MSEP(A)) is the model that predicts a value equal to Ey(Y|X) at each value of X. The
bias measures the distance between this best prediction and the model prediction, averaged
over the target distribution of X values. The bias may be due to errors in the form of the
model or to errors in the parameter values. Figure 3 illustrates the two contributions to
the mean squared error of prediction.

The above decomposition of MSEP(9) into two terms can help to understand the
consequences of choosing different levels of detail for a model. Adding more detail in
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Figure 3. Response Y as a function of a single explanatory variable x. For 3 specific x values, the
variability of Y is shown. The solid line is E(Y|x) and the dashed line a hypothetical model.

general involves including additional explanatory variables. This has two opposing conse-
quences. On the one hand, adding additional explanatory variables will reduce (or at worst
leave unchanged) the unexplained variability in ¥ once X is fixed, i.e. A will decrease or at
worst remain unchanged. On the other hand, there will in general be additional equations
and parameters to estimate in conjunction with the additional explanatory variables. This
will in general lead to an increase in the squared bias term A.

Suppose that one has a preliminary model and wants to decide whether or not to add
additional explanatory variables. There is a better chance that the additional explanatory
variables will reduce MSEP(é) if

(1) they play an important role in determining the variability in Y in the target population,
so that adding them to the model reduces A by a substantial amount.

(2) the associated equations and parameters can be well estimated from the available
data, so that the additional detail does not cause a substantial increase in A.

In Example 2, the true relation of Y to X is given. We can then calculate the two contri-
butions to MSEP(é). The variance of Y for fixed X is var(e), and this is the same for all X.
Thus A = Ex [var(e)] = var(e) = 0.04. The squared bias term is

MSEP@) = 0@ — )2 4 (0™ —6D)21 4 0@ —6@)21 4 (0D — 43?1
+(OW =1+ 0 -1

=0.86

In this example, almost all the error arises from the squared bias term A. The variability
in Y that is not explained by the explanatory variables makes only a very small contribution
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to prediction error. Adding additional explanatory variables in this case could at best only
reduce A by 0.04 units, which would only very marginally improve model predictions.

In general, bias can arise from errors in the model equations and/or from errors in the
parameter values. In Example 2, the form of the model is correct (in the model Y is a linear
function of X as in the true relation), so the bias arises solely from the error in the parameter
vector.

Example 3

The purpose of this example is to show how A, A and their sum MSEP (6) evolve as additional
explanatory variables are added to a model. We assume that the true relation between Y and
X is given by Eq. (17). We consider the following sequence of models:

F1(X:0) = 0O 4 4D D

F2(X:8) = 6O 4 40D 4 GO0

F(X:6) = 0O 4 90 4 GO L0) 4 4B

f4(X;0) = O + §DxD 4 §@D) 4 §OB) 4 @)

F506:0) = 0O 140D L HOLD L JOLB) 4 JE@, @) 4 46O
The parameter values for each model, estimated using ordinary least squares and the data in
Table 1, are shown in Table 3.

The values of A, A and MSEP(é) for each model are also given in Table 3. The calcu-
lations are easily done for this artificial example. We illustrate for the model f1(X; é). Here
X = D, xMD)T We write

f1(X;0) =69 £ DD 4 ¢
Comparing with Eq. (17) shows that

£ = 0Dx@ L g® ;B L g@W @ 4 g®) ) 4 ¢
It is then easily seen that 1 ~ N [0, 012] with

02 = 0PD%var(x@) + P 2var(x®) + 6@2var(x@) + 692 var(x®) + var(e) = 4.04.

The population variance term is then A = Ex var(Y|X) = var(e;) = 4.04. The squared
bias term is

A= Ex{Ey(Y|X) — f(X;0)*) = Ex{[6© + 0Dx® — @O +§Dx))2)

=09 -2 4+ D — g2 g2 = 0.36
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Finally, MSEP@®) = A + A = 4.04 + 0.36 = 4.40. Analogous calculations apply to the
other models.

Table 3 shows how A, A and MSEP(6) vary as we add additional explanatory variables to
the model. As more explanatory variables are added to the model, the amount of unexplained
variability (represented by the term A) must decrease or at worst remain constant. This is
indeed the behavior of A in Table 3. The decrease in A with each new explanatory variable
depends on the importance of that variable in explaining the variability in Y. Adding x@ to
the model decreases A substantially, but further explanatory variables have little importance.
The term A has a more complex behavior, decreasing at first then increasing. The result for
MSEP(é) is that it decreases to a minimum for the model f3(X; é), then increases as further
explanatory variables are added. This is typical behavior, for complex models like a crop
model as well as for simple linear models like our example. Eventually, as more explanatory
variables are added to a model, the accumulation of errors in the model equations and in the
parameter estimates outweighs decreases in A and so MSEP(é) begins to increase. In the
example here, f3(X; 6) is the best model for prediction.

Table 3. A sequence of increasingly complex models adjusted to the data in Table 1.

Model Parameters in the model A A MSEP(é) MSE
Least squares parameter values

fix;0) 60 g 404 036 4.40 4.61
2.535, 8.275

(X0 60 o0 g@ 0.04 002 0.06 0.01
2.121, 8.005, 2.065

f(X;0) 60 o) 9@ ¢ 0.04 001 0.05 0.01
2.046, 7.971, 2.085, 0.091

faX; 6) 6@ g 9@ g3 @ 0.04 0.05 0.09 0.004
1.906, 7.906, 2.036, 0.169, 0.156

fs(X;0) 0@ oM 9@ 9B g ¢G5 0.04 035 0.39 0.0003

1.641, 7.735, 1.967, 0.237, 0.230, —0.174

3.4. Estimating MSEP(9)

How then does one estimate the value of the mean squared error of prediction in real-life
situations, where the true relation between Y and X is unknown?

This is the topic of the following sections. The approach is quite different depending
on whether the data available for estimating MSEP(6) have been used to guide model
development (in particular for parameter estimation) or not.

3.4.1. Model and data are independent

The simplest situation arises when we have a random sample of data from the target pop-
ulation, and the model has been developed independently of that data. Then an unbiased
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estimator of MSEP() is simply

~ ~ 1 N a2
MSEP() = MSE = — ; [Yi — f(X;:0)] (22)

where N is the number of observations. Each squared error in the sum is an unbiased
estimator of MSEP(A) and the best overall estimator is simply the average of the squared
errors. It is also important to have an idea of how much this estimator would vary if
a different data set had been chosen from the target distribution. Since the estimator
is a mean of independent terms, the estimated variance of the estimator is

D V 1] — 1 - L V12 A A2
var[MSEP ()] = NN D) Z {[Y; — f(X;;0)]" — MSEP(0)} (23)
i=1

We have already discussed the difficulty in practice of obtaining a random sample from
the target distribution. We may however be able to obtain a hierarchical random sample,
where the first level involves random sampling from the target distribution but then soils
or climates are repeated. In this case Eq. (22) is still an unbiased estimator of MSEP(é),
but Eq. (23) can no longer be used to estimate the variance of this estimator.

For the model of Eq. (1), using the data in Table 1, we calculated MSEP(é) = 0.90 and
MSE = 0.88 = MSEP(@). The estimated and true values of MSEP(@) are very close, but this
is somewhat of a coincidence since the estimated standard deviation of M. SEP(é), calculated
using Eq. (23), is relatively large (0.67).

3.4.2. Data are used for model development

A very common situation is that where we have a single data set, and want to use it both
to estimate certain parameter values for the model and to estimate MSEP(@ ). In this case
MSE in general underestimates MSEP (). The reason is easy to understand. First, one
specifically fits the model to the data, then one calculates how well the model fits that
same data. Clearly, that fit will in general be better than the fit of the model to other
situations chosen at random from the target distribution.

When many parameters are estimated relative to the amount of data, the difference
between MSE and MSEP(é) can be very important. Furthermore, MSE and MSEP(é)
will have qualitatively different behavior as model complexity increases. MSE can never
increase as additional explanatory variables are added to a model, assuming that the
associated parameters are adjusted to the data. Thus model choice based on MSE will
always lead to choosing the most complex model. MSEP(é) on the other hand leads to
choosing a model with some intermediate level of complexity.
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Table 3 shows that MSE and MSEP () are comparable for the model with just 2 parameters
adjusted to the data, but for more complex models MSE seriously underestimates MSEP(H).
For the model f4(X; ) the ratio MSEP(9)/MSE is 25 and for model f5(X; 0) it is 1400!
If the criterion for choosing a model were minimum MSE, one would choose f5(X; é), the
most complex model. The model with the smallest mean squared error of prediction on the
other hand is f3(X; é).

3.4.3. Cross-validation

How then can one estimate MSEP(é) when one also needs to use the data for parameter
estimation? For the moment, we continue to assume that the data are a random sample
from the target distribution. A simple solution is to split the data into two parts, say half
the data in data set 1 and the other half in data set 2. Then data set 1 is used to estimate
the parameters and data set 2 is used to estimate MSEP(é). Since data set 2 was not
used for parameter estimation, MSE calculated using data set 2 is an unbiased estimator
of MSEP(6). However, this approach has major drawbacks. First, we now use only half
of our data for estimating the parameter values and also for estimating MSEP(9). The
estimates will therefore be less precise. A second drawback is the arbitrariness in this
procedure. Why split into two equal halves rather than using some other proportion? On
what basis are observations put into one data set rather than the other?

The method of cross-validation is based on this same principle of data splitting,
but avoids to a large degree the above drawbacks. The cross-validation estimator of
MSEP(9) is

. N R
MSEPcy(0) = = > [¥i = £ (X3 0-))° (24)

i=1

The notation 6_; indicates that the parameter values are estimated using all the data in the
data set except Y;.

Concretely, one begins by estimating the parameter values using all the data except Y.
The result is the estimated parameter vector 0:1. Since Y| was not used to estimate
é_l, the squared error [Y] — f(X1; GA_1)]2 is an unbiased estimator of MSEP(é). This
gives the first term in the sum in Eq. (24). Then the procedure is repeated, this time basing
parameter estimation on all the data except Y and calculating [Y> — f(X2; é_z)]2. The
calculations continue, adjusting the parameters to all the data except Y3, then except Y4,
and so on. Each adjusted parameter vector gives rise to a term in the sum of Eq. (24). The
final estimator of MSEP (é) is the average of the N unbiased estimators [¥; — f(X;; QA_,-)]2
fori=1,...,N.

At the end of the procedure, we have N different estimates of the parameter vector 6.
Which should we use? None, in fact. The best estimator is the one based on all the data,
and that is the estimator to use in practice.

In this approach, all of the data are used to estimate the parameters as well as to
estimate MSEP (é). Furthermore, all the data are used in the same way, which eliminates
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the problem of arbitrarily assigning a data value to some particular subset. A disadvantage
of the method is the calculation time. It is now necessary to estimate the model parameters
not once but N + 1 times. Also, we are in fact estimating MSEP(é_1), MSEP(é_z), etc. So
there is an additional assumption that those quantities are good estimators of MSEP©).
Nevertheless, this estimator of prediction error is largely used in the statistical literature
(Harrell, 2001) and has been used for crop models by Jones and Carberry (1994), Colson
et al. (1995) and others.

Table 4 illustrates the evaluation of MSEPcy () (Eq. (24)) for the model f5(X; 6) of
Example 3 using the data of Table 1. Each line in Table 4 corresponds to estimating the
parameters from a sample missing a different data point. The last column shows the squared
error for the data point not used for model estimation. The last line of the table gives the
average of these squared errors, which is the cross-validation estimate MSEPcy (é) =0.313.
The true value is MSEP(@) = 0.390 (Table 3).

Table 4. Calculation of cross-validation estimate of MSEP(@) for model f5(X; é).

i Data used for Y; fs(Xi36-p) [Y; — f5(Xi:60-)1?
parameter adjustment
1 Y2, Y3,Y4,Ys5,Y6, Y7, Y8 -9.39 9.44 1.06
2 Y1, Y3, Y4, ¥s, Y, Y7, Y 323 11.96 0.97
3 Y1,Ys, Ya, Y5, Yo, Y7, Yy 0.37 —2.45 0.12
4 Y1, Y2, Y3, Ys, Y, Y7, Vg 7.10 1.01 0.00
5 Y1, Y, Y3, Y4, Yo, Y7, Vs 5.82 ~8.33 0.03
6 Y1,Ys, Y3, Y4, ¥s, Yq, Yy —11.21 9.14 0.15
7 Y1, Y2, Y3, Y4, ¥s, Yo, Vg ~5.81 —8.48 0.06
8 Y1, Y2, Y3, Y4, Y5, Y6, Yq 2.82 —4.04 0.10
MSEPcy (6) 0.31

Parameter estimation for crop models is sometimes based on a trial and error pro-
cedure. Such an approach has many disadvantages, but a further disadvantage is that
cross-validation becomes essentially impossible. Cross-validation requires that parameter
estimation be repeated several times. The implicit assumption is that the method of esti-
mation does not vary, only the data vary. For this to be true, one needs a reproducible
algorithm for parameter estimation.

The above approach is referred to as leave-one-out cross-validation, because a single
data point is left out of the sample at each step. This may not be appropriate for sampling
schemes other than random sampling. If for example there are several data points from
each site, it would be necessary to leave out all the data points from each site in turn. An
example of cross-validation for a crop model leaving out more than one data point at a
time is given in Wallach et al. (2001).
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3.4.4. Bootstrap estimation

The bootstrap, like cross-validation, is a data re-sampling approach, i.e. the same data
are used several times to provide an estimator of the quantity of interest, here the mean
squared error of prediction.

There are many variants of the bootstrap approach. Here we present just one rela-
tively simple version (Efron, 1983). We do not directly estimate MSEP(é) but rather the
difference

op = MSEP(0) — MSE.

The notation “op” comes from “optimistic”” and was chosen to emphasize the fact that when
the parameters are estimated from the data, MSE is in general smaller (more optimistic
about the quality of the model) than the mean squared error of prediction. The true mean
squared error of prediction will in general be larger. Thus the idea here is to calculate MSE
and then to augment it by an estimator of op, in order to obtain an estimator of MSEP@®).

The bootstrap approach is equivalent to supposing that the original data set, with N
observations, constitutes the full target distribution. We will refer to this as the bootstrap
target population. Thus the expectation over the bootstrap target population is equivalent
to an average over the N observations. We create B bootstrap samples, each with N
elements, by drawing N points with replacement from the bootstrap target population.
Since we are sampling with replacement, a bootstrap sample may have some of the data
points represented several times, while other data points are absent. Using the data in
Table 1, 3 bootstrap samples could be (Y¢, Y7, Y3, Y7, Y6, Y7, Ys, Y3), (Y3, Y1, Y7, Y3, Vs,
Y4,Y7,Yr) and (Y1, Y7, Yy, Y7, Ys, Yo, Y4, Y7).

The parameters are adjusted to each bootstrap sample, giving estimated parameter
vector 6, for the bth bootstrap sample. The mean squared error of prediction of the model
based on bootstrap sample b for the bootstrap target population is

N
~ 1 ~
MSEPy () = le [¥; — f(Xi:0p)1°
i
We can also calculate MSE for sample b as
LN
MSEp = — Z; Yoi — f(Xpis )]
1=

where Y;; and X;; refer to the ith data point of bootstrap sample b. The value of op for
sample b is then op, = MSEP;,(0,) — MSE}, and the final bootstrap estimator of op is

1B
op = B Zopb
b=1
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Finally, the bootstrap estimator of MSEP(é) is
MSEPbootstrap(é) = MSE + op

where MSE is calculated using the original sample.

It is usually recommended to have several tens or hundreds of bootstrap samples. Since
the parameter vector must be adjusted to each sample, the overall calculation time can be
quite long. Furthermore, there can be numerical difficulties in adjusting the parameters
for certain bootstrap samples, especially if the original sample is quite small so that it
is likely to have some bootstrap samples with only a few distinct data points. On the
positive side, in a simulation study Efron (1983) found that this bootstrap method gave
better predictions of MSEP(@) than did cross-validation.

Wallach and Goffinet (1989) use the above bootstrap approach to estimate the dif-
ference in MSEP(é) between two models. Wallach and Goffinet (1987) used a variant
of the above bootstrap approach, adapted to the specific case where the data have a
hierarchical structure. Their study concerned a static model for predicting the maintenance
requirements of sheep.

3.5. Effect of errors in Y or in X on MSEP( () )

3.5.1. Measurement error in'Y and MSEP(é)

In the above discussion, we have assumed that Y is measured without error. If that is not
the case, there are two different mean squared errors of prediction that are of interest. The
first, noted MSEP°®(9), refgrs to the difference between calculated values and observed
values. The second, MSEP(0), refers to the difference between calculated values and the

true response values. We show here how these two quantities are related.
We suppose that

YObS=Y+n

where 7, the measurement error, is a random variable independent of X and Y with E () =
0 and var(n) = a%. Then (Wallach and Goffinet, 1987)

MSEP™ @) = E{[Y** — f(X; )]}
= E{([Y™® Y +Y — f(X;D)]*) (25)
= 0, + MSEP(®)

If we estimate the mean squared error of prediction using observed Y values with
measurement error, it means we are estimating MSEP°P(9). We can obtain an estimate
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of MSEP(é) by subtracting an estimate of the measurement error, i.e.
N A ~__obs A R
MSEP(0) = MSEP®” (9) — &7
3.5.2. Measurement error in X and MSEP(é)

We have so far assumed that the explanatory variables are measured without error. How-
ever, this is often not the case. For example, soil characteristics such as moisture content
at field capacity and at wilting point are difficult to determine and may have appreciable
errors. If there is no weather station in the field in question, there may be errors in the
weather data. Initial soil moisture and initial nitrogen may also have errors, in particular
if they are estimated rather than measured.

Let U be the subset of explanatory variables that has measurement error. Suppose
U° — U + 1 where U°®S is the observed value, U is the true value and T is the error. We
suppose that E£(7) = 0 and we note var(t) = ¥;. If U (and therefore 1) is of dimension n,
then X; is an n x n matrix. Wallach and Génard (1998) showed that, approximately, the
effect of measurement errors in the explanatory variables is to increase the mean squared
error of prediction by adding on the term

~ T ~
r—E [Bf(X; 9)} ErHaﬂx;mH 06)
oU 104

The expectation is over the target distribution. The partial derivative with respect to the
vector U is a column vector.

While Eq. (26) may look forbidding, it is actually quite easy to understand and to evalu-
ate. The partial derivatives measure how the model output changes when each explanatory
variable in U changes. It is logical that the importance of error in an explanatory variable
depends on the sensitivity of the output to that of explanatory variable. The other factor
in [y is the variance—covariance matrix X.. Consider for simplicity the case where this
matrix is diagonal. The diagonal terms are just the variances of the elements of . Then
the larger the errors, the larger the variances and the larger the effect on Iy .

The expression for Iy involves the model, the errors in the explanatory variables and
the target distribution, but does not require any measured outputs. This term can then
be estimated in the absence of data on the response variable. For example, one could
calculate how important certain errors would be before actually doing measurements.

We illustrate the calculation of Iy using the model of Example 1. Suppose that just the
two components x() and x® are measured with error. Specifically, suppose that

(1)obs )
bs _ X _ (¥ +u 7y _ (0O
o= (tom) = (0 70) £ (2)=(0)
var (1) = 005 0
) \ 0 002
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The fact that ¥, is diagonal implies that the errors in the explanatory variables x(!) and x®
are independent. There is no assumption about whether the explanatory variables themselves
are independent or not.

The partial derivative vector will normally be calculated numerically. For our simple
example however it can be calculated analytically as,

3OO+ é(l)xi(l)+ 5(2)xi(2)—|— é(S)xiG)—{— 5(4)xi(4)+ é(i)xi(S))

X M X

f(X;6) 0x; (60

0 | 900+ 90D 60D 4 0O 4§, 4 59,0 | =\ g
95

The partial derivatives do not depend on X, so we can simply ignore the expectation over
Xin Iy.
Substituting into Eq. (26) gives

. . 005 0 100
(600 5@ 7Y
T (9 0 )( 0 0.02) <9<2> 32

In the absence of measurement error in X we had MSEP(é) = 0.90. With measurement
error MSEP(§) = 0.90 + 3.2 = 4.1. In this particular example, measurement error in the
explanatory variables is the major contribution to the mean squared error of prediction.

3.6. Parameter uncertainty and mean squared error of prediction

In general, there is a degree of uncertainty about the parameter values in a model. For crop
models, this may include uncertainties in the parameters adjusted to data using regression
techniques and also uncertainties in parameter values taken from the literature. In the
previous sections, we were not required to consider this uncertainty because we treated
the model with fixed parameter values. The fact that parameter estimation could have
given different parameter values was not relevant.

It can also be of interest, however, to consider E [MSEP(é)], where the expectation is
over the distribution of . We first derive an expression for this expectation, then discuss
its usefulness. The treatment is similar but not identical to that presented in Wallach and
Goffinet (1987) and in Wallach and Génard (1998). We have

E[MSEP()] = E;Ex{Ey{[Y — f(X; §)]1X}*}
= E;Ex{Ev{[Y — E;Lf (X; D]+ Eglf(X;0)] — £(X; DHIIX)*)
= Ex{Ev{[Y — EjLf (X; DUXY + E;Ex{E;Lf (X; 0)] @7)
— f(X: 011X
= A+ A roxiy T Exlvarlf(X; 6)1X}1}
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This can be compared to the decomposition of MSEP(@) in Eq. (19). The first term is
the same population variance term as in Eq. (20). The second term is the squared model
bias of Eq. (21), but now for the model averaged over the distribution of 6. The last
term is new. It is the variance of the model due to the variability of the parameter values,
averaged over the target distribution of explanatory variables. If there is no uncertainty in
the parameter values, then var[ f (X; é)lX ] = 0. Since the variance cannot be negative,
any uncertainty necessarily increases E[MSEP(é)].

One might argue that in fact we are only interested in a single value of 6, the one that
we intend to use, and so the expectation over the distribution of 6 does not concern us.
However, the uncertainty in 6 reflects the fact that we do not know the parameter values
exactly, and it is just a matter of chance that we have obtained a particular value and not
another. For example, adding new data will change 6. To have confidence in the model,
we would not want E [MSEP(é)] to be large, even if the estimated value of MSEP(@) for
our particular parameters is acceptable.

To estimate E [MSEP(é)] one could use

E[MSEP(9)] = MSEP(6) + Ex{var[ f(X; 0)|X]}

The last term on the right is an estimator of Ey{var[ f(X; é)|X ]1}. Note that it involves
the model, the distribution of the parameter vector and the target distribution, but not
measured response variables. This term can then be estimated for scenarios that have not
been observed or for which there is very little data. For example, one might want to use
the model to predict crop performance in a new environment, or under changed climatic
conditions, or with modified management practices. All these cases correspond to using the
model for new target distributions. Extrapolating a model to conditions outside those where
it has been adjusted and tested is always a perilous exercise, and any information about
the validity of the extrapolation is important. Without data we cannot estimate MSEP ()
but we can estimate the contribution of the term Ex{var[ f(X; é)|X}]} to E[MSEP(é)].
If this contribution is small we have at least eliminated from consideration one often major
source of error, though population variance and expected squared bias are still unknown.
If the contribution is large, then we are forewarned that the model will be a poor predictor
for the new target distribution. We can also be assured that reducing the variance of the
parameter estimators will be worthwhile.

Example 4

We will calculate here E [MSEP(é)] and its components (Eq. (27)) for the models of
Example 3. We present the explicit calculations only for the model fi(X; 6). The other
models can be treated analogously.

The first term in Eq. (27), the population variance, is the same as in Table 3. For f1(X; 6),
A = var(e;) = 4.04. The second term is

Ex{lE(Y|1X)] — E;LA1(X: D)1} = Ex{[6© +0DxD — E;0@ +6DxD)12 =0




42 D. Wallach

We have used the fact that the least square parameter estimators are unbiased estimators of
the true parameters, so that E; (¢ ©) =9 and E; ©M) = 9D The last term of Eq. (27) is

Ex{var[f(X; §)|X1) = Ex{Ejl0© +8VxD — 6© 4 6D x 1))
= Eé[(é(o) — 02 4+ @D —9gM)2] = var(@?) + var(@")

In going from the first line to the second we have used the fact that E(x(V2) = 1 and
E(x(M) = 0. To evaluate the above quantity we use estimates of the variances provided by
the least squares fitting program, accepting the fact that the estimates can be poor with so
few data.

The calculated values of Ej [MSEP(é)] and the separate contributions are presented in
Table 5. These values can be compared to the values for MSEP(0) for the same models in
Table 3. The contribution of population variance is the same in both cases, by definition.
This term depends only on the choice of explanatory variables in the model and not on the
form of the model. Thus it does not change when we consider an average over parameter
values rather than the model with fixed parameter values. The differences between the two
tables are in the other contributions to the mean squared error of prediction. In Table 3, the A
term arises from the differences between the estimated and true parameter values. In Table 5,
that term is replaced by an average over parameter estimates, and so its contribution is null
because the parameter estimators are unbiased. However, there is now a contribution from the
variance of the parameter estimators, i.e. in place of the errors in a specific set of parameter
values we now have a term that represents an average error. The values of Ej [MSEP(@)] in
Table 5 are not identical to the values of MSEP(6) in Table 3. Nevertheless, in both cases a
model of intermediate complexity (3 explanatory variables in the case of MSEP(H), 2 in the
case of E 4 [MSEP(é)] minimizes the mean squared error of prediction.

Table 5. Contributions to Ej [MSEP(é)] for the models of Example 3.

Adjusted parameters A Apironiy  Extvarlf(X; 01X} EIMSEP ()]
6@ oM 404 0 2.56 6.60
00 o) 9@ 0.04 0 0.01 0.05
FIONCIONCICNIC) 004 0 0.03 0.07
0@ oM 9@ B g 004 0 0.03 0.07
FIONIONCICON

ISNCIONGIC) 004 0 0.02 0.06

3.6.1. A particular model, the average

An extremely simple model is what we will call the “average” model. This model uses
the average of past Y measurements for all predictions. This model is of interest despite
its simplicity because it can serve as a standard against which to measure other models.
Any model which does not predict better than the simple average of past observations
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should be seriously questioned. We now show that it is straightforward to estimate
E;[MSEP(9)] for this model.
We write

Y=pn+e¢

with E(e) = 0 and var(e) = o2. Thus p is the expectation of Y and ¢ is the random vari-
ability around the expectation. There are no assumptions involved here. One can always
express a random variable as an expectation plus a random variability of expectation
zero. The assumption that we do make is that we have a random sample, so that all the
observations Y; are independent and have the same distribution as Y. Our model is then

X R i
fXib)=f@)=p= N;Yi
This model has one parameter, (i, and no explanatory variables.
The population variance for this model is
A=Ey(lY —Ey(P) = Ey{lu+e—pl} =0
The second term in the decomposition of Ej [MSEP(é)] in Eq. (27) is

Ex{Ey(Y) — E;lf 1) = (n—w?=0

The final term in Eq. (27) is just the variance of the average of the observed Y values,
and so

A 02
var[f(0)] = v

Overall then
. 1
E4[MSEP(6)] = <1 + N) o’ (28)

This is an extreme case of a prediction model. It has no explanatory variables and
so the population variance is maximal. A crop model should be able to do better, by
introducing important explanatory variables that reduce population variance by more than
the inevitable increase in error related to parameter estimation or bias.

An estimator of E[MSEP(H)] is easily obtained, by replacing o in Eq. (28) by its
usual estimator

where Y is the average of the ¥; values.
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For the data in Table 1, the average response is 0.80 and so f (9) = 0.80 for the “average
model For this model, E[MSEP(Q)] = 71.0 and the estimated value is E [MSEP(G)] =
= 70.5. All of the models with explanatory variables do much better (Table 3).

4. Evaluating a model used for decision support

Prediction quality is often a major objective for a crop model, but it is not the only possible
objective. Another common goal is to compare different management decisions. In this
section, we discuss how a model could be evaluated with respect to this specific objective.
First, we illustrate that prediction quality and quality of model-based decisions can be
quite different. Figure 4 shows, for one particular situation, predictions of profit (value of
yield minus cost of nitrogen) versus applied nitrogen using two different models, labeled
“A” and “B.” We assume that the goal is to maximize profit. Model “A” predicts that
profit is maximized at fertilizer level 200, which would therefore be the recommended
dose according to this model. The true profit for this dose is 786, which is in fact the highest
profit attainable. According to model “B” the optimal dose is 140, with corresponding real
profit of only 730, i.e. basing the fertilizer decision on model “A” leads to substantially
higher profit than using model “B.” On the other hand, for every value of applied nitrogen,
model “B” predicts profit better than does model “A.” The criterion of predictive quality
would lead us to choose the model which gives poorer management recommendations.

4.1. A criterion of decision quality

Let d be the vector of management variables to be optimized. This could be for example
amount of nitrogen. It could also be a vector of several decisions, for example sowing
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Figure 4. Profit versus amount of applied nitrogen.
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date, sowing density and amount of fertilizer. Let J(d) be the objective function that
specifies what “optimized” means exactly. J(d) could for example be profit, or it could be
a combination of economic and environmental indicators.

Suppose that according to our model, the optimal decision for the situation with
explanatory variable vector X is dy(X). This is the value of d that maximizes J(d)
according to the model. As indicated, the model-calculated optimal decision can depend
on the situation through the explanatory variable X. (The calculation of optimal decisions
is treated in Chapter 6.) Our criterion of model quality when the goal is management
recommendations is then

C=E{J[duX)]} (29)
The expectation in Eq. (29) is over the target distribution. The criterion C is the true

expected value of the objective function that would be achieved, if the recommended
decisions of the model were implemented everywhere in the target distribution.

The criterion C was implicitly used in discussing Figure 4. There the target distribution
reduces to just a single situation. For model “A,”

C = E{J[da(X)]} = J[200] = 786
For model “B”
C = E{J[dg(X)]} = J[140] = 730

The criterion C is thus larger for model “A,” which would be the model of choice.

4.2. Estimating C

We suppose that the data available provide values of the objective function J for several
values of the decision vector in each of several situations. For example, the data might
be yield (from which we could calculate profit) for a series of nitrogen doses in each
of several fields. We consider the case where the situations represented in the data are a
random sample from the target population. We furthermore assume that the data have not
been used for parameter development.

Suppose that the model-based decision dy(X) is among the decisions tested for each
situation in the data. Then a natural estimator of the criterion C is

A 1
C =

=

N
D Jildw(Xi)] (30)
i=1

where the index i refers to the situation and NN is the number of situations in the data.
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Often the observations available will not correspond to values of dy(X). For example,
the model recommended nitrogen dose for a particular situation might be 137 kg/ha,
whereas the observations refer to doses of 0, 50, 100, 150 and 200 kg/ha N. Then one
cannot directly use Eq. (30).

One possible approach would be to interpolate between observed values to obtain
an estimate of J;[dv(X)] for each situation. Antoniadou and Wallach (2000) proposed
a variant where one first combines all the data and then interpolates. This method was
applied by Makowski et al. (2001) and by Makowski and Wallach (2001, 2002) to evaluate
static models with respect to the quality of their recommendations for a single management
variable, namely the total amount of nitrogen to be applied to wheat. According to this
method, one first translates the observed doses for each situation. A dose d; for situation
i is translated to d} = d; — dv(Xj). For the model-based optimal dose d; = dym(X;) and
so the translated dose is d; = 0. On this new scale all situations have the same model-
based optimal dose. The data provide values of J(d §). A nonparametric regression based
on all the data is used to obtain J (0), the estimate of J(0). The estimated value of C
is then simply equal to J (0). This method has important advantages over interpolating
for each situation individually. It allows one to use all the data including situations with
only a single measurement. Situations with few data points for which interpolation is
problematic do not degrade the estimator. Finally, the method automatically gives more
weight to data close to the model-based optimal decisions, which should be more useful
for estimating the J;[dm(X;)] values.

In the case of multiple decisions, the above method will be difficult or impossible to
apply. The problem is that the amount of data necessary to obtain a reasonable estimate
of C increases rapidly with the dimension of the decision vector. Antoniadou and Wallach
(2000) suggest that their approach may still be feasible in 2 dimensions, but beyond this
the data requirements are probably prohibitive.

In the case of multiple decisions, a different approach must be adopted. One possibility
would be to restrict the decision space to decisions that were actually applied. Suppose
that the N; decisions d; 1, ..., d; n; were tested in situation i. The model is then used to
evaluate each of these decisions. Suppose that the best decision among these, according
to the model, is d; ;. Then the estimator of the criterion C becomes

1
N

i=1

¢ = Ji (di ) 31)

Table 6 shows artificial data from two situations. Three different decisions were tested in
situation 1 and two different decisions in situation 2. The decisions can be vectors. J;(d;, ;)
and J; (d;, ) represent respectively the true value of the objective function and the value of the
objective function according to the model, for the jth decision in situation i. According to the
model, the best decision for situation 1 is decision A, since that decision has the largest value
of fi(d,'y j) among the decisions that were tested in situation 1. The true value of decision A
is 79. The best decision for situation 2 according to the model is decision E with true value 93.
The estimated value of the criterion, according to Eq. (31), is C= (1/2)(79 + 93) = 86.
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It is of interest to compare this value with the largest value that could be attained. From
Table 6, the true best decisions are respectively B and E for situations 1 and 2. The maximum
value of the criterion corresponds to these choices. It is Cpax = (1/2)(113 4+93) = 103.

Table 6. Model-estimated and true values of objective function for 3 different decisions in
situation 1 and 2 different decisions in situation 2.

Situation i Decision d Model prediction of Measured objective
objective function JA, (d) function J; (d)

1 A 89 79

1 B 86 113

1 C 81 85

2 D 28 47

2 E 99 93

5. Using a model to test a scientific hypothesis

Suppose that the model represents a scientific hypothesis about how the real world func-
tions and we wish to test whether this hypothesis is true or not. The basis of the test is
simple. If the model is truly a correct representation of reality, and if it is applied within the
range of conditions where it is applicable, then observations on the real world and model
predictions should coincide perfectly (for the moment we ignore measurement error).

To formalize this idea, we define three logical statements;

A: We observe a system where the model is meant to apply.

B: The model has the same behavior as the true world for systems where the model is
meant to apply.

C: The observed output of the real system and the outcomes calculated using the model
are identical.

Each statement has one of two values, “true” or “false.” The basis of our hypothesis
test is the syllogism

IF AAND B, THEN C 32)

Equation (32) says that if both A and B are true then C must be true.
Our objective is to draw conclusions about the statement B concerning the relation
between the model and reality. Logic allows us to conclude from Eq. (32) that

IF (NOT C) THEN (NOT A) OR (NOT B) (33)

If “NOT C” is true (i.e. if C is false) then either A or B or both must be false. If A is
known to be true, B must is false, i.e. if model and observations do not coincide, and the
model is applicable, then the model must be false.

Suppose however that the model and the data do agree. It is not correct to conclude
from Eq. (32) that /FF C THEN A AND B, i.e. if model and data agree we cannot conclude
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that B is true. In other words, it is possible to prove a model incorrect (using Eq. (33)),
but it is not possible to prove that it is correct. One can invalidate hypotheses about the
real world using a model, but one cannot unequivocally validate them.

If there is measurement error, categorical statements such as “C is true” or “C is false”
will be replaced by probabilistic statements like “if C is true, the probability of observing
a difference between measured and calculated values at least as large as that actually
observed is p.” If p is small (5% for example), one concludes that it is unlikely (but not
impossible) that C is true. The model then is probably not identical to reality (assuming
A is true). If on the other hand p is large, the evidence does not indicate that C is false.
As before, however, we cannot conclude from this that the model is probably correct.

In fact, the formal testing of a crop model to determine whether it is “true” or “false” is
usually of little interest. A crop model is by design a simplification of reality, so that it is
not meant to be identical to the real world. There are few if any cases where we seriously
entertain the hypothesis that the model outputs are strictly identical to real-world outputs.
It may occur that in a case with measurement error we have a fairly large p value, so
that we do not conclude that the model is incorrect. However, this will often simply be
the result of poor data. Data with large measurement errors will tend to lead to large
p values.

Does this mean that models have nothing to say about how a crop functions? They
do, but not in the sense of proving a hypothesis. A more reasonable question is which
description of crop functioning, among a small number of clearly expressed alternatives,
is most compatible with observed data or has the smallest prediction error. An example is
provided by Gent (1994) who compares three different hypotheses concerning the source
of the carbon used for crop respiration. The approach is to develop mathematical models
that embody each hypothesis and then to compare the outputs of the different models
with observed data. The hypothesis that is preferred is the one that leads to the closest
correspondence between observations and calculated values. The objective here is to obtain
a better understanding of how the system operates. The methods however are the same as
those we have described in the previous sections.

Other discussions of the role of crop models for understanding crop functioning can
be found in Doucet and Sloep (1992) and Sinclair and Seligman (2000).
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Exercises

1. Table 7 shows data for yield from 6 different plots. The data consist of the value of the

single model explanatory variable x, the measured values Y and the values calculated

using the model f(x;0) = a + bx with @ = 0.5 and b = 0.15.

Table 7. Measured values of an output variable Y, value of explanatory
variable x and calculated values f(x; 6) for 6 situations.

Y x f(x:0)
0.61 1.0 0.65
1.18 25 0.88
1.38 4.0 1.10
1.91 55 1.32
2.01 7.0 1.55
1.81 8.5 1.78

(a) Plot calculated versus measured values. Plot the residues.

(b) Calculate the measures of agreement presented in Table 2 for this model and
these data. For the threshold measures calculate TDI(25%) and CP(0.2). Also,
calculate the 3 terms in the decomposition of MSE from Eq. (12).

(c) Suppose that instead of the model of Table 7 we use the model f(X; é) =7,
where Y is the average of the measured yields. Plot calculated versus measured
values for this model. Plot the residues for this model.

(d) Calculate the measures of agreement in Table 2 for the model f(X; é) =Y.
For the threshold measures calculate TDI(25%) and CP(0.2). Also, calculate the
3 terms in the decomposition of MSE from Eq. (12).

(e) What are your conclusions about these two models?

2. Under what conditions is MSE an unbiased estimator of the mean squared error of
prediction?

3. In Example 2 in the text, suppose that var(x®)) = 4.0 but that all the other conditions
remain as stated in the example.

(a) What are the values of A, A and MSEP(é) now?

(b) The model has not changed, so why has the mean squared error of prediction of
the model changed compared to the value in Example 2?7

(c) Invent a real-world example that could cause such a change in var(x®).

4. Suppose that the true relation that gave rise to the data in Table 7 is
Y =611 —e %) 4+ ¢ with §; = 2.0, 6o = 0.4, E(¢) = 0 and var(e) = 0.1.
Suppose that the target distribution consists of just the 6 situations of Table 7. Finally,
suppose that the data have not been used during model development.

(a) What are the values of A, A and MSEP(@) for this model and target distribution?
(b) What is the major source of grror?
(c) What is the value of MSEP(0) estimated from the available data?
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Suppose that in Exercise 4, the model is f (x; ) = a + bx but now the parameters
a and b are adjusted to the data in Table 7 using the least squares criterion.

(a) What are the adjusted parameter values?

(b) What is the value of MSE for this adjusted model?

(c) Estimate MSEP(9) for this model using cross-validation. What is the estimated
value of MSEP(6)? Compare MSE and MSEP(6) and explain.

Suppose that the measured Y values in an experiment have measurement error and
that the variance of the measurement error is 0.3.

(a) If MSEP(@) for measured Y is 0.4, what is MSEP(9) for the true ¥?
(b) Is it worthwhile to try to reduce the prediction error? Explain.

Suppose that a crop model has 5 explanatory variables that are measured with error.
The errors are independent, and in each case the variance of the measurement error
is 2.0. The vector of partial derivatives of the model with respect to the explanatory
variables is (x(V, x@®, 3 + x® x®2 xONHT n the target population, E(x®) = 0,
Ex¥?) =3.0and ExP*) =50fori=1,...,5.

(a) What is the contribution of the error in explanatory variables to MSEP(é )?
(b) Suppose that the variance of the explanatory variables were halved to 1.0. What
would be the contribution to MSEP(0) now?

When a model is biased, for example giving results that systematically under-predict,
it is tempting to adjust the model by adding a constant that removes the bias. Bias
removal adds one parameter (the estimated bias) to the model. We will apply bias
removal to the model and data of Table 7.

(a) For the data and model in Table 7, what is the estimated bias?

(b) What is the modified model after bias removal? What is the bias of this modified
model?

(c) What is the value of MSE for the modified model?

d Is MSEP(é) for the modified model necessarily smaller than for the original
model? Why?

(e) What is the value of MSEP(@) for the modified model estimated by cross-
validation? Compare with the estimated value of MSEP(é) of the original model.
Is bias removal worthwhile in this case?

We can consider bias removal in a more general context than for a particular model
and data set. Very generally, we want to compare Ej; [MSEP(6)] for a model before
and after bias removal. Suppose that we have a data set with N measurements of Y,
which represent a random sample from the target distribution. Suppose that we have
some model, referred to as the initial model, which is independent of those data.
The predictions of that model are noted ?initial- The model after bias removal will be
referred to as the unbiased model, and the predictions according to this model will
be noted ?unbiasew

(a) Let bias be the bias of the initial model estimated from the data. What is the
expression for bias? What is the expression for Yyppiaseda in terms of Yipital
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10.

(b)
(©
(@)

(e)

and bias? Is the unbiased model independent of the data? If not, how many
parameters in the unbiased model are estimated from the data. What are the
expressions for the parameters in terms of the data?

What is the expression for Ayppiased in terms of Ajpjia1 ? Does the fact of removing
bias change the explanatory variables of the model?

Let bias represent the true value of bias. What is the expression for bias in terms
of Y and ?initial. If var(Y) = o2, what is the expression for Var(l;ias) ?

In A Ej1£(X;6)],unbiased” we will consider only the uncertainty in the extra param-

eter of the unbiased model compared to the initial model. Derive an expression
for AEé[f(X;é)],unbiased in terms of AEé[f(X;é)],initial’ bias and var(bias). (Hint: in

the expression for A ELf(X:6)], unbiased’ add and subtract the term bias. You will
4 :0)1,

then be able to write this as a sum of two terms. The expectation over the uncer-
tain parameters will only concern the second term. The first term will have the
general form E{[T — E(T)]*} = E(T?) — [E(T)]?).

Express Ej[MSEPunbiased(9)] in terms of E;[MSEP;yiia(9)]. Under what con-
ditions does removing bias reduce prediction error? If the sample size N is
increased, how is the effect of bias removal modified?

Suppose that there is a model which predicts Ji(d) values of 70, 96, 74, 65 and 64,
respectively for the five situations in Table 6.

(a)
(b)

What is the estimated value of the criterion C for this model?

Based on the data in Table 7, and supposing that the objective is to use the model
for management, which model would be preferred between this new model and
the model which gave the results in the table? Why?

11. A scientist entertains two theories about root activity in young peach trees. One theory
is that activity (represented by uptake per unit root length) is uniform from spring to
autumn. The second is that root activity is the greatest in spring. How would you test
these theories? What conclusions exactly could be drawn from the results?
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1. Introduction

A crop model is the result of a long and complex construction process, involving data at
multiple stages for understanding basic processes, elaborating model structure, estimating
parameters and evaluating prediction quality. In various stages of a model’s life, however,
there is a need to study the model on its own, with an emphasis on its behaviour rather
than on its coherence with a given data set. This is where uncertainty analysis sensitivity
analysis and related methods become useful for the modeller or model user.

Uncertainty analysis consists of evaluating quantitatively the uncertainty or variability
in the model components (parameters, input variables, equations) for a given situation,
and deducing an uncertainty distribution for each output variable rather than a misleading
single value. An essential consequence is that it provides methods to assess, for instance,
the probability of a response to exceed some threshold. This makes uncertainty analysis
a key component of risk analysis (Vose, 1996).

The aim of sensitivity analysis is to determine how sensitive the output of a crop
model is, with respect to the elements of the model which are subject to uncertainty or
variability. This is useful as a guiding tool when the model is under development as well as
to understand model behaviour when it is used for prediction or for decision support. For
dynamic models, sensitivity analysis is closely related to the study of error propagation,
i.e. the influence that the lack of precision on model input will have on the output.

Because uncertainty and sensitivity analysis usually relies on simulations, they are
also closely related to the methods associated with computer experiments. A computer
experiment is a set of simulation runs designed in order to explore efficiently the model
responses when the input varies within given ranges (Sacks et al., 1989; Welch et al.,
1992). The goals in computer experiments identified by Koehler and Owen (1996) include
optimization of the model response, visualization of the model behaviour, approximation
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by a simpler model or estimation of the average, variance or probability of the response
to exceed some threshold.

Within a given model, model equations, parameters and input variables are all subject
to variability or uncertainty. First, choices have to be made on the model structure and on
the functional relationships between input variables and state and output variables. These
choices may sometimes be quite subjective and it is not always clear what their conse-
quences will be. Martinez et al. (2001) thus perform a sensitivity analysis to determine
the effects of the number of soil layers on the output of a land surface—atmosphere model.
For spatial models, there is frequently a need to evaluate how the scale chosen for input
variables affects the precision of the model output (see e.g. Salvador et al., 2001).

Second, parameter values result from estimation procedures or sometimes from biblio-
graphic reviews or expert opinion. Their precision is necessarily limited by the variability
and possible lack of adequacy of the available data. Some parameters may also naturally
vary from one situation to another. The uncertainty and natural variability of parameters
are the central point of many sensitivity analyses. Béarlund and Tattari (2001), for exam-
ple, study the influence of model parameters on the predictions of field-scale phosphorus
losses, in order to get better insight into the management model ICECREAM. Ruget et al.
(2002) perform sensitivity analysis on parameters of the crop simulation model STICS,
in order to determine the main parameters that need to be estimated precisely. Local sen-
sitivity methods, based on model derivatives with respect to parameters, are commonly
used for checking identifiability of model parameters (Brun et al., 2001).

Third, additional and major sources of variability in a model output are, of course,
the values of its input variables. Lack of precision when measuring or estimating input
variables needs to be quantified when making predictions from a model or when using it
for decision support. Aggarwal (1995) thus assesses the implications of uncertainties in
crop, soil and weather inputs in the spring wheat WTGROWS crop model. Rahn et al.
(2001) compare contrasted input scenarios for the HRI WELL-N model on crop fertilizer
requirements through a sensitivity analysis. They identify the main factors which need
to be measured precisely to provide robust recommendations on fertilization. Contrasted
settings of the input variables are used for performing sensitivity or uncertainty analyses
assuming different scenarios by Dubus and Brown (2002).

Model structure, model parameters and input variables represent three basic sources of
model uncertainty. It is often advisable to study their influence on a model simultaneously
(Saltelli et al., 2000) and alternative groupings of uncertainty sources may then be more
adequate. Rossing et al. (1994), for example, distinguish sources that can be controlled by
more intensive data collection (model parameter estimates), and uncontrollable sources
when predictions are made (daily temperature, white noise). Ruget et al. (2002), on the
other hand, decompose the sensitivity analyses according to STICS sub-modules on, e.g.
energy conversion, rooting or nitrogen absorption. Jansen et al. (1994) advocate to divide
uncertainty sources into groups of parameters or input variables which can be considered
to be mutually independent.

As shown by the examples above, uncertainty and sensitivity analysis may have various
objectives, such as:

e to check that the model output behaves as expected when the input varies;
e to identify which parameters have a small or a large influence on the output;
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to identify which parameters need to be estimated more accurately;

to detect and quantify interaction effects between parameters, between input variates
or between parameters and input variates;

to determine possible simplification of the model;

to identify input variables which need to be measured with maximum accuracy.

Some of these objectives have close links with other methods associated with
modelling, like model construction, parameter estimation or model use for decision
support.

The diversity of motivations for performing sensitivity analysis is associated with
a large choice of methods and techniques. In this chapter, we present a selection of
approaches representative of this diversity. This selection, however, will be far from
exhaustive. We refer to the book edited by Saltelli et al. (2000) for a recent and compre-
hensive exposition of sensitivity analysis methods and applications, and to Saltelli et al.
(2004) for a more practical presentation.

In this chapter, Section 2 is dedicated to preliminary notions on the basic components
of an uncertainty and sensitivity analysis. Section 3 covers several methods of uncer-
tainty analysis. Methods of sensitivity analysis are presented in Section 4 — local and
one-at-a time sensitivity analysis methods, and more global methods (variance-based sen-
sitivity analysis) which enable to study simultaneously the influence of several model
components.

2. Ingredients of uncertainty and sensitivity analysis
2.1. The crop model

The structure and properties of the crop model may influence the choice of the uncertainty
and sensitivity analysis. One reason is that the objectives depend on the crop model
capabilities and complexity.

More specifically, as remarked by Koehler and Owen (1996), the number of inputs
(variables or parameters), the number of outputs and the speed with which the model f
can be calculated may vary enormously in applications, and these quantities will obviously
play an important role in the objectives of a sensitivity analysis and on the adequacy of the
various available methods. Among the methods presented in the sequel, some are adapted
to small numbers of model simulations (e.g. local and one-at-a-time methods, meth-
ods based on experimental designs), while others require a large number of simulations
(methods based on Monte-Carlo sampling, for instance).

A price has to be paid while using more economical methods, and this price depends
on the main model properties — it may be necessary to select a number of factors smaller
than desired, or most interactions between factors may have to be assumed as negligible,
or the investigation may be unable to detect model departures from linearity or near-
linearity. It follows that some methods are well-adapted only if the model is well-behaved
in some sense, while other methods are more “model-independent” (Saltelli et al., 1999),
i.e. more robust to complex model behaviours such as strong non-linearity, discontinuities,
non-monotonicity or complex interactions between factors.
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2.2. Input factors
The model components whose influence on the output is to be investigated will be called

the input factors of the sensitivity analysis. An input factor may be:

e cither a set of alternative model structures or functional relationships within a sub-
module of the model;
e or an uncertain or variable parameter 6;;

A winter wheat dry matter model

A simple crop model will be used in this chapter to illustrate the different methods of uncer-
tainty and sensitivity analysis. The model has a single state variable, the above-ground winter
wheat dry matter, denoted by U (¢) with ¢ the day number since sowing. This state variable
is calculated on a daily basis as a function of cumulative degree-days 7'(¢) (above a baseline
of 0°C) and of daily photosynthetically active radiation PAR (#). The model equation is:

Ut +1) = U(t) + EpEimax [1 - e*KLAI(f)] PAR(f) + (1),

with Ej, the radiation use efficiency, Eimax the maximal value of the ratio of intercepted to
incident radiation, K the coefficient of extinction, LAI(¢) the leaf area index on day ¢, and
&(t) arandom term representing the model error. In this chapter, we consider the deterministic
part of the model only, so this model error will be assumed null in the simulations. LAI(7)
is calculated as a function of cumulative degree-days 7'(¢), as follows (Baret, 1986):

1

_ _ WBIT()-T1]
LAI(®) = Lmax { I+ e ATO-T11 < }

The dry matter at sowing (¢ = 1) is set equal to zero: U (1) = 0. In addition, the constraint
T = %log[l + exp(A x T1)] is applied, so that LAI(1) = 0.

We will assume that the dry matter at harvest U (tg) is the main output variable of interest,
and denote

Y = Um)
tg—1
= 3 EvEimn [1 _ e*KLA“’)] PAR(¢)
t=1
While presenting sensitivity analysis, it is convenient to consider the model in the form

Y = f(X;0).

In this expression, X = (7'(1), ..., T (tg), PAR(1), ..., PAR(tg)) denotes the daily climate
input variables, and 6 = (Ep, Eimax, K, Lmax, A, B, T1) denotes the vector of parameters,
with L,k the maximal value of LAIL 7T a temperature threshold and A and B two additional
parameters.
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or an input variable X;;
or a series of several related input variables X;, e.g. annual series of daily climate
variables in a given region.

The choice of the input factors depends on the objective of the sensitivity analysis.
They must include, of course, the model components of direct interest in the study. But
in many cases, the sensitivity of the model with respect to these components is likely
to depend on additional components. For instance, the sensitivity of a crop model with
respect to its main parameters is often highly dependent on the values of climate- or soil
variables. Consequently, these variables must also be considered for inclusion in the list
of input factors, unless, alternatively, separate sensitivity analyses are performed with
different modalities of these variables.

Note that each input variable of the model may or may not be selected as an input
factor of the sensitivity analysis. For instance, if a sensitivity analysis is performed for a
given soil type, the input variables related to soil can be fixed. In this case, the soil input
variables will not be included among the input factors of the sensitivity analysis. The term
input factor is further reserved for factors of the sensitivity analysis.

Notation

The number of input factors will be denoted by s and the input factors will be denoted
by Zi, ..., Zg, in order to distinguish them clearly from the model input variables X;.
An input scenario will be defined as a combination of levels z = (z1, ..., zs) of the
sensitivity input factors. When several input scenarios need to be defined simultaneously,
they will be denoted by z;y = (2k.1, - - -, Zk.s), With subscript £ identifying the scenarios.

Whatever the choice of the factors, it is assumed that for each input scenario z, the other
crop model components f, x and 0 are completely determined so that the output f(x, 6)
can be calculated. We will keep the same notation f to identify the model expressed
as a function of input variables f(x, #) or as a function of an input scenario f(z) =

f(z1y ..., 25).

A winter wheat dry matter model (continued)

In the winter wheat dry matter model, the seven parameters have associated uncertainty and
so they represent seven input factors for the uncertainty and sensitivity analyses. The other
source of uncertainty to be considered in this example is that related to the input variables
of the model. Instead of considering each input variable PAR(#) and 7'(¢) at each time ¢ as
a separate sensitivity input factor, a set of fourteen annual series of climate measurements
in the region of interest will constitute the eighth factor of the sensitivity analysis.

Thus, there are eight factors: the seven parameters Ep, Eimax, K, Lmax, A, B, T and the
climate factor C. An input scenario is a vector

Z =