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Preface

This book focuses on the methods for working with crop models, in particular, on math-
ematical and statistical methods. Most crop modelers are painfully aware of the need for
such methods. Parameter estimation, model evaluation, and sensitivity analysis are called
for in essentially every modeling project. Other methods treated in this book, related to
the use of in-season measurements for improving model predictions, to optimization of
management decisions, to the use of models on a large spatial scale or to the use of models
to aid in genetic improvement of crops, are also important but only in certain cases.

In crop modeling as in all fields, it is a challenge to keep up with progress, and this
is particularly difficult when it comes to mathematical and statistical methods, which are
developed outside the framework of crop models. The purpose of this book is to make
these methods easily available to crop modelers. We felt that there is a gap in the literature
in this respect. Many books treat the way to describe a crop system in terms of equations,
but none seems to provide an in-depth presentation of a large range of methods for working
with crop models.

This book is intended for use in a graduate level course in crop modeling (hence
the exercises), and for researchers who wish to use crop models. It should be useful to
biologists, agronomists, and plant physiologists who are comfortable with describing and
quantifying the soil–plant–atmosphere system, but are not familiar with rigorous methods
for dealing with complex dynamic models. Others who may benefit are students and
researchers with more mathematical and statistical backgrounds who are interested in the
applications of applied mathematics to crop models. The emphasis throughout is on crop
models, but in fact, much of the material applies more generally to dynamic models of
complex systems.

While preparing the contents of this book, we had three main goals. First, the book
should reflect the latest knowledge about the different topics covered. Second, the material
should be adapted to and applicable to complex dynamic models, in particular, crop
models. This is achieved by discussing each method in the specific context of crop models,
by using simple crop models to provide the illustrative examples in the text and by
furnishing case studies involving crop models. Finally, the material should be accessible
to someone who has had basic courses in statistics and linear algebra. To this end, we have
tried to explain each method simply, but without sacrificing detail or accuracy. To help
the reader, an appendix reviews the statistical notions that are used in the text.

The origins of this book go back to the year 2000, when a group of French researchers
began to prepare an intensive week-long school for modelers. The book began as a syllabus
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for that course. The years since then have gone into testing the material in other courses,
expanding the coverage and refining the contents.

Statistician G.E.P. Box once wrote, “All models are wrong, but some are useful”.
Our hope is that this book, by improving access to important methods, will contribute to
increasing the usefulness of crop models.

D. Wallach

D. Makowski

J. W. Jones



Overview

Herein is a brief overview of the contents of the book.

I. Methods

1. The two forms of crop models. This chapter is concerned with the mathematical form
of crop models. Crop models consist of a set of dynamic equations (form 1), which one
integrates to get predictions of responses versus inputs (form 2). The uses of the two forms
are quite different.

2. Evaluation. This chapter first presents and discusses different measures of the distance
between model predictions and observed values. It then discusses the notion of prediction
error and insists on the difference between how well the model reproduces past data and
predicts future values. There is also a discussion on how to evaluate a model when it is
used to propose crop management decisions.

3. Uncertainty and sensitivity. Such analyses are aimed at describing how variations in
input factors (variables or parameters) affect the output variables. The chapter begins by
reviewing the uses of such analyses. The rest of the chapter discusses different sensitivity
or uncertainty indices and how they are calculated, in particular, in the case where multiple
input factors vary.

4. Parameter estimation. There is a very large statistical literature about parameter
estimation, but most of it cannot be directly applied to crop models. The specific problems
of crop models include the large number of parameters compared to the amount of field
data and the complex structure of that data (several variables, at various dates). On the
other hand, there is often outside knowledge about many of the parameter values (from
controlled environment studies, similar crops, etc.). The chapter begins with a basic
introduction to the principles and methods of parameter estimation. Then the specific case
of complex crop models is considered. A number of approaches to parameter estimation
that have been or could be used are described and illustrated. Included here is the Bayesian
approach to parameter estimation, which is particularly adapted to the efficient use of the
outside information.

5. Data assimilation. In-season information about crop growth, for example from satellite
photos, is becoming increasingly available. This information can be used to adjust a crop
model to reflect the specific trajectory of the field in question. This chapter discusses and
illustrates how this adaptation can be done. In particular, variants of the Kalman filter
approach are explained and illustrated.



xiv Overview

6. Representing and optimizing management decisions. Improving crop management
is a major use of crop models. The first part of this chapter concerns how to express man-
agement decisions, and discusses in particular decision rules, which express decisions as
functions of weather or state of the crop. The second part of the chapter presents and dis-
cusses algorithms for calculating optimal decisions. The problem is very complex because
of the multiple decisions and the uncertainty in future climate, but efficient algorithms
exist.

7. Using crop models for multiple fields. One is often faced with the problem of running
a crop model for multiple fields, for example in order to predict regional yields or nitrogen
leaching for each field in a watershed. This chapter discusses the specific problems posed
by this use of crop models. A major problem is that in general one cannot obtain all the
necessary input variables for every field. The chapter presents the different solutions that
have been proposed for each type of input data.

II. Applications

8. Introduction to Section II

9. Fundamental concepts of crop models. This chapter discusses the way crop models
represent a crop–soil system, with examples from five different crop models.

10. Crop models with genotype parameters. The existence of multiple varieties for each
crop, and the fact that many new varieties are developed each year, is a problem specific
to crop models. It is important that models be variety specific, but this raises the problem
of how to identify and estimate the variety specific parameters. This chapter discusses the
approaches that have been proposed.

11. Model assisted genetic improvement in crops. This chapter covers the very new
field of the use of crop models in plant breeding. It explains the different ways in which
crop models can contribute to selection and includes examples of such uses.

12–20. Case studies. These chapters illustrate a diversity of applications of crop models,
and show how the methods presented in Section I can be useful.
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Methods
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Chapter 1

The two forms of crop models

D. Wallach

1. Introduction 3

2. A crop model is a dynamic system model 3

3. A crop model is a response model 6

4. Working with crop models. Which form? 7

5. Conclusions 9

Exercises 10

1. Introduction

Crop models are mathematical models which describe the growth and development of a
crop interacting with soil. They can be viewed in two different, complementary ways.
First, a crop model can be seen as a system of differential or difference equations, which
describe the dynamics of the crop–soil system. Second, the model can be thought of as a
set of equations for responses of interest as functions of explanatory variables. We present
and discuss these two viewpoints in this chapter. As we shall see, the different methods
described in this book may call for one or the other of these viewpoints.

2. A crop model is a dynamic system model

The general form of a dynamic system model in discrete time is

U1(t + �t) = U1(t) + g1 [U(t), X(t); θ ]

...

US(t + �t) = US(t) + gS [U(t), X(t); θ ]

(1)

where t is time, �t is some time increment, U(t) = [U1(t), . . . , US(t)]T is the vector of
state variables at time t , X(t) is the vector of explanatory variables at time t , θ is the vector
of parameters and g is some function. For crop models, �t is often one day. The state vari-
ables U(t) could include for example leaf area index (leaf area per unit soil area), biomass,
root depth, soil water content in each of several soil layers, etc. The explanatory variables
X(t) typically include initial conditions (such as initial soil moisture), soil characteristics
(such as maximum water holding capacity), climate variables (such as daily maximum and
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minimum temperature) and management variables (such as irrigation dates and amounts).
Chapter 9 contains an overview of the processes generally described by crop models.

The model of Eq. (1) is dynamic in the sense that it describes how the state variables
evolve over time. It describes a system in the sense that there are several state variables
that interact.

To illustrate, we present a very simplified crop model with just 3 state variables, namely
the temperature sum TT, plant biomass B and leaf area index LAI. The equations are:

TT(j + 1) = TT(j) + �TT(j)

B(j + 1) = B(j) + �B(j)

LAI(j + 1) = LAI(j) + �LAI(j)

with

�TT(j) = max

[

T MIN(j) + T MAX(j)

2
− Tbase, 0

]

(2)

�B(j) = RUE(1 − e−K·LAI(j))I (j) TT(j) ≤ TTM

= 0 TT(j) > TTM

(3)

�LAI(j) = α�TT(j)LAI(j) max[LAImax − LAI(j), 0] TT(j) ≤ TTL

= 0 TT(j) > TTL

(4)

The index j is the day. The model has a time step �t of one day. The explanatory variables
are TMIN( j), TMAX( j) and I (t) which are respectively minimum and maximum temper-
ature and solar radiation on day j . The parameters are Tbase (the baseline temperature for
growth), RUE (radiation use efficiency), K (excitation coefficient, which determines the
relation between leaf area index and intercepted radiation), α (the relative rate of leaf area
index increase for small values of leaf area index), LAImax (maximum leaf area index),
TTM (temperature sum for crop maturity) and TTL (temperature sum at the end of leaf area
increase).

2.1. The elements of a dynamic system model

2.1.1. State variables U(t)

The state variables play a central role in dynamic system models. The collection of state
variables determines what is included in the system under study. A fundamental choice
is involved here. For example, if it is decided to include soil mineral nitrogen within the
system being studied, then soil mineral nitrogen will be a state variable and the model will
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include an equation to describe the evolution over time of this variable. If soil mineral
nitrogen is not included as a state variable, it could still be included as an explanatory
variable, i.e. its effect on plant growth and development could still be considered. How-
ever, in this case the values of soil mineral nitrogen over time would have to be supplied
to the model; they would not be calculated within the model. The limits of the system
being modeled are different in the two cases.

The choice of state variables is also fundamental for a second reason. It is assumed
that the state variables at time t give a description of the system that is sufficient for
calculating the future trajectory of the system. For example, if only root depth is included
among the state variables and not variables describing root geometry, the implicit assump-
tion is that the evolution of the system can be calculated on the basis of just root depth.
Furthermore, past values of root depth are not needed. Whatever effect they had is assumed
to be taken into account once one knows all the state variables at time t .

Given a dynamic model in the form of Eq. (1), it is quite easy to identify the state
variables. A state variable is a variable that appears both on the left side of an equation,
so that the value is calculated by the model, and on the right side, since the values of the
state variables determine the future trajectory of the system.

2.1.2. Explanatory variables and parameters (X(t), θ)

The explanatory variables likewise imply a basic decision about what is important in
determining the dynamics of the system. In the chapter on model evaluation, we will
discuss in detail how the choice of explanatory variables affects model predictive quality.
Briefly, adding additional explanatory variables has two opposite effects. On the one hand,
added explanatory variables permit one to explain more of the variability in the system,
and thus offer the possibility of improved predictions. On the other hand, the additional
explanatory variables normally require additional equations and parameters which need
to be estimated, which leads to additional error and thus less accurate predictions.

Explanatory variables and parameters can be recognized by the fact that they appear
only on the right-hand side of Eq. (1). They enter into the calculation of the system
dynamics but are not themselves calculated. The difference between explanatory variables
and parameters is that explanatory variables are measured or observed for each situation
where the model is applied, or are based on measured or observed values. Thus for example
maximum soil water holding capacity is measured for each field, or perhaps derived from
soil texture, which would then be the measured value. Potentially at least, an explanatory
variable can differ depending on the situation while a parameter is by definition constant
across all situations of interest.

2.2. The random elements in the dynamic equations

We have written the dynamic equations as perfect equalities. In practice however they are
only approximations. The actual time evolution of a state variable in a system as complex
as a crop–soil system can depend on a very large number of factors. In a crop model
this is generally reduced to a small number of factors; those considered to be the most
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important. The form of the equation is also in general chosen for simplicity and may not
be exact. Thus the equations of a crop model should actually be expressed as

Ui(t + �t) = Ui(t) + gi [U(t), X(t); θ ] + ηi(t), i = 1, . . . , S (5)

where the error ηi(t) is a random variable. This is a stochastic dynamic equation.
Another major source of uncertainty in the dynamic equations comes from the explana-

tory variables and in particular climate. When crop models are used for prediction, future
climate is unknown and this adds a further source of uncertainty about the time evolution
of the system.

3. A crop model is a response model

We can integrate the differential equations or difference equations of the dynamic system
model. Often we talk of “running” the model when the equations are embedded in a
computer program and integration is done numerically on the computer. For the difference
equations, one simply starts with the initial values at t = 0 of the state variables, uses
the dynamic equations to update each state variable to time t = �t , uses the dynamic
equations again to get the state variable values at t = 2�t , etc. up to whatever ending
time one has chosen.

The result of integration is to eliminate intermediate values of the state variables. The
state variables at any time T are then just functions of the explanatory variables for all times
from t = 0 to t = T −�t i.e. after integration the state variables can be written in the form

Ui(T )=fi,T [X(0),X(�t),X(2�t),X(3�t),. . . ,X(T −�t);θ], i =1, . . . ,S (6)

In general, there are a limited number of model results that are of primary interest.
We will refer to these as the model response variables. They may be state variables at
particular times or functions of state variables. The response variables may include: vari-
ables that are directly related to the performance of the system such as yield, total nitrogen
uptake or total nitrogen leached beyond the root zone; variables that can be used to com-
pare with observed values, for example leaf area index and biomass at measurement dates;
variables that help understand the dynamics of the system, for example daily water stress.

We note a response variable Y . According to Eq. (6) the equation for a response variable
can be written in the form

Y =f (X;θ) (7)

where X stands for the vector of explanatory variables for all times from t =0 to whatever
final time is needed and θ is the same parameter vector as in Eq. (1). When we want to
emphasize that the model is only an approximation, we will write Ŷ in place of Y .
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3.1. The random elements in the response equations

Since the dynamic equations are only approximate, the response equations are also only
approximate. Including error, the equation for a response variable can be written

Y =f (X;θ)+ε (8)

where ε is a random variable. For the moment we ignore the uncertainty in X. Since
the response equations derive directly from the dynamic equations, ε is the result of the
propagation of the errors in Eq. (5). However, it is not obligatory to first define the errors in
the dynamic equations and then derive the errors in the response equations. An alternative
is to directly make assumptions about the distribution of ε. In this case, Eq. (8) is treated
as a standard regression equation. If there are several response variables to be treated,
then one is dealing with a (generally non-linear) multivariate regression model.

The error arises from the fact that the explanatory variables do not explain all the
variability in the response variables, and from possible errors in the equations. In addition
there may be uncertainties in the explanatory variables, in particular climate when the
model is used for prediction.

4. Working with crop models. Which form?

In developing and working with crop models, both the dynamic equations and response
equations are used, though for different objectives one will in general concentrate on one
or the other.

During the initial development of a crop model one generally works with the dynamic
equations. Several reasons have led to the use of dynamic crop models. First, we have a
great deal of information about the processes underlying crop growth and development,
and the dynamic equations allow us to use this information in studying the evolution of
the overall crop–soil system. A second reason is that they allow us to break down the
very complex crop–soil system into more manageable pieces and to model each of those
pieces separately. It is possible to develop response models directly, without the interme-
diate step of dynamic equations. However, such models are in general limited to much
simpler representations of a crop–soil system than is possible with dynamic crop models.
The individual dynamic equations in crop models may also be quite simple, but their
combination and interaction in the overall model results in complex response equations.

Historically, researchers have had two quite different attitudes towards crop models.
On the one hand, a crop model can be considered a scientific hypothesis. Testing the
hypothesis involves both forms of a crop model. The dynamic equations represent the
hypothesis, which is tested by comparing the response equations with observations.
The second attitude is that crop models are engineering tools. They are useful in relating
outputs to inputs, but it is not necessary that the dynamic equations mimic exactly the
way the system functions. The dynamic equations are simply a way of deriving useful
input–output relationships. In this case, the response equations are of main interest and the
evaluation of the model measures the quality of the input–output relationships. Evaluation
is treated in Chapter 2.
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Especially from an engineering perspective, the general behavior of the model
responses as functions of the explanatory variables is of interest and importance. However,
the response equations are in general not available as analytic expressions, but only after
numerical integration of the dynamic equations. It is thus difficult to analyze the effect of
input variables on response variables directly from the model equations. This has led to
the use of sensitivity analysis, which is the study of how input factors (both explanatory
variables and parameters) affect the outputs of a response model. This topic is treated in
Chapter 3.

A major problem with crop models is obtaining the values of the parameters.
The complexity of crop models means that there are in general, many (often a hundred
or more) parameters. The amount of experimental data on the other hand is in general
limited because experimentation on crop systems is necessarily lengthy and expensive in
terms of land, equipment and manpower. If we consider just the response equations, then
we have a regression problem involving simultaneously all the parameters in the model,
and their estimation from the experimental data may be impossible or at least lead to
large errors. However, the fact that a crop model has two forms often leads to additional
information that can be used for parameter estimation. In particular, one often assumes
that the dynamic equations have validity beyond the range of conditions described by the
response model. This implies that one can do experiments on some processes under other
conditions than those where the crop model will be used. For example, the temperature
dependence of some processes may be studied in controlled temperature environments.
The result is additional data, independent of the data on the overall system, that can be
used to estimate parameters. The problem of parameter estimation for crop models is
discussed in Chapter 4.

A specific problem related to crop models is that for each crop species there are in
general many varieties, and plant breeders add new varieties each year. From a crop
model perspective, this greatly exacerbates the problem of parameter estimation, since at
least some of the model parameters vary from variety to variety. A possible solution is
to use both the dynamic and response forms of a crop model. Some varietal parameters
can be obtained from studies on the individual processes, others can be estimated from
the response equations. This approach is discussed in Chapter 10. One can also treat this
problem at a more fundamental level, by seeking to relate the model parameters more
closely to genetic information (see Chapter 11).

A very promising approach to improving crop models is data assimilation, where one
injects in-season data into the model and adjusts the values of the state variables or the
parameters to that data. Assimilation is based on Eq. (5). It is necessary to have an
estimate of error in the dynamic equations, in order to determine the respective weights
to give to the data and to the model when combining those two sources of information.
Data assimilation is treated in Chapter 5.

Testing different possible crop management strategies is a major use of crop models.
One aspect of this use is mathematical optimization of management strategies. Chapter 6
presents two different approaches to optimization. Optimization by simulation is based
on the response form of crop models. Here, management strategies are parameterized.
Optimization consists of calculating the values of the management parameters that maxi-
mize an objective function, which in general depends on a small number of model response
variables such as yield or grain protein content. The second approach treats optimization
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as a control problem. Here, the dynamic equations are used to calculate the transition prob-
abilities from one time step to the next, as a function of explanatory variables including
management decisions.

5. Conclusions

The fact that crop models exist in two forms, as dynamic equations and as response
equations, is both a complication and an advantage. One complication is that in general
this leads to quite complex models. A second is that model error must be treated at two
levels, that of the dynamic equations and that of the overall system response.

The advantage is that the model can be developed and analyzed at two levels. One
can study the individual processes and the overall system, and results from both can be
integrated into the model. This allows us to profit from knowledge of how the system func-
tions in order to better understand and manage crop–soil systems. The connection between
processes and the overall system can also be used to test and improve our knowledge of
the processes.
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Exercises

1. Write equations for the response variables B(2) and LAI(2) using Eqs. (3) and (4).
The resulting expressions should depend on explanatory variables, including the initial
values of the state variables, but not on values of the state variables at other times.

2. On what explanatory variables does B(2) depend? Compare with the explanatory
variables in the dynamic equation for biomass. Explain the difference.

3. Let ηB(j) and ηL(j) represent respectively the errors in the dynamic equations for
biomass and leaf area index at time j . Write the dynamic equations for biomass and
leaf area index as stochastic equations using this notation.

4. Write the equations for the response variables B(2) and LAI(2) including the error
terms ηB(j) and ηL(j) from the dynamic equations. The resulting expressions show
how the errors in the dynamic equations propagate through the system model.

5. Let εB(2) and εL(2) represent the errors in the equations for the response variables
B(2) and LAI(2). Write the equations for B(2) and LAI(2) as a multivariate regression
model using this notation.
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1. Introduction

1.1. Definition

The dictionary definition of evaluation is to “ascertain the value of,” and that is the
meaning that we use here. The goal of evaluation is to determine the value of a crop
model, with respect to the proposed use of the model. The results of an evaluation study
can include graphs comparing observed and predicted values, numerical measures of
quality or qualitative conclusions about the quality of a model.

In the literature, one often encounters the term “validation” rather than “evaluation.”
A rather common definition is that validation concerns determining whether a model is
adequate for its intended purpose or not. This emphasizes the important fact that a model
should be judged with reference to an objective. On the other hand, this definition seems
to indicate that the result of a validation exercise is “yes” (the model is valid) or “no” (not
valid). In practice, it is rarely the case that one makes, or even wishes to make, such a
categorical decision. Rather one seeks a diversity of indications about how well the model
represents crop responses. We therefore prefer the term “evaluation.”

General discussions and reviews of evaluation for ecological or crop models can be
found in Swartzman and Kaluzny (1987), Loehle (1987), Mayer and Butler (1993),
Rykiel (1996) and Mitchell and Sheehy (1997).

1.2. The importance of evaluation

Model evaluation is important for several reasons. Firstly, the simple fact of deciding
to evaluate a model obliges one to answer some basic questions, including what is the
objective of the model, what is the range of conditions where the model will be used,
what level of quality will be acceptable.
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Secondly, model improvement is impossible without evaluation. In the absence of a
measure of model quality, how can one decide whether improvement is called for, and
how can one know if a modified model is an improvement? As we shall see, evaluation can
provide not only an overall indication of quality but can also quantify the errors resulting
from different causes. Then, further efforts can be focused on reducing the major errors.

Finally, evaluation is important for potential users of a model. The user needs infor-
mation about the quality of the model in order to decide how much credence to give to
model results.

1.3. The role of evaluation in a modeling project

Evaluation should not be envisioned as an activity that is undertaken just once, at the end
of a modeling project. It is rather an activity that, in its different forms, accompanies the
project throughout its lifetime.

Evaluation should begin at the beginning of a modeling project. At that time it is
necessary to identify the goals of the project, and consequently the criteria for model
evaluation. It is at the beginning of the project that the range of conditions to be simulated
is specified, that the output variables of interest are identified and that the acceptable level
of error is defined.

A second evaluation step involves the model equations, which will be compared with
results in the literature or with expert opinion. In general, the model is then embodied in a
computer program and there is the essential step of evaluation of the computer program.
Testing a computer program, to ensure that it performs the intended calculations, is an
important field with its own literature and we will not consider it here.

Once the computer program exists, one often continues with sensitivity analysis
(Chapter 3) and parameter estimation (Chapter 4). Both of these activities include elements
of evaluation. Sensitivity analysis allows one to evaluate whether model response to input
factors is reasonable, and also to see if the most important input factors are sufficiently
well known. Parameter estimation normally includes indications of the quality of the
parameter estimators, which is an important aspect of model quality as we shall see.

Once the parameter values are fixed, one can proceed to evaluate the model results.
This is the subject of this chapter. In general modeling is an iterative exercise. If the model
and/or the data are modified, then a new round of evaluation is required.

1.4. In this chapter

A first approach to the evaluation of model results is to compare model results with data.
Various approaches and criteria are discussed in Section 2. The real objective for a model is
often prediction. A criterion of predictive quality and its analysis are presented in Section 3.
Another possible objective is to use the model as an aid to decision-making. In Section 4,
we discuss how one can evaluate a model specifically with respect to this objective. The
Sections 2–4 treat the model as an engineering model, which relates inputs to outputs.
Evaluation here concerns how well the model reproduces input–output relationships, and
is not concerned with the realism of the processes included in the model. In Section 5,
we adopt a different point of view. Here, the model is used to test a hypothesis about
how the system under study functions. We wish to test the hypothesis that the processes
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as described by the model are identical to the way the real world functions. Here, it is
logical to use the term validation rather than evaluation.

2. Comparing a model with data

An essential part of model evaluation, probably the first aspect that comes to mind, is
comparison of model predictions with observed data. This can help to identify problems
with the model and give ideas for improvement. However, one must be careful in drawing
general conclusions from the comparison of data and predictions. If the observed situations
are not representative of the situations of interest, then comparison with past data may be
different from the agreement with future measurements. Also, if the observed data have
been used in model development, the degree of fit to that data is in general better than the
agreement with future measurements. We will return to these problems when we consider
predictive quality.

We first discuss graphical comparisons between measured and calculated values.
Graphs are extremely useful for providing a quick visual summary of data and of the
comparison between model and data. We then discuss numerical comparisons. Among
the many different measures of agreement that have been proposed, we present those that
seem to be most widely used or that offer some particular quality. We divide the measures
into 4 groups: simple measures of the difference between observed and predicted values;
measures which are normalized for easier interpretation; measures that can be decom-
posed into separate contributions, and which thus give additional information about the
sources of error; measures based on a threshold of model quality. Note that for many of
the measures of agreement between model and measurements, there is no standardized
vocabulary. In order to avoid ambiguity, it is important to give the equation that is used
in the calculations.

There is no single best method of comparison between a model and data (Table 2).
Different comparisons highlight different features of the data and of model behavior.
Therefore one should use a number of methods described below. The main difficulty is in
obtaining the data and then in obtaining the corresponding model predictions. Once data
and predictions are available, producing graphs or calculating measures of agreement is
in general quite simple, which is another argument in favor of exploring several types of
comparison. Software is also available to aid in evaluating model performance (Fila et al.,
2003).

To illustrate the methods of this section, we use the model and data set of Example 1.
This is not a dynamic crop model, but rather a static linear model between some output
and 5 input variables. It is legitimate to use this simple model because in fact the com-
parisons that we illustrate are not specific to crop models but rather apply generally to
any model.

2.1. Graphical representations of model error

2.1.1. Graph of model predictions versus observed values

Probably the most widespread graphical presentation of the agreement between measured
and calculated values for crop models is a plot as in Figure 1. For each measurement, the
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Example 1

Suppose that our model for predicting response Y for individual i is

Ŷi = f (Xi; θ) = θ̂ (0) + θ̂ (1)x
(1)
i + θ̂ (2)x

(2)
i + θ̂ (3)x

(3)
i + θ̂ (4)x

(4)
i + θ̂ (5)x

(5)
i (1)

The explanatory variables are X = (x(1), x(2), x(3), x(4), x(5))T. The parameter vector is

θ̂ = (θ̂ (0),θ̂ (1),θ̂ (2),θ̂ (3),θ̂ (4),θ̂ (5))T = (1.9, 7.8, 2.5, −0.2, 0.1, 0.7)T (2)

The hat notation is used to indicate that the parameter values are estimates. We do not need
to bother here with the origin of these estimates. The data set for evaluating the model is
given in Table 1.

Table 1. Measured values (Yi ), 5 explanatory variables, calculated values (Ŷi ) and model
errors (Di ) for 8 situations.

i Yi x
(1)
i x

(2)
i x

(3)
i x

(4)
i x

(5)
i Ŷi Di = Yi − Ŷi

1 −9.39 −1.63 0.80 0.44 −0.45 −0.47 −9.31 −0.08
2 −3.23 −0.95 1.07 0.50 0.53 −0.33 −3.10 −0.13
3 0.37 −0.25 0.20 0.51 0.82 0.45 0.72 −0.35
4 7.10 0.38 1.02 −0.22 0.82 −1.93 6.18 0.92
5 5.82 0.15 1.14 1.07 1.63 −0.55 5.45 0.38
6 −11.21 −1.20 −1.79 0.35 −0.26 0.26 −11.84 0.63
7 −5.81 −0.97 −0.15 0.11 1.13 0.10 −5.90 0.09
8 2.82 0.39 −1.20 2.01 −0.79 −1.44 0.47 2.35

measured value
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Figure 1. Calculated versus measured values, using the model and data of Table 1.
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x value is the measured value and the y value is the corresponding calculated value. It is
also usual to draw the 1:1 line on such a graph. If there is no model error the calculated
values and measured values are identical and then each point will be exactly on the
1:1 line.

The advantage of this type of graph is that one can see at a glance how well model
calculations and measurements agree. However, a word of caution is required. There
may be a tendency to underestimate the level of error. The eye tends to evaluate the
shortest distance from the point to the 1:1 line, but model error is given by the vertical or
equivalently the horizontal distance from the point to the line.

In some cases, one shows the regression line between calculated and measured values
in addition to, or instead of, the 1:1 line. Calculating the regression can be of interest,
as we shall see. However, to include the regression line on a graph of this type seems
more misleading than useful. If the points fall close to the regression line one can have
the impression that the model is quite good, but in fact that is not a measure of model
error.

A graph of measured versus calculated values can be used not only for output variables
that have a single value for each situation (for example, yield), but also for output variables
that are functions of time (for example, LAI). There may then be several points for each
situation (for example, several measurements of LAI at different dates).

As with any graph, it can be useful to distinguish (for example by using different
symbols) different groups of points. For example, if there are several measurements of
LAI per field, the use of different symbols for each field will make it easier to see if there
is a field effect on error. Another example would be where different levels of fertilizer are
studied. The use of different symbols for different levels will allow one to see if model
error tends to be different depending on fertilizer level.

2.1.2. Measured and calculated values versus time or other variable

In the specific case of an output variable which is a function of time, it is fairly common
practice to graph measured and calculated values versus time, for each situation separately.
In general, the model produces calculated values every day while the measurements are
much sparser. In this case, the graph takes the form of a regular dotted line (one dot
each day) for the calculated values, which can be compared with the occasional points
for the measurements. For example, Robertson et al. (2002) present graphs of this type
for comparing measured and calculated values of aboveground biomass and observed and
calculated values of leaf biomass. One can present more than one situation in each graph
(Robertson et al., 2002 present 2 situations in a graph), but such graphs quickly become
cluttered as more situations are represented.

Mayer and Butler (1993) discuss the difficulty of visual evaluation of model error
based on graphs like this when the output variable fluctuates with time. This is often
the case, for example for soil moisture. They present an artificial example where the
“measurements” are generated by a random mechanism, with no relation to the model.
Nonetheless, a rapid visual examination of the data seems to indicate that the model is
“reasonable.” The reason is that we tend to focus on the smallest distance between the
measured points and the calculated curve. However, error is in fact given by the vertical
distance between the measured value and the calculated curve. In the artificial example,
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there is always some part of the calculated curve fairly close to the “measured” values
because of the fluctuations in the calculated values. This is not to say that graphs of
measured and calculated values versus time are not useful. The conclusion is rather that
they must be analyzed carefully. The fact that such graphs may be difficult to interpret is an
additional reason for using several different types of graphs for assessing model agreement
with data.

The above discussion concerns graphs with time on the abscissa. It may also be
of interest to graph measured and calculated values versus some other variable. For
example, Pang et al. (1997) present total absorbed nitrogen as a function of applied
nitrogen. The general objective is to see how model error varies with the dependent
variable.

2.1.3. Graphing the residues

The classical method of examining model error in statistics is to plot model error (the
difference between measured and calculated values) on the y axis, against measured values
on the x axis. This type of graph is seen seldom for crop models, which is very unfortunate.
The data of Table 1 are plotted in this way in Figure 2. The advantage of this type of
graph, compared to Figure 1, is that the model errors appear directly. They are thus easier
to evaluate and to compare. For example, consider the point for individual 8 with the
response Y = 2.82. One can see from Figure 1 that this point has the largest error, but
the size of this error relative to the others stands out more clearly in Figure 2.

Residue graphs are very important for bringing attention to systematic patterns in the
errors. For example, a residue graph might show that the errors in yield are exceptionally
large for very small observed yield values. This might suggest analyzing in detail the way
the model handles extreme stresses.

It is also of interest to plot model error versus explanatory variables such as total
water input (rainfall plus irrigation), date of sowing, total applied nitrogen, etc. If the
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Figure 2. Residues for model and data of Table 1.
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model is correctly specified, there should be no trends in the residues. If the residues do
show some systematic trend, then there is an effect of the explanatory variable which has
not been taken into account in the model. Chapter 12 presents examples of this type of
analysis.

The residue graph will, furthermore, give indications about the variability of model
error, which is important for parameter estimation. The simplest assumption is that model
errors have zero mean and constant variance. Residue graphs allow one to examine visu-
ally whether such an assumption is reasonable. Specifically, the residues should then be
centered on zero and have roughly the same spread for different values of the variable
against which they are plotted.

2.2. Simple measures of agreement between measured and calculated values

The basic quantity for measuring the agreement between model and observations is the
difference between the two, noted

Di = Yi − Ŷ (3)

where Yi is the measured value for situation i and Ŷi is the corresponding value calculated
by the model. The output variable Y can be any model output, for example yield, LAI
30 days after emergence, days to flowering, etc. It is the differences Di that are plotted
in a graph of residues.

A very simple way to summarize the Di values for several situations is to calculate
their average, also known as model bias.

Bias =
1

N

N
∑

i=1

Di (4)

where N is the total number of situations. The bias measures the average difference
between measured and calculated values. If on the average the model under-predicts, the
bias is positive, and conversely if the model over-predicts on the average, the bias is
negative. The interpretation is thus very simple, which makes this measure useful as a
guide for model improvement. For example, if yield is systematically under-predicted
(positive bias), one might start by examining whether final biomass or harvest index or
both are under-predicted. If one has information on yield components, one can examine
individually seed number and weight per seed to see which is under-predicted.

Bias alone, however, is not sufficient as a summary of model errors. A bias value near
zero may be the consequence of very small model errors in all situations, or alternatively of
large errors that approximately cancel each other between under- and over-prediction. The
interpretation of a sizeable positive or negative bias is also subject to some ambiguity.
A positive bias can arise because the model systematically under-predicts, or because
the model both under- and over-predicts but with a preponderance of under-prediction.
Negative bias has an analogous ambiguity.
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For the data of Example 1, bias = 0.48. An examination of the data shows that the model
rather systematically under-predicts, which is also apparent from Figure 2.

There are two classical measures of agreement that eliminate the problem of compen-
sation between under- and over-prediction. The first and most widely used is the mean
squared error, defined as

MSE = (1/N)

N
∑

i=1

(Di)
2 (5)

Often it is convenient to work with the square root of MSE, called the root mean squared
error;

RMSE =
√

MSE (6)

The advantage is that RMSE has the same units as Y and thus is easier to understand.
Because MSE is an average of squared differences, large differences are heavily

weighted. It is worthwhile to verify if MSE is not essentially due to one or two large
differences. If this is the case, it might be more astute to examine those specific cases
(problem with the data? exceptional circumstances such as extreme stress?) rather than
the overall model.

For the data of example 1, MSE = 0.88 and RMSE = 0.94. The largest error D8 = 2.35
contributes 78% of the total value of MSE. This is a case where one might start by examining
the situation with large error.

The second measure which avoids compensation between under- and over-prediction
is the mean absolute error

MAE = 1

N

N
∑

i=1

|Di |

The units of MAE are the same as for Y. Furthermore, there is no over-weighting of large
differences here. Thus MAE has advantages over MSE or RMSE, if the objective is simply
to examine overall model error. On the other hand, the important advantage of MSE is
that it can be decomposed into separate contributions, which is useful in identifying the
sources of error.

For the data of Example 1, MAE = 0.62. The largest error, D8, only contributes 48% of
the total here.
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A variant of the above measures is obtained by dividing RMSE by the average of the
observed values. The relative root mean squared error is then

RRMSE =
RMSE

Ȳ

Ȳ =
1

N

N
∑

i=1

Yi

(7)

where Ȳ is the average of the Yi values. Robertson et al. (2002) for example calculate
RRMSE = 23% for their data on peanut yield, using the Agricultural Production Systems
Simulator (APSIM) model. An advantage of RRMSE is that it seems more meaningful
than RMSE for comparing errors based on different data sets. Another advantage is that
RRMSE is independent of the units used to measure Y. RRMSE will have the same value
whether yield is measured in kg/ha or t/ha.

Mayer and Butler (1993) propose a relative mean absolute error,

RMAE =
1

N

N
∑

i=1

|Yi − Ŷi |

|Yi |
(8)

Note that here one divides each difference by the corresponding observed value.

For the data of Example 1, the relative root mean squared error is RRMSE = −56%. The
value is negative because Ȳ is negative, and large because Ȳ is small. The relative mean
absolute error is RMAE = 0.26.

In all of the above formulas, each observation enters just once, with no difference in
weighting for different observations. This may not always be appropriate. For example,
in the case of spatial data, one might want to weight each point by the area it represents
(Willmott et al., 1985).

2.3. Normalized measures

Here, we consider distance measures which have an upper and/or lower bound. Such
measures are easily interpreted and can be particularly convenient for comparing
completely different cases (different data, different models).

Probably the most widely used measure of this type is the modeling efficiency,
defined as

EF = 1 −

∑N

i=1
(Yi − Ŷi)

2

∑N

i=1
(Yi − Ȳ )2

(9)
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Garnier et al. (2001) provide an example of the use of this measure. If the model
is perfect, then Yi = Ŷi for each situation i and EF = 1. If one uses the average
of observed values as the predictor for every case, so that Ŷi = Ȳ for all i, then
EF = 0. Thus, a model that gives EF = 0 has the same degree of agreement with
the data as using the average to predict for every situation. A crop model with EF

close to 0 would not normally be considered a good model. There is in general no
lower limit to EF. A model can be a worse predictor than the average of observed
values (EF < 0).

A second normalized measure that is sometimes used is the correlation coefficient
between measured and calculated values defined by

r =
σ̂

Y Ŷ

σ̂ 2
Y σ̂ 2

Ŷ

(10)

where σ̂ 2
Y , σ̂ 2

Ŷ
and σ̂

Y Ŷ
are sample estimates of the variance of Y , the variance of Ŷ and

the covariance of Y and Ŷ respectively.

σ̂ 2
Y =

1

N

N
∑

i=1

[(Yi − Ȳ )2]

σ̂ 2
Ŷ

=
1

N

N
∑

i=1

[(Ŷi −
¯̂
Y )2]

σ̂
Y Ŷ

=
1

N

N
∑

i=1

[(Yi − Ȳ )(Ŷi −
¯̂
Y )]

¯̂
Y =

1

N

N
∑

i=1

Ŷi

The range of r is −1 ≤ r ≤ 1. A value of r = 1 indicates that there exists a perfect linear
relationship between Ŷi and Yi . Note, however, that this does not necessarily imply that
the model is perfect. Suppose for example that Ŷi = 0.1 Yi for all i. Then r = 1, but in
fact the model systematically predicts values that are smaller by a factor of 10. Thus r by
itself is not a good measure of how well a model agrees with measurements. Addiscott and
Whitmore (1987) suggest that one should use both bias and r, in order to have measures
that concern two different aspects of model quality. A good model would have both small
bias and an r value close to 1. The idea of using more than one measure, in order to bring
out different aspects of model agreement, is important. In the next section we will go into
this in more detail.
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Willmott (1981) propose an agreement index defined as

index = 1 −

∑N

i=1
(Yi − Ŷi)

2

∑N

i=1
(|Ŷi − Ȳ | + |Yi − Ȳ |)

2
(11)

The numerator is the mean squared error MSE. The denominator is related to the variability
in the measured and in the calculated values. If the model is perfect, then Yi = Ŷi and
index = 1. If the model predictions are identical in all cases and equal to the average of
the observed values, i.e. Ŷi = Ȳ , then index = 0. These limiting values are the same as
for EF, but for other cases, the two criteria will have different values.

For the model and data of Example 1, EF = 0.98 and index = 0.99. Here the values of
EF and of index are very similar, and both seem to indicate that the model is much better
than just using the average of the observations as predictor. This can also be seen from
Figure 1, which shows that much of the variability in the observations is tracked by the
model predictions. However, we have also examined the residuals and so we know that in
at least one case the residual is actually quite large.

2.4. Measures for identifying different types of error

Certain measures of agreement between measured and calculated values can be decom-
posed into different contributions to the overall error. The effort for model improvement
can then be concentrated on the dominant source of error.

Kobayashi and Salam (2000) show that MSE can be decomposed as

MSE = (Bias)2 + SDSD + LCS (12)

with

SDSD = (σY − σ
Ŷ
)2

LCS = 2σY σ
Ŷ
(1 − r)

r is the correlation coefficient defined in Eq. (10), σ 2
Y and σ 2

Ŷ
are the variances of the

measured and calculated variables respectively and their square roots, σY and σ
Ŷ

, are the
corresponding standard deviations.

The first term in Eq. (12) is the bias squared. The cause of model bias is in many cases
relatively easy to identify and perhaps to correct. The second term in the decomposition
is related to the difference between the standard deviation of the measurements and the
standard deviation of the calculated values. Once again, the causes of the difference
can sometimes be identified. For example, if the model predicts that yield for different
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Table 2. Measures of agreement between a model and measured data.

Name Equation

Bias Bias =
1

N

N
∑

i=1
Di

Mean squared error MSE = (1/N)
N
∑

i=1
(Di)

2

Root mean squared error RMSE =
√

MSE

Mean absolute error MAE = 1

N

N
∑

i=1
|Di |

Relative root mean squared error RRMSE = RMSE

Ȳ

Relative mean absolute error RMAE = 1

N

N
∑

i=1

|Yi − Ŷi |
|Yi |

Modeling efficiency EF = 1 −
∑

N
i=1(Yi − Ŷi)

2

∑

N
i=1(Yi − Ȳ )2

Correlation coefficient r =
∑

N
i=1[(Yi − Ȳ )(Ŷi − ¯̂

Y )]
√

∑

N
i=1[(Yi − Ȳ )2]

∑

N
i=1[(Ŷi − ¯̂

Y )2]

Agreement index index = 1 −
∑

(Yi − Ŷi)
2

∑

(|Ŷi − Ȳ | + |Yi − Ȳ |)2

Concordance correlation coefficient ρc =
2σ

Y Ŷ

σ 2
Y + σ 2

Ŷ
+ (µ

Ŷ
− µY )2

Total deviation index TDI(p) = minimal value of d such that |Di | ≤ |d|
for at least p% of the observed situations.

Coverage probability CP(d) = the smallest value of p such that, for a
percentage p of the observed situations, |Di | ≤ |d|

situations varies only slightly whereas the measurements show a larger variation, one
might look at the effect of stress. Is the difference due to the fact that the calculated
values are not sufficiently sensitive to water stress, for example? The last term in the
decomposition is related to the correlation between observed and predicted values. This
term depends in detail on how well the model mimics the observed variation of Y from
situation to situation. As such, it may often be the result of many small errors rather than
a single major error, and thus be relatively difficult to analyze and correct.



2. Evaluating crop models 23

For the data of Example 1, Eq. (12) gives MSE (0.88) = Bias2(0.23) + SDSD (0.06) +

LCS (0.59). The major source of error is the LCS term, whose origin is often difficult to
ascertain. However, the squared bias term represents about one quarter of the total mean
squared error, so model improvement could begin by searching for the origin of the bias.

Gauch et al. (2003) suggest that it would be advantageous to have a decomposition with
terms explicitly related to the regression of Y on Ŷ . The decomposition they propose is

MSE = (Bias)2 + NU + LC (13)

NU = (1 − b
Y Ŷ

)2σ 2
Ŷ

LC = (1 − r2)σ 2
Y

b
Y Ŷ

=
σ 2

Y Ŷ

σ 2
Ŷ

The term b
Y Ŷ

is the slope of the regression of Y on Ŷ . The decomposition of Eq. (13)
is quite similar to that of Eq. (12). The first term is again the squared bias, and the last
depends in detail on how variation in Y and Ŷ are correlated. The second term, NU,
depends on how close the slope of the regression of Y on Ŷ is to 1.

For the data of Example 1, Eq. (13) gives MSE (0.88) = Bias2(0.23) + NU (0.04) +

LC (0.62). The numerical results, and conclusions, are similar to those for the decomposition
of Eq. (12).

Willmott (1981) proposed a decomposition of MSE based on the linear regression of

Ŷ as a function of Y . The result is a regression equation ˜̂
Yi = a + b

Ŷ Y
Yi where ˜̂

Yi is the

value of Ŷi calculated from the regression model. The regression parameters are given by
the standard formulas for linear regression,

b
Ŷ Y

=
σ

Y Ŷ

σ 2
Y

a =
¯̂
Y − b

Ŷ Y
Ȳ

The decomposition is then

MSE = MSEs + MSEu (14)

with MSEs = (1/N)
∑

(
˜̂
Yi − Yi)

2 and MSEu = (1/N)
∑

(Ŷi −
˜̂
Yi)

2
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The term MSEs is called the systematic part of MSE and MSEu the unsystematic part.
To understand the first term, suppose that a = 0 and b = 1 so that the regression line

is the 1:1 line. Then ˜̂
Yi = Yi and MSEs = 0, i.e. the systematic contribution is zero in

this case. In general, MSEs is a measure of how far the regression line deviates from
the 1:1 line. The MSEu term on the other hand measures the variability of Ŷi around the
regression line. The systematic term is the contribution that is likely to be relatively easy
to analyze and perhaps correct. An example of the use of this decomposition is given in
Ben Nouna et al. (2000).

For the data of Example 1, a = −0.55, b = 0.95, MSEs = 0.31, MSEu = 0.57 and
MSE = 0.88.

Some authors propose using a statistical test of the hypothesis H0: a = 0, b = 1. If H0
is true then the regression line is the 1:1 line. However, the above decomposition shows
clearly that this test is related to only part of the model error. If the variability of the
predicted values around the regression line is large then MSEu and therefore MSE will be
large, regardless of the values of a and b. Thus, the hypothesis should not be regarded
as testing overall model quality. For this and other reasons, several authors (for example
Mitchell, 1997) have criticized this test as a basis for judging the quality of a model.

A third decomposition of the error is proposed by Lin et al. (2002). This is not based
on mean squared error but rather on a measure of error which they call the “concordance
correlation coefficient,” ρc, defined by

ρc =
2σ

Y Ŷ

σ 2
Y + σ 2

Ŷ
+ (µ

Ŷ
− µY )2

(15)

where σ
Y Ŷ

, σ 2
Y and σ 2

Ŷ
have been defined above and µY and µ

Ŷ
are respectively the

averages of the Y and Ŷ values. If Yi = Ŷi for all i, then µY = µ
Ŷ

, σ
Y Ŷ

= σ 2
Y = σ 2

Ŷ
and so ρc = 1. At the other extreme, if the observed and predicted values are completely
uncorrelated (r = 0) then σ

Y Ŷ
is zero and so ρc = 0. Lin et al. (2002) propose this

measure for comparing two populations, but it can also be used here for comparing two
samples (measured and calculated values).

ρc can be decomposed as ρc = rχa. The first term is the correlation coefficient.
The second is

χa =
2

(σ
Ŷ
/σY ) + (σY /σ

Ŷ
) + (µ

Ŷ
− µY )2/(σ

Ŷ
σY )

It is this term that represents the systematic part of the error. More precisely, χa is equal to 1
if and only if the mean of the measured values is equal to the mean of the calculated values
and also the variance of the measured values is equal to the variance of the calculated
values.
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For the data of Example 1, ρc = 0.9888 and the decomposition into two factors gives
χa = 0.9963 and r = 0.9925. In this particular case, ρc is very close to the best value of 1.0,
which limits the usefulness of the decomposition.

2.5. Measures based on a threshold of model quality

In some cases, one might accept a few large differences between measured and calculated
values as long as the agreement is good for the majority of situations. The two measures
presented in this section are adapted to this viewpoint.

In the first measure, one fixes the percentage p of situations which should show
acceptable agreement. The measure is the total deviation index;

TDI(p) = minimal value of d such that |Di | ≤ |d| for at least p% of the observed
situations.

The second measure in this group fixes a maximum error |d| and measures the per-
centage of situations with errors smaller than that of threshold. This is called the coverage
probability, defined as

CP(d) = the largest value of p such that, for a percentage p of the observed situations,
|Di | ≤ |d|

For the data of Example 1, if we set p = 80%, then TDI (p = 80) = 0.93, i.e. at least
80% of the observed situations (in fact 7 situations out of 8 or 87.5%) have |Di | values that
are less than or equal to 0.93.

Fixing the threshold of error at |d| = 0.5, we have CP (d = 0.5) = 62.5%, i.e. 62.5% of
the model errors (5 out of 8) are smaller than or equal to 0.5 in absolute value.

2.6. Treating complex output variables

The measures presented above apply directly to outputs like yield or time to flowering,
which have a single value for each situation. For more complex types of output, it is not
always clear how to apply the above formulas.

Consider first output variables that are functions of time, such as LAI or soil moisture
or root depth. One possibility is simply to apply the above measures to all of the obser-
vations, ignoring the fact that the observations are structured by situation, with several
observations corresponding to the same situation. However, the values at different times
may be very different, with small values shortly after emergence and much larger values
later in the season. This would often be the case for LAI and root depth, for example.
When this occurs, the results can be quite different depending on whether we consider
the errors themselves or relative errors (errors divided by the observed values). It will
then be important to choose the more meaningful measure of agreement. A second note
of caution concerns the distribution of observations among situations. If a few situations
have most of the observations, then the measures of agreement may essentially concern
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those few situations. If this seems to be a problem, it might be worthwhile to first calculate
the measure of agreement for each situation and then average over situations. In this way,
each situation has the same weight.

A different difficulty occurs if the output is not a single variable, but rather a distribution
of values for each situation. An example would be the fraction of fruits in different size
classes (see Chapter 13). One possibility here is to convert to a single output variable.
For example, from the distribution of fruit sizes one could calculate an average fruit size.
Then one can apply the measures that are appropriate to a single output variable per
situation. In other cases, the major interest is in the distribution itself, and so one wants
a measure of model agreement that specifically measures how well the calculated and
observed distributions agree. A useful measure in this case would be the statistic used in
the Kolmogorov–Smirnov test for comparing two distributions (Sokal and Rolf, 1981).
Let H be the variable that is being subdivided into classes, for example fruit size. Let
FH (h) be the fraction of observed items with H ≤ h, and F̂H (h) be the fraction of items
with H ≤ h according to the model. Let Hmax be the maximum value of |FH (h)−F̂H (h)|.
Hmax is the value of our measure of agreement. If there are several situations, one might
use the value of Hmax averaged over situations.

The final special case that we mention is that of stochastic models. In this case, each
run of the model gives a different value of the output variables. The problem then is to
compare the distribution of values calculated by the model with the single observed value
for each situation. Waller et al. (2003) suggest that in this case the question is not whether
the model is consistent with the measurements, but rather whether the measurements fall
within the observed variability of the model. They suggest a Monte Carlo approach to
evaluate the probability of a value as large as or larger than the measured value, assuming
that the measured value is drawn from the distribution of calculated values.

3. Evaluating the predictive quality of a model

3.1. Introduction

In the preceding section, we presented measures that summarize the agreement between the
model and past measurements. In general, however, our real interest is not in how well the
model reproduces data that has already been measured, but rather in how well it can predict
new results. The assumption, often implicit, underlying the use of past measurements is
that the agreement of the model with those data can inform us about how the model will
perform in the future. However, that assumption is not always founded. In this section,
we consider in detail the definition, analysis and estimation of prediction error.

3.2. A criterion of prediction quality

The standard criterion of prediction quality in statistics is the mean squared error of
prediction or MSEP. For a model with fixed parameter vector θ̂ , MSEP is defined as

MSEP(θ̂) = E{[Y − f (X; θ̂ )]|θ̂}2 (16)
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This is the squared difference between the observations Y and the corresponding values
calculated with the model, averaged over situations of interest. The notation |θ̂ means that
the parameter vector estimator is treated as fixed, so the expectation is not over possible
values of the parameters. The notation MSEP(θ̂ ) emphasizes that the mean squared error
of prediction is specific to the parameter vector that is used in the model.

The definition of MSEP(θ̂) is superficially very similar to that for MSE in Eq. (5).
Both involve the squared difference between true and calculated values. However, MSE

concerns just the situations that have actually been measured while MSEP(θ̂) concerns all
possible situations of interest. This implies that MSE can be a poor estimator of MSEP(θ̂)

for two reasons. First of all, if the measured situations are not representative of the full
range of situations of interest, then MSE may be very different than MSEP(θ̂). Secondly,
if MSE involves data that was used for model development, then model error for those
data will not be representative of model error for other situations of interest. We will go
into both of these subjects in more detail.

The units of MSEP(θ̂ ) are the units of Y squared. Often one uses the root mean squared
error of prediction in order to deal with a quantity that has the same units as Y. The
definition is

RMSEP(θ̂) =

√

MSEP(θ̂)

3.2.1. A criterion for the prediction of a time-dependent variable

The definition in Eq. (16) assumes that there is a single model output of interest, like
yield or days to flowering. Suppose, however, that one is interested in predicting a model
output that varies with time such as leaf area index. A criterion often used in this case is
the integrated mean squared error of prediction, defined as

IMSEP(θ̂) = E

{∫

[Y (t) − f (t, X; θ̂ )]
2
dt

}

where we have shown explicitly the time dependence of Y and of the model predictions.
For crop models with a time step of 1 day, the integral would be replaced by a sum
over days. Wallach et al. (1990) studied a very similar criterion for evaluating models of
nitrogen uptake over time by the root systems of young peach trees.

3.2.2. Prediction for what range of conditions?

A prerequisite to evaluating the predictive quality of a model is to specify the situations
for which predictions will be made. We will speak of the “target distribution” to refer to
the distribution of situations of interest.

Often the target distribution is defined implicitly, by describing the physical types
of situations that are of interest. For example, the target distribution might be fields with
irrigated corn in southwestern France, with standard management practices. This defines a
joint distribution of soil characteristics, weather, initial conditions, management practices,
weed, disease and pest levels, etc.
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The definition of a target distribution is very important. It is closely related to the
notion that a model should be evaluated in relation to the projected use of the model.
If for example, the model is intended for use with corn that is irrigated to obtain near-
potential yields, the model should be evaluated for such situations. The target distribution
will then not include situations with extreme water stress. The value of MSEP(θ̂ ) for the
same model might be quite different depending on the target distribution.

It is useful to distinguish two aspects of the target distribution. First of all, the target
distribution concerns all the explanatory variables that appear in the model. This will often
include initial conditions, soil characteristics, daily climate and management variables
such as sowing date and density, irrigation dates and amounts, etc. The target distribution
also concerns all variables not in the model that affect the output variables in question.
This might include pest damage, disease incidence, initial phosphorous level, the spatial
variability of soil characteristics, etc.

We need not only define the target distribution, we also need to sample from it or
generate values from it. To estimate MSEP(θ̂ ), we need a sample from the target distribu-
tion. For crop models two difficulties often arise. First, often one does not draw situations
independently from the target distribution. Very often one has measurements from several
fields in the same year, and/or measurements in the same field over several years. In the
first case, the year and thus the climate are not chosen independently for each field. In
the second case, fields are not chosen independently. The structure of the data set may
be quite complex and difficult to take into account in the estimation of MSEP(θ̂ ). The
second difficulty is that in general the number of situations sampled is fairly small, while
the diversity of situations in the target distribution may be very large. As a result, even if
we have a truly random sample, whole sections of the target distribution may be missing
from it. For example, the target distribution may include average spring temperatures that
cover a wide range, while the available sample only includes years with warm spring
weather. Another example would be where the target distribution includes a range of soil
depths, while the shallow soils are not represented in the available data. In such cases, one
must be aware of the limitations of the sample, and be very wary of drawing conclusions
about situations that are far removed from those sampled.

We will also want to generate samples of model explanatory variables representative
of the target distribution. A simple assumption is that initial conditions, weather, soil
and management decisions are independent. Then we can generate samples from each
independently. A more complex but often more realistic assumption is that the management
decisions depend on the other variables, through decision rules (Chapter 6). Then one
would first generate the other variables and from them deduce the management decisions.

Example 2

The Y values in Table 1 were generated using the relationship

Y = θ (0) + θ (1)x(1) + θ (2)x(2) + θ (3)x(3) + θ (4)x(4) + θ (5)x(5) + ε

θ = (θ (0), θ (1), θ (2), θ (3), θ (4), θ (5))T = (2, 8, 2, 0.05, 0.01, 0.002)T.

(17)

where ε has a normal distribution ε ∼ N (0, 0.04). The 8 values of ε required for Table 1 were
drawn independently from the distribution of ε. We will use this true relationship between
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X and Y to evaluate MSEP(θ̂) for various models. Of course this is only possible in an
artificial example like this one. In practice the true relationship between X and Y is unknown,
and so MSEP(θ̂) cannot be calculated exactly but only estimated.

Note what is meant by a “true” relation between Y and X. Equation (17) does not allow
us to calculate Y exactly, given X. The extent to which Y is not completely determined by X

is represented by the random variable ε. The relationship is “true” in the sense that we have
given the true distribution of ε.

We will also need the target distribution for the explanatory variables X. We suppose that
the components of X are independent. Then the joint distribution is the product of the distri-
butions for each component of X, so that fX(X) = fX1(x1)fX2(x2)fX3(x3)fX4(x4)fX5(x5).
We also assume that fXi

(xi) ∼ N(0, 1) for i = 1, . . . , 5. Finally, we assume that X and ε

are independent.
We can now calculate MSEP(θ̂) for the model given in Example 1. Plugging Eqs. (17)

and (1) into Eq. (16) gives,

MSEP(θ̂) = E{[(θ (0) − θ̂ (0)) + (θ (1) − θ̂ (1)) × x(1) + (θ (2) − θ̂ (2)) × x(2)

+ (θ (3) − θ̂ (3)) × x(3) + (θ (4) − θ̂ (4)) × x(4)

+ (θ (5) − θ̂ (5)) × x(5) + ε]|θ̂}2 (18)

The expectation over the target distribution here involves an expectation over X, the explana-
tory variables in the model, and over ε, whose variability results from the variability in
conditions not represented by the explanatory variables of the model. Taking the expectation
gives

MSEP(θ̂) = (θ (0) − θ̂ (0))2 + (θ (1) − θ̂ (1))21 + (θ (2) − θ̂ (2))21 + (θ (3) − θ̂ (3))21

+ (θ (4) − θ̂ (4))21 + (θ (5) − θ̂ (5))21 + var(ε)

= 0.90

We have used the fact that all the random variables are independent and have expectation 0
and that the components of X have variance 1. Thus E(x(i)x(j)) = E(x(i))E(x(j)) = 0 for
all i �= j , E(x(i)ε) = E(x(i))E(ε) = 0 for all i and E(x(i)x(i)) = 1 for all i.

We can illustrate the importance of the target distribution using this example. To do so,
we evaluate MSEP(θ̂ ) for a second target population. The distribution of X for this new target
population is the same as for the first, except that now the variance of x(5) is 4 instead of 1.
For example, if x(5) represents (soil depth in cm – 100 cm)/10, then the soil depth for both
target populations is centered at 100 cm, but in the original distribution 95% of the soils
have depths between 80 and 120 cm (expected value ± 2 standard deviations), whereas in the
new distribution soil depth is more variable, 95% of the soils having depths between 60 and
140 cm. For this new target distribution, MSEP(θ̂) = 2.2 compared to 0.90 for the original
target distribution. The origin of the difference is the term (θ (5) − θ̂ (5))2E(x(5))2, which is
now equal to (0.002 − 0.7)2 × 4 instead of (0.002−0.7)2 × 1. That is, in changing the target
population we have changed the way model errors (in this case the error in estimating θ (5))
contribute to the error of prediction.
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3.3. MSEP(θ̂ ) and the choice of model complexity

We can develop the mean squared error of prediction as

MSEP(θ̂) = E
{

[Y − E(Y |X) + E(Y |X) − f (X; θ)]2}

= EX

{

EY {[Y − EY (Y |X) + EY (Y |X) − f (X; θ̂ )]|X}2}

= EX

{

EY {[Y − EY (Y |X)]|X}2} + EX{[EY (Y |X) − f (X; θ̂ )]|X}2}

= Λ + ∆

(19)

where

Λ = EX{EY {[Y − EY (Y |X)]2|X}} = EX [var(Y |X)] = population variance (20)

∆ = EX{[EY (Y |X) − f (X; θ̂ )]2} = squared bias (21)

(Bunke and Droge, 1984; Wallach and Goffinet, 1987).
The second line of Eq. (19) follows because one can take an expectation over X and

Y by first fixing X and taking the expectation over Y, and then taking the expectation
over X. (In the notation here, we indicate specifically which variables are concerned
by the expectation. Thus, EY is an expectation over Y.) In the third line we develop
the square. The cross term is null because it involves EX{EY {[Y − EY (Y |X)]|X}} =

EX{EY (Y |X) − EY (Y |X)} = 0.
The two components of MSEP(θ̂ ) are noted Λ (lambda) and ∆ (delta). The population

variance, Λ, depends on how much Y varies for fixed values of the explanatory variables
in the model. When X is fixed Y still varies, within the target population, because not
all the variables that affect Y are included in the model. That variability is then averaged
over X. Note that Λ does not involve f (X; θ̂ ), i.e. the exact equations of the model are
irrelevant here. It is only the choice of the explanatory variables that is important. If the
explanatory variables in the model do not explain most of the variability in Y, then the
remaining variability in Y for fixed X is large and Λ is large. Consider for example, a
model which does not include initial soil mineral nitrogen. If Y (for example yield) for the
target population is strongly affected by initial soil nitrogen, then Λ will be large. We see
that the choice of explanatory variables is a major decision as far as prediction accuracy
is concerned. That choice sets a minimum value for mean squared prediction error. Even
if the model is the best possible, the mean squared error of prediction cannot be less than
the population variance Λ.

The squared bias term, ∆, does depend on the form of the model. Once the choice
of explanatory variables in the model is made, then the best model (minimum value of
MSEP(θ̂ )) is the model that predicts a value equal to EY (Y |X) at each value of X. The
bias measures the distance between this best prediction and the model prediction, averaged
over the target distribution of X values. The bias may be due to errors in the form of the
model or to errors in the parameter values. Figure 3 illustrates the two contributions to
the mean squared error of prediction.

The above decomposition of MSEP(θ̂ ) into two terms can help to understand the
consequences of choosing different levels of detail for a model. Adding more detail in
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Figure 3. Response Y as a function of a single explanatory variable x. For 3 specific x values, the
variability of Y is shown. The solid line is E(Y |x) and the dashed line a hypothetical model.

general involves including additional explanatory variables. This has two opposing conse-
quences. On the one hand, adding additional explanatory variables will reduce (or at worst
leave unchanged) the unexplained variability in Y once X is fixed, i.e. Λ will decrease or at
worst remain unchanged. On the other hand, there will in general be additional equations
and parameters to estimate in conjunction with the additional explanatory variables. This
will in general lead to an increase in the squared bias term ∆.

Suppose that one has a preliminary model and wants to decide whether or not to add
additional explanatory variables. There is a better chance that the additional explanatory
variables will reduce MSEP(θ̂ ) if

(1) they play an important role in determining the variability in Y in the target population,
so that adding them to the model reduces Λ by a substantial amount.

(2) the associated equations and parameters can be well estimated from the available
data, so that the additional detail does not cause a substantial increase in ∆.

In Example 2, the true relation of Y to X is given. We can then calculate the two contri-
butions to MSEP(θ̂ ). The variance of Y for fixed X is var(ε), and this is the same for all X.
Thus Λ = EX [var(ε)] = var(ε) = 0.04. The squared bias term is

MSEP(θ̂) = (θ (0) − θ̂ (0))2 + (θ (1) − θ̂ (1))21 + (θ (2) − θ̂ (2))21 + (θ (3) − θ̂ (3))21

+ (θ (4) − θ̂ (4))1 + (θ (5) − θ̂ (5))21

= 0.86

In this example, almost all the error arises from the squared bias term ∆. The variability
in Y that is not explained by the explanatory variables makes only a very small contribution
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to prediction error. Adding additional explanatory variables in this case could at best only
reduce Λ by 0.04 units, which would only very marginally improve model predictions.

In general, bias can arise from errors in the model equations and/or from errors in the
parameter values. In Example 2, the form of the model is correct (in the model Y is a linear
function of X as in the true relation), so the bias arises solely from the error in the parameter
vector.

Example 3

The purpose of this example is to show how Λ, ∆ and their sum MSEP(θ̂) evolve as additional
explanatory variables are added to a model. We assume that the true relation between Y and
X is given by Eq. (17). We consider the following sequence of models:

f1(X; θ̂ ) = θ̂ (0) + θ̂ (1)x(1)

f2(X; θ̂ ) = θ̂ (0) + θ̂ (1)x(1) + θ̂ (2)x(2)

f3(X; θ̂ ) = θ̂ (0) + θ̂ (1)x(1) + θ̂ (2)x(2) + θ̂ (3)x(3)

f4(X; θ̂ ) = θ̂ (0) + θ̂ (1)x(1) + θ̂ (2)x(2) + θ̂ (3)x(3) + θ̂ (4)x(4)

f5(X; θ̂ ) = θ̂ (0) + θ̂ (1)x(1) + θ̂ (2)x(2) + θ̂ (3)x(3) + θ̂ (4)x(4) + θ̂ (5)x(5)

The parameter values for each model, estimated using ordinary least squares and the data in
Table 1, are shown in Table 3.

The values of Λ, ∆ and MSEP(θ̂) for each model are also given in Table 3. The calcu-
lations are easily done for this artificial example. We illustrate for the model f1(X; θ̂ ). Here
X = (x(1), x(1))T. We write

f1(X; θ̂ ) = θ̂ (0) + θ̂ (1)x(1) + ε1

Comparing with Eq. (17) shows that

ε1 = θ (2)x(2) + θ (3)x(3) + θ (4)x(4) + θ (5)x(5) + ε.

It is then easily seen that ε1 ∼ N
[

0, σ 2
1

]

with

σ 2
1 = θ (2)2var(x(2)) + θ (3)2var(x(3)) + θ (4)2var(x(4)) + θ (5)2var(x(5)) + var(ε) = 4.04.

The population variance term is then Λ = EX var(Y |X) = var(ε1) = 4.04. The squared
bias term is

∆ = EX{EY (Y |X) − f (X; θ̂ )2} = EX{[θ (0) + θ (1)x(1) − (θ̂ (0) + θ̂ (1)x(1))]2}

= (θ (0) − θ̂ (0))2 + (θ (1) − θ̂ (1))2E(x(1))2 = 0.36
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Finally, MSEP(θ̂) = Λ + ∆ = 4.04 + 0.36 = 4.40. Analogous calculations apply to the
other models.

Table 3 shows how Λ, ∆ and MSEP(θ̂) vary as we add additional explanatory variables to
the model. As more explanatory variables are added to the model, the amount of unexplained
variability (represented by the term Λ) must decrease or at worst remain constant. This is
indeed the behavior of Λ in Table 3. The decrease in Λ with each new explanatory variable
depends on the importance of that variable in explaining the variability in Y. Adding x(2) to
the model decreases Λ substantially, but further explanatory variables have little importance.
The term ∆ has a more complex behavior, decreasing at first then increasing. The result for
MSEP(θ̂) is that it decreases to a minimum for the model f3(X; θ̂ ), then increases as further
explanatory variables are added. This is typical behavior, for complex models like a crop
model as well as for simple linear models like our example. Eventually, as more explanatory
variables are added to a model, the accumulation of errors in the model equations and in the
parameter estimates outweighs decreases in Λ and so MSEP(θ̂) begins to increase. In the
example here, f3(X; θ̂ ) is the best model for prediction.

Table 3. A sequence of increasingly complex models adjusted to the data in Table 1.

Model Parameters in the model Λ ∆ MSEP(θ̂) MSE

Least squares parameter values

f1(X; θ) θ (0), θ (1) 4.04 0.36 4.40 4.61
2.535, 8.275

f2(X; θ) θ (0), θ (1), θ (2) 0.04 0.02 0.06 0.01
2.121, 8.005, 2.065

f3(X; θ) θ (0), θ (1), θ (2), θ (3) 0.04 0.01 0.05 0.01
2.046, 7.971, 2.085, 0.091

f4(X; θ) θ (0), θ (1), θ (2), θ (3), θ (4) 0.04 0.05 0.09 0.004
1.906, 7.906, 2.036, 0.169, 0.156

f5(X; θ) θ (0), θ (1), θ (2), θ (3), θ (4), θ (5) 0.04 0.35 0.39 0.0003
1.641, 7.735, 1.967, 0.237, 0.230, −0.174

3.4. Estimating MSEP(θ̂ )

How then does one estimate the value of the mean squared error of prediction in real-life
situations, where the true relation between Y and X is unknown?

This is the topic of the following sections. The approach is quite different depending
on whether the data available for estimating MSEP(θ̂) have been used to guide model
development (in particular for parameter estimation) or not.

3.4.1. Model and data are independent

The simplest situation arises when we have a random sample of data from the target pop-
ulation, and the model has been developed independently of that data. Then an unbiased
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estimator of MSEP(θ̂) is simply

M̂SEP(θ̂) = MSE =
1

N

N
∑

i=1

[Yi − f (Xi; θ̂ )]
2

(22)

where N is the number of observations. Each squared error in the sum is an unbiased
estimator of MSEP(θ̂) and the best overall estimator is simply the average of the squared
errors. It is also important to have an idea of how much this estimator would vary if
a different data set had been chosen from the target distribution. Since the estimator
is a mean of independent terms, the estimated variance of the estimator is

v̂ar[M̂SEP(θ̂)] =
1

N(N − 1)

N
∑

i=1

{[Yi − f (Xi; θ̂ )]2 − M̂SEP(θ̂)}2 (23)

We have already discussed the difficulty in practice of obtaining a random sample from
the target distribution. We may however be able to obtain a hierarchical random sample,
where the first level involves random sampling from the target distribution but then soils
or climates are repeated. In this case Eq. (22) is still an unbiased estimator of MSEP(θ̂),
but Eq. (23) can no longer be used to estimate the variance of this estimator.

For the model of Eq. (1), using the data in Table 1, we calculated MSEP(θ̂) = 0.90 and
MSE = 0.88 = M̂SEP(θ̂). The estimated and true values of MSEP(θ̂) are very close, but this
is somewhat of a coincidence since the estimated standard deviation of M̂SEP(θ̂), calculated
using Eq. (23), is relatively large (0.67).

3.4.2. Data are used for model development

A very common situation is that where we have a single data set, and want to use it both
to estimate certain parameter values for the model and to estimate MSEP(θ̂). In this case
MSE in general underestimates MSEP(θ̂). The reason is easy to understand. First, one
specifically fits the model to the data, then one calculates how well the model fits that
same data. Clearly, that fit will in general be better than the fit of the model to other
situations chosen at random from the target distribution.

When many parameters are estimated relative to the amount of data, the difference
between MSE and MSEP(θ̂) can be very important. Furthermore, MSE and MSEP(θ̂)

will have qualitatively different behavior as model complexity increases. MSE can never
increase as additional explanatory variables are added to a model, assuming that the
associated parameters are adjusted to the data. Thus model choice based on MSE will
always lead to choosing the most complex model. MSEP(θ̂) on the other hand leads to
choosing a model with some intermediate level of complexity.
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Table 3 shows that MSE and MSEP(θ̂) are comparable for the model with just 2 parameters
adjusted to the data, but for more complex models MSE seriously underestimates MSEP(θ̂).
For the model f4(X; θ̂ ) the ratio MSEP(θ̂)/MSE is 25 and for model f5(X; θ̂ ) it is 1400!
If the criterion for choosing a model were minimum MSE, one would choose f5(X; θ̂ ), the
most complex model. The model with the smallest mean squared error of prediction on the
other hand is f3(X; θ̂ ).

3.4.3. Cross-validation

How then can one estimate MSEP(θ̂) when one also needs to use the data for parameter
estimation? For the moment, we continue to assume that the data are a random sample
from the target distribution. A simple solution is to split the data into two parts, say half
the data in data set 1 and the other half in data set 2. Then data set 1 is used to estimate
the parameters and data set 2 is used to estimate MSEP(θ̂). Since data set 2 was not
used for parameter estimation, MSE calculated using data set 2 is an unbiased estimator
of MSEP(θ̂). However, this approach has major drawbacks. First, we now use only half
of our data for estimating the parameter values and also for estimating MSEP(θ̂). The
estimates will therefore be less precise. A second drawback is the arbitrariness in this
procedure. Why split into two equal halves rather than using some other proportion? On
what basis are observations put into one data set rather than the other?

The method of cross-validation is based on this same principle of data splitting,
but avoids to a large degree the above drawbacks. The cross-validation estimator of
MSEP(θ̂) is

M̂SEPCV(θ̂) =
1

N

N
∑

i=1

[Yi − f (Xi; θ̂−i)]
2 (24)

The notation θ̂−i indicates that the parameter values are estimated using all the data in the
data set except Yi .

Concretely, one begins by estimating the parameter values using all the data except Y1.
The result is the estimated parameter vector θ̂−1. Since Y1 was not used to estimate
θ̂−1, the squared error [Y1 − f (X1; θ̂−1)]

2 is an unbiased estimator of MSEP(θ̂). This
gives the first term in the sum in Eq. (24). Then the procedure is repeated, this time basing
parameter estimation on all the data except Y2 and calculating [Y2 − f (X2; θ̂−2)]

2. The
calculations continue, adjusting the parameters to all the data except Y3, then except Y4,

and so on. Each adjusted parameter vector gives rise to a term in the sum of Eq. (24). The
final estimator of MSEP(θ̂) is the average of the N unbiased estimators [Yi − f (Xi; θ̂−i)]

2

for i = 1, . . . , N .
At the end of the procedure, we have N different estimates of the parameter vector θ̂ .

Which should we use? None, in fact. The best estimator is the one based on all the data,
and that is the estimator to use in practice.

In this approach, all of the data are used to estimate the parameters as well as to
estimate MSEP(θ̂). Furthermore, all the data are used in the same way, which eliminates
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the problem of arbitrarily assigning a data value to some particular subset. A disadvantage
of the method is the calculation time. It is now necessary to estimate the model parameters
not once but N +1 times. Also, we are in fact estimating MSEP(θ̂−1), MSEP(θ̂−2), etc. So
there is an additional assumption that those quantities are good estimators of MSEP(θ̂).
Nevertheless, this estimator of prediction error is largely used in the statistical literature
(Harrell, 2001) and has been used for crop models by Jones and Carberry (1994), Colson
et al. (1995) and others.

Table 4 illustrates the evaluation of M̂SEPCV(θ̂) (Eq. (24)) for the model f5(X; θ̂ ) of
Example 3 using the data of Table 1. Each line in Table 4 corresponds to estimating the
parameters from a sample missing a different data point. The last column shows the squared
error for the data point not used for model estimation. The last line of the table gives the
average of these squared errors, which is the cross-validation estimate M̂SEPCV(θ̂) = 0.313.

The true value is MSEP(θ̂) = 0.390 (Table 3).

Table 4. Calculation of cross-validation estimate of MSEP(θ̂) for modelf5(X; θ̂ ).

i Data used for Yi f5(Xi; θ̂−i) [Yi − f5(Xi;θ̂−i)]
2

parameter adjustment

1 Y2, Y3, Y4, Y5, Y6, Y7, Y8 −9.39 9.44 1.06
2 Y1, Y3, Y4, Y5, Y6, Y7, Y8 −3.23 11.96 0.97
3 Y1, Y2, Y4, Y5, Y6, Y7, Y8 0.37 −2.45 0.12
4 Y1, Y2, Y3, Y5, Y6, Y7, Y8 7.10 1.01 0.00
5 Y1, Y2, Y3, Y4, Y6, Y7, Y8 5.82 −8.33 0.03
6 Y1, Y2, Y3, Y4, Y5, Y7, Y8 −11.21 9.14 0.15
7 Y1, Y2, Y3, Y4, Y5, Y6, Y8 −5.81 −8.48 0.06
8 Y1, Y2, Y3, Y4, Y5, Y6, Y7 2.82 −4.04 0.10

M̂SEPCV(θ̂) 0.31

Parameter estimation for crop models is sometimes based on a trial and error pro-
cedure. Such an approach has many disadvantages, but a further disadvantage is that
cross-validation becomes essentially impossible. Cross-validation requires that parameter
estimation be repeated several times. The implicit assumption is that the method of esti-
mation does not vary, only the data vary. For this to be true, one needs a reproducible
algorithm for parameter estimation.

The above approach is referred to as leave-one-out cross-validation, because a single
data point is left out of the sample at each step. This may not be appropriate for sampling
schemes other than random sampling. If for example there are several data points from
each site, it would be necessary to leave out all the data points from each site in turn. An
example of cross-validation for a crop model leaving out more than one data point at a
time is given in Wallach et al. (2001).
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3.4.4. Bootstrap estimation

The bootstrap, like cross-validation, is a data re-sampling approach, i.e. the same data
are used several times to provide an estimator of the quantity of interest, here the mean
squared error of prediction.

There are many variants of the bootstrap approach. Here we present just one rela-
tively simple version (Efron, 1983). We do not directly estimate MSEP(θ̂) but rather the
difference

op = MSEP(θ̂) − MSE.

The notation “op” comes from “optimistic” and was chosen to emphasize the fact that when
the parameters are estimated from the data, MSE is in general smaller (more optimistic
about the quality of the model) than the mean squared error of prediction. The true mean
squared error of prediction will in general be larger. Thus the idea here is to calculate MSE

and then to augment it by an estimator of op, in order to obtain an estimator of MSEP(θ̂).
The bootstrap approach is equivalent to supposing that the original data set, with N

observations, constitutes the full target distribution. We will refer to this as the bootstrap
target population. Thus the expectation over the bootstrap target population is equivalent
to an average over the N observations. We create B bootstrap samples, each with N

elements, by drawing N points with replacement from the bootstrap target population.
Since we are sampling with replacement, a bootstrap sample may have some of the data
points represented several times, while other data points are absent. Using the data in
Table 1, 3 bootstrap samples could be (Y6, Y7, Y3, Y7, Y6, Y7, Y6, Y8), (Y3, Y1, Y7, Y8, Y5,
Y4, Y7, Y2) and (Y1, Y7, Y8, Y7, Y5, Y2, Y4, Y7).

The parameters are adjusted to each bootstrap sample, giving estimated parameter
vector θ̂b for the bth bootstrap sample. The mean squared error of prediction of the model
based on bootstrap sample b for the bootstrap target population is

MSEPb(θ̂b) =
1

N

N
∑

i=1

[Yi − f (Xi; θ̂b)]
2

We can also calculate MSE for sample b as

MSEb =
1

N

N
∑

i=1

[Ybi − f (Xbi; θ̂b)]
2

where Ybi and Xbi refer to the ith data point of bootstrap sample b. The value of op for
sample b is then opb = MSEPb(θ̂b) − MSEb and the final bootstrap estimator of op is

ôp =
1

B

B
∑

b=1

opb
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Finally, the bootstrap estimator of MSEP(θ̂) is

MSÊPbootstrap(θ̂) = MSE + ôp

where MSE is calculated using the original sample.
It is usually recommended to have several tens or hundreds of bootstrap samples. Since

the parameter vector must be adjusted to each sample, the overall calculation time can be
quite long. Furthermore, there can be numerical difficulties in adjusting the parameters
for certain bootstrap samples, especially if the original sample is quite small so that it
is likely to have some bootstrap samples with only a few distinct data points. On the
positive side, in a simulation study Efron (1983) found that this bootstrap method gave
better predictions of MSEP(θ̂) than did cross-validation.

Wallach and Goffinet (1989) use the above bootstrap approach to estimate the dif-
ference in MSEP(θ̂) between two models. Wallach and Goffinet (1987) used a variant
of the above bootstrap approach, adapted to the specific case where the data have a
hierarchical structure. Their study concerned a static model for predicting the maintenance
requirements of sheep.

3.5. Effect of errors in Y or in X on MSEP(θ̂ )

3.5.1. Measurement error in Y and MSEP(θ̂ )

In the above discussion, we have assumed that Y is measured without error. If that is not
the case, there are two different mean squared errors of prediction that are of interest. The
first, noted MSEPobs(θ̂), refers to the difference between calculated values and observed
values. The second, MSEP(θ̂), refers to the difference between calculated values and the
true response values. We show here how these two quantities are related.

We suppose that

Y obs = Y + η

where η, the measurement error, is a random variable independent of X and Y with E(η) =

0 and var(η) = σ 2
η. Then (Wallach and Goffinet, 1987)

MSEPobs(θ̂) = E{[Y obs − f (X; θ̂ )]2}

= E{[Y obs − Y + Y − f (X; θ̂ )]2}

= σ 2
η + MSEP(θ̂)

(25)

If we estimate the mean squared error of prediction using observed Y values with
measurement error, it means we are estimating MSEPobs(θ̂). We can obtain an estimate
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of MSEP(θ̂) by subtracting an estimate of the measurement error, i.e.

ˆMSEP(θ̂) = ˆMSEP
obs

(θ̂) − σ̂ 2
η

3.5.2. Measurement error in X and MSEP(θ̂ )

We have so far assumed that the explanatory variables are measured without error. How-
ever, this is often not the case. For example, soil characteristics such as moisture content
at field capacity and at wilting point are difficult to determine and may have appreciable
errors. If there is no weather station in the field in question, there may be errors in the
weather data. Initial soil moisture and initial nitrogen may also have errors, in particular
if they are estimated rather than measured.

Let U be the subset of explanatory variables that has measurement error. Suppose
Uobs = U + τ where Uobs is the observed value, U is the true value and τ is the error. We
suppose that E(τ) = 0 and we note var(τ ) = 
τ . If U (and therefore τ ) is of dimension n,
then 
τ is an n × n matrix. Wallach and Génard (1998) showed that, approximately, the
effect of measurement errors in the explanatory variables is to increase the mean squared
error of prediction by adding on the term

ΓU = E







[

∂f (X; θ̂ )

∂U

]T


τ

[[

∂f (X; θ̂ )

∂U

]]







(26)

The expectation is over the target distribution. The partial derivative with respect to the
vector U is a column vector.

While Eq. (26) may look forbidding, it is actually quite easy to understand and to evalu-
ate. The partial derivatives measure how the model output changes when each explanatory
variable in U changes. It is logical that the importance of error in an explanatory variable
depends on the sensitivity of the output to that of explanatory variable. The other factor
in ΓU is the variance–covariance matrix 
τ . Consider for simplicity the case where this
matrix is diagonal. The diagonal terms are just the variances of the elements of τ . Then
the larger the errors, the larger the variances and the larger the effect on ΓU .

The expression for ΓU involves the model, the errors in the explanatory variables and
the target distribution, but does not require any measured outputs. This term can then
be estimated in the absence of data on the response variable. For example, one could
calculate how important certain errors would be before actually doing measurements.

We illustrate the calculation of ΓU using the model of Example 1. Suppose that just the
two components x(1) and x(2) are measured with error. Specifically, suppose that

Uobs =

(

x(1)obs

x(2)obs

)

=

(

x(1) + τ1

x(2) + τ2

)

, E

(

τ1

τ2

)

=

(

0
0

)

,

var

(

τ1

τ2

)

=

(

0.05 0
0 0.02

)
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The fact that 
τ is diagonal implies that the errors in the explanatory variables x(1) and x(2)

are independent. There is no assumption about whether the explanatory variables themselves
are independent or not.

The partial derivative vector will normally be calculated numerically. For our simple
example however it can be calculated analytically as,

∂f (X; θ̂ )

∂U
=

















∂(θ̂ (0)+ θ̂ (1)x
(1)
i + θ̂ (2)x

(2)
i + θ̂ (3)x

(3)
i + θ̂ (4)x

(4)
i + θ̂ (5)x

(5)
i )

∂x
(1)
i

∂(θ̂ (0)+ θ̂ (1)x
(1)
i + θ̂ (2)x

(2)
i + θ̂ (3)x

(3)
i + θ̂ (4)x

(4)
i + θ̂ (5)x

(5)
i )

∂x
(2)
i

















=

(

θ̂ (1)

θ̂ (2)

)

The partial derivatives do not depend on X, so we can simply ignore the expectation over
X in ΓU .

Substituting into Eq. (26) gives

ΓU =
(

θ̂ (1) θ̂ (2)
)

(

0.05 0
0 0.02

) (

θ̂ (1)

θ̂ (2)

)

= 3.2

In the absence of measurement error in X we had MSEP(θ̂) = 0.90. With measurement
error MSEP(θ̂) = 0.90 + 3.2 = 4.1. In this particular example, measurement error in the
explanatory variables is the major contribution to the mean squared error of prediction.

3.6. Parameter uncertainty and mean squared error of prediction

In general, there is a degree of uncertainty about the parameter values in a model. For crop
models, this may include uncertainties in the parameters adjusted to data using regression
techniques and also uncertainties in parameter values taken from the literature. In the
previous sections, we were not required to consider this uncertainty because we treated
the model with fixed parameter values. The fact that parameter estimation could have
given different parameter values was not relevant.

It can also be of interest, however, to consider E[MSEP(θ̂)], where the expectation is
over the distribution of θ̂ . We first derive an expression for this expectation, then discuss
its usefulness. The treatment is similar but not identical to that presented in Wallach and
Goffinet (1987) and in Wallach and Génard (1998). We have

E[MSEP(θ̂)] = E
θ̂
EX{EY {[Y − f (X; θ̂ )]|X}2}

= E
θ̂
EX{EY {[Y − E

θ̂
[f (X; θ̂ )] + E

θ̂
[f (X; θ̂ )] − f (X; θ̂ )]|X}2}

= EX{EY {[Y − E
θ̂
[f (X; θ̂ )]|X}2 + E

θ̂
EX{E

θ̂
[f (X; θ̂ )]

− f (X; θ̂ )]|X}2}

= Λ + ∆
E

θ̂
[f (X;θ̂ )] + EX{var[f (X; θ̂ )|X}]}

(27)
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This can be compared to the decomposition of MSEP(θ̂) in Eq. (19). The first term is
the same population variance term as in Eq. (20). The second term is the squared model
bias of Eq. (21), but now for the model averaged over the distribution of θ̂ . The last
term is new. It is the variance of the model due to the variability of the parameter values,
averaged over the target distribution of explanatory variables. If there is no uncertainty in
the parameter values, then var[f (X; θ̂ )|X] = 0. Since the variance cannot be negative,
any uncertainty necessarily increases E[MSEP(θ̂)].

One might argue that in fact we are only interested in a single value of θ̂ , the one that
we intend to use, and so the expectation over the distribution of θ̂ does not concern us.
However, the uncertainty in θ̂ reflects the fact that we do not know the parameter values
exactly, and it is just a matter of chance that we have obtained a particular value and not
another. For example, adding new data will change θ̂ . To have confidence in the model,
we would not want E[MSEP(θ̂)] to be large, even if the estimated value of MSEP(θ̂) for
our particular parameters is acceptable.

To estimate E[MSEP(θ̂)] one could use

Ê[MSEP(θ̂)] = ˆMSEP(θ̂) + ÊX{var[f (X; θ̂ )|X]}

The last term on the right is an estimator of EX{var[f (X; θ̂ )|X]}. Note that it involves
the model, the distribution of the parameter vector and the target distribution, but not
measured response variables. This term can then be estimated for scenarios that have not
been observed or for which there is very little data. For example, one might want to use
the model to predict crop performance in a new environment, or under changed climatic
conditions, or with modified management practices. All these cases correspond to using the
model for new target distributions. Extrapolating a model to conditions outside those where
it has been adjusted and tested is always a perilous exercise, and any information about
the validity of the extrapolation is important. Without data we cannot estimate MSEP(θ̂)

but we can estimate the contribution of the term EX{var[f (X; θ̂ )|X}]} to E[MSEP(θ̂)].
If this contribution is small we have at least eliminated from consideration one often major
source of error, though population variance and expected squared bias are still unknown.
If the contribution is large, then we are forewarned that the model will be a poor predictor
for the new target distribution. We can also be assured that reducing the variance of the
parameter estimators will be worthwhile.

Example 4

We will calculate here E[MSEP(θ̂)] and its components (Eq. (27)) for the models of
Example 3. We present the explicit calculations only for the model f1(X; θ̂ ). The other
models can be treated analogously.

The first term in Eq. (27), the population variance, is the same as in Table 3. For f1(X; θ̂ ),
Λ = var(ε1) = 4.04. The second term is

EX{{[E(Y |X)] − E
θ̂
[f1(X; θ̂ )]}2} = EX{[θ (0) + θ (1)x(1) − E

θ̂
(θ (0) + θ (1)x(1))]}2 = 0
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We have used the fact that the least square parameter estimators are unbiased estimators of
the true parameters, so that E

θ̂
(θ (0)) = θ (0) and E

θ̂
(θ (1)) = θ (1). The last term of Eq. (27) is

EX{var[f (X; θ̂ )|X]} = EX{E
θ̂
[θ̂ (0) + θ̂ (1)x(1) − (θ (0) + θ (1)x(1))]2}

= E
θ̂
[(θ̂ (0) − θ (0))2 + (θ̂ (1) − θ (1))2] = var(θ̂ (0)) + var(θ̂ (1))

In going from the first line to the second we have used the fact that E(x(1)2) = 1 and
E(x(1)) = 0. To evaluate the above quantity we use estimates of the variances provided by
the least squares fitting program, accepting the fact that the estimates can be poor with so
few data.

The calculated values of E
θ̂
[MSEP(θ̂)] and the separate contributions are presented in

Table 5. These values can be compared to the values for MSEP(θ̂) for the same models in
Table 3. The contribution of population variance is the same in both cases, by definition.
This term depends only on the choice of explanatory variables in the model and not on the
form of the model. Thus it does not change when we consider an average over parameter
values rather than the model with fixed parameter values. The differences between the two
tables are in the other contributions to the mean squared error of prediction. In Table 3, the ∆

term arises from the differences between the estimated and true parameter values. In Table 5,
that term is replaced by an average over parameter estimates, and so its contribution is null
because the parameter estimators are unbiased. However, there is now a contribution from the
variance of the parameter estimators, i.e. in place of the errors in a specific set of parameter
values we now have a term that represents an average error. The values of E

θ̂
[MSEP(θ̂)] in

Table 5 are not identical to the values of MSEP(θ̂) in Table 3. Nevertheless, in both cases a
model of intermediate complexity (3 explanatory variables in the case of MSEP(θ̂), 2 in the
case of E

θ̂
[MSEP(θ̂)] minimizes the mean squared error of prediction.

Table 5. Contributions to E
θ̂
[MSEP(θ̂)] for the models of Example 3.

Adjusted parameters Λ ∆
E

θ̂
[f (X;θ̂ )]

EX{var[f (X; θ̂ )|X]} E
θ̂
[MSEP(θ̂)]

θ (0), θ (1) 4.04 0 2.56 6.60
θ (0), θ (1), θ (2) 0.04 0 0.01 0.05
θ (0), θ (1), θ (2), θ (3) 0.04 0 0.03 0.07
θ (0), θ (1), θ (2), θ (3), θ (4) 0.04 0 0.03 0.07
θ (0), θ (1), θ (2),

θ (3), θ (4), θ (5) 0.04 0 0.02 0.06

3.6.1. A particular model, the average

An extremely simple model is what we will call the “average” model. This model uses
the average of past Y measurements for all predictions. This model is of interest despite
its simplicity because it can serve as a standard against which to measure other models.
Any model which does not predict better than the simple average of past observations
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should be seriously questioned. We now show that it is straightforward to estimate
E

θ̂
[MSEP(θ̂)] for this model.
We write

Y = µ + ε

with E(ε) = 0 and var(ε) = σ 2. Thus µ is the expectation of Y and ε is the random vari-
ability around the expectation. There are no assumptions involved here. One can always
express a random variable as an expectation plus a random variability of expectation
zero. The assumption that we do make is that we have a random sample, so that all the
observations Yi are independent and have the same distribution as Y. Our model is then

f (X; θ̂ ) = f (θ̂) = µ̂ =
1

N

N
∑

i=1

Yi

This model has one parameter, µ̂, and no explanatory variables.
The population variance for this model is

Λ = EY {[Y − EY (Y )]2} = EY {[µ + ε − µ]2} = σ 2

The second term in the decomposition of E
θ̂
[MSEP(θ̂)] in Eq. (27) is

EX{{EY (Y ) − E
θ̂
[f (θ̂)]}2} = (µ − µ)2 = 0

The final term in Eq. (27) is just the variance of the average of the observed Y values,
and so

var[f (θ̂)] =
σ 2

N

Overall then

E
θ̂
[MSEP(θ̂)] =

(

1 +
1

N

)

σ 2 (28)

This is an extreme case of a prediction model. It has no explanatory variables and
so the population variance is maximal. A crop model should be able to do better, by
introducing important explanatory variables that reduce population variance by more than
the inevitable increase in error related to parameter estimation or bias.

An estimator of E[MSEP(θ̂)] is easily obtained, by replacing σ 2 in Eq. (28) by its
usual estimator

σ̂ 2 =
1

N − 1

N
∑

i=1

(

Yi − Ȳ
)2

where Ȳ is the average of the Yi values.



44 D. Wallach

For the data in Table 1, the average response is 0.80 and so f (θ̂) = 0.80 for the “average”
model. For this model, E[MSEP(θ̂)] = 71.0 and the estimated value is Ê

θ̂
[MSEP(θ̂)] =

σ̂ 2 = 70.5. All of the models with explanatory variables do much better (Table 3).

4. Evaluating a model used for decision support

Prediction quality is often a major objective for a crop model, but it is not the only possible
objective. Another common goal is to compare different management decisions. In this
section, we discuss how a model could be evaluated with respect to this specific objective.

First, we illustrate that prediction quality and quality of model-based decisions can be
quite different. Figure 4 shows, for one particular situation, predictions of profit (value of
yield minus cost of nitrogen) versus applied nitrogen using two different models, labeled
“A” and “B.” We assume that the goal is to maximize profit. Model “A” predicts that
profit is maximized at fertilizer level 200, which would therefore be the recommended
dose according to this model. The true profit for this dose is 786, which is in fact the highest
profit attainable. According to model “B” the optimal dose is 140, with corresponding real
profit of only 730, i.e. basing the fertilizer decision on model “A” leads to substantially
higher profit than using model “B.” On the other hand, for every value of applied nitrogen,
model “B” predicts profit better than does model “A.” The criterion of predictive quality
would lead us to choose the model which gives poorer management recommendations.

4.1. A criterion of decision quality

Let d be the vector of management variables to be optimized. This could be for example
amount of nitrogen. It could also be a vector of several decisions, for example sowing
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Figure 4. Profit versus amount of applied nitrogen.
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date, sowing density and amount of fertilizer. Let J(d) be the objective function that
specifies what “optimized” means exactly. J(d) could for example be profit, or it could be
a combination of economic and environmental indicators.

Suppose that according to our model, the optimal decision for the situation with
explanatory variable vector X is dM(X). This is the value of d that maximizes J(d)

according to the model. As indicated, the model-calculated optimal decision can depend
on the situation through the explanatory variable X. (The calculation of optimal decisions
is treated in Chapter 6.) Our criterion of model quality when the goal is management
recommendations is then

C = E {J [dM(X)]} (29)

The expectation in Eq. (29) is over the target distribution. The criterion C is the true
expected value of the objective function that would be achieved, if the recommended
decisions of the model were implemented everywhere in the target distribution.

The criterion C was implicitly used in discussing Figure 4. There the target distribution
reduces to just a single situation. For model “A,”

C = E {J [dA(X)]} = J [200] = 786

For model “B”

C = E {J [dB(X)]} = J [140] = 730

The criterion C is thus larger for model “A,” which would be the model of choice.

4.2. Estimating C

We suppose that the data available provide values of the objective function J for several
values of the decision vector in each of several situations. For example, the data might
be yield (from which we could calculate profit) for a series of nitrogen doses in each
of several fields. We consider the case where the situations represented in the data are a
random sample from the target population. We furthermore assume that the data have not
been used for parameter development.

Suppose that the model-based decision dM(X) is among the decisions tested for each
situation in the data. Then a natural estimator of the criterion C is

Ĉ =
1

N

N
∑

i=1

Ji [dM(Xi)] (30)

where the index i refers to the situation and N is the number of situations in the data.
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Often the observations available will not correspond to values of dM(X). For example,
the model recommended nitrogen dose for a particular situation might be 137 kg/ha,
whereas the observations refer to doses of 0, 50, 100, 150 and 200 kg/ha N. Then one
cannot directly use Eq. (30).

One possible approach would be to interpolate between observed values to obtain
an estimate of Ji[dM(X)] for each situation. Antoniadou and Wallach (2000) proposed
a variant where one first combines all the data and then interpolates. This method was
applied by Makowski et al. (2001) and by Makowski and Wallach (2001, 2002) to evaluate
static models with respect to the quality of their recommendations for a single management
variable, namely the total amount of nitrogen to be applied to wheat. According to this
method, one first translates the observed doses for each situation. A dose di for situation
i is translated to d t

i = di − dM(Xi). For the model-based optimal dose di = dM(Xi) and
so the translated dose is d t

i = 0. On this new scale all situations have the same model-
based optimal dose. The data provide values of J (d t

i). A nonparametric regression based
on all the data is used to obtain Ĵ (0), the estimate of J (0). The estimated value of C

is then simply equal to Ĵ (0). This method has important advantages over interpolating
for each situation individually. It allows one to use all the data including situations with
only a single measurement. Situations with few data points for which interpolation is
problematic do not degrade the estimator. Finally, the method automatically gives more
weight to data close to the model-based optimal decisions, which should be more useful
for estimating the Ji[dM(Xi)] values.

In the case of multiple decisions, the above method will be difficult or impossible to
apply. The problem is that the amount of data necessary to obtain a reasonable estimate
of C increases rapidly with the dimension of the decision vector. Antoniadou and Wallach
(2000) suggest that their approach may still be feasible in 2 dimensions, but beyond this
the data requirements are probably prohibitive.

In the case of multiple decisions, a different approach must be adopted. One possibility
would be to restrict the decision space to decisions that were actually applied. Suppose
that the Ni decisions di,1, . . . , di,Ni

were tested in situation i. The model is then used to
evaluate each of these decisions. Suppose that the best decision among these, according
to the model, is di,i∗ . Then the estimator of the criterion C becomes

Ĉ =
1

N

N
∑

i=1

Ji

(

di,i∗
)

(31)

Table 6 shows artificial data from two situations. Three different decisions were tested in
situation 1 and two different decisions in situation 2. The decisions can be vectors. Ji(di,j )

and Ĵi(di,j ) represent respectively the true value of the objective function and the value of the
objective function according to the model, for the jth decision in situation i. According to the
model, the best decision for situation 1 is decision A, since that decision has the largest value
of Ĵi(di,j ) among the decisions that were tested in situation 1. The true value of decision A
is 79. The best decision for situation 2 according to the model is decision E with true value 93.
The estimated value of the criterion, according to Eq. (31), is Ĉ = (1/2)(79 + 93) = 86.
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It is of interest to compare this value with the largest value that could be attained. From
Table 6, the true best decisions are respectively B and E for situations 1 and 2. The maximum
value of the criterion corresponds to these choices. It is Cmax = (1/2)(113 + 93) = 103.

Table 6. Model-estimated and true values of objective function for 3 different decisions in
situation 1 and 2 different decisions in situation 2.

Situation i Decision d Model prediction of Measured objective
objective function Ĵi(d) function Ji(d)

1 A 89 79
1 B 86 113
1 C 81 85
2 D 28 47
2 E 99 93

5. Using a model to test a scientific hypothesis

Suppose that the model represents a scientific hypothesis about how the real world func-
tions and we wish to test whether this hypothesis is true or not. The basis of the test is
simple. If the model is truly a correct representation of reality, and if it is applied within the
range of conditions where it is applicable, then observations on the real world and model
predictions should coincide perfectly (for the moment we ignore measurement error).

To formalize this idea, we define three logical statements;

A: We observe a system where the model is meant to apply.
B: The model has the same behavior as the true world for systems where the model is
meant to apply.
C: The observed output of the real system and the outcomes calculated using the model
are identical.

Each statement has one of two values, “true” or “false.” The basis of our hypothesis
test is the syllogism

IF A AND B, THEN C (32)

Equation (32) says that if both A and B are true then C must be true.
Our objective is to draw conclusions about the statement B concerning the relation

between the model and reality. Logic allows us to conclude from Eq. (32) that

IF (NOT C) THEN (NOT A) OR (NOT B) (33)

If “NOT C ” is true (i.e. if C is false) then either A or B or both must be false. If A is
known to be true, B must is false, i.e. if model and observations do not coincide, and the
model is applicable, then the model must be false.

Suppose however that the model and the data do agree. It is not correct to conclude
from Eq. (32) that IF C THEN A AND B, i.e. if model and data agree we cannot conclude
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that B is true. In other words, it is possible to prove a model incorrect (using Eq. (33)),
but it is not possible to prove that it is correct. One can invalidate hypotheses about the
real world using a model, but one cannot unequivocally validate them.

If there is measurement error, categorical statements such as “C is true” or “C is false”
will be replaced by probabilistic statements like “if C is true, the probability of observing
a difference between measured and calculated values at least as large as that actually
observed is p.” If p is small (5% for example), one concludes that it is unlikely (but not
impossible) that C is true. The model then is probably not identical to reality (assuming
A is true). If on the other hand p is large, the evidence does not indicate that C is false.
As before, however, we cannot conclude from this that the model is probably correct.

In fact, the formal testing of a crop model to determine whether it is “true” or “false” is
usually of little interest. A crop model is by design a simplification of reality, so that it is
not meant to be identical to the real world. There are few if any cases where we seriously
entertain the hypothesis that the model outputs are strictly identical to real-world outputs.
It may occur that in a case with measurement error we have a fairly large p value, so
that we do not conclude that the model is incorrect. However, this will often simply be
the result of poor data. Data with large measurement errors will tend to lead to large
p values.

Does this mean that models have nothing to say about how a crop functions? They
do, but not in the sense of proving a hypothesis. A more reasonable question is which
description of crop functioning, among a small number of clearly expressed alternatives,
is most compatible with observed data or has the smallest prediction error. An example is
provided by Gent (1994) who compares three different hypotheses concerning the source
of the carbon used for crop respiration. The approach is to develop mathematical models
that embody each hypothesis and then to compare the outputs of the different models
with observed data. The hypothesis that is preferred is the one that leads to the closest
correspondence between observations and calculated values. The objective here is to obtain
a better understanding of how the system operates. The methods however are the same as
those we have described in the previous sections.

Other discussions of the role of crop models for understanding crop functioning can
be found in Doucet and Sloep (1992) and Sinclair and Seligman (2000).
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Exercises

1. Table 7 shows data for yield from 6 different plots. The data consist of the value of the
single model explanatory variable x, the measured values Y and the values calculated
using the model f (x; θ̂ ) = â + b̂x with â = 0.5 and b̂ = 0.15.

Table 7. Measured values of an output variableY, value of explanatory
variable x and calculated values f (x; θ̂ ) for 6 situations.

Y x f (x; θ̂ )

0.61 1.0 0.65
1.18 2.5 0.88
1.38 4.0 1.10
1.91 5.5 1.32
2.01 7.0 1.55
1.81 8.5 1.78

(a) Plot calculated versus measured values. Plot the residues.
(b) Calculate the measures of agreement presented in Table 2 for this model and

these data. For the threshold measures calculate TDI(25%) and CP(0.2). Also,
calculate the 3 terms in the decomposition of MSE from Eq. (12).

(c) Suppose that instead of the model of Table 7 we use the model f (X; θ̂ ) = Ȳ ,
where Ȳ is the average of the measured yields. Plot calculated versus measured
values for this model. Plot the residues for this model.

(d) Calculate the measures of agreement in Table 2 for the model f (X; θ̂ ) = Ȳ .
For the threshold measures calculate TDI(25%) and CP(0.2). Also, calculate the
3 terms in the decomposition of MSE from Eq. (12).

(e) What are your conclusions about these two models?

2. Under what conditions is MSE an unbiased estimator of the mean squared error of
prediction?

3. In Example 2 in the text, suppose that var(x(3)) = 4.0 but that all the other conditions
remain as stated in the example.

(a) What are the values of Λ, ∆ and MSEP(θ̂) now?
(b) The model has not changed, so why has the mean squared error of prediction of

the model changed compared to the value in Example 2?
(c) Invent a real-world example that could cause such a change in var(x(3)).

4. Suppose that the true relation that gave rise to the data in Table 7 is
Y = θ1(1 − e−θ2x) + ε with θ1 = 2.0, θ2 = 0.4, E(ε) = 0 and var(ε) = 0.1.
Suppose that the target distribution consists of just the 6 situations of Table 7. Finally,
suppose that the data have not been used during model development.

(a) What are the values of Λ, ∆ and MSEP(θ̂) for this model and target distribution?
(b) What is the major source of error?
(c) What is the value of MSEP(θ̂) estimated from the available data?



52 D. Wallach

5. Suppose that in Exercise 4, the model is f (x; θ̂ ) = â + b̂x but now the parameters
â and b̂ are adjusted to the data in Table 7 using the least squares criterion.

(a) What are the adjusted parameter values?
(b) What is the value of MSE for this adjusted model?
(c) Estimate MSEP(θ̂) for this model using cross-validation. What is the estimated

value of MSEP(θ̂)? Compare MSE and MSEP(θ̂) and explain.

6. Suppose that the measured Y values in an experiment have measurement error and
that the variance of the measurement error is 0.3.

(a) If MSEP(θ̂) for measured Y is 0.4, what is MSEP(θ̂) for the true Y?
(b) Is it worthwhile to try to reduce the prediction error? Explain.

7. Suppose that a crop model has 5 explanatory variables that are measured with error.
The errors are independent, and in each case the variance of the measurement error
is 2.0. The vector of partial derivatives of the model with respect to the explanatory
variables is (x(1), x(2), 3 + x(3), x(4)2, x(5))T. In the target population, E(x(i)) = 0,
E(x(i)2) = 3.0 and E(x(i)4) = 5.0 for i = 1, . . . , 5.

(a) What is the contribution of the error in explanatory variables to MSEP(θ̂)?
(b) Suppose that the variance of the explanatory variables were halved to 1.0. What

would be the contribution to MSEP(θ̂) now?

8. When a model is biased, for example giving results that systematically under-predict,
it is tempting to adjust the model by adding a constant that removes the bias. Bias
removal adds one parameter (the estimated bias) to the model. We will apply bias
removal to the model and data of Table 7.

(a) For the data and model in Table 7, what is the estimated bias?
(b) What is the modified model after bias removal? What is the bias of this modified

model?
(c) What is the value of MSE for the modified model?
(d) Is MSEP(θ̂) for the modified model necessarily smaller than for the original

model? Why?
(e) What is the value of MSEP(θ̂) for the modified model estimated by cross-

validation? Compare with the estimated value of MSEP(θ̂) of the original model.
Is bias removal worthwhile in this case?

9. We can consider bias removal in a more general context than for a particular model
and data set. Very generally, we want to compare E

θ̂
[MSEP(θ̂)] for a model before

and after bias removal. Suppose that we have a data set with N measurements of Y ,
which represent a random sample from the target distribution. Suppose that we have
some model, referred to as the initial model, which is independent of those data.
The predictions of that model are noted Ŷinitial. The model after bias removal will be
referred to as the unbiased model, and the predictions according to this model will
be noted Ŷunbiased .

(a) Let b̂ias be the bias of the initial model estimated from the data. What is the
expression for b̂ias? What is the expression for Ŷunbiased in terms of Ŷinitial
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and b̂ias? Is the unbiased model independent of the data? If not, how many
parameters in the unbiased model are estimated from the data. What are the
expressions for the parameters in terms of the data?

(b) What is the expression for Λunbiased in terms of Λinitial? Does the fact of removing
bias change the explanatory variables of the model?

(c) Let bias represent the true value of bias. What is the expression for bias in terms
of Y and Ŷinitial. If var(Y ) = σ 2, what is the expression for var(b̂ias) ?

(d) In ∆
E

θ̂
[f (X;θ̂ )],unbiased , we will consider only the uncertainty in the extra param-

eter of the unbiased model compared to the initial model. Derive an expression
for ∆

E
θ̂
[f (X;θ̂ )],unbiased in terms of ∆

E
θ̂
[f (X;θ̂ )],initial, bias and var(b̂ias). (Hint: in

the expression for ∆
E

θ̂
[f (X;θ̂ )],unbiased , add and subtract the term bias. You will

then be able to write this as a sum of two terms. The expectation over the uncer-
tain parameters will only concern the second term. The first term will have the
general form E{[T − E(T )]2} = E(T 2) − [E(T )]2).

(e) Express E
θ̂
[MSEPunbiased(θ̂)] in terms of E

θ̂
[MSEPinitial(θ̂)]. Under what con-

ditions does removing bias reduce prediction error? If the sample size N is
increased, how is the effect of bias removal modified?

10. Suppose that there is a model which predicts Ĵi(d) values of 70, 96, 74, 65 and 64,
respectively for the five situations in Table 6.

(a) What is the estimated value of the criterion C for this model?
(b) Based on the data in Table 7, and supposing that the objective is to use the model

for management, which model would be preferred between this new model and
the model which gave the results in the table? Why?

11. A scientist entertains two theories about root activity in young peach trees. One theory
is that activity (represented by uptake per unit root length) is uniform from spring to
autumn. The second is that root activity is the greatest in spring. How would you test
these theories? What conclusions exactly could be drawn from the results?
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1. Introduction

A crop model is the result of a long and complex construction process, involving data at
multiple stages for understanding basic processes, elaborating model structure, estimating
parameters and evaluating prediction quality. In various stages of a model’s life, however,
there is a need to study the model on its own, with an emphasis on its behaviour rather
than on its coherence with a given data set. This is where uncertainty analysis sensitivity
analysis and related methods become useful for the modeller or model user.

Uncertainty analysis consists of evaluating quantitatively the uncertainty or variability
in the model components (parameters, input variables, equations) for a given situation,
and deducing an uncertainty distribution for each output variable rather than a misleading
single value. An essential consequence is that it provides methods to assess, for instance,
the probability of a response to exceed some threshold. This makes uncertainty analysis
a key component of risk analysis (Vose, 1996).

The aim of sensitivity analysis is to determine how sensitive the output of a crop
model is, with respect to the elements of the model which are subject to uncertainty or
variability. This is useful as a guiding tool when the model is under development as well as
to understand model behaviour when it is used for prediction or for decision support. For
dynamic models, sensitivity analysis is closely related to the study of error propagation,
i.e. the influence that the lack of precision on model input will have on the output.

Because uncertainty and sensitivity analysis usually relies on simulations, they are
also closely related to the methods associated with computer experiments. A computer
experiment is a set of simulation runs designed in order to explore efficiently the model
responses when the input varies within given ranges (Sacks et al., 1989; Welch et al.,
1992). The goals in computer experiments identified by Koehler and Owen (1996) include
optimization of the model response, visualization of the model behaviour, approximation
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by a simpler model or estimation of the average, variance or probability of the response
to exceed some threshold.

Within a given model, model equations, parameters and input variables are all subject
to variability or uncertainty. First, choices have to be made on the model structure and on
the functional relationships between input variables and state and output variables. These
choices may sometimes be quite subjective and it is not always clear what their conse-
quences will be. Martinez et al. (2001) thus perform a sensitivity analysis to determine
the effects of the number of soil layers on the output of a land surface–atmosphere model.
For spatial models, there is frequently a need to evaluate how the scale chosen for input
variables affects the precision of the model output (see e.g. Salvador et al., 2001).

Second, parameter values result from estimation procedures or sometimes from biblio-
graphic reviews or expert opinion. Their precision is necessarily limited by the variability
and possible lack of adequacy of the available data. Some parameters may also naturally
vary from one situation to another. The uncertainty and natural variability of parameters
are the central point of many sensitivity analyses. Bärlund and Tattari (2001), for exam-
ple, study the influence of model parameters on the predictions of field-scale phosphorus
losses, in order to get better insight into the management model ICECREAM. Ruget et al.
(2002) perform sensitivity analysis on parameters of the crop simulation model STICS,
in order to determine the main parameters that need to be estimated precisely. Local sen-
sitivity methods, based on model derivatives with respect to parameters, are commonly
used for checking identifiability of model parameters (Brun et al., 2001).

Third, additional and major sources of variability in a model output are, of course,
the values of its input variables. Lack of precision when measuring or estimating input
variables needs to be quantified when making predictions from a model or when using it
for decision support. Aggarwal (1995) thus assesses the implications of uncertainties in
crop, soil and weather inputs in the spring wheat WTGROWS crop model. Rahn et al.
(2001) compare contrasted input scenarios for the HRI WELL-N model on crop fertilizer
requirements through a sensitivity analysis. They identify the main factors which need
to be measured precisely to provide robust recommendations on fertilization. Contrasted
settings of the input variables are used for performing sensitivity or uncertainty analyses
assuming different scenarios by Dubus and Brown (2002).

Model structure, model parameters and input variables represent three basic sources of
model uncertainty. It is often advisable to study their influence on a model simultaneously
(Saltelli et al., 2000) and alternative groupings of uncertainty sources may then be more
adequate. Rossing et al. (1994), for example, distinguish sources that can be controlled by
more intensive data collection (model parameter estimates), and uncontrollable sources
when predictions are made (daily temperature, white noise). Ruget et al. (2002), on the
other hand, decompose the sensitivity analyses according to STICS sub-modules on, e.g.
energy conversion, rooting or nitrogen absorption. Jansen et al. (1994) advocate to divide
uncertainty sources into groups of parameters or input variables which can be considered
to be mutually independent.

As shown by the examples above, uncertainty and sensitivity analysis may have various
objectives, such as:

• to check that the model output behaves as expected when the input varies;
• to identify which parameters have a small or a large influence on the output;
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• to identify which parameters need to be estimated more accurately;
• to detect and quantify interaction effects between parameters, between input variates

or between parameters and input variates;
• to determine possible simplification of the model;
• to identify input variables which need to be measured with maximum accuracy.

Some of these objectives have close links with other methods associated with
modelling, like model construction, parameter estimation or model use for decision
support.

The diversity of motivations for performing sensitivity analysis is associated with
a large choice of methods and techniques. In this chapter, we present a selection of
approaches representative of this diversity. This selection, however, will be far from
exhaustive. We refer to the book edited by Saltelli et al. (2000) for a recent and compre-
hensive exposition of sensitivity analysis methods and applications, and to Saltelli et al.
(2004) for a more practical presentation.

In this chapter, Section 2 is dedicated to preliminary notions on the basic components
of an uncertainty and sensitivity analysis. Section 3 covers several methods of uncer-
tainty analysis. Methods of sensitivity analysis are presented in Section 4 – local and
one-at-a time sensitivity analysis methods, and more global methods (variance-based sen-
sitivity analysis) which enable to study simultaneously the influence of several model
components.

2. Ingredients of uncertainty and sensitivity analysis

2.1. The crop model

The structure and properties of the crop model may influence the choice of the uncertainty
and sensitivity analysis. One reason is that the objectives depend on the crop model
capabilities and complexity.

More specifically, as remarked by Koehler and Owen (1996), the number of inputs
(variables or parameters), the number of outputs and the speed with which the model f

can be calculated may vary enormously in applications, and these quantities will obviously
play an important role in the objectives of a sensitivity analysis and on the adequacy of the
various available methods. Among the methods presented in the sequel, some are adapted
to small numbers of model simulations (e.g. local and one-at-a-time methods, meth-
ods based on experimental designs), while others require a large number of simulations
(methods based on Monte-Carlo sampling, for instance).

A price has to be paid while using more economical methods, and this price depends
on the main model properties – it may be necessary to select a number of factors smaller
than desired, or most interactions between factors may have to be assumed as negligible,
or the investigation may be unable to detect model departures from linearity or near-
linearity. It follows that some methods are well-adapted only if the model is well-behaved
in some sense, while other methods are more “model-independent” (Saltelli et al., 1999),
i.e. more robust to complex model behaviours such as strong non-linearity, discontinuities,
non-monotonicity or complex interactions between factors.
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2.2. Input factors

The model components whose influence on the output is to be investigated will be called
the input factors of the sensitivity analysis. An input factor may be:

• either a set of alternative model structures or functional relationships within a sub-
module of the model;

• or an uncertain or variable parameter θj ;

A winter wheat dry matter model

A simple crop model will be used in this chapter to illustrate the different methods of uncer-
tainty and sensitivity analysis. The model has a single state variable, the above-ground winter
wheat dry matter, denoted by U(t) with t the day number since sowing. This state variable
is calculated on a daily basis as a function of cumulative degree-days T (t) (above a baseline
of 0◦C) and of daily photosynthetically active radiation PAR(t). The model equation is:

U(t + 1) = U(t) + EbEimax

[

1 − e−K.LAI(t)
]

PAR(t) + ε(t),

with Eb the radiation use efficiency, Eimax the maximal value of the ratio of intercepted to
incident radiation, K the coefficient of extinction, LAI(t) the leaf area index on day t , and
ε(t) a random term representing the model error. In this chapter, we consider the deterministic
part of the model only, so this model error will be assumed null in the simulations. LAI(t)
is calculated as a function of cumulative degree-days T (t), as follows (Baret, 1986):

LAI(t) = Lmax

{
1

1 + e−A[T (t)−T1]
− eB[T (t)−T2]

}

.

The dry matter at sowing (t = 1) is set equal to zero: U(1) = 0. In addition, the constraint
T2 = 1

B
log[1 + exp(A × T1)] is applied, so that LAI(1) = 0.

We will assume that the dry matter at harvest U(tH) is the main output variable of interest,
and denote

Ŷ = U(tH)

=

tH −1
∑

t=1

EbEimax

[

1 − e−KLAI(t)
]

PAR(t)

While presenting sensitivity analysis, it is convenient to consider the model in the form

Ŷ = f (X; θ).

In this expression, X = (T (1), . . . , T (tH ), PAR(1), . . . , PAR(tH )) denotes the daily climate
input variables, and θ = (Eb, Eimax, K, Lmax, A, B, T1) denotes the vector of parameters,
with Lmax the maximal value of LAI, T1 a temperature threshold and A and B two additional
parameters.
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• or an input variable Xl ;
• or a series of several related input variables Xl , e.g. annual series of daily climate

variables in a given region.

The choice of the input factors depends on the objective of the sensitivity analysis.
They must include, of course, the model components of direct interest in the study. But
in many cases, the sensitivity of the model with respect to these components is likely
to depend on additional components. For instance, the sensitivity of a crop model with
respect to its main parameters is often highly dependent on the values of climate- or soil
variables. Consequently, these variables must also be considered for inclusion in the list
of input factors, unless, alternatively, separate sensitivity analyses are performed with
different modalities of these variables.

Note that each input variable of the model may or may not be selected as an input
factor of the sensitivity analysis. For instance, if a sensitivity analysis is performed for a
given soil type, the input variables related to soil can be fixed. In this case, the soil input
variables will not be included among the input factors of the sensitivity analysis. The term
input factor is further reserved for factors of the sensitivity analysis.

Notation

The number of input factors will be denoted by s and the input factors will be denoted
by Z1, . . . , Zs , in order to distinguish them clearly from the model input variables Xl .
An input scenario will be defined as a combination of levels z = (z1, . . . , zs) of the
sensitivity input factors. When several input scenarios need to be defined simultaneously,
they will be denoted by zk = (zk,1, . . . , zk,s), with subscript k identifying the scenarios.

Whatever the choice of the factors, it is assumed that for each input scenario z, the other
crop model components f , x and θ are completely determined so that the output f (x, θ)

can be calculated. We will keep the same notation f to identify the model expressed
as a function of input variables f (x, θ) or as a function of an input scenario f (z) =

f (z1, . . . , zs).

A winter wheat dry matter model (continued)

In the winter wheat dry matter model, the seven parameters have associated uncertainty and
so they represent seven input factors for the uncertainty and sensitivity analyses. The other
source of uncertainty to be considered in this example is that related to the input variables
of the model. Instead of considering each input variable PAR(t) and T (t) at each time t as
a separate sensitivity input factor, a set of fourteen annual series of climate measurements
in the region of interest will constitute the eighth factor of the sensitivity analysis.
Thus, there are eight factors: the seven parameters Eb, Eimax, K, Lmax, A, B, T1 and the
climate factor C. An input scenario is a vector

z = (zEb , zEimax , zK , zLmax , zA, zB , zT1 , zC)

specifying a combination of values of the input parameters. As this example shows, a factor
may be quantitative – the seven parameters – or categorical – the climate series.
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2.3. Uncertainty in input factors

For each input factor, the amount of uncertainty needs to be defined. The uncertainty
in an input factor can be described in different ways. For a parameter, it is often given
as the most likely value plus or minus a given percentage. Or it is specified through a
continuous probability distribution over a range of possible values. The uncertainty about
climate can either be summarized by series of climatic variable values measured during
10, 20 or 30 years, or be simulated by a climate generator (Racsko et al., 1991).

In this chapter, three main characteristics are considered for describing the uncertainty:
nominal values, uncertainty domains and probability distributions.

The nominal value z0,i of an input factor Zi represents the most standard setting of the
corresponding model parameter or input variable in the conditions of the study. The control

scenario z0 is defined as the input scenario with each input factor fixed at its nominal
value. These notions are useful, in particular, for local sensitivity methods (see Section 4).

The uncertainty range represents the set of possible values for an input factor. Usually,

• for a parameter θj , it is an interval [θmin(j), θmax(j)] around the nominal value, rep-
resenting the uncertainty range of the parameter values based on bibliography, expert
opinion or experimental data;

• for a quantitative input variable Xl , it represents the range of variation [xmin(l), xmax(l)]

under the conditions of the study; alternatively, it can be chosen to reflect the lack of
precision when this variable is measured in a given field;

• for categorical factors, it is a set of modalities representative of the phenomenon under
study; for climate series, typically, the domain of variation is a set of recently observed
annual series in one or several sites.

Except for input factors with a negligible influence on model output, the influence of any
given input factor will appear stronger if its uncertainty range is enlarged compared to
other factors. Consequently, the uncertainty ranges must be tuned as finely as possible to
the objectives and scales of the study.

Probability distributions must be specified for the methods of sensitivity analysis based
on random sampling. The uniform distribution, which gives equal weight to each value
within the uncertainty range, is commonly used in sensitivity analysis when the main
objective is to understand model behaviour. In uncertainty analysis, more flexible proba-
bility distributions are usually needed to represent the input uncertainty (see Section 3).
Practical methods to determine distributions from data or expert opinion are presented in
Chapters 7 and 8 of Vose (1996).

Coding of input factors. It often simplifies presentation and calculation, when a common
uncertainty range is used for all quantitative sensitivity factors. This may be done by coding
the levels of the factors so that they vary between −1 and +1 or between 0 and 1. Coded
values zc

i of an input factor Zi can easily be calculated from the uncoded values through
the following relationship:

zc
i =

zi − (zmin(i) + zmax(i))/2

(zmax(i) − zmin(i))/2
for a [−1, +1] range of variation,
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or

zc
i =

zi − zmin(i)

zmax(i) − zmin(i)

for a [0, 1] range of variation.

A winter wheat dry matter model (continued)

The chosen nominal values and uncertainty ranges are given in Table 1 for the parameters.
These values come from past experiments, bibliography and expert knowledge. For the
climate factor, a set of 14 annual series observed in the region of Grignon (France) was
chosen. Note that for such a factor, there is no obvious nominal value.

Table 1. Uncertainty intervals for the parameters of the winter wheat
dry matter models.

Parameter Unit Nominal value Uncertainty range

Eb g/MJ 1.85 0.9 2.8
Eimax – 0.94 0.9 0.99
K – 0.7 0.6 0.8
Lmax – 7.5 3 12
T1 C 900 700 1100
A – 0.0065 0.003 0.01
B – 0.00205 0.0011 0.003

To illustrate the coding of factors, let us consider the parameter Eb. The values zc
Eb of Eb

vary in the uncertainty range [0.9, 2.8]. By setting zc
Eb = (zEb − 1.85)/0.95, we get coded

values zc
Eb which vary in [−1, +1].

2.4. Methods of uncertainty and sensitivity analysis

An uncertainty analysis can be used to answer the question What is the uncertainty in

Ŷ = f (Z) given the uncertainty in Z? This type of analysis consists of four steps:

i. Definition of the distribution of the uncertain input factors.
ii. Generation of N scenarios of the input factors zk = (zk,1, . . . , zk,s), k = 1, . . . , N .

iii. Computation of the model output for each scenario, f (zk), k = 1, . . . , N .
iv. Analysis of the output distributions (computation of means, variances, quantiles . . .).

These steps are discussed in details in Section 3.
Two types of sensitivity analysis are usually distinguished, local sensitivity analysis

and global sensitivity analysis. Local SA focus on the local impact of the factors on the
model outputs and is carried out by computing partial derivatives of the output variables
with respect to the input factors. With this kind of methods, the factors are allowed to
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vary within small intervals around nominal values. These intervals are not related to the
uncertainty in the factor values.

Global sensitivity analysis can be used to answer the question How important are the

individual elements of Z with respect to the uncertainty in Ŷ = f (Z)? Like uncertainty
analysis, global SA consists in (i) defining the distributions of the input factors, (ii) gen-
erating scenarios of input factors and (iii) computing output variables for each scenario.
But the fourth step is different and consists of calculating a sensitivity index for each ele-
ment of Z. These indices are computed varying the factors over their whole uncertainty
ranges. Methods of global sensitivity analysis are very useful because they allow the crop
modeller to identify the factors that deserve an accurate measure or estimation. Most of
Section 4 is devoted to these methods.

3. Uncertainty analysis

3.1. Probability distributions for input factors

The first step of an uncertainty analysis is to define the probability distributions for the
input factors. When performing an uncertainty analysis, attention must be paid choosing
in adequate probability distributions. The range of input values usually has more influence
on the output than the distribution shapes, but some characteristics such as the degree of
symmetry or skewness may also play a role.

There is a large choice of probability distributions available. In this section, we give
a brief overview and refer to Vose (1996) for a more detailed presentation. The uniform
distribution puts equal weight on each value in the uncertainty range. In most cases,
however, the extreme values of the uncertainty ranges are less likely than the middle
values. Among symmetric distributions, the well-known Gaussian distribution is often
convenient since it requires only the specification of a mean value and a standard deviation.
In uncertainty analysis, it is often replaced by the truncated Gaussian distribution or by
symmetric beta distributions, which give upper- and lower bounds to the possible values.

Sometimes the distribution should be asymmetric, for example if the input parame-
ter or variable is positive and likely to be near zero. Then log-normal, gamma or beta
distributions offer a large range of possibilities.

Finally the triangular distributions (or more general piecewise-linear distributions) are
often convenient for a simple representation of subjective beliefs, because they are defined
entirely by their uncertainty range and their most-likely value. The distribution is zero
outside the uncertainty range, it is maximum at the most-likely value, and it is linear
between the extreme values of the range and the most-likely value.

3.2. Generation of input factor values

Once the probability distributions have been specified, representative samples have to
be drawn from these distributions. This is done most often by Monte Carlo sampling.
In Monte Carlo sampling, the samples are drawn independently, and each sample is
generated by drawing independently the value of each sensitivity factor Zi . Note that
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many mathematical or statistical softwares include routines for quasi-random number
generation, so that Monte Carlo samples are quite easy to generate. Provided the quasi-
random generators are reliable, Monte Carlo sampling provides unbiased estimates of the
expectation and variance of each output variable.

Latin hypercube, importance and LPτ sampling (see Helton and Davis, 2000) are
alternatives to Monte Carlo sampling. The basic principle of Latin hypercube sampling is
briefly described here in the case of uniform distributions. First, the range of each factor is
divided into P intervals of equal probability and one value is selected at random from each
interval. Second, the P values obtained for the factor Z1 are paired at random and without
replacement with the P values obtained for the factor Z2. The P pairs are then randomly
combined without replacement with the P values obtained for the factor Z3 and so on.
The interest of Latin hypercube sampling is that it ensures the full coverage of the range
of variation of each factor. A drawback of this method is that it gives biased estimates of
the variance. According to Helton and Davis (2000), Latin hypercube sampling is useful
when large samples are not computationally practicable and the estimation of very high
quantiles is not required.

For illustration, we generated two samples of 10 values of a pair of independent and
uniformly distributed random variables, Z1 ∼ U(0, 1) and Z2 ∼ U(0, 1). One sample
was generated by Monte Carlo sampling (Fig. 1a) and the other one by Latin hypercube
sampling (Fig. 1b). The results show that the values generated by Latin hypercube sam-
pling cover the whole ranges of variation of the random variables. This is not necessarily
the case when a Monte Carlo method is used as shown in Figure 1a.

It is necessary sometimes to consider correlations between some input parameters or
variables. This requires generating samples from joint multivariate probability distribu-
tions. When the distributions are normal, the following method can be used. Assume
that the vector Z = (Z1, . . . , Zs)

T is distributed as Z ∼ N(0, �), where � is a (s × s)
variance–covariance matrix. Define U as an upper triangular matrix such that �−1 = UT U

(Cholesky decomposition). The vector UZ is normally distributed with mean equal to
zero and with a variance–covariance matrix equal to the identity matrix: var(UZ) =

UU−1(UT )−1UT = I . A random value z of Z is obtained by generating a vector d

including s values randomly generated from N (0, 1) and then by calculating U−1d.
When the input factors are not normally distributed, the method proposed by Iman

and Conover (1982) can be used to generate samples from joint multivariate probability
distributions. Taking account of correlations is particularly important for series of climatic
variables. As mentioned before, this case can be tackled by using past climatic series or
climate generators.

3.3. Computation of the model output for each scenario

Once the sample of factor values, z1, . . . , zN , have been generated, the corresponding
model output values, f (z1), . . . , f (zN ), must be computed. If the computation of the
model output requires a lot of time, this step may be difficult to carry out. With some
very complex models, the sample size N must be set equal to a small value due to the
computation time. This problem is illustrated in Chapter 16. On the contrary, this step is
straightforward for models that are less complex and computationally intensive as shown
by Makowski et al. (2004) with the AZODYN model.
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Figure 1. Samples of 10 values of two independent random variables. Z1 ∼ U(0, 1) and
Z2 ∼ U(0, 1) obtained by Monte-Carlo sampling (a) and by Latin hypercube sampling (b).
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3.4. Analysis of the output distribution

The last step of the analysis is to summarize the values of f (z1), . . . , f (zN ). Different
quantities can be easily calculated. For example, when f (Z) is a single output variable,
estimates of the expected value and variance of f (Z) are given by f̄ =

∑N
k=1 f (zk)/N

and 1/(N − 1)
∑N

j=1

[

f (zj ) − f̄
]2

respectively. It is also useful to estimate the quan-
tiles associated to the distribution and the probabilities that f (Z) is lower than some
thresholds. Lacroix et al. (2005) used this method to study the risk of pollution of
water by nitrate from crop model simulations. The probabilities are often plotted as a
function of the threshold values and the resulting curve is called cumulative probability

distribution.
The quantile q, defined by P [f (Z) < q] = α, can be estimated as follows. The first

step is to order the output values. The ordered values are noted f (z(1)), . . . , f (z(i)), . . . ,

f (z(N)). The second step is to determine the value i such as (i − 2)/(N − 1) ≤ α <

(i − 1)/(N − 1). The quantile is then defined by q̂ = s × f (z(i−1)) + (1 − s)f (z(i))

where s = i − 1 + (1 − N)α.
A histogram representation of the output variable values can also provide interesting

information as shown in the following example.

A winter wheat dry matter model (continued)

The winter wheat dry matter model was used to compare uncertainty analyses with the
uniform distribution and with a symmetric bell-shaped distribution. For sake of simplicity,
we considered the Beta distribution with both shape parameters equal to 5, denoted by
Beta(5,5). This distribution is symmetric and bounded between 0 and 1, and it puts more
weight on the middle values of the [0, 1] interval (see Fig. 2). By applying the transformation
z = zmin(i) + B × (zmax(i) − zmin(i)) where B follows a Beta(5,5) distribution, it yields a
similar distribution over the uncertainty range of Zi .
In the second stage of the uncertainty analyses, N = 5000 scenarios were generated, using
the generators of quasi-random numbers implemented in the R software (www.r-project.org)
for uniform or Beta distributions. For each scenario, the climatic year was chosen at random
with equi-probability. The values of the seven parameters were generated one after another,
assuming independence between factors.
In the third stage, the biomass at harvest was calculated with the model for each simulated
scenario.
The fourth stage here included a histogram representation of the output and the calculation
of basic statistics. The histograms of the model responses are shown in Figure 2. When input
data was generated assuming a uniform distribution, combinations of parameter values very
unlikely in practice appeared quite frequently, giving extreme output values. By contrast, the
Beta(5,5) distribution made samples with extreme values of several factors very rare and the
output distribution was much less flat. Some statistics on the simulated output distributions
are given in Table 2.
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Figure 2. Density functions of the standard uniform (a) and Beta(5, 5) distributions (b).
Histograms of the winter wheat model output (biomass at harvest) from samples of size
5000, generated assuming the uniform (c) or Beta(5, 5) (d) distributions.

Table 2. Some statistics on the biomass distributions (g/m2) resulting from the uncertainty
analyses.

Sampling Minimum 1st Quartile Median 3rd Quartile Maximum

Uniform 0 1119 1636 2257 3785
Beta(5,5) 134 1665 1955 2233 3305

Mean Standard
deviation

Uniform 1669 785
Beta(5,5) 1946 420
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4. Sensitivity analysis

4.1. Overview of the different methods

There are many different ways to define sensitivity of a model with respect to its
inputs. This section presents the main approaches, without detailing precise criteria.
The sensitivity with respect to a single input factor is first considered, then the sensitivities
with respect to several factors.

4.1.1. One input factor

Figure 3 illustrates the basic approaches to measure sensitivity from the relationship
between a single input factor Z and a model output Ŷ = f (Z).

Local sensitivity analysis is based on the local derivatives of output Ŷ with respect to
Z, which indicate how fast the output increases or decreases locally around given val-
ues of Z. The derivatives can sometimes be calculated analytically, but they are usually
calculated numerically for complex models. Problems may arise if the derivative of the
model does not exist at some points. In addition, the derivatives may depend strongly
on the Z-value. This problem is illustrated in Figure 3a where three derivatives are
reported.

Figure 3. Bases for defining sensitivity criteria of model output Ŷ with respect to input factor Z.
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The local (first-order) sensitivity coefficient Slocal
i (zk) is defined as the partial derivative

of the output variable Ŷ with respect to factor Zi , calculated at the scenario zk:

Slocal
i (zk) =

∂f (Z)

∂Zi

∣
∣
∣
∣
zk

This criterion is equivalent to the slope of the calculated model output in the parameter
space. The Slocal

i (zk) criterion is an absolute measure of sensitivity, which depends on
the scales or measurement units of Ŷ or Zi . A standardized version, called the relative
sensitivity, is defined by:

Slocal
i (zk) =

∂f (Z)

∂Zi

∣
∣
∣
∣
zk

×
zk,i

f (zk)

Local sensitivity analysis can be used to study the role of some parameters or input
variables in the model. But this method is less useful than global sensitivity analysis when
the purpose of the analysis is to study the effect of uncertainty of several factors on model
outputs. A more detailed description of local sensitivity analysis is given by Turányi and
Rabitz (2000).

A winter wheat dry matter model (continued)

For illustration, the local sensitivity coefficient for parameter Eb is defined by

Slocal.r
Eb (z) =

tH −1
∑

t=1

zEimax

[

1 − e−zK zLAI(t)
]

zPAR(t).

In global sensitivity analysis (Fig. 3b–d), on the other hand, the output variability is
evaluated when the input factors vary in their whole uncertainty domains. This provides
a more realistic view of the model behaviour when used in practice. There are several
methods to perform global sensitivity analyses and the whole Section 4.2 is concerned
with their description, while the book edited by Saltelli et al. (2000) is a comprehensive
reference.

The global degree of association between Z and Ŷ over the interval [zmin, zmax] can
first be measured through a model approximation. For instance, if the crop model is
approximated by a linear relationship between Z and Ŷ (Fig. 3c), sensitivity can be
measured by the squared regression coefficient or by the linear correlation between Z

and Ŷ . This approach is described in Section 4.2.3. It is a simple and often efficient way
to measure sensitivity, provided the model approximation is adequate.

The approaches illustrated in Figures 3b and d are different since they do not rely on a
model approximation, in principle at least. They are called model-independent in the sense
of Saltelli et al. (1999), because they measure variation of Ŷ independently of how this
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variation is distributed along the Z-axis. The sensitivity criterion illustrated in Figure 3b
is simply based on the range of the model output when Z runs within [zmin, zmax] and
it will be briefly discussed in Section 4.2.1 on one-at-a-time methods. In the approach
illustrated in Figure 3d, sensitivity is measured by the variance of Ŷ over [zmin, zmax].
This approach will be described in Sections 4.2.2, 4.2.4 and 4.2.5.

4.1.2. Several input factors

Figure 4 presents an interaction plot between two input factors Z1 and Z2: in this plot,
the relationship between input Z1 and output Ŷ is represented for several distinct values
of Z2. The numerical values shown in Figure 4 are also presented in Table 3. If the effects
of Z1 and Z2 on Ŷ were additive, then the curves would be parallel. On the contrary,
Figure 4 shows that there are strong interaction effects on Ŷ between factors Z1 and Z2.
The interaction plot shows clearly that, in case of an interaction between Z1 and Z2, the
sensitivity of Ŷ to Z1 depends on the value of Z2 and vice-versa. This situation occurs with
most crop models, because crop models are not simply additive functions of parameters
and input variables.

It is common practice to measure sensitivity for each input factor Zi separately, with all
other factors fixed at their single nominal values. However, this prevents interactions from
being detected and quantified, whereas taking interactions into account is a key aspect
of most global sensitivity methods. We discuss below the interest of several criteria with
respect to their ability to take into account interactions between factors.

Consider for instance, the variance criterion var(Ŷ ) illustrated in Figure 3d, and suppose
now that there are several input factors. Let us denote by var(Ŷ |Zj = zj , j �= i) the

Figure 4. Two-factor interactions graphics: the output Ŷ is represented as a function of the input
factor Z1, for three distinct values of Z2.
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Table 3. Output values Ŷ for two interacting factors Z1 and Z2 and calculation of variance-based
criteria for the first factor.

Z1 Z2 Ŷ E(Ŷ |Z1) var(Ŷ |Z1) var[E(Ŷ |Z1)] E[var(Ŷ |Z1)]

1 1 3
1 2 9 9 24
1 3 15

2 1 5
2 2 7 7 8/3 26/3 ≈ 8.67 142/9 ≈ 15.78
2 3 9

3 1 4
3 2 2 2 8/3
3 3 0

variance of Ŷ when zi varies within its uncertainty domain and all other factors Zj are
fixed at given values zj . Clearly, this variance gives information on the sensitivity of Ŷ

with respect to Zi .
In a strict one-at-a-time approach, the criterion var(Ŷ |Zj = zj , j �= i) is calculated

at the nominal values z0,j only: it is equal to var(Ŷ |Zj = z0,j , j �= i). If there are
interactions between factors, however, then var(Ŷ |Zj = zj , j �= i) depends on the zj

values and a more synthetic sensitivity criterion is preferable.
One possibility consists in using the variance of Ŷ averaged over the zj s, rather

than calculated at specific values z0,j . Thus var(Ŷ |Zj = z0,j , j �= i) is replaced by
var[E(Ŷ |Zi = zi)], where E(Ŷ |Zi = zi) denotes the expected (or average) model output
when factor Zi takes a given value zi and the other factors vary within their uncer-
tainty domains. The variance calculated in this way was called the top marginal variance

by Jansen et al. (1994). It corresponds to the main-effect in an analysis of variance
or to the first-order index in some sensitivity analysis methods. When this is applied
to the example of Figure 4 (see Table 3), the first-order sensitivity to Z1 is equal to
26/3 ≈ 8.67.

A second possibility consists in considering the expected value of var(Ŷ |Zj = zj ,

j �= i) over all possible values of the zj s, for j �= i, E[var(Ŷ |Zj = zj , j �= i)]. The
variance calculated in this way was called the bottom marginal variance by Jansen et al.
(1994). By analogy to definitions given in Saltelli et al. (1999), we call such criteria total

sensitivity criteria. When this is applied to the example of Figure 4 (see Table 3), the total
sensitivity to Z1 is equal to 142/9 ≈ 15.78.

The total sensitivity of Ŷ to Zi can be interpreted as the expected remaining uncertainty
in Ŷ if all other input factors were determined exactly. In the example, the total sensitivities
of both factors are larger than their main-effect sensitivities. This is a general property, and
this difference between the total and main-effect sensitivities is entirely due to interactions
between the factors.
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Thus, total sensitivity gives a comprehensive measure of the influence of an input factor.
This measure can be decomposed into main-effects and interactions, and this decompo-
sition usually gives more insight on the model behaviour. As a conclusion, both types
of criteria are useful and complementary. They will be illustrated, with the winter wheat
model, in the sections on design of experiments and on sampling-based and variance-based
methods.

4.2. Methods of global sensitivity analysis

4.2.1. One-at-a time methods

The most intuitive method to conduct a sensitivity analysis is to vary one factor at a
time, while the other factors are fixed at their nominal values. The relationship between
the values zi of factor Zi and the responses f (z0,1 . . . z0,i−1, zi, z0,i+1, . . . z0,s) deter-
mines a one-at-a-time response profile. Drawing response profiles is often useful, at least
in preliminary stages. However, we have already argued that more global methods are
preferable, because they take account of and quantify interactions between input factors.

In practice, each input factor Zi takes k equispaced values from zmin,i to
zmax,i , with increments δ = (zmax,i − zmin,i)/(k − 1). The model responses
f (z0,1, . . . z0,i−1zi, z0,i+1 . . . z0,s) are then calculated for the k discretized values zi .
Figure 5 represents the simulated scenarios when this procedure is applied to three
input factors.

If the number of sensitivity factors is not too large, graphical representations are the
best way to summarize the response profiles. Alternatively, summary quantities may be
calculated for each factor’s profile, and compared between factors. Bauer and Hamby
(1991), for instance, proposed using the following index

IBH
i =

maxzi
f (z0,1 . . . z0,i−1,zi,z0,i+1 . . .z0,s)−minzi

f (z0,1 . . .z0,i−1,zi,z0,i+1 . . .z0,s)

maxzi
f (z0,1 . . .z0,i−1,zi,z0,i+1 . . .z0,s)

This index can be approximated by the difference between the maximum and minimum
simulated values.

The number k of values per profile must be chosen carefully when the model is non-
linear and particularly when it is non-monotonic. Provided k is odd, the number of model
simulations to calculate all profiles is equal to s(k − 1) + 1. When k is small and the

Figure 5. Sampled points when three factors are studied through one-at-a-time sensitivity profiles.
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model is non-linear, non-linear effects, as well as maxima or minima, may be undetected,
which may lead to under-estimating sensitivity indices such as the index of Bauer and
Hamby (1991). When k is large, the computing time may become too large if there are
many input factors and the model is complex. In that case, it is more efficient to reserve
computing time to more global methods of sensitivity analysis.

A winter wheat dry matter model (continued)

For the winter wheat dry matter model, no highly non-linear phenomena was expected, so
that a small number of discretized values was considered sufficient. Besides, between-year
variability was expected to have an influence on sensitivity. Consequently, one-at-a-time
profiles were calculated with respect to each parameter and for each annual climate series.

The average profiles and their ranges over the climate series are represented in Figure 6.
The results show that parameters Eb, A and B have a stronger influence on the simulated
biomass value than the other parameters. They show that between-year variability depends
on the values of the input factors. However, they give no information on the interactions
between parameters.

Figure 6. One-at-a-time profiles for the winter wheat dry matter at harvest simulated by the
model over 14 climatic series. Points indicate the average simulated values over the climatic
series and vertical bars indicate the ranges of variation.



3. Uncertainty and sensitivity analysis for crop models 73

In its most restricted application, one-at-a-time sensitivity analysis is applied at
the nominal values of the sensitivity factors only. In that case, it gives information
on the model only in a small neighbourhood of the nominal values. However, more
global sensitivity analyses may be obtained by calculating one-at-a-time local sensi-
tivity criteria for a lot of different input scenarios. This idea is exploited by Morris
(1991). Morris defines the elementary effect of the ith factor for a given scenario
z0 = (z0,1, . . . , z0,s) as

di(z0)=
f (z0,1 . . .z0,i−1,z0,i +�,z0,i+1 . . .z0,s)−f (z0,1 . . .z0,i−1,z0,i,z0,i+1 . . .z0,s)

�

where z0,i +� is a perturbed value of z0,i . The principle of Morris’ method is to sample a
series of scenarios z0 = (z0,1, . . . , z0,s) in the s-dimensional space defined by the values
[zmin(i), zmin(i) + δ, zmin(i) + 2δ, . . . , zmax(i)], i = 1, . . . , s and to calculate di(z0) for
each sampled value. The resulting distribution of the elementary effects of the ith factor
is then characterized by its mean and variance. A high mean indicates a factor with an
important influence on the output. A high variance indicates either a factor interacting
with another factor or a factor whose effect is non-linear.

4.2.2. Factorial design and analysis of variance

The sensitivity analysis of a crop model is similar to an experiment where nature is being
replaced by the simulated crop model. It follows that the classical theory of experimental
design provides very useful tools for sensitivity analysis. In particular, factorial designs
make it possible to evaluate simultaneously the influence of many factors, with possibly
a very limited number of runs. An additional practical advantage is that the methods of
analysis are available in general statistical packages.

Despite the analogy between natural experiments and sensitivity analyses, some dif-
ferences must be pointed out. First, there is nothing like measurement error in simulated
experiments, at least when the model is deterministic. As a consequence, there is no
residual variance and it is unnecessary to replicate the same scenarios and introduce
blocking, whereas replication and blocking are the key components of designed experi-
ments. The second difference is that the number of runs may quite often be much larger
in simulation studies than in real experiments.

Many books are dedicated to the design of experiments. A very good reference on
factorial designs and response surface methods is Box and Draper (1987).

4.2.2.1. Complete factorial designs

With s input factors and m modalities per factor, there are ms distinct input scenarios.
The (unreplicated) complete ms factorial design consists of running simulations for each
of these scenarios exactly once.

The common point between the complete factorial design and the one-at-a-time profiles
is that each factor is studied at a restricted number of levels. However, the major difference
is that the emphasis in factorial designs is on making all factors vary simultaneously. This
implies that the global “input space” of the model is much better investigated, as can be
seen by comparing Figure 7 with Figure 5.
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Figure 7. Sampled points when three factors are studied through a complete factorial design with
two modalities per factor (large dots) or three modalities per factor (small and large dots).

Table 4. Number of runs for complete ms factorial designs.

s m = 2 m = 3 m = 4 m = 5

5 32 243 1024 3125
10 1024 59049 1048576 9765625
20 1.05e + 06 3.49e + 09 1.10e + 12 9.54e + 13

A less favourable consequence is that the complete factorial design requires many runs
when the number of factors under study is large, as Table 4 shows. For this reason, the 2s

and 3s factorial designs are the most frequently used complete factorial designs when the
number of factors is large. These designs are very useful to quantify interactions between
factors.

Factorial decomposition of the model response The analysis of variance (ANOVA) is
based on the decomposition of the response variability between contributions from each
factor and from interactions between factors. This decomposition is related to the statistical
theory of the linear model.

Consider a model with two input factors Z1 and Z2, and let Ŷab = f (a, b) denote
the model response when z1 = a and z2 = b. In a complete m2 factorial design, there
are m possible values for a and m possible values for b and so there are m2 distinct Ŷab

values. Let Ŷ•• denote their general mean, Ŷa• denote the mean when z1 = a, and Ŷ•b

the mean when z2 = b. Then, when restricted to the m2 design scenarios, the model can
be decomposed into

Ŷab = µ + αa + βb + γab, (1)

where µŶ•• is the general mean, αa = Ŷa• −µ is called the main effect of factor Z1 when
z1 = a, βb = Ŷ•b −µ is the main effect of factor Z2 when z2 = b, and γab = Ŷab − (µ+

αa + βb) is the interaction between Z1 and Z2 when z1 = a and z2 = b. The factorial
effects satisfy the properties

∑

a αa = 0,
∑

b βb = 0, and
∑

a γab =
∑

b γab = 0. The
number of free ANOVA parameters (αa, βb, γab) associated with each factorial term is
called its “degrees of freedom” number. There are (m − 1) degrees of freedom for the
main effects of Z1 and Z2 and (m − 1)2 degrees of freedom for their interaction.
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The response variability can be decomposed into factorial terms as follows:

∑

ab

(Ŷab − µ)2

︸ ︷︷ ︸

SST

= m
∑

a

α2
a

︸ ︷︷ ︸

SS1

+ m
∑

b

β2
b

︸ ︷︷ ︸

SS2

+
∑

a,b

γ 2
ab

︸ ︷︷ ︸

SS12

, (2)

where SST measures the total variability in the model responses, SS1 is the sum of squares
associated with the main effect of Z1, SS2 is the sum of squares associated with the main
effect of Z2, and SS12 is the sum of squares associated with the interaction between Z1
and Z2.

With s factors at m levels, the complete ANOVA decomposition is a sum of (2s − 1)

factorial terms:

SST =
∑

i

SSi +
∑

i<j

SSij + · · · + SS1...s, (3)

including main effects (SSi) and interactions between up to s factors (SS1...s). The number
of degrees of freedom for an interaction between q factors is equal to (m− 1)q . Note that
for a 2s factorial design, all factorial terms have just one degree of freedom.

ANOVA results and sensitivity indices For the sensitivity analysis of a deterministic
model, the main interest lies in comparing the contributions of the factorial terms to the
total variability, while formal testing of hypotheses has no real meaning since there is
no residual variability. It follows that the most useful information lies in the sums of
squares. By dividing the sums of squares by the total variability, the following “ANOVA”
sensitivity indices can be easily calculated:

• main effects sensitivity indices S1 =
SS1
SST

, S2 =
SS2
SST

;

• interaction sensitivity indices S12 =
SS12
SST

;

• total sensitivity indices such as TS1 =
SS1+SS12

SST
or TS2 =

SS2+SS12
SST

, which summarize
all factorial terms related to a particular factor.

A winter wheat dry matter model (continued)

For the eight sensitivity factors of the “winter wheat dry matter model” example, a 28

complete factorial design would require the number of climatic series to be limited to two.
We applied instead a 27 × 14 complete factorial design, where the 14 climatic series were
crossed with the 27 scenarios based on the minimum and maximum values of the parameter
uncertainty ranges. There were thus a total of 1792 = 27 ×14 simulations of the crop model.
The analysis of variance on the simulation results can be performed assuming the complete
factorial model, including interactions between up to eight factors. In practice, simpler
models are often sufficient to capture the most interesting sensitivity features.
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For illustration, the results presented in Table 5 were calculated assuming a model with 8
main effects (7 parameters + climate) and interactions between two factors only. The sums
of squares in Table 5 are given by many statistical software packages, but not the sensitivity
column which was calculated by dividing the sum-of-squares column by the total variability
SST of the data. In this analysis, the quantities associated with the residuals correspond to
all terms which were not included in the model, that is here, interactions between three or
more factors. The coefficient of determination R2 of a model is, by definition, the percentage
of the total variability explained by the model. Here, it is equal to 0.94, indicating that only
6% of the variability in the simulated model output is accounted for by interactions between
more than three factors.
Sensitivities are represented graphically in Figures 8 (factorial indices) and 9 (total indices).
For these figures, the complete factorial model was used, but the differences with the model
with main effects and two-factor interactions were small. The most influential factors are
the parameters Eb, A and B, which confirms results of the one-at-a-time profiles (Figure 6).
The figures also show that the influence of interactions is high, which could not be detected
by the one-at-a-time profiles.

Table 5. Analysis of variance table of the complete factorial design
applied to the winter wheat dry matter model; the table was
calculated for the model including main effects and two-factor
interactions. Sensitivities smaller than 0.01 are not displayed.

SS Sensitivity index

Eb 777 593 320 0.33
Eimax 6686 674
K 3662 758
Lmax 80 732 881 0.03
A 520 104 586 0.22
B 309 742 948 0.13
T I 551 495
YEAR 7330 246
Eb:Eimax 1763 250
Eb:K 965 855
Eb:Lmax 21 288 948
Eb:A 137 149 566 0.06
Eb:B 81 678 016 0.04
Eb:T I 145 427
Eb:YEAR 1932 958
Eimax:K 8306
Eimax:Lmax 183 068
Eimax:A 1179 375
Eimax:B 702 365
Eimax:T I 1251
Eimax:YEAR 16 622
K:Lmax 823 631
K:A 82 704
K:B 635 271

continued



3. Uncertainty and sensitivity analysis for crop models 77

Table 5.—Cont’d.

SS Sensitivity index

K:T I 395
K:YEAR 6643
Lmax:A 60 448
Lmax:B 17 116 469
Lmax:T I 35 467
Lmax:YEAR 145 584
A:B 193 147 537 0.08
A:T I 28 101 635 0.01
A:YEAR 2586 798
B:T I 1425 195
B:YEAR 1178 019
T I :YEAR 2471 694
Residuals 128 829 265

Figure 8. The eight largest factorial sensitivity indices based on the 2s × 14 factorial design
and its analysis of variance with a complete factorial model, for the winter wheat crop model;
the upper bars show cumulative indices.
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Figure 9. Main-effect (first part of the bars) and total (full bars) sensitivity indices based on
the 2s × 14 factorial design and its analysis of variance, for the winter wheat model.

4.2.2.2. Fractional factorial designs

When there is a large number of factors, the factorial main effects and low-order interac-
tions can usually be estimated quite accurately by running only a fraction of the complete
factorial design. When applied to sensitivity analysis, fractional factorial designs are
very useful for screening a large number of factors and for detecting the most influential
ones, with a relatively small number of runs. This requires, however, the assumption
that higher-order interactions are negligible. It also requires that the fraction be carefully
chosen. This can be done through algebraic methods of construction (see Box and Draper,
1987; Kobilinsky, 1997).

Consider, for example, the fractional design for seven factors at two modalities ±1
given in Table 6. This is a complete factorial design for factors A, B and C, which are
called the basic factors of the fraction. The modalities of the basic factors have been used
to calculate those of four additional factors D, E, F and G.

Consider first the design restricted to factors A, B, C and G. This is a half-fraction
of the 24 complete factorial design, with eight runs instead of 16. Because this is an



3. Uncertainty and sensitivity analysis for crop models 79

Table 6. Complete 23 factorial design and fractional design defined by ABC = 1.

A B C D = AB E = AC F = BC G = ABC Y

−1 −1 −1 +1 +1 +1 −1 Y1
−1 −1 +1 +1 −1 −1 +1 Y2
−1 +1 −1 −1 +1 −1 +1 Y3
−1 +1 +1 −1 −1 +1 −1 Y4
+1 −1 −1 −1 −1 +1 +1 Y5
+1 −1 +1 −1 +1 −1 −1 Y6
+1 +1 −1 +1 −1 −1 −1 Y7
+1 +1 +1 +1 +1 +1 +1 Y8

incomplete factorial design, not all factorial terms can be estimated. However, there are
quite simple rules to determine which terms can be estimated. Thus, the relationship
G = ABC which was used for defining G implies that the main-effect of G is confounded
with the A:B:C interaction. The two effects cannot be estimated separately, but if A:B:C
is assumed to be negligible, then the main-effect of G can be estimated. By multiplying
both sides of the G = ABC equality with factor letters and by adopting the convention
that A2 = B2 = C2 = G2 = 1, other confounding rules can be obtained. For example,
multiplying by A yields AG = A2BC which gives AG = BC after simplification. This
implies that the interactions A:G and B:C are confounded. More generally, there is one
confounding relationship associated with each factorial effect between the basic factors.
Here, the confounding relationships are:

1 = ABCG

A = BCG

B = ACG

C = ABG

AB = CG

AC = BG

BC = AG

ABC = G,

where 1 indicates the general mean. The resolution of a fractional design is, by definition,
the minimum order among the interactions confounded with the general mean. Here,
there is only one fourth-order interaction confounded with the mean, so the fraction has
resolution IV (by convention, the resolution is often written with roman numbers). With a
fraction of resolution IV, the general mean is confounded with the four-factor interaction,
main effects are confounded with three-factor interactions, and two-factor interactions are
mutually confounded. Assuming that three- and four-factor interactions are negligible, all
main effects can be estimated.
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Consider now the design with the seven factors A to G. This is a 1/(24) fraction of the
complete factorial design, with 8 runs instead of 128! Now, instead of being confounded by
pairs, factorial effects are confounded by groups of size 16. For example, the confounding
relationships involving the general mean are

1 = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG = ABEF

= BEG = AFG = DEF = ADEG = BDFG = CEFG = ABCDEFG

and the confounding relationships involving the main effect of A are

A = BD = CE = ABCF = BCG = ABCDE = CDF = ACDG = BEF

= ABEG = FG = ADEF = DEG = ABDFG = ACEFG = BCDEFG.

This is a resolution III fractional design, and with such a design, the main effects are
confounded with interactions between two and more factors. Thus the main effects can
be estimated provided all interactions are considered negligible.

Both examples given above can be generalized to more factors and more modalities per
factors. With 2n simulations, it is possible to study up to 2n − 1 factors in a resolution III
fraction, and up to 2n−1 factors in a resolution IV design. Of course, higher resolutions
should be preferred when possible. The main difficulty is to find the most appropriate
confounding relationships when defining new factors from the basic ones. Tables are
given in Kobilinsky (1997). The PROC FACTEX procedure of the SAS QC© module can
generate fractional designs automatically.

4.2.2.3. Other experimental designs

In a 2s complete or fractional factorial design, all information on each quantitative factor
Zi is based on the model behaviour at only two levels per factor. This is optimal when, for
any setting of the other factors, the model is a linear or near-linear function of zi . It often
remains efficient when the model is monotonous. However, 2s designs do not allow
one to detect and quantify non-linear relationships between a sensitivity factor and the
output.

In that case, it is necessary to consider designs with more levels per factor. One may
use 3s , 4s complete or fractional designs, which ensure that quadratic effects may be
detected as well as linear effects. Flexible fractional designs exist also for these designs,
in fact for all ms designs where m is a prime number or a power of a prime.

The response surface methodology (see Box and Draper, 1987) offers an alternative
approach to study the influence of quantitative factors on a response function. It is based
on an approximation of the crop model by a polynomial function of degree one or two of
the input factors, and on convenient designs to estimate their parameters. This approach
has been applied to the STICS crop model (Ruget et al., 2002) and we refer to this article
for a detailed presentation in the context of crop models.
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4.2.3. Intensive sampling and correlation criteria

In the sensitivity analysis methods presented in Section 4.2.2, the sampled modalities of
the input factors are precisely defined by the factorial design. Another approach consists in
randomly generating factor values by Monte Carlo sampling. The principle is to randomly
generate N scenarios of the input factors zk = (zk,1, . . . , zk,i, . . . , zk,s) k = 1, . . . , N , and
to compute the model output for each scenario, f (zk) k = 1, . . . , N , in a similar way to
what is done for an uncertainty analysis. The statistical methods related to regression (see
e.g. Venables and Ripley, 1999) are then used to represent and to measure the sensitivity of
the output variables with respect to the input factors. These methods are presented below.

Correlation coefficients can be used to quantify the relationships between input factors
and output variables. Let s2

Ŷ
= 1

N

∑N
k=1 [f (zk) − f̄ ]2 and s2

Zi
= 1

N

∑N
k=1 (zk,i − z̄i)

2

denote the empirical variances of Ŷ = f (Z) and Zi in the simulations, and let
côv(Ŷ , Zi) = 1

N

∑N
k=1 [f (zk) − f̄ ][zk,i − z̄i] denote their covariance. Then the PEAR

(Pearson Product Moment Correlation Coefficient) coefficient between Zi and Ŷ is
defined by

rZ
i,Ŷ

=
côv(Ŷ , Zi)

s
Ŷ
sZi

.

It varies between −1 and +1 and it measures the degree of linear association between the
variations of Zi and those of Ŷ . Some non-linear associations may remain undetected and
underestimated by the PEAR coefficient. An alternative is the Spearman correlation coef-
ficient, which is calculated on the ranks of Zi and Y . The Spearman correlation coefficient
is more adequate in case of strongly non-linear, but still monotonous, relationships.

With the PEAR or Spearman coefficients, no account is taken of the possible effects of
input factors other than Zi . In contrast, the partial correlation coefficient (PCC) aims at
measuring the association between Zi and Ŷ after eliminating possible effects due to other
input factors Zj , j �= i. The PCC coefficient is similar to the PEAR correlation coefficient,
but it is calculated with f (zk) and zk,i replaced by the residuals of the following two
regression models

f (zk) = b0 +
∑

j �=i

bjzk,j + εk, zk,i = c0 +
∑

j �=i

cjzk,j + ε′
k,

where bj s and cj s are regression coefficients to be estimated.
Regression models give a general framework for studying the influence of all input

factors simultaneously. By approximating the crop model under study, they make it pos-
sible to evaluate the influence of each input factor. Consider for instance the regression
model with first-order effects only:

f (zk) = b0 +

s
∑

i=1

bizk,i + ε′′
ik, (4)

where bi are the regression coefficients to be estimated and ε′′
ik is the approxima-

tion error term. The regression coefficients are estimated by least-squares. The quality
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of the adjustment is synthesized typically by calculating the model coefficient of
determination R2, that is, the percentage of output variability explained by the model.

The estimated regression coefficients b̂i can be considered as sensitivity measures
associated with the factors Zi , provided they are standardized with respect to the variability
in Ŷ and in Zi . The standardized regression coefficients (SRC) are defined as the quantities
b̂i(sZi

/s
Ŷ
).

Many more principles and techniques of regression are useful for sensitivity or uncer-
tainty analysis, but it is out of the scope of this chapter to present them all. However,
a few remarks can be made:

• the regression model in Eq. (4) can be extended in order to incorporate interactions
between input variables, qualitative as well as quantitative factors, quadratic as well as
linear effects. This is useful in particular if the regression coefficient of determination
is small;

• when the number of terms in the model is large, model selection techniques (stepwise
regression for instance) may become a precious aid to interpretation, since they can
eliminate factors with negligible influence;

• the regression techniques presented here are good essentially at capturing linear effects
between the Zis and the Y s. Alternative methods should be considered when non-linear
relationships are suspected;

• polynomial regression is one of the basic approaches in response surface methodol-
ogy. It can be used on randomly selected simulations as described here, but also on
simulations based on factorial or response surface design (Ruget et al., 2002).

A winter wheat dry matter model (continued)

N = 5000 scenarios were generated, using the generators of quasi-random numbers imple-
mented in the R software (www.r-project.org) for Uniform and Beta distributions. Figure 10
shows scatterplots of the model simulations. A scatterplot is a representation of the points
[

zk,i , f (zk)
]

, where zk,i is the value of Zi in the k-th simulation and f (zk) is the simulated
response. In order to get a better visualisation, only 500 points have been represented in
the plots of Figure 10. Non-parametric smoothing lines, based on local regressions, have
been added to the plots in order to better visualize the relationship between f (zk) and zk,i .
Figure 10 reveals a negative correlation between biomass at harvest and parameter B, and a
positive correlation between the model output and parameters Eb and A.
PEAR and SRC coefficients for the parameters of the winter wheat dry matter model are
given in Table 7. They have been calculated with the linear model function of the statistical
package R, from the 5000 simulations. The results are very similar to those obtained with
analysis of variance, with Eb, A and B the most influential parameters. The difference
between the SRC and PEAR coefficients is small because the data set is large (5000 samples)
and so the input factors are nearly orthogonal (the maximum empirical correlation between
input factors is 0.037). There is a larger difference between the input sampling distributions,
with a stronger sensitivity to Eb when the beta distribution is used.

The coefficient of determination of the model with only first-order effects (uniform case) is
R2 = 0.78. This shows that interactions account for more than 20% of the output variability.
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Figure 10. Scatter plots between the simulated values of biomass at harvest (g/m2) and each
input factor over its range of uncertainty, based on 500 simulations.

Table 7. PEAR and SRC coefficients for the winter wheat dry matter model, estimated from
5000 Monte Carlo samples.

Parameter Uniform sampling Beta sampling
PEAR SRC PEAR SRC

Eb 0.62 0.63 0.71 0.73
Eimax 0.10 0.06 0.04 0.06
K 0.04 0.03 0.04 0.03
Lmax 0.15 0.17 0.15 0.16
A 0.47 0.49 0.36 0.39
B −0.33 −0.34 −0.30 −0.32
T I 0.04 0.03 0.04 0.04
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4.2.4. Intensive sampling and variance-based sensitivity analysis

4.2.4.1. Variance-based measures of sensitivity

In the approaches based on experimental design followed by analysis of variance or
on Monte Carlo sampling followed by regression, sensitivity analysis is based on an
approximation of the crop model by a simpler linear model. In the variance-based methods
described in this section, the principle is to decompose the output variability D = Var(Ŷ )

globally, without an intermediate simplified model.

Sobol decomposition of the model The methods are based on model and variance
decompositions that are very similar to those encountered in analysis of variance. To
emphasize the similarities and differences, we adopt a presentation which parallels that
in Section 4.2.2.

Consider two quantitative input factors Z1 and Z2, and let Ŷab denote the model
response when z1 = a and z2 = b. The Sobol decomposition of the crop model f (Sobol,
1993) is given by

Ŷab = µ + f1(a) + f2(b) + f12(a, b). (5)

This decomposition is quite similar to the decomposition in Eq. (1), but, in contrast to
Section 4.2.2, a and b are now assumed to vary continuously within the uncertainty
interval [0, 1]. It follows that the general mean of the crop model f is now defined by

µ =

∫ 1

0

∫ 1

0
f (z1, z2)dz1dz2.

The main effect of factor Z1 is defined by the function

f1(a) =

∫ 1

0
f (a, z2)dz2 − µ

of a. Similarly, the main effect of B is defined by

f2(b) =

∫ 1

0
f (z1, b)dz1 − µ.

Finally, the interaction between Z1 and Z2 is defined by

f12(a, b) = f (a, b) − f1(a) − f2(b) + µ.

The factorial effects thus defined satisfy orthogonality properties which make the
decomposition unique and give it a lot of nice properties. In particular, these properties
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yield an orthogonal decomposition of the response variability into factorial terms:

∫ 1

0

∫ 1

0
(Ŷz1z2 − µ)2dz1dz2

︸ ︷︷ ︸

Var(Ŷ )

=

∫ 1

0
f1(a)2da

︸ ︷︷ ︸

D1

+

∫ 1

0
f2(b)2db

︸ ︷︷ ︸

D2

+

∫ 1

0

∫ 1

0
f12(a, b)2dadb

︸ ︷︷ ︸

D12

, (6)

where D1 is the variability associated with the main effect of Z1, D2 is the variabil-
ity associated with the main effect of Z2 and D12 is the variability associated with the
interaction between Z1 and Z2.

With s quantitative factors, the decomposition of the variance Var(Ŷ ) generalizes to:

var(Ŷ ) =

s
∑

i=1

Di +
∑

i<j

Dij + · · · + D1...s . (7)

In the decomposition Eq. (7), Di corresponds to the main or first-order effect of Zi denoted
by var[E(Ŷ |Zi = zi)] in Section 4.2.2. The terms Dij , . . . , D1...s of Eq. (7) correspond to
the interactions between the input factors. This is very similar to the analysis of variance.
However, var(Ŷ ) now represents the variability of Ŷ with respect to the overall uncertainty
in the input factors, and not only over a limited number of experimental design points.
This makes it more adequate for taking account of irregular and non-linear effects.

In probabilistic terms, Di is the variance of the conditional expectation E(Ŷ |Zi = zi).
If Ŷ is sensitive to Zi , E(Ŷ |Zi = zi) is likely to vary a lot when zi changes and so Di is
likely to be large. This is why Di is also called an “importance measure” in the vocabulary
of sensitivity analysis.

Sensitivity indices Sensitivity indices are derived from the decomposition Eq. (7) by
dividing the importance measures by var(Ŷ ):

Si = Di/var(Ŷ )

Sij = Dij/var(Ŷ )

. . .

Consequently, the sensitivity indices satisfy

S1 + · · · + Ss + S1,2 + · · · + S1,2,...s = 1

and can be interpreted as the proportions of var(Ŷ ) explained by the various factorial
terms.

As explained in Section 4.1.2, two main types of sensitivity indices can be defined for
each factor Zi . The first-order sensitivity index Si is useful for measuring the average
influence of factor Zi on the model output, but it takes no account of the interaction
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effects involving Zi . The second useful index is the total sensitivity index of Zi , equal to
the sum of all factorial indices involving Zi :

TSi = Si +
∑

j �=i

Sij + · · · + S1...s .

Note that TSi is also equal to 1 − S−i , where S−i denotes the sum of all indices where Zi

is not involved.

4.2.4.2. Estimation based on Monte Carlo sampling

In order to estimate the first-order sensitivity index Si , the basic idea is to evaluate the
model response at N randomly sampled pairs of scenarios scA,k and scB,k defined by

zA,k = (zk,1, . . . , zk,i−1, zk,i, zk,i+1, . . . , zk,s)

zB,k = (z′
k,1, . . . , z

′
k,i−1, zk,i, z

′
k,i+1, . . . , z

′
k,s)

, k = 1, . . . , N

with the same level zk,i of Zi and all other levels sampled independently. Let D denote
var(Ŷ ), then

f̂0 =
1

2N

N
∑

k=1

[f (zA,k) + f (zB,k)]

D̂ =
1

2N

N
∑

k=1

[f (zA,k)
2 + f (zB,k)

2] − f̂ 2
0

D̂i =
1

N

N
∑

k=1

f (zA,k) · f (zB,k) − f̂ 2
0

are unbiased estimators of, respectively, the average value of Ŷ , its total variance, and the
main-effect of Zi . An obvious estimator of Si is then Ŝi = D̂i/D̂.

The procedure just described requires 2N model simulations for the estimation of each
first-order index. When the first-order indices of all s factors must be calculated, the
following procedure is more efficient computationally than performing s independent sets
of 2N simulations:

• generate N input scenarios by Monte Carlo sampling, and store them in a N × s

matrix M; the rows in M will form the zA,k scenarios for all factors;
• generate N more input scenarios by Monte Carlo sampling, and store them in a N × s

matrix M ′; the rows in M ′ will be used to form the zB,k scenarios;
• calculate the responses f (zA,k) for each scenario in M;
• for each factor Zi calculate the responses f (zB,k) where zB,k is determined by row k

of M ′ for all factors different from Zi and by row k of M for factor Zi ;
• apply the formulae given above for the calculation of Ŝi .
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This algorithm requires N(s+1) model simulations for the calculation of the first-order
sensitivity indices of s factors. An even more efficient sampling scheme, the winding stairs,
was proposed by Jansen (1994). It is not described here for the sake of brevity.

A winter wheat dry matter model (continued)

Figure 11 displays results of a sampling-based sensitivity analysis. A Monte Carlo sample of
size 1000 was used to generate a winding stairs set of simulations. Because there were eight
factors (seven parameters + climate) in the model and we chose a basis of 1000 Monte Carlo
samples, the number of model simulations needed to estimate first-order and total indices
was equal to 9 × 1000. In order to show the variability of the estimates due to sampling,

Figure 11. First-order and total Sobol sensitivity indices estimated from Latin hypercube
sampling combined with winding stairs; there were 20 runs with 9×1000 model simulations
for each run; the first part of the bars corresponds to the average (over the 20 runs) estimate
of the first-order index, the full bars indicate average estimates of total indices, while the
lines indicate extreme estimates of total indices.
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this procedure was repeated 20 times, and the ranges of the estimates over the 20 series of
simulations are displayed.

The results are different but quite consistent with those obtained with a designed exper-
iments. This is not very surprising because the model behaves quite linearly and so the
more intensive sampling-based method does not bring much more information on the model
behaviour.

The sampling-based methods give unbiased estimates of the sensitivity indices, but the esti-
mates can be quite variable and even take negative values, as Figure 11 shows. Homma and
Saltelli (1996) propose a corrective term to improve this problem. Nevertheless, it remains
important to evaluate the precision of the sensitivity indices by repeating the procedure a
few times as we did.

The same principle can be generalized to the estimation of second-order or higher
effects and to the estimation of total sensitivity indices. For estimating the interaction
sensitivity Sij , for instance, the model responses have to be calculated for pairs of scenarios
zA,k and zB,k with the same levels of Zi and Zj . For estimating total sensitivity, the model
responses have to be calculated for pairs of scenarios zA,k and zB,k with the same levels
of all factors except Zi . This allows the sensitivity index S−i to be estimated, and TSi is
then estimated by T̂Si = 1 − Ŝ−i .

4.2.5. FAST method for sampling and estimating variance-based criteria

The Fourier amplitude sensitivity test (FAST) is another method for estimating variance-
based measures of sensitivity. It is inspired by the Fourier decomposition of a time series
in signal theory and was developed initially for analysing the sensitivity of chemical reac-
tion systems to rate coefficients (Cukier et al., 1973, 1975; Schaibly and Shuler, 1973).
Recently, its use has been generalized to many domains of applications and new devel-
opments have been proposed. The presentation below is limited to the main principles.
More details can be found in Chan et al. (2000).

4.2.5.1. FAST sampling

In the FAST method, all input factors are assumed to be quantitative and coded so that
their domain of variation is [0, 1]. Then the possible scenarios belong to the multidi-
mensional input space [0, 1]s . With Monte Carlo sampling, the simulated scenarios are
selected at random within [0, 1]s . With the FAST method, they are selected systemati-
cally (or almost systematically) along a search trajectory which is specifically designed to
explore efficiently the input space. This is illustrated, in the simple case of two factors, in
Figure 12. Figure 12a shows a set of N = 100 scenarios sampled according to the FAST
principles. These scenarios were generated by regular sampling along the curve visible in
Figure 12b.

In the design of a FAST sampling scheme, an integer ωi is associated with each input
factor Zi . This integer is called the frequency of Zi and its choice will be explained
below. The levels of the input factors Zi for the simulated scenarios zk(k = 1, . . . , N),
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Figure 12. Illustration of FAST principles for two input factors Z1 and Z2. (a) Samples of (Z1, Z2)
values with ω1 = 2, ω2 = 5, φ1 = φ2 = 0 and N = 100. (b) FAST sampling path indicating
the order of the generated scenarios (the numbers 1, 4 . . . indicate the first, fourth . . . generated
scenarios). (c) Values of Z1, Z2, and of a response Ŷ for N scenarios in ascending order of
simulation. (d) Sensitivity indices obtained for several frequencies.

are given by

zk,i = G(sin(ωiuk + φi)),

where the scalars

uk = −π +
2k − 1

N
π

form a regularly-spaced sample of the interval (−π, +π) and can be interpreted as coordi-
nates on the search curve; G(u) is a transformation function from [−1, 1] to [0, 1]; and the
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φis are optional random phase-shift parameter taking values in [0, 2π). The transformation
function

G(u) =
1

2
+

1

π
arcsin(u),

proposed by Saltelli et al. (1999), ensures that the levels of each factor are uniformly, or
almost uniformly, sampled.

In Figure 12, ω1 = 2 , ω2 = 5 and φ1 = φ2 = 0. As can be verified in Figure 12b, each
ωi corresponds to the frequency with which the curve comes back to its starting value for
the levels of factor Zi . Figure 12b shows that the sampling path goes through each value
of Z1 exactly twice (in a given direction). Similarly, the sampling path goes through each
value of Z2 exactly five times.

4.2.5.2. Principles of FAST sensitivity estimation

The principle of FAST is that, if the response Ŷ is sensitive to a given factor Zi , then Ŷ

and Zi should vary simultaneously over the scenario index k. In Figure 12c, the variations
of Z1, Z2, and a putative response Ŷ = f (Z1, Z2) are displayed as a function of k. This
figure shows that the oscillations of Ŷ and those of the factor Z2 are quite simultaneous.
This result indicates that Z2 has a strong influence on the response. With the FAST method,
the sensitivity of the output to the factors is quantified by estimating a sensitivity index
for a series of frequency (Figure 12d). If the factor Zi has a strong influence on the model
output, the index takes high values for ω = ωi and for its higher harmonics (2ωi, 3ωi, . . .).
Figure 12d shows that the sensitivity index is higher for ω = ω2 = 5 than for ω = ω1 = 2.
This result reveals that the model output is more sensitive to Z2 than to Z1.

4.2.5.3. Spectral decomposition of f (zk,1, zk,2) variability

The variability of f (zk,1, zk,2) is decomposed into components associated with each
frequency ω from 1 to N − 1, defined by:

D[ω] = A2
ω + B2

ω,

where

Aω =
1

2π

N
∑

k=1

f (zk,1, zk,2)cos(ωuk)

Bω =
1

2π

N
∑

k=1

f (zk,1, zk,2)sin(ωuk).

The scalar D[ω] is called the spectral component of Ŷ at frequency ω, while Aω and
Bω are called the Fourier coefficients of Ŷ at frequency ω. They are theoretically defined
as integrals over [−π, +π ], but they are shown here in the discrete summation form
imposed by the finite number of simulations. The scalar S[ω] = D[ω]/

(∑

D[ω]

)

can then
be considered as the proportion of variability of f (zk,1, zk,2) associated with frequency ω.
The values of S[ω] are presented in Figure 12d.
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4.2.5.4. The classical FAST method

The original FAST (Cukier et al., 1973, 1975; Schaibly and Shuler, 1973) is a method for
estimating essentially the first-order sensitivity indices (or main effects) of the factors Zi .
The frequencies of the different factors are chosen so that the spectral components D[ω]

of Ŷ at frequency ωi and at its first higher harmonics depend on the effects of input factor
Zi only. It follows that the sensitivity index of Zi can be estimated by

Si =

M
∑

p=1

S[pωi ],

where M is the number of harmonics taken into account and is usually set to M = 4.
Adequate sets of frequencies have been proposed by Cukier et al. (1973) for up

to 19 factors. In FAST, there is a minimum number of simulations which is equal to
2Mmax(ωi) + 1. For example, when there are s = 8 factors, the frequencies given by
Cukier et al. (1973) are 23, 55, 77, 97, 107, 113, 121, 125, and so the minimum number
of simulations is equal to 8 × 125 + 1 = 1001.

4.2.5.5. The extended FAST method

The extended FAST method (Saltelli et al., 1999) allows the estimation of the first-order
and the total sensitivity indices. In a simulation study on a crop model, it appeared
more efficient than the Monte Carlo approach to estimate first and total sensitivity indices
(Makowski et al., 2004). As opposed to the classical FAST, it requires separate sets of
simulations for each input factor Zi of interest.

In the simulations dedicated to factor Zi , the frequency ωi must satisfy: ωi ≥

2M max(ωj ) where max(ωj ) denotes the largest frequency associated with a factor other
than Zi . As for classical FAST, there is a minimum number N0 of simulations, equal to
2Mωi + 1. In practice, N0 is usually chosen first, ωi is then chosen as the largest integer
satisfying 2Mωi +1 ≤ N0 and the other frequencies ωj are chosen to satisfy the constraint
ωi ≥ 2M max(ωj ) as well as a few other favourable properties.

The first-order sensitivity index of Zi is estimated by

Si =

M
∑

p=1

S[pωi ],

as in classical FAST. The total sensitivity index of Zi is estimated by

TSi = 1 −

Mmax(ωj)
∑

ω=1

S[ω],

since all frequencies lower than Mωmax(j) correspond to the factorial terms not
involving Zi .
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Example on the winter wheat dry matter (continued):

Figure 13 displays results of an extended FAST sensitivity analysis for the model, repeated
twenty times. For each replication and each input factor, a FAST sample of size 1000 was
generated. Thus, the number of model simulations needed to estimate first-order and total
indices was equal to 8×1000 per replication. For each replication, the phase-shift parameters
φ were drawn at random, and the frequencies were randomly allocated to all factors except the
one under study. The ranges of the estimates over the 20 series of simulations are displayed
in Figure 13.
The results are very coherent with the Sobol estimates (Fig. 11). However they show much
less variability between replications and a practical advantage is that the sensitivity indices
are always positive, as expected.

Figure 13. First-order and total sensitivity indices estimated by the extended FAST; there
were 20 runs with 8 × 1000 model simulations for each run; the first part of the bars
corresponds to the average (over the 20 runs) estimate of the first-order index, the full bars
indicate average estimates of total indices, while the lines indicate extreme estimates of total
indices.
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5. Discussion

Which method to choose?

As the previous sections have shown, there is a large diversity of methods to perform
sensitivity analyses. When choosing which one to use for a specific problem, important
points to consider are the objectives of the study, the number of input factors to vary, the
degree of regularity of the model and the computing time for individual model simulations.

If the objective is to screen for the most influential ones among a large number of input
factors, the method of Morris or factorial designs are well adapted. Factorial designs
with two-level factors are very efficient, but they give information only on the linear
trends associated with each input factor. The method of Morris, by contrast, allows the
investigation on the whole uncertainty ranges of the input factors.

When the objective is to quantify the influence of several input factors, experimental
designs are very flexible, but once again, they give information on the model behaviour
only for specific values of the input factors. Thus, it is necessary to assume, often implic-
itly, that the model is well-behaved and quite regular (for example, linear or near-linear
if factors take two levels; near-quadratic if the factors take three levels, etc.). Methods
based on intensive sampling, such as those described in the section on variance-based
methods, have the advantage of being “model-free”, that is, they do not rely on model
approximations and they explore the full uncertainty ranges of the input factors. However,
they require a large number of simulations.

In fact, there is no best method for all situations, and the differences between methods
are less crucial than the accurate description of the uncertainty sources. A good under-
standing of the techniques and the ability to adapt them to one’s situations is another key
element.

Additional aspects of sensitivity analysis

Some key aspects of sensitivity analysis have been mentioned only briefly above but can
be of great importance for a crop model.

The ability to take correlations into account between input factors, when generating
scenarios, can make simulations much more representative of the phenomena under study.
It was shown that such correlations can be taken into account in an uncertainty analysis.
This is much more difficult for sensitivity analysis. There is a need to develop methods
of sensitivity analysis that would take such correlations into account when interpreting
simulation results.

It is often of great interest to consider the sensitivity of a response to a whole group
of input factors (climatic/soil variables, or parameters associated with a specific growth
stage). For most methods presented above, this can be done by summing the factorial
indices associated with all factors within the group under consideration. The analogue of
a first-order index is then the sum of all factorial indices involving only factors within the
group. The analogue of a total index is the sum of all factorial indices involving at least
one factor within the group. Note that this is not equal to the sum of the total indices of
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the factors within the group, because interactions are counted several times within a sum
of total indices.

The sensitivity analysis of dynamic responses Ŷ (t) has not been considered explicitly in
this chapter. The methods described above can be applied to time t separately, and it may
then be interesting to follow how sensitivity indices change with time. However, it is often
more useful to perform sensitivity analyses on meaningful characteristics of the response
time series. These characteristics can be either chosen by the modeller or determined by
applying multivariate techniques such as the Principal Components Analysis or the Partial
Least Squares to the simulated response time series (Campbell et al., 2004).

For all the methods considered until now, only one level of uncertainty was considered
for each factor. However, it happens quite frequently that distinct levels of uncertainty
need to be considered: for example, climate uncertainty at a local scale versus a regional
scale; or uncertainty in parameters at present and after further experiments; or simply
uncertainties in the true levels of uncertainty on some parameters. An application in
forestry is presented by Gertner et al. (1996).

Software

General statistical packages make it possible to implement the methods of analysis based
on experimental design, analysis of variance and regression. But it is necessary to be
aware of some interpretations: the meaning of a significance test is dubious when the
responses come from a perfectly deterministic model. The SAS QC© (SAS/QC© User’s
guide, 1999) module includes procedures to construct factorial and optimal designs (proc
factex, proc optex).

Some software packages for general modeling or for risk analysis include methods
for sensitivity or uncertainty analysis (Crystall Ball©, Risk©). There exist also softwares
dedicated to sensitivity analysis. These software packages are restricted to the calculation
of local sensitivity, but one exception is Simlab, which includes the main methods of
global sensitivity analysis (see Saltelli et al., 2004).
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Exercises

Uncertainty and sensitivity analysis with a model predicting the percentage

of diseased plants

We consider a model simulating the percentage of plants with eyespot pathogen
(Pseudocercosporella hypotrichosises) in a field in function of cumulative degrees–
days since sowing. The model is defined by

Ŷ (t) = 100 ×
1 − exp [− (c1 + c2) t]

1 +
c2
c1

exp [− (c1 + c2) t]

where Ŷ (t) is the predicted percentage of diseased plants when the cumulative degrees–
days is equal to t , and θ = (c1, c2) are the model parameters.

Here, the objective is to predict the percentage for a field located in the Paris Basin
at t = 2300C◦day. The values of the two model parameters were studied previously
(Colbach and Meynard, 1995) but accurate results are not known. In this study, we
consider that the uncertainty ranges of c1 and c2 are [4.5 · 10−8, 3.5 · 10−4] and
[4 × 10−4, 6.5 × 10−3] respectively. The nominal values of c1 and c2 are equal to
1.75 × 10−4 and 3.5 × 10−3, respectively.

1. We assume that the uncertainty in c1 and c2 is modelled by uniform distributions over
the parameter uncertainty ranges. A sample of ten values of θ = (c1, c2) is generated
by Monte Carlo sampling and is reported in Table 8. Each value of θ defines an input
scenario.

(a) Calculate Ŷ (2300) for each one of the ten scenarios presented Table 8.
(b) Estimate the expected value and standard deviation of Ŷ (2300) from the ten

computed values of Ŷ (2300).

Table 8. Ten values of c1 and c2 generated
by Monte Carlo sampling.

c1 c2

1.71× 10−4 6.42 × 10−3

1.25 × 10−4 2.52 × 10−3

9.65 × 10−5 1.67 × 10−3

3.38 × 10−4 4.79 × 10−3

2.97 × 10−4 4.39 × 10−3

4.88 × 10−5 5.51 × 10−3

1.36 × 10−4 5.94 × 10−4

2.99 × 10−5 1.11 × 10−3

1.97 × 10−4 3.36 × 10−3

3.17 × 10−4 5.93 × 10−4
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(c) Estimate the probability P [Ŷ (2300) ≥ 80%] from the ten computed values of
Ŷ (2300).

(d) The procedure described above is repeated 5 times leading to a 5 samples of 10
values of θ = (c1, c2). Each sample is used to estimate the expected value of
Ŷ (2300). The 5 estimated values of E[Ŷ (2300)] are 93.59, 88.47, 95.28, 92.02,
96.48, 79.03. How do you explain this large variability?

(e) Define a procedure to choose the size of the sample of values of θ in order to
estimate accurately E[Ŷ (2300)] and P [Ŷ (2300) ≥ 80%]?

2. (a) Perform a local sensitivity analysis of Ŷ (2300) with respect to c1 and c2 at the
nominal parameter values. Which parameter has the highest relative sensitivity?

(b) Calculate five equispaced values of c1 and c2 from the minimal to the maximal
parameter values.

(c) Set c2 equal to its nominal value and calculate Ŷ (2300) for the five values of c1
defined above. Then, set c1 equal to its nominal value and calculate Ŷ (2300) for
the five values of c2.

(d) Calculate the sensitivity index of Bauer and Hamby (1991) (see textbook) for
each parameter from the computed values obtained in 2.(c). Which parameter has
the highest index?

(e) Calculate the sensitivity index of Bauer and Hamby (1991) for c2 when c1 is set
equal to its minimal value. Compare this index value with the value obtained
in 2.(d).

3. Consider a complete factorial design with three modalities per factor.

(a) How many distinct scenarios (i.e. values of θ = (c1, c2)) are included in this
design?

(b) Define a complete factorial design with three modalities per factor using only the
minimal, nominal and maximal parameter values.

(c) Calculate the general mean of Ŷi(2300) where Ŷi(2300) is the value of Ŷ (2300)

obtained with the ith scenario.
(d) The total variability of Ŷ (2300) can be measured by var[Ŷ (2300)] =

1
N

∑N
i=1[Ŷi(2300) − Ȳ ]2 where Ȳ is the mean of Ŷi(2300) and N the number

of scenarios in the factorial design. Calculate var[Ŷ (2300)].
(e) Estimate E[Ŷ (2300)|c1] for each value of c1 considered in the factorial design.
(f) Estimate E[Ŷ (2300)|c2] for each value of c2 considered in the factorial design.

(g) Estimate var{E[Ŷ (2300)|c1]} and then var{E[Ŷ (2300)|c1]}

var[Ŷ (2300)]
.

(h) Estimate var{E[Ŷ (2300)|c2]} and then var{E[Ŷ (2300)|c2]}

var[Ŷ (2300)]
.

(i) To which sensitivity indices do var{E[Ŷ (2300)|c1]}

var[Ŷ (2300)]
and var{E[Ŷ (2300)|c2]}

var[Ŷ (2300)]
correspond?

(j) Estimate var[Ŷ (2300)|c1] for each value of c1 considered in the factorial design.
(k) Estimate var[Ŷ (2300)|c2] for each value of c2 considered in the factorial design.

(l) Estimate E{var[Ŷ (2300)|c1]} and then E{var[Ŷ (2300)|c1]}
var [Ŷ (2300)].
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(m) Estimate E{var[Ŷ (2300)|c2]} and then E{var[Ŷ (2300)|c2]}

var[Ŷ (2300)]
.

(n) To which sensitivity indices do E{var[Ŷ (2300)|c1]}

var[Ŷ (2300)]
and E{var[Ŷ (2300)|c2]}

var[Ŷ (2300)]
correspond?

(o) Compare the indices calculated in 3.(n) and those calculated in 3.(i). Are they
different? Why?
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1. Introduction

A large number of studies deal with parameter estimation in regression, but crop models
have a number of characteristics which make much of this work inapplicable. The basic
problem is that crop models usually have many parameters, and often more parameters
than the number of data. Thus, it is generally numerically impossible to estimate all the
parameters. On the other hand, there is usually information in addition simply to field
data. Crop models are based on equations which describe the processes involved in crop
growth and development, and there is in general information about these processes. For
example, there might be information about the thermal time to flowering, which comes
from controlled environment experiments, or information about maximum rate of root
elongation from specific experiments on this aspect of crop growth. Thus the problem of
parameter estimation for crop models is not a straightforward regression problem, involv-
ing estimating all the model parameter values from a set of field data. The problem is
rather that of using both field data and information about growth and development to
estimate model parameters.

Another important characteristic of crop models concerns the criteria for judging them,
and therefore for judging any proposed method of parameter estimation. The quality of
model predictions is often the very explicit criterion for judging a model (see the chapter
on model evaluation). The practical consequence is that we are interested in statistical
methods that are expected to perform well when predictive quality is the major criterion.
Most statistical procedures aim rather at providing “good” parameter values (we will define
this rigorously below). Of course, this is also of interest for crop models because their
parameters often have a biological or physical meaning, and it is important for agronomists
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to determine accurately the values of such parameters. Nevertheless, the criteria of good
parameter values and of good predictions are related but not identical.

One further specificity of crop models that needs to be kept in mind is the structure of
the data. In order to have a sufficiently large and representative data set, one generally uses
data from several different experiments for crop model parameter adjustment. The result
is a data set which can be quite inhomogeneous, with different variables, and different
measurement times, in different fields. Thus, we need a method of parameter estimation
that is adapted to data sets with a complex structure.

The result of these characteristics is that parameter estimation for crop models is still
a rather open field. It is not then surprising that there is no general consensus on the best
approach to parameter estimation for these models. It is, however, rather surprising that
there has been little discussion of the issue in the literature. The problem is very often
noted, but few solutions have been proposed.

In this chapter we begin by a presentation of several important basic statistical con-
cepts. We review successively the concepts of population, samples of data, model error,
parameter, and estimation.

Next, we present nonlinear regression in the case of simple models when all parameters
can be estimated from data. We discuss several practical problems like the heterogeneity of
model error variances, correlation of model errors, and accuracy of parameter estimates.
Several estimation methods (least squares, maximum likelihood . . .) are described and
illustrated with nonlinear models predicting the kinetics of organ growth.

We then discuss the case of complex dynamic crop models that have many parameters.
Here one decides to estimate only a subset of the model parameters, and then those
parameters are estimated from data. This is actually a family of approaches, depending
on how one chooses which parameters to estimate and how they are estimated. Several
methods are described for selecting parameters and estimating their values from data and
prior information. The value of Bayesian methods is emphasized.

2. Basic notions

2.1. Population and samples of data

In standard regression, model parameters are all estimated from a sample of measurements.
Statisticians consider that this sample is taken from a target population defined by the set
of all the different possible observed values. Of course, it is impossible to know the whole
population. The sample of data is used to represent the target population and to estimate
model parameters for this population.

For illustration, a population can be defined, for instance, by the set of all yield values
that might be observed in wheat fields in northern France under standard crop management.
In this case, a sample of observations consists of N values of wheat yield measurements
taken from the population.

The size of the sample of data and the experimental design will depend on the cost of the
measurements and on the time available to perform the experiments. Both the sample size
and the experimental design have an influence on the accuracy of the parameter estimates.
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2.2. Model error

We have explained in the first chapter of this book that a crop model can be thought of
as a response function defined by f (x; θ) where f is the model equation, x is a vector
of model inputs, and θ is a vector of model parameters. This function never predicts
perfectly the response variables. The error, noted as ε = y − f (x; θ), is the difference
between the prediction and the observed response y for a given situation. ε is a sum of two
components, one corresponding to the measurement error and the other due to inadequacy
of the response function f (x; θ).

The distribution of ε can be described by using a statistical model. The error ε is then
defined as a random variable and the probability distribution of ε depends on one or several
parameters. For example, when ε ∼ N(0, σ 2), the error distribution depends on only one
parameter, σ 2, that represents the variance of the errors. The error distribution will usually
include more parameters because the errors associated with different output variables often
have heterogeneous variances or/and are correlated. For example, the errors associated
with the values of biomass predicted by a model at different dates for a given field usually
have different variances and are often correlated. In such a case, the error distribution will
depend on a large number of parameters. In general, these parameters are unknown and
must be estimated from data at the same time as the crop model parameters.

The definition of a realistic statistical model for the error distribution is an impor-
tant step in the parameter estimation process. We will see below that, the choice of an
inappropriate statistical model can have bad consequences on parameter estimates. For
several reasons, it is often necessary to define very complex statistical models to describe
realistically the distribution of the crop model errors.

2.3. Parameters

The objective of an estimation method is to estimate the values of the model parameters θ

from a sample of data. A parameter is a numerical value that is not calculated by the model
and is not a measured or observed input variable. The same quantity may or may not be
a parameter depending on circumstances. For example, initial soil mineral nitrogen may
be measured, in which case it is an input variable. In other cases it may not be measured,
in which case it is a parameter that has somehow to be estimated.

In Section 2.2, we have defined θ as a vector of parameters. What is the exact meaning
of these parameters? They represent the true parameter values. This notion is not very easy
to understand because the true parameter values are unknown in practice. To understand
its meaning, it is necessary to make some assumptions on the model errors. Here, we
assume that the crop model equations f were chosen such that E(ε) = 0, where E(.)

is the expectation operator. This is realistic when f is a correct representation of the
system. This assumption means that the model errors are centered on zero. Thus, the
average value of all the possible observations y for a given set of input variables x is
equal to the model prediction, i.e. E(y|x) = f (x; θ) where E(.|.) is the conditional
expectation operator. Now, we see that the true parameter value θ represents the parameter
value leading to E(y|x) = f (x; θ) for all values of the input variables x taken from the
population.
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2.4. Estimation

Parameter estimation is an important subject in statistics. It is useful to distinguish two
approaches, the frequentist and the Bayesian. The frequentist uses estimation methods to
approximate the true parameter values θ by using only a sample of data. For the frequentist,
parameters are not random variables but are fixed. Prior information on parameter values
are not taken into account. Different types of frequentist methods (maximum likelihood,
least squares . . .) were developed in the 1920s and 1930s by R.A. Fisher, J. Neyman, and
E. Pearson notably. The application of a frequentist method to a particular dataset gives
a point estimate of the model parameters and the function that relates point estimates to
datasets is called an estimator.

The Bayesian estimates parameters from two different types of information, a sample
of data (like the frequentist) and prior information about parameter values. The result of
the application of a Bayesian method is a probability distribution of parameter values.
All Bayesian methods proceed in two steps. The first step is to define a parameter proba-
bility distribution based on literature or expert knowledge. This distribution is called prior

parameter distribution and reflects the initial state of knowledge about parameter values.
The prior distribution can be, for example, a uniform distribution with lower and upper
bounds derived from expert knowledge or a normal distribution. The second step consists
in calculating a new parameter probability distribution from both the prior distribution
and the available data. This new distribution, called posterior parameter distribution, is
computed by using the Bayes theorem. The posterior distribution can be used in different
ways. Point estimates of parameters can be taken as the expected value or, alternatively,
the mode of the posterior distribution. The posterior parameter distribution can also be
used for generating the probability distribution of the model outputs, for instance, the
distribution of yield (see Chapter 3).

Bayesian methods are older than frequentist methods; the original paper of Rev. Thomas
Bayes was published in 1763. But the Bayesian approach was neglected by the statisticians
of the early twentieth century for two reasons. First, classical statisticians argued that the
results obtained with Bayesian methods depend on the prior distribution and, so, are
quite subjective. Second, the application of Bayesian methods requires the evaluation of
complex integrals. It was almost impossible to perform these calculations until the recent
access to inexpensive and fast computing.

Bayesian methods are attractive when parameters have a biological or physical mean-
ing. In crop models, prior information on parameter values can be obtained from past
studies carried out to analyze crop growth and development. As an example, consider the
radiation use efficiency, noted Eb. Most crop models use Eb as a parameter and numer-
ous studies has been carried out to determine the value of this parameter for different
crops. For instance, according to Jeuffroy and Recous (1999), Eb for wheat is in the range
1.09–3.8 g MJ−1 depending on the cultivar and on the method of measurement. Bayesian
methods allow agronomists to combine such information with data in order to estimate
parameter values.

But the definition of a prior distribution is not always straightforward. This is par-
ticularly difficult when the sources of information are heterogeneous. In an analysis of
parameter values of SUCROS87 reported in the literature, Metselaar (1999) found coeffi-
cients of variation for several parameters above 100%. The large variability in parameter
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values reported in the literature is due to heterogeneity of the methods used to perform
measurements, to variability of parameter values between sites–years and to differences
between expert opinions. It is clearly difficult to define a unique prior distribution for
parameter values in such situations.

2.5. Criteria for choosing a method of estimation

Suppose that you consider two or more methods for estimating the parameters of your
model. What is the best method? The first approach is to apply each method and to evaluate
the performances of the crop model by using successively the different sets of parameter
estimates. In this case, the criteria used to compare the methods of estimation are those
presented in Chapter 2. For example, if the objective is to predict accurately a particular
output variable, a natural criterion for comparing estimation methods is the mean squared
error of prediction (MSEP) value for this output variable. The best estimation method will
be the method leading to the smallest MSEP. Other criteria should be considered when
the practical objective is decision support and not only prediction (Wallach et al., 2001;
Makowski and Wallach, 2002).

The second approach is to evaluate the accuracy of the parameter estimates obtained
with the different methods. To do that, it is necessary to define new criteria. We give here
only the definitions of the criteria. Methods to calculate these criteria will be explained
later in the chapter. The first criterion is the mean squared error of the parameter estimator.
This criterion is equal to the expected value of the squared difference between the true
parameter values and their estimated values. The mean squared error of the estimator θ̂

is defined by E[(θ̂ − θ)2]. The expectation is over all the samples of data drawn from
the target population. Mean squared error gives information on the average difference
between the true parameter values and the values estimated from various data sets of
the same size and structure. A low mean squared error value indicates that the estimated
parameter values tend to be close to the true parameter values.

Mean squared error can be partitioned into two components, namely bias and variance:

E[(θ̂ − θ)2] = [E(θ̂) − θ ]2 + var(θ̂) = bias2 + variance.

The first component is the squared value of the bias, E(θ̂) − θ . The bias is a useful
criterion for evaluating the quality of an estimation method. A bias different from zero
reveals a systematic error. For instance, a positive bias indicates that the values taken by θ̂

for various datasets are, on the average, larger than the true parameter value. The second
component of the mean squared error is called variance of the estimator. This is also
an interesting criterion for evaluating the quality of an estimation method. It measures
the variability of the estimated values across data sets. A large value of var(θ̂) indicates
that a change in the dataset can have a strong effect on the estimated values. Bias and
variances influence the accuracy of the model predictions (Miller, 1990). Consequently,
it is important to use a method leading to small bias and variance to obtain accurate model
predictions.

Finally, it is useful to introduce another criterion: the correlation between estimators
of different parameters. The variance of an estimator gives information on the variability
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of the estimated parameter value across data sets but does not provide information on the
variation of a parameter relative to other parameters. Correlation is often useful for study-
ing the relationship between parameter estimates. In general, high correlation between
parameter estimators is a problem.

3. Standard nonlinear regression

When the models include a small number of parameters (i.e. ≤10), it is often possible
to estimate all parameter values from data by standard nonlinear regression. Statistical
methods for nonlinear models have been presented in details in many books (e.g. Seber
and Wild, 2003). In this section, we give only a brief overview of the most important
techniques.

3.1. Examples of simple nonlinear models

We present here a nonlinear model simulating distinct biological growth phases for lam-
inae, sheaths, and internodes of maize as a function of thermal time (degree days after
emergence). This model will be used in the next sections to illustrate several methods.
See Fournier and Andrieu (2000) for more details on multi-phase models.

The model contains a single exponential phase for the meristematic growth and the
establishment of the elongation zone Eq. (1), followed by a linear phase for stationary
extension Eq. (2), and a plateau Eq. (3) when extension is complete. It is as follows:

f (x; θ) = LMINeR1(x−T0) if T0 < x ≤ T1 (1)

f (x; θ) = α + β(x − T1) if T1 < x ≤ T2 (2)

f (x; θ) = LMAX if T2 < x (3)

with constraints

α = LMINeR1(T1−T0) (4)

LMAX = α + β(T2 − T1) (5)

to ensure continuity of the function at the phase transitions. The input variable x is cumu-
lative degree-days. The model defined by Eqs. (1–5) is referred to as Model 2 (2 phases).
We may or may not wish to ensure the continuity of the 1st derivative at the transition
between the exponential and linear phases Eqs. (1–2), which would give the additional
constraint

β = LMINR1eR1(T1−T0) (6)

The model defined by Eqs. (1–6) is referred to as Model 2-C. LMIN may be fixed arbitrarily
to be the length at which the modelling begins, which means that there are 5 parameters in
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Figure 1. The length of the internode of the 8th phytomer as a function of thermal time.

Model 2 (R1, T0, T1, T2, β) and 4 parameters in Model 2-C (R1, T0, T1, T2). Models 2 and
2-C are nonlinear because they cannot be expressed as linear combinations of parameters.
The numbers of parameters of these models are relatively small and standard nonlinear
regression techniques can be used to estimate parameter values.

Parameters of models 2 and 2-C can be estimated for each organ from measurements
of organ lengths. Figure 1 shows a fairly typical example of kinetics of organ extension,
in this case the internode for the 8th phytomer of a maize plant (phytomer = leaf +

internode + node). The measurements were obtained from plants 2–3 times a week from
sowing to harvest. The extension initiates at a certain date, after which the length increases
relatively slowly at first before the organ experiences a phase of rapid growth, followed
by a plateau when growth is completed. An interesting observation which may be made
from this figure is that the variance in the data appears to increase as a function of the
organ size. For example, the variance calculated from replicates is equal to 0.00173 cm2 at
363°C days, 0.845 cm2 at 449°C days, and 2.09 cm2 at 490°C days. A good understanding
of this important property of the variance can improve the quality of the estimation of the
parameters, as we shall see later.

3.2. Least squares estimation

3.2.1. Ordinary least squares

Suppose that a sample of N measurements, (xi, yi) i = 1, . . . , N, is available for estimating
the model parameter θ . The simplest method for estimating the model parameters is to
apply ordinary least squares (OLS). The ordinary least squares estimate of θ minimizes
the sum of the squared differences between the measurements and the model predictions

ZOLS(θ) =

N
∑

i=1

[yi − f (xi; θ)]2 (7)
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In the case of linear models, it is possible to calculate analytically ordinary least squares
estimates. The general form of a linear model is f (xi; θ) = xT

i θ where T is the transpose

matrix operator. For this type of model, the OLS estimator of θ is θ̂OLS = (XTX)−1XTY

where Y = (y1, . . . , yN )T and X is a matrix including the measured values of the input
variables. The lines of X are xT

1 , . . . , xT
i , . . . , xT

N . θ̂OLS is related to the observations Y

through a simple analytical function. This function can directly be used to calculate the
values of the parameter estimates from data.

This is generally impossible with nonlinear models; parameter estimates cannot be
expressed as functions of observations. The usual approach is to use an iterative algorithm
for minimizing ZOLS(θ). We describe below one of these algorithm, the Gauss–Newton
method (e.g. Seber and Wild, 2003).

Consider the nonlinear model defined by f (x; θ). The objective is to calculate the
value of θ minimizing ZOLS(θ). The following algorithm is used to solve this problem:

(a) Define an initial value for θ , noted as θ̂0.
(b) Linearize the model in order to replace the nonlinear model by a linear model. At this

step, the linear Taylor expansion is calculated as follows:

f (x; θ) ≈ f (x; θ̂0) +
p

∑

j=1

∂f (x; θ)

∂θj

∣

∣

∣

∣

θ̂0

(θj − θ̂0j),

where p is the total number of parameters and
∂f (x; θ)

∂θj

∣

∣

∣

∣

θ̂0

is the derivative of f (x; θ)

relatively to the jth parameter taken at θ̂0.
(c) Calculate the ordinary least squares estimate of θ for the linear model

f (x; θ̂0) +
∑p

j=1
∂f (x; θ)

∂θj

∣

∣

∣

∣

θ̂0

(θj − θ̂0j). This estimate is obtained by minimizing

∑N
i=1

{

yi −
[

f (xi; θ̂0) +
∑p

j=1
∂f (xi; θ)

∂θj

∣

∣

∣

∣

θ̂0

(θj − θ̂0j )

]}2

. As the model is now

linear, an analytical expression for the estimator can be derived as explained above.
We obtain θ̂1 = θ̂0 + ∆0, where θ̂1 is the new parameter estimates, ∆0 =
(F.TF.)−1 F.T[Y −F ], F = [f (x1; θ̂0), . . . , f (xN ; θ̂0)]T, and F. is a (N ×p) matrix

whose elements are defined by
∂f (xi; θ)

∂θj

∣

∣

∣

∣

θ̂0

.

(d) Replace θ̂0 by θ̂1 and return to step a.

For illustration, consider the simple nonlinear model, f (x; θ) = eθx , including only
one parameter θ and one input variable x. At step b, the linear Taylor expansion for this

model is eθx ≈ eθ̂0x + (θ − θ̂0)xeθ̂0x and, at step c, θ̂1 is calculated as

θ̂1 = θ̂0 +
∑N

i=1 xieθ̂0xi (Yi − eθ̂0xi )
∑N

i=1 x2
i e2θ̂0xi

.
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Different parameter values θ̂1, θ̂2, . . . , θ̂k are successively calculated with this
algorithm. It can be shown that these values converge to the ordinary least squares
estimate of θ . The algorithm stops when the difference

∑N
i=1 [yi − f (xi; θ̂k+1)]

2 −
∑N

i=1 [yi − f (xi; θ̂k)]
2 is lower than a small threshold value defined in the algorithm.

The last parameter value generated by the algorithm is used as an estimate of θ .
The Gauss–Newton algorithm and related algorithms (e.g. Gauss–Marquardt) can be

applied with commercial software like SAS (PROC NLIN, SAS/STAT User’s Guide,
1990) or S-PLUS (NLS function, SPLUS 6, 2001). It must be emphasized that numer-
ical problems often arise when the parameters to estimate are numerous (>10–15).
In some cases, the algorithms do not converge to the true minimal value of ZOLS(θ)

but to a local minimum. This problem is illustrated in Figure 2 where values of ZOLS(θ)

are reported as a function of the parameter value for a hypothetical model. There are
two local minima and one global minimum (the optimal solution). Depending on the ini-
tial value θ0, a Gauss–Newton type algorithm may or may not converge to the global
minimum. With some initial values, the algorithm will converge to a local minimum
and the resulting parameter value will differ from the least square estimate. To avoid
this kind of problem, it is important to run the algorithm with different starting values
successively. Another solution consists in using global optimization algorithm like, for
instance, simulated annealing (Goffe et al., 1994). These algorithms are less sensitive to
initial values than Gauss–Newton type algorithm and are more likely to converge to the
optimal solution. An important drawback of these algorithms is that they often require a
long calculation time. An application of simulated annealing to a crop model is described
by Mavromatis et al. (2001).

The OLS method is simple and is commonly used by crop modelers. See Grimm et al.
(1993) for an application to a crop model. This method has good properties if the model
errors are normally distributed and are independent with constant variance and zero mean
for all x values (e.g. Huet et al., 1992). Under these assumptions, the OLS estimators

• converge toward true parameter values when the number of observations is large;
• are unbiased;
• have minimum variances var(θ̂) among all unbiased estimators.

Z
OLS

(θ)

LM
LM

GM

 θ

Figure 2. Local minima (LM) and global minimum (GM).
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In many situations, the variance of the observations is not constant. For example, the
variances of the measurements displayed in Figure 1 increase with the organ size. In this
situation, the model errors are likely to have heterogeneous variances and an application
of the ordinary least squares method to our organ growth models will lead to estimators
which are unbiased but which do not have minimum variance. Another common problem
is that the model errors are not independent. In this case also, ordinary least squares
estimators do not have minimum variance.

3.2.2. Generalized least squares

Variance heterogeneity and correlation between model errors can be taken into account
by using the method of generalized least squares (Seber and Wild, 2003). The function to
be minimized is now

ZGLS(θ) = [Y − F(θ)]TV −1[Y − F(θ)] (8)

where Y is a vector including the N observations, Y = (y1, . . . , yN )T, F(θ) is a vector
including the N model predictions, F(θ) = [f (x1; θ), . . . , f (xN ; θ)]T, and V is (N × N )
variance–covariance matrix of the model errors. The diagonal elements of V are the vari-
ances of the model errors and the off-diagonal elements are the covariances of the model
errors. Ordinary least squares is a special case in which V is the identity matrix (the
diagonal elements are all equal to 1 and the off-diagonal elements are all equal to zero).

Another special case is when V is diagonal (the diagonal elements are different from 1
and the off-diagonal elements are all equal to zero). Then, ZGLS(θ) is equal to

N
∑

i=1

[yi − f (xi; θ)]2

σ 2
i

(9)

where σ 2
i is the variance of the model error εi , i = 1, . . ., N. Equation (9) is the weighted

sum of the squared differences between model predictions and observations. The value of
θ minimizing Eq. (9) is often referred to as the weighted least squares estimate.

When the matrix V is known, the minimization of Eq. (8) can be performed by using the
same algorithms as those described for ordinary least squares. The first step is to express
the matrix V as V = RTR (Cholesky decomposition) where R is an upper triangular
matrix. At the second step, the data are transformed as follows:

Y∗ = (RT)−1Y and F∗(θ) = (RT)−1F(θ)

where Y∗ and F∗(θ) are the vectors including the transformed observations and the trans-
formed predicted values respectively. Finally, the last step consists in calculating the value
of θ by minimizing [Y∗ − F∗(θ)]T[Y∗ − F∗(θ)]. That is, when V is known, the problem
can be transformed to an OLS problem. As a result, all the OLS properties hold.

The drawback of this method is that it requires the knowledge of the matrix V. In some
simple cases, it is possible to estimate the variances and covariances from replicates.
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Vold et al. (1999) describe an application to a model simulating the dynamics of carbon
and nitrogen in the soil. Their dataset includes three replicates at each date of measurement
and these replicates are used to estimate a variance–covariance matrix.

The estimation of the elements of V from replicates is often impossible in practice.
In the dataset presented in Figure 1, we see that only one measurement was performed at
some dates. In this case, it is impossible to estimate variances from replicates for all dates
of measurements. An alternative is to estimate θ and V iteratively (Gallant, 1987). A first
estimate of θ is obtained with an initial value of V (e.g. an identity matrix). Then, the
value of V is updated using the variance–covariance matrix of the model residues. This
procedure is repeated until the difference between two successive estimates is negligible.
An alternative is to use the maximum likelihood method described below.

3.3. Maximum likelihood

Suppose that N observations, Y = (y1, . . . , yN )T, are available for estimating parameters.
Let E denote the vector of the N model error terms, E = (ε1, . . . , εN )T. We assume that
E is normally distributed, E ∼ N(0, V ) where V is (N × N ) variance–covariance matrix
of the model errors. Under this assumption, the likelihood of θ and V is defined by

L(y1, . . . , yN ; θ, V ) = P(y1, . . . , yN |θ, V )

= (2π)−N/2|V |−1/2 exp{−½[Y − F(θ)]TV −1[Y − F(θ)]}

where F(θ) is a vector including the N model predictions, F(θ) = [f (x1; θ), . . . ,

f (xN ; θ)]T, and P(.) is a probability density function. The likelihood represents the proba-
bility of the observations for given values of θ and V. The maximum likelihood estimates of
θ and V are the values maximizing this probability. When V is known, the value of θ maxi-
mizing L(y1, . . . , yN ; θ, V ) is equal to the value minimizing [Y −F(θ)]TV −1[Y −F(θ)].
Thus, in this case, the generalized least squares estimator is equal to the maximum
likelihood estimator.

Numerical methods were developed for maximizing the likelihood with nonlinear mod-
els e.g. GNLS in R and SPLUS (R, http://www.r-project.org; Ripley, 2001; SPLUS6,
2001). These algorithms find the local maximum of the likelihood function if an initial
solution is proposed, via the iterative solution of linearized regression problems.

3.4. Parametric modeling of the error variance

The size of the variance–covariance matrix V is large when the measurements are
numerous. The estimation of a big matrix V can lead to numerical problems and to inac-
curate estimates. In such cases, it is useful to simplify the matrix V. A first approach is
to set some elements equal to zero. For example, when the model errors are independent,
the off-diagonal elements of the variance–covariance matrix can be fixed to zero. Then,
only the diagonal elements are estimated from data. Another approach is to describe the
matrix V using just few parameters that need to be estimated, rather than estimating each
element of the matrix.
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For illustration, we consider the estimation of the parameters of the multi-phase models
defined in Section 3.1. First, we assume that the model errors are independent i.e.
cov(εi, εi′) = 0, i �= i′. As a consequence, the variance–covariance matrix of the model
errors is diagonal. Second, we define a parametric model for the error variances in order
to reduce further the number of elements of the matrix. This approach is described below.

Figures 1 and 3 show that the variance of the measurements tends to increase with
organ length. Consequently, it seems realistic to define the following statistical model
for the error variance: var(ε) = σ 2f (x; θ)τ (Huet et al., 1996). With this model, the
variances of the errors increase with length f (x; θ) if τ > 0 and the diagonal elements
of the variance–covariance matrix depend only on θ and on two additional parameters,
namely σ and τ .

The maximum likelihood method is implemented for estimating θ , σ , and τ from data.
To apply this method, we assume that the model errors ε are normally and independently
distributed. The maximum likelihood estimates of θ , σ , and τ are then obtained by
maximizing the following likelihood function:

L(y1, . . . , yN ; θ, σ, τ ) = P(y1, . . . , yN |θ, σ, τ )

= P(y1|θ, σ, τ ) × · · · × P(yN |θ, σ, τ )

=
N
∏

i=1

1
√

2πσ 2f (xi; θ)τ
exp

{

−[yi − f (xi; θ)]2

2σ 2f (xi; θ)τ

}

(10)

where yi is the organ length measured at time xi . The likelihood Eq. (10) is the product
of the probabilities of observing each of the measured values given the values of θ , σ,

and τ .
We used GNLS to maximize the likelihood function Eq. (10) for estimating the four

parameters of model 2-C for the lamina of the phytomer 9 of a maize plant. Figure 3
shows the organ length measurements used for parameter estimation and the fitted model.
It is informative to plot on both linear and log scales so that the fit for all phases can be
assessed.
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Figure 3. Length of lamina of the 9th phytomer as a function of thermal time after emergence.
Fitted with Model 2-C. Results are shown in linear (left) and log scales (right).
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3.5. Measuring accuracy of parameter estimates

The accuracy of the parameter estimates can be evaluated by calculating the variance
of the estimator across data samples, noted var(θ̂). Most of the software developed for
estimating the parameters of nonlinear models are able to return estimates of var(θ̂). This
can be very useful, for example to compare parameter estimates obtained for different
datasets corresponding to different experimental treatments.

Sometimes, we are not only interested in the model parameters θ but also in composite
functions of the model parameters which we may wish to compare between experimental
treatments. For example, in the organ growth models presented in Section 3.1, we are
interested in the model parameters and also in the functions defined in Eqs. (5) and (6).
Although the formulae for these functions permit their calculation as a function of the
model parameters θ , it is not possible to obtain a parametric estimate of their standard
errors. The bootstrap is a nonparametric resampling method offering a solution to this
problem (e.g. Efron and Gong, 1983).

The bootstrap is based on the idea that, working with the available data only and
using re-sampling techniques, one can simulate other datasets which might have been
obtained from the same field trial. These simulated datasets can then be used to obtain
a distribution of values for the model parameter estimates. Once this is done, quantities
such as the standard error of the parameter estimator may be calculated from the series
of the estimated values obtained with the different samples.

In general, if the dataset contains N datapoints, then the standard re-sampling method
is to simply select N datapoints randomly, with repetition, from this dataset. In our case,
where each datapoint is in fact a (time, organ length) pair, there are possible problems
associated with this method, since it is likely that the resampled distribution does not
reproduce the original sampling regime, i.e. it does not respect the number of samples
at a given point in time. Aside from the fact that this is contrary to the stated aim of
bootstrap resampling above (to simulate alternative datasets which might be obtained
with the same sampling regime), there is also the possibility that any given simulated
dataset actually contains fewer dates than the original, which may prevent a numerical
solver (e.g. GNLS) from converging. We thus present a commonly used variant of the
bootstrap, which involves resampling the residuals as opposed to the data pairs.

This alternative method, which is outlined in Efron and Tibshirani (1988), is illustrated
here with our multi-phase model. We first fit the model to data and obtain estimated values
of θ , σ , and τ . Then, supposing the errors are normally distributed at any given point
in time, we may use the variance model to obtain a new set of errors, which may then
be added to the model in order to simulate a new data set. Assuming that the variance
model is appropriate for the original data this yields simulated datasets with, on average,
the same properties as the original with respect to the residuals.

Suppose that the function g(θ) is a composite of the model parameters (e.g. Eq. (5)).
The stages of the method are given below for the organ growth models:

(1) Obtain estimated parameter values θ̂ , σ̂ , τ̂ using a nonlinear model fitting procedure
(2) Obtain M sets of simulated errors E1, . . . , Ek, . . . , EM using the estimated values θ̂ , σ̂ ,

τ̂ : Ek is the set of εik sampled randomly from the normal distribution N [0, σ̂ 2f (xi; θ̂ )τ̂ ]

for all i = 1, . . . , N , where N is the number of datapoints.
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3. Add the simulated errors to the model to obtain new datasets, D1, . . . , Dk, . . . , DM

where Dk = {Yik = εik + f (xi; θ̂ )}.
4. Repeat model fitting for each of these datasets to obtain M solution vectors

θ̂1, . . . , θ̂k, . . . , θ̂M .
5. Calculate the standard error of the function, g, of the parameters using the following

formula:

SE[g(θ)] =

√

√

√

√

√

1

M − 1

M
∑

j=1

[

g(θ̂j ) −
1

M

M
∑

k=1

g(θ̂k)

]2

.

The model 2-C was fitted to measurements of lamina length obtained for the phy-
tomers 4–15 of maize plants. Plants were taken from two fields, one field sown at a normal
plant density (9.5 pl.m−2), and another field sown at a high plant density (30.5 pl.m−2).
Parameters of model 2-C were estimated by maximum likelihood for each phytomer and
each density. In Figure 4, we compare the estimated values for 4 different functions g,
namely final lamina length LMAX = α + β(T2 − T1), parameter R1, slope in linear phase
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Figure 4. Estimated values for final length LMAX = α + β(T2 − T1) (a), R1 (b), slope in linear
phase β = LMAXReR1(T1−T0) (c), and duration of linear phase T2 −T1 (d) for the laminae in normal
density and high density maize crops. Points and squares indicate average parameter estimates and
error bars represent ±2 standard errors, as calculated from the bootstrap with 500 samples of data.
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β = LMINReR1(T1−T0), and duration of linear phase T2 − T1. In all cases, the standard
errors have been calculated via the bootstrap method, using M = 500 samples of data.
From these results, it becomes possible to

• observe the evolution of parameter values as a function of phytomer number;
• compare differences in parameter values of the corresponding organ between treatments

(normal density vs. high density).

3.6. Convergence of the iterative procedures

All the methods discussed above all require the minimization or the maximization of
a parameter function (e.g. ZOLS(θ)). As explained before, these functions can rarely
be minimized or maximized analytically and so an iterative procedure for finding the
optimal parameter values is usually required. When the number of parameters is high
relatively to the number of available data, these algorithms often fail to converge to the true
optimum.

We encountered this problem with Model 2. We considered the estimation of the
5 parameters of Model 2 for the sheath of the 9th phytomer of a maize plant from 50 length
measurements. We tested 100 initial vectors, ran GNLS with these initial values, and com-
pared the 100 resulting series of parameter estimates. Figure 5 shows the 100 estimated
values of parameters R1 and T0. The result reveals that the estimated parameter values
depend strongly on the initial parameter values.

This problem may arise with numerical solvers which operate by starting with a pro-
posed initial solution and then converging to a maximum of a likelihood function or to
a minimum of a least squares function. Nonconvergence of numerical solvers is usually
indicative of an intrinsic problem of matching the model to the data. The presence of a
rather flat likelihood or least squares function is commonly due to the fact that the ratio of
parameters to data points is too high, in other words, the model has too many parameters.
So in this case all the solutions should be viewed with caution.
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It is also important to note that parameter estimates can have very high variance when
numerous parameters are estimated simultaneously from a small number of data. High
variances of parameter estimates can lead to high MSEP values (i.e. inaccurate model
predictions) as shown in Chapter 2. Thus, it is important to keep the ratio of the num-
ber of estimated parameters to the number of observations relatively low. According
to Harrel (2001), the ratio of the number of estimated parameters to the number of
observations should not be higher than about 1/20.

4. Estimation of parameters of complex crop models

Complex dynamic crop models include many parameters. For example, the STICS crop
model (Brisson et al., 1998) includes more than 200 parameters. The standard statistical
methods presented in Section 3 cannot be directly applied to these models. The estima-
tion of a large number of parameters by least squares or maximum likelihood leads to
inaccurate estimated values (high variances of the parameter estimators) and to inaccu-
rate model predictions (high MSEP). This problem is often called overparametrization.
Another problem, already encountered in Section 3.6, is that the numerical solvers pre-
sented in Section 3 often fail to converge to the optimum when the parameters are too
numerous. Finally, in many crop models, it is impossible to estimate simultaneously all
the parameters because several parameters are unidentifiable due to the structure of the
model equations. Lack of identifiability occurs when several sets of parameters lead to
the same model prediction.

For all these reasons, a common practice is to select a subset of parameters, to estimate
those parameters from data by least squares, and to set the others equal to predefined
values. The implementation of this approach requires one to decide which among all
the parameters will be adjusted to the data and to choose a method for estimating the
values of the selected parameters. These two issues are discussed below. This is one way
of combining data and prior information for parameter estimation. An alternative is a
Bayesian approach which is also discussed below.

4.1. Selection of parameters to estimate

Four methods are proposed here for selecting parameters:

• selection based on the literature;
• selection to avoid identifiability problems;
• sensitivity analysis;
• statistical choice of parameters to estimate.

4.1.1. Selection based on the literature

The selection of parameters is often based on literature. The principle is to estimate with
data only the parameters that were not sufficiently studied in the literature. Wellknown
parameters are fixed to values provided by the literature and the others are estimated
using experimental data. This approach was applied by Bonesmo and Bélanger (2002) to
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estimate 17 parameters of a crop model. These authors set four wellknown parameters
equal to values provided by the literature. The others were estimated by using a dataset.

An important drawback of this method is that it is not easy to determine if the informa-
tion provided by the literature is sufficient or not. Therefore, selection of parameters based
on literature has strong subjective elements. Note that this approach does not provide any
protection against overparametrization.

4.1.2. Selection to avoid identifiability problems

Identifiability problems occur when there is no unique solution to the parameter estimation
problem. A careful analysis of the model equations is often useful to avoid this kind of
problem.

This approach can be illustrated with a submodel of the AZODYN crop model (Jeuffroy
and Recous, 1999). This submodel includes three output variables, namely, above-ground
winter wheat dry matter (DM, kg ha−1), leaf area index (LAI, m2 m−2), and nitrogen
uptake (NU, kg ha−1). These variables are simulated daily starting at the end of winter
until flowering in the absence of nitrogen stress, water stress, pests, and diseases. Dry
matter is calculated as follows:

DMj = DMj−1 + EBMAX × f tj−1 × EIMAX[1 − exp(−K × LAIj−1)]

× C × grj−1

where DMj and DMj−1 represent dry matter on days j and j − 1 respectively, ftj−1 is a
function taking into account the temperature on day j −1, grj−1 is the global radiation on
day j − 1 (MJ ha−1). C, EBMAX (kg MJ−1), EIMAX, and K are four parameters. Before
flowering, LAIj−1 is calculated in function of the critical nitrogen uptake level on day
j − 1 (NUCj−1, kg ha−1) as follows:

LAIj−1 = D × NUCj−1

where D is a parameter. Consequently, DMj is related to NUCj−1 by

DMj = DMj−1 + EBMAX × ftj−1 × EIMAX[1 − exp(−K × D × NUCj−1)]

× C × grj−1.

The last equation shows that, when only dry matter measurements are available, it not
possible to estimate simultaneously K and D, and it is also impossible to estimate simul-
taneously EBMAX, C, EIMAX. Only the products EBMAX × C × EIMAX and K × D

can be estimated because simulated dry matter depends only on these two products.
A numerical application shows that many sets of parameter values give identical val-
ues of EBMAX × C × EIMAX and K × D: we obtain K × D = 0.02016 with K = 0.72
and D = 0.028 but also with K = 0.6 and D = 0.0336. Only two parameters can be
estimated from dry matter measurements, one parameter among (EBMAX, C, EIMAX) and
one parameter among (K, D). When both dry matter and LAI measurements are available,
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it is possible to estimate one more parameter. As D has an influence on the LAI, it is possible
to estimate simultaneously K and D from dry matter and LAI measurements. However, it is
still impossible to estimate EBMAX, C and EIMAX. Therefore, it is necessary to fix two
of EBMAX, C, and EIMAX and to estimate the remaining parameter.

4.1.3. Selection by sensitivity analysis

Another method for selecting parameters is to perform a sensitivity analysis. The principle
is to calculate a sensitivity index for each parameter and to select parameters with high
sensitivity index values. This method allows modelers to identify the parameters that have
a strong influence on the output variables of a model. Only these parameters are estimated
from data and others are fixed to values provided by the literature. The implementation
of this method requires the definition of a threshold of sensitivity. A common approach
consists in defining the number of parameters to estimate before performing the sensi-
tivity analysis. An interesting application is presented in Harmon and Challenor (1997).
Chapter 3 provides more detail on this subject. Even though this method protects against
estimating parameters that would be very hard to estimate from data, it does not protect
against overparametrization.

4.1.4. Selection to minimize error of prediction

We present here a statistical method for selecting the parameters to estimate
(Wallach et al., 2001). With this method, parameters are selected in order to minimize the
errors of prediction of the crop model. The method is very similar to forward regression.
It is implemented in three steps:

Step 1: Definition of a method for estimating model parameters and definition of a

criterion for evaluating the accuracy of the model predictions. Wallach et al. (2001) con-
sider the crop model 2CV. This dynamic model includes 26 parameters and three output
variables, namely, maize yield, biomass and LAI. The method chosen for estimating param-
eters is weighted least squares. The criterion minimized with this method is a weighted
sum of squared model errors denoted as ZWLS. The criterion chosen for evaluating the
accuracy of the model predictions is MSEP estimated by cross validation, noted here as
MSEPcv (see Chapter 2 for further explanations about MSEP).

Step 2: Selection of the parameters to estimate. First, each parameter is adjusted to data
individually to minimize ZWLS, while the other parameters all keep their initial values
(provided by the literature). The parameter that leads to the smallest value of ZWLS is
the first parameter selected. Next, all combinations of the best single parameter and one
of the remaining parameters are adjusted to minimize ZWLS. The best second parameter
is then selected, and so on. At the end of this step, the best models with 1, 2, 3, 4, . . .

adjusted parameters are known. Note that this procedure of selection could be replaced
by sensitivity analysis.

Step 3: How many parameters? The values of MSEPcv are calculated for the models
from Step 2 (with 1, 2, 3, . . . adjusted parameters). The model finally chosen is the model
with the smallest value of MSEPcv.

The results obtained for the 2CV crop model are presented in Table 1. The square root
of MSEPcv (RMSEPcv) calculated for yield is reported as a function of the number of
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Table 1. Root mean squared prediction error values estimated by cross validation for yield
(RMSEPcv) when 0, 1, 2, 3, or 4 parameters of the crop model 2CV are estimated from experimental
data (Wallach et al., 2001).

Number of estimated parameters 0 1 2 3 4

RMSEPcv (t ha−1) 2.48 2.17 1.68 1.50 1.57

adjusted parameters. The model with zero adjusted parameter is the 2CV model with all
parameters set equal to their initial values. In this case, RMSEPcv is equal to 2.48 t ha−1.
Table 1 shows that RMSEPcv is lower when some of the model parameters are adjusted
to data. The smallest value of RMSEPcv is obtained when three parameters are adjusted
to data. The model predictions are less accurate when more than three parameters are
estimated. In this example, the optimal solution is to estimate only three parameters from
data and to fix the other 23 parameters to initial values.

The method described above is very attractive but is not easy to apply. The calcula-
tion time required to perform cross validation can be very long. Moreover, when data
are not numerous, cross validation can give inaccurate results. A solution is to replace
MSEPcv in Step 3 by a simpler criterion like the Akaike Information Criterion (AIC)
(Sakamoto et al., 1986) or the Bayesian Information Criterion (BIC) (Schwarz, 1978)
defined by:

AIC = −2 × log Lik + 2 × P

BIC = −2 × log Lik + log(N) × P

where log Lik is the logarithm of the model likelihood (see Section 3.3), P is the number
of estimated parameters and N is the number of data. A simulation study was carried out
by Tremblay and Wallach (2004) to compare performances of the various criteria for a
particular crop model. The results showed that, for this model, the best criterion is not
MSEPcv but a version of BIC corrected for small samples.

A major advantage of this statistical approach is that it protects against overparametriza-
tion. This method is in fact designed to minimize MSEP by limiting the number of
parameters to estimate.

4.1.5. Bias due to parameter selection

When only a subset of parameters is estimated from data, the estimators are likely to be
biased. This problem is often called compensation. Two types of bias can occur. The first
one is called omission bias (Miller, 1990). This bias is due to the fact that some of the
model parameters are not estimated from data but are fixed to some pre-defined values.
The omission bias is illustrated here with the following model:

y = α1x1 + α2x2 + ε



120 D. Makowski et al.

where x1 and x2 are two explanatory variables, and α1 and α2 are two parameters. We now
assume that the modeler decides to set α2 equal to zero and to estimate α1 from N

measurements yi , i = 1, . . . , N. In this case, the ordinary least squares estimate of α1 is
equal to

α̂1 =

∑N
i=1 x1iyi

∑N
i=1 x2

1i

.

This estimator is biased because

E(α̂1) = α1 +

∑N
i=1 x1ix2i

∑N
i=1 x2

1i

α2

where α1 and α2 are the true parameter values. We see that E(α̂1) �= α1 if α2 �= 0. The
extent of the bias of α̂1 depends on the true value of the second parameter (α2). The bias is
large when α2 differs strongly from zero i.e. from the value at which the second parameter
was fixed by the modeler. More generally, the omission bias depends on the differences
between the values at which the nonestimated parameters are fixed and the true values of
these parameters.

The second type of bias is called selection bias. This bias occurs only when the same
data are used twice, first to select the parameters and then to estimate the parameter
values. This is the case for the selection method described in Section 4.1.4. The extent of
the selection bias is not well known but, potentially, this bias can have an influence on
the accuracy of model predictions (Miller, 1990).

4.2. Application of least squares to dynamic crop models

Once a subset of parameters selected, it is possible to estimate parameter values by least
squares, as shown for standard nonlinear regression. Here, we show how to apply this
method for estimating the parameters of the dynamic crop model AZODYN. This example
is used to discuss different important practical issues.

4.2.1. Example

We consider a version of the AZODYN crop model that includes 18 parameters and
three output variables, namely above-ground dry matter (kg ha−1), leaf area index (LAI),
nitrogen uptake (kg ha−1). These variables are simulated daily between the end of winter
and flowering. Table 2 shows the initial values of the parameters. The objective here
is to estimate four parameters, namely, EBMAX (radiation use efficiency), D (ratio of
LAI to critical level of nitrogen uptake) K (radiation extinction coefficient), and VMAX

(maximal rate of nitrogen uptake). The ranges of possible values of these parameters as
deduced from the literature are displayed in Table 2. The other parameters are set equal
to values found in the agronomic literature (Jeuffroy and Recous, 1999) (Table 2). Thus,
the parameters of the critical nitrogen concentration function (E, F, G, H, L, M, N, P),
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Table 2. Model parameters, initial values, and ranges of variation.

Parameter Definition Initial value Range of variation

EBMAX Radiation use efficiency 3.3 g MJ−1 1.8–4
K Radiation extinction coefficient 0.72 0.6–0.8
D LAI/critical nitrogen uptake 0.028 0.02–0.045
VMAX Maximal rate of nitrogen uptake 0.5 kg ha−1.°Cd−1 0.2–0.7
C Photosynthetically active radiation/

global radiation
0.48

Tmin Minimal temperature for photosynthesis 0°C
Topt Optimal temperature for photosynthesis 15°C
Tmax Maximal temperature for photosynthesis 40°C
EIMAX Ratio of intercepted to incident radiation 0.96
Tep-flo Sum of temperature between earing and

flowering
150°Cd

E Parameter of the critical nitrogen
concentration function

1.55 t ha−1

F Parameter of the critical nitrogen
concentration function

4.4%

G Parameter of the critical nitrogen
concentration function

5.35%

H Parameter of the critical nitrogen
concentration function

−0.442

L Parameter of the maximal nitrogen
concentration function

2 t ha−1

M Parameter of the maximal nitrogen
concentration function

6%

N Parameter of the maximal nitrogen
concentration function

8.3%

P Parameter of the maximal nitrogen
concentration function

−0.44

the parameters affecting photosynthesis (TMIN, TOPT, TMAX), and the parameters C and
Tep-flo were previously estimated in past studies and are not reestimated here.

The four parameters are estimated by using dry matter, nitrogen uptake, and LAI mea-
surements obtained in Grignon (Paris Basin, France) during six years (1992, 1995, 1996,
1998, 1999, and 2001). Measurements were obtained each year at 8–18 different dates
between end of winter and flowering. Three replicates were performed at each date of
measurements. The variances of the dry matter measurements obtained in 1995 are dis-
played in Figure 6. Each variance was calculated from three replicates. Figure 6 shows
that the variances are very heterogeneous and tend to increase with time. Figure 7 presents
the measurements averaged over replicates for the year 1999.

In order to take variance heterogeneity into account, we estimate the parameters by
using weighted least squares. We note ydm

ij , ynu
ij , yl

ij are the measurements of dry matter,
nitrogen uptake, and LAI averaged over replicates for year i, i = 1, . . . , 6, and time tj ,
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Figure 6. Variances of winter wheat dry matter measurements (kg2 ha−2) obtained in Grignon in
1995 at different dates between end-of-winter and flowering.
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Figure 7. Measurements of dry matter, nitrogen uptake, and LAI obtained in Grignon in 1999. Each
point represent an average of three replicates.
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j = 1, . . . , Ni . The four parameters are estimated by minimizing:

ZWLS(θ) =

6
∑

i=1

Ni
∑

j=1

[yDM
ij − f DM(xij; θ)]2

vâr(yDM
ij )

+

6
∑

i=1

Ni
∑

j=1

[yNU
ij − f NU(xij; θ)]2

vâr(yNU
ij )

+

6
∑

i=1

Ni
∑

j=1

[yl
ij − f l(xij ; θ)]2

vâr(yl
ij)

where f DM(xij; θ), f NU(xij; θ), f l(xij; θ) are the simulated values of dry matter, nitrogen
uptake, and LAI for year i, i = 1, . . . , 6 and time tj , j = 1, . . . , Ni . vâr(yDM

ij ), vâr(yNU
ij ),

vâr(yl
ij) are the empirical variances (calculated from the replicates) for each of the three

types of measurements at time tj , j = 1, . . . , Ni . The variance vâr(ys
ij) is calculated as

vâr(ys
ij) =

1

R(R − 1)

R
∑

k=1

[ys
ijk − ys

ij ]
2

where ys
ijk is the kth replicate of measurement s at year i and date tj and R = 3. θ is

the vector including the four parameters: θ = [EBMAX, K, D, VMAX]T . Note that this
method adequately accounts for differences in magnitude of the different variables.

ZWLS(θ) is minimized by using the S-PLUS function NLS. Before applying NLS,
observations and model predictions were divided by the empirical variances calculated
from replicates. This is a way to apply weighted least squares using an ordinary least
squares algorithm. Initial and estimated parameter values are reported in Table 3.

Except for VMAX, the results show that the estimated parameter values do not differ
much from their initial values. Table 4 shows the root mean squared error (RMSE) values
obtained with initial and estimated parameter values for dry matter, nitrogen uptake and
LAI. The RMSE values for dry matter and nitrogen uptake are lower when the parameters
are estimated by weighted least squares. The RMSE values obtained for LAI with initial
and estimated parameters are similar.

Table 3. Initial parameter values and values estimated by weighted least
squares. The standard errors associated with the parameter estimates are
presented between brackets.

Parameter Initial value Estimated value

EBMAX (g MJ−1) 3.3 3.29 (0.11)
K 0.72 0.74 (0.06)
D 0.028 0.028 (0.001)
VMAX (kg ha−1°Cd−1) 0.5 0.38 (0.02)
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Table 4. RMSE values obtained with initial parameter values and with values estimated by weighted
least squares.

Parameter values RMSE

Dry matter (kg ha−1) Nitrogen uptake (kg ha−1) LAI

Initial values 614.9 34.7 0.41
Estimated values 607.2 27.7 0.41

4.2.2. Constrained parameter estimation

As crop model parameters are physically or biologically interpretable, it is sometimes
useful to constrain parameter values between lower and upper limits, θl ≤ θ ≤ θu.
These limits are set after considering the ranges of values commonly reported in the
literature. Algorithms in commercial softwares often let the user set limits. Modelers can
also implement constrained parameter estimation themselves by using a transformed model
noted f (x; θNEW ). f (x; θNEW ) is determined by expressing the initial parameters θ as

θ =
θu exp(θNEW ) + θl

1 + exp(θNEW )
.

Then, an unconstrained estimation of θNEW is performed. As exp(.) > 0, the trans-
formation ensures that θl ≤ θ ≤ θu during the unconstrained estimation of θNEW .

Constrained estimation was not necessary with AZODYN because the estimated values
reported in Table 3 fall within the limits defined in Table 2. An application of constrained
estimation is presented by Vold et al. (1999).

4.2.3. Problem related to sequential estimation of groups of parameters

A widespread approach for estimating parameters of crop models consists in estimating
sequentially groups of parameters with different types of measurements. This approach
is applied by Mavromatis et al. (2001) for estimating the parameters of the CROPGRO-
Soybean model. In the study, a first group of two parameters is estimated using flowering
date measurements. Next, a second group of three parameters is estimated using matu-
rity date measurement. Finally, a third group of two parameters is estimated from yield
measurements.

The sequential approach is a simple way to take into account several types of measure-
ments. Another interest is that, as only a small number of parameters are estimated at each
step, the implementation of this method is generally numerically feasible. However, this
method has several important drawbacks. In most of the crop models, a given parameter
has an influence on several output variables. In such cases, it is not natural to use only
one type of measurement for estimating the parameter value. It seems more logical to use
all types of measurements available. Another problem is that the results of the sequential
method generally depend on the sequence of the estimation of the different groups of
parameters. This point is illustrated below with the AZODYN crop model.
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We estimate sequentially the parameters EBMAX, D, K, and VMAX with the data
described in Section 4.2.1. Some of these parameters influence several output variables.
For example, EBMAX and K influence the three output variables of the model, namely,
dry matter, nitrogen uptake, and LAI. We define here three groups of parameters and
estimate sequentially each group with a particular type of data. The three groups are:
θ1 = [EBMAX, K]T, θ2 = [VMAX], and θ3 = [D]. First, θ1 is estimated with dry matter
measurements by minimizing:

ZOLS(θ1) =

6
∑

i=1

Ni
∑

j=1

[yDM
ij − f DM(xij; θ1, θ2, θ3)]

2

with θ2 and θ3 fixed to their initial values (Table 2). Second, θ2 is estimated with nitrogen
uptake measurements by minimizing:

ZOLS(θ2) =

6
∑

i=1

Ni
∑

j=1

[yNU
ij − f NU(xij; θ̂1, θ2, θ3)]

2

where θ̂1 is the parameter vector estimated at Step 1 and θ3 is fixed to its initial value.
Finally, θ3 is estimated with measurements of LAI by minimizing:

ZOLS(θ3) =

6
∑

i=1

Ni
∑

j=1

[yl
ij − f l(xij; θ̂1, θ̂2, θ3)]

2

where θ̂2 is the value of θ2 estimated at Step 2. The following parameter values are
obtained: ÊBMAX = 3.05, K̂ = 0.96, D̂ = 0.028, and V̂MAX = 0.38. The same
procedure is applied a second time with three other groups of parameters: θ1 = [EBMAX],
θ2 = [VMAX], θ3 = [K, D]T. With these new groups, the parameter K is estimated from
LAI measurements and not from dry matter measurements as before. We now obtain the
following estimated parameter values: ÊBMAX = 3.34, K̂ = 0.39, D̂ = 0.035, and
V̂MAX = 0.39. These new values differ strongly from the previous estimates. This result
shows that the result of a sequential procedure depends on the sequence of the different
estimations and on the type of data used for each estimation. It is much more desirable
to estimate all parameters simultaneously by using the weighted least squares method as
shown in Section 4.2.1.

4.2.4. How to take into account the correlation of residual errors?

In the previous section, we estimated some of the parameters of AZODYN by using the
weighted least squares method with weights calculated from the variances of the mea-
surement replicates. This method gives unbiased parameter estimators with minimum
variances if the variances of the model errors are proportional to the variances of the mea-
surement replicates and if the model errors are independent. It is important to check
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these assumptions. We show below how to check graphically the hypothesis of
“independently distributed model errors” for AZODYN.

In Section 4.2.1, four parameters of AZODYN were estimated from six years of data.
In order to study the structure of the model residuals, the differences between observations
and predictions are now calculated for 1992 and 1995. Model predictions are computed
by using the estimated parameter values given in Table 3. The residuals for dry matter
predictions for years 1992 and 1995 are displayed in function of time in Figure 8. Different
symbols are used for the two years. Obviously, the residuals are not homogeneously
distributed. Almost all the residuals obtained in 1995 are positive whereas all the residuals
obtained in 1992 are negative. In other words, dry matter is overestimated in 1992 and
underestimated in 1995. The hypothesis of “independently distributed model errors” is
not realistic here.

This problem is quite general. Correlations between model residuals often arise when
several measurements are performed at different dates in a given site-year. Site-year char-
acteristics have a strong influence on observations and, as only a part of the between
site-years variability can be predicted by crop models, model residuals obtained in a
given site-year are often correlated. For example, when a model overestimate dry matter
at a given date and a certain site-year, because of some local factor not accounted for, it is
likely that predictions obtained for the same site-year at different dates will also result in
overestimation.

Correlation between residuals is an important problem with no simple solution. When
model errors are correlated, the application of ordinary or weighted least squares leads
to estimators that are unbiased but not of minimum variance. Several methods were
developed by statisticians for taking into account correlations but the application of these
methods to dynamic crop models is impractical in most cases.

Generalized least squares was specifically developed to take into account correlated
model errors. Its implementation supposes the estimation of a matrix including N variances
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Figure 8. Dry matter residuals (observed–predicted) obtained with AZODYN for two years.
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and N(N − 1)/2 covariances, where N is the number of measurements. With crop models,
the dimension of this matrix is usually very high. If we consider our example based on the
AZODYN crop model, the number of measurements (averaged over replicates) available
for estimating the parameters is equal to 201. Consequently, the variance–covariance
matrix of the model errors is 201 by 201 matrix including 201 variances and 20 100
covariances. The estimation of these elements directly from the model residues will lead
to inaccurate estimates and may cause numerical problems. A solution is to try to simplify
this matrix by assuming many covariances equal to zero. Figure 8 shows that the residuals
obtained in the same year are strongly correlated. However, we did not find any evidence
of correlation between residuals obtained in different years, or between residuals obtained
in the same year but for different types of measurements. Thus, it seems reasonable to
estimate only the covariances between residuals obtained at the same year and for the
same type of measurement, and to set the other covariances equal to zero. The problem
is now reduced to the estimation of eighteen (3 types of measurement × 6 years of
experiment) Ni by Ni variance–covariance matrix, where Ni is the number of dates of
measurements obtained in year i (Ni is in the range 8–18). The total number of nonzero
covariance terms is equal to 1188. This is much lower than 20 100 but still quite large.
If all measurements had been performed at the same dates every year, it would have
been possible to reduce the number of elements further by assuming for each type of
measurement that cov(εij, εij′) = cov(εi′j, εi′j′) ∀i, i′ ∈ [1, . . . , 6], ∀j, j ′ ∈ [1, . . . , Ni]
where i and j are the indices of years and dates of measurement respectively. In our
example, the dates of measurement were not the same every year and, as a consequence,
this approach cannot be applied here.

4.2.5. Mixed-effect model

The use of a mixed-effect model is a parsimonious way to take into account correlation
between residuals (e.g. Davidian and Giltinan, 1995). The general principle is to define
some of or all the model parameters as random variables. The probability distribution of
these parameters describes the between site-year variability of the parameter values. One
important advantage of this method is that the number of estimates to be made from data
is relatively low. With the generalized least squares method, the covariances between pairs
of error terms have to be estimated. The number of estimates becomes very high as soon
as more than few measurements are included in the data set. In a mixed-effect model,
only the expected values, variances and covariances of the model parameters have to be
estimated.

We give a simple example here. Suppose an observation y is related to time t through
the following linear model:

yij = αi + βi tij + eij

where yij is the jth measurement obtained on the ith site-year at time tij. αi and βi

are the two parameters of the regression for site-year i. We assume that the linear
model holds for all site-years, but that the values of the two parameters vary between
site-years. We also assume that αi and βi are independent and are normally distributed,
αi ∼ N(µα, σ 2

α ) and βi ∼ N(µβ , σ 2
β ). The expected values, µα and µβ , represent the
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average values of the parameters in the population of site-years considered. The variances,
σ 2

α and σ 2
β , provide information on the variability of parameters values across site-years.

Finally, we assume that the within site-year model error eij is distributed as eij ∼ N(0, σ 2
e )

and is independent from αi and βi .
In this model, µα + µβ t represents the “average response” of y for all site-years.

Consequently, the difference between an observation yij and the average response is
defined by:

εij = yij − (µα + µβ tij) = αi + βi tij + eij − (µα + µβ tij).

Now, consider another measurement, yij′ , obtained in the same site-year i, but at a
different date tij′ . The covariance of εij and εij′ is defined by

cov(εij, εij′) =
var(εij + εij′) − var(εij) − var(εij′)

2
.

As var(εij) = σ 2
α + σ 2

β t2
ij + σ 2

e and var(εij + εij′) = 4σ 2
α + σ 2

β (tij + tij′)
2 + 2σ 2

e ,

we obtain cov(εij, εij′) = σ 2
α + tijtij′σ

2
β .

This result shows that the covariance of two error terms εij and εij′ depends only on
two parameters, namely, σα and σβ . In other words, the covariances of all pairs of error
terms can be directly calculated from σα and σβ , and the problem of the estimation of the
variance–covariance matrix is reduced to the estimation of only these two parameters.

It was shown that, in some cases, the use of a mixed-effect model improves the accu-
racy of the estimation compared to least squares (Davidian and Giltinan, 1995; Pinheiro
and Bates, 2000). Another argument in favor of this type of model is given by Makowski
and Wallach (2002). These authors showed that mixed-effects models lead to better nitro-
gen fertilizer recommendations than fixed parameter models. The quality of model-based
decision rules appears to be improved by using random parameters. But some important
numerical problems may arise when implementing this method with complex nonlinear
models. This is illustrated in Makowski et al. (2001). The authors considered a simple
static model including only 10 parameters and showed that it was not possible to estimate
a full 10 × 10 variance–covariance matrix of parameters. It was necessary to simplify the
matrix. As far as we know, this approach has never been applied to a complex dynamic
crop model.

4.3. Bayesian methods

4.3.1. Introduction

Bayesian methods are becoming increasingly popular for estimating parameters of com-
plex mathematical models (e.g. Campbell et al., 1999). This is because the Bayesian
approach provides a coherent framework for dealing with uncertainty. This is also due
to the increase in the speed of computer calculation and the recent development of new
algorithms (Malakoff, 1999).

The principle is to start with a prior probability distribution of the model parame-
ters whose density is noted P(θ). This prior distribution describes our belief about the
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parameter values before we observe the set of measurements Y. In practice, P(θ) is based
on past studies, expert knowledge, and literature. The Bayesian methods then tell us how
to update this belief about θ using the measurements Y to give the posterior parameter
density P(θ |Y ) (density of θ conditional on the data Y). What we now believe about θ is
captured in P(θ |Y ).

All the estimation methods described in Sections 3 and 4.2 are called frequentist
methods. With these methods, the parameters θ are fixed, but the parameter estimators are
random because they depend on observations. The variances of these estimators can also
be computed (for example, the variance of an ordinary least squares estimator) and reflect
the variability of the data we might have observed in other samples (see Section 3.5 for
an illustration).

In the Bayesian approach, the parameters are defined as random variables and the prior
and posterior parameter distributions represent our belief about parameter values before
and after data observation. This approach has several advantages:

• parameters can be estimated from different types of information (data, literature, expert
knowledge);

• the posterior probability distribution can be used to implement uncertainty analysis
methods (see Chapter 3);

• the posterior probability distribution can be used for optimizing decisions in face of
uncertainty (see Chapter 6).

The purpose of the Bayesian methods presented in this section is to describe P(θ |Y ).
We can see that, with simple models, it is possible to determine the analytical expression
of the posterior density but that, in most cases, P(θ |Y ) can only be approximated.

4.3.2. Example

The practical interest of a Bayesian approach for estimating parameters is illustrated here
in a simple example. Suppose we want to estimate yield for a given field. The unknown
true yield value is noted θ . Two types of information are available for estimating θ . The
first type of information comes from an expert. According to this expert, the approximate
yield value must be µ = 5 t ha−1 and the uncertainty about yield value is τ = 2 t ha−1.
µ and τ are used to define the prior yield distribution, θ ∼ N(µ, τ 2). The second type
of information is an imperfect yield measurement performed in a small plot within the
field. We assume that this measurement is normally distributed and is unbiased i.e. the
expected value of the measurement is equal to θ . Under this assumption, the distribution
of the measurement is defined by Y |θ ∼ N(θ, σ 2) where Y is the measurement and σ 2 is
the variance of the measurement. We assume that σ is known with σ = 1 t ha−1. Note
that P(Y |θ) represents the likelihood of θ .

Our objective is to determine the analytical expression of the posterior distribution

of θ . For this, we first derive the joint probability distribution of
(

θ

Y

)

. As θ ∼ N(µ, τ 2)

and Y |θ ∼ N(θ, σ 2), we have

Y ∼ N(µ, τ 2 + σ 2)
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and

(

θ

Y

)

∼ N

[(

µ

µ

)

,

(

τ 2 τ 2

τ 2 τ 2 + σ 2

)]

.

The posterior distribution is then derived using the following property (e.g. Saporta, 1990):

if

(

A

B

)

∼ N

{[

E (A)

E (B)

]

,

[

var(A) cov(A, B)

cov(A, B) var(B)

]}

then A|B is normally distributed and

E(A|B) = E(A) + cov(A, B)

var(B)
[B − E(B)]

var(A|B) = var(A) − cov(A, B)2

var(B)
.

We obtain

E(θ |Y ) = µ + τ 2

τ 2 + σ 2
(Y − µ)

and

var(θ |Y ) = τ 2 − τ 4

τ 2 + σ 2
.

Finally, the posterior distribution can be expressed as:

θ |Y ∼ N
⌊

(1 − B)µ + BY , (1 − B)τ 2
⌋

(11)

where B = τ 2/(τ 2 + σ 2). According to Eq. (11), E(θ |Y ) is a weighted sum of the prior
mean and of the measurement. The weight B depends on the prior variance τ 2 and on the
variance of the error of measurement σ 2. As τ = 2 t ha−1 and σ = 1 t ha−1, we have
B = 4/5, E(θ |Y ) = 1/5µ + 4/5Y = 1 + 4/5Y , and var(θ |Y ) = 4/5.

Let us compare two different estimates for θ according to their properties. The first one
is θ̂ML = Y . This is in fact the maximum likelihood estimate of θ . The second estimate is
the expected value of the posterior distribution, θ̂B = 1 + 4/5Y, calculated from Eq. (11).
The first estimate depends only on the observation whereas the second one depends on
both the data and the prior parameter distribution. It is interesting to note that, contrary
to θ̂ML, θ̂B is biased because EY |θ (θ̂B) = 1 + 4

5θ . So EY |θ (θ̂B) �= θ when θ �= 5. The

advantage of using θ̂B is that its variance – varY |θ (θ̂B) = 16
25σ 2 = 16

25 – is lower than the

variance of θ̂ML, varY |θ (θ̂ML) = 1.
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4.3.3. Computation of the posterior mode

Because crop models are very complex, it is impossible to derive an analytical expression
of P(θ |Y ) but, under some assumptions, it is possible to calculate its mode. This method
returns only a single value for each parameter, the value maximizing P(θ |Y ).

Suppose that p parameters, θ = (θ1, . . . , θp)T , have to be estimated. Define the Normal
prior parameter density as

P(θ) = (2π)−p/2|
|−1/2 exp

{

−
1

2
[θ − µ]T 
−1[θ − µ]

}

,

where µ = (µ1, . . . , µp)T is the (p × 1) vector of prior means and 
 is the (p × p)
variance–covariance matrix.

Suppose that N observations, Y = (y1, . . . , yN )T , are available for estimating parame-
ters and that these observations are normally distributed. The likelihood is then defined as

P(Y |θ) = (2π)−N/2|V |−1/2 exp

{

−
1

2
[Y − F(θ)]T V −1[Y − F(θ)]

}

where F(θ) is a vector including the N model predictions, F(θ) = [f (x1; θ), . . . ,

f (xN ; θ)]T , and V is (N × N ) variance–covariance matrix of the model errors.
According to the Bayes theorem, the posterior distribution P(θ |Y ) is related with

P(Y |θ) and P(θ) as follows:

P(θ |Y ) =
P(Y |θ)P (θ)

P (Y )
(12)

where P(Y ) is the distribution of the observations and is independent of the parameters.
If the matrix V is known, we get from Eq. (12)

P(θ |Y ) = K1 exp

{

−
1

2
[Y − F(θ)]T V −1[Y − F(θ)]

}

exp

{

−
1

2
[θ − µ]T 
−1[θ − µ]

}

where K1 is a constant independent of θ . The posterior mode is the value of θ maximizing
P(θ |Y ) or maximizing log P(θ |Y ) where log P(θ |Y ) is expressed as

log P(θ |Y ) = K2 − [Y − F(θ)]T V −1[Y − F(θ)] − [θ − µ]T 
−1[θ − µ]

where K2 is a constant independent of θ . Consequently, the posterior mode is the value
of θ that minimizes

[Y − F(θ)]T V −1[Y − F(θ)] + [θ − µ]T 
−1[θ − µ] (13)

Equation (13) includes two terms. The first term, [Y − F(θ)]T V −1[Y − F(θ)], is
equal to the function minimized by the generalized least squares estimate (ZGLS(θ)).
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The second term, [θ − µ]T 
−1[θ − µ], is a penalty term that penalizes the parameter
values that differ strongly from the prior mean µ. When the observations are mutually
independent and so are the parameters, the matrices V and 
 are diagonal and Eq. (13) is
equal to

N
∑

i=1

[yi − f (xi; θ)]2

σ 2
i

+

p
∑

j=1

[θj − µj ]
2

ω2
i

(14)

where σ 2
i , i = 1, . . ., N, and ω2

j , j = 1, . . ., p are the diagonal elements of V and 
.

If ω2
j , j = 1, . . ., p, take very small values, the parameter values minimizing Eq. (14)

will not differ much from the prior mean µ.
The minimization of Eq. (13) or Eq. (14) can easily be performed with the same

algorithms as those used to apply generalized least squares. The trick is to consider the
prior mean µ as p additional data and then to implement the generalized least squares
method. The main drawback of this method is that it provides only the posterior mode
and not the whole posterior parameter distribution.

In a recent study, Tremblay and Wallach (2004) studied the interest of using the pos-
terior mode as an estimator. The authors considered a model that is part of the STICS
model (Brisson et al., 1998), which we refer to as Mini-STICS. Mini-STICS includes
14 parameters and simulates sunflower development over a period of 20 days, starting
at the stage Maximal Acceleration of Leaf growth (AMF). Tremblay and Wallach (2004)
compared generalized least squares and a Bayesian approach that consists in minimizing
Eq. (13). Generalized least squares was applied to estimate a small number of param-
eter (1–7) selected by using statistical methods of the type presented in Section 4.1.4.
The other parameters were fixed at their initial values. With the Bayesian approach, all
14 parameters were estimated simultaneously. The authors applied the two types of estima-
tion method to several training data sets each with 14 observations and calculated MSEP
values for different model output variables (LAI and soil water content, each at two dates).
The results showed that the MSEP values were lower with the Bayesian approach than
with generalized least squares.

4.3.4. Prior distribution for the variance–covariance matrix of the errors

In practice, it is often difficult to give a value to the variance–covariance matrix of the
model errors V. Then, it is useful to estimate the elements of V at the same time as the
model parameters θ .

Different types of prior distribution can be used for V but, when no information about
V is available, it is convenient to define a noninformative prior density function for V, for
example, the Jeffreys distribution P(V ) = K|V |−(N+1)/2, where |V | is the determinant
of V and K a constant.

The posterior mode is then calculated by maximizing

P(θ, V |Y ) =
P(Y |θ, V )P (θ, V )

P (Y )
=

P(Y |θ, V )P (θ)P (V )

P (Y )
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or, equivalently, by minimizing

− log P(θ, V |Y ) = R +

(
N

2
+ 1

)

log |V | + [Y − F(θ)]T V −1[Y − F(θ)]

+ [θ − µ]T 
−1[θ − µ]

(15)

where R is independent from V and θ .
As already explained in Section 4.2.4, the number of nonzero elements in V can be very

large when the model errors are correlated. In such cases, the minimization of Eq. (15) is
often difficult and the parameter estimates may be inaccurate.

When the observations are mutually independent and so are the parameters, the matrices
V and 
 are diagonal and the Jeffrey’s prior density function is

P(V ) = K
1

σ 2
1 × · · · × σ 2

i × · · · × σ 2
N

.

The posterior mode is then obtained by minimizing − log P(θ, V |Y ) with

− log P(θ, V |Y ) = R +
3

2

N
∑

i=1

log(σ 2
i ) +

N
∑

i=1

[yi − f (xi; θ)]2

σ 2
i

+

p
∑

j=1

[θj − µj ]
2

ω2
j

.

(16)

4.3.5. Monte Carlo methods

The principle here is to generate a random sample of parameter values from which one
derives an approximate of the posterior distribution. The interest of this approach is that
it can be applied to complex nonlinear models including a large number of parameters.
For example, Harmon and Challenor (1997) use a Monte Carlo method for estimating
10 parameters of a complex ecological model. Monte Carlo methods are probably the most
promising methods for estimating parameters of complex nonlinear models. According to
an article in Science (Malakoff, 1999), these methods explain the new popularity of
the Bayesian methods. A detailed description of Monte Carlo methods can be found,
for example, in Geyer (1992), in Gilks et al. (1995), in Carlin and Louis (2000), and
in Theobald and Talbot (2002). Here, we only briefly present two of these methods,
importance sampling and the Metropolis–Hastings algorithm.

The importance sampling method requires the definition of a density function g(θ),
called the importance function, from which realizations of θ can be sampled. This function
is used to generate a sample of Q parameter vectors denoted θq , q = 1, . . . , Q. A weight
ωq is then calculated for each generated vector as

ωq =
P(Y |θq)P (θq)

g(θq)
.



134 D. Makowski et al.

The weight values are then used to describe the posterior parameter distribution. For
example, the expected value of the posterior distribution of θ is approximated by:

Ê(θ |Y ) =

∑Q
q=1 ωqθq

∑Q
q=1 ωq

.

Importance sampling gives good results if the importance function g(θ) is not too
different than K P(Y |θ)P (θ) where K is a normalization constant. A particular importance
function is the prior density function. In this case, we have g(θ) = P(θ) and ωq =

P(Y |θq). This importance function was used by Makowski et al. (2002) for estimating
the parameters of a complex nonlinear model. The estimation method GLUE (generalized
likelihood uncertainty estimation, e.g. Shulz et al., 1999) can be seen as a version of
importance sampling with prior density as the importance function and with a particular
type of likelihood function.

The Metropolis–Hastings algorithm is a Markov chain Monte Carlo algorithm (MCMC)
(see, for example, Geyer 1992 and Gilks et al. 1995, for more details). The objective of this
method is to randomly generate a sample of parameter values from the posterior parameter
distribution. The algorithm is iterative and starts with an initial parameter vector θ0.
A series of Q vectors θq , q = 1, . . . , Q, is then generated as follows:

i. Generate a candidate vector θ∗ from a proposal distribution denoted as P(θ∗|θq−1),
for instance a normal distribution with mean equal to θq−1.

ii. Calculate

T = P(Y |θ∗)P (θ∗)P (θq−1|θ∗)

P (Y |θq−1)P (θq−1)P (θ∗|θq−1)
.

iii. If min (1,T) > u, where u is drawn from a uniform distribution on the interval (0,1)
then θq = θ∗ otherwise θq = θq−1.

After a phase of say M iterations, the chain of values θ1, θ2, . . . thus constructed will
converge to a chain with elements drawn from the posterior parameter distribution. The
first M iterations should be discarded. Before using the Metropolis–Hastings algorithm,
it is necessary to choose the starting value θ0, the proposal distribution P(θ∗|θq−1), the
total number of iterations Q and the number of discarded iterations M. The definition of
precise rules for choosing these elements is currently an area of active research. According
to Gilks et al. (1995), the choice of θ0 is not very critical. On the other hand, the choice of
the proposal distribution P(θ∗|θq−1) is an important issue. A common practice is to use a
normal distribution with mean θq−1 and constant covariance matrix �. This is equivalent to
assuming that θ∗|θq−1 ∼ N(θq−1, �). Several authors (Campbell et al., 1999; Harmon and
Challenor, 1997) suggest choosing � such that the acceptance rate of the test performed
in Step iii of the algorithm is in the range 20–70%. Several methods for determining
M (number of iterations to be discarded) and Q (total number of iterations) are presented
in Geyer (1992), Gilks et al. (1995) and Carlin and Louis (2000). Makowski et al. (2002)
compared the GLUE method and the Metropolis–Hastings algorithm in a simulation study
and showed that the latter gives slightly better results in terms of MSEP values.
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4.3.6. Application 1: Yield estimation

We consider again the problem of estimating crop yield as described in Section 4.3.2. The
Metropolis–Hastings algorithm is used to approximate the posterior distribution Eq. (11).
Note that the use of this algorithm is not of practical interest in this context because the
analytical expression of the posterior distribution is known here. This example shows a
simple application of the algorithm.

We assume here that the prior distribution for the yield value is θ ∼ N(µ, τ 2) where
µ = 6 t ha−1 and τ = 3 t ha−1, that the yield value measured in the field is equal to
Y = 10 t ha−1 and that its standard error is equal to σ = 0.5 t ha−1. According to Eq. (11),
the posterior distribution is then θ |Y ∼ N(9.892, 0.2432).

We now apply the Metropolis–Hastings algorithm and demonstrate that it gives a good
approximation of the posterior distribution. The first value of the chain is set equal to the
prior mean µ. The algorithm is then implemented as follows:

i. Generate a candidate vector θ∗ from a proposal distribution denoted as
θ∗|θq−1 ∼ N(θq−1, η

2)

ii. Calculate

T = P(Y |θ∗)P (θ∗)P (θq−1|θ∗)

P (Y |θq−1)P (θq−1)P (θ∗|θq−1)
.

Here, we have P(θ∗|θq−1) = P(θq−1|θ∗) because the proposal distribution is normal.
Consequently, T can be expressed as

T = P(Y |θ∗)P (θ∗)
P (Y |θq−1)P (θq−1)

with

P(θ∗) = 1√
2πτ 2

exp

[

−1

2

(
θ∗ − µ

τ 2

)]

,

P (θq−1) = 1√
2πτ 2

exp

[

−1

2

(
θq−1 − µ

τ 2

)]

,

P (Y |θ∗) = 1√
2πσ 2

exp

[

−1

2

(
Y − θ∗

σ 2

)]

,

P (Y |θq−1) = 1√
2πσ 2

exp

[

−1

2

(
Y − θq−1

σ 2

)]

,

iii. If min (1, T) > u, where u is drawn from a uniform distribution on the interval (0, 1)
then θq = θ∗ otherwise θq = θq−1.

The total number of iterations is set equal to Q = 1000. The performance of the
algorithm depends on the variance of the proposal distribution η2 (see Exercises). Here,
η is set equal to 1.5 t ha−1. With this value, the acceptance rate of the test is equal to 39%.
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Figure 9. Yield values generated by the Metropolis–Hastings algorithm.

The generated yield values are displayed in Figure 9. The first value is equal to 6 t ha−1.
After few iterations, the generated yield values vary in the range 8.5–11.5 t ha−1. The
average value and standard deviation computed from the 950 last iterations are equal to
9.842 and 0.22 t ha−1 respectively. These values are close to the true posterior mean and
standard deviation (9.892 and 0.243, respectively).

4.3.7. Application 2: Estimation of the four parameters of AZODYN

The Metropolis–Hastings algorithm is used here to estimate the four parameters EBMAX,
D, K and VMAX of AZODYN. The prior distributions of these parameters are defined as
uniform distributions, with lower and upper bounds as shown in Table 2. Three datasets
are used successively for estimating the parameters. The first one includes all the mea-
surements of dry matter, LAI, and nitrogen uptake performed in Grignon during six years.
The total number of measurements included in this dataset is equal to 201. The second
dataset includes only the measurements obtained in 1999. The number of measurements
in this dataset is equal to 28. Finally, the last dataset includes only the three observations
obtained in 1999 at the first date of measurements: one measurement of dry matter, LAI,
and nitrogen uptake. Note that the number of measurements included in the third dataset
is smaller than the number of parameters to estimate.

The Metropolis–Hasting algorithm is applied successively to the three datasets.
The initial parameter vector θ0 is set equal to the initial values defined in Table 2. The
proposal distribution is defined by θ∗|θq−1 ∼ N(θq−1, �) where � is a diagonal matrix.
The diagonal elements are set proportional to the initial parameter values θ0. The propor-
tionality coefficient is chosen by trial and error in order to obtain an acceptance rate in the
range 20–70% for the test performed at Step iii. The total number of iterations Q is set
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equal to 1000 and the number of discarded iterations M is fixed to 50. Thus, a series of
950 parameter values is generated for each dataset by the algorithm. Sample means and
variances of the four parameters are shown in Tables 5 and 6. The values approximate the
expected values and variances of the posterior parameter distribution.

Table 5 shows that the expected values of EBMAX and VMAX differ from the initial
values by more than 10%. Values are more similar for the other parameters. Table 6
shows that the posterior variances are lower than the prior variances and depend strongly
on the number of data. This is a logical result. Experimental data give information on the
parameter values. As a consequence, the uncertainty about parameter values is strongly
decreased when numerous data are used for estimating the four parameters. On the other
hand, the posterior variances are almost equal to the prior variance when only three data
are used for estimating the parameters.

The parameter vectors generated by the Metropolis–Hastings algorithm can be used
to derive probability distributions of model output variables. Such distributions are use-
ful for studying the uncertainty about output variables resulting from uncertainty about
parameter values. Figure 10 shows two distributions of dry matter predicted by AZODYN
at flowering. One of these distributions is derived from the series of parameters gener-
ated by using the complete dataset. The second distribution is obtained from the series of
parameters generated by using only the data of 1999. The x and y-axis represent dry matter
and cumulative probability respectively. Figure 10 shows that the dry matter variance is
lower when all the data are used to estimate the parameters. Probability distributions of
model outputs are useful because they give information about the uncertainty associated
with each prediction (see Chapter 3).

Table 5. Expected values of the posterior distributions obtained with 3, 28, and
201 measurements.

Posterior mean

Parameter Prior mean 3 data 28 data 201 data

EBMAX 2.9 3.2 3.1 3.3
K 0.70 0.71 0.78 0.73
D 0.032 0.032 0.029 0.028
VMAX 0.45 0.39 0.37 0.39

Table 6. Variances of the posterior distributions obtained with 3, 28, and 201
measurements.

Posterior variance

Parameter Prior variance 3 data 28 data 201 data

EBMAX 0.403 0.38 0.005 0.0012
K 0.003 0.003 0.0001 0.0001
D 5.2 × 10−5 1.1 × 10−5 5.4 × 10−7 1.1 × 10−7

VMAX 0.021 0.012 0.0002 0.00009
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Figure 10. Probability distributions of dry matter at flowering.

5. Discussion

Estimation of crop model parameters requires carefully selected methods because of crop
model complexity and because of the structure of the agronomic datasets. Here, we define
some practical rules for estimating crop model parameters.

The first step is to determine the different types of information available for estimating
parameters. In general, two types of information are available: information provided
by literature and expert knowledge, and experimental data. It is important to analyze the
structure of the dataset. How many different types of measurements? Are the measurement
variances homogeneous? Are the data correlated?

The second step is to select the parameters to estimate from data. It is generally not
sensible to estimate all the parameters from data when the number of parameters is larger
than 10–15 or when the ratio of number of parameters to number of data is higher than 1/20.
The estimation of a large number of parameters leads usually to numerical problems and
to inaccurate parameter estimates. Several methods may be used to select parameters
to estimate: selection based on the literature, equation analysis, sensitivity analysis, and
statistical choice of parameters to estimate. In theory, parameter selection is less important
when parameters are estimated by using a Bayesian method because, in this case, param-
eters are estimated from both data and expert knowledge. Consequently, Bayesian methods
can be used to estimate a high number of parameters even if the data are scarce. However,
even with this kind of method, it is often useful to select parameters in order to avoid
very long calculation time.

After information analysis and parameter selection, the final step is to choose a method
for estimating parameter values. When parameter estimation is only based on experimen-
tal data, least squares and maximum likelihood methods are appropriate. The method
of ordinary least squares gives good results if error variances are homogeneous and if
residues are independent. If not, generalized least squares or maximum likelihood should
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be applied. An alternative is to use a Bayesian method. With this kind of method, param-
eters are estimated from both prior information and data. In a recent study, Tremblay
and Wallach (2004) showed that Bayesian methods can perform better than least squares
methods when the ratio of the number of data to the number of parameters is low.

Some important problems related to parameter estimation remain open. One of these
problems concerns correlation of model errors. In particular, correlations between errors
for observations at different dates in the same site-year are often nonnegligible. As a result,
the variance–covariance matrix of errors includes numerous nonzero elements. Estimat-
ing this matrix is a difficult problem. Other problems are related to the implementation
of Bayesian methods. First, the calculation time required to obtain accurate results is
very long when the number of parameters is high. More experience is required before
implementing Bayesian methods with models including hundreds of parameters. Second,
Bayesian methods use prior parameter distributions and no clear methodology has been
established yet to define such distributions.
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Exercises

Estimating the parameters of STICS for LAI prediction

Some of these exercises are based on results obtained by Tremblay (2004).
An agronomist and a statistician want to estimate the parameters of a simple crop

model. The model is a part of the STICS model (Brisson et al., 1998) and is referred to
as Mini-STICS. Mini-STICS predicts sunflower leaf area index (LAI) and soil water
content during 20 days from the stage Maximal Acceleration of Leaf growth. The
model includes 14 parameters (Table 7). The agronomist has defined an initial value
and a range of variation for each parameter from expert knowledge (Table 7).

Some of the model equations are given below. LAI on day t is calculated in function
of LAI on day t − 1 as follows:

LAI(t) = LAI(t − 1) + DELTAI(t)

Table 7. Parameters of Mini-STICS.

Parameter Meaning Initial value Range of variation

ADENS Parameter of compensation between
stem number and plant density.

−0.696 −0.974, −0.417

BDENS Maximum density above which there is
competition between plants.

1.1029 plants m−2 0.662, 1.544

CROIRAC Growth rate of the root front. 0.2913 cm °C Day−1 0.175, 0.407
DLAIMAX Maximum rate of the setting up of LAI. 0.0061 m² leaves

plant−1°C Day−1
0.00366, 0.0085

EXTIN Extinction coefficient of photosynthetic
active radiation in the canopy.

0.6396 0.384, 0.895

KMAX Maximum crop coefficient for water
requirements.

1.4101 0.846, 1.974

LVOPT Optimum root density. 0.5672 cm root/cm−3

soil
0.34, 0.794

PSISTO Absolute value of the potential of
stomatal closing.

12.29 bar 7.37, 17.21

PSISTURG Absolute value of the potential of the
beginning of decrease of the cellular
extension.

3.79 bar 2.27, 5.31

RAYON Average radius of roots. 0.0167 cm 0.010, 0.023
TCMIN Minimum temperature for growth. 7.1°C 4.26, 9.94
TCOPT Optimum temperature for growth. 32.1°C 19.26, 44.94
ZPENTE Depth where the root density is ½ of

the surface root density for the
reference profile.

113.1 cm 67.86, 158.3

ZPRLIM Maximum where the root profile for
the reference profile.

154.9 cm 92.94, 216.9
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DELTAI(t) =

{

DLAIMAX

1 + exp[5.5(2.2 − ULAI(t))]

}

× [TCULT(t − 1) − TCMIN]

× TURFAC(t) × DENSITE ×

[

DENSITE

BDENS

]ADENS

where DLAIMAX, ADENS, BDENS, TCMIN are four parameters, TCULT(t) is the
average temperature on day t, TURFAC(t) is the turgescent stress index on day t,
ULAI(t) is the leaf development unit on day t.
A dataset including 14 LAI measurements obtained on different sites-years is used for
estimating parameters:

Site-Year LAI

1 3.89
2 3.67
3 4.54
4 4.25
5 4.84
6 3.66
7 3.02
8 3.58
9 2.79

10 4.59
11 3.76
12 3.30
13 4.90
14 3.87

Each measurement was obtained on day 20 (i.e. on the last day simulated by the
model). The input variables of the model are known for all site-years.
The agronomist and the statistician proceed in four steps to solve their problem.

1. Because of the small size of the dataset, the two colleagues decide to estimate only a
subset of the 14 parameters.

(a) The agronomist first suggests to estimate only the parameter ADENS and to fix the
other 13 parameters to their initial values. Which method would you recommend
to estimate ADENS using only the dataset, and without taking into account the
initial parameter value?

(b) The agronomist still wants to estimate only one parameter from the dataset but not
necessarily ADENS. He asks the statistician which parameter should be estimated
from data. Define a method to select the parameter to estimate from data.

(c) Each one of the 14 parameters was estimated in turn using the dataset. Table 8
shows the sums of squared differences between measured and predicted LAI val-
ues (SSD). Each value of SSD is obtained by estimating only one parameter from
data. Choose the parameter to estimate from the results.
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Table 8. Values of sum of squared differences between observed and
predicted LAI (SSD). Each value is obtained by estimating one param-
eter from data. ‘–’ indicates that the corresponding parameter cannot be
estimated.

Estimated parameter Estimated value SSD

ADENS −0.5460 6.0937
BDENS 1.6002 5.8386
CROIRAC – –
DLAIMAX 0.0079 5.8386
EXTIN −0.3102 9.0716
KMAX −0.6112 9.0716
LVOPT 6.4951 9.0716
PSISTO – –
PSISTURG 55.69 9.0716
RAYON – –
TCMIN 3.6045 5.7219
TCOPT 32.01 9.6983
ZPENTE 19 591.54 9.4679
ZPRLIM −387.57 9.4637

(d) The question now is how many parameters should be estimated from data? Define
a method based on MSEP and SSD to determine the optimal number of parameters.
This method must select the subset of parameters giving the most accurate LAI

predictions.
(e) The statistician presents two other methods to select the subset of parameters to

estimate from data. In the first method, the MSEP is replaced by another criterion,
namely BICc (corrected Schwarz criterion) defined by

BICc = −2 ln L(θ̂) + p log(n)/(n − p − 2)

where p is the number of estimated parameters, n is the number of data, L(θ̂) is
the likelihood value obtained with the estimated parameter values θ̂ . L(θ̂) can be
calculated from SSD. The lower SSD, the higher likelihood. The second method is
based on sensitivity analysis. The principle is to increase and decrease by x% the
initial parameter values reported in Table 7. Each parameter is considered in turn.
The difference between the LAI values predicted with the high and low parameter
value is then calculated for each parameter. The LAI difference is noted ∆LAI.
The statistician suggests to take x = 30% and to estimate from data only the
parameters for which ∆LAI/LAI0 > 10% where LAI0 is the LAI predicted with
initial parameter values.
What is the usefulness of the two methods proposed by the statistician compared
to the method based on MSEP?

(f) Table 9 shows MSEP values estimated by cross validation and values of BICc for
different subsets of parameters. How many parameters must be estimated from
data?



144 D. Makowski et al.

Table 9. MSEP values estimated by cross validation and BICc values obtained
for different subsets of parameters minimizing SSD.

Number of
estimated
parameters

Estimated parameters MSEP BICc

1 TCMIN 0.47 −0.65
2 TCMIN, ADENS 0.46 −0.68
3 TCMIN, ADENS, KMAX 0.49 −0.34
4 TCMIN, ADENS, KMAX, EXTIN 0.54 9.43
5 TCMIN, ADENS, KMAX, EXTIN, LVOPT 0.55 0.66

2. According to the agronomist, the parameter values obtained with the methods described
in Exercise 1 are not realistic. For example, when TCMIN and ADENS are estimated
from the 14 LAI measurements, the estimated values are equal to −180.15 and −2.24
respectively. These two values are not within the ranges defined in Table 7.

The statistician proposes two other estimation methods to solve this problem. The
first method is ordinary least squares with constraints on parameter values (lower and
upper bounds). The second method is to minimize the following criterion:

14
∑

i=1

[

Y LAI
i − f (Xi; θ)

]2
+ σ 2

K
∑

k=1

(θk − µk)
2

σ 2
k

where Y LAI
i is the ith measurement of LAI, σ 2 is the variance of the model residues,

K is the number of parameters estimated from data, µk is the initial value of the
parameter θk , σ 2

k is the initial level of uncertainty about parameter θk . The second
method is called further “penalized least squares”.

(a) Which parameter values are penalized by the second estimation method?
(b) Which additional information must be supplied by the agronomist to apply the

second method? What influence does this information have?
(c) Table 10 shows the parameters selected by sensitivity analysis and the parameter

values estimated by ordinary least squares.

Table 10. Parameters selected by sensitivity analysis and their estimated
values.

Parameter Value estimated without
constraints

Value estimated with
constraints

ADENS −2.2082 −0.974
BDENS 0.8755 1.4816
DLAIMAX 0.0019 0.0076
TCMIN −1019.61 4.2693
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Table 11. Results obtained by penalized
least squares.

Parameter Estimated value

ADENS −0.6468
BDENS 1.1707
CROIRAC 0.2853
DLAIMAX 0.0067
EXTIN 0.6385
KMAX 1.4383
LVOPT 0.5672
PSISTO 12.31
PSISTURG 3.7789
RAYON 0.0167
TCMIN 6.6961
TCOPT 32.01
ZPENTE 113.09 881
ZPRLIM 154.9017

Two series of estimated values are displayed in this table, one obtained with con-
straints on parameter values and one without. Table 11 shows the results obtained
by penalized least squares. With this method, all the parameters are estimated from
data. What effects have the constraints on parameter values ? Compare the results
obtained by ordinary least square and those obtained by penalized least squares.

Posterior parameter distribution

The agronomist is satisfied with the last results but would like to have informa-
tion about parameter uncertainty. The statistician suggests calculating a posterior
parameter distribution using a Bayesian method. For illustration, the statistician
presents a simple example, as reported below.

Suppose we want to estimate yield value for a given field. The unknown true
yield value is denoted as θ. Two types of information are available for estimating
θ . First, according to an expert, the yield value must be near from µ = 5 t ha−1

and the uncertainty about yield value is τ = 2 t ha−1. µ and τ are used to define
a prior yield distribution as follows:

θ ∼ N(µ, τ 2).

Second, an imperfect yield measurement was performed in the field. We sup-
pose that this measurement is distributed as:

Y ∼ N(θ, σ 2)

where Y is the measurement and σ 2 is the variance of the measurement. σ 2 is
calculated from replicates.
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The prior distribution and the measurement are both used to derive a posterior

yield distribution. The analytical expression of the posterior yield distribution is:

θ |Y ∼ N [Bµ + (1 − B)Y, (1 − B)σ 2]

where B = σ 2/(σ 2 + τ 2). According to this formula, the expected value of the
posterior distribution is

E(θ |Y ) = Bµ + (1 − B)Y = σ 2µ + τ 2Y

σ 2 + τ 2

and the variance of the posterior distribution is

var(θ |Y ) = (1 − B)σ 2 = σ 2τ 2

σ 2 + τ 2
.

The expected value E(θ |Y ) can be seen as an estimator of θ taking into account
both the expert knowledge and the measurement. The posterior variance var(θ |Y )

gives information on the final level of uncertainty about θ .
(d) Now, suppose that the measured yield value is Y = 9 t ha−1 and σ = 1 t ha−1.

Calculate the expected value and variance of the posterior distribution of θ when
µ = 5 t ha−1 and τ = 2 t ha−1. What is the effect of using a less accurate
measurement (e.g. σ = 2 t ha−1)?

(e) The agronomist is fascinated by the Bayesian method and asks the statistician to
apply it to Mini-STICS. The statistician says that the application of this method
to Mini-STICS is not straightforward. The model is nonlinear and includes a large
number of parameters. As a consequence, it is not possible to determine the analytic
expression of the posterior distribution. To solve this problem, the statistician
suggests to apply the Metropolis–Hastings algorithm. The principle is to generate a
sample of parameters from the posterior parameter distribution. This sample can be
used to derive various quantities of interest such as expected values and variances.
The application of the Metropolis–Hastings algorithm requires knowledge of the
prior parameter distribution and of the relationship between data and parameters.

For illustration, the statistician considers again the problem of yield estimation.
He uses the Metropolis–Hastings algorithm to sample 1000 values of θ in the
posterior distribution

P(θ |Y ) = N
[

Bµ + (1 − B)Y, (1 − B)σ 2
]

where B = σ 2/(σ 2 + τ 2), µ = 5, τ = 2, Y = 9, and σ = 1. The idea of
the statistician is to show that the generated sample can be used to estimate the
expected value and variance of the posterior distribution. The performance of
the algorithm depends on some tuning coefficients, such as the initial parameter
values and the variance of the probability distribution used to generate parameter
values. The results obtained with two series of tuning coefficients are displayed
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Figure 11. Sample of 1000 values of θ generated by the Metropolis–Hastings algorithm. First series
of tuning coefficients.
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Figure 12. Sample of 1000 values of θ generated by the Metropolis-Hastings algorithm. Second
series of tuning coefficients.

in Figures 11 and 12. Each figure shows 1000 generated values of θ . In both
cases, the first value of θ was fixed to 5 but two different probability distributions
were used to generate parameter values. Based on the true posterior distribution
calculated in Q2 (d), which sample of parameter values gives the best result?
How do you use the 1000 generated values of θ to calculate the expected value
and variance of the posterior distribution?
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Table 12. Estimation methods.

Method Name Bounds Method to select parameters

1 Ordinary least squares No BICc
2 Ordinary least squares Yes BICc
3 Ordinary least squares No Sensitivity analysis
4 Ordinary least squares Yes Sensitivity analysis
5 Penalized least squares No Sensitivity analysis
6 Metropolis–Hastings – –

(f) Bayesian methods require a prior parameter distribution. Suggest such a distribu-
tion for Mini-STICS.

3. The two colleagues decide to compare all the methods described in Exercises 1 and 2.
The statistician suggests making a simulation study. To do that, he defines the following
“true” model:

LAI = f (X; θ) + ε

where LAI is the LAI observation at day 20, f is the crop model, X is the vector including
input variables, θ is the vector of true parameter values and ε is the model residue such
as ε ∼ N(0, 0.36). True parameter values are different from the initial values shown
in Table 7. For example, the true value of TCMIN is equal to 6. The “true” model
is used to generate 80 samples of data. Each sample includes 14 LAI measurements.
Model parameters are estimated from each sample by using six estimation methods
successively (Table 12). Only a subset of parameters is estimated with methods 1–5. On
the contrary, all the parameters are estimated with the Metropolis–Hastings algorithm.
For this method, the prior parameter distribution is a uniform distribution with lower
and upper bounds given in Table 7.

(a) Define a criterion to compare the methods. How do you calculate this criterion?
(b) What is the smallest MSEP possible value for the model?
(c) Table 13 shows the MSEP values obtained with the different methods. Table 14

shows the average values of 80 TCMIN values estimated from 80 generated

Table 13. MSEP values obtained with different estimation methods.

Estimation method Number of estimated parameters MSEP

1 1–2 0.41
2 1–2 0.39
3 4 0.45
4 4 0.42
5 4 0.39
6 14 0.39
Initial parameter values 0 0.63
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Table 14. Average values of 80 TCMIN values estimated from 80
generated samples of data.

Estimation method Average value of TCMIN

1 −8.07
2 6.32
3 −65.14
4 5.18
5 6.79
6 7.2
Initial parameter value 7.1
True value 6

samples of data. Use the results displayed in Tables 13 and 14 to choose an
estimation method.

4. The agronomist wonders if it would be useful to estimate parameters from a dataset
including several types of measurements. Two new datasets are proposed:

• A dataset including 14 measurements of LAI and 14 measurements of soil water
content obtained on 14 different site-years at one date (day 20).

• A dataset including 28 measurements of LAI and 28 measurements of soil water
content obtained on 14 site-years at two dates (day 10 and day 20).

(a) Which method(s) may be used to estimate parameters from these datasets?
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1. Introduction

Up to now, we have assumed that the objective is to develop a model that is a good
predictor on the average over some target distribution of situations. In particular, we have
assumed that parameter estimation is based on a random sample of data from the target
population. This is in keeping with the idea that we want the parameters to represent on
the average the target population. Furthermore, we have emphasized the mean squared
error of prediction for model evaluation. This criterion explicitly measures how well the
model predicts on the average over the entire target population.

In this chapter, however, we consider modifying the population model to make it a better
predictor for a specific situation (e.g. for a specific agricultural field). We assume that we
have some information that allows us to modify the model specifically for the situation
of interest. In general, this information takes the form of one or several measurements
of model state variables during the crop growth period. The model can then be modified
based on the measurement, and the modified model used to make predictions for the future
growth of the crop. If for example, the measurement shows that the value of leaf area
index (LAI) is smaller than the model predicts, then we can change LAI in the model to
a smaller value, and use the corrected model for predicting the future evolution of the
system.

Model modification based on measurements is called data assimilation because the
data are incorporated into or assimilated into the model. Various methods can be used
for data assimilation. Methods of parameter estimation can be used to adjust the values
of the model parameters to the data obtained for the situation of interest. This approach
was described in detail in Chapter 4 and the use of a parameter estimation method for
data assimilation is illustrated in a case study presented in Chapter 17 of this book (Guérif
et al.). In this chapter, we consider another family of methods often referred to as filtering.
A filter is an algorithm that is applied to a time series to improve it in some way (like
filtering out noise). Here, the time series is the successive values for the model state
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variables, and the improvement comes from using measured values to update the model
state variables. The state variables are updated sequentially, i.e. each time an observation
is available. The best-known algorithm for doing this is the Kalman filter, which applies if
the model is linear and the errors have a normal distribution (Kalman, 1961). This chapter
is mostly devoted to that algorithm and its extensions (Welch and Bishop, 1992; Burgers
et al., 1998; Anderson and Anderson, 1999; Pastres et al., 2003).

Measurements of output variables are in fact increasingly commonly available, with
increases in detection and transmission capability. Satellite systems give information about
plant biomass, LAI, or leaf chlorophyll content. Tensiometers can be used to give infor-
mation about soil moisture. Several methods are available for giving information about
plant nitrogen status. In each case, the results of the measurements can be compared to
model predictions, and the model can be adjusted in the light of those measurements.

Potentially, such measurements could lead to a large improvement in model predictions.
In the chapter on model evaluation we showed that MSEP, the mean squared error of
prediction, cannot be smaller than a lower bound, which is a measure of how much
variability that remains is not accounted for by the explanatory variables in the model.
This lower limit to prediction error no longer applies, however, if measurements are
used to correct the model, for now we are injecting extra information in addition to the
explanatory variables. How good will predictions be after correction with measurements?
This depends on a number of factors, in particular how closely the measured variables
and the predicted variables are related. A measurement of LAI early in the season may
not improve yield prediction much, while a late measurement of biomass may lead to
substantial improvement in yield prediction. We emphasize again that this discussion only
concerns the situation where the measurements were made. The correction will not be
used when applying the model in other situations.

Section 2 treats the case of models whose dynamic equations are linear in the state
variables and parameters to be modified. It is further assumed that all errors have normal
distributions. We first treat simple special cases, which help introduce the methods and
the consequences of data assimilation. Then we treat a fairly general case that covers all
the special cases. Of course essentially all crop models are non-linear. Nonetheless it is
important to treat the linear case. First of all, it is easier to get a basic understanding
of how assimilation works from the linear case, where we can derive analytical equa-
tions. Secondly, the methods for non-linear models draw more or less on the theory
developed for linear models. In Section 3, we consider the problem of data assimilation
for non-linear models. We discuss two different approaches to data assimilation for such
models.

2. The Kalman filter

2.1. Filter to update one state variable

2.1.1. Method

We consider a linear dynamic model including a single state variable and defined by

Zt = GZt−1 + Bt−1 + εt−1 (1)
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where Zt is the model state variable at time t, G is a parameter, Bt−1 is an input variable,
and εt−1 is the model error. This is the equation that describes the evolution of the state
variable over periods where there are no measurements. At time t1, Zt1 can be expressed
as a function of Z1, the initial value of the state variable, as

Zt1 = Gt1−1Z1 +

t1−1
∑

k=1

Gt1−1−kBk +

t1−1
∑

k=1

Gt1−1−kεk.

We assume that the error terms εt obtained at different dates are independent and
have normal distributions with zero expectation. We further assume that Z1 has a normal
distribution and is independent of εt . Under these assumptions and if no measurement is
available before time t1, the expectation and variance of Zt1 are defined by

E(Zt1) = Gt1−1E(Z1) +

t1−1
∑

k=1

Gt1−1−kBk

and

var(Zt1) = G2(t1−1)var(Z1) +

t1−1
∑

k=1

G2(t1−1−k)var(εk).

We now consider that a measurement Mt1 is available at time t1. We assume that one
measures directly the state variable. The measurement equation is then

Mt1 = Zt1 + τt1 (2)

where τt1 is the measurement error, normally distributed with zero mean and independent
of Zt1 . Then, Mt1 has a normal distribution and E(Mt1) = E(Zt1) and var(Mt1) =

var(Zt1) + var(τt1).
The joint distribution of Mt1 and Zt1 is

(

Zt1

Mt1

)

∼ N

{[

E(Zt1)

E(Mt1)

]

,

[

var(Zt1) cov(Zt1 , Mt1)

cov(Zt1 , Mt1) var(Mt1)

]}

with cov(Zt1 , Mt1) = cov(Zt1 , Zt1 + τt1) = var(Zt1). The distribution of Zt1 condition-
ally to Mt1 is derived from the joint distribution as follows (see the appendix, Statistical
notions):

Zt1 |Mt1∼N
[

E(Zt1 |Mt1), var(Zt1 |Mt1)
]

with

E(Zt1 |Mt1) = E(Zt1) + Kt1

[

Mt1 − E(Zt1)
]

(3)

var(Zt1 |Mt1) = (1 − Kt1)var(Zt1) (4)
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and

Kt1 =
cov(Zt1 , Mt1)

var(Mt1)
=

var(Zt1)

var(Zt1) + var(τt1)
(5)

Kt1 is often referred to as the Kalman gain.
Consider first the conditional expectation Eq. (3). It is a weighted sum of E(Zt1), the

model prediction in the absence of any measurement, and Mt1 , the measured value. Each
term is weighted by the variance of the other and the sum of the weights is one. If the
measurement has a large variance compared to the model variance, then one gives most
weight to the model prediction. If on the other hand, the measurement has a small variance
compared to the model variance, then most weight is given to the measurement.

In some studies, the authors simply replace the model prediction by the measured
value. It is easily seen from Eq. (3) that this corresponds to assuming that there is no
measurement error (var(τt1 ) = 0). In fact this assumption is rarely if ever true, and often
measurement error is substantial. Equation (3) on the other hand shows how to take into
account both sources of information, namely the model and the measurement, weighting
each according to its level of uncertainty.

Consider now the variance of the posterior distribution defined by Eq. (4). Since the
Kalman gain is in the range 0–1, the variance after measurement, var(Zt1 |Mt1), is smaller
than the variance before measurement var(Zt1). The larger the gain Kt1 , the smaller the
var(Zt1 |Mt1). This is a gain in the sense that it measures how much knowledge we have
gained by using the measurement.

Note that the two essential properties of this case are linearity and the normal distri-
bution of the random variables. As a result of linearity the state variable at any time just
involves linear combinations of the errors. If the errors have a normal distribution, then the
state variable is also normally distributed. In the rest of this chapter, unless stated other-
wise, we assume that all the random variables are independent and are normally distributed.

We now introduce the general equations for the model Eq. (1). We note M1:t the vector
including the measurements obtained up to time t. Then, the distribution of the state
variable Zt conditionally to M1:t is defined by

Zt |M1:t∼N [E(Zt |M1:t ), var(Zt |M1:t )]

with

E(Zt |M1:t ) = E(Zt |M1:t−1) + Kt [Mt − E(Zt |M1:t−1)]

var(Zt |M1:t ) = (1 − Kt )var(Zt |M1:t−1)

Kt = var(Zt |M1:t−1)

var(Zt |M1:t−1) + var(τt )
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2.1.2. Application

We describe here a simple dynamic crop model with a single state variable representing
above-ground winter wheat biomass per unit ground area (g · m−2). This state vari-
able is simulated on a daily basis as a function of daily temperature and daily incoming
radiation according to the classical efficiency approach (Monteith, 1977; Varlet-Grancher
et al., 1982). The biomass at time t + 1 is linearly related to the biomass at time t

as follows:

Zt+1 = Zt + EbEi max[1 − e−KLAI t ]PARt + εt (6)

where t is the number of days since sowing, Zt is the true above-ground plant biomass
on day t (g · m−2), PARt is the incoming photosynthetically active radiation on day t

(MJ · m−2 · j−1), LAI t is the green leaf area index on day t (m−2leaf · m−2soil), εt is a
random term representing the model error. εt is assumed normally distributed with zero
mean and constant variance Q. The error terms are assumed independent.

The crop biomass at sowing is set equal to zero, Z1 = 0. LAI t is calculated as a
function of the cumulative degree-days (above 0◦C) from sowing until day t, noted Tt , as
follows (Baret, 1986):

LAI t = Lmax

{

1

1 + e−A[Tt−T1]
− eB[Tt−T2]

}

.

Parameter T2 is set equal to 1
B

log [1 + exp (A × T1)] in order to have LAI1 = 0
(Déjean et al., 2002). The model includes two input variables Xt = (Tt , PARt )

T and
seven parameters θ = (Eb, Ei max, K, Lmax, A, B, T1)

T. Eb is the radiation use efficiency
which expresses the biomass produced per unit of intercepted radiation (g · MJ−1), Ei max
is the maximal value of the ratio of intercepted to incident radiation, K is the coefficient
of extinction of radiation, Lmax is the maximal value of LAI, T1 defines a temperature
threshold, and A and B are two additional parameters describing the rates of growth
and senescence of the green LAI. The parameter values were estimated for durum wheat
crops in previous studies (Guérif, personal communication). Nominal values and ranges
of variation are displayed in Table 1.

Table 1. Values of parameters.

Parameter Unit Nominal value Range of values

Eb g · MJ−1 1.85 0.9–2.8
Ei max – 0.945 0.9–0.99
K – 0.7 0.6–0.8
Lmax – 7.5 3–12
T1

◦C 900 700–1100
A 0.0065 0.003–0.01
B 0.00205 0.0011–0.003
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Figure 1. Wheat biomass predicted for the field “Carmague-1987.” Black points represent biomass
measurements. The 11th measurement is the value measured at harvest (t = 216 days). Error bars
indicate ±2 standard errors.

The model Eq. (6) is a particular case of model Eq. (1) with G = 1 and Bt =

EbEi max[1 − e−K LAI t ]PARt . Here, we use this model to predict the crop biomass
for a field of durum wheat (Triticum durum, cultivar Creso) located in southern
France (Camargue). The field was sown on October 26, 1986 and harvested on June 29,
1987, i.e. 216 days after sowing.

We first run the model to predict biomass without using any measurement. The param-
eters were fixed to their nominal values (Table 1). Between sowing and the time tD =

date of harvest – 40 days, the biomass was predicted each day from Eq. (6) with εt = 0.
After day tD, 14 biomass predictions were derived with 14 years of climate variables and
then averaged. Thus, the values Xt = (Tt , PARt )

T obtained for 1986–1987 were used to
predict the biomass up to time tD and the climate was supposed to be unknown after this
date. The predicted biomass values are reported in Figure 1.

The Kalman filter was then applied to update the model state variable using ten biomass
measurements M1, . . . , M10 obtained at different dates before harvest from day 41 to 176
since sowing (Fig. 1). The parameters were not updated and were fixed to their nominal
values. Each measurement was obtained by averaging 10 replicates. We further assume
that the measurements were independent and were related to the true biomass Zt according
to Eq. (2). The values of var(τt ) were set equal to the empirical variances calculated from
replicates (Fig. 1).

The Kalman filter was implemented to the model, as described in Section 2.1.1. Thus,
at the date of the first measurement, E(Zt1), var(Zt1), and Kt1 were calculated as follows:

E(Zt1) =

t1−1
∑

t=1

EbEimax[1 − e−KLAI t ]PARt , var(Zt1) = (t1 − 1)Q,
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Figure 2. Probability distribution of Zt4 |M1:t3 (a) and Zt4 |M1:t4 (b) obtained with Q = 10 g2 · m−4.
The black point indicates the value of biomass measured at time t4.

and

Kt1 =
(t1 − 1)Q

(t1 − 1)Q + var(τt1)
.

Two values of Q, 0.1 and 10 g2 · m−4, were tested successively in order to study the
influence of the model error variance on the model output.

Figure 2 shows the two probability distributions obtained at time t4 = 125 (date
of the fourth measurement) obtained with Q = 10 g2 · m−4. The first distribution is
defined by Zt4 |M1:t3 ∼ N [E(Zt4 |M1:t3), var(Zt4 |M1:t3)]. It represents the biomass prob-
ability distribution at t = t4 when the fourth measurement is not taken into account.
The second distribution is defined by Zt4 |M1:t4 ∼ N [E(Zt4 |M1:t4), var(Zt4 |M1:t4)]. Both
distributions are normal but the two distributions are characterized by very different
expected values and variances. E(Zt4 |M1:t3) is equal to 114.19 g · m−2 and is much
higher than the value of E(Zt4 |M1:t4) (52.03 g · m−2). It is important to note that
E(Zt4 |M1:t4) is not strictly equal to the biomass measured at time t4. E(Zt4 |M1:t4) is
a weighted sum of E(Zt4 |M1:t3) and of the measurement. The weight depends both
on the variance of the model error and on the variance of the measurement error as
shown in Eq. (5).

Another interesting result is that var(Zt4 |M1:t3) is equal to 128.33 g2 · m−4 and is
much higher than var(Zt4 |M1:t4) (24.39 g2 · m−4). This result shows that the use of the
measurement at time t4 has reduced the uncertainty in the crop model prediction.

Figure 3 presents the initial and updated crop model predictions obtained between
sowing and harvest for two different values of Q. The updated predictions reported in
Figure 3 (continuous lines) correspond to the expected values of the biomass distributions.
For example, the updated prediction at time t4 computed with Q = 10 g2 · m−4 is equal to
E(Zt4 |M1:t4). Figure 3 shows that the errors of predictions are large when the crop model
is not updated with measurements (dashed curve). The value predicted by the model
at harvest is equal to 1867.4 g · m−2 and, so, is much higher than the measured value
(1443.4 g · m−2). The biomass at harvest is more accurately predicted when the crop
model is adjusted to the first 10 measurements by using the Kalman filter (continuous
curves) with Q = 10 g2 · m−4. It is not the case when the coefficient Q (describing the
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Figure 3. Initial model predictions (dashed line) and updated model predictions (continuous line)
obtained with Q = 0.1 g2 · m−4 (a) and Q = 10 g2 · m−4 (b). The black points represent biomass
measurements. Model predictions were updated with the Kalman filter method using the first
10 measurements. The 11th measurement is the value measured at harvest (t = 216 days).

size of the model error) is fixed to a lower value, 0.1 g2 · m−4; the model is not strongly
adjusted to the first 10 measurements and the error of prediction is large at harvest. This
is logical because high values of Q tend to increase the Kalman gain Kt . The correction
is important only if Q is fixed to a high value. In practice, the parameters describing the
model errors must be chosen carefully, for instance by using a training data set.

2.2. A more general linear model

2.2.1. Method

In this section, we consider a more general linear model including several state variables.
We also consider the possibility of updating both state variables and parameters from
measurements. Denote ϕt = [Z

(1)
t , . . . , Z

(n)
t , θ (1), . . . , θ (p)]T the vector of the n state

variables and p parameters of the model. The model is defined by

ϕt = St−1ϕt−1 + Bt−1 + εt−1 (7)

where St−1 is a (n + p) × (n + p) matrix, Bt−1 is a (n + p)-vector of input variables
defined by Bt−1 = [B

(1)
t−1, . . . , B

(n)
t−1, 0, . . . , 0]T, and εt−1 is a (n + p)-vector of error

terms defined by εt−1 = [ε
(1)
t−1, . . . , ε

(n)
t−1, 0, . . . , 0]T. The vector εt is assumed normally

distributed and the error vectors obtained at different dates are assumed independent. The
matrix St−1 is defined as follows

St−1 =

(

At−1 Ct−1
0n Ip

)

where At−1 is a (n×n) matrix of coefficients relating the n state variables at time t to the
state variables at time t − 1, Ct−1 is a (n × p) matrix of coefficients relating the n state
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variables at time t to the p parameters, 0n is a (p × n) matrix of zero, Ip is a (p × p)

identity matrix. With this matrix structure, the state variables at time t are related to the
state variables at time t − 1 by





Z
(1)
t

. . .

Z
(n)
t



 = At−1







Z
(1)
t−1
. . .

Z
(n)
t−1






+ Ct−1





θ (1)

. . .

θ (p)



+







B
(1)
t−1
. . .

B
(n)
t−1






+







ε
(1)
t−1
. . .

ε
(n)
t−1






.

The measurement equation is

Mt = Rtϕt + τt (8)

where Mt is a vector of q measurements, Rt is a q × (n + p) matrix relating the mea-
surements to the state variables and parameters, τt is a vector of q error terms. τt is
assumed independent of εt , and normally distributed with zero expectation. We have
E(Mt ) = RtE(ϕt ) and var(Mt ) = Rtvar(ϕt )R

T
t + var(τt ).

Under these assumptions, the distribution of ϕt conditionally to M1:t−1 and the distri-
bution of ϕt conditionally to M1:t are both normal with expectations and variances defined
by (Sullivan, 1992):

E(ϕt |M1:t−1) = St−1E(ϕt−1|M1:t−1) + Bt−1

var(ϕt |M1:t−1) = St−1var(ϕt−1|M1:t−1)S
T
t−1 + var(εt−1)

E(ϕt |M1:t ) = E(ϕt |M1:t−1) + var(ϕt |M1:t−1)

× RT
t [Rtvar(ϕt |M1:t−1)R

T
t + var(τt )]

−1[Mt − RtE(ϕt |M1:t−1)]

var(ϕt |M1:t ) = var(ϕt |M1:t−1) − var(ϕt |M1:t−1)

× RT
t [Rtvar(ϕt |M1:t−1)R

T
t + var(τt )]

−1Rtvar(ϕt |M1:t−1)

To apply the above equations in any particular case we need to specify the vector ϕt , the
distribution of ϕt at t = 1, the matrix St−1, the matrix Rt , and the variance–covariance
matrix var(εt ) and var(τt ).

2.2.2. Application

We consider the practical problem described in Section 2.1.2. We treat here the prob-
lem of estimating simultaneously the state variable Zt and one parameter, namely Eb.

The vector ϕt is thus defined by ϕt =
(

Zt

Eb

)

. We assume that Z1 = 0 and that

Eb∼N(µEb , σ
2
Eb

). The transition matrix St−1 is defined by St−1 =
[

1 Ct−1

0 1

]

with
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Ct−1 = Ei max[1 − e−K LAI t−1 ]PARt−1 and Bt−1 is set equal to zero. We assume that

εt =
(

ε
(1)
t

0

)

with ε
(1)
t ∼ N(0, Q). The biomass measured at time t, Mt , is related to ϕt

by Mt = Rϕt + τt where R = (1, 0) and τt is the measurement error distributed as
τt∼N [0, var(τt )].

A numerical application is presented below. In this application, the expected value of
Eb(µEb) is set equal to its nominal value 1.85 g · MJ−1 and Q is fixed to 10 g2 · m−4.
Three different values are considered successively for the variance of Eb(σ

2
Eb

): 2.3 × 10−1,
2.3 × 10−3, 2.3 × 10−5 g2 · MJ−2. The results are displayed in Figures 4–6. Figure 4
shows the distribution of ϕt4 conditionally to M1:t3 (the first three measurements) and the
distribution of ϕt4 conditionally to M1:t4 (the first four measurements) when σ 2

Eb
is set

equal to 2.3 × 10−1 g2 · MJ−2.

The distribution of ϕt4 conditionally to M1:t3 (Fig. 4a) is defined by
(

Zt4
Eb

|M1:t3

)

∼

N
[(

58.9
0.72

)

,
(

314.8 3.84
3.84 0.079

)]

. The expected value of the biomass distribution, 58.9 g · m−2,

is very different from the biomass measured at time t4, Mt4 = 37.4 g · m−2. Note also
that Zt4 and Eb are positively correlated.

The distribution of ϕt4 conditionally to M1:t4 (Fig. 4b) is defined by
(

Zt4
Eb

|M1:t4

)

∼ N
[(

39.31
0.48

)

,
(

27.49 0.34
0.34 0.036

)]

. After the fourth measurement, the expected

values of Zt4 and Eb are equal to 39.31 and 0.48, respectively. These values are lower
than the expected values obtained before the fourth measurements (58.9 and 0.72, respec-
tively) and the expected biomass value is near the measured biomass value. This is due to
the positive correlation between Zt4 and Eb and, also, to the low value of the measurement
Mt4 . Another result is that the variances are much lower after the fourth measurement than
before.

Figures 5 and 6 show the expected values of Zt and Eb between sowing and harvest for
Q = 10 g2 · m−4 and σ 2

Eb
= 2.3 × 10−1, σ 2

Eb
= 2.3 × 10−3, σ 2

Eb
= 2.3 × 10−5 g2 · MJ−2.

The expected values are computed by using the first ten measurements. The results depend
highly on the value of σ 2

Eb
. When σ 2

Eb
is fixed to a low value, the expected value of Eb
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Figure 4. Distribution of ϕt4 |M1:t3 (a) and ϕt4 |M1:t4 (b) at the date of the fourth measurement
(t4 = 125 days) for σ 2

Eb
= 0.2304 g2 · MJ−2. The dotted line indicates the biomass value measured

at time t4. The black points indicate the expected values of the distributions.



5. Data assimilation with crop models 161

50 1000 150 200 250

Day since sowing
50 1000 150 200 250

Day since sowing

0
5

0
0

1 0
0

0
1

5
0

0
2

0
0

0

B
io

m
a

ss
 (

g
/m

² )

0
5

0
0

10
0

0
1

5
0

0
2

0
0

0

B
io

m
a

ss
 (

g
/m

² )

50 1000 150 200 250

Day since sowing

0
5

0
0

10
0

0
1

5
0

0
2

0
0

0

B
io

m
a

ss
 (

g
/m

² )

(a) (b)

(c)

Figure 5. Expected biomass values (continuous line) obtained with three different values of σ 2
Eb

:

2.3 × 10−1 g2 · MJ−2 (a), 2.3 × 10−3 g2 · MJ−2 (b), and 2.3 × 10−5 g2 · MJ−2 (c). The black points
represent biomass measurements. Biomass values were updated using the first 10 measurements.
The 11th measurement is the value measured at harvest (t = 216 days). The dashed lines represent
the initial predictions.

remains always very close to the nominal value of the parameter (1.85 g · MJ−1) (Fig. 6c)
and the expected values of Zt (Fig. 5c) are very close to the values obtained when only
Zt is updated (Fig. 3b). This result is logical because a low value for σ 2

Eb
means that we

put a lot of confidence in the nominal value of the parameter. In this case, Eb is almost
not modified by the measurements and only the state variable is updated. On the contrary,
if σ 2

Eb
is set equal to a high value, the parameter is strongly corrected at each date of

measurement (Fig. 6a) and the expected biomass values differ from the values reported
in Figure 3b.

3. Data assimilation for non-linear models

3.1. Methods

The dynamic equations of crop models are almost never linear in the state variables nor
in the parameters. As a result the state variables do not have a normal distribution, even if
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Figure 6. Expected values of Eb obtained with three different values of σ 2
Eb

equal to 2.3 × 10−1

(a), 2.3 × 10−3 (b), and 2.3 × 10−5 g2 · MJ−2 (c).

all the errors are normally distributed. Here, we present two methods to handle non-linear
models, namely the extended Kalman filter and the Ensemble Kalman filter.

3.1.1. Extended Kalman filter

The dynamic model is now defined by:

ϕt = F(ϕt−1) + εt−1 (9)

where ϕt is the (n + p) vector including the state variable and parameter values at time t,
F is a series of arbitrary functions, one for each component of ϕt , and εt is a vector of
errors. In the previous section, we considered a particular case with F(ϕt ) = Stϕt . Here,
we consider a more general case where F(ϕt ) can be non-linear. As before, we assume
that the measurement Mt is related to ϕt by Mt = Rtϕt + τt where Mt is a vector of q

measurements, Rt is a q × (n+p) matrix relating the measurements to the state variables
and parameters, τt is a vector of q error terms. τt is assumed independent of εt , and
normally distributed with zero expectation.
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When F is non-linear, it is generally impossible to determine the analytic expression
of the distribution ϕt conditionally to Mt , but several methods have been developed to
approximate this distribution. A first method is called Extended Kalman filter (e.g. Welch
and Bishop, 2002; Pastres et al., 2003). The principle is to linearize Eq. (9) and to apply
the standard Kalman filter method to the following model:

ϕt ≈ F(ϕ̂t−1) + Ht−1(ϕt−1 − ϕ̂t−1) + wt−1

where Ht is a (n + p) × (n + p) matrix of partial derivatives of F with respect to the
n + p elements of ϕt , ϕ̂t is the predicted state variable at time t, ϕ̂t = Ê(ϕt |M1:t ), wt

is a (n + p) error term vector assumed to be normally distributed. The main drawback
of this method is that the linearization has been shown to be a poor approximation in a
number of applications. The linear approximation may not give a good description of how
the model errors evolve over time. This method is illustrated in a case study presented in
Chapter 18 of this book (Jones and Graham).

3.1.2. Ensemble Kalman filter

The Ensemble Kalman filter is another popular method described by Burgers et al. (1998).
The principle is to approximate the probability distributions using random samples of state
variable and parameter values. First, an ensemble of N values of ϕt , ϕ1

t , . . . , ϕ
j
t , . . . , ϕN

t

and an ensemble of N values of Mt + τt , M1
t , . . . , M

j
t , . . . , MN

t , are randomly
generated. Second, the Kalman filter equation is applied to each ensemble element
as follows:

ϕ
j
t,K = ϕ

j
t + Ke

t (M
j
t − Rtϕ

j
t ) (10)

where Ke
t is a (n+p)× q matrix defined by Ke

t = �e
t R

T
t [Rt�

e
t R

T
t + var(τt )]−1, var(τt )

is the variance–covariance matrix of the measurement error, and �e
t is the (n + p) ×

(n+p) variance–covariance matrix of N vectors ϕ
j
t , j = 1, . . . , N . The ensemble of state

variables ϕ
j
t , j = 1, . . . , N , describes the uncertainty in the state variable and parameter

values before using the measurement Mt . In this approach, the updated model prediction
is set equal to the average value of ϕ

j
t,K , j = 1, . . . , N , noted further ϕ̄t,K . Note that ϕ̄t,K

is related to the average value, ϕ̄t , of the initial ensemble ϕ
j
t , j = 1, . . . , N , by

ϕ̄t,K = ϕ̄t + Ke
t (M̄t − Rt ϕ̄t ) (11)

where M̄t is the average value of M
j
t , j = 1, . . . , N . The attractive feature of this method

is that its implementation does not require a linear approximation of the crop model.
However, it is necessary to choose the value of N, to define a procedure for generat-
ing ϕ

j
t , j = 1, . . . , N , and to define another procedure for generating M

j
t , j = 1, . . . , N .

The values of M
j
t , j = 1, . . . , N , can be simply generated by adding random terms

to Mt : M
j
t = Mt + τ

j
t with τ

j
t ∼ N [0, var(τt )] (Burgers et al., 1998). This is straight-

forward if var(τt ) is known. On the contrary, there is no systematic method for choosing
N and for generating the ensemble of vectors ϕ

j
t , j = 1, . . . , N . The value of N must

be chosen carefully. Too small ensemble can give very poor approximation. Moreover,



164 D. Makowski et al.

according to Burgers et al. (1998), the matrix �e
t tends to underestimate the true error

variance–covariance matrix when N is too small. For generating ϕ
j
t , j = 1, . . . , N , a

common approach consists in calculating N vectors of state variables and parameters at
each time step as follows (e.g. Allen et al., 2002):

ϕ
j
t = F(ϕ

j

t−1) + ε
j

t−1

where ε
j

t−1∼ N [0, var(εt−1)]. The procedure requires the knowledge of var(εt−1). As
before, different values of var(εt−1) can be tested by using a training data set. Another
approach is to generate randomly N values for all the uncertain elements of the crop
models (parameters and input variables) (Margulis et al., 2002). Several other filters have
been developed for non-linear models like, for instance, the particle filter. See Anderson
and Anderson (1999) and Doucet et al. (2000) for more details.

3.2. Application

We present two numerical applications of the Ensemble Kalman filter based on the model
simulating winter wheat biomass described in Sections 2.1.2 and 2.2.2. In the first appli-
cation, the Ensemble Kalman filter is used to approximate the distribution of ϕt |Mt when
ϕt = (Zt , Eb)

T. The objective of this first application is to evaluate the capabilities
of the method for approximating the distribution. As ϕt = (Zt , Eb)

T depends on ϕt−1
through the linear function Eq. (7), it is possible in this case to calculate the analytical
expression of the distribution of ϕt |Mt by using the standard Kalman filter as shown in
Section 2.2.2. This distribution is compared to the approximated distributions obtained
with the Ensemble Kalman filter for different N values. The second application shows
how to use the Ensemble Kalman filter to estimate simultaneously Zt and more than one
parameter.

3.2.1. Application 1: analysis of the performance of the Ensemble Kalman filter

We update the state variable and the single parameter Eb. The model is linear with respect
to both of these, so that we can calculate the exact results and compare with the Ensemble
Kalman filter. In particular, we explore the effect of different choices for N, the size of
the random samples.

Consider the ϕt1 = (Zt1 , Eb)
T at the date of the first measurement Mt1 . The Ensem-

ble Kalman filter method is used to approximate the distribution of ϕt1 = (Zt1 , Eb)
T

conditionally to Mt1 as follows:

(1) Generate an ensemble of N values of parameter Eb from N(µEb , σ
2
Eb

). The values are

noted {E1
b , . . . , E

j

b , . . . , EN
b }.

(2) Generate an ensemble of N values of biomass at the date of the first measure-
ment t1, {Z1

t1
, . . . , Z

j
t1
, . . . , ZN

t1
}. Each Z

j
t1
, j = 1, . . . , N , is calculated as
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Z
j
t1

=
∑t1−1

t=1 E
j

b Ei max[1 − e−KLAIt ]PARt +
∑t1−1

t=1 ε
j
t where E

j

b is one of the N

values of Eb generated at step 1 and ε
j
t is an error term randomly generated from

ε
j
t ∼ N(0, Q). Define ϕ

j
t1

= (Z
j
t1
, E

j

b )T, j = 1, . . . , N .

(3) Compute the (2×2) variance–covariance matrix �e
t1

of ϕ
j
t1

= (Z
j
t1
, E

j

b )T from the

ensembles, �e
t1

=
[

var(Zj
t1
) cov(Z

j
t1
, E

j

b )

cov(Z
j
t1
, E

j

b ) var(Ej

b )

]

.

(4) Generate an ensemble of N observations M1
t1
, . . . , M

j
t1
, . . . , MN

t1
. Each M

j
t1

, j =
1, . . . , N , is calculated as M

j
t1

= Mt1 + τ
j
t1

where τ
j
t1

is drawn from N [0, var(τt1)].
(5) Update ϕ

j
t1
, j = 1, . . . , N , as follows: ϕ

j
t1,K = ϕ

j
t1

+ Ke
t1
(M

j
t1

− Rϕ
j
t1
) where ϕ

j
t1

=
(Z

j
t1
, E

j

b )T, Ke
t1

= �e
t1
RT[R�e

t1
RT + var(τt1)]−1, R = (1, 0), and ϕ

j
t1,K is an updated

value of ϕ
j
t1

.
(6) Estimate the expected value and variance–covariance matrix of ϕt1 |Mt1 by

1
N

∑N
j=1 ϕ

j
t1,K and var(ϕj

t1,K ), respectively.

(7) Replace ϕ
j
t1

by ϕ
j
t1,K , j = 1, . . . , N .

This procedure is applied successively to the ten measurements. The calculations give
values of biomass and of the parameter Eb for each date between sowing and harvest and
for each of the N elements of the ensemble. For illustration, Figure 7 shows three elements
of the ensemble of biomass and Eb generated by the Ensemble Kalman filter method with
N = 100, Q = 10 g2 · m−4, µEb = 1.85 g · MJ−1, and σ 2

Eb
= 2.3 × 10−1 g2 · MJ−2.

One hundred values of biomass and of Eb are generated every day. If a measurement
is available at time t , each one of the 100 values is updated by using the Kalman filter
equation as explained above. Figure 8 shows the 100 biomass and Eb values obtained with
the Ensemble Kalman filter at the date of the fourth measurement t = t4. These values
can be used to approximate the distribution of ϕt4 conditionally to M1:t4 . The expected
value of the distribution can be estimated by averaging the 100 values of biomass and Eb.
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Figure 7. Three elements of the ensemble of biomass and Eb values generated by the Ensemble
Kalman filter method with N = 100, Q = 10 g2 · m−4, µEb = 1.85 g · MJ−1, and σ 2

Eb
=

2.3 × 10−1 g2 · MJ−2.
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Figure 8. Distribution of ϕt4 conditionally to M1:t3 (a) and conditionally to M1:t4 (b) at the date
of the fourth measurement (t4 = 125 days). The ellipses represent the true distributions. The black
points indicate the true expected values of the distributions. The crosses are the values generated
with the Ensemble Kalman filter. The dotted line indicates the biomass value measured at time t4.

The performance of the Ensemble Kalman filter method depends on the ensemble
size N . To study the effect of N on the accuracy of the results, the Ensemble Kalman
filter is now applied with 11 different N values in the range 5–100. For each size N ,
the N values of biomass and Eb obtained with the Ensemble Kalman filter at the date
of the fourth measurement are averaged. The average values are then compared to the
true expected value E(ϕt4 |M1:t4). These true values were calculated with the standard
Kalman filter, leading to E(Zt4 |Mt4) = 39.31 g · m−2 and E(Eb|Mt4) = 0.482 g · MJ−1.
The Ensemble Kalman filter is run 100 times for each N value, giving 100 different
estimates of E(ϕt4 |M1:t4) for each size N . The estimates are noted µ̂1, . . . , µ̂k, . . . ,

µ̂100. The quality of the approximation is then evaluated by calculating a root mean
squared error (RMSE) for each N value from the differences between the true expected
values and the 100 different approximations obtained with the Ensemble Kalman filter as

RMSE =

√

1
100

∑100
k=1 [E(ϕt4 |M1:t4) − µ̂k]2. The results are displayed in Figure 9. This
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Figure 9. RMSE values obtained from the differences between the true expected value E(ϕt4 |M1:t4)

and the average of N biomass and Eb values generated by the Ensemble Kalman filter. Eleven
different values of N were considered successively. For each N value, the Ensemble Kalman filter
was run 100 times.
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figure shows that the estimation is quite inaccurate when the ensemble size is equal to 5.
Increasing the ensemble size strongly decreases the RMSE and, so, improves the accuracy
of the estimation of the expected values of the distribution. There is essentially no further
improvement beyond about N = 70 (Fig. 9). These results show that the accuracy of the
estimation obtained with the Ensemble Kalman filter depends highly on the size of the
ensemble. This parameter must be chosen carefully.

3.2.2. Application 2: application of the Ensemble Kalman filter to

estimate Zt and three parameters

In this second application, the Ensemble Kalman filter is used to estimate Zt and three
parameters, namely Eb, A, and B. These parameters were selected on the basis of the
sensitivity indices calculated in Chapter 3. It was shown that Eb, A, and B explain more
than 80% of the total biomass variability. We present below an algorithm to approximate
the distribution of ϕt1 |Mt1 with ϕt1 = (Zt1 , Eb, A, B)T:

(1) Generate an ensemble of N values of parameters Eb, A, and B from N(µEb , σ
2
Eb

),

N(µA, σ 2
A), and N(µB , σ 2

B). The values noted are: {E1
b , . . . , E

j

b , . . . , EN
b },

{A1, . . . , Aj , . . . , AN }, and {B1, . . . , Bj , . . . , BN }.

(2) Generate an ensemble of N values of biomass at the date of the first measure-
ment t1, {Z1

t1
, . . . , Z

j
t1
, . . . , ZN

t1
}. Each Z

j
t1
, j = 1, . . . , N , is calculated as Z

j
t1

=
∑t1−1

t=1 E
j

b Ei max[1 − e−K LAI
j
t ]PARt +

∑t1−1
t=1 ε

j
t where ε

j
t is an error term randomly

generated from ε
j
t ∼ N(0, Q), LAI

j
t = Lmax{1/(1 + e−Aj [Tt−T1]) − eBj [Tt−T2]},

E
j

b , Aj , Bj are the jth parameter values generated at Step 1. Define ϕ
j
t1

=
(Z

j
t1
, E

j

b , Aj , Bj )T, j = 1, . . . , N .

(3) Compute the (4 × 4) variance–covariance matrix �e
t1

of ϕ
j
t1

= (Z
j
t1
, E

j

b , Aj , Bj )T

from the four ensembles:

�e
t1

=











var(Zj
t1
) cov(Z

j
t1
, E

j

b ) cov(Z
j
t1
, Aj ) cov(Z

j
t1
, Bj )

cov(Z
j
t1
, E

j

b ) var(Ej

b ) cov(Aj , E
j

b ) cov(Bj , E
j

b )

cov(Z
j
t1
, Aj ) cov(Aj , E

j

b ) var(Aj ) cov(Aj , Bj )

cov(Z
j
t1
, Bj ) cov(Bj , E

j

b ) cov(Aj , Bj ) var(Bj )











.

(4) Generate an ensemble of N observations M1
t1
, . . . , M

j
t1
, . . . , MN

t1
. Each M

j
t1
, j =

1, . . . , N , is calculated as M
j
t1

= Mt1 + τ
j
t1

where τ
j
t1

is drawn from
N [0, var(τt1)].

(5) Update ϕ
j
t1
, j = 1, . . . , N , as follows: ϕ

j
t1,K = ϕ

j
t1

+ Ke
t1
(M

j
t1

− Rϕ
j
t1
) where ϕ

j
t1

=
(Z

j
t1
, E

j

b , Aj , Bj )T, Ke
t1

= �e
t1
RT[R�e

t1
RT + var(τt1)]−1, R = (1, 0, 0, 0) and ϕ

j
t1,K

is an updated value of ϕ
j
t1

.

(6) Estimate the expected value and variance–covariance matrix of ϕt1 |Mt1 by
1
N

∑N
j=1 ϕ

j
t1,K and var(ϕj

t1,K ), respectively.

(7) Replace ϕ
j
t1

by ϕ
j
t1,K , j = 1, . . ., N.
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This algorithm can be applied to update simultaneously the biomass and the three
parameters at each date of measurement. Its implementation requires the knowledge of Q,
µEb , σ 2

Eb
, µA, σ 2

A, µB , σ 2
B , and N. We further assume that Q = 10 g2 ·m−4, µEb = 1.85 g·

MJ−1, σ 2
Eb

= 2.3 × 10−1 g2·MJ−2, µA = 6.5 × 10−3 g·MJ−1, σ 2
A = 3.17 × 10−3 g2·MJ−2,

µB = 2.05 × 10−3 g · MJ−1, σ 2
B = 2.352 × 10−3 g2 · MJ−2. The value of N cannot be

determined with the procedure described in the first application because, here, the true
expected values are unknown. In such cases, a common approach consists in running the
Ensemble Kalman filter several times for different N values and in calculating the variance
(or standard error) of the estimated expected values for each N value. In this application,
the Ensemble Kalman filter is run 100 times for N = 10, 50, 100, 150, and 200. The
standard errors of the estimated expected values are then calculated at harvest for each N

value. The results are shown in Figure 10. The standard errors are very high when N = 5.
Increasing the ensemble size strongly decreases the standard errors and, so, improves the
accuracy of the estimation of the expected values. There is no further improvement beyond
about N = 100 for the biomass, Eb, and B. But this size is not sufficient for parameter A.
It is necessary to use N = 200 to avoid inaccurate values of A. Figure 11 shows the
results obtained in one of the run of the Ensemble Kalman filter when N = 200.
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Figure 10. Standard error of the estimated expected values of biomass, Eb, A, and B obtained at
harvest with the Ensemble Kalman filter. Five ensemble sizes in the range 5–200 were considered
successively. For each size, the Ensemble Kalman filter was run 100 times.
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Figure 11. Expected values of biomass, Eb, A, and B (continuous line) obtained with the Ensemble
Kalman filter (N = 200, Q = 10 g2 · m−4, µEb = 1.85 g · MJ−1, σ 2

Eb
= 2.3 × 10−1 g2 · MJ−2,

µA = 6.5 × 10−3 g · MJ−1, σ 2
A = 3.17 × 10−3 g2 · MJ−2, µB = 2.05 × 10−3 g · MJ−2, σ 2

B =

2.352 × 10−3 g2 · MJ−2). The black points represent biomass measurements. Biomass values and
parameters were updated using the first 10 measurements. The 11th measurement is the value
measured at harvest (t = 216 days). The dashed lines represent the initial predictions. The continuous
lines represent the average of the 200 values generated by the Ensemble Kalman filter between
sowing and harvest.

4. Conclusion

This chapter has concentrated on the mechanics of how to use measurements to update
state variables or parameters of a crop model. The use of in-season measurements to
improve predictions is potentially very powerful, but a number of difficult decisions lie
with the user.

We have seen that the updating equations involve the variances of the errors in the
model dynamic equations. However, these variances are seldom if ever explicitly given
for a crop model. Determining reasonable values may be a difficult problem.

We have seen that one can update one or several state variables using the same mea-
surement. Which and how many variables should one choose to update? This again can
be a difficult decision.
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We have seen that one can choose to update parameters in place of or in addition
to updating state variables. The choice between updating parameters and state variables
is important. Updating a state variable but not parameters implies that even though the
past evolution of the field being studied was different than the evolution of an average
field, the future evolution will obey the same equations as for the average field. If on
the other hand parameters are updated, then one is assuming that the future will obey
different equations than the average field. Furthermore, one is assuming that the past
gives information about how the future evolution will differ from that of the average
field.

Agronomic understanding of why the field being studied differs from an average field
will obviously be a very valuable aid to making these decisions.
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Exercises

1. The objective of this exercise is to estimate the nitrogen content of a crop, noted Z,
by combining expert knowledge and a measurement noted M. Suppose that, accord-
ing to an expert, the possible values of the nitrogen content can be described by a
normal distribution, Z ∼ N(µZ, σ 2

Z). We assume that a measurement M is performed
in the field and that this measurement represents an index in the range 0–1 based on
reflectance values measured for different wavelengths. The measurement M is related
to the nitrogen content as follows:

M = aZ + b + τ

where a and b are two parameters and τ∼N(0, σ 2
M) is a measurement error independent

from Z. We assume that µZ , σ 2
Z , a, b, and σ 2

M are known.

(a) What is the joint distribution of the vector of random variables θ =
(

Z
M

)

? Express
the expected value of θ and its variance–covariance matrix in terms of µZ , σ 2

Z ,
and σ 2

M .
(b) Determine the distribution for Z conditionally to the measurement M . Express

E(Z|M) and var(Z|M) in terms of M , µZ , σ 2
Z , and σ 2

M .
(c) What is the effect of σ 2

Z and σ 2
M on E(Z|M) and var(Z|M)?

(d) Numerical application. Calculate E(Z|M) and var(Z|M) with M = 0.9, µZ =
0.25, σ 2

Z = 0.01, a = 1.2, b = 0, and σ 2
M = 0.001.

(e) Suppose that the expert is not very confident in the value of µZ . Perform a sen-
sitivity analysis of E(Z|M) to the value of µZ when µZ varies in the range
0.15–0.35.

2. In this second exercise, the expert knowledge is replaced by the prediction of a dynamic
model defined as:

Zt = Zt−1 + Bt−1 + εt−1

where Zt is the crop nitrogen content at time t, Bt−1 is a known input variable, and
εt−1 is the model error. εt−1 is normally distributed and has zero mean and constant
variance, εt−1∼N(0, Q). We also assume that Z1 = 0 and var(Z1) = 0.

Suppose that a measurement M is performed at t = 10 and that M is related to
the nitrogen content as M = aZ10 + b + τ where a and b are two parameters and
τ∼ N(0, σ 2

M) is a measurement error independent from Z.

(a) What is the distribution for Z10 before using the measurement? Express E(Z10)

and var(Z10) in terms of the input variable values and Q.

(b) Determine the joint distribution for the vector of random variables θ10 =
(

Z10
M

)

.

Express the expected value of θ and its variance–covariance matrix in terms of
B1, . . . , B9, Q, and σ 2

M .
(c) Give the distribution for Z10 conditionally to the measurement M . Express

E(Z10|M) and var(Z10|M) in terms of M , B1, . . . , B9, Q, and σ 2
M .

(d) Compute the Kalman gain.
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(e) What are the effects of Q and σ 2
M on E(Z10|M) and var(Z10|M)?

(f) Numerical application. Calculate E(Z10|M), var(Z10|M), and the Kalman gain
with B1 = 0.01, B2 = 0.015, B3 = 0.02, B4 = 0.035, B5 = 0.02, B6 = 0.025,
B7 = 0.025, B8 = 0.018, B9 = 0.02, Q = 0.001, a = 1.2, b = 0, M = 0.9, and
σ 2

M = 0.001.
(g) Is the uncertainty higher with the expert knowledge or with the model?

3. In this exercise, we consider a more sophisticated dynamic model simulating two state
variables noted Z

(1)
t and Z

(2)
t . Z

(1)
t is the crop nitrogen content at time t and Z

(2)
t is

the crop biomass at time t. The model is defined by:
(

Z
(1)
t

Z
(2)
t

)

=

(

1 c

0 1

)

(

Z
(1)
t−1

Z
(2)
t−1

)

+

(

B
(1)
t−1

B
(2)
t−1

)

+

(

ε
(1)
t−1

ε
(2)
t−1

)

where c is a known parameter, B
(1)
t−1 and B

(2)
t−1 are two known input variables, and

ε
(1)
t−1 and ε

(2)
t−1 are two errors. We assume that ε

(1)
t−1 and ε

(2)
t−1 are normally distributed,

independent, have zero means, and that their variances are equal to Q1 and Q2. We
also assume that Z

(1)
1 = Z

(2)
1 = 0 and that their variances are equal to zero.

As before, we suppose that a measurement M is performed at t = 10 and that M is
related to the nitrogen content as M = aZ

(1)
10 +b+τ where a and b are two parameters

and τ∼N(0, σ 2
M) is a measurement error independent from ε

(1)
t−1 and ε

(2)
t−1.

(a) Determine the distribution for

(

Z
(1)
10

Z
(2)
10

)

before using the measurement. Give the

expected value and the variance–covariance matrix for this random vector.
(b) What is the correlation between Z

(1)
10 and Z

(2)
10 ?

(c) What is the sensitivity of this correlation to the values of c, Q1 and Q2?

(d) What is the joint distribution of









Z
(1)
10

Z
(2)
10

M









?

(e) Determine the distribution for

(

Z
(1)
10

Z
(2)
10

)

conditionally to M.

(f) What are the effects of Q1, Q2, and σ 2
M on E

(

Z
(1)
10

Z
(2)
10

)

|M and var

(

Z
(1)
10

Z
(2)
10

)

|M?

(g) Compute the Kalman gain for the two state variables.

(h) Numerical application. Calculate E

(

Z
(1)
10

Z
(2)
10

)

|M , var

(

Z
(1)
10

Z
(2)
10

)

|M , and the Kalman

gains with B
(1)
1 = 0.001, B

(1)
2 = 0.0015, B

(1)
3 = 0.002, B

(1)
4 = 0.0035, B

(1)
5 =

0.002, B
(1)
6 = 0.0025, B

(1)
7 = 0.0025, B

(1)
8 = 0.0018, B

(1)
9 = 0.002, B

(2)
1 = 10,

B
(2)
2 = 50, B

(2)
3 = 65, B

(2)
4 = 64, B

(2)
5 = 70, B

(2)
6 = 35, B

(2)
7 = 38, B

(2)
8 = 51,

B
(2)
9 = 25, Q1 = 0.0005, Q2 = 0.09, a = 1.2, b = 0, c = 0.001, and

σ 2
M = 0.001.
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1. Introduction

Among the explanatory variables in a crop model, the variables that represent management
decisions have a special status because they are under the control of the farmer. In this
chapter we consider two specific questions related to these variables. The first is how to
characterize them. The simplest solution is to ascribe a fixed value to each management
variable. However, it is also possible to express management variables as functions of
other explanatory variables or of model state variables. Such functions are called decision
rules and are discussed in Section 3. In Section 4, we consider different uses of crop
models and discuss what representation of management decisions is adapted to each use.

The rest of the chapter is devoted to the second question, which is how to calculate
optimal decisions. The elements of the optimization problem are presented in Section 5.
The discussion concentrates on the objective function and on the optimization domain,
i.e. the range of values within which an optimal solution will be sought. Sections 6 and 7
present methods for calculating optimal decisions. A major difficulty with crop models is
the fact that future climate is unknown except as a probability distribution. The problem is
thus a stochastic optimization problem. Section 6 presents simulation-based optimization
methods and Section 7 control-based optimization methods. The two different approaches
are compared in the final section.

It should be kept in mind that calculated optimal decisions suppose that the model
correctly describes the effect of management variables on outputs. Obviously, the results
need to be evaluated in the field.
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2. Which decisions, which variables?

Decisions that are commonly taken into account in crop models include choice of variety,
sowing date, sowing density, nitrogen fertilization dates and amounts, irrigation dates and
amounts and harvest. This is the case with APSIM (Keating et al., 2003), CROPSYST
(Stockle et al., 2003), EPIC (Cabelguenne et al., 1996), OZCOT (Hearn, 1994), PCYIELD
(Welch et al., 2002), the CERES models (Pang, 1997) or the STICS crop model
(Brisson et al., 1998, 2003). Management actions are often collected in a section called
“management options” (Swaney et al., 1983; Hearn, 1994; Ghaffari et al., 2001).

Other decisions are rarely considered. The choice of crop species is seldom optimized
directly using a dynamic crop model. More often optimization is based on linear pro-
gramming which takes into account farm constraints as well as objectives. Decisions that
are only rarely treated include dates of herbicide or pesticide applications, tillage type
and residue management. Authors who have taken these decisions into account include
van Evert and Campbell (1994), who propose a model for aphid population and aphid
immigration management, Stockle et al. (2003a) who propose using the CROPSYST
model for the specific problem of management of pesticide spraying and Batchelor et al.
(1993), who treat the impact of pests on crops with the SOYGRO and PNUTGRO models.

If multiple cropping seasons are considered, then decisions include the decisions for
the crop each year as well as decisions concerning catch crops. In general, optimization
only concerns a subset of all the decisions that crop management entails.

The decision variables can be of several types. Crop species, variety and type of
tillage are categorical variables. For example, species can take the values “corn”, “wheat”,
“sunflower,” etc. Dates are integer variables, and are usually given as the day number of
the year. Amounts are real variables.

3. Representations of decisions and decision rules

“Management decisions” is a very general term and covers a large spectrum of represen-
tations. The simplest way to represent decisions is by fixed values. For example, the value
of crop species might be “corn”, the value of sowing day of year 123, the value of amount
of nitrogen 50 kg ha−1, etc.

A second approach is to represent decisions using a decision rule. A decision rule is
a function which relates a decision variable to other explanatory variables or to state
variables. We will refer to the variables in a decision rule as the indicator variables of the
rule. A decision rule for sowing would be to sow on the first day after day of year 121
when soil moisture in the upper 10 cm of soil is below 70% of maximum water holding
capacity. Here the indicator variables are the day of year and the relative water content.
For the decision rule to be compatible with a model, indicator variables that are state
variables (this would normally be the case for relative water content) must be calculated
by the model. The remaining indicator variables must also be available. They could be
explanatory variables for the model or variables that are supplied specifically for the
decision rule.Finally, a decision rule normally involves some parameters. The threshold
day 121 and the value of 70% are the parameters of the above decision rule.

Decision rules are also common in agronomy outside dynamic models. A very well
known decision rule is the one for the amount of nitrogen fertilizer given by the “balance”
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method. The recommended dose of nitrogen is d = (Pf − Pi) − (Mn + Ri − L − Rf ),
where (Pf − Pi) is the difference between the total nitrogen requirement of the crop and
the amount of nitrogen absorbed up to the time of fertilization, Mn is total mineralization
of soil nitrogen during the growing period, Ri − Rf is the difference between initial and
final soil mineral nitrogen and L is the amount of mineral nitrogen lost to deep drainage.
The method includes algorithms for calculating each of the quantities in the equation in
terms of climate, characteristics of the soil, crop, field and the management variables of
the preceding crop. All these represent the indicator variables of the decision rule.

As this example shows, decision rules can be complex functions of the indicator vari-
ables. They can also be implicit functions, where the decision rule is simply an algorithm
that allows one to calculate the value of the decision variable. At the other extreme,
a fixed value is also a decision rule, a particularly simple one. For example, the rule
“fertilizer amount = 50 kg ha−1” is a rule with no indicator variables and a single
parameter.

For the control methods of optimization presented below, decisions are represented
as vectors which have a value for each day of the simulation. For example, the sowing
decision is represented as a vector which assigns to each day either the value “no” (don’t
sow) or “yes” (sow). In this particular case there can be only a single “yes” value, and
the corresponding day is the sowing day. If the decision concerns both irrigation dates
and amounts, there will be a vector which gives the amount of irrigation each day, with
zeroes for days with no irrigation.

4. The uses of decision rules

The number of possible decision rules for a particular decision is unlimited. The rules may
involve different indicator variables, different mathematical forms or different parameter
values. The choice between different decision rules or more fundamentally the criterion
for choosing a particular decision rule will depend on the objectives of the study.

4.1. Reproducing past decisions

A model is often used to reproduce past situations, and of course one requires the man-
agement decisions as inputs for those situations. In this case, the management decisions
will have the form of fixed values, the values that were actually applied.

One use of simulating past situations is to furnish a diagnosis of how and why yield
differed from potential yield. This is termed “Yield gap analysis” (see Meynard and David,
1992; Kropff et al., 2001; Matthews, 2002). The purpose of comparing the model with
past data might be to identify limiting factors. As stated by Kropff et al. (2001): “Crop
simulation models offer a way of estimating what the potential yield of a crop is and
a step-wise analysis of the various inputs can help identify the limiting factors.” Yield
gap analysis can be applied on larger scales, such as a whole region, not only a field (Doré
et al., 1997; Affholder and Scopel, 2001).

Other uses of simulating past situations include model evaluation, where calculated
and observed values are compared, and parameter estimation, where the parameters are
adjusted to minimize the difference between calculated and observed values.
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Another use of past decisions is as a baseline for examining alternative decisions. One
can pose questions like: “what would have happened if I had sown 3 days earlier?” (see
Ghaffari et al. (2001)). This is an example of virtual experimentation (Matthews, 2002).

4.2. Predicting management decisions

Suppose that the purpose of the modeling exercise is to make predictions, for example,
of yield or of water consumption for irrigation in a region. Then one needs to predict
what management decisions will actually be taken in each field. The criterion for judging
a decision rule in this case is how closely it imitates farmer behavior. One rather simple
approach here is to assume that farmers follow recommendations for good practices and
to base the decision rules on those recommendations. For example, there may be rec-
ommendations for fertilizer amount or for planting date which take the form of decision
rules. Then one could use those decision rules for prediction. This approach was used by
Leenhardt et al. (2004) to predict agricultural water consumption in a 12 000 km2 area in
southwestern France.

Alternatively, one could try to model farmer behavior more realistically. For example,
irrigation decisions might depend on the available irrigation equipment on the farm (Maton
et al., 2005). The availability of equipment is then an additional indicator variable.

A particular aspect of imitating farmer behavior is to avoid decisions that would not be
taken in practice. This is particularly important if the model does not simulate correctly
the results of such decisions. Thus allowing them might lead to very substantial errors.
An example would be the decision to enter the field for soil tillage. A farmer would avoid
doing so in practice if the soil was wet since that could deteriorate soil structure, hamper
germination, increase the risk of water logging and finally reduce yield. However, most
models do not simulate soil structure and therefore would not penalize tillage under wet
conditions. The problem could be avoided using a decision rule for tillage that has soil
moisture as an indicator variable, and that forbids tillage under wet conditions. Examples
are given by Swaney et al. (1983) and Hearn (1994).

A simple and common way to restrict sowing to dry conditions is to wait until a
threshold day is passed and then to sow as soon as cumulative rainfall in the previous
n days is less than σ . The rainfall part of the decision rule would be:

IF
n
∑

k=1

Pt−k < σ THEN sowing_date = t (1)

where Pt−k is rainfall on day t − k and t is the current day in the simulation. This rule
would be evaluated each day until the condition were met or until the latest acceptable
sowing date were reached.

4.3. Scenario testing

Another common use of models is for scenario testing. The choice of decision rules in this
case will depend on the exact objective of the modeling exercise. In some cases it may
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be reasonable to use decision rules that imitate current farmer behavior. For example, if
the objective is to test the effect of warming temperatures on yield, a first study may use
decision rules for irrigation based on current practices, since they automatically include
adaptation of practices to climate. In other cases the scenario may specifically concern
new decision rules, which would then replace the decision rules that imitate current farmer
behavior. For example, one might want to test the consequences of reducing the amount
of nitrogen applied to wheat at the second application and adding a third application with
an amount based on a measurement of plant nitrogen status. Then it would be necessary
to change the decision rule for the amount at the second application, compared to current
practices, and add a decision rule for the amount of nitrogen at the third application.

4.4. Optimizing management decisions

The use of a model to calculate optimum decisions is the main topic of the following
sections. We will treat the question of decision rules for optimization there in. However,
optimization studies rarely concern all the management decisions for a crop. The problem
then arises as how to treat those decisions that are not optimized. The choice may be
crucial for the optimization study. For example, suppose the objective is to optimize the
dates and amounts of irrigation of corn. Suppose further that the amount of nitrogen
fertilizer is not optimized but is given as a fixed value or a fixed decision rule. If the
fertilization rule leads to nitrogen stress, this may favor irrigation strategies which also
limit production. It is important to be aware that the optimization results may depend on
the way one treats the decisions that are not optimized.

4.5. Decision strategies

We use the term decision strategy, noted π, to refer to the collection of all the deci-
sion rules. In many cases, the strategy is simply the collection of the decision rules for
each individual decision. In more complex cases, the strategy may include relationships
between the different decisions. For example, if nitrogen is applied with the irrigation
water, then the time of irrigation and the time of fertilization must coincide. As shown
by studies done on the subject of formulating decision processes in agriculture (Aubry
et al., 1998; Papy, 2000; Cros et al., 2001, etc.), it is necessary not only to address
the adaptive character of the decision-making process using decision rules, but also to
include scheduling characteristics. A decision rule with a simple structure of the type “IF
(condition involving indicator variables) THEN (conclusion that sets values of decision
variables)” does not always suffice to model the scheduling of different management inter-
ventions. A more general structure like a “REPEAT . . . WHILE” loop could be used to
represent the repetitive character of some actions, which would be repeated until an event
interrupted the sequence. This type of structure is used in the Moderato model (Bergez
et al., 2001a).

Sequence or loop control structures are easy to write and are well adapted to simple
crop systems (one field, homogeneous, elementary management intervention). However,
if the crop system is more complex (several fields, choice of equipment, etc.), it may
become necessary to allow and manage actions in parallel. It is then necessary to describe
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the duration of each action and to identify those that must be synchronous. It is also
necessary to describe the management of shared resources (manpower, machinery, etc.).
We then need priority rules to handle simultaneous actions that demand the same resources.
It may also be necessary to have adaptation rules to model the evolution of the sequence
of actions during the growing season. Examples of decision structures are shown in the
Otelo (Papy et al., 1988; Attonaty et al., 1994), Conserto (Jeannequin et al., 2003) and
Sepatou (Cros et al., 2001) models.

5. The optimization problem

As presented in Chapter 1, the dynamic equations of a crop model are of the form

U(t + 1) − U(t) = g(U(t), X(t); θ), t = 1, . . . , T (2)

where U(t) represents the state variables of the system, X(t) the vector of explanatory
variables and θ the vector of model parameters. In this chapter we partition the vector
X(t) into the variables that represent decisions to be optimized, noted as D(t), and the
remaining explanatory variables noted as C(t). For example, D(t) could include planting
date and density, which are to be optimized, and C(t) could include the climate variables,
soil characteristics, initial conditions and all remaining decision variables such as crop
species and variety, dates and amounts of nitrogen applications, etc. Note that here we need
daily values of the decision variables. It is natural then to use the control representation
of the decision variables. That is, the couple

[

Dsow_date(t), Ddensity(t)
]

has the value
[yes, density] on the sowing day and [no, 0] every other day.

The crop model written as a response model (Chapter 1) is now

Ŷ (T )=f(D,C;θ), D={D(t), t =1, . . . ,T }, C ={C(t), t =1, . . . ,T } (3)

Given C, one could evaluate decision rules to obtain D. Thus for this formulation, the
decision variables can be expressed as decision rules.

We can now introduce the essential elements of the optimization problem. These are:

(a) the amount of information available at decision time about the variables in C. This
concerns the climate in particular. The simple case is when one assumes that climate
for the entire season is known. This might be of interest in an a posteriori study,
to determine the best decisions that could have been taken. When the problem is
to make recommendations for decisions, it is generally assumed that the decision
maker only has access to a probability distribution for future climate.

(b) the criterion that the optimal decisions maximize (or minimize). This criterion, called
the objective function (it is a function of the management decisions), defines what
exactly is meant by “optimal”.

(c) the optimization domain. This defines the range of values within which we seek the
optimal decisions.

Now, we consider the objective function and the optimization domain in more detail.
The methods and algorithms for optimizing crop management decisions are also presented.
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5.1. The objective function and utility

The evaluation of a crop management strategy can be based on different criteria, which
may involve economic results, environmental impact, organizational considerations, etc.
In order to use a simulation model to evaluate strategies, the model must calculate all the
necessary results. Let Y = (Y1,Y2, . . . ,Yn) be the vector of all results of interest simulated
by the model. These outputs can have numeric (discrete or continuous) or symbolic values.

If we note π as a management strategy generating the D(t) decisions, the Yi values
are the output of a response model that can be written as

Yi =f(π,C;θ), C ={C(t), t =1, . . . ,T } (4)

In the simplest case where the explanatory variables C are assumed to be known, and
where there is one unique numeric variable of interest Y , the problem of defining the best
strategy is simple; it is the strategy with the largest value of Y , knowing C. In general,
however, C is only known as a probability distribution (climate, soil, . . . ) and several Yi

have to be considered. Then Y is a random vector. In this case the notion of expected utility
is the traditional criterion for deciding which of the two strategies is to be preferred.

5.1.1. Maximizing the expected utility

In order to manipulate scalar quantities, which are easy to compare and optimize, we
define a quantity called the utility and noted as U , which is a scalar function of Y

U =U(Y1, . . . ,Yn) (5)

Thus even if Y is a vector, the utility which is derived from it is a scalar. This utility is a
summary of the satisfaction gained by the farmer at the end of the crop, considering all
the outputs represented by the Yi values.

When the different C values are defined by a probability distribution dP(C), the scalar
U(Y ) is also a random variable with a probability distribution dPπ (U), which is a function
of the management strategy π . The expected utility criterion then consists in preferring
management strategy π1 to management strategy π2 if and only if the expectation of
the function U(Y ) for the dPπ1 distribution is greater than its expectation for the dPπ2
distribution:

π1 >π2 ⇔E
[

U(Y )|dPπ1

]

>E
[

U(Y )|dPπ2

]

(6)

where

E[U(Y )|dPπ ]=
∫

U

UdPπ (U)=

∫

C

U(f(π,C;θ))dP(C) (7)
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Example 1

Consider management of a rapeseed crop evaluated using two criteria: Y1 is yield and Y2 is
amount of applied nitrogen. We assume that for the two strategies π1 and π2, Y = (Y1, Y2) has
a normal distribution N(mπ , �π ). We assume that the utility function is U(Y) = Y1−αY2.
Then the random variable U also has a normal distribution N(m, �) and using the expected
utility criterion, we choose the strategy with the greatest mean value m (see Fig. 1).
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Figure 1. Normal distribution of the utility U for two strategies π1 and π2.

5.1.2. Estimating the expected utility criterion

To estimate the expected utility of a management strategy π, a Monte-Carlo approach
is traditionally used, where Eq. (6) is replaced by the mean value of the utilities U(Y)
calculated by simulation for a large number N of possible values of the uncontrollable
variables C, observed or randomly generated. We write this estimation as

E[U(Y )|dPπ ]≈1/N
∑

i

U(f(π,Ci;θ)). (8)

Note that the chosen criterion also depends on the parameters θ of the crop model,
which in general are not perfectly known but only estimated. When it is possible to define
the distribution of the parameter estimators, we can extend the definition of the expected
utility by calculating also the expectation over θ

E [U(Y ) |dPπ ]=
∫

θ

∫

C

U(f(π,C;θ))dP(C)dP(θ). (9)
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This criterion is again estimated using the Monte-Carlo method:

E[U(Y )|dPπ ]≈1/M1/N
∑

j

∑

i

U
(

f (π,Ci;θj )
)

(10)

where M values θj are drawn randomly using the parameter distribution.

5.1.3. Modeling risks and other criteria

Decision makers are concerned not only with the average value of the objective function
but also by its variability. If, for the same average result, one prefers stable values to
varying values, one is risk averse. In the other case one is risk-seeking. One important
advantage of the notion of utility is that it can be used to take into account risk aversion
or inclination toward risk of the manager.

Example 2

Suppose that Y is net profit and that there are just two possible future climates C1 and
C2. Consider two management strategies π1 and π2. Suppose that for the first manage-
ment strategy Y (π1,C1)=2000E and Y (π1,C2)=1000E, while for the second management
strategy Y (π2,C1)=1500E and Y (π2,C2)=1500E. If we simply use the average of Y

as our criterion, then the two strategies are equivalent. For both the average net profit
is 1500E. Suppose however that we want to imitate a manager who is risk averse. For
this decision maker, the advantage of making 2000E instead of 1500E in one year is
not as important as the disadvantage of making 1000E instead of 1500E. The utilities
might then be U(π1,C1)=1800 and U(π1,C2)=1000 for the first management strategy
and U(π2,C1)=1500 and U(π2,C2)=1500 for the second. Now the expected utilities are
1400 and 1500 respectively, and strategy 2 is preferred.

More generally, risk aversion corresponds to concave utility functions like U(Y )= lnY ,
for which we have E[U(Y )]<U(E[Y ]). Conversely, inclination toward risk corresponds
to convex utility functions.

Example 1 (cont’d)

Let us consider again the previous rapeseed crop model with now U(Y)= (Y1−αY2)
1−β /

(1−β), β >0. The utility function is concave and the model imitates a risk averse decision
maker. The distributions of U(Y) for π1 and π2 are modified and now π2 can be preferred
to π1 depending on the value assigned to β.

Note that other criteria than the utility expectation can be used, for instance, if it is
difficult to determine a priori distribution for C, or to define a utility function which
combines correctly the different outputs Y1, . . . ,Yn.
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A common approach is the maximin approach, which does not require knowledge of
the probability distribution. Here

π1 >π2 ⇔minC U(f(π1,C;θ))>minC U(f(π2,C;θ)) (11)

According to this approach, one prefers strategies with greater utility in the worst case.
This method is in fact not very discriminating.

When a unique utility function cannot be defined in a satisfying manner, but nonethe-
less it is possible to define a utility function Ui for each variable of interest Yi, i =

1, . . . ,n, a multiple criteria comparison technique may be used. Then, criteria E[U(Y1)],
E[U(Y2)], . . . ,E[U(Yn)] are estimated for each management strategy π , and multi-criteria
methods can be employed (Roy, 1996). See Chapter 20 for an example.

5.2. The optimization domain

In this section, we consider the definition of the range of possible decision strategies – the
“optimization domain” �={π} within which the optimal solution will be sought. We also
discuss the criteria for choosing between different possible optimization domains. One of
these criteria is how does the optimization domain compare to a domain which imposes
no constraints on the optimal solutions. We begin by defining this unconstrained domain.

5.2.1. The unconstrained optimal decisions

For each situation, that is for each decision date and each set of values or distribution
functions of C, there is some management strategy which maximizes the chosen utility
function. We will call this the unconstrained optimal strategy.

What optimization domain would we use if we wanted to be sure that it includes
the unconstrained optimal solution? It would be a domain that, for each C, includes
all possible management strategies. We call this the unconstrained domain. The important
point here is that in the unconstrained domain, the management strategy could be different
for each C.

Consider for example, the simple case of optimizing the amount of nitrogen to apply to a
wheat crop at heading. All other decisions are assumed fixed, so the optimization concerns
just a single variable. We assume that at the time the decision is made (at heading), climate
up to that time is known and future climate is unknown except as a probability distribution.
The unconstrained optimization domain is, for each year, an amount of nitrogen in the
range 0 to some very large value. The domain specifically includes the possibility that the
optimal amount can be different every year.

The unconstrained optimization domain has the important advantage that it includes
the unconstrained optimal strategy. Nevertheless, in practice it may be necessary or even
preferable to accept a constrained domain and a sub-optimal management strategy.

First of all, there is the difficulty of calculating the unconstrained optimal strategy.
We can define the calculations to be carried out (see the section on simulation-based
control) but actually doing them may be very difficult. The difficulty is related both to
the complexity of the model (number of state variables) and to the complexity of the
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decision problem (number of decisions). Second, even if the calculations are possible,
there is a major practical problem. The optimal management strategy is based on all
the information available at decision time (in particular climate up to that day). To take
advantage of this information one has two choices. Either one does the calculations for all
possible climates, so the decision maker can look up the results for his particular climate
variables, or one does the calculations each day using the climate variables up to that day.
The first solution involves in general an enormous number of optimization calculations.
(For a decision on day 5 with 4 daily climate variables and just 5 possible values for each,
the number of possible climate sequences is 520 ≈1014 ). The second possibility, of redoing
the calculations each day, is not adapted to an extension agent making recommendations
for a large number of fields. The third disadvantage is that the procedure of calculating an
unconstrained optimal amount each year is not based on an understanding of the factors
which influence the optimal amount. One must simply have confidence in the model. One
may prefer a procedure which is more clearly related to our knowledge of agricultural
systems even if the resulting amounts are slightly sub-optimal. The final disadvantage,
related to the previous one, concerns the case where the optimization calculation is aimed
at a better understanding of the determinants of optimal management rather than at making
recommendations. An optimization calculation that outputs a different strategy every year
may not provide much insight.

5.2.2. Decision rules

The use of fairly simple decision rules provides a different way of specifying the opti-
mization domain. For example, suppose the decision rule is that the optimal amount of
nitrogen/ha QN is θ1 times average yield for this field in the absence of nitrogen stress Ȳ

(we assume that this is an available indicator variable) minus θ2 times mineral nitrogen
in the soil at sowing, Nsoil (also assumed to be available) with θ1 in the range [0–1] and
θ2 in the range [0–2]:

QN =θ1Ȳ −θ2Nsoil (12)

For fixed values of the parameters θ1 and θ2 this is a decision rule as we have defined
it, since the value of the decision variable is a function of two indicator variables, namely
average yield and mineral N at sowing. The optimization domain � is the domain defined
by the ranges of θ1 and θ2. The use of this decision rule may lead to different amounts
in different years, but it is not as flexible as the unconstrained domain. Average yield is a
property of the field and so may be considered constant from year to year. The decision
rule then automatically implies that two years with identical mineral N at sowing will
have the same optimal amount of nitrogen, whereas this is not necessarily true for the
unconstrained domain. Thus this decision domain is not as general as the unrestricted
domain and therefore may lead to sub-optimal decisions.

On the other hand, an optimization domain based on a decision rule does not suffer
from the disadvantages that we listed for the unconstrained domain. First, the optimiza-
tion calculation is in general much easier. In our example of nitrogen fertilization, the
optimization calculation involves finding the optimal values of the two parameters. This
can be done using one of the simulation-based optimization techniques described below.
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This is in general much easier than using a simulation-based control method. Second, the
optimization calculation can now be done at leisure. Climate up to decision time will be
taken into account automatically in applying the decision rule. Third, a decision rule is, in
general based on agronomic knowledge and is easily understood. It will then probably be
more readily accepted than an unconstrained optimal amount. Finally, in general it will
be much easier to understand and analyze optimal decision rules than the unconstrained
management strategies.

We began by assuming that the optimization concerns a single field. In many cases,
however, one seeks optimal decision rules for a range of soil types, climates, initial
conditions, etc. One could treat each case separately, but this requires multiple calculations
and may provide little insight. A different possibility would be to use decision rules that
apply to the full range of conditions considered. Normally the decision rules would then
include indicator variables related to soil type, average climate, etc. For example, the
decision rule for fertilizer amount at the first application might include soil organic N
content as an indicator variable, since mineralization rate depends on organic N content.

5.2.3. The criteria for judging decision rules for optimization

There are two major criteria for judging decision rules and their accompanying optimiza-
tion domains in optimization studies. The first is how closely does the optimization domain
allow one to get to the unconstrained optimal solutions. One wants to avoid optimization
domains that are very restricted and that only include solutions whose performance is
far below that of the unconstrained optimal solutions. The second criterion is that the
decision rule must be acceptable to the decision makers. A corollary is that the rule must
be applicable in practice.

We identify three different characteristics of decision rules, and discuss how each of
these affects the two criteria. First of all, a decision rule is characterized by the indicator
variables involved. Obviously, adding additional indicator variables makes the rule more
flexible and thus allows for optimal solutions closer to the unconstrained optimal solutions.
For example, we could expand an irrigation rule based on “starting a new irrigation cycle
every 10 days” to include a delay in case soil moisture is above some threshold. Soil
water would be an additional indicator variable and its inclusion would increase the range
of possible decision strategies. Consider now the second criterion of acceptability to and
applicability by decision makers. Suppose that the person who implements the decision
rule does not have the model (this is the case in general). The state variables in the decision
rule must then be available from measurements, since they are not calculated. A farmer
without access to measurements of soil moisture could not use the more complex rule.
The availability of measured values may be a major constraint on the state variables in
the decision rule.

The mathematical form of the decision rule, for given indicator variables, is a second
important characteristic, which can strongly affect the range of possible decision strategies.
For example, a more complex version of the above decision rule involving soil water would
be to delay irrigation if soil water is above threshold 1 up to day d, then after that day to
use a threshold 2. There is only one indicator variable, soil moisture, but the rule is more
flexible than having a single threshold.
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The third characteristic of decision rules for optimization is the range of values for
each parameter in the rule. In most cases one might simply opt for a range which allows
all reasonable values. However, it may sometimes be worthwhile to restrict the range of
possible values. One reason would be to improve the performance of the optimization
algorithm. If one is sure that the optimal value is in some restricted range, it would be
worthwhile to limit the optimization domain to that range.

6. Simulation-based optimization

6.1. The stochastic optimization problem

We address in this section the general problem of designing optimal crop management
strategies for a large variety of contexts (climates, soils). As we have seen in the previous
sections, it is common to define such solutions that maximize the expected value of an
objective function J =U(Y )=U(f(π,C)) for the random context C:

J ∗ =maxE [J (π,C)] with π ∈�. (13)

Since �, the domain π of candidate strategies is potentially infinitely large, a realistic
formulation of this optimization problem consists of searching for the best values for the
parameters of some pre-defined strategy. In this case a strategy π is completely character-
ized by the vector of strategy parameters θ = (θ1, . . . ,θp) and π ={π(θ)/θ ∈�}, where �

is the value domain of θ . This family of candidate management strategies is typically built
by some experts of the domain, and the strategy parameters generally represent thresholds,
dates, quantities, etc.

Example 3

Consider the MODERATO simulation model of irrigation management for maize crops
described in Chapter 19. In this model, irrigation strategies π are described by parame-
terized decision rules, for example: “The main irrigation period starts from day θ1 as soon as
the soil water deficit reaches θ2. An amount of water θ3 is applied. Once an irrigation cycle
ends, a new cycle starts when the soil water deficit reaches θ4. An amount θ5 is applied.
For the irrigation cycle following day θ6, if the soil water deficit is greater than θ7 before
this irrigation cycle starts, a last irrigation cycle is performed; otherwise the irrigation period
ends. An amount θ8 is applied”. The domain of θ = (θ1, . . . ,θ8) defines a set of strategies.
Within this domain, we can search for irrigation strategies that maximize expected net profit.

In that framework, the objective function J to optimize is a function of θ and C, and
optimizing a strategy thus leads to the stochastic optimization problem:

J ∗ =maxE [J (θ,C)] with θ ∈�, (14)
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which is one of the most difficult problems of mathematical programing. A particular
instance of this optimization problem is obtained when a specific context C is consid-
ered. In that case the problem (14) becomes the more classical deterministic optimization
problem:

J ∗ =maxJ (θ,C) with θ ∈�, (15)

This corresponds to the first use of crop models for management mentioned above,
where we want to determine a sequence of actions maximizing an objective function J ,
in order to answer the question: “ knowing the context (climate, soil, etc.), what would
have been the best management?”

Example 4

Jallas et al. (1998) are interested in determining the best a posteriori irrigation decisions
when weather data of the year are available. Decisions are modelled as a fixed length set of
(date, dose) values.

6.2. The simulation-based optimization approach

The simulation-based optimization approach consists in solving (14) by means of simula-
tion of the objective function J (Azadivar, 1999; Swisher et al., 2000; Fu, 2001), without
any additional information concerning the structure of the function J or the probability
distribution of C.

An intuitive approach for finding an approximate solution of Eq. (14) is to solve the
associated deterministic optimization problem

J ∗ =maxJN (θ) with θ ∈�, (16)

where JN is an estimate of the criterion E[J(θ,C)] obtained by averaging the objective
function J(θ,C) over a large number of values Ci :

JN (θ)=
1

N

N
∑

i=1

J (θ,Ci) (17)

When the Ci are fixed (i.e. at evaluation of JN, the same Ci are used), the objec-
tive function JN becomes a deterministic function of θ , and traditional optimization
algorithms can be used. This technique, called “sample path optimization”, or “sample
average approximation” thus converts a stochastic problem into a deterministic one. It was
originally developed for solving continuous parameter simulation optimization problems
(Gurkan et al., 1994), and has been recently studied in a variety of contexts (Homem-
de-Mello, 2003). When, for instance, the context variables C represent weather series,
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E[J(θ,C)] can thus be estimated by simulating J(θ,Ci) on N fixed historical series and
averaging the result. N = 30 is generally considered as sufficient for accurately estimating
the expected value of classical objective functions J such as net margin for instance, but
in practice smaller values of N are often chosen. However, as illustrated in Exercise 1,
depending on the desired precision, a good estimate of E[J(θ,C)] may require a large
number N of simulation runs.

When the size of the optimization domain is very large or when simulation runs are
slow, it can be more efficient to avoid this uniform and systematic estimation of the
expected criterion and to allocate a computational effort to a candidate θ that depends on
the current estimate of the expected value. This adaptive allocation can be facilitated by the
use of a stochastic generator of samples Ci like random weather generators. In that case,
JN becomes a random variable. This is the main principle of stochastic simulation-based
optimization methods.

6.3. Optimization problems with discrete domains

(a) Problem statement
For discrete domains, (14) can be written as:

J ∗ = max
i=1,...,K

E [J(θi,C)], (18)

where �={θ1, . . . ,θK} is the discrete optimization domain of size K.
While considering discrete domains, two cases can occur. Either you can enumerate all

the elements of the domain, or you need to make a random search among these candidates.
Things differ depending on the size of K.

(b) Complete enumeration methods
For small discrete domains where a complete enumeration is possible, the only method-

ological question lies on the choice of the number Ni of simulation runs used for estimating
the objective function for the parameter value θi, i =1, . . . ,K. You can make a uniform
allocation Ni =Ntot/K where Ntot is the total number of simulations you can do. When
simulation runs are fast, as is the case for most of the crop models, Ntot can be very large
(up to 106 in few hours) and this uniform method is generally sufficient for determining
the best solution.

When uniform allocation poses a problem (K is too large or Ntot needs to be kept to
a fairly small value), specific stochastic methods have been designed for selecting the
optimal parameter value over a small finite set with a minimal number of simulation
runs (Ho et al., 1992; Goldsman and Nelson, 1994; Hsu, 1996). The main idea of these
approaches is to define Ni as a function of the current mean and variance estimates
of J(θi,C). For instance, in the OCBA method (Chen et al., 2000), the Ni values are
defined by:

Nb

Ni

=σb

√

√

√

√

k
∑

j=1,j �=b

1

σ 2
j

ρ2
ij , i �=b
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Example 5

One wants to optimize the choice of variety and sowing date for winter wheat crop produc-
tion. 10 varieties v are considered. Possible sowing dates d are between 16/09 and 01/11,
which corresponds to 45 possible days. The optimization domain is thus �={(vi ,dj ),i =

1 . . .10,j =1 . . .45} that contains 450 candidates (see Fig. 2).

Variety 1 Variety 2 Variety 3 Variety 4 Variety 5 Variety 6 Variety 7 Variety 8 Variety 9 Variety 10
15-sept

16-sept

17-sept

18-sept

19-sept

20-sept

…

27-oct

28-oct

29-oct

30-oct

31-oct

01-nov

Figure 2. Optimization domain for the wheat crop production problem.

with

ρij =

(

σj/
j

σi/
i

)2

, i,j =1, . . . ,K, i,j �=b, (19)


i =Jb−Ji,

where θb is the best current value of θ and σ 2
i is the estimated variance of J(θi,C).

This method has been designed for optimizing the probability of correct selection
of the best candidate given a total number Ntot =N1+···+NK of simulation runs.
OCBA, like similar approaches, is interesting when the computation of JN(θ) for
large N is very expensive, or when one needs to solve the optimization problem very
rapidly.

(c) Local search methods
When the optimization domain is very large, a complete search of the domain is no

longer possible. In that case, we have to consider heuristic search methods that look for
an approximate optimal solution of (18). Two families of methods can be identified: local
search and branching methods.

Local search methods move iteratively and randomly from a current point of
the domain � to another in its neighbourhood, with probability that depends on the
respective values J of these different points. In a deterministic framework, where
C is known in advance (Eq. 15), J(θ,C) is not a random variable and some
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random transitions have to be put explicitly in the algorithm. Such recent local
search methods are genetic algorithms (Michaelewicz and Schoenauer, 2001), sim-
ulated annealing (Fleischer, 1995) or tabu search (Glover and Laguna, 1997). We
develop here the case of the simulated annealing algorithm, that starts with a ran-
dom exploration of the domain, and then performs hill-climbing with an increasing
probability:
Simulated annealing (for deterministic problems)

(1) Initialize n=0, θ0 ∈�

(2) While simulation effort is not exhausted repeat 2a–2e
(2a) Construct the neighbourhood V (θn)⊂�

(2b) θ ′ is randomly sampled from V (θn)

(2c) Calculate J(θn,C) and J(θ ′,C)

(2d) if J(θ ′,C)≥J(θn,C)

then θn+1 =θ ′

else draw randomly εn in [0,1]

If εn <exp

(

J(θn,C)−J(θ ′,C)

Tn

)

Then θn+1 =θ ′

Else θn+1 =θn

(2e) n←n+1

In this algorithm, Tn is a positive factor called the temperature that decreases slowly
to 0, for example, using Tn =1/ logn. The neighbourhood V (θn) is a set of points “close
to θn” in �. V (θn) is typically defined by making small changes in the components of θn

components, or by introducing a distance on �.
These local search methods can be guaranteed to converge to the set of global optimal

solutions of the deterministic optimization problem. They have been applied to agricultural
simulation models in recent years (Mayer et al., 1998a). They all have performed well
for the problem of optimizing management decisions on existing historical climatic series
(e.g. Li and Yost, 2000; Mayer et al., 1996; 1998b, 2001; Parsons, 1998; Reddy et al.,
1995), and appear to be quite robust.

For solving the general stochastic optimization problem defined by Eq. (18)
where the context variable C is assumed to be unknown, two approaches are pos-
sible. One is to use a deterministic estimate JN Eq. (17) with a fixed number N

of a priori samples like historical weather series or soils for instance. In that case,
all the previous search methods developed for deterministic problems can be used,
replacing J by JN . Or one can use some local search methods like random search or
the stochastic ruler algorithm (Andradottir, 1998), that have been specifically devel-
oped for the case where JN is stochastic. We present here only the random search
algorithm.
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Example 5 (cont’d)

A neighborhood of size 4 can be defined for the elements of the optimization domain �=

{(vi ,dj ),i =1 . . .10,j =1 . . .45}:

V
(

θ =
(

vi ,dj

))

=
{(

vi−1,dj

)

,
(

vi+1,dj

)

,
(

vi ,dj−1
)

,
(

vi ,dj+1
)}

(see Fig. 3).

Variety 1 Variety 2 Variety 3 Variety 4 Variety 5 Variety 6 Variety 7 Variety 8 Variety 9 Variety 10
15-sept

16-sept

17-sept

18-sept

19-sept

20-sept

…

27-oct

28-oct

29-oct

30-oct

31-oct

01-nov

Figure 3. Neighborhood of size 4 for the wheat crop production problem.

Random search algorithm (for stochastic problems)

(1) Initialize n= 0, θ0 ∈�

(2) Repeat 2a–2d until the stopping criterion is satisfied
(2a) Construct the neighborhood V (θn)⊂�

(2b) θ ′ is randomly sampled from V (θn)

(2c) Calculate JN(θn) and JN(θ ′)

(2c) θn+1 =θ ′ if JN(θ ′) >JN(θn), θn+1 =θn otherwise.
(2d) n←n+1

Return θn.

Possible stopping criteria are to stop when θn+1 = θn on several consecutive n, or
when the perceived progress between θn and θn+1 is too small:

∣

∣JN(θn+1)−JN(θn)
∣

∣≤ε.
In this algorithm, JN is calculated on N randomly selected samples of C through

the use of a random generator. One can see that random search is a kind of simulated
annealing, where the transition probability is not explicitly represented but is replaced by
the noise associated with the estimate JN(θ) of E[J(θ,C)].

(d) Branching methods
Branching methods belong to the family of global optimization algorithms that are

designed to look for local and global solutions of the optimization problem (18). Branch-
ing methods divide recursively the whole domain � into subdomains of smaller size.
Once again, traditional branching methods developed in a deterministic framework like
the branch-and-bound algorithm can be used for solving (18) with approximation (17).
However, stochastic versions of branching methods for discrete global optimization prob-
lems have been recently proposed. Norkin et al. (1998) have developed a stochastic
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version of the branch-and-bound method. Shi and Ólafsson (1997) have proposed the
nested partition (NP) method that hierarchically partitions and evaluates by randomly
sampling the search space.

6.4. Optimization problems with continuous domains

(a) Problem statement
When θ ∈ IRp is a multi-dimensional continuous variable, the optimization problem

(20) becomes a continuous stochastic optimization problem:

J ∗ =maxE[J (θ,C)] with θ ∈�⊂ IRp. (20)

Example 6

We want to optimize the starting date of an irrigation period with the MODERATO simulation
model of corn crop management. The objective function to be maximized is the expected
value of the net revenue R after harvest defined as the gross revenue minus irrigation costs.
The choice of the starting date is modeled with a simple decision rule that starts irrigation
when the accumulated thermal units above 6◦C since sowing becomes greater than a threshold
θ . The range of θ is fixed to [500◦, 1000◦]. Once irrigation begins, we assume that a
fixed irrigation strategy is applied for the subsequent irrigation decisions. This leads to
a one-dimensional optimization problem:

R∗ =maxθ∈[500◦,1000◦] E [R(θ,C)] .

(b) Local methods
As for discrete domains, local methods consist in exploring � by moving from θn to

its neighbor θn+1. The gradient search method is a hill-climbing method that consists in
moving from one point θn to the next θn+1 by following the gradient of a deterministic
objective function J(θ). Gradient search is a very popular approach for continuous domain
�⊂ IRp. However, solving with simulation multidimensional and nonlinear optimization
problems is not an easy task, even for deterministic problems. Indeed, we can only simulate
the objective function J but not its derivative functions which have to be approximated
numerically, and the function J can be quite chaotic or conversely very flat as a function
of the inputs θ .

Coupled with approximation (17), the gradient search method can be implemented with
the following algorithm, where 
θ i is the gradient step size for parameter θ i :

Gradient search algorithm

(1) Initialize θ0 ∈�

(2) Repeat 2a–2b until the stopping criterion is satisfied
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(2a) estimate ∂E[J (θn,C)]

∂θ i
n

by

∂J̃ (θn)

∂θ i
n

=
JN

(

θ1
n , . . . ,θ i

n+

θ i

n
2 , . . . ,θ

p
n

)

−JN
(

θ1
n , . . . ,θ i

n−

θ i

n
2 , . . . ,θ

p
n

)


θ i
n

,

i =1, . . . ,p

(2b) θ i
n+1 =θ i

n+
θ i
n

∂J̃ (θn)

∂θ i
n

, i =1, . . . ,p

Return θn.

A possible stopping criterion is to stop when the perceived progress between θn and
θn+1 is too small: ||θn+1−θn||≤ε or ||JN (θn+1)−JN (θn)||≤ε′.

Example 7

We consider the MODERATO strategy given in Example 3. All the parameters are considered
constant except θ1 and θ2. These two continuous variables are respectively constrained to
be in the intervals [0; 2000◦C day] and [0; 150 mm]. The function JN (θ1,θ2) is plotted on
Figure 4, with the sequence of points θn generated by a typical gradient search method.
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Figure 4. Plot of the parameter trajectory obtained using a gradient method to optimize two
parameters of a MODERATO strategy with N = 49 historical weather series. The underlying
iso-contour map was obtained using a systematic grid as explained in 6.4.c.
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In the more general stochastic case where samples Ci are not a priori fixed but sampled
during simulation with a random generator, efficient stochastic approximation (SA) algo-
rithms have been developed, based on the original work by Kiefer and Wolfowitz (1952).
SA algorithms are gradient search procedures that approach θ* using some original type
of gradient estimation technique (e.g. perturbation analysis).

In the Kiefer–Wolfowitz method, the stochastic gradient estimate is defined:

θ i
n+1 =θ i

n+an.
JN (θn+cn.e

i)−JN (θn−cn ·ei)

2cn

∀i =1, . . . ,p (21)

where N is equal to 1 or set to a small integer, ei is the vector with 1 for the ith component
and 0 for the others, an and cn are two series of positive real numbers. Some common
values for the series are an = a/n and cn =c/nb, where a >0,c>0 and b∈ [0, 0.5].

We can see that stochastic approximation is a variant of the gradient search method from
deterministic optimization. Convergence to locally optimal parameters for optimization
problem (20) can be guaranteed under appropriate conditions. This approach was success-
fully used by Cros et al. (2001) to derive the best values of some parameters involved in
a grazing management strategy.

Also designed for continuous problems, the Nelder–Mead (simplex) method is an alter-
native to SA that is not based on the gradient, but instead uses a geometric figure to
move from one point to another in the search space (Nelder and Mead, 1965). Botes et al.
(1996), Mayer et al. (1996) and Parsons (1998) used this Nelder–Mead simplex method
for determining optimal decisions for agricultural systems.

(c) Global methods
Global optimization algorithms are designed to explore systematically the value domain

of θ ∈ IRp, in order to find local and global optimal solutions. For small values of p,
the simplest systematic method for such problems is a grid-search, which consists in
calculating the objective function J on all points located on a grid obtained by discretizing
the domains �i, i =1, . . . ,p of the p management options, for a given precision for each
variable (Bergez et al., 2002). A uniform discretization is obtained by

θ i,j =θ i
min +j
i, j =1, . . . ,Ki (22)

where 
i is the precision required for option i, and Ki =
θ i

max−θ i
min


i
is the size of the new

discretized domain of �i .
The grid search method thus transforms a continuous optimization problem into a dis-

crete one, of size K =K1, K2, . . . ,Kp. For large-dimension problems (p>4) and high
precision requirements (small 
i) this method is not efficient since the number of grid
points grows exponentially with p.

A more useful approach is therefore used to give priority to the evaluation of points θ

within promising regions of IRp that are likely to contain the optimal solution. Its main
advantage is to maximize, for a given budget of time or simulation runs, the chance
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Example 6 (cont’d)

We discretize the domain [500◦, 1000◦] into 6 values giving a precision for θ of 100◦. The
expected net margins R for these 6 θ values are estimated by simulation on 49 weather
series (see Fig. 5). The value of the threshold parameter θ =700◦ is the approximate optimal
solution of this problem, with R∗ =680E.
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Figure 5. One-dimensional continuous problem solved by discretizing the domain
[500◦, 1000◦] into 6 values. Expected margins are estimated by simulation using 49 weather
series.

of finding a good solution. DIRECT (Jones et al., 1993) or MCS (Huyer and Neumaier,
1999) are such algorithms dedicated to deterministic problems and based on a hierarchical
decomposition of the domain �. At each iteration of the search, a promising region is
selected from a list of “pending regions”. This selected region, a p-dimensional rectangle,
is then broken down into k smaller ones. Each of these k new pending regions is then
evaluated on some sampled points and ranked in the pending list. From the initial domain,
these algorithms generate a sequence of rooted trees of rectangles (k-trees). The maximum
depth of the principal tree is achieved when pending regions cannot be broken down any
further (the maximum precision is reached).

DIRECT or MCS can be used for solving (20) when the context variable C is known in
advance. These algorithms can also be adapted to the stochastic simulation framework, as
in the P2P algorithm (Bergez et al., 2004) which is based on a hierarchical decomposition
of � into 2p-trees and an estimation JN of the expected criterion by (17).
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Example 7 (cont’d)

Using the P2P algorithm for optimizing the 2-parameters θ1 and θ2 of the irrigation strategy
gives the result shown in Figure 6. One can see that P2P leads to a set of optimal parameters
as previously shown in Figure 4.
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Figure 6. Optimal region obtained by P2P with a hierarchical decomposition of the two-
dimensional domain.

7. Simulation-based control

Crop management problems for which management strategies are represented as a
sequence of decision rules can be seen as a control problem for which efficient methods
exist. The main advantage of this approach is that unlike simulation-based optimization
methods, it allows an optimization of the structure of the decision rules, and not only of
their parameters.

7.1. Modeling crop management as a Markov control problem

Let us consider a crop management problem that can be divided into a sequence of N

sequential decision stages, typically from sowing to harvest. We assume that in each deci-
sion stage i =1, . . . ,N the crop process is characterized by state variables Ui , (with a
continuous domain �U

i in the general case) and that the values of the decision variables
Di (within domain �D

i ) have to be chosen. UN+1 describes the final state. The Markov
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control model relies on the assumption that the controlled dynamics of the state Ui

follow Markovian transition probabilities:

Ui+1 ∼dPi(Ui+1|Ui,Di), i =1, . . . ,N (23)

This means that the distribution of the random variable Ui+1 only depends on the
current state Ui and on the decision Di that was applied at stage i. From the crop model
defined by Eq. (2), such a Markovian model can be obtained by choosing Ui =U(ti)

and Di =D(ti) for some instant ti . Stochastic dynamics results from the context variable
C(t) that includes weather variables such as temperature or rainfall. Assuming the daily
series C(t) follows Markovian dynamics is not generally correct, but this approximation
is reasonable for the C(ti) variables when ti+1 ≫ ti .

We also assume in Markov control models that during each transition from stage i to
i+1, a deterministic return ri(Ui,Di,Ui+1) is obtained, and that the global criterion
to be maximized is the expected value of the objective function:

J = r1+···+ri +···+rN . (24)

7.2. Bellman’s optimality equations

One can show that optimal solutions of Markov control problems are sequences of N

optimal substrategies πi that map Ui to Di , i =1, . . . ,N . By definition, once one is in the
state Ui of the crop at stage i, the optimal decision to apply is given by Di =πi(Ui).

This proposition is easy to understand. Assume that the crop process is in a state U =u

at the last stage N . The optimal decision to execute in that state is clearly the one that
maximizes the expectation of the final return rN , so we have:

πN (u)=argmax
d∈�D

N
E

[

rN
(

u,d,u′
)]

=argmax
d∈�D

N

∫

u′
rN

(

u,d,u′
)

dPN

(

u′ |u,d
)

, ∀u∈�U
N (25)

and the optimal average gain obtained in this state u will be:

VN (u)=max
d∈�D

N
E

[

rN
(

u,d,u′
)]

, ∀u∈�U
N (26)

Example 8

We consider here the use of the simulation model DÉCIBLÉ for optimizing wheat crop
management strategies (Chatelin et al., 2005) defined as a sequence of N = 3 decision steps,
respectively sowing, first and second nitrogen applications. The corresponding state and
decision variables are presented in Table 4. The state variables for the 2 nitrogen applications
are chosen for their capacity to summarize the past trajectory of the process, and thus to
approach the Markov property as closely as possible. The sowing time dS is introduced as
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a random state variable. Note the relative definition of the dN1 and dN2 domains, meaning
that a policy does not specify an absolute date for nitrogen application, but rather a date
relative to the start of tillering or stem elongation. The objective function is net margin.

J =Yield−α(qN1+qN2)−βqS.

Table 4. State spaces and decision spaces of a Markov control model for wheat crop
management.

Sowing 1st nitrogen 2nd nitrogen
application application

State
Variables

• Sowing time dS ∈

[01/10,15/12]
• Tillering dT ∈

[15/11,01/04]
• Number of plants

NP ∈ [0,200]

• Residual soil nitrogen
Ns ∈ [0,100] kg ha−1

• Start of stem
elongation d1cm ∈

[15/02,15/05]
• Aerial biomass ba1cm

∈ [0,200] g m−2

Decision
Variables

• Seed rate qS ∈

[100,200] g/m2

• Wheat variety vS ∈

{soissons,
artaban, ..}

• Date dN1 ∈

[dT−5, dT+20]
• Quantity qN1 ∈

[0,100] kg ha−1

• Date dN2 ∈

[d1cm−5, d1cm+20]
• Quantity qN2 ∈

[0,200] kg ha−1

Assume now that the crop process is in state u at stage N −1. The optimal decision
to execute in that state is the one that maximizes the sum of the final returns rN−1+rN ,
knowing that in any resulting state u′ at stage N , the optimal policy πN (u′) will be applied,
giving a return rN =VN (u′). We thus have:

πN−1(u)=argmax
d∈�D

N−1
E

[

rN−1
(

u,d,u′
)

+VN

(

u′
)]

=argmax
d∈�D

N−1

∫

u′

(

rN−1
(

u,d,u′
)

+VN

(

u′
))

dPN−1
(

u′ |u,d
)

,

∀u∈�U
N−1 (27)

and the optimal average gain obtained in this state at stage N −1 will be:

VN−1(u)=max
d∈�D

N−1
E

[

rN−1
(

u,d,u′
)

+VN

(

u′
)]

, ∀u∈�U
N−1. (28)

The optimization can be continued for stages i =N −2, i =N −3, . . . until i =1.
This process defines a general set of equations called Bellman’s optimality equa-
tions (Puterman, 1994). Solutions of these optimality equations are N management
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policies πi :�
U
i →�D

i , i =1, . . . ,N . Following these policies from the initial state U1
will define on the fly a sequence of decisions Di that maximize the expected return
E[r1+···+ri +···rN ].

7.3. Solving Markov control problem with stochastic dynamic programming

When crop management problems have been modelled as Markov control problems, the
classical approach for automatically generating optimal strategies is to apply stochastic
dynamic programming (Kennedy, 1990). Crop simulation models are used for estimat-
ing the Markov model parameters within the Bellman optimality equations, that is the
net returns ri and the Markovian transition probabilities dPi(Ui+1|Ui,Di) of the crop
dynamics (Epperson et al., 1993; Bergez et al., 2001b). The state and decision variables
Ui and Di are generally discretized into finite sets �U

i ={1, . . . ,nU
i } and �D

i ={1, . . . ,nD
i }.

Rewards ri are then obtained by averaging corresponding simulated ri(Ui,Di,Ui+1) val-
ues, and transition probabilities are estimated by simulation with a maximum-likelihood
approach:

Pi

(

u′ |u,d
)

≈
Ni

(

u,d,u′
)

∑

u′′ Ni (u,d,u′′)
, u=1, . . . ,nU

i , u′ =1, . . . ,nU
i+1, d =1, . . . ,nD

i ,

(29)

where Ni(u,d,u′) is the number of simulated transitions at stage i between states u and
u′ with decision d . Note that special attention has to be taken when defining discretized
states, since the discretization of continuous processes generally leads to non-Markovian
dynamics. In practice, the size of the grids has to be chosen carefully taking into con-
sideration the quality of the corresponding optimal management strategy, the required
memory size and the computation time of the dynamic programming algorithm used for
solving Bellman’s equations. This algorithm, also called Value Iteration, is defined as
follows:

Stochastic dynamic programming algorithm (Value Iteration)

(1) Initialize VN+1 =0
(2) For i =N,.. . ,1

Vi(u)=max
d=1,...,nD

i

∑nU
i+1

u′=1
Pi

(

u′ |u,d
)(

ri
(

u,d,u′
)

+Vi+1
(

u′
))

,

πi(u)=argmax
d=1,...,nD

i

∑nU
i+1

u′=1
Pi

(

u′ |u,d
)(

ri
(

u,d,u′
)

+Vi+1
(

u′
))

u=1, . . . ,nU
i

(30)

In practice, for each i and d , the transition probabilities Pi(u
′|u,d) can be encoded in

a transition probability matrix, which is simply a two-dimensional array whose element
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at the lth row and mth column is plm =Pi(m|l,d):

P d
i =









p11 · · · p1nU
i+1

... plm

...

p
nU
i

1 · · · p
nU
i

nU
i+1









.

The rewards ri(u,d,u′) can be similarly represented by vectors Rd
i =[rl] in IRnU

i , with

rl =E[ri(l,d,u′)]=
∑nU

i+1
u′=1 Pi(u

′|l,d)ri(l,d,u′). The value iteration algorithm (Eq. (30))
can then be written simply in vector notation:

Vi =max
d=1,...,nD

i

{

Rd
i +P d

i Vi+1

}

, i =N,.. .1, (31)

where the optimal decisions are computed for each component of Vi .

7.4. Reinforcement learning of optimal management strategies

Crop management problems are often efficiently approximated by Markov models and
optimal strategies obtained by solving these control problems are generally quite efficient.
However, such an indirect method (model estimation + dynamic programming) is often
inappropriate when faced with large state and decision spaces, where it is difficult to
compute and store transition probabilities.

Some promising improvements of this method have been shown recently with the
reinforcement learning approach (Bertsekas and Tsitsikli, 1996; Sutton and Barto, 1998;
Gosavi, 2003). Reinforcement learning, also called neuro-dynamic programming, directly
approximates the solution of the Bellman equations during simulation, without having
to estimate rewards and probabilities. Today, reinforcement learning is one of the major
approaches to solving sequential control problems with unknown transition probabilities
and/or with large state variable domains.

The most studied reinforcement learning algorithm is Q-learning. The principle of
Q-learning with a finitehorizon is to learn by simulation for each state u∈�U

i and decision
d ∈�D

i an estimate of the Qi-value function at stage i:

Qi(u,d)=E
[

ri
(

u,d,u′
)

+Vi+1
(

u′
)]

, ∀u∈�U
i , d ∈�D

i . (32)

The value Qi(u,d) represents the expected sum of the future returns assuming the
decision d is applied in the current state u at stage i, and that for the subsequent stages
j >i an optimal strategy is followed. Equation (32) shows that once these estimates have
been learned, the optimal policy can be obtained through:

πi(u)=argmax
d∈�D

i
Qi(u,d), ∀u∈�U

i . (33)

Q-learning regularly updates the Qi estimates after each observed transition (u,d,u′,r),
from stage i =1 to i =N , along T simulated trajectories. These trajectories are obtained
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by choosing an initial state u∈�U
i and at each stage i either the current optimal decision

according to Eq. (33) or a random decision d ∈�D
i :

Finite-Horizon Q-learning algorithm

1) Initialize Qi =0, i =1, . . . ,N

2) For t =1, . . . ,T

2a) Choose u1 ∈�U
1

2b) For i =1, . . . ,N

• Choose di ∈�D
i

• (ui+1,ri)= Simulate (ui,di) at stage i

• Update Qi(Ui,di,ui+1,ri)

3) Return Qi

In this algorithm, Simulate (u,d) is a function simulating a random transition from
state u when action d is applied and Update Qi(u,d,u′,r) is the Q-learning update rule
for Qi , defined in the case of discrete spaces �U

i and �D
i as:

Update Qi(u,d,u′,r) (discrete representation):

Qi(u,d)←Qi(u,d)+ε
(

r+max
d ′∈�D

i+1
Qi+1

(

u′,d ′
)

−Qi(u,d)
)

. (34)

The parameter ε is a small learning rate that decays toward 0 as the number of observed
transitions increases.

When �U
i and �D

i are very large or continuous domains, this simple learning rule may
not be efficient and a more useful approach consists in using parameterized representations
of Qi :

Qi(u,d)=fi

(

ϕ1 (u,d), . . . ,ϕp (u,d);θi

)

, (35)

where the functions fi are linear or non-linear transformations that map important features
ϕk(u,d) of the state and decision variables to Qi-values. Here the parameters θi are
“weights” that have to be optimized during simulation:

Update Qi〈u,d,u′,r〉 (parameterized representation):

θi ←θi +ε

(

r+ max
d ′∈�D

i+1

Qi+1
(

u′,d ′
)

−Qi(u,d)

)

∇θi
fi (36)

where ∇θi
fi is the gradient of fi with respect to θi in (u,d).

With such parameterized representations, very large sequential decision problems can
be solved approximately. The main drawback of this approach is that the near-optimal
policies that are obtained are not really suitable with respect to intelligibility and ease
of applicability by farmers or agronomists. To overcome this one can use additional
procedures that automatically extract simpler structures such as decision trees from the
Qi-value functions, which lead directly to strategies represented as a set of decision rules
(Garcia, 1999).
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8. A comparison between optimization and control

We have seen two general methods for solving stochastic optimization problems by sim-
ulation: simulation optimization and control-based optimization. Here we discuss the
advantages and disadvantages of these approaches with regard to the use of crop models
for optimizing management decisions.

No doubt the simplest approach is to optimize the parameters of a management strategy.
For problems with many discrete parameters, algorithms like the genetic algorithm or
tabu search generally furnish approximate solutions. If the parameters are continuous,
the various stochastic optimization methods that we have discussed can be used. These
methods require no assumptions about the crop model or the decision model, except that
the latter must be defined up to a vector of parameters.

Example 9

We consider the problem described in Example 6, where we want to optimize the starting
date of an irrigation period. This problem is treated here as a sequential decision prob-
lem under uncertainty: each day, farmers observe the physiological stage of development
of the crop and the soil water deficit, a measure of the soil water content. On the basis
of these observations they must decide each day whether to continue waiting or to start
the first irrigation period. The state of this decision process is defined every day by the
two state-variables 
 and σ , where δ is the soil water deficit, and σ is the accumulated
thermal units above 6◦C since sowing. Both variables are continuous. The ranges of δ and
σ are respectively the intervals 
 and �. In any state (δ, σ ) there are only two possi-
ble decisions: wait until the next day (W), and start irrigation today (I). Once action I is
selected, we assume that a fixed strategy is applied for the subsequent irrigation decisions
(the same as in Example 6). The only optimization here concerns the decision rule for start-
ing irrigation, defined as a function that maps each possible state (δ, σ ) in 
×� to an
action W or I.

We used both stochastic dynamic programming (DP) and reinforcement learning (RL)
to calculate optimal decision rules. The MODERATO simulation model for corn crop
management was used to define the dynamics of the system. For DP we discretized the
domains 
 and � on a regular grid. We used simulation for estimating the discrete
transition probabilities from one grid point to the others, and then stochastic dynamic
programming algorithms for computing approximate optimal decision rules. RL does not
require an a priori estimation of the transition probabilities and an approximate opti-
mal decision rule on the discretized domain is directly obtained by simulation and
learning.

Figure 7 represents the average value (over 1000 runs) of the best decision rules obtained
by dynamic programming and reinforcement learning (Bergez et al., 2001b). The first con-
clusion seems to be that RL performs better than DP when a SMALL number of simulations
are available. When the number of trajectories T is sufficiently large (T > 100 000), all the
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policies are equivalent. Surprisingly, better results are obtained with fewer grid points.
For both approaches, approximate decision rules are complex mappings from 
×�

to 
{W, I }.
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Figure 7. Average value of the optimal strategies obtained by dynamic programming and
reinforcement learning as a function of the number of trajectories T and the grid sizes.

One can note that the optimal values obtained by dynamic programming or reinforcement
learning are very close to the average value of the optimal structured decision rule obtained
in Example 6.

The use of optimal control methods with simulation is more demanding. In particular,
the decision problem must have the form of a Markov decision process. However, this will
often be approximately true for decision problems for a single field, even though climate
transition probabilities are not exactly Markovian. On the other hand, this approximation
will, in general, not be acceptable for management decisions at the farm level, where
the decisions can no longer be expressed as a simple sequence of decisions. A further
disadvantage here is the complexity of reinforcement learning algorithms. Choosing the
algorithm, programming it and analyzing convergence are all long and difficult tasks that
require experience.

Despite these drawbacks, the optimal control methods do have a great advantage,
namely, they do not require the form of the decision rules be specified in advance.
They can be used to suggest decision rules even in cases where one has little idea what
form the optimal rules will take, as might be the case for instance, when new criteria
or new constraints appear. In that case one might envision a mixed approach. Optimal
control methods would first be used to suggest the form of the decision rules, then opti-
mization methods would be used to determine the best parameters for those decision
rules.
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Exercises

1. An irrigation strategy was simulated with MODERATO for N =49 consecutive weather
series, from year 1955 to 2003. The net margin Ji results are given in Table 1,
i = 1, . . . , 49.

(a) Plot the empirical probability density function of J . What are the mean m and
variance s2 of this distribution?

(b) Assuming that the Ji are independent random variables with a normal distribution
N(m,s2), how many years must be simulated in order to make the error in the
estimation of m lower that 5% with a probability >0.9?

2. Let π1 and π2 be two candidate irrigation strategies as in the previous exercise. Table 2
gives the net margin results obtained with π1 and π2 for a sequence of N = 49 historical
weather series.

(a) Assuming a normal distribution for JN , estimate the probability that π1 is better
than π2 based on the first 5 weather series.

(b) Same question for N =10 and N =49.

3. We consider the two previous candidates π1 and π2. Assuming a normal distribution
for JN , calculate from Table 2 the probability of correct selection of π1 for all the

Table 1. Net margin J obtained by simulating an irrigation strategy with 49 weather series.

Year Margin (E/ha) Year Margin (E/ha) Year Margin (E/ha)

1955 584 1975 841 1995 653
1956 669 1976 786 1996 653
1957 839 1977 862 1997 628
1958 668 1978 837 1998 636
1959 701 1979 753 1999 739
1960 884 1980 888 2000 574
1961 957 1981 793 2001 623
1962 923 1982 839 2002 710
1963 919 1983 998 2003 700
1964 841 1984 959
1965 921 1985 766
1966 971 1986 901
1967 870 1987 785
1968 828 1988 670
1969 819 1989 707
1970 726 1990 816
1971 887 1991 803
1972 850 1992 784
1973 758 1993 701
1974 880 1994 708
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Table 2. Simulated net margins for two irrigation strategies for 49 weather series.

Run Margin (E/ha) Run Margin (E/ha) Run Margin (E/ha)

π1 π2 π1 π2 π1 π2

1 474 486 21 739 760 41 418 411
2 451 466 22 542 562 42 406 403
3 826 768 23 724 711 43 450 421
4 484 505 24 740 710 44 515 505
5 523 535 25 673 647 45 649 612
6 757 727 26 894 847 46 392 401
7 806 814 27 606 624 47 472 479
8 827 801 28 645 625 48 551 499
9 818 765 29 884 816 49 627 589

10 763 738 30 779 786
11 790 764 31 571 594
12 886 830 32 862 787
13 797 771 33 679 686
14 600 612 34 572 572
15 824 821 35 571 571
16 609 627 36 629 638
17 750 774 37 651 658
18 687 675 38 518 532
19 530 562 39 662 613
20 814 789 40 694 639

allocations (N1, N2) such that Ntot = N1 + N2 = 50,Ni >5. What is the optimal
allocation?

4. We consider the irrigated corn crop management strategy described in Example 3.
Table 3 gives the domain for all the continuous management options of this strategy
and the precision required for each of these variables.

(a) Calculate the size of the grid and the number of simulation runs of the crop model
if each possible management strategy has to be evaluated on 49 historical weather
series and 3 different soils.

(b) Divide the required precision by 2 for each management option and calculate the
new size of the grid and number of simulation runs that are necessary.

5. We consider a simple problem with N = 2 stages, 2 states and 2 possible decisions
at each stage. The transition matrices P d

i and the rewards vectors Rd
i are:

P 1
1 =

[

0.1 0.9
0.2 0.8

]

, P 2
1 =

[

0.5 0.5
0.3 0.7

]

, P 1
2 =

[

0.4 0.6
0.5 0.5

]

, P 2
2 =

[

0.9 0.1
0.6 0.4

]

and R1
1 =

[

15
10

]

, R2
1 =

[

7
11

]

, R1
2 =

[

11
5

]

, R2
2 =

[

4
14

]

.
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Table 3. Domains and discretization step sizes of the management parameters of a corn crop
management strategy as described in Example 3.

Name Meaning Unit Min Max 
min

θ1 Accumulated thermal unit to start the irrigation
campaign

ºC day 0 2000 5

θ2 Soil water deficit to start the irrigation mm 0 150 3
θ3 Irrigation applied at the first irrigation mm 5 50 2
θ4 Soil water deficit to start a new irrigation cycle mm 50 130 3
θ5 Irrigation depth applied after the first irrigation

round
mm 5 50 2

θ6 Accumulated thermal units to stop the irrigation ºC day 1400 1800 5
θ7 Soil water deficit to stop irrigation mm 50 130 3
θ8 Irrigation applied at the last irrigation round mm 5 50 2

(a) Calculate the optimal policy of this Markov control problem with the stochastic
dynamic programming algorithm (Eq. (30)). Compare this solution to the 4 a priori

sequences of decisions (d1, d2) = (1,1), (1,2), (2,1) and (2,2). Which management
strategy has the larger expected total reward J = r1+r2?

(b) Calculate the memory size required for storing the Markov model parameters
and the number of elementary mathematical operations executed by the dynamic
programming algorithm as a function of N , nU

i and nD
i .
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1. Introduction

The original use of crop models was to calculate crop growth and development for a
single field with supposedly homogeneous soil, climate, initial conditions and manage-
ment practices. This is indeed still a basic use of crop models. However, there is also
increasing interest in studies that concern multiple fields (see Hartkamp et al., 1999;
Hansen and Jones, 2000; Russell and Van Gardingen, 1997; Leenhardt et al., 2004a,b).
In some cases each field can be treated independently, but it is the combined result from
all fields that is of interest. Examples include the calculation of crop yields or forage
yields on a regional or national basis (e.g. Lal et al., 1993; Rosenthal et al., 1998;
Chipanshi et al., 1999; Donet, 1999; Faivre et al., 2000; Yun, 2002), the calculation
of water requirements for agriculture within the area served by a water provider (e.g.
Sousa and Santos Pereira, 1999; Heinemann et al., 2002; Leenhardt et al., 2004a) or total
emission of nitrogen oxides from agricultural land in a region. In other cases, it is nec-
essary to model not only individual fields but also interactions between fields or between
a field and non-crop surroundings. For example, the problem addressed might involve
nitrogen, herbicide or pesticide pollution of streams or ground water due to runoff or
leaching from agricultural land (e.g. Beaujouan et al., 2001; Gomez and Ledoux, 2001).
Another example would involve transfer of genetically modified pollen from one field
to surrounding fields. In all of these problems there is a need to use the crop model for
multiple fields, perhaps hundreds or thousands of fields, with different soils, climate and
management.

A major problem in all these studies is obtaining the input data necessary to run the
crop model. This is considered in the next two sections. The first concerns physical input
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data (climate, soil characteristics and initial conditions). We discuss the types of data
that are usually available and review methods that have been proposed for associating
values of the input variables with each point in space. For climate, we also consider
approaches that can be used for prediction or for scenario testing. The second group of
input variables considered, in Section 3, are management variables (choice of crop, sowing
date, irrigation, etc.). These are often unavailable even for the past. One simple approach
is to assume that management practices are fixed for a region. A more complex approach
is to assume that management practices are determined by decision rules, which relate
practices to other input variables and to the state of the crop (See also Chapter 6).

In Section 4, we discuss the relation of remote sensing data to the problem of running a
crop model for multiple fields. Remote sensing provides detailed spatially explicit data for
an entire area. However, the data provided are not directly the data needed by crop models.
This section describes how the remote sensing data can be used. In Section 5, we discuss
how one obtains the outputs that are sought, for example national yield. In Section 6, we
consider the problems of evaluation that are specific to the case where the model is used
for multiple fields.

We must distinguish a large number of different situations. The problem may involve
interactions between fields or not. Each type of input data may be available at each field,
only for some fields or only indirectly. Table 1 presents a number of studies that have
been reported, categorized by some of these choices.

Table 1. Different situations involving the use of crop models for multiple fields.

Output Objective Description of
management
practices

Interactions
between
fields

References with
examples

Sum over
representative
fields

Prediction for
current
season

Actual past
practices, future
decision rules

No Faivre et al. (2000)
Launay (2002)
Leenhardt et al.
(2004)

Diagnosis Actual past
practices

No Sousa and Pereira
(1999)
Donet et al. (2001)
Heineman et al.
(2002)

Scenario testing Decision rules or
hypothetical
decisions

No Lal et al. (1993)
Priya and
Shibasaki (2001)

Result from
geographical
area

Prediction for
current
season

Actual past
practices, future
decision rules

Yes

Diagnosis Actual past
practices

Yes Gomez and Ledoux
(2002)

Scenario testing Decision rules or
hypothetical

Yes Beaujouan et al.
(2001)
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2. Physical input data

2.1. Weather data

2.1.1. Available data

The required data for crop models typically include precipitation, temperature (minimum
and maximum), potential evapotranspiration (or the parameters necessary to compute
it) and solar radiation. These data are measured at specific locations (meteorological
stations) not at the location of every field. For example, the density of the French national
meteorological network corresponds to 1 station for 500 km2 on the average. There is in
addition a rainfall network that provides data with a delay of a month or more, with a
density of 1 station per 100 km2.

Obtaining meteorological data at locations other than weather stations is a problem that
is of importance in many ways, not only for crop models. Two main approaches are used,
namely zoning and interpolation.

2.1.2. Defining zones

The zoning approach involves dividing a region into zones considered homogeneous for
climate. The same weather data are then used for all locations within a given zone. The
weather data are generally those of a meteorological station included in the zone and
considered as a representative of the zone. The definitions of the zones are determined
just once and then are maintained over time.

An example of the zoning method, based on multivariate statistical analysis, is given
in Ripert et al. (1990). More recently, the French Meteorological Services has defined
the climatic zones of France (Fig. 1). These zones are based on the expertise of local
meteorologists.

Figure 1. The division of France into homogeneous climatic areas.
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2.1.3. Interpolating weather data

In the zoning approach, each location within the zone has the same climate data, with an
abrupt change at the zone boundaries. An alternative approach is to interpolate climatic
data between weather stations, so that the climatic variables are smooth functions over
space. Creutin and Obled (1982) present a review of various interpolation methods includ-
ing nearest neighbor, arithmetic mean, spline functions, optimal interpolation, kriging or
an interpolation method based on empirical orthogonal functions.

Interpolation is generally done separately for precipitation and temperature. Further-
more, the calculations must be redone every day if daily data is used. Although such
calculations are very time consuming, they are used by the National French Meteorological
services.

An example of an interpolation technique is the Aurelhy method (Bénichou and
Le Breton, 1987), which is considered the reference method for interpolating precipitation
over France. The first step is to do a principal component analysis (PCA) to identify the
major factors that describe topographical variability. In the second step, precipitation is
regressed on the first components of the PCA.

There has been some effort to use other information to improve the estimation of the
spatial variability of precipitation. If weather radar information is available, it can be
used to provide information about precipitation at all locations, though the accuracy of
the information may sometimes be a problem: the precision may vary among studied
areas due to the distance to the radar, echo effects or topography problems. There have
also been studies using satellite thermal infrared images. One study showed that surface
temperature is related to precipitation (Seguin et al., 1989). Another found a relation
between temperature at the cloud surface and the duration of a cold cloud responsible for
precipitation (Laurent et al., 1998). However, these relations seem to apply better to West
Africa than to temperate countries where the relations between precipitation and clouds
are more complex.

In temperate countries, there is more reliance on 3D numerical weather predic-
tion (NWP) than on remote sensing to aid in interpolation. An example is the
SAFRAN (système d’Analyse Fournissant des Renseignements Atmosphériques à la
Neige) approach, which bases interpolation on NWP modeling combined with obser-
vations. SAFRAN is a meteorological application of objective analysis (Brun et al., 1992)
that was developed to initialize the French operational snow model CROCUS (Brun et al.,
1989, 1992) to forecast avalanches in the Alps. It is based on the optimal interpolation
technique (described in Durand et al., 1993) which combines observations and large-scale
analysis provided by an NWP model, to analyze air temperature, relative humidity and
wind near the surface, precipitation, total cloudiness and incoming radiation (shortwave
and long wave). The system has been applied to the whole of France (Le Moigne, 2002)
to provide input data for the Interface Soil Biosphere Atmosphere (ISBA) land surface
model of Météo-France (Noilhan and Planton, 1989).

2.1.4. Predicting future weather

The prediction of near- or medium term weather for specific locations is a major goal of
meteorological services. We will not consider this problem here.
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In crop models, the more common problem is to make predictions not for a specific
year but on the average over the different possible meteorological conditions at a site.
Two main approaches are used, namely (i) using past data directly, (ii) using a weather
generator based on past data.

A common approach when one has past data, for say n years is to run the model for the
future n times using each weather record in turn and to assume that each result is equally
likely. The result is n different model results, each assumed to have equal probability.

A simpler approach is to identify an “average” past climate year and use that for future
weather. This simplifies the calculations (one runs the model for only a single weather
series), but is unrealistic in that weather uncertainty is replaced by an average value.

In some cases one is not interested in average future results, but rather in results for
specific conditions. For example, a water manager might want to make predictions in
order to see whether water storage is sufficient for worst case conditions. In this case, one
could use for example only 10% of the driest years from the past for prediction.

Finally, an expanding use of crop models is to evaluate the consequences of climate
change. In this case, one does not assume that future climate will be similar to past climate.
One can still use past climate series to represent future weather, but now one adds specific
changes to the data. For example, to imitate global warming one could simply increase
all temperatures by say 2◦.

An alternative to the direct use of past climate data is to use a weather generator. This
is simply an algorithm that generates the values of climate variables according to some
probability distribution. A major effort required here is to create the weather generator.
Consider for example only the generation of solar radiation. A very simple approach would
be to divide the year into 10 day periods and for each period identify the minimum and
maximum values in the past records. Then, the generator could generate solar radiation
values for each day from a uniform distribution with the given minimum and maximum
values. In practice, the generators also take into account the correlations between differ-
ent variables. For example, the smaller values of solar radiation are usually associated
with lower temperature, and rainfall events are usually associated with relatively low
solar radiation. It is important, in developing or choosing a weather generator, to make
sure that it reproduces the aspects of major importance. For example, many weather
generators are based on the probability of rainfall events, and generate rainfall days at
random using that probability. This need not necessarily give good agreement with other
aspects of the weather record. For example, it may not give good agreement with the
distribution of the lengths of periods between rainfall events. If the lengths of dry peri-
ods are of special concern, then the generator should probably be built explicitly for this
purpose.

It requires substantial amount of past data to build a reliable weather generator, so it
should not be imagined that a weather generator is a solution to the problem of insufficient
data. Rather, its usefulness is that it allows one to transform a finite sample into an infinite
number of different climate scenarios. Application of a weather generator for a region
poses another crucial problem: correlations between adjacent fields exist and should not
be ignored in the simulations of weather series. Interpolating in space the parameters of
the weather generator in order to obtain a weather generator adapted to each field, or
generating weather scenarios only for locations with past data and interpolating them, do
not solve this problem.
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Weather generators produce climates with properties similar to past climate. There
is also interest in scenarios representing global climate change. Climate scenarios can
be defined by arbitrary changes in temperature and precipitation, or on the basis of the
output from general circulation models (GCMs). Such scenarios have been used with
crop models to determine impacts on agriculture (e.g. Adams et al., 1990; Rozenweig,
1990). Barrow (1993) proposed two methods for constructing climate change scenar-
ios and furnished a series of scenarios. These were used to investigate the effects of
climate change on the development, yield and distribution of a variety of crops through-
out Europe using crop growth models (e.g. Bindi et al., 1993; Semenov et al., 1993;
Wolf, 1993). A similar approach has been used with hydrological models. For exam-
ple, Etchevers et al. (2002) studied the impact of climate change on the Rhone river
watershed. To estimate the climate 60 years in the future they used the climate general
circulation model ARPEGE, but with modified air temperature and precipitation amounts.
In another study, Noilhan et al. (2002) generated climate scenarios using global atmo-
spheric climate models (GCMs) with the assumption of a doubling of atmospheric CO2
concentration.

2.2. Soil properties

2.2.1. Required information

The required soil data for crop models typically include soil depth and soil physical
properties, such as bulk density, soil water content at field capacity and wilting point for
the whole soil profile or, if soil layers are identified, for each of them. Some models
require the available water capacity of the soil directly, which is a combination of these
properties. These data can be measured in situ or at the laboratory on soil samples. It is
clear that it is impossible to sufficiently sample any area, whatever its size (but a fortiori

large areas), to account for all spatial variability. Therefore, a spatial estimation method
is necessary. As for weather data, two main approaches are used, namely zoning (i.e. soil
mapping) and interpolation.

2.2.2. Defining zones

Soil surveys are the most common basis for estimating the spatial distribution of soil
properties over an area. Furthermore, since soil properties are considered as stable over
time, even old soil surveys can be used.

Standard soil survey procedure is to classify soils according to appearance and measured
attributes, to define the geographic zone of each class, and to describe in detail for each
class representative profiles from one or more sites (e.g. Soil Survey Staff, 1951; Boulaine,
1980; Bouma et al., 1980; Brus et al., 1992). Either implicitly or explicitly the properties
and behavior at these “representative” sites are assumed to apply approximately to the
whole area of the class. In general, there is at most one representative profile per soil unit.
When representative profiles are not identified, one could choose sites within each soil
unit at random (stratified sampling).
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The capability of soil maps to provide soil mechanical properties was first investigated
in the 1960s by engineers (Morse and Thornburn, 1961; Kantey and Williams, 1962;
Thornburn et al., 1966; Webster and Beckett, 1968). Even though the maps that Thorn-
burn and his colleagues evaluated had been made for agricultural purposes rather than
engineering, the information provided about mechanical properties was deemed useful.
However Webster and Beckett (1968) showed that the maps were not useful for predict-
ing soil chemical properties. Beckett and Webster (1971) suggested that, in general, if the
criteria for classification are not the properties that one wants to predict or not closely
related to them, then any success in predicting those properties will be fortuitous.

Leenhardt et al. (1994) showed that the mean squared error in predicting soil water
properties from soil survey information is a sum of terms related to the accuracy of soil
stratification and the choice of representative sites. They found that the scale of the soil
survey is a key factor in determining accuracy. Maps at the scales 1/10 000 and 1/25 000,
where the criteria for classification were intrinsic soil properties, gave good results. The
soil survey at a scale of 1/100 000 performed poorly, partly because it was based mainly
on variables not directly related to the soil properties of interest. Choosing representative
profiles and predicting from them was important only when the initial classification per-
formed poorly. Nevertheless, as it is impossible to know in advance whether a soil map
categorizes a given property well, choosing representative profiles provides information.
It could however be replaced without loss of precision by stratified random sampling,
where the classification proved effective. Finally, Leenhardt et al. (1994) found that the
usefulness of soil surveys is much greater for spatial estimation of soil properties that are
used during the soil survey, e.g. particle size distribution, or for estimation of properties
that are strongly correlated with the latter, e.g. the different points of the water retention
curve. On the other hand, the accuracy of soil surveys for predicting soil layer thickness,
and therefore available water capacity, is much lower. Indeed, it seems that, though the
succession of horizons in the profile is important for classifying the soil, the variation in
thickness of the horizons is not taken into account by soil surveyors.

2.2.3. Interpolation

Because of the drawbacks of soil maps, discussed by Beckett and Webster (1971), attention
has switched from classification to geostatistical prediction to take into account any spatial
dependence within classes and the gradual nature of change of soil across mapped bound-
aries. In 1990, Voltz and Webster showed that standard kriging techniques are unsuited to
cases where the soil changes abruptly, and in these circumstances soil classification out-
performs it. Finally, where land management requires estimation of several soil properties
over the study area the task is multivariate, and soil classification appears to be easier to
comprehend than multivariate geostatistics. Consequently, the classical soil map approach
to prediction is likely to remain of value in the right circumstances and environment for
a long time to come.

2.2.4. Obtaining non-measured soil characteristics

Soil maps can be the basis for obtaining soil properties at each location, but in gen-
eral the properties recorded (usually soil type and soil texture) are not those needed
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for crop models (for example, soil depth and available water capacity or water reten-
tion curves and hydraulic conductivity). A common solution to this problem is to use
“pedotransfer functions” (PTFs), which relate basic soil properties that are considered as
easily accessible to less often measured soil properties (Bouma, 1989; van Genuchten and
Leij, 1992) (Table 2). Most PTFs are “continuous-pedotransfer functions” (continuous-
PTFs) which predict hydraulic properties as continuous functions of more commonly
measured soil properties. Other PTFs called “class-pedotransfer function” (class-PTF)
are functions which predict hydraulic properties from the soil class (very often tex-
ture class). Finally, a “pedotransfer rule” can be also used. This is a relationship based
on expert opinion between soil composition and the predicted property (Daroussin and
King, 1997). For a recent review of research in this area, see the review by Wösten
et al. (2001).

Pedotransfer functions are derived using databases, which contain both the input data
(readily available soil characteristics) as well as the output data (soil hydraulic proper-
ties). Several large databases such as the USDA Natural Resource Conservation Service
pedon database (USDA Natural Resource Conservation Service, 1994), WISE (Batjes,
1996), UNSODA (Leij et al., 1996, 1999) and HYPRES (Lilly, 1997; Lilly et al., 1999;
Wösten et al., 1999) and much smaller databases (Wösten et al., 2001) have been used
for development of PTFs. PTFs have been developed for the United States (Rawls,
2004), Europe (Wösten and Nemes, 2004) and tropical soils (Tomasella and Hodnett,
2004). Since water retention at different water potentials is much easier to measure than
hydraulic conductivity, the number of soils with measured water retention properties in
databases is considerably greater than the number of soils with measured hydraulic con-
ductivity. As an example, in the European database HYPRES, there are 1136 soil horizons
with both water retention and hydraulic conductivity and 2894 soil horizons with only
water retention (Wösten et al., 1999). A result is that PTFs developed for water reten-
tion properties are much more numerous than those that predict hydraulic conductivity
(Bastet et al., 1998).

Early PTFs predicted the water retention properties by predicting individual points
of the water retention curve. Among these PTFs, those of Renger (1971), Gupta and
Larson (1979), Rawls et al. (1982) are continuous-PTFs and those of Hall et al. (1977)
and Bruand et al. (2002, 2003) are class-PTFs. Other PTFs assume that all the water
retention curves have the same mathematical form so that the PTFs need only predict
the parameters of that model. Among these PTFs, those of Cosby et al. (1984), and
Vereecken et al. (1989) are continuous-PTFs while those of Wösten et al. (2001) are
class-PTFs. Most studies during the last decade were concerned with second type of
PTF because it provides a mathematical model directly for the entire water retention
curve (Rawls et al., 1992; Minasny et al., 1999; Wösten et al., 2001). Despite their
possible inaccuracies, class-PTFs which predict individual points of the water reten-
tion curve are easy to use because most require little soil information and are well
adapted to prediction of water retention over large areas (Wösten et al., 1995; Lilly
et al., 1999; Wösten et al., 1999; Bruand et al., 2003). Although they only give water
retention at certain potentials, it is easy to fit a mathematical model to these predic-
tions and thus to obtain water retention as a continuous function of water potential
(Table 3).
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Table 2. Input variables for PTFs for prediction of water retention at different potentials.

PTFs Input variables at potential (hPa) of

−100 −330 −1000 −3300 −15 000

Renger (1971) Clay Clay
Silt Silt

Hall et al. (1977) Top- Clay Clay
and Silt
sub-soil OC

ρb

Gupta and Larson Sand Sand Sand Sand
(1979) Silt Silt Silt Silt

Clay Clay Clay Clay
OM OM OM OM
ρb ρb ρb ρb

Rawls et al. (1982) Model 1 Clay Clay Clay Clay
Silt

Sand Sand
OM OM OM OM

Model 2 Sand Sand Sand
OM OM OM
θ15 000 θ15 000 θ15 000

Model 3 Sand
OM OM
θ330 θ330
θ15 000 θ15 000

Cosby et al. (1984) Clay Clay Clay Clay Clay
Silt Silt Silt Silt Silt
Sand Sand Sand Sand Sand

Vereecken et al. Clay Clay Clay Clay Clay
(1989) Sand Sand Sand Sand Sand

OC OC OC OC OC
ρb ρb ρb ρb ρb

Bruand et al. (1996) ρb ρb ρb ρb ρb

Clay – clay content; Silt – silt content; Sand – sand content; OC – organic carbon content; OM – organic matter
content; ρb – bulk density; θ330 and θ15 000; volumetric water content at −330 and −15 000 hPa, respectively.
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The accuracy of PTFs has been discussed in several studies (e.g. Tietje and
Tapkenhinrichs, 1993; Kern, 1995; Wösten et al., 1995; Bastet et al., 1999; Schaap, 2004).
A common measure of accuracy is root-mean square error (RMSE) defined as:

RMSE =

√

∑

(

θm − θp
)2

/n,

where θm and θp are, respectively measured and predicted volumetric water contents and
n the total number of observations. Analysis of the literature showed that RMSE varied
from 0.02 to 0.11 m3 m−3. The smallest RMSE values were obtained in studies where
either a preliminary grouping of soils was applied or one or more measured points of the
water retention curve were used as predictors (Wösten et al., 2001; Bruand, 2004). The
largest RMSE of 0.11 m3 m−3 was obtained in a study where the soil texture was used as
a sole predictor (Table 4).

PTFs have also been used to predict saturated hydraulic conductivity and more recently
unsaturated hydraulic conductivity (Nemes and Rawls, 2004). The accuracy of several of
these PTFs was evaluated by Tietje and Hennings (1996) on a set of 1161 soils from
Lower Saxony in Germany. In fact saturated hydraulic conductivity Ks is closely related
to the characteristics (size, shape, connectivity, tortuosity) of macropores in the soil that
result from biological activity and from tillage practices. The PTFs studied by Tietje and
Hennings (1996) on the other hand, are based on soil characteristics such as particle
size distribution or organic matter content, which are related to the total porosity but are
only distantly related to the presence of macropores. This explains the poor accuracy of
prediction found for the PTFs.

Other PTFs are based on the concept of “effective porosity” which in most studies
refers to the air-filled porosity at −330 hPa (Ahuja et al., 1989). These PTFs relate Ks to
effective porosity (φe) by the equation

Ks = a(φe)
b,

where a and b are two parameters. The validity of these PTFs was discussed by Franzmeier
(1991) and Tomasella and Hodnett (1997). They showed that a and b are not in fact
constant, but rather vary according to the characteristics of the soil studied. The prediction
of the unsaturated hydraulic conductivity is still very difficult today, progress being limited
by the small number of available data.

The rapidly increasing demand for PTFs in the last decade has led to the utilization of
available databases that are not adequate for the purpose. We recommend a wiser utiliza-
tion of PTFs. There is still a need for acquiring measured hydraulic properties to enrich
the databases. The new measured hydraulic properties will enable the improvement of
available PTFs and the development of innovative new PTFs. The lack of data is par-
ticularly appreciable for the unsaturated hydraulic conductivity in the range of water
potential between 0 and –50 hPa, i.e. close to saturation. Indeed, within this range
of water potential, the unsaturated hydraulic conductivity varies over several orders of
magnitude.
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2.3. Initial conditions

The main initial conditions required for crop models are soil moisture and nitrogen in
each soil layer. Often this information is not available for the past and so the initial values
have to be estimated. The same of course is true for future or hypothetical cases.

A common approach for initial water is to assume that water at sowing is some fixed
percentage of maximum available water, for example 80% for all layers. A modification
that may be more realistic for some environments is to fix initial conditions not at sowing
but several months before. For example, consider initial water conditions at the time corn
is sown (around April) in southwestern France. In this region, there are usually one or
more rainfall events during winter that completely fill the soil profile. It is sufficient then
to start simulations at the beginning of winter with a very rough estimate of initial soil
water. At some point before sowing the profile will be filled, both in reality and according
to the model, and this provides the correct initial condition for the subsequent calculations.

Initial soil nitrogen at sowing may also be difficult to obtain. Here again it may some-
times be useful to start simulations some time before sowing. In France, for example,
there are tables for calculating soil nitrogen at the end of winter as a function of soil type,
the previous crop species, its yield and nitrogen applications to the previous crop.

3. Management practices

3.1. Required information

The management decisions that must be specified for each field include the crop species,
variety, sowing date, fertilization dates and rates, irrigation dates and amounts, etc. These
inputs are particularly difficult to obtain for fields where they have not been observed
because they depend on individual farmer decisions rather than on physical properties,
and these may not vary at all smoothly with location. Thus, mathematical interpolation
may not be a reasonable approach. One possible approach is to use a unique set of
management decisions, for example recommended practices, for an entire region (Hansen
and Jones, 2000; Yun, 2002). However, ignoring the spatial variability of practices can
lead to prediction errors (Yun, 2002). In the following sections, we present approaches
that account for the spatial variability of crop species and agricultural practices within
a region.

3.2. Crop species

The information as to which crop species were planted in previous years is usually easily
obtained for a single field or a small number of fields. However, this is no longer the case
when running a crop model over a region or an entire country.

3.2.1. Determining the crop planted in every field

When a model is used as a diagnostic tool to analyze past results, it is necessary to know
past land use. For the recent past, the two main sources of information are statistical
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sampling data and remote sensing data from the period in question. Obtaining information
about the more distant past is more difficult. One can use remote sensing data if available
or use a combination of statistical data and surveys.

3.2.1.1. Recent past

One important source of information is agricultural statistics. The countries of the
European Union use several different procedures (Gallego, 1995). “Local statistics” are
based on an administrative unit (e.g. municipality, small agricultural region, parish). These
data are collected by local administrators or by agricultural organizations. These data are
available every year but may be quite imprecise. “Farm census” data result from contacting
every farm. The area devoted to each crop is just one of the pieces of information acquired.
Only in small countries is the census done annually, otherwise it is usually redone every
five or ten years. “Sampling surveys” contact only a sample of farms, and then use statis-
tical techniques to extrapolate to the entire population. In the United States, the National
Agricultural Statistics Service (NASS) has been using area frames for agricultural surveys
since the early 1960s (Cotter and Nealon, 1987).

All the above methods provide an estimation of the crop acreage over a region, but
do not indicate specifically which fields were planted with which crops. To overcome
this, new approaches have been developed, based on technologies such as remote sensing
(Campbell, 2002; Chuvieco, 2002; Lillesand et al., 2003) and Geographic Information
Systems (Burroughs and McDonnell, 1998).

Remote sensing allows one to directly identify the spatial distribution of crop species,
and also to monitor the development and state of the vegetation. The capability of remote
sensing to provide precise and useful land use maps depends of various factors: cover
type, crop development, cloudiness conditions, dates of the images, method of analysis.
Although one image taken when the crop is fully developed may be sufficient, generally
several images during the season are required to provide reliable identification of crop
species. Furthermore, though automatic classification is possible, supervised classification
usually gives better results.

An example of combining remote sensing and statistical data is the MARS (Monitoring
Agriculture with Remote Sensing) project conducted in Europe, since 1988 (Gallego,
1995). Another one is the AgRISTARS program (Agricultural and Resources Inventory
Surveys Through Aerospace Remote Sensing) (Pinter et al., 2003). Satellite data and
ground data are combined by means of a regression estimator.

3.2.1.2. More distant past

For the more distant past, remote sensing shots may provide valuable information about
the evolution of land use cover of a region (Ducrot and Gouaux, 2004). Unfortunately the
necessary past images, which must be sufficient in number, taken at appropriate periods
and have sufficient resolution, are often not available. Therefore, other techniques are
required. Mignolet et al. (2004) propose a method for reconstituting the evolution over
time of cropping systems and their spatial distribution. This process makes use of both
expert opinion and regional or national agricultural statistics that are compared, step by
step, in order to build the most reliable database for the time and space scales considered.
Data mining and statistical cartography methods proposed by Mari et al. (2000) are used
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to identify the major crop rotations of a region, their evolution in the past years and their
spatial distribution.

3.2.2. Predicting which crops will be planted

The prediction of crop species depends on the time at which prediction is required. If for
example, a prediction of national yield is required shortly before harvest time, then the
agricultural statistics for the current year or remote sensing data may be available, and
the approaches described above are applicable.

If on the other hand early prediction is required, then different procedures are required.
For example, the study of Leenhardt et al. (2004a) concerns a water manager in south-
western France who requires predictions of future water use starting in early summer.
At this time statistical survey information is not yet available and satellite imagery cannot
yet distinguish between the various summer crops, and particularly between corn, which
is irrigated, and sunflower, which is not irrigated in southwestern France.

One possible approach in this case is simply to assume that at a regional scale the
change in land use from one year to another is negligible. Such an assumption would be
reasonable for a region where single-crop farming dominates and no major changes in
economic or regulatory factors have occurred.

A second possibility is to use declared intentions of farmers, where such information
is available. The European Agricultural Policy involves asking farmers to declare which
crops they intend to cultivate in each field. A minor problem here is that climatic conditions
may lead to some changes in plan. A major difficulty is obtaining this information, which
is protected by privacy laws. The information is made available in the form of a computer
database, but this only concerns data aggregated by district and furthermore there is
considerable delay before this is done.

A third possibility is explored by Leenhardt et al. (2005). This approach has two stages.
First, one obtains an estimate of land use in the preceding year. Then, one uses information
about crop rotations to give the probability of having various crops in a field this year,
given the crop last year. The crop rotation information is based on Ter-Uti, which is a
systematic land-use sampling program in France. This sampling system is being extended
to the entire European Community under the name of LUCAS (Land Use/Cover Area
frame statistical Survey) (SCEES, 2005). The same locations are sampled each year.
The approach proposed by Mari et al. (2000), allowing the identification of the major
crop rotations of a region (see Section 3.2.1), might be worthwhile combined with early
remote sensing information, which can not identify the exact crop but which can limit the
possibilities to a group of crops.

In many cases, one wants to study scenarios that imply a change in choice of crop. For
example, the scenarios might concern changes in climate or in the economic or regulatory
context. A number of possible approaches exist (see for example, Veldkamp and Lambin,
2001). One approach is to assume that each farmer maximizes some objective function,
for example net profit, subject to constraints (for example, available labor). The problem
is then to determine which crop species (and perhaps management decisions) this implies.
A simple approach is to suppose that farmers have a choice between a limited number
of systems (crops, management), each of which is associated with a certain yield and a
certain use of resources. Linear programming can then be used to find the optimal crop
and management.
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3.3. Sowing date

For past data one could simply seek to obtain the sowing date for each field, but this can be
very difficult for large numbers of fields. Even if one is willing to address direct inquiries
to each farmer many may not respond. For example, Leenhardt and Lemaire (2002) had
a 39% answer rate to a postal survey, and this is considered a very good return rate.

Information that is generally available is a recommended sowing period for each crop,
each variety and each region. One also has in general climate information and statistical
information about farm structure and land use.

3.3.1. Estimating or predicting sowing date

Sowing dates could be based on the recommendations that exist for each variety in each
region, but within the possible sowing period the actual sowing date will depend on
available manpower, the state of the soil and climatic conditions. This suggests two
possible approaches, either using a fixed average sowing date or calculating a sowing date
for each field based on information about farm organization and climate. An example of
calculation of sowing date is the SIMSEM model of sowing date proposed by Leenhardt
and Lemaire (2002).

3.3.1.1. Overview of SIMSEM

The model SIMSEM is based on a water balance model, a farm typology and expert
knowledge. The farm typology used (SICOMORE1) defines, for each small agricultural
region (SAR2), a limited number of farm types (around 6). Each type is characterized
by the area of the various soil–crop associations per farm and the availability of time
and equipment. Table 5 presents the main characteristics of a sample of farm types.
SIMSEM calculates, for each SAR, the distribution of sowing dates of each summer crop
following a three-step procedure: (i) the determination of possible sowing days using a
soil water model, (ii) the determination of the time required to sow each crop, and (iii)
the determination of the days on which each crop is sown.

3.3.1.2. Determining possible sowing days using a soil water model

A water balance model is run at a daily time step over the months of the sowing period
to determine, for each soil type, which days are possible sowing days. To determine if
sowing is possible, a decision rule based on soil water status and precipitation is used.
The rule is: “If the soil water content (SWC) is below x% of the soil available water
capacity (SAWC), and if it does not rain more than y mm this day, then sowing can
occur.” Threshold values x and y were obtained, for the study region, after analysis of
past sowing dates.

1SICOMORE (SImulation éCOnomique de MOdèles REprésentatifs de l’agriculture) (CRAMP, 1988) is a
method used by the regional agricultural extension service of the Midi-Pyrénées region of France to identify
farm types in the region. The farm typology, which is an output of SICOMORE, is obtained from a minimum
of standard data from statistical, administrative and professional surveys.

2The SAR are the sub-divisions of the corresponding agricultural regions (ARs) that respect the administrative
limits of the French Departments. The ARs, on the other hand, are based on physical and economic criteria.
They are homogeneous agricultural areas that date from the 1940s (République Française, 1946a,b, 1949).
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Table 5. Soil–summer crop associations, manpower and number of cows of the farm types with
irrigation present in a small agricultural region (SAR) (Haut-Armagnac), as described by SICO-
MORE. Among the six farm types are two types of mixed crop–livestock farms (CLF) and four
types of field crop farms (FC).

Farm Number Area (ha) of different crop–soil Man-power
(equivalent
full-time
workers)

Number
type of farms associations of cows

Maize Sunflower Soybean Sorghum
× × × ×

loam clay clay Clay

CLF1 150 10.1 4.9 2.4 22
CLF2 112 10.4 1.8 10
FC1 181 66.3 29.8 2.6 2.2
FC2 58 29 25.9 2.4 2.2 8
FC3 105 3 5.1 2.4
FC4 423 4.7 1.5 7

3.3.1.3. Determining the time required to sow each crop

The second step of the SIMSEM procedure is primarily based on the information given
by the farm typology: the type and area of various crop–soil associations for each farm
type, the kind and size of its livestock, and the amount of manpower available. However,
complementary information (and very specific to the region considered) was provided by
experts from local technical institutes: the earliest possible date for sowing the various
summer crops, the priority between crops for sowing, the time necessary to sow for various
soil types, and estimations of daily working time. For each farm type and for each crop
the following outputs were calculated:

• The time T
f
cs (in days) necessary, in farm type f, to sow crop c on soil s. This is a

function of the area A
f
cs of crop c (in hectares) on soil s represented in farm type f, the

time ts (in hours/hectare) necessary to sow on soil s and the amount of time per day
devoted to sowing td (in hours/day):

T
f
cs = A

f
cs ts/td (1)

The time devoted to sowing is calculated as

td = (Lf tmax
d ) − (taNa) (2)

where Lf is the manpower available for farm type f (equivalent number of full time
workers), tmax

d is the maximum working time per full time worker per day (hours), ta

is the time (in hours/animal/day) necessary to take care of the animals and Na is the
number of animals on the farm. (In this area, only cows are considered since other
kinds of livestock are not time demanding at the sowing period of summer crops.)



7. Using crop models for multiple fields 227

• The area Ar
cs (in hectares) of this crop–soil association to be sown for the small

agricultural region r is

Ar
cs = A

f
csN

r (3)

where N r is the number of farms of type f in the region r .
• The area ar

cs (in hectares/day) that can be sown in one day in the region r is then

ar
cs = Ar

cs/T
f
cs (4)

The various inputs used in the above equations come either from the SICOMORE
typology (A

f
cs, Lf , Na, N r) or from experts (ts, t

max
d , ta).

3.3.1.4. Combining possible sowing days and required time to sow

Days suitable for sowing (defined in step one) are taken in chronological order. Each
crop–soil combination has a priority. Sowing begins with the highest priority combina-
tion. Each day, ar

cs hectares are sown, until the total area Ar
cs is sown. Then the same

procedure is repeated for the crop–soil association with the next highest priority, etc. The
order of priorities may vary between regions depending on economic criteria (relative
contribution of crop to farm profit), physiological criteria (heat needs of crop for emer-
gence) or physical criteria (capacity of soils to store heat). The result of the simulation is
a temporal distribution of sowing dates for each summer crop in each small agricultural
region. The estimated sowing dates are not field specific.

3.4. Irrigation

For irrigated crops, dates and amounts of irrigation are required inputs to the model.
When numerous fields are concerned, such information can be very difficult to obtain.
In general, each field has different irrigation dates and amounts. However, it may be rea-
sonable to assume that this diversity results from a small number of underlying irrigation
strategies applied to a diversity of situations. (Decision strategies are discussed in detail
in Chapter 6. An irrigation strategy corresponds to a set of rules which relate irrigation
decisions to various aspects of the situation such as soil characteristics, climate, state of
crop development etc.) It is therefore more reasonable to try to characterize irrigation
strategies than to characterize the diversity of irrigation dates and amounts over the study
region. Furthermore, the irrigation strategy of a given farmer is likely to be relatively
stable (at least over short or medium periods) while irrigation dates and amounts change
each year. Simulating irrigation strategy appears then as a good solution when irrigation
dates and amounts must be approximated for many fields. It is also a reasonable approach
when one deals with future or hypothetical situations.

A number of studies have treated the representation of irrigation strategies. Chapters 6
and 19 of this book contain examples. A very common option encountered in the literature
(e.g. Herrero and Casterad, 1999; Ray and Dadhwal, 2001) is to suppose that irrigation
is applied as needed to satisfy crop water needs, as indicated in the FAO guidelines
(Smith, 2000). This simple assumption allows one to calculate irrigation amounts without
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tackling the difficult problem of individual farmer behavior. Very few studies concern
actual irrigation strategies over a region. For such studies one can use interviews with
farmers, but often the irrigation strategy of a farmer is implicit and so cannot be obtained
from a simple direct question. One asks questions concerning a farmer’s practices and
reasoning and then deduces the strategy. In general, however, farmers can only provide
irrigation information about the recent past. Furthermore, the interviews generally are
quite long (1–2 h). Given the number of farmers (for example, more than 500 farmers
in a 500 km2 area in southwestern France), sampling is necessary. Two solutions can
then be applied to generalize the results over a region. The first consists in defining some
average irrigation strategy that is assumed to apply to the entire population of farmers
who irrigate (Leenhardt et al., 2004a). This average irrigation strategy may be adjusted
by comparing simulated and observed water consumption data for the whole region. The
second approach consists in building a typology of irrigation strategies. Then one would
seek a relation between the choice of type of strategy and various explanatory variables
(e.g. soil type, level of equipment, farm type) (Maton et al., 2005). Note that this would
describe the main strategies but would not specify where exactly they are located. This
would only be possible if the explanatory variables could be geo-referenced using soil
maps, climate zones or administrative divisions.

4. Remote sensing data

Remote sensing is of great interest when one wants to use a model for multiple fields for
past or current conditions, because it gives detailed spatially explicit information on soils
and crops over an entire area.

The main informative spectral domain is that corresponding to solar radiation
(400–1600 nm) which allows one to estimate various canopy properties such as canopy
structure (leaf area index LAI or fraction of absorbed radiation FAPAR), leaf chlorophyll,
leaf water content, etc. One way of obtaining estimates is by using a radiative transfer
model. Such models express reflectance as a function of canopy properties. If reflectances
are measured, inverting the model gives estimates of canopy properties (Baret et al., 2000).
Alternatively, one can use empirical equations which relate canopy properties directly to
functions of reflectances called vegetation indices. Satellite images are available in the
solar domain at various spatial resolutions (IKONOS: 1 m, SPOT-HRV: 10 m, MERIS-
MODIS: 300 m, SPOT-VGT: 1 km). The frequency of images from the same location
goes from once a month to once a day and decreases as the area covered by an image
decreases. Other spectral domains like thermal infrared or passive and active microwaves
are related to other characteristics (crop biomass and water content, soil water content),
but have lower spatial resolution.

We have already discussed the use of remote sensing to identify the crop in a field.
In that case the spectral signature is exploited directly, being compared statistically to
signatures for different crops. In this section we consider how remote sensing data, through
their relation to canopy properties, can help in obtaining the input data necessary to run
a crop model. The different ways of taking advantage of this external information use
the fact that the biophysical variables that are available by remote sensing include key
state variables simulated by crop models. Using these data to estimate values of model
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input variables or to modify values of model state variables is known as “data assimilation”
(Delécolle et al., 1992; Pellenq and Boulet, 2004). See Chapter 5 for a detailed explanation
of assimilation techniques.

4.1. Use of remote sensing data for estimating input variables

Figure 2 shows the general procedure. Suppose that the input variable sought is plant-
ing date. The basic idea is to find the planting date that leads to the best agreement
between reflectance calculated using model predictions of soil and canopy properties and
the observed reflectance (Bouman, 1992; Moulin, 1995; Guérif and Duke; 1998, Prévôt
et al., 2003). As shown in the figure, this requires a radiative transfer model, which
calculates the reflectance in the visible or near-infrared from soil and canopy properties.

The use of remote sensing data for obtaining sowing dates was explored by Moulin
(1995) in a simulation study. She used the AFRC (Agricultural and Food Research
Council)-Wheat model coupled to the SAIL radiative transfer model to generate artifi-
cial remote sensing observations for wheat canopies. She then used the procedure of
Figure 2 to go backwards and determine sowing date from the remote sensing data. The
study explored the impact of various factors on the quality of the sowing date estimate.
The number and dates of images had a large influence on the shape of the cost function
that is minimized in the assimilation procedure. The most favorable configurations corre-
sponded to measurements made during the rapid canopy growth period. The precision of
the remote sensing observations affected the precision of the sowing date estimate. A 5%
error in the observed values led to an error of 2 days in sowing date (and a 4.8% error in

Figure 2. Data, actions and models involved in the assimilation of remote sensing data into
a crop model.
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final biomass). A 20% error in observed values led to an error of 20 days in sowing date
and an error of 20.3% in final biomass.

She also applied the method to a wheat field in the French Beauce region, using SPOT
satellite images at four dates in 1992. First, it was assumed that sowing date was unknown
within the range from day of year (DOY) 266 to DOY 326. For this range of planting
days, the relative error for final biomass prediction ranged from +17.6 to −9.8%. The
re-estimation of the sowing date using the 4 SPOT-HRV data led to a sowing day of 299
with an error of +3 days. The associated relative error for biomass prediction was −2.8%.
Figure 3 shows the results with and without re-estimation.

Figure 3. Reflectance profiles (in the near-infrared wavelength on the upper part of the graph, in
the red wavelength on the lower part of the graph) simulated by the coupled AFRC-Wheat+SAIL
model. Sowing days are DOY 266 (- - -), DOY 299 (-.-.-), the true sowing day (—) and sowing
day estimated using remote sensing observations (. . .). The symbols (◦) represent SPOT satellite
measurements.

Remote sensing data can be used to estimate not only sowing date but also other crop
model inputs. In fact, the only obligatory requirement is that the inputs must affect some
quantity which can be related to reflectance measurements. However, in practice it may
be impractical to estimate several different inputs. An example is provided by the study
of Launay (2002), who used the SUCROS crop model coupled with the SAIL radiative
transfer model to estimate both sowing date and LAI at 500◦C day after sowing (LAI500),
for 31 sugar beet fields in Picardie in northern France. LAI500 is calculated from the
initial relative growth rate of the leaves (Launay et al., 2005): the greater the LAI500, the
better the crop establishment in the critical period in spring. This is a major determinant
of subsequent growth for crops like sugar beet, less capable than wheat of compensating
for poor crop establishment.

This study showed that in the case considered, where few remote sensing data were
available during the rapid crop growth period, it did not seem feasible to estimate both
sowing date and LAI500. Table 6 shows the errors in the estimated values with or with-
out assimilation of the remote sensing data. When both sowing date and early LAI
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Table 6. Root mean square errors (RMSEs) for 31 fields for sowing date and for early LAI when
only early LAI or when both early LAI and sowing date are estimated from remote sensing data.
When estimation is not from remote sensing, the average value of early LAI or of sowing date over
the 31 fields is calculated and that same value is used for every field.

Only LAI estimated LAI and sowing date estimated

RMSE without
assimilation

RMSE with
assimilation

RMSE without
assimilation

RMSE with
assimilation

Sowing date (days) – – 9 9
LAI at 500◦C.days

after sowing
(m2 m−2)

0.34 0.29 0.32 0.40

were estimated from remote sensing data, the errors were as large as or larger than
without assimilation. On the other hand, assimilation did bring some improvement when
only LAI500 was estimated from the remote sensing data.

A different example of the use of remote sensing data is given in Launay and Guérif
(2005). The purpose of this study was to estimate sugar beet yield in all fields in a region
using the model SUCROS. Soil properties were available from a soil map associated with
pedotransfer functions (Jamagne et al., 1977). However, it was clear that the soil map
information was insufficient, in particular for properties related to soil water availability.
First of all, the soil map provided information only to a depth of 1.2 m, whereas several
experiments in the region have shown that sugar beet roots reach depths greater than
1.2 m. Second, the soil map did not provide information on chalk type for soils with a
chalk substratum, whereas it is known that there are two different types of chalk with
different water availability properties. The first is a hard material, with low sensitivity to
frost and impenetrable by roots and the second a soft material, cracked and penetrable by
roots. The soft chalk can serve as a reservoir for soil water, which can be mobilized by
capillary rise or by direct penetration of roots (Maucorps, personal communication).

The problem then is that soil properties, and as a consequence water availability, are
poorly known. Remote sensing is a good candidate for providing additional information
about soil characteristics. However, the situation is complicated by the fact that the crop
model does not take properties like penetrability for roots or capillary rise as inputs. It was
decided then to use remote sensing data to estimate root growth rate and maximum rooting
depth. These parameters also affect soil water availability to the plant, and so can be used
to compensate for errors in soil characteristics. Notice that, here, the objective is not to
provide the true inputs for the model, but rather to compensate for errors in inputs that
are poorly known.

Figure 4 shows the effect of using remote sensing data for one particular plot, which had
a chalky substratum starting at a depth of 0.2–0.3 m. The right graph shows predicted (with
and without assimilation) and observed values for LAI. The left graph shows predicted and
observed values of the vegetation index VI, which is a combination of reflectance values.
The radiative transfer model SAIL was used to convert from LAI to VI. The prediction
without assimilation assumes that the soil description at 1.2 m can be extended to 1.8 m,
and that where chalk is present it has the same water holding properties as silt loam.
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Figure 4. Simulated vegetation index (VI) (left) and leaf area index (LAI) (right) values without
(-----) and with (——) assimilation of remote sensing data, compared to observed values (�) obtained
from remote sensing for VI and from ground measurements for LAI.

This led to an overestimation of the soil water holding capacity and to an overestimation
of LAI. The available remote sensing data consisted of five SPOT-HRV and airborne
images. Using these data, the calculated rate of root growth was 0.010 m day−1 (compared
to the standard value of 0.012 m day−1) and maximum root depth was 0.81 m compared
to the standard value of 1.8 m. Without assimilation the predicted yield was 84.8 t ha−1

and with assimilation 53.8 t ha−1. The latter value is much closer to the observed yield
of 50.3 t ha−1.

Chapter 17 provides another example of the use of remote sensing data to estimate
soil input variables.

4.2. Use of remote sensing data for forcing state variables

So far we have discussed how remote sensing data can be used to obtain values of model
input variables at every point where the model will be used (at every crop model support
unit, in the language of scale change). An alternative approach is to use remote sensing
to obtain values of crop state variables at every crop model support unit, and to use those
values to replace the values calculated by the model. The idea is that replacing calculated
by measured state variables could compensate for errors in the input variables. Such an
approach was proposed by Steven et al. (1983) and Leblon et al. (1991), using very simple
models describing net primary production. Delécolle et al. (1992) and Clevers et al. (2002)
employed this approach using more detailed crop models.

Clevers et al. (2002) compared two ways of replacing LAI values in their model
ROTASK by values obtained by remote sensing. They had estimated LAI values from
5 fields of durum wheat at 3 dates, obtained from SPOT-HRV images using empirical
relationships between reflectance and LAI. In the first approach, LAI values were estimated
at all dates by interpolation, assuming that LAI followed a logistic curve over time. Then
those LAI values were used every day to replace the LAI values calculated by the model.
In the second approach, the model values of LAI were only replaced by the values derived
from remote sensing at the three acquisition dates. The first approach improved final yield
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estimates for the 5 fields, but the second approach led to even greater improvement. The
first approach would probably have been even better if more measurement dates had been
available. Three dates is probably insufficient.

When dealing with a large spatial domain, one usually has to rely on low-resolution
satellite data. As a result, the support unit of the observed data may be larger than the
support unit of the crop model, and a change of scale is necessary. For example, in a study
to estimate regional wheat yield by Faivre et al. (2000), the support unit of the observed
data (the pixel) was 1 km2 (SPOT-VGT) while the support unit of the crop model was
the individual field, which was generally much smaller. Using knowledge of land use
provided by high-resolution satellite data, they were able to deconvolute the original
signal and to recover the specific reflectances of each crop included in the pixel (Faivre
and Fischer, 1997). Then, they derived LAI values from the reflectance values using
empirical relationships and then interpolated between these values in order to obtain LAI
values for each day. Finally, they fed these values into the STICS model, replacing the
values calculated by the model for each crop type in each pixel. The results showed very
good agreement between estimated and announced values of wheat production.

Whether remote sensing data is used to provide values of input variables or values of
state variables at each point in space, special attention must be paid to the quality of the
data and of the variables derived from those data (LAI or chlorophyll content estimates).
Evaluation of the associated errors is essential in order to study how they propagate to other
model outputs. Finally, the number of remote sensing data dates is very important and
largely determines how well one can estimate different input variables or state variables.

5. Obtaining the outputs for multiple fields

Crop models are developed for single homogeneous fields. Producing outputs at the
regional scale requires a scale change which implies the consideration of new processes
and properties, emerging at this new scale and revealed by the extension of the system
considered. They influence the soil–plant–atmosphere system but they are not represented
in crop models. These processes can concern physical transfers between neighboring units,
including water transfer between fields, pathogen propagation, weed or pollen diffusion,
etc. The interactions between fields can also result from the multiplicity of actors in a
region and from the decisions they make. They arise because, at this scale, human and
economic sub-systems cannot be neglected. For example, at the scale of an irrigated area,
the water resource must be allocated between farmers. At the farm scale, not only water
allocation but also other management decisions are interrelated between fields due to the
constraints of labor and equipment. In some cases interactions can be ignored or included
implicitly, while in other cases the interactions will be explicitly modeled.

5.1. No explicit representation of interactions

In this case, it is common not to run the model for every field, but rather to divide the
region into elementary simulation units and to run the model independently for each unit.
The simulation units are determined by defining homogeneous zones for the most sensitive
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input data. For example, a soil map could be overlaid with a climatic zone map in order
to obtain a map of homogeneous pedoclimatic units. This could be overlaid with a map
of administrative regions, for which there is cropping and management information, to
further sub-divide the units so that each new unit also belongs to a single administrative
region.

The final result would be obtained as a sum (for example of water requirements,
Leenhardt et al., 2004a,b) or as an average (for example of yield, Donet et al., 2001)
over simulation units. To obtain these results, it might be necessary to run the model
several times for each elementary simulation unit. If various weather scenarios are con-
sidered, one might want to average over them for each elementary simulation unit. Also,
an elementary simulation unit might have a distribution of farm types or management
practices. Then the model would be run for each.

Even when interactions between fields are not considered explicitly, it may be possi-
ble and useful to include them implicitly. An example is given by the SIMSEM model
(Leenhardt and Lemaire, 2002; see above). This model calculates a range of sowing dates,
which takes into account the fact that different fields (and other activities) on a farm inter-
act because they share the labor resources of the farm. Fields can then be treated as
independent, but the range of sowing dates implicitly takes into account interaction due
to shared resources.

Another approach is to inject information from remote sensing (generally, values of
LAI) into the crop model. The actual growth and development of the crop automatically
take into account interactions, and so adjusting the model to data from each field is an
implicit way of taking interactions into account. The remote sensing data can be used to
re-estimate parameters and/or input values of the crop model (Guérif and Duke, 1998;
Launay and Guérif, 2005). They can also be used to force the crop model to be consistent
with the observed data over the course of the growing season (Faivre et al., 2000).

5.2. Modeling interactions between fields

Examples of situations where interactions may be explicitly modeled include fields in a
landscape with slope, where surface water flow (run-off and run-on) between fields needs
to be taken into account, and the study of contamination of fields without genetically
modified (GM) crops by fields with GM crops, where the exchange of pollen must be
modeled (Colbach et al., 2005).

Also, one often wants to couple crop models with other models, in particular hydro-
logical or meteorological models, in order to study some aspect of the overall behavior
of a region. In this case, the other model may provide the modeling of interactions. For
example, the hydrological model will calculate water flow, both surface and sub-surface.
In general, the major interest in such cases is not on crop behavior. Examples include the
studies by Beaujouan et al. (2001) and Gomez and Ledoux (2001). The first studied water
quality for a small catchment and the second for a large river basin. They coupled a crop
model with a hydrological model to simulate results at the watershed outlet. Coupling
crop models with models of three-dimensional hydrology, pollen exchange or farm oper-
ations may require restructuring the crop models so that multiple crops can be simulated
in the same simulation study and so that information can be exchanged between models at
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each simulation time step (Hansen and Jones, 2000). Also, the type of interactions taken
into account may influence the choice of the simulation units (see for example, Kiniry
et al., 2002).

6. Evaluation

6.1. Validation data – few in number and often not totally pertinent

In principle, one can evaluate a model used at the regional level by comparing the results
with observed data. A basic problem is the lack of data. We are interested specifically in
the results for a particular region, so that there is only one single result for comparison
per year (or per season). This is in contrast to evaluating a model on the average for
a type of field, where one can compare with numerous fields each year. Furthermore,
it can be very difficult to get reliable data at the regional level. Various approximations
may be necessary, leading to a fairly high uncertainty in the observed value. As shown
in Chapter 2 on evaluation, when there is measurement error the mean squared error of
prediction (MSEP) is augmented by the variance of the measurement error. If that variance
is large, as it often will be for regional studies, then the measurement error may be the
major part of MSEP, masking the error between the model and the true result.

Rabaud and Ruget (2002) discuss two specific problems with validation data that are
probably quite common. They used expert estimation of forage production in each region
of France to obtain data for comparison with the ISOP model. The first problem is that
the expert estimates may be more or less accurate depending on the expert. Mignolet
et al. (2004) also noted this problem. With regard to past land use, two different experts
asked about the same period and the same region did not provide the same information,
especially for the more distant past. The second problem noted by Rabaud and Ruget
(2002) is that it may not be feasible to get validation data that is exactly comparable to
what the model predicts. In their case each expert reported for an administrative region,
while the model was run for specially defined forage regions. Another example of this is
provided by the study of Leenhardt et al. (2004b), who simulated total water demand for
irrigation in a region. For comparison they had to rely on data relative to farmers who
subscribe to a collective irrigation system, while the simulation concerns all farms in the
region including farmers who irrigate from their own reservoirs.

6.2. Estimating error at the regional level

Suppose that the regional output of interest is the sum of outputs from elementary units.
For example, we might be interested in total crop production or total water use for a
number of fields. (The case where the quantity of interest is an average over fields rather
than a sum is easily derived from the treatment here.) We wish to estimate the mean
squared error of prediction (MSEP) for the regional result. For a general discussion of
MSEP, see Chapter 2.

If past results for the region and corresponding model predictions are available, then
they can be used to estimate MSEP for the region. We make the simplifying assumption
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throughout this section that the data available for estimating regional prediction error were
not used for model development. Also, for concreteness we suppose that the quantity of
interest is regional production (tons of wheat, for example). Then the estimate of MSEP
for the regional result is simply

M̂SEP =
1

V

V
∑

v=1

(Pv − P̂v)
2 (5)

where the index v, v = 1, . . . , V identifies the year, Pv is the true regional result for
year v and P̂v is the corresponding model prediction. That is, we simply evaluate the
mean squared error for past results, and that estimates the mean squared error for future
applications of the model.3

Suppose, however, that past data for the entire region are unavailable or unreliable.
Is there another way of estimating model error on a regional scale? In particular, if we have
past data for just a sample of fields from the region, and corresponding model predictions,
can we use that information to estimate MSEP for the region? We propose two ways of
doing this.

Suppose first that we have results from a random sample of N fields for each of V

years. Then a simple estimate of MSEP is obtained by replacing the production values
in Eq. (5) by values estimated using the sample. In particular, our estimate of Pv is

S
(
∑N

i=1 Pi,v/
∑N

i=1 Si,v

)

where Pi,v and Si,v are respectively, the true production and
the area of the ith sampled field in year v and S is total area of the fields in the area.
An estimate of P̂v is obtained using an analogous equation, with calculated production
P̂i,v in place of true production. We assume for simplicity that the total area in question
is the same every year. The treatment could easily be generalized to the case where the
total area varies between years.

The second approach is more complex but gives insight into what determines overall
error. We introduce a statistical description of model error, which takes into account
bias, year effects and field effects. Model error in yield (production per unit area) can be
written as

d(u, v) = Y (u, v) − Ŷ (u, v) = µ + a(u) + b(v) + c(u, v) (6)

Here u identifies a particular field and v a particular year. Y (u, v) = P(u, v)/S(u) and
Ŷ (u, v) = P̂ (u, v)/S(u) are respectively, true and calculated values of yield for field u,
year v and S(u) is the area of the indicated field. The model error is thus written as an
average model error µ, a field effect a(u), a year effect b(v) and an interaction c(u, v).
We will treat both fields and years as infinite populations. This is natural for years. For
fields it is an approximation that is reasonable if the number of fields in the region is

3The notation MSEP here is equivalent to MSEP(θ̂ ) in Chapter 2. The prediction error here refers to a
specific model with a specific parameter vector θ̂ , as in Chapter 2, but to simplify the notation we do not show
the dependence on θ̂ explicitly.
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fairly large. The definitions of the terms on the right-hand side of Eq. (6) are

µ = E [d(u, v)]

a(u) = E [d(u, v)|u] − µ

b(v) = E [d(u, v)|v] − µ

c(u, v) = d(u, v) − a(u) − b(v) − µ

(7)

It is easily seen from their definitions that

E [a(u)] = E [b(v)] = E [c(u, v)|u] = E [c(u, v)|v] = 0

Furthermore, it can be shown that

E [a(u)b(v)] = E [a(u)c(u, v)] = E [b(u)c(u, v)] = 0

Finally, we assume that the variances are the same for each field and year, and define

σ 2
A = var [a(u)]

σ 2
B = var [b(v)]

σ 2
AB = var [c(u, v)]

We can now derive expressions for the mean squared error of prediction. The error for
total regional production in year v is NtotE [S(u)d(u, v)|v] where Ntot is the total number
of fields in the region. The mean squared error of prediction is that error squared, averaged
over years, i.e.

MSEPregion = E{{NtotE[S(u)d(u, v)|v]}2}

= N2
totE{[S(u)]2}E{{E[µ + a(u) + b(v) + c(u, v)|v]}2}

= N2
totE{[S(u)]2}E{[µ + b(v)]2} = N2

totE{[S(u)]2}(µ2 + σ 2
B) (8)

where we have used the fact that E [a(u)] = E [c(u, v)|v] = 0 and E [b(v)|v] = b(v).
We have also assumed that errors are independent of field size.

Equation (8) shows that the regional mean squared error of prediction just depends on
average model bias and on the year effect in model error. The field effect in model error
does not contribute because it is on the average zero, and so it cancels out when we are
interested in a sum (or an average) over fields. Given results from a sample of fields, one
can use analysis of variance software to estimate µ2 and σ 2

B. Plugging into Eq. (8) would
then give an estimate of MSEPregion.
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6.3. Error propagation studies

The number of input variables for a crop model used for a single field is already appre-
ciable. When the model is used for multiple fields, then the overall number of input
variables is multiplied by the number of fields. Furthermore, additional approximations
are usually involved in using a model for multiple fields. In particular, if total output is
based on sampling fields within the study area, then the sampling is an important addi-
tional approximation. Given the very large number of possible sources of error, it is even
more important here than for single fields to identify which errors are most important.

Uncertainty and sensitivity analysis (Chapter 3) treat the problems of propagation and
decomposition of model error. The specific problem here involves the effect of different
errors in multiple field studies, in particular studies where spatial organization is taken
into account. For linear models analytical methods exist (for example, Heuvelink et al.,
1989). For strongly non-linear models like crop models, these methods do not apply.
Crosetto et al. (2000) and Tarantola et al. (2000) propose applications of uncertainty and
sensitivity analysis to GIS-based models that need not be linear. They consider how to
estimate the precision needed for the various inputs in order to obtain a specified precision
for an output.
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Exercises

1. The characteristics of a soil are given in the table below (OC: organic carbon content;
Db: bulk density).

Horizon Depth
(cm)

Particle size distribution (%) OC
(g 100 g−1)

Db

(g cm−3)
Clay Silt Sand

Ap 0–25 18 45 37 2.2 1.21
E 25–55 19 42 39 0.8 1.33
BT 55–90 28 33 39 0.6 1.45

(a) Estimate the volumetric water content (θ in cm3 of water per 100 cm3 of soil) at
a pressure head of 100 cm (θ100) and 15 000 cm (θ15 000) for every horizon using
(i) the continuous pedotransfer functions (continuous-PTFs):

θ100 = 27.9 + 0.41 (%clay) + 0.15 (%silt) − 8.32 (Db)

θ15 000 = 1.48 + 0.84 (%clay) − 0.0054 (%clay)2

that predict points of the water retention curve, and (ii) another continuous-PTF
that predicts the entire curve of the van Genuchten model:

θ = (θs − θr)[1 + (αh)n]−1 + θr

with

h = pressure head in cm

θs = 0.81 − 0.283 (Db) + 0.001 (%clay)

θr = 0.015 + 0.005 (%clay) + 0.014 (%OC)

α = exp[−2.486 + 0.025 (%sand) − 0.351 (%OC) − 2.617 (Db)

− 0.023 (%clay)]

n = exp[0.053 − 0.009 (%sand) − 0.013 (%clay) + 0.00015 (%sand)2]

(b) Assuming θ at field capacity (θFC) and θ at the wilting point (θWP) equal to θ100
and θ15 000 respectively, estimate the available water capacity (AWC) of every
horizon in millimeter of water per centimeter of horizon and with the two types
of continuous-PTFs with:

AWC = θFC − θWP

(c) Estimate AWC for the entire soil in millimeter of water.



246 D. Leenhardt et al.

2. The water content at 100 cm (θ100) and 15 000 cm (θ15 000) was measured. The results
are given in the table below.

Horizon Water content (in cm3 per 100 cm3 of soil) at:

100 cm (θ100) 15 000 cm (θ15 000)

Ap 32.5 15.9
E 31.2 14.6
BT 33.3 20.8

Compute AWC for the entire soil. Which is the more accurate PTF?

3. The objective here is to determine the sowing dates of sunflower crops at Mideulville,
which is a location situated at equal distance between the villages of St Bonnet-le-Froid
and Villesèque in France.

(a) Determine first the possible sowing dates between April 1 and June 15, 2005,
using two methods; (i) A decision rule based on rainfall data only. (ii) Using a
soil water balance. In each case do the calculations using (iii) weather data of
St Bonnet-le-Froid, (iv) weather data of Villesèque, (v) weather data interpolated
for Mideulville.

(b) Determine actual sowing dates in cases (i, iii), (ii, iii), (i, iv), (ii, iv), (i, v) and
(ii, v) above as the median value of all possible sowing dates.

(c) From the calculations of possible sowing dates using methods (i) and (ii), deter-
mine effective sowing dates at Mideulville using the SIMSEM method, assuming
the study area includes 3 farm types: CLF1, FC1 and FC2 (cf. Table 5).

Data necessary for calculations:

• Precipitation data for St Bonnet-le-Froid and Villesèque from March 15, 2005. When
a date is not in the table, it means “no precipitation.”

Precip_stbonnet Precip_villesèque

18/3 5 0
19/3 30 25
20/3 20 15
28/3 10 8
29/3 5 0
5/4 5 0
9/4 1 0
10/4 2 0
11/4 1 0
17/4 14 10
18/4 18 15
19/4 9 5
20/4 12 10
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21/4 15 12
28/4 14 10
29/4 10 8
30/4 10 7
1/5 5 5
5/5 1 1
9/5 2 2
18/5 25 0
19/5 2 0
30/5 10 9
31/5 12 8
1/6 14 8
2/6 5 2

• Decision rule based on precipitation data

If the precipitation on day d is less than 5 mm and the total precipitation for the
previous 3 days is less than 9 mm, then sowing is possible on day d + 1.

• Parameterization for water balance

We assume that the soil is at maximum available water capacity (AWC) on March 15.
The AWC of the top soil layer is 10 mm, the DAW (difficultly accessible water) is
2 mm. The mean daily potential evapotranspitation (PET) for the period considered
is 3 mm. Water balance is calculated as follows: WCd = WCd−1 + Pd − PETd ,
where P is precipitation, WC is the water content of the top soil layer and all
variables are expressed in millimeter. WC cannot be lower than DAW and cannot
exceed AWC. Any surplus is lost (drained).
A day is considered as possible for sowing when WC is lower than or equal to 80%
of AWC.

• Local data for the calculation of effective sowing dates

Sunflower is sown after maize, and for both the earliest possible sowing date is April 20.

Man-hours required for various tasks

Task Required time

Sowing 3 h/ha
In loam soil 1.5 h/ha
In clay soil
Care of livestock 4.5 h/30 cows
Total working time in a day (in sowing period) 12 h

To simplify calculations, round-off the area sown per day to the nearest hectare and
assume that a farmer does not sow two different crops on the same day.



248 D. Leenhardt et al.

4. Model errors for 3 years for production for 4 randomly chosen fields in a region are
given in the tables below. The data in the tables were not used for model development.
Surface areas per field are also given. The total surface area of fields of interest in the
region is 10 000 ha.

Case 1

Year 1 Year 2 Year 3

Area (ha) P − P̂ (t) P − P̂ (t) P − P̂ (t)

Field 1 10 0 −2 3
Field 2 15 2 −1 2
Field 3 12 1 0 3
Field 4 25 2 −1 1

Case 2

Year 1 Year 2 Year 3

Area (ha) P − P̂ (t) P − P̂ (t) P − P̂ (t)

Field 1 10 0 3 −2
Field 2 15 −1 2 2
Field 3 12 1 0 3
Field 4 25 2 −1 1

(a) Estimate MSEP for regional production using first the data for case 1 then the data
for case 2.

(b) What is mean squared error, averaged over years and fields, for yield for the two
cases? On the basis of (a) and (b), comment on the differences between cases 1
and 2.

5. (a) Suppose that a model systematically overestimates yield. Which term in Eq. (6)
does this concern? Does this affect MSEP for regional production?

(b) Suppose that a model is on the average unbiased, but systematically underesti-
mates yield in years with plentiful rainfall and overestimates under water stress
conditions. Suppose further that for the region in question, plentiful rainfall or
stress, concerns essentially all the fields of the region. Which term in Eq. (6) does
this concern? Does this affect MSEP for regional production?

(c) Suppose that a model is on the average unbiased, and is further unbiased in each
year, but has fairly large errors for individual fields. Which term in Eq. (6) does
this concern? Does this affect MSEP for regional production?
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1. Introduction

The number of crop models developed, published and used has increased greatly over the
last thirty years. This same trend has occurred in many other fields as rapidly increasing
computing power has made it feasible to study increasingly complex natural or man-
made systems. Reasons for developing these models vary considerably, depending on the
specific objectives of those who develop them. However, it is useful to consider two broad
categories of reasons.

One reason is that model development, as a way of synthesizing knowledge about
different aspects of a cultivated field, is viewed as a system. Indeed, crop models have been
developed to see whether our knowledge about the physiology of plant growth processes
could be combined to predict crop growth and yield response to various climate, soil and
management factors (Boote et al., 1996). The second category of reasons relates to the
objective of predicting crop performance, aiding in managing crops or aiding in making
decisions related to the impact of agriculture on the environment. Models are highly
useful tools in agronomy where the effects of management actions depend on complex
interactions with soil, climate and other management decisions. For such reasons, crop
models are not the end objective; instead they are used as tools to achieve more applied
objectives related to cropping systems and their management.

Methods for developing crop models are becoming more widely known and used, and
books exist that describe how to conceptualize crops as systems and to develop models
that predict their behavior (e.g. de Wit, 1978; Dent et al., 1979; van Keulen and Wolf,
1986; Penning de Vries et al., 1989; Thornley and Johnson, 1990; Peart and Curry, 1998).
Chapter 9 gives an overview of crop models. It presents the processes that are generally
modeled and the principles behind the model equations. The overview is illustrated using
a small number of particular crop models.

Methods for working with dynamic crop models have not received the same attention
as those for model development. Thus, the focus of this book is on methods that are useful
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in understanding, improving and applying the crop models for various purposes, not for
developing them. The methods described in the previous section, mostly developed for
use in other fields of study, were selected because of their value in working with crop
models. This second section concerns specific models or models for specific purposes. The
objective of this section is threefold; to illustrate the diversity of systems and problems that
has been studied using crop models or similar models, to show that the methodological
problems treated in the previous section arise in a wide variety of situations and finally,
to illustrate some of the methods presented or discussed in Section I. Table 1 summarizes
the objectives of chapters in this section and the methods demonstrated in them. The
models selected obviously represent only a small fraction of studies that has been reported.

Table 1. Objectives and methods represented in Section II.

Chapter Objective of the study Methods

9 Overview of crop models –
10 Overview of applications and

problems associated with genotypic
parameters

–

11 Overview of uses of models for
genetic improvement of crops

–

12 Develop and evaluate a corn model
to be used for studying irrigation
strategies

Model evaluation (MSEP, cross validation).
Parameter estimation (weighted least
squares).

13 Evaluate a model to be used for
predicting kiwifruit characteristics
as a function of management

Model evaluation (Kolmogorov–Smirnov
statistic)

14 Analyze a model for predicting soil
denitrification

Sensitivity analysis (Latin hypercube
sampling, first-order sensitivity index)

15 Analyze a model for predicting soil
nitrogen transport and
transformation

Sensitivity analysis (one-at-time method)

16 Analyze a model for predicting gene
flow between fields

Sensitivity analysis (analysis of variance)

17 Use remote-sensing data to estimate
parameters and input variables of a
crop model with a view toward
precision agriculture

Parameter estimation (GLUE). Obtaining
model inputs for multiple situations, data
assimilation

18 Combine yearly measurements and
model predictions to improve
accuracy of estimates of soil carbon

Data assimilation (extended and ensemble
Kalman filters)

19 Combine a corn crop model and a
decision model to propose improved
irrigation management

Decision optimization (dynamic
programming, reinforcement learning)

20 Determine management strategies
adapted to wheat for ethanol
production

Decision optimization (multiple criteria
analysis)
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Nevertheless, these studies demonstrate a wide range of model types, objectives and
methods representative of the range reported in the literature. The purpose of this chapter
is to introduce these studies and put them in the more general context of model applications.

2. Understanding and improving model behavior

Whether the model is aimed at better understanding or at management, it is important to
evaluate and analyze the model.

Model evaluation is important for all models, and is not specific to dynamic crop
models. Indeed, many of the methods and criteria described in Chapter 2 come directly
from statistics and apply equally to simple linear models. Application to complex dynamic
models may however present practical difficulties. Two examples of model evaluation are
given in this section. Chapter 12 considers evaluation of a corn model. The evaluation
involves the use of cross-validation to estimate the mean squared error of prediction. Also,
there is a rather thorough graphical examination of model errors, with a view to identifying
specific problems. Chapter 13 presents an evaluation of a kiwifruit model. This example
has the particularity that the output of major interest is the distribution of fruit sizes, not
the mean value that is the usual variable of interest.

A basic element of model analysis is elucidating the relationship between inputs and
outputs. This may be trivial for simple models but not for highly complex models. Crop
models are often in this category. Chapter 3 presented the methods of sensitivity analysis,
which allows one to analyze complex models. Case studies are presented in this section
to demonstrate useful applications of those methods along with discussions on how the
methodology was adapted for each. Chapter 14 demonstrates the use of sensitivity analysis
using a static denitrification model. Chapter 15 describes the use of sensitivity analysis for
a more complex and dynamic model that simulates nitrogen transformation and transport
in soils. Chapter 16 concerns a model to predict gene flow in cropping systems. The
model potentially requires a great amount of input data, and sensitivity analysis can be
used to determine which inputs are truly essential. In Chapter 17, sensitivity analysis
is used to determine which parameters and input variables should be estimated using
remote-sensing data.

3. Crop model applications

3.1. Prediction

A major use of crop models is for prediction. The determinants of predictive quality
and methods of evaluating predictive quality are discussed in Chapter 2. In this section,
Chapter 12 is particularly concerned with the quality of prediction of a corn model.

A very promising method for improving prediction quality is by injecting information
from the situation of interest into the model. The techniques of data assimilation are
presented in Chapter 5. Chapter 18 describes the use of data assimilation techniques for
predicting soil carbon.
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3.2. Determining optimal management

There are several methods for using models for crop management. A single simulation
run using a model predicts the outcome of a particular set of management decisions.
To furnish decision support based on a model, one needs to explore a range of possible
decision options. Three major approaches are found in the literature:

(a) Evaluating a range of options using simulation. One simulates the consequences of a
range of decisions, which allows one to identify those decisions which are the most
satisfactory. This assumes that the criteria for judging the quality of a decision, and
the range of conditions of interest, are specified. In simple cases one can specify
in advance the range of decisions to be tested. In more complex cases with a very
wide range of options, the model user may use results from previous simulations to
decide which management decisions to test next.

(b) Optimization. One defines an objective function, and then uses an algorithm to
perform a directed search for the management decisions that maximize that objective
(see Chapter 6). This is simply a more automated version of evaluating options.
An example demonstrating the use of optimization is given in Chapter 19, which
concerns irrigation management. Note that this is a particularly complex problem,
because there can be several irrigation dates and it is the full set of those dates and
the associated amounts that one wants to optimize.

(c) Identifying acceptable practices. It may be more informative to provide a set of
acceptable management practices rather than a single optimal decision. The study
on wheat for ethanol in Chapter 20 takes this approach. Furthermore, this study
involves multiple criteria, which are treated individually rather than being lumped
into a single composite objective function.

In order to analyze different decisions with a crop model one must first represent those
decisions mathematically, and the details of this representation will have an important
impact on the results, as explained in Chapter 6. Chapters 19 and 20 use decision rules,
which relate decisions to the state of the system and to external variables.

3.3. Large spatial-scale applications

A model can be used for different fields within a region in order to evaluate the cumulative
impact or results of agriculture on a regional scale. Chapter 7 discusses the problems and
approaches to using a model for multiple fields. There are many examples of this type of
use in the literature (to predict total yield for a region or country, for climate change impact
assessment, to predict the water required for irrigation within an area served by a water
provider, etc.). A comparable problem arises in precision agriculture. Here only a single
field is involved, but it is divided into multiple units which must be characterized. In this
section, Chapter 17 concerns the use of crop models for precision farming applications.

Running a model for different fields in a geographic area can also be necessary to
explore transfers (of water, pollen, insects) between fields. An example involves the
transfer of pollen between fields with genetically modified crops and surrounding fields
with non-modified crops (see Chapter 16).
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A crop model adapted for multiple fields coupled to a hydrological model can be used
to evaluate the impact of agriculture on water at the basin-scale drainage. For example,
one could estimate the contribution of agriculture to nitrate pollution of stream water.
Going further, one could search for spatially distributed management practices that would
reduce pollution.

3.4. Characterizing plant varieties and plant breeding

Two different situations can be identified. If the variety already exists, the problem is to
determine in which situations the farmer should choose that variety, and if the variety is
chosen, what management practices should be adopted. Field experimentation is not well
suited to this problem, which involves a large number of factors concerning soil, climate
and management. Furthermore, in the early period after a variety becomes available the
amount of experimental information will necessarily be limited. Crop models, on the
other hand, are well suited to taking into account the multiple input and output variables
of importance. Of course, here as well as elsewhere the model also presents difficulties.
The problem here is to adapt the model to each specific variety. A standard approach is first
to identify and then estimate the variety-specific parameters in the model (see Chapters 10
and 11).

The second situation is during the variety selection process. A major question here
is the importance of different traits which can be selected for. In principle, a model
could aid in analyzing the role of a particular trait, but this requires knowing the relation
between the model parameters and traits that can be selected for. Now that molecular
genetic information is becoming available, the problem becomes that of relating this
genetic information to model parameters. Adapting crop models for plant breeding is
an important and promising new area. For example, Messina et al. (Chapter 11) used
the simulated annealing optimization method to determine optimal traits of soybeans for
different environments based on genetic information.

4. Other applications

There are many applications of crop models that are not illustrated in this section.
A particularly important and promising application that merits mention is the use of crop
models as educational tools, whether for university students, extension advisors, farmers
or researchers.

However, regardless of the application, there will be a need for methods of evaluating,
analyzing, improving and using crop models. The case studies in this section show the
ubiquity of the need and the diversity of applications.
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1. Introduction

The purpose of this chapter is to provide an overview of the physiological and physical
processes described by crop models and, to a lesser extent, of certain computer aspects
of crop models. We begin with some general remarks about crop models, which will help
to specify what a crop model is. Then we discuss several fundamental concepts on which
crop models are based, and illustrate them with the comparison of five different models
(AZODYN, CERES-EGC, CROPGRO, CROPSYST and STICS).

1.1. Some characteristics of crop models

Crop models represent the dynamic functioning of the soil–plant system as it interacts
with climate and farming practices. Obviously, crop models do not simulate all processes
occurring within the soil–plant system, and the “crop model” approach is based on the
more important of these processes. The processes actually taken into account will depend
on the output variables and the conditions of interest. For example, such models do not
simulate how the crop affects the atmosphere, in contact with the crop. This is the area
covered by Soil Vegetation Atmosphere Transfer (SVAT) models (Olioso et al., 1999).

The spatial simulation unit is, in general, the farmed plot or field, but may also be an
element of the field (as in the case of precision farming). It is assumed to be homogeneous
in terms of soil, climate and management practices. Most of the concepts applied below are
based on this hypothesis (soil water balance, crop development and leaf area index (LAI),
for example). In practice, of course, field homogeneity is unlikely to occur. Consequently,
the model parameters and the variables that describe the state of the system represent
averages. It is important to keep this in mind when estimating parameter values and for
model evaluation.
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The time step for calculating new system state variable values is in general one day,
because weather variables are usually available as daily weather inputs. Although one day
constitutes the temporal resolution of the processes simulated, that is not the time step for
validation. Validation normally concerns how the system functions from the starting date
of the simulation through a series of different measurement dates, up to final harvest or
maturity.

The state variables of a crop model are the variables that describe the system. The list
of state variables differs between models, but the principal state variables are often above-
ground biomass, LAI, weight of harvestable product, soil water and soil nitrogen contents.
As a consequence, crop models generally have modules whose equations describe devel-
opment, LAI dynamics, biomass accumulation, yield formation, and water and nitrogen
balance.

To run a crop model, it is necessary in general to enter information on the soil, climate,
management sequence and initial status of the system. These characteristics are specific
to the plot being simulated and, for the initial conditions in particular, may depend on
the detailed history of the plot (for example, the nature and management of the preceding
crop). They thus require in situ measurements. These different input data are sometimes
known with a degree of imprecision that is difficult to estimate, and which may propagate
to the output variables.

The output variables are state variables or functions of state variables. They include
agronomic variables (date of harvest, yield, nutritional quality, water and nitrogen con-
sumption) and environmental variables (leaching of nitrate, etc.). Intermediate variables
(biomass, LAI, stress indices, etc.), calculated for example at certain phenological stages
may also be important output variables.

Crop models are compartmental in design, the compartments being linked by flows of
matter that are driven by energy and that depend on the flow of information. Figure 1
illustrates the flow of carbon in the plant system, driven by radiation energy. Depend-
ing on the crop model, the root system can be identified or not. Hydraulic forces and
thermal gradients drive flows in the soil system. In general, crop models consider at
least flows of water, mineral nitrogen and organic matter. Developmental stages and var-
ious stresses act as additional information, which affect the carbon functioning of the
system.

Stresses (only of an abiotic nature for most crop models) are functions that reduce plant
processes (Fig. 2). They depend on stress variables (fraction of transpirable soil water,
nitrogen nutrition index, fraction of root system in waterlogged conditions, etc.), which
must then also be calculated. The reduction functions are empirical relationships based on
the limiting factor principle (Gary et al., 1996). Nonetheless, they are based on what we
know about the effects of these stresses on plant growth and development. For example,
water stress acts via a hormonal or hydraulic signal on stomatal conductance, which
causes a reduction in photosynthesis and hence in radiation use efficiency (RUE). The
empirical function relates the reduction in RUE directly to water stress. Similarly, water
stress diminishes cell division and expansion, phenomena which cause a reduction in the
appearance and expansion of leaves and hence in the rate of increase of LAI. The empirical
function then directly relates the reduction in LAI increase to water stress. On the other
hand, the regulation involved in interactions between stresses is poorly understood at the
scale of the whole plant, and is therefore modelled very simply by using the product or
the minimum of reduction factors. More physiological approaches (Farqhuar et al., 1980,
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Figure 1. Schematic representation of the main flows of matter and information in the crop models.

for example) could lead to more realistic models for photosynthetic processes, but raise
the problem of parameterization.

1.2. Some history

Crop models arose from the work on photosynthesis and respiration by the early 1970s
(de Wit et al., 1970), and the establishment of a link between accumulated biomass and
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Figure 2. Principle of the limiting factor applied within crop models.

instantaneous processes. Nearly simultaneously relationships were established between
canopy architecture and photosynthesis (Baker and Meyer, 1966; Duncan, 1971), using
the notion of LAI (introduced by Watson in 1947). In some cases, these complex processes
were simplified (Monteith, 1972) and gave rise to new more universal concepts such as
the “radiation use efficiency (RUE)” (Spaeth and Sinclair, 1985; Sinclair, 1986), which
would ultimately serve as an alternate approach for crop models.

The Dutch school (de Wit, 1978; van Ittersum et al., 2003) produced models derived
from SUCROS, aimed at describing in detail the ecophysiology of crops, often for didactic
purposes. The British ARCWHEAT model (Weir et al., 1984) can also be placed in this
category as well as Duncan’s pioneer models for cotton, corn, soybean and peanut (cited
in Baker, 1980). The American school, with its GOSSYM/GLYCIM (Whisler et al., 1986;
McKinion et al., 1988), CERES (Ritchie and Otter, 1984), and CROPGRO (Boote et al.,
1998; Jones et al., 2003) models placed more emphasis on agronomic objectives and
started to include farming practices in the inputs. At the same time, EPIC (Williams
et al., 1984), the first generic model, was developed in response to agro-environmental
concerns including soil erosion, water and nitrogen. CROPSYST (Stöckle et al., 1994,
2003) arose out of EPIC. During the early 1990s, models with a specific environmental
objective were introduced, such as DAISY (Hansen et al., 1990) and PASTIS (Lafolie,
1991). APSIM, the Australian model, was derived from CERES (McCown et al., 1996), as
was CERES-EGC, which is a modification and extension of CERES to include additional
environmental concerns such as the soil nitrogen balance (Gabrielle et al., 1995).

A somewhat different approach is that of the AZODYN model (Jeuffroy and Recous,
1999; Jeuffroy et al., 2000), which is specifically oriented toward nitrogen fertilization
and uses diagnostic data (data recorded in the field at a precise date) as input. The dis-
tinction is not sharp, but roughly speaking some of the model families listed in Figure 3
are more mechanistic concerning processes in crop or soil sciences, while others are
more empirical. These latter models are oriented toward agronomic or environmental
objectives. They synthesize knowledge from a range of disciplines. The current trend is
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Figure 3. Chronology of crop modeling: underlined – generic models and * – models described in
detail in this presentation.

towards developing generic and agro-environmental models that take into account farming
practices, an example being STICS (Brisson et al., 1998, 2003). The generic nature of
a model does not preclude crop specificity, but it is indicative of the efforts being made
towards a common approach based on agro-physiology.

The most often modeled crops are industry-targeted cash crops in temperate and tropical
regions (wheat, maize, soybean, cotton, rice, sorghum, etc.). The reasons include the
large surface areas concerned and the fact that these crops are compatible with system
simplifications and the limited artificial environmental conditions. The crops are annuals
and generally homogeneous in nature.

1.3. Five crop models

We have chosen to analyze in detail five models, which illustrate the range of the con-
cepts applied. Each model has a primary objective, which governs the principal modeling
choices.

The most specialized model is AZODYN, which simulates winter wheat only, then
CERES-EGC which simulates wheat, maize, rapeseed, sugarcane and sorghum. CROP-
GRO is mainly devoted to grain legumes (soybean, peanut, various species of bean, pea)
but also non-legume crops (tomato, pepper and forage crops). CROPSYST simulates all
the industry-targeted cash crops and grasslands while STICS is the most generic model,
dealing with all the above-mentioned crops plus lettuce, banana, grapevine, catch crops
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and intercrops. Nevertheless, in order to simplify the presentation in this chapter, we
will concentrate on annual determinate crops assumed to have a homogeneous foliage
structure.

In all models, the plant sub-system is characterized by its above-ground biomass and
LAI. The identification of organs (in terms of numbers and mass) focuses on harvested
organs (except for CROPSYST) and vegetative organs (in the case of CERES-EGC and
CROPGRO).

Roots are not identified in AZODYN per se, while they are characterized by their
biomass and/or length in CERES, CROPGRO and CROPSYST and by their length in
STICS. The soil is usually defined as extending to bedrock or the water table or to the
practical maximum extent of root penetration. Below the root zone it is assumed that only
physical processes (migration of water and nitrates) need be taken into account. In the
case of AZODYN, the soil is limited to the root zone. In STICS, it is possible to take
account of the effect of buried drainage systems. CROPSYST is the only one to consider
capillary rise from the water table.

The simplest model in terms of the number of modules is AZODYN, although it does
contain a grain quality module. The small number of modules is allowed by the use of
diagnostic data measured in situ that eliminates the need for calculations of key variables
and to its limited field of validity (wheat in the Paris basin). The AZODYN model does
not take into account the initial phases of plant establishment, as it starts at the end of
winter and does not require a development module, in part because the date of flowering
is an input variable. Nitrate leaching is not considered, which leads to a simplified soil
description.

With CROPSYST a marked increase in the number of modules appears, because of
its “cropping system” objective (e.g. soil erosion and soil structure are calculated) and its
generic character. This makes it necessary to include modules, which apply only to certain
groups of crops, for example symbiotic nitrogen fixation. The user can choose different
representations of water transfer in the soil, namely a tipping bucket or flux-gradient
approach. CROPSYST does not include a yield components module.

The environmental objective of the CERES-EGC model led its authors to use a flux-
gradient formalism to describe transfers, including heat. This provides a good basis for
the simulation of volatilization and denitrification.

The CROPGRO model is more physiologically oriented using, for example, leaf level
photosynthesis calculated at an hourly time step. As it simulates mainly indeterminate
crops, it has daily cohorts of pods/fruits and seeds complete with numbers and sink
strengths. It has the same soil nitrogen uptake, soil organic matter module and tipping
bucket water balance as the CERES models.

STICS simulates a broad range of crops and this is made possible by simulation options
within several modules (radiation interception, yield formation, etc.). STICS also includes
a microclimate module, which makes it possible to take account of the role of the modified
atmosphere surrounding the crop.

As shown in Figure 4, the STICS and CROPSYST models are particularly rich in the
management techniques, which can be input, including soil preparation and harvesting
decisions. Specific management techniques in tropical environments or regarding high
value-added crops are taken into account in STICS (plant mulch (also in CROPSYST),
plastic mulch, regulation of LAI, thinning, cold shelter).
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Figure 4. Crop management sequences in AZODYN, CROPSYST, CERES, CROPGRO and
STICS.

2. Concepts and their representation

The concepts integrated in crop models correspond to an implicit representation of the
soil–plant system in terms of structure and functioning. This “viewpoint” of the system
is, in part, a function of the expected utilization of the model. Crop models are not meant
to represent in detail the state of knowledge of the functioning of the soil or plant, but
rather to provide a synthesis of knowledge in a simplified form. They are based on an
implicit ranking of the importance of different mechanisms in terms of the objectives.
We have chosen to describe the most widely employed concepts, and then to illustrate
them using the reference models. We shall also see that models can employ other concepts,
and that such an analysis can lead to defining the area of validity of a model (conceptual
validity).

2.1. Crop Development

Crop development is the rate of progress of a plant through its life cycle, i.e. progress
from sowing to emergence, emergence to flowering, flowering to maturity, as well as rate
of progress between successive leaves on the main axis. In crop models, the same notions
are used and the developmental stages correspond to the onset and death of source or sink
organs. Crop development is driven by temperature and also influenced by photoperiod.
The classical view of crop heat unit accumulation is based on the concept of growing
degree-days (Bonhomme et al., 1994). This long accepted concept (Durand, 1967) arises
from a linear approximation of the curve for the development rate in response to tempera-
ture, as shown in Figure 5. The base temperature (Tb) is the apparent temperature at which
the linear approximation gives zero rate of progress toward an event, such as flowering.
Thus, strictly speaking, the base temperature (Tb) corresponds to a statistical and not a
physiological value. The mean daily temperature is frequently used in this formulation,
while other factors affecting the rate of development are modeled as brakes or accelerators
on that rate in thermal time (Brisson and Delécolle, 1991). These factors may include the
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Σ a (T-Tb) = 1

Temper at ur e (T)

Linear  appr oximat ion
DR= a (T-Tb)

Tb To 

Development  r at e (DR) =1/ t ime 

Figure 5. Explanation of the concept of growing degree-days by the representation of the devel-
opmental rate or 1/time to a developmental stage (DR) as a function of temperature: experimental
points, a curvilinear function fit to those points and an approximation which has a constant slope
between a base temperature (Tb) and an optimum temperature (To) (equation DR = a(T − T b))
are shown. Using this linear approximation, the accumulation of “development rate” over the
developmental stage is 1, which leads to a constant �(T − T b) = 1/a value.

photoperiod (CERES, CROPGRO and STICS), vernalization (CERES and STICS) and
water deficit (CROPGRO, STICS through the use of the canopy temperature). In the strict
degree-day approach above with mean daily temperature, there can be a maximum mean
temperature, but possible negative effect of supra-optimum temperatures are not taken
into account. The more complex curvilinear function in Figure 5 would allow for negative
effects. CROPGRO computes an hourly temperature effect (hourly values are generated
from input of daily maximum and minimum) on rate of development that does allow neg-
ative effects of supra-optimum temperature. While it is easier to use temperatures under
standardized shelter measured by meteorological networks (as is the case for CROPSYST,
CERES and CROPGRO), it may be important to move closer to the temperature actually
experienced by plants (prediction of canopy temperature, as in STICS).

2.2. LAI dynamics

The canopy is modeled as a homogeneous environment with leaves being uniformly dis-
tributed over the land area. Leaf area is described by the leaf area index (LAI) having
units of leaf surface area per square meter land area. A consequence of this homogeneous
representation is that it allows the use of an optical analogy (Beer’s law) to estimate the
interception of photosynthetically active radiation (PAR) as shown in Figure 6.

This approach is very successful for homogeneous crops, but poorly suited to canopies
in rows or during the first stages of an annual crop because the homogeneity hypoth-
esis cannot apply. The CROPGRO and STICS model have the capabilities to simulate
hedgerow canopies in rows, with prediction of light interception dependent not only on
LAI, but also on shaded and sunlit leaf area, plant height and width, row spacing, plant
spacing, and the direct and diffuse light absorption (Spitters, 1986; Spitters et al., 1986;
Boote and Pickering, 1994; Brisson et al., 2004).
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Figure 6. The proportion of intercepted PAR expressed as a Beer’s law analogy, k being the
extinction coefficient.

The specific leaf area (SLA) (ratio of foliage surface to mass) is another concept, which
is often employed in crop models. It is used to convert the biomass growth allocated to
developing leaves into a surface area, and thus assumes that a portion of the assimilates
are allocated to foliage. This approach offers the advantage of integrating some stresses
(those acting on biomass) into the control of leaf growth, and in this way mimics the self-
regulation of the plant. However, the specific leaf area cannot be considered as a constant,
as it is affected by crop age and stresses. For instance, the prediction of SLA in CROPGRO
is dependent on direct effects of temperature, water deficit and solar radiation level, as
well as crop aging effects. A subset under this approach, assuming constant ratio of leaf
area to total vegetative biomass, is sometimes used (as in AZODYN and CROPSYST);
however, this assumption causes problems when the stem:leaf ratio evolves. Because of
the iterative character of the calculation, leaf area growth computed with the SLA approach
is sensitive to initialization (initial LAI).

An alternative to using SLA, is to drive leaf area growth by temperature only (not
coupled to biomass) as done in STICS or the Sinclair models. CERES uses a combination
of the two approaches successively. CROPGRO uses potential temperature-limited leaf
area growth as an upper limit to leaf area expansion only during the period when the first
five leaves are produced.

CERES, CROPGRO and STICS allow for the effects of sowing density on increase in
LAI, while other models assume that variations in density as applied by farmers are small
and that there is no need to introduce this effect, or that inter-plant competition results in
similar leaf area indices.

Leaf senescence is approached from the standpoint of lifespan in CROPSYST and
STICS. In CERES, daily leaf senescence is a predefined proportion of biomass, while
in AZODYN and CROPGRO, senescence depends on the nitrogen status or dynamics of
the crop.
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Stresses also act on foliage, much more severely than they do on biomass. For this
reason, the effects of stresses on biomass are not sufficient to represent the reduction in
foliage in the event of stress. Thus water stress (CROPSYST, STICS, CERES, CROPGRO)
and nitrogen stress (STICS, AZODYN, CROPGRO) reduce leaf growth and/or accelerate
senescence (for AZODYN and CROPGRO via the calculation of senescence).

In crop models, LAI is an intermediate state variable, which has a functional role in the
sense that it is a variable explaining numerous processes. In the case of CROPSYST, it is
the fraction cover (estimated using a parabolic function of the LAI) which is functional.

2.3. Accumulation of biomass

The linear relationship between accumulated biomass in the plant and radiation inter-
cepted by foliage, demonstrated by Monteith (1972), defines the radiation use efficiency
(RUE) as the slope of this relationship (Fig. 7). This parameter has become a concept
widely employed in crop models (as in AZODYN, CERES and STICS), because it syn-
thesizes (very economically in terms of the number of parameters involved) the processes
of photosynthesis and respiration. Its calculation (ratio between above-ground biomass
and absorbed radiation) implies that this parameter also takes account of a carbon allo-
cation coefficient between above-ground and below-ground parts of the plant. Obviously,
because of underlying physiological processes, this ratio varies in line with stresses, tem-
perature and phenology. To take account of these effects, Sinclair (1986) proposed that
RUE should be considered as a physiological function, to which stress indices should be
applied (Fig. 7).

In CROPGRO, the photosynthesis and respiration processes are calculated separately.
The leaf-level photosynthesis uses rubisco-kinetics from Farquhar et al. (1980), and
the growth and maintenance respiration approaches are from Penning de Vries and van
Laar (1982).

The efficiency of transpiration (water use efficiency (WUE)) is another synthetic param-
eter sometimes used to estimate accumulated biomass. It is the ratio of biomass per unit

Sinclair , 1986Mont eit h, 1972

I nt er cept ed PAR 

RUE

Wat er  or  nit r ogen
st at e var iable

Shoot  biomass accumulat ion RUE/  RUEmax

Figure 7. The radiation use efficiency (RUE) is the slope of the linear relationship of shoot biomass
accumulation versus intercepted PAR (left) that can be modulated by stresses (right).
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Figure 8. Use of the water use efficiency (ratio of biomass produced per unit of water transpired)
in combination with vapor pressure deficit (VPD).

of water transpired. This approach is based on stomatal functioning and must take account
of atmospheric moisture (vapor pressure deficit (VPD), in Fig. 8). It is well suited to dry
conditions, but raises two problems: the integration of nitrogen stress and the sensitivity
of transpiration estimates based on the water balance module. Via the intermediary of tran-
spiration, this approach implicitly integrates the driving effects of radiation. CROPSYST
uses this WUE parameter in combination with RUE, which acts solely as a threshold.

Factors that limit the accumulation of biomass are numerous: temperature, water
and nitrogen in all models, with a double effect of nitrogen stress in CROPSYST (on
the calculation of transpiration through a retroactive effect on reducing photosynthesis,
and directly on WUE). In addition, the CERES, CROPGRO, STICS and CROPSYST
models take account of the effect of CO2 on RUE or directly on leaf-level assimilation
(CROPGRO).

2.4. Dynamics of yield accumulation

Grain yield prediction is a goal of most crop models. The yield and the number of organs
harvested are generally calculated independently (until the varietal potential is attained),
the elementary weight of these organs being calculated as the ratio between the two.

In 1972, Warren-Wilson proposed that the plant should be considered as a series of
compartments playing the role of a source or sink for assimilates. These compartments
usually represent organs which can change their function during a cycle: “source and sink”
for roots and trunks in perennial plants, or “sink and source” for leaves. Application of
this concept to crop models engenders self-regulation of the system between the growth of
different types of organs. It is particularly well suited to crops with indeterminate growth
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and to perennial crops, in which trophic competition exists between vegetative organs and
storage organs. Source capacity includes both newly formed assimilates and remobilized
resources. Sink strength is usually represented by a continuous or discrete function of the
age of the organ. The problems with this approach reside in determining the size of the
source capacity and remobilized resources, which are difficult to estimate experimentally.
Furthermore, it is often necessary to introduce priorities between organs, thus reproducing
the plant’s strategy, and this may be speculative. The differential effects of stresses on
different plant organs are better understood, but still poorly taken into account by models.
One alternative is to impose a constant distribution of assimilates by phenological stage,
which is frequently applied in determinate crops. The source–sink approach is used in
CERES, CROPGRO and AZODYN in calculating the increase in carbon and nitrogen
content of grains.

A second alternative, proposed by Spaeth and Sinclair (1985), is to extend the notion
of the final harvest index (HI) (ratio of grain biomass to total shoot biomass) to the
dynamic accumulation of biomass in grains, realizing that a linear relationship of the
HI as a function of time could be assumed (Fig. 9). This approach has the advantage
of globalizing the two sources of assimilates, and is economical in terms of parameters.
However, it is important to impose a threshold on this HI dynamic, in order to avoid
simulating unrealistic remobilization levels or exceeding the maximum filling allowed by
the number of organs (usually fixed beforehand) and the maximum weight of an organ (in
a variety). This approach is applied in STICS with respect to the accumulation of carbon
(biomass) and nitrogen in grains.

In STICS, CROPGRO and CERES, the number of grains is calculated from genetic
parameters and depends on crop growth before flowering (case of cereals) or during the
period of pod and seed formation (case of legumes), which is influenced by stresses.
In AZODYN, it is the nitrogen status of the plant at flowering which determines the
number of grains.

t ime

HI

Figure 9. Concept of dynamic harvest index (HI = ratio of grain biomass to total shoot biomass)
that can be linearly related to time (Spaeth and Sinclair, 1985) until reaching a maximum.
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Whichever approach is used to simulate grain filling, varietal specificities are always
taken into account through potential seed size, and thermal (CERES, STICS, AZODYN,
CROPGRO) or nitrogen (AZODYN, STICS, CROPGRO) effects may exist.

2.5. The water balance

The water balance in crop models has a dual purpose: to estimate soil water content (which,
for example, drives nitrogen mineralization of the soil) and water stress indices (which
drive the functioning of the plant). The latter objective differentiates crop models from
those dedicated to irrigation management, and also forces a distinct separation between
evaporation and transpiration. This separation is usually applied at the level of the climatic
potential demand (ET0) based on the partitioning of ET0 between potential plant transpi-
ration (EP0) and potential soil evaporation (ES0). The partitioning (Fig. 10) is generally
based on the Beer’s law extinction coefficient concept as a function of LAI, although
the extinction coefficient is near 0.5 and clearly lower than for photosynthetically active
radiation (the latter coefficient is used for canopy assimilation).

This approach is based on estimating ET0, which comprises both climatic and crop
components. However, the ET0 variable differs from the classical maximal evapotranspi-
ration variable, as defined for example by Itier et al. (1997) because it supposes that all
surfaces (soil and foliage) are saturated with water. As for the climatic component, and in
view of the problems of accessing meteorological data, models usually propose several
calculation choices: Penman-FAO24 (STICS, CERES, CROPGRO), Penman-Monteith-
FAO56 (CROPSYST, CERES, CROPGRO) or Priestley–Taylor (CERES, CROPGRO,
CROPSYST, STICS). The Penman-FAO24 and Penman-Monteith-FAO56 are described
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Figure 10. Use of the Beer’s law optical analogy applied to LAI to separate maximal evaporation
(ES0) and transpiration (EP0).



270 N. Brisson, J. Wery and K. Boote

by Allen et al. (1998) while the Priestley–Taylor (1972) option as modified by Ritchie
is described by Ritchie (1985). The crop component of ET0 is usually linked to LAI
(STICS, CERES and CROPGRO); it may also be a discrete function of developmental
stage (crop coefficients in CROPSYST). In both cases, this crop component takes account
of the increase in crop height and its roughness during the cycle, which acts on the degree
of the convective component of evapotranspiration. In AZODYN, there is no separa-
tion between evaporation and transpiration, and the approach is that of models targeting
irrigation (Itier et al., 1997), based on Penman and crop coefficients.

Convection under the plant canopy, which affects maximum transpiration, may be
poorly reproduced by this optical analogy (particularly for row canopies); this may justify
applying a calculation of the energy balance (optional in STICS).

To calculate the quantity of water actually transpired by the crop, most models are based
on a concept which includes the quantity of water physically available in the soil and the
capacity of the plant to extract this water thanks to its root characteristics. This is the
fraction of transpirable soil water (FTSW) (Sinclair, 1986; Lacape et al., 1998; Pellegrino
et al., 2002), which also corresponds to the notion of the maximum available water content
(AWC/MAWC) (water amount between the field capacity and the wilting point) (Fig. 11).
This approach does not permit a precise localization of root absorption in the soil horizon
(at a daily time step, all models hypothesize that transpiration equals absorption), but has
the advantage of implicitly taking account of capillary rise within the root zone. However,
the threshold of sensitivity may vary over time (root density growth, climatic demand:
Brisson, 1998). This global estimate of transpiration is used in AZODYN and STICS,
while in CERES and CROPSYST, the calculation of uptake is differentiated in terms of
the soil layer (need to simulate capillary rise). This approach, developed originally for
the regulation of transpiration, was then extrapolated to a calculation of the functions of
water stress for leaf growth or the RUE (Fig. 11). Water uptake per unit root length in
CROPGRO and CERES is based on the radial flow equation to roots. Transpiration is
limited only if actual root water uptake is less than the crop component of ET0, although
expansive growth is limited at a smaller ratio.

All those water balance modules are sensitive to the holding capacity of the soil, the
depth explored by the roots and the climatic evapotranspiration option. Allen et al. (1998)

Leaf  expansion 

phot osynt hesisReduct ion Maximal t r anspir at ion

FTSW or  AWC/ MAWC 

Act ual t r anspir at ion

FTSW or  AWC/ MAWC 

Figure 11. Use of the FTSW concept to calculate actual transpiration using either a bilinear or a
curvilinear function (left) and reduction in other physiological functions under the effect of water
stress (right).
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showed that the Penman-FAO24 predicted too severe water deficits compared to the
Penman-Monteith FAO56, and Sau et al. (2004) showed that the Priestley-Taylor function
while doing well for mid-range climatic demand conditions, tended to over-predict for
cool regions.

2.6. The nitrogen balance

2.6.1. Nitrogen in the plant

Nitrogen requirements depend on biomass accumulation (Lemaire and Gastal, 1997),
which generates a close link between carbon and nitrogen dynamics in the plant. The
maximum nitrogen accumulation curve defines potential nitrogen accumulation. The crit-
ical curve defines the limit of nitrogen concentrations below which the plant restricts
its growth. It allows definition of the nitrogen nutrition index (INN) (Fig. 12), which
acts as a nitrogen stress state variable in these models. In their construction, feedback
effects of nitrogen stress (moderation of nitrogen stress through a slowing in growth) are
incorporated in the INN estimate. The presence of reproductive organs may disturb the
relationship and it may become inappropriate to use these relationships during a marked
nitrogen remobilization stage. Furthermore, although the plateau of the relationship during
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Figure 12. Nitrogen requirement and nitrogen nutrition index (INN) calculation: the nitrogen con-
tent of the plant (N%) is inversely proportional to its biomass and there are two functional curves
driving this nitrogen behavior. Below the critical curve (solid line) the crop suffers from nitrogen
deficiency and its biomass is reduced, while between the critical curve and the maximal curve (dot-
ted line) there is luxury consumption and nitrogen status has no impact on biomass. The maximal
curve corresponds to the nitrogen requirement while the critical curve allows the calculation of the
nitrogen nutrition index (INN) as the ratio of the actual N% to the critical N%.
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the early stages of the crop (fixed nitrogen contents up to a biomass threshold) has little
effect when these relationships are used for diagnosis in the field, it may become very
important in the context of modeling throughout the cycle, as it determines early plant
growth. This approach is adopted by all reference models except CROPGRO, with a few
variants for the estimation of nitrogen requirements: maximum curve until flowering, then
a function of the INN (STICS), maximum curve with recovery of the possible deficit (dif-
ference between maximum and critical curves) (CROPSYST), critical curve × 1.25 until
flowering and then an estimate of the nitrogen sink strength of grains (AZODYN), critical
curve as a function of development (and not of biomass) and action of stresses (CERES).

CROPGRO has constant maximum and minimum thresholds of nitrogen concentration
for each vegetative tissue type during vegetative growth, with a temperature-dependent
nitrogen mobilization rate from vegetative tissues that is slow during vegetative growth and
accelerates during reproductive growth after grain growth begins. It similarly computes
nitrogen stress effects on growth when nitrogen uptake and nitrogen fixation are both
insufficient.

When absorption is calculated (in AZODYN, it is assumed that all the mineral nitrogen
present in the root zone is absorbed), it takes account of two processes: the diffusion–
convection of nitrogen in the soil (empirical approach in STICS and CROPSYST and
mechanistic approach in CERES-EGC), and absorption by the roots (empirical approach
in CROPSYST, flux-gradient approach in CERES-EGC and the Michaelian approach in
STICS).

Models that simulate legumes (CROPGRO, CROPSYST, STICS) have an explicit
simulation of nodule fixation functioning.

2.6.2. Soil nitrogen

Mineral nitrogen (N-NO3 and N-NH4) available to the plant arises from fertilization and
the mineralization of organic matter. The latter is represented by compartments (or pools)
characterized by their rate of mineral nitrogen production. The three most frequently
identified pools are (Fig. 13): humus (the most stable compartment of organic matter),
living soil biomass (micro-organisms active on mineralization) and inputs of crop residues
into the soil by the farmer. Each pool is characterized solely by the C/N ratio of organic
matter. The soil acts in these transformations via its permanent characteristics (clay and
limestone) which set a mineralization potential, and its physical status (temperature and
water content) which reduces it. The mineral nitrogen produced feeds a single pool from
which the plant draws its requirements. The five reference models use this representation,
with two pools of organic matter (humus and residues) in AZODYN and CROPSYST and
three pools in CERES-EGC, CROPGRO and STICS. AZODYN considers only nitrate
nitrogen, while the other models take account of both forms of mineral nitrogen.

3. User environment

In most cases, the choice of a model is based on pragmatic considerations concerning
the environment of the user. The aim of this section is to provide some information on
this environment, with respect to our reference models. These concern input variables,
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Figure 13. Schema of the principles of mineralization of organic matter; three pools of organic
matter are represented here: stable humus, crop residues and micro-organisms.

parameters and the tools available to facilitate use of the model or interpretation of its
results.

3.1. Input variables

All models require initialization of the water and mineral nitrogen profiles in the soil.
In AZODYN, plant status at the beginning of the simulation (because this model starts
during a crop cycle) must also be entered. It is also possible to initiate STICS during a
crop cycle.

Climatic variables are input on a daily time step: minimum and maximum temperatures,
global radiation, rainfall and potential evapotranspiration (or wind and air humidity, which
are optional in STICS for the energy balance). CROPSYST and STICS are linked to
climate generators (CLIMGEN: Richardson and Wright, 1984 and LARS: Semenov and
Porter, 1995) which enable the simulation of long climatic series based on a shorter,
observed series (a minimum of 5–10 years).

As for the hydrodynamic properties of the soil, CROPSYST and CERES-EGC use
retention curves (water content–potential relationships), while STICS, CROPSYST and
CROPGRO apply characteristic water content parameters (field capacity and permanent
wilting point) which, in theory, constitute two specific points on retention curves. CROP-
SYST includes a tool which allows it to use pedotransfer functions to estimate these
parameters from information on soil texture. The other soil parameters required in all
models concern nitrogen mineralization (organic nitrogen, clay and limestone contents).

Management inputs are other types of explanatory variables (inputs) that must be
entered, dealing with dates and amounts of irrigation or fertilizer. If not an explicit input,
some models allow an automatic “decision” as to the management technique (date of
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sowing, irrigation or fertilization) as a function of system status and a decision rule fixed
by the user, which associates the system status and the triggering and/or intensity of the
action (this is possible with CROPSYST, STICS and CROPGRO).

3.2. Species and cultivar parameters

Each of our reference models has a set of plant (species)- as well as cultivar-specific param-
eters, which basically determine which species and variety is simulated; they distinguish
wheat versus pea, or a winter wheat versus a spring wheat cultivar. The complexity of these
species and cultivar inputs varies with the different models, and depends to some extent
on the complexity of the equations for predicting LAI development, biomass growth or
crop development. A rough estimate of the number of parameters in the reference models
is shown in Table 1. Because the AZODYN model is specific to bread wheat, there are
no plant-specific (or variety-specific) parameters. The other parameters (those which are
explicitly available in input files) are internal parameters for the model equations, which
may or may not have a physical or biological sense. The relatively large number of
plant and variety parameters for models such as CROPGRO reflects modeller attempts to
remove any species-specific parameters from the source code, and place them in read-in
files. The complexity is also related to the fact that the model has either more processes
or responds to a greater range of conditions (i.e. freezing temperatures, variable carbon
dioxide concentrations, soil saturated with water, nitrogen fixation, etc.).

3.3. State variables

Typical state variables in the reference crop models include total biomass, LAI and crop
developmental stage. The total biomass can be partitioned into component state variables
(leaf, stem, root and seed mass), and numbers of reproductive sites (seeds) can be a state
variable. Likewise, total plant nitrogen is a state variable, often partitioned similarly to
biomass. Crop developmental stage can be both vegetative or reproductive. Soil water
content, either total in soil or by layer, constitutes another state variable, as does soil
mineral nitrogen and soil organic matter.

Normally, these state variables are calculated in the model, but for some models, users
can supply exogenous data during a simulation as input, which replace the calculated
values of the corresponding state variables. See below.

Table 1. Number of parameters classified according to their species/variety character in the reference
models. The ranges correspond to the different options.

Type of parameters AZODYN CROPSYST CERES-EGC STICS CROPGRO

Plant (species) – 10–20 20–30 25–40 34
Variety (within species) – 10–15 5–10 15
Other 10–20 30–50 30–50 30–50 70–100
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3.4. Tools

STICS and AZODYN allow the user to input values of state variables that replace cal-
culated state variables. In AZODYN, plant development input is obligatory. In STICS
one can input development stages and also the LAI (Ripoche et al., 2001). This approach
is useful when estimating the model parameters or when analyzing experimental results.
However, this must be used with care in simulations for prediction, because driving vari-
ables (and notably LAI) are usually highly sensitive to environmental conditions and to
the physiological status of the plant.

In all cases, graphic outputs make it possible to visualize the course of state variables
and to compare them with observations. As for the statistical environment, CROP-
SYST, STICS and CROPGRO propose the calculation of mathematical distances between
observed and simulated data, and STICS also has a tool to estimate parameters using a
Quasi-Newton method based on ordinary least squares.

CROPSYST is linked to a GIS and a hydrological model, thus facilitating its use in
the context of a spatial problem.

3.5. Programming language

AZODYN is simple enough to be programmed in the form of an EXCEL sheet, while
STICS, CERES-EGC and CROPGRO are programmed in FORTRAN but can be used in
a Windows environment (C++ interface), while CROPSYST is programmed in C++.

4. Discussion

Crop models provide a robust conceptual representation of the soil–crop system for annual
herbaceous crops. This robustness has been tested for 25 years in numerous species and
under a wide variety of pedo-climatic conditions. However, this context can become rigid
and restrictive (average plant, notions of stress) when used under certain conditions. Other
types of model have thus been developed by agronomists for these uses (e.g. Lescourret
et al., 1998; Colbach et al., 2001), but they cannot be considered as crop models as these
are defined in this presentation.

The extension of these crop models to perennial and vegetable crops (as is the case with
STICS or CROPGRO) or to environmental concerns regarding the soil and atmosphere
(as in CERES-EGC) is no doubt possible. If crop models are to assist in the planning of
crop systems in the years to come, it is essential that they should include biotic stresses
(diseases, pests, weeds) and the effects of soil cultivation operations. However, in these
respects, the mechanisms are still poorly understood and research has been insufficiently
oriented towards modeling, thus making it necessary for agronomists to adopt empirical
approaches within crop models (e.g. weeds in STICS, Affholder, 2001). CROPGRO, for
example, allows input of pest damage (from scouting) and subsequent coupling to yield
reductions (Batchelor et al., 1993). Additional research in this area is essential during the
coming years.
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The current trend at an international level is to use functional models designed to
target specific uses (APSIM, CROPSYST, STICS), or even models linked to agronomic
diagnostic tools or major databases (such as AZODYN), which are less developed in terms
of the processes described but use observed data to ensure model robustness.

First and foremost, crop models are tools upon which agronomic planning can be
based: an aid to experimental analysis by the calculation of non-measured variables, an
aid to diagnosis in a network of farm plots or a test of management techniques prior
to experimentation (Boote et al., 1996). They can also provide information of value
for decision-making: they can be used to simulate strategies as an aid to farm advisors
(Levrault and Ruget, 2002) or they can be used to define the area of validity (soil, climate)
of a strategy or a decision rule. For institutional decision makers, they may be of value by
predicting the impact of regulatory decisions, state aid or a foreseeable change (climatic
or economic).

Crop models also constitute training tools, either through their use or through the
conceptualization of the system they provide. Use of a model with farmers or consultants
(experience with APSIM, Meinke et al., 2001) helps them to visualize the impact of
management choices and the hidden results of cropping systems (e.g. leaching of nitrates).
Constructing a model with students allows the summarization and collection of basic
knowledge reviewed during lectures (Wery and Lecoeur, 2000).

Research work can be carried out “with”, “for” or “on” crop models, depending on
whether that model is a tool, finality or subject of research:

• “With”: the model is a research tool in the same way as a routine test or an analysis
of variance. In particular, it allows one to explore complex combinations of techniques
and environments before they are tested experimentally.

• “For”: the development and use of crop models generate research into the functioning
of a compartment (soil, plant, biological pests), the final objective being to improve
the crop models.

• “On”: crop models are themselves the subject of research for statisticians who can
then develop methods to improve their use (parameterization, sensitivity analysis,
comparison of models, etc.). This book largely concentrates on these issues.
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1. Introduction

The use of genotype specific parameters in models has two distinct objectives. The first is
to determine model parameters with significantly different values for different genotypes.
These differences may then indicate functional differences between varieties that might be
useful during breeding, if they prove to be of value. The second aim is to improve model
predictive quality and, as a consequence, the management recommendations that may be
derived from the model. In this case, the parameter values themselves are not of interest.
Instead, model performance is important, and compensation of errors in parameter values
is acceptable if system performance is satisfactorily simulated.

There is the implicit assumption here that the model structure can represent geno-
typic variability through variations in parameter values. However, most models have been
designed to have a limited number of parameters (with the objective of ensuring their
generality), which simplifies the representation of the plant but restricts the ability of the
model to simulate genotypes. In fact, few models are capable of reproducing variability
between genotypes, or may do so for only a limited number of genotypes (often with a
similar genetic origin), but prove unsuitable when a broader genotype pool is considered.

For those models which are potentially capable of describing genotype variability, the
problem of estimating genotypic model parameters can be broken down as follows:

(1) identification of model parameters which are genotypic;
(2) estimation of parameter values for the genotypes targeted.

The methods that provide an answer to these two questions are not necessarily identical,
although it is sometimes possible to answer both questions at the same time. Chapter 4
reviews rigorous statistical methods used to estimate model parameters. These methods
could be applied to estimate genotypic parameters in a model, but probably would require
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additional information concerning the parameters. In some models, genotypic parameters
are identified by model developers based on their knowledge of the crop rather than
by statistical methods (e.g. the DSSAT models, Jones et al., 2003). In those models,
parameters are separated into those that are assumed to be constant among genotypes
(species parameters) and those that vary with the genotype.

Our aim here is to identify the problems confronted while estimating genotypic param-
eters in a model and also while using those models. These problems are linked primarily
to one’s objective and then to the data available for estimating these parameters. Hence
we broaden our discussion to the need and possibility of making models genotype-specific
for various objectives.

2. Uses of genotype-adapted crop models

2.1. Predicting differences in responses over a range of soil and climate conditions

The objective here is that the model with genotypic parameters be able to simulate impor-
tant differences among varieties. These differences may be linked to genotype-specific
characteristics or to an interaction between those characteristics and soil, climate, or man-
agement conditions in which the genotype is grown. Thus, the model is used as a tool to
analyze genotype × environment (G × E) interactions.

Numerous statistical methods have been proposed for partitioning the G × E interac-
tion, including multiplicative models, biadditive factorial regression, or linear factorial
regression (van Eeuwijk, 1995; Brancourt-Hulmel et al., 1997). Currently the best devel-
oped methods for analyzing and predicting G × E interactions are based on static statistical
relationships whose parameters are easy to estimate using experimental data from plant
breeding trials, coupled with a diagnosis of limiting factors (Hulmel et al., 1999). The
results of the diagnosis give variables describing the environmental conditions encountered
by the varieties in test. Then these variables, and variables describing genotypic character-
istics, are taken as covariables in the statistical model aiming at analyzing and partitioning
G × E interaction (Denis, 1988; Brancourt-Hulmel et al., 2000; Brancourt-Hulmel and
Lecomte, 2003).

The use of mechanistic dynamic crop models might improve the analysis of G × E
interactions. Such models are often tested for their ability to predict yield in a broad range
of environments (Travasso and Magrin, 1998; Mavromatis et al., 2001), so that they
should be capable of correctly taking a range of conditions into account. For example,
they could provide new variables to explain observed variations in yield, or they could
provide simulated production potentials for the experimental environments, or they could
help diagnose limiting factors (Hulmel, 1999; Boote et al., 1996). However, the use of
such models raises numerous methodological problems, and the usefulness of these tools
when compared with existing methods is currently under investigation.

2.2. Adapting crop management to specific cultivars

Adapting crop management to a cultivar signifies the choice of farming techniques best
suited to the characteristics of the variety. If the aim is to identify, as soon as the variety
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is registered, the crop management that will best exploit its potential, one solution may
be to classify the new genotype in an existing typology, based on known characteristics
of that genotype. This typing represents the specific functioning of certain varieties and is
based on genotypic characteristics, which can be represented by the genotypic parameters
of crop models. The management factors that have been studied using this approach are
limited, but are highly important in some environments, namely planting date, irrigation,
and nutrient management (Keating et al., 1991; Kropff et al., 1995; Bindraban et al.,
1997; Jones et al., 2000; Royce et al., 2002). The genotypic differences among varieties
that are most frequently taken into account in these applications are those that control
phenological development and crop duration. Differences in photoperiod response and
basic phase durations translate into differences in water and nutrient requirements as well
as in potential yield. That allows these types of models to be used to optimize these three
management factors for a variety with known genotypic parameters and for a specific
location.

In most cases, genotypic parameters in crop models describe the phenological differ-
ences between varieties (e.g. Liu et al., 1989; Hammer et al., 1995; Goyne et al., 1996).
However, these differences are sometimes of limited importance compared to other factors
that affect crop performance. For example, the usefulness of multi-resistant wheat varieties
under low-input crop management (Loyce et al., 2001) is mainly linked to a combination
of their high productivity and their multiple resistances to diseases. However, crop simu-
lation models rarely simulate damage caused by diseases. These phenomena are complex
and the reactions of varieties may vary considerably. This requires a large number of
genotypic parameters and a high cost of parameterization. For this reason, crop models
are not capable of predicting the differences in behavior among varieties for all possi-
ble crop management strategies or of identifying those strategies that are best suited to
all characteristics of each variety. The BETHA model (Loyce et al., 2002) was specif-
ically developed to choose the best variety and crop management for a given objective
(Chapter 20), and was applied to the case of wheat for ethanol production. However,
this is a static rather than dynamic crop model and does not simulate the processes of
plant growth and development. The introduction of additional genotypic effects into crop
models (although it might increase the number of parameters) will likely improve model
performance (predictive quality and quality of model-guided decisions), but this remains
to be proven.

2.3. Selecting varieties for specific environments

One aim is to determine the variety best suited to a given environment and management
system. Crop models respond to seasonal patterns of rainfall, temperature, and daylength,
primarily due to differences in genotypic parameters that control phenological develop-
ment. It is therefore necessary to identify varietal characteristics (or genotypic parameters)
that will predict the behavior of the variety under consideration as a function of different
environments. Crop models have been used to select varieties with genotypic parameters
that result in optimal yield (in terms of amount and annual variability) for a number of
crops (e.g. sorghum (Chapman et al., 2000), rice (Aggarwal et al., 1997), soybean (Boote
et al., 2003; Messina et al., 2005), and wheat (Hammer et al., 1999a)). However, there
may be genotype by environment interactions that are key determinants in variety choice
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but not taken into account by the models. The results from model-based studies must be
judged in the light of interactions not included in the models. For example, in the case
of wheat, the varietal characteristics of tillering capacity, an important determinant of the
behavior of a variety at a low density (Meynard et al., 1988), nitrogen absorption capacity
(Le Gouis and Pluchard, 1996), sensitivity to low radiation at meiosis (inducing marked
grain abortion, Demotes-Mainard et al., 1996), and tolerance to post-flowering water stress
(Meynard et al., 1988) are rarely taken into account in dynamic crop simulation models.

2.4. Breeding varieties for specific environments

A priori evaluation of the possibilities of variety selection to improve yield or some other
variable of interest can be assessed using crop simulation models (Agüera et al., 1997;
Hammer et al., 1999b; Fargue, 2002). In this case, genetic variability is introduced into
the model by varying the genotypic parameters, and the consequences on the variables of
interest (yield, quality, gene flux, etc.) are estimated by simulation.

A prerequisite is to know how the characteristics represented by the genotypic parame-
ters affect the variables of interest. It is also necessary to evaluate the range of variability
in the existing genetic material. This requires experimental measurements for a large
number of lines. For example, Barbottin (2004) showed that mean weight per grain, the
ability of the variety to produce grain relative to intercepted radiation and maximum grain
yield, earliness at heading and at the beginning of stem elongation and crop biomass at
the end of winter were cultivar characteristics that could be included as genotypic param-
eters in a model, and that these parameters could help to understand and predict cultivar
responses (in terms of grain yield and grain protein content) to different environments.
Thus, such characteristics should be systematically measured in variety trials as they could
help breeders to create cultivars adapted to specific environments (Barbottin and Jeuffroy,
2004). One could then test a reasonable range of values for the genotypic parameters in
order to identify interesting new ideotypes. In this case, it is important to first analyze
the genetic variability that exists for the different characteristics that are to be varied (for
cultivated and/or wild genotypes). Then, the model can be used to analyze the behavior of
virtual genotypes defined as original combinations of those parameter values that present
genetic variability. Studies of this type include Hammer et al. (1996), Bindraban (1997),
Fargue (2002), Boote et al. (2003) and Messina et al. (2006).

3. Issues related to genotype parameter estimation

3.1. Available data

Crop models are usually developed for a few varieties using databases that include numer-
ous intermediate variables for testing model algorithms. Classically, model adjustment for
a small or larger number of genotypes is pursued in a second step. Often, only a small
number of measurements are available for these other genotypes. Nonetheless, they some-
times have been obtained from yield trials performed over a broad range of environments
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(Mavromatis et al., 2001). This second step is usually carried out without reassessing the
model’s structure and relationships chosen before genotypic adaptation.

Numerous variety yield trials exist, performed by plant breeders during several years
of candidacy for registration or by advisor services in order to prepare their cultivar
choice for their specific range of environments. The variables measured in these trials are
often restricted to the dates of major developmental stages and yield, perhaps also final
biomass and yield components. They rarely include intermediate data, which would require
additional sampling during the crop cycle. However, such trials are of considerable value
for estimating genotype parameters because of their number. Experiments specifically
designed for varietal parameter estimation would be costly and difficult to organize for a
large number of genotypes (Reymond, 2001). Piper et al. (1998) and Mavromatis et al.
(2001) estimated soybean genotype parameters using yield trial data with only grain yield,
final biomass, maturity date and flowering date (in some cases) measured. Usually, it is
possible to obtain the necessary weather data from historical archives for the site or a site
close by. However, detailed data on soil characteristics may not be available for some or
all sites in a set of yield trials and, if the trials were irrigated, detailed records of dates and
amounts or irrigation may not be recorded. Thus, differences between cultivar responses
among sites in such trials involve both unknown genotypic and site characteristics. The
work by Mavromatis et al. (2001, 2002) attempted to overcome this problem by estimating
both cultivar and site characteristics. In their case, the site characteristics included a soil
water holding parameter as well as an empirical fertility parameter, but those parameters
were not themselves of interest. They were simply used to characterize the sites in order
to allow estimation of the genotypic parameters, which was the objective of their study.

In addition, attempts to adjust a model to different varieties based on data available
from previous yield trial varietal studies may influence model functions themselves. For
example, the equations used to characterize grain biomass requirements in the Azodyn
model have evolved as a result of varietal adjustment (Jeuffroy et al., 2000). Another
example is the use of soybean yield trial data in the USA to adjust temperature functions
in the CROPGRO-Soybean model (Piper et al., 1996; du Toit, unpublished manuscript).
A final example is the “yield loss due to disease” parameter, included in BETHA (Loyce
et al., 2002), which is directly based on the disease resistance scores produced by the
Groupe d’Evaluation des Variétés et des Semences (GEVES), the institution that controls
registration of new varieties in France. This cultivar parameter is immediately available
for any newly registered variety in France, allowing the model to be used for a new variety
as soon as the variety is registered, without requiring any specific trial for estimating the
genotypic parameters. Thus the type of data available may lead to a change in model
formulation, in order to permit rapid evaluation of genotypic parameters. This approach
can be justified because the ideal database providing all intermediate variables for the
model chosen initially will never be available.

3.2. Keeping up with new variety releases

Varieties have increasingly short life-spans; a large number of new varieties are registered
each year. It is therefore impossible to identify those that are likely to be widely used in
subsequent years. For this reason, modeling tools need to be adjusted rapidly in order to
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estimate genotypic parameters each year for a large number of varieties. This requirement
represents a major challenge.

The example of multi-resistant wheat varieties illustrates this need. These varieties are
of considerable economic (better gross margins when average wheat price is low) and
environmental (reduction in nitrogen and pesticide use on the crop) importance, but this
is only expressed when associated with low-input management (Loyce et al., 2001; Félix
et al., 2002). It is therefore necessary to determine, as soon as it is registered, the type
of the new variety in order to recommend appropriate management to ensure its opti-
mum exploitation. Easily measurable characteristics are therefore necessary to enable a
rapid assessment of its capacities, particularly since comparative trials of varieties are
usually poorly suited to identifying this type of variety (generally used in intensive farm-
ing). Wilkerson et al. (2001) developed a software to automate the approach published by
Mavromatis et al. (2001, 2002), which uses yield trial data to estimate soybean genotype
parameters for the CROPGRO-Soybean model (Boote et al., 1998). This software assem-
bles appropriate soil, weather, and yield trial data, then searches for the best combination
of parameters for each of the varieties in the trial.

The context of varietal development may be significantly modified if GMO varieties
are introduced on a major scale. In this setting, crop model designers will no longer be
confronted solely with a slow development of parameter values for new varieties, built
up from a small number of genotypes forming an elite group, but with abrupt changes
in the varietal ideotypes obtained. In Arabidopsis thaliana, the modification of a single
transcription gene has led to considerable modifications in plant behavior in terms of its
phenology (vegetative and reproductive development), response to light, morphology, and
mode of leaf growth (Franck, 2001). Crop model developers are aware of the potential
for using information on molecular DNA of a variety for characterizing its development
and growth processes (White and Hoogenboom, 1996; Hammer et al., 1996; Boote et al.,
2003; Messina et al., 2005). Crop modelers need to interact with molecular geneticists
and physiologists to facilitate the translation of genetic knowledge to modes of action,
and finally to integrate field performance under multiple environments in a way that
accounts for limiting resources. Modelers’ views of genetic coefficients will change to
accommodate increasing availability of genetic information. While the modeled genetic
coefficients will remain mathematical constructs to model phenotypic outcomes, in future
they will be more closely linked to actual genes/DNA sequences (Boote et al., 2003; also
see Chapter 11).

3.3. Need for precision of simulated variables

Genotypic variability of a characteristic or function is small, often smaller than the
experimental error. Moreover, varieties usually differ with respect to several functions
simultaneously. In order to reveal any difference in functioning and production between
varieties, it is necessary for the model and the data used to estimate parameters to be
accurate. There are many examples for this difficulty in managing experimental variabil-
ities when comparing genotypes (e.g. Sinclair and Muchow, 1999). A first example could
be biomass, which is frequently measured by varietal trial networks. The coefficients of
variation of biomass measurements are usually between 10 and 20%, while the differences
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between varieties rarely exceed 5%. Access to a statistically very powerful experimental
design is therefore necessary, in order to identify the occurrence of a varietal effect and
estimate different parameters for each genotype. Other examples can also be cited, such as
the grain protein content of wheat: the difference in protein contents between genotypes
of common wheat varieties, with a similar yield, are usually about 0.5–1% (Bernicot,
2002). However, a 1% variation in protein content, around the mean value of 11.5%, cor-
responds to a 9% difference in the nitrogen uptake of the crop. This difference is usually
lower than the experimental error on this variable which ranges from 10 to 15%. Finally,
the difference in nitrogen absorption between wheat genotypes is about 20–30 kg ha−1

(Le Gouis and Pluchard, 1996), or approximately 10% of the mean value observed in a
non-nitrogen limiting situation, which is also close to the experimental error. This small
variability among genotypes makes it even more difficult to demonstrate using models.

One way to circumvent this constraint would be to simulate relative deviations between
two genotypes or rankings for a group of genotypes, rather than results in terms of absolute
values. In this case, rank tests might be more appropriate for evaluating model performance
than mean squared error or mean squared error of prediction.

Another way of circumventing the problem of accuracy may be to examine the dynam-
ics of crop growth rather than just cumulative values. An example is the radiation use
efficiency in pea. Due to experimental errors in biomass measurements, it is difficult
to demonstrate cultivar differences in this parameter. In a study by Lecoeur and Ney
(2003), the use of cumulative dry matter measurements led to respective values of 2.90
and 2.84 g dry matter MJ−1m−2 for the two cultivars studied. Nevertheless, differences
in biomass were observed and related to cultivar differences in the variability over time of
the radiation use efficiency. Thus, taking these differences into account made it possible
to demonstrate varietal differences in the course of this parameter during the growth cycle
(Lecoeur and Ney, 2003).

3.4. Need for physiologically significant parameters

It is generally assumed that genotypic parameters are robust, i.e. they can be used to des-
cribe the performance of a cultivar in environments other than those used for estimation.
However, this is rarely confirmed. Thus the parameters may be biased and may provide
acceptable results only for the site or region in which data were obtained for estimating
them. If this is the case, those parameters may perform well for different sites and years
within the region but fail when they are carried to other regions.

This issue was addressed using the CROPGRO-Soybean (Boote et al., 1998) model.
The aim of the work by Mavromatis et al. (2002) was to evaluate the robustness of soy-
bean genotypic parameters for this model. They used data from two different state yield
trials (Georgia and North Carolina in the USA), for different sets of years, to determine
(1) whether parameters estimated from two different regions had the same value and
(2) whether prediction of development and yield in one state was degraded if genotypic
parameters were estimated using data from another state. They found that the parameters
that affect development (i.e. photoperiod response and duration of crop growth phases)
were stable regardless of data origin. Figure 1 shows a graph of the photoperiod sensi-
tivity parameter (CSDL) estimated in North Carolina plotted against the same parameter
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Figure 1. Comparison of critical day lengths (CSDL) estimated for ten soybean cultivars in Georgia
and North Carolina. The 1:1 line (doted) and the regression line (solid) between the data are also
shown.

estimated using data from Georgia. On the other hand, parameters that were estimated
using yield data, such as seed filling duration and maximum leaf photosynthesis, var-
ied between states. However, yield prediction for one state using parameters estimated
from the other state was estimated with little loss in accuracy; there was compensation
in parameter values such that yield predictions using parameters estimated from data in
another state were degraded very little for this model. Figure 2 shows predicted maturity
date and yield for North Carolina using parameters estimated from data in Georgia using
all cultivars in the Mavromatis et al. (2002) study. This study demonstrates the fact that
some parameters in crop models may be more robust than others and also shows the
importance of evaluating the use of genotypic parameters for environments not included
in the data used for estimation.

If certain parameters are critical in explaining variability in simulated output data, they
may constitute good candidates for breeding criteria (Agüera et al., 1997; Fargue, 2002).
In this case, breeders may attempt to measure the parameters directly on lines during
the breeding process. Similarly, if a varietal characteristic is important in understanding
and predicting variety behavior under given environments and management, it will play
a major role in the choice of variety by the farmer (Loyce, 1998). Such characteristics
should be made available to producers as soon as the variety is released. To attain these
objectives, it is essential that the genotypic parameters should remain stable in a broad
range of environments. Unfortunately, this quality is rarely verified by authors.

With this in mind, it may not be desirable to reduce the quality of a parameter by
treating it as a statistical variable and estimating it by minimizing model output errors.
The assessment of its quality should also include its biological significance (Sinclair and
Seligman, 2000). One may even accept a less satisfactory parameter estimate in order to
preserve its physiological significance, and thus attach less importance to the predictive
value of the model than to the physiological significance of its parameters. However,
this depends on one’s objective. One should realize, however, that estimates obtained
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Figure 2. Comparison of simulated versus observed harvest maturity (a) and seed yield (b) for ten
soybean cultivars in North Carolina with the coefficients developed in Georgia. The 1:1 line (dot)
and the regression line (solid) between the data are also shown.

in an optimization approach may reflect errors in the model and may not be robust.
It is important to evaluate the parameters using independent data before using them in
environments different from those used in estimation.

3.5. Choice of parameters to be estimated

Identification of the genotypic parameters of a model consists in determining the param-
eters that differ between varieties and also strongly influence simulated output data. It
is therefore necessary to determine the genotypic variability of parameters and also to
analyze the model’s sensitivity to those parameters.

In fact, there are few data in the literature that describe existing genotypic variability
of different characteristics of interest. Furthermore, the explicit parameters of the model
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are rarely studied. For example, in the case of wheat, several authors (Van Sanford and
MacKown, 1986; Le Gouis and Pluchard, 1996) demonstrated the existence of genotypic
variability regarding nitrogen absorption capacity of plants. However, the references do not
allow direct integration of these results into models, as no indication is given as to which
parameters should be adjusted and to what extent it is possible to link results with model
parameters. For this reason, experimental research into the variability of model parameters
becomes the responsibility of those who adapt the model to include new genotypes. This
raises three problems:

• The number of crop model parameters is often much too large for such a study to
be rigorous if all of them are considered. Published literature or expert knowledge
may help sort out those functions where, in principle, variability between varieties
exists. Unfortunately, this does not apply in every case. Reference may be made to soil
parameters which are often included in crop models and which do not vary between
genotypes; to dilution curve parameters (Justes et al., 1994) or even to parameters of a
climatic type, such as the ratio between photosynthetically active radiation and global
radiation (PAR/GR). Mention could also be made of intercepted radiation using Beer’s
Law. LAI development parameters differ between varieties, as do radiation extinction
parameters in the canopy, although maximum interception can be considered to remain
constant within a species (Jones, 1992). Inversely, some parameters are certain to
differ between varieties: individual leaf surface parameters, in the AFRC-wheat model
(Weir et al., 1984), or parameters linked to yield components (Agüera et al., 1997;
Travasso and Magrin, 1998). But what about parameters affecting crop responses to
water stress or nitrogen limitation? Another way to achieve this prior discrimination
is to analyze model sensitivity to the parameters (Makowski et al., 2005). If model
output data are affected little by the value introduced for the parameter, then there is no
need to search for the existence of variability. However, results of sensitivity analyses
depend on the range tested for the parameter under study. In principle, this range must
reflect variability that exists in nature, and hence the existing genotypic variability. We
therefore find ourselves in a vicious circle, where sensitivity analyses are necessary to
set up experiments aimed at estimating genotypic parameters, but experimental results
are necessary to know the range of parameters to be tested in the sensitivity analysis. The
pragmatic solution consists in adopting a step-by-step approach to choosing genotypic
parameters based on expert knowledge or testing of previously defined ranges.

• Sensitivity to parameters depends not only upon the value of the parameter under study
but also on all the values of other parameters or input variables used (see, for exam-
ple, Girard, 1997). A trivial example might be the search for variability in parameters
concerning a reduction in the number of grains linked to nitrogen deficiency, in situ-
ations where there is no effective nitrogen deficiency. However, the situation is more
complicated for processes resulting from multiple interactions. Because the number of
analyses is generally limited, it is therefore essential to make appropriate choices.

• When experiments are necessary to study the existence of genotypic variability in a
parameter, the number of genotypes tested is often small. The choice of parameters
is then crucial, as the aim is to extrapolate the conclusions of the study to a much
broader range of genotypes. It is then useful to work on contrasting genotypes and not
be restricted to those most recently registered, which are often very similar in terms
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of performance or biology. For species that have been studied for several decades, one
option would be to review those varieties that have made their mark at different times.
The advantage is that for these varieties, considerable reference data are often available
and are sufficiently contrasted because of advances in breeding and the development
of management techniques (Vear et al., 2002). We are optimistic that, in the future,
molecular genetics techniques will be useful in estimating parameters for each variety
that is released (Boote et al., 2003).

Experimental research on genotypic variability and the analysis of model sensitivity
to genotypic parameters can produce contrasting results. Indeed, three situations may be
observed:

• Case 1: Literature reports the existence of genotypic variability in a function, the
model is sensitive to the parameter of this function, but experimental results show
that the variability of the parameter chosen to reflect this function is small and does
not vary among varieties. The case of nitrogen remobilization from vegetative organs
to wheat grains is an example, since Van Sanford and MacKown (1987) reported the
existence of variability among varieties. Barbottin et al. (2005) showed that the Azodyn
model’s remobilization parameter was stable between genotypes and environments.
This apparent contradiction between two series of experimental findings arises from
the fact that nitrogen remobilization was not measured in the same way in both the
cases, even though the same function was under study, and the range of environments
tested was not the same.

• Case 2: Literature and experimental findings show the existence of genotypic variability
in some parameters (e.g. EBMAX, D and VMAX parameters in Azodyn), but the model
is not sensitive to them, at least in terms of outputs of interest (grain protein content
output for Azodyn).

• Case 3: Variability exists and the model is sensitive to it. An example is the maximum
weight per grain in Azodyn (Champeil, 2001; Philibert, 2001).

In conclusion, experimental research concerning genotypic variability in parameters,
and analysis of model sensitivity to parameters which are, in principle, genotypic, con-
stitute two complementary approaches. It is preferable to combine these two approaches
to more reliably identify those model parameters that should be estimated for any new
variety.

4. Methods for estimating genotype parameters

4.1. Direct measurement of parameters

Although direct measurement may appear to be the best approach for estimating genotypic
parameters, it is uncommon in practice. It enables direct access to the desired parameter
via experimental measurements. If the parameter is genotypic in nature and significantly
affects crop performance, the breeder could measure it directly on lines under develop-
ment in experiments in order to predict the expected effects. However, this method often
requires specific trials and measurements, which may therefore be complicated, costly
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and even impossible to implement for a high number of genotypes (Reymond, 2001).
Routine measurement of these parameters for a large number of varieties may pose a
problem, particularly when measurements require special equipment and controlled con-
dition experiments: e.g. parameters for the response of maize leaf growth to temperature,
radiation or vapor pressure deficit (Reymond, 2001).

One good example to illustrate this approach is the thermal time to flowering in crops.
In this example, dates of emergence and first flower are recorded for each variety in each
trial. These dates, along with daily maximum and minimum temperatures recorded at
the sites, allow one to compute directly, for each combination of variety and location, the
degree days required for flowering. Examples of this approach can be found for peanut and
maize (e.g. see Boote et al., 1998, 2003). Another example is the genotypic parameters
“maximum leaf size” and “specific leaf area at the end of the vegetative stage” in the
CROPGRO models in DSSAT (Boote et al., 1998). These variables can be measured
directly in experiments that are grown under ideal conditions. Although such conditions
may not exist in yield trials, one could obtain an estimate of these parameters by comparing
data from a wide range of conditions in the trials. In some cases, it may be possible to
estimate some important parameters indirectly from indicators that are routinely measured
in yield trial networks. For example, in sunflower variety trial networks, one routinely
measured variable is grain moisture at harvest. This variable is strongly dependent upon
climatic conditions at the end of the growth cycle. However, classification of genotypes
based on relative values calculated from reference genotypes exhibits satisfactory stability.
Results from a series of closely-studied genotypes show that correlations exist between
the relative value of this indicator and the length of the flowering-maturity stage. Thus,
based on grain moisture at harvest, it is possible to estimate a value for the “duration of
flowering – maturity stage” for new genotypes, without measuring it directly.

In most cases, however, it is not possible to directly measure some parameters that are
used in crop models and it is impractical to measure others. Thus, direct measurement,
while more appealing, will not be suitable in all cases. It may be possible to measure
some parameters directly, whereas indirect methods will be required to estimate others.

4.2. Estimating parameters by minimizing errors in model outputs

This indirect method (see Chapter 4) consists of estimating one or more parameters by
minimizing the differences between measured and calculated values. This optimization is
generally performed on model output variables (usually yield), and sometimes on inter-
mediate variables (dates of key development stages, for example, Liu et al., 1989; Grimm
et al., 1993; Mavromatis et al., 2001). Particular attention must be paid to correlations
existing between parameter estimators, which may produce parameter values which are
satisfactory for prediction under a limited range of conditions. Such parameters may not
have physiological significance and therefore may not be applicable for conditions other
than those used in estimation (Jamieson et al., 1998). One way to counteract this problem
is to estimate each parameter by minimizing the errors of intermediate simulated vari-
ables of the model, and not of the outputs of the model. Moreover, the error of parameter
estimation is reduced if the estimation is based on situations which have a direct effect
on the parameter (Dorsainvil, 2002). Furthermore, under this optimization procedure, the
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further the parameter to be estimated is situated from the variable to be optimized within
the model structure, the greater are the possibilities that its value will depend on that of
other parameters estimated simultaneously and thus not have any biological meaning.

In many practical studies, various measurements are available for estimating parame-
ters, yet not all are used to estimate each parameter. Knowledge of the parameter and its
role in affecting an output is used to target parameters to observable traits. Examples are
photoperiod sensitivity being estimated from observations on time to first flower. Addi-
tional knowledge-based rules may be applied to help ensure that parameter estimates are
reliable. Hunt et al. (1993) developed this approach in the GENCALC software used to
estimate genotype parameters in the DSSAT suite of crop models. A data file is used to
input rules for each crop linking parameters to specific traits measured. The GENCALC
software varies the parameters, runs the model for those parameters, evaluates simulated
response relative to one or more measured variables, then selects those parameters that
minimize error between simulated and observed variable.

One advantage of this error minimization method is that it is inexpensive in terms of
the data necessary to estimate parameters. It thus enables the exploitation of databases
acquired for other purposes (e.g. the numerous variety yield trials performed by different
organizations) and it is not necessary to repeat specific trials (Mavromatis et al., 2001).
On the other hand, it has one major drawback: the variables upon which the optimiza-
tion is based are often only slightly correlated with the parameters estimated, so that
the physiological significance of the parameter itself may be compromised. This risk is
greater if several parameters are estimated simultaneously. This is not necessarily serious
if the aim is to predict the production of a variety within the range of environments in
the estimation dataset but not as a criterion for breeding. One way to combine direct
and indirect parameter estimation would be to use a Bayesian approach (see Chapter 4),
which allows one to take account of prior knowledge about the value of a parameter in
the estimation procedure. In terms of reflecting the various performances of several vari-
eties, the usefulness of this method is unquestionable and does not pose any particular
problems.

4.3. Discussion

The link between the available database and the method chosen to estimate parameters
is not exclusive. However, the ease with which genotypic parameters are estimated often
depends on the structure of the model and its functional relationships. To illustrate this,
the case of BETHA can be used (Loyce et al., 2002), although this model is static. The
parameters of the agronomic submodel simulating yield losses in the presence of disease
are the GEVES varietal resistance scores. Thus in this case, the parameters are measured
systematically during the registration phase of any new variety, and then provided to the
public via an official catalogue of varieties. In this example, the choice of model to reflect
the effect of disease on yield losses was guided by the availability of parameters, updated
systematically for all new varieties. Thus the model is constantly being adjusted to allow
for new genotypes, without any additional specific experiments. An example of a very
different approach is provided by a model of maize leaf growth with genotypic parameters
which require complicated and specific experiments for their estimation.
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Finally, the method used to estimate parameters has to be chosen not only according
to the objective (need for access to the biological significance of parameters, or for sat-
isfactory predictive quality of the model) but also according to the ease with which it
can be extrapolated for new varieties. In some cases, it may be more desirable to apply
a clearly defined measurement protocol (e.g. disease resistance score protocol) for direct
measurement of the parameter, whereas in other cases it may be necessary to use opti-
mization methods, which allow for estimation of several parameters at the same time. One
possibility may be to estimate parameters using intermediate variables of the model which
are more closely related to the parameter than are final outputs. Costs must also be taken
into account when choosing an estimation method, especially when a goal is to routinely
estimate parameters of the model for newly registered varieties. If a new experimental
network is to be set up for parameter estimation trials, one must ensure that its sites are
representative of the region in which the model is to be used. If the BETHA model is
compared with the model proposed by Bastiaans (1993) in terms of simulating the effect
of disease on yield, it is undeniable that the disease resistance scores (BETHA param-
eters) will be more easily and rapidly available than Bastiaans’ Betha parameter, which
requires measurement of photosynthesis of healthy and diseased plants under controlled
conditions. Another example also illustrates the flexibility of model adaptation methods
to genotypes. The vertical distribution of grain numbers in peas, proposed by Roche
and Jeuffroy (2000), can be transposed to numerous varieties by measuring the mean
weight per grain from each variety, a variable that is normally recorded by registration
and development organizations.

The choice of estimation method has also to be considered as a function of the ultimate
objective:

• If the model is to be used in plant breeding applications, parameters that are
rapidly and individually measurable are essential, and they must have physiological
meaning.

• If the objective is the a posteriori analysis of variations in behavior, parameters can
either be optimized or directly measured, so that newly registered varieties can be typed
more easily without waiting for several years of field experimentation.

5. Examples

5.1. Direct measurement of parameters vs minimum error approach

In order to assess the consequences of parameter estimation methods on parameter values,
the quality of model adjustment to data, and the predictive quality of the model, we
estimated the three parameters of the “potential crop function” module in Azodyn (see
details in Chapter 4). These three parameters represent biomass radiation use efficiency
(EBMAX), the ratio between the leaf area index and the critical nitrogen level of the crop
(D), and the maximum nitrogen absorption rate by the crop (VMAX).

The data were obtained from the 1999 trial carried out at Grignon containing five
varieties: Soissons, Baltimore, Cockpit, Florence-Aurore, and Trémie. The measurements
taken during the trial consisted of weekly monitoring of leaf area index, above-ground
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biomass, and the quantity of nitrogen accumulated in above-ground parts of the crop,
between the end of January and flowering (early June). Based on results obtained by
Akkal (1998), we assumed stability of parameters between genotypes for the equation
linking radiation use efficiency and leaf area index. On this basis, we estimated biomass
conversion efficiency by linking the biomass produced at different dates with the radiation
intercepted by the crop on the same dates. Then, to estimate the maximum nitrogen
absorption rate, we calculated, between two successive sampling dates, the ratio between
the quantity of nitrogen accumulated in the crop between these two dates and the sum of
degree-days between the two dates. The maximum value of this ratio, over the entire period
considered, was taken as the VMAX parameter. A second method of parameter estimation
was also done. Here weighted least squares were used to adjust all the parameters to the
three observed variables. The values of the three parameters, obtained using each method,
are shown for the five varieties in Table 1.

The quality of model adjustment was estimated by comparing measured and simulated
values on the non-limiting treatment of the trial. The quality of model prediction was esti-
mated on experimental treatments of the same trial, during periods of nitrogen deficiency.
The results (see Table 2) show that the quality of adjustment was often better in the case
of optimization, but predictive quality was similar using the two methods, with either
of them being better on different occasions. In this example, the two methods produced
equivalent results.

A second illustration concerns the demonstration of a genotypic difference between
parameters. Using the least squares method to estimate the three parameters in the “poten-
tial function” module of Azodyn, it was found that numerous triplets of values led to
similarly good fits to the data for the three variables concerned (Fig. 3). For example,
both the triplets EBMAX = 3.76, D = 0.028, VMAX = 0.32 and EBMAX = 2.67,
D = 0.04, VMAX = 0.35, led to R2 = 0.983 for the “nitrogen uptake” variable. Using
this approach, it was not possible to determine differences in the parameters between
different varieties. In contrast, the direct measurement method of estimation produced
differences in the parameters between genotypes (Table 1).

Finally, it should be pointed out that parameter estimation by optimization based on
a variable which is only indirectly linked to the parameter, leads to a greater risk of
differences between parameter values estimated using different datasets than would be
the case for directly measured parameter values. If we return to the above example, we
can see that for Soissons, the range of EBMAX values producing a good simulation of
above-ground biomass was relatively small and centered around the directly measured
value, compared to the range of values obtained when the parameter was adjusted to two
other variables (LAI and QN less directly linked to EBMAX (Fig. 4).

5.2. Characterizing genotype variability

Analysis of the behavior of several genotypes using the structure of a model may make
it possible to identify those modules where genotypic variability is most often observed.
Most crop simulation models are based on a series of modules: a phenological module,
describing the dates of onset of development stages (e.g. for leaves: initiation, appear-
ance, end of expansion, yellowing, senescence) or the duration of stages (vegetative
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Figure 3. Relationship between the EBMAX parameter values in Azodyn and the coefficient of
determination between measured and simulated values for the quantity of nitrogen accumulated in
above-ground parts, for two varieties, Soissons and Cockpit (calculations performed on data from
the Grignon trial, 1999).

or reproductive); a module describing the evolution of surfaces available for exchanges
(leaves, roots); a module for biomass production (often based on radiation use efficiency);
a module for biomass distribution; one or several modules simulating the effects of
abiotic stresses (water, nitrogen) and finally, physical modules estimating the state of
the environment (availability of water or nitrogen, etc.) (e.g. see Jones et al., 2002).
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This type of model was used to analyze the behavior of five sunflower genotypes,
representative of three time periods: the 1970s for Mirasol, the 1980s for Albena and
the 1990s for Heliasol, Melody and Prodisol (Lecoeur, 2002). These varieties exhibit
reproducible differences in yield up to a maximum of 30%, which are correlated with
the date of registration (Vear et al., 2002), suggesting that considerable genetic advances
were achieved over a period of 30 years. Figure 5 summarizes the results, using Mon-
teith’s biomass production formalization (1977). The analysis showed that the varieties
studied did not exhibit genetic variability in radiation use efficiency (RUE) or in the
distribution of biomass between different parts of the plant, whether dynamically or at
harvest. In contrast, the course of radiation interception efficiency (RIEi) presented dif-
ferences which, when cumulated over the growth cycle, produced differences in radiation
used of up to 10%. These differences arose from the architecture of above-ground plant
parts and, in particular, leaf surface profiles. It is noted that the most recent varieties
produced a lower total number of leaves than older varieties, and the larger leaves were
closer to the top of the plant. This plant architecture confers an advantage in radia-
tion interception, which can be quantified by calculating the extinction coefficient (k)
using Beer’s law, linking the leaf area index of the crop with radiation interception
efficiency. More recent varieties exhibited a higher k coefficient. The final difference
identified was more classic, since it concerned phenology. Different varieties presented
different life-spans for their foliage, which was indicated by the duration of the flower-
ing – maturity stage. All these differences were sufficient to explain the yield differences
observed.

This example shows that, in different sunflower varieties, the main differences in
behavior concerned the architecture of above-ground parts and phenology, while biomass
production and distribution did not demonstrate any variability. Phenological aspects
are easier to integrate into standard models. However, differences in the evolution of
surfaces for exchanges and their performance result from smaller differences in plant
structure that are often more difficult to integrate. This example also demonstrates the
usefulness of basing the analysis of genotypic variability on a crop model (and not
only on analytical experiments) in order to identify the origins of differences in varietal
behavior.

Other crop models have also been used to evaluate genotypic differences among old
vs new varieties to determine mechanisms that led to yield improvement. For example,
in the study presented by Boote et al. (2003), two new and one old soybean varieties
were planted at two different locations in Iowa and Illinois for two years. The new
varieties yielded about 17% higher than the old variety. Phenology and growth mea-
surements were made periodically during the season in each trial and used to estimate
genotypic parameters for the CROPGRO-Soybean model. Boote et al. (2003) found
that a combination of parameters differed between new and old varieties and could
explain differences in yield. They found that new cultivars had faster pod addition (about
30%), longer seed filling phase (about 10%), higher leaf photosynthesis (about 9%)
and slower leaf nitrogen loss with age (about 10%). They concluded that the poten-
tial yield differences between these old and new soybean varieties could be explained
by the parameters in the model that control the above processes. Much of the yield
gain was related to partitioning of photosynthesis and to a longer duration of seed
filling.
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Figure 5. Analysis of the behavior of 5 sunflower varieties using Monteith’s (1977) energy approach
formalism and identification of parameters presenting genetic variability (Lecoeur, 2002). HI, harvest
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5.3. Breeding: ideotype design for target environments

Strong genotype × environment × management interactions in most agricultural systems
make it necessary to use genotypes that are adapted to the specific agro-environments.
Shorter et al. (1991) suggested that simple biological models could help integrate plant
breeding and crop physiology to evaluate adaptation of genotypes to target environments.
Although crop models lack the ability to describe all of the complexities of genotype
response, they contain powerful relationships, based on physiologically sound mecha-
nisms, and can be used as a tool to identify genotypes suited for particular climatic zones
(Hammer et al., 1996).

Several studies have been reported that demonstrate this approach. Kropff et al. (1995)
used models to optimize the performance of specific genotypes of potato in target envi-
ronments using the LINTUL-POTATO model. The key to maximizing potential yield was
the proper timing of tuber initiation. They determined the cultivar characteristics with
respect to temperature and daylength response that give the highest yield in a particular
environment. Kropff et al. (1995) and in more detail, Aggarwal et al. (1997) determined
the importance of various traits for maximum yield potential in the tropical dry season
and the wet season using ORYZA1 (Kropff et al., 1994). The critical model parameter
values varied with respect to those of the variety IR72 to simulate the effect of a change in
specific leaf area, spikelet growth factor, potential grain weight, maximum leaf N concen-
tration, and crop development rates during juvenile phase and grain filling period. Results
showed that no trait individually or in combination could provide more than 5% yield
increase for usual N management practices. These genotypes were not able to express
these traits in these somewhat limited-N environments. With improved N management,
yield potential was predicted to be significantly increased (>30%) by an increased sink
capacity, maintenance of high leaf N content and a longer grain filling duration (Aggarwal
et al., 1997).

Boote et al. (2001) used CROPGRO-Soybean and CERES-Maize models to determine
the optimal sets of genotype parameters for soybean and maize, respectively, growing
in two environments that differ considerably in soil and climate (Ames, Iowa, Lati-
tude 42.00◦N, Longitude 93.77◦W; vs Gainesville, Florida, Latitude 29.63◦N, Longitude
82.37◦W). Variations in parameters resulted in widely varying crop season lengths within a
location, and these durations differed considerably between sites. For example, a genotype
with fairly low photoperiod sensitivity (i.e. one belonging to maturity group II) matured
in 84 and 121 days at Gainesville and Ames, respectively, and yielded 834 vs 1936 kg
ha−1. In contrast, a genotype that was very sensitive to photoperiod (i.e. one in maturity
group VII) matured in 145 days at Gainesville and yielded 2741 kg ha−1 whereas that
genotype did not mature and gave no yield at all at Ames.

There is potential for use of this ideotype design application in plant breeding programs.
However, this approach has not yet been adopted by plant breeders to our knowledge.
Reasons for this lack of adoption appear to be due neither to a lack of interest on the part of
breeders, since they are indeed looking for tools to help them be more effective in breeding
plants for target environments, nor to a lack of interest on the part of crop modelers, who
have proposed such uses and demonstrated the potential value of the approach. Reasons
seem to be complex. However, as plant breeding invests more efforts in molecular genetics
techniques and as crop modelers learn to link control of physiological processes to specific



10. Crop models with genotype parameters 303

combinations of genes, powerful crop model-based tools will be developed to help plant
breeders design ideotypes for target environments. (See Chapter 11 for a discussion of
research linking crop model parameters with molecular markers.)

6. Conclusions

Without trying to answer the many questions raised by the estimation of genotypic param-
eters in crop models, we have raised a certain number of problems of current importance
which are still the subject of considerable debate, in a relatively recent research area.

In the introduction, we presented the two main objectives targeted while introducing
varietal effects into a crop simulation model. If the objective is to identify and analyze
differences in functional parameters between genotypes and their relationships, a method
that adjusts parameters may be misleading, because parameter values estimated by mini-
mizing the difference between measured and calculated values are difficult to interpret in
terms of varietal effects. Factors other than variety can determine parameter values, such
as model structure or the values of other parameters, etc. On the other hand, if the objec-
tive is to improve model performance (improvement in predictive quality and management
recommendations), less attention will be paid to the actual values of varietal parameters
than model performance. In this case, adjustment methods are useful. However, before
introducing new parameters, and thus increasing their total number, it is necessary to
consider whether this might degrade predictive quality, as has already been demonstrated
in other examples (see Chapter 4).

Two points should be emphasized. First, the desire to adapt models to a range of
genotypes affects the traditional relationship between experimentation and modeling.
Subsequent model adaptation to new genotypes must be taken into account when the
model is initially designed and adapted to a small number of genotypes.

In this chapter, we demonstrated the use of indirect methods to estimate genotype
parameters. It is important to keep in mind the fact that prediction errors can be much
more than the residual error obtained in the parameter estimation exercise. One must
evaluate the parameters using independent data to estimate prediction errors. If data are
limited, and this is typically the case, one should at least use cross validation to make
sure that parameters are not over-fit and that an estimation of prediction error is made.

In addition, this desire to adapt models to genotypes also calls into question the choice
of model structure. Thus, recent advances in physiology may modify the representation
of a plant in future crop models. It may not be possible to efficiently integrate genetic
variability into classical canopy function models. Some of their modules may require
considerable modification. There is then a risk that these models will involve too many
parameters, difficult to estimate for a large number of genotypes. A different adaptation
method may be to use static models (such as BETHA), which would allow the inclusion of
considerable data and expertise on varieties, and the exploitation of varietal characteristics
in the form of parameters. The choice of approach will mainly depend upon the objective
for which the model is being used. One could also consider a combination of the two
approaches. By estimating as many parameters as possible using direct measurements,
one will have more confidence in those as well as in other parameters that have been
estimated using a minimum error criterion.
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1. Introduction

Modern plant breeding provides genetic solutions to improve plant productivity. The goal
of a breeding program is to develop improved cultivars by manipulating available genetic
variability to create new allelic combinations best adapted to target environments and
applications. Plant breeding can be viewed as an optimization process during which the
plant breeder guides the search for new cultivars by integrating knowledge from several
scientific disciplines. A few of the traits manipulated by breeders are controlled by single
genes, but most breeding efforts deal with traits controlled by several genes, such as organ
size, days to maturity, photoperiod sensitivity and yield. In this regard, breeders have used
the classical view of quantitative genetics in which the phenotype (P) is the result of the
expression of the genotype (G), the environment (E) and the interactions between the
genotype and the environment (GEI).

The advent of molecular marker technology has opened new opportunities in quantita-
tive genetics by providing a way to separate complex traits. This is accomplished by using
linkage information between molecular markers and quantitative trait loci (QTL) (Lander
and Botstein, 1989; Lander and Schork, 1994). This approach has become feasible for
a relatively large number of crops with extensive molecular marker-based linkage maps
(Phillips and Vasil, 2001). With the inclusion of QTL locus, the phenotype response can
be estimated by a linear model that sums the contribution of each allele at its correspond-
ing QTL, the effect of the environment and the interactions between the alleles and the
environment:

P = µ +
∑

bigi +
∑

(bigi × E) + E + e

where P is the phenotype response, µ is the overall experimental mean, bi is the phenotypic
effect of an allele at QTL i, gi is the allele dosage at QTL i, E is the effect of the
environment, and e denotes the error term.
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However, many plant physiological effects are highly non-linear. In view of this com-
plexity, estimating a phenotype response will require one to measure several traits and
handle a large number of interactions arising from the large number of genes governing
the behavior of complex traits. Selection indexes and statistical methods such as BLUPS
(Henderson, 1975) were developed to handle multiple and complex traits in selection.
However, the assumption of linearity of the relationships among factors used in sta-
tistical methodologies is still a major obstacle for their use in multiple trait selection.
The widespread occurrence of gene by gene interactions or epistasis in complex traits
limits the power of purely statistical approaches to develop informative selection indices.
Despite the importance of epistasis in determining phenotypic response, it has been largely
overlooked (Carlborg and Haley, 2004).

Crop models can assist plant breeding by integrating physiological and biochem-
ical understanding, agronomic practices, the environment, and genetic information.
Shorter et al. (1991) and Cooper and Hammer (1996) proposed four main ways in which
crop models can be used to assist genetic improvement:

(1) Environmental characterization for testing genotypes.
(2) Assessment of specific putative traits for designing improved plant types.
(3) Analysis of responses of probe genotypes for improved interpretation of multi-

environment trials (METs).
(4) Optimizing combinations of genotype and management for target environments.

Implicit in uses 1 through 3 is that crop models can help our understanding of the phys-
iological basis of genotype by environmental interactions, hence, increase the sensitivity
of the analysis of variance of trial data. Boote et al. (2001) expanded crop model applica-
tions in plant breeding to the analysis of the physiological mechanisms involved in past
genetic yield improvement, and to understand additive, epistatic and pleiotropic effects
(effects observed when one gene affects more than one trait), of traits that affect yield.
Recent applications of crop models proposed by Cooper (1999) were to help understand
the differences in adaptation among genotypes, quantify the contribution of adaptation
components that improve performance of the breeding program, and analyze the breeding
process. This latter application used crop models in combination with quantitative genetic
simulation models (e.g. QU–GENE, Podlich and Cooper, 1998) to predict phenotypic
response to selection over multiple generations. A key component in this application was
the availability of models that map genes-to-phenotypes for complex traits. An emerging
application of crop models has been the integration of molecular marker information with
crop models (Cooper et al., 2002; Boote et al., 2003; Chapman et al., 2003; White and
Hoogenboom, 2003; Messina et al., 2006).

Impacts of crop models in plant improvement have not yet met expectations despite
their potential (White, 1998; Boote et al., 2001). Some reasons that may hamper the use of
models in plant breeding are: (1) the reliance on field trials to fit model coefficients and the
lack of methods for their estimation (White, 1998), (2) inadequate links between genes
and plant traits (White and Hoogenboom, 1996), and (3) inadequate representation of
epistatic and pleiotropic effects (Messina et al., 2004). Plant breeding efforts could benefit
from a new generation of crop models that include information on the genetic control
of physiological and morphological traits. One such approach is to associate genes and
genetic coefficients, which are paradoxically phenotypic in nature, in current crop models.
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Alternative approaches seek to simulate gene networks at the molecular level and scale
up these processes to predict crop phenotypes. The predictability and stability of such
gene-based models across environments and across genetic backgrounds pose a major
challenge.

This chapter illustrates three major applications of crop models to plant breeding.
Section 2 illustrates a recent novel application of a maize crop model using principal com-
ponent analysis (PCA) and GIS for characterizing environments and improving selection
through better understanding of genotype by environment interactions (GEIs). Section 3
describes the use of crop models to integrate plant physiology and breeding. Two appli-
cations are presented describing the use of crop models to (a) understand past genetic
improvement and (b) to estimate the value of putative traits. Section 4 discusses a current
paradigm for gene-to-phenotype modeling, describes a gene-based model for soybean and
an application to plant breeding, and reviews an approach to simulate breeding strategies.
This section also introduces the use of global optimization to search for best combination
of traits for a given environment.

2. Crop model use for environmental characterization

Multi-environmental trials (METs) are traditionally used to assess cultivar adaptation
within a target population of environments. Variable environments and genotype by envi-
ronment interactions hamper the development of better-adapted genotypes as the need for
adequate sampling of the environmental space increases in order to obtain gains from
selection. Crop models can be used for characterizing the target population of environ-
ments (TPEs) and their environmental challenges (variables in the environment that affect
crop performance) (Chapman et al., 2002). Thus, they can assist the plant breeder to
make informed decisions about the environments in which to conduct field trials, to eval-
uate the extent to which the trial environments are an unbiased sample of the TPE, to
determine weighting factors to correct bias due to inadequate sampling, and to interpret
field results in the context of the type of environment sampled by that particular trial. This
ultimately can increase gains from selection of genotypes in breeding programs.

The need to characterize the environments used for plant breeding and variety charac-
terization trials has been widely documented (e.g. Comstock, 1977; Cooper et al., 1993;
Chapman et al., 2000; Hartkamp et al., 2000; Löffler et al., 2005). Attempts to characterize
maize environments largely fall into three categories:

(1) Classifications based on climatic and soils data (e.g. Runge, 1968; Pollak and
Corbett, 1993; Edmeades et al., 2000). While useful to describe environmental
variables affecting crop productivity over long periods of time, these efforts did not
attempt to identify what environmental variables were most important in influenc-
ing GEI and thus the genetic correlations for genotype performance among testing
sites, a key factor in determining the efficiency and efficacy of a cultivar evaluation
system.

(2) Classifications based on the statistical analysis of variety performance data. For
example, Eberhardt and Russell (1966) characterized environments using an “envi-
ronment index” computed as the mean yield of all the varieties grown at a
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given location. While this approach is appealing for its simplicity and it has been
widely used, it does not provide a measure of the environment that is indepen-
dent of the variety performance measured at that environment. Since a wide array
of environmental conditions may result in similar crop yields, unless these condi-
tions are described, this methodology offers limited predictive value. Cooper et al.
(1993) compared the relative merit of four strategies for classifying wheat (Triticum

aestivum L.) environments and favored classifications based on the standardized
and rank transformations. The value of these classifications for predicting cultivar
performance is enhanced by knowledge of the underlying causes of the observed
GEI, and of whether the classification adequately depicts long-term pattern.

(3) Classifications using crop models to integrate weather, soil and management infor-
mation. Model outputs can be used to produce categorical variables that describe
environments in terms of levels of stress that impact crop productivity (Chapman
et al., 2000). Löffler et al. (2005) used the CERES-Maize model (Ritchie, 1986)
and GIS technology to classify each US corn-belt township for 1952–2002, and
for each of 266 trial locations in 2000–2002. The crop modeling approach com-
bined with GIS facilitated the generation of maps that depict different views of the
environmental conditions for crop production allowing a first characterization of the
environmental challenge. The Figure 1a shows the spatial pattern of simulated water
stress at the stages of crop development for 2002. A similar map could be generated
for any period of time that characterizes the TPE. Knowledge of drought patterns
at the TPE level is essential in breeding for crop tolerance to drought (Edmeades
et al., 2000).

Löffler et al. (2005) also used crop model outputs to develop a classification method-
ology to enhance the sensitivity of the analysis of variance to detect yield differences
among hybrids. Model outputs included simulated water stress, mean temperatures and
photoperiod at three developmental stages, vegetative (from emergence to V7), flowering
(from V7 to R2) and grain filling (R2 to physiological maturity). Significant hybrid by
environment class interaction variance was identified for six main environmental classes
(temperate, temperate humid, temperate dry, high latitude, European Corn Borer and
subtropical). Figure 1b shows the spatial distribution of these classes in 2002.

However, the relative frequencies of these environmental classes varied greatly from
year to year raising the question of how well a MET samples the TPE for a given year. The
aggregated view of classification at the township level over a period of years (51 in this
case) provided a description of the TPE. Therefore, this long-term historical frequency
distribution was used as a reference to compare the distribution of environments in a given
year and in any given MET. Figure 2 shows an example for 2002. In this year, temperate
and temperate dry environments occurred with higher frequencies than in the long-term,
thus these environments were overrepresented in the MET (χ2 = 36.64) introducing a
bias in the selection process.

The stratification of locations by environmental class enabled interpretations of
observed variety responses to growing conditions. For example, the GGE biplot
(Cooper and DeLacy, 1994) can be used to infer hybrid adaptation to the specific envi-
ronmental classes. This technique allows displaying both genotypes and environments
simultaneously, thus helping identify systematic patterns in G, E and GEI. Singular value
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(a)

(b)

Figure 1. Geographic distribution of five abiotic environment classes (a) and drought stress (b) for
maize production in the United States in 2002. Water stress levels: L – Low, M – Medium, H – High.
Developmental stages are represented by the order of letters. First: V1–V7, second: V7–R2, third:
R2–R5.

decomposition was used to find the best representation of the two-way data matrix X,
containing yield information for G genotypes in E environments, in a low-dimensional
space. Figure 3 presents the results of applying this technique to a matrix of 18 hybrids and
266 trial locations. Yield data were centered on environment by removing the environment
mean from each observation. The hybrid H9 outperformed all other hybrids included in
this study in the temperate, temperate dry and European Corn Borer (ECB) environments,
which are the most frequent environments found in the central Corn Belt. H9 is an exam-
ple of a hybrid with broad adaptation; the projection of the vector with coordinates (0,
H9) onto any of these environments was greater than for any other hybrid. GEIs are
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Figure 2. Frequency in percent of total hectares of Corn Relative Maturity (CRM) 110 maize envi-
ronments in the USA in 1952–2002, compared to frequencies in 2002, both at the regional (TPE) and
site-specific (MET) levels. Adapted from Löffler et al. (2005). H0: TPE = MET. χ2

MET = 36.64∗.

evident in this graph, however. When comparing H9 with five other hybrids (H1–H5) in
high latitude environments (project the vector (0, H9) onto the high latitude vector), the
clear yield advantage of H9 vanished and its yield was comparable to any of the hybrids
from H1 to H5.

3. Crop model use for analysis of past genetic improvement

Increased understanding of the underlying physiological causes of past genetic improve-
ment can increase the efficiency of plant breeding programs by helping define selection
criteria and breeding objectives. Crop physiological changes associated with cycles of
plant breeding were described for maize (Echarte et al., 2000), soybean (Boote et al.,
2001; Kumudini et al., 2001, 2002), sunflower (Lopez Pereira et al., 1999a,b, 2000)
and peanut (Duncan et al., 1978). These studies illustrate that crop models can assist
in the analysis of past genetic improvement in formal and informal ways by providing
a theoretical, physiological framework. Echarte et al. (2000) measured increased kernel
number for a given plant growth rate in newly released maize hybrids relative to old ones.
Their analysis is analogous to comparing the genetic coefficient maximum kernel num-
ber in the CERES-Maize crop model. Another example is shown by Lopez-Pereira et al.
(1999a,b, 2000) in sunflower. A series of open pollinated cultivars and hybrids released
to the market over six decades were compared for a series of physiological traits. Traits
that regulate sunflower phenology were genetic coefficients in controlling plant develop-
ment in OILCROPSUN (Villalobos et al., 1996). Using this framework they identified a
negative trend in total crop cycle duration associated with a reduction in the thermal time
to flowering, but no reduction for seed fill duration.
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Figure 3. Environment-standardized GGE biplot of grain yield of 18 maize hybrids (H1–H18)
grown in 266 environments over three years, stratified by environment class: High Latitude (+),
Temperate Humid (▽), Temperate (×), Temperate Dry (♦) and European Corn Borer (ECB) (�).
Percent of the total GGE variation explained by the main two principal components in parentheses.

A realistic use of crop models is to generate hypotheses and investigate causal rela-
tionship for yield improvement. Boote et al. (2001) used CROPGRO-Soybean to help
understand the physiological causes of past genetic improvement in soybean. This inverse
engineering use of crop models requires detailed data on development and growth mea-
sured in cultivars released at different times in a breeding program. Boote et al. (2001)
collected detailed growth analyses data for one old cultivar (Williams 82) and two mod-
ern cultivars (Kruger 2828 and Stine 3660) in the absence of biotic stresses. Soil water
measurements were used to verify the proper simulation of the water balance. Average dry
matter production was used to estimate a site fertility factor that helps avoid confounding
site and cultivar trait merits. Genetic coefficients were estimated for each cultivar follow-
ing the procedure outlined by Boote (1999) and Boote et al. (2001). This procedure led to
an adequate simulation of crop and seed growth (Fig. 4) for all cultivars, thus helping to
identify the causes of yield gains. Simulated yield for Kruger 2828 and Stine 3660 were
15–19% higher than Williams 82. Simulated and observed traits leading to yield improve-
ment of modern cultivars included earlier pod set, earlier seed set, longer time from
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seed to maturity and higher harvest index. Increased yield due to differences in harvest
index, biomass accumulation and leaf area duration around first seed were also reported
(Kumudini et al., 2001). However, the analyses of the genetic coefficients helped dissect
these traits and identify the physiological causes of yield gains. Modern cultivars had 30%
faster pod addition, 9% longer SD-PM, 8% higher SFDUR, 9% higher leaf photosynthe-
sis, and 10% lower leaf nitrogen remobilization. The increased dry matter accumulation
at first seed, harvest index and leaf area duration (Boote et al., 2001; Kumudini et al.,
2001) were modeled outcomes associated with changes in genetic coefficients.

Another application of crop models to understand past genetic improvement was illus-
trated by Duncan et al. (1978), using a crop modeling analyses of peanut cultivars released
over a period of 40 years of genetic improvement. They documented that yield improve-
ment was associated with increased intensity of partitioning to pods and more rapid
transition to a full pod load. The oldest peanut cultivar from the 1940s continued vegetative
growth all the way to maturity and had only 40% partitioning intensity to pods, as com-
pared to 92–98% partitioning intensity for two recently released high-yielding cultivars.
Their perspective toward the future was that peanut improvement had nearly reached the
limit of improvement toward this particular trait. Soybean cultivars, by comparison, have
nearly 100% partitioning intensity during seed fill.

These types of analysis of traits using crop models can point the way for future genetic
improvement. Crop models not only provide better insight of past genetic improvement,
but also can provide a view on whether further changes in particular traits associated

Figure 4. Growth dynamics for seed and total crop mass of new soybean cultivars Kruger 2828
and Stine 3660 compared to old cultivar Williams 82 at Lewis, Iowa in 1997. Simulated values are
shown in lines. (Reprinted from Boote et al., 2001. Agricultural Systems 70, 395.)
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with yield gains are likely to continue. Finally, one major value of using crop models to
understand past genetic improvement is the change in paradigm that emphasizes thinking
in terms of processes rather than states.

4. Crop model use to design new cultivars

One application of models in plant breeding is through the design of ideotypes for a target
population of environments (Boote and Tollenaar, 1994; Kropff et al., 1995; Hammer et al.,
1996). Plant ideotypes are those with the combination of plant traits that maximize yield in
a target environment. Crop models have been used to identify ideotypes for soybean (Boote
and Tollenaar, 1994; Boote et al., 2001), maize (Boote and Tollenaar, 1994; Boote et al.,
2001; Sinclair and Muchow, 2001), wheat (Aggarwal et al., 1997), peanut (Boote and
Jones, 1986) and rice (Kropff et al., 1995) among other crops. Individual or combinations
of model parameters within known genotypic ranges were varied to study their impact
on yield. These simulation studies identified traits contributing to increases in potential
yield (e.g. leaf photosynthesis, stay green, higher synchronism of fruit addition, longer
seed fill duration) and yield under drought (e.g. deeper root systems, osmotic adjustment).
Some of these findings are being corroborated by experimental data generated in managed
environments and through the comparison of hybrids and cultivars released throughout
the decades, as described in the previous section for soybean.

At the same time, simulation studies suggest the need for varying multiple traits to
attain significant, albeit modest, increases in yield. In reality, breeder’s direct selection
for higher yield would naturally be due to multiple traits. For example, to simulate a
genetic gain of 10% in soybean, Boote et al. (2001) had to simulate genetic modifications
in growth habit, seed fill duration and leaf maximum photosynthesis. The need for multi-
ple traits led researchers to seek alternative methods to design ideotypes. Early work by
Aggarwal et al. (1997) used Monte Carlo simulation to generate a relatively large number
of cultivar-specific parameter combinations in rice in order to search for those combina-
tions that maximized potential yield in irrigated tropical environments. Aggarwal et al.
(1997) generated 500 hypothetical genotypes by resampling combinations of parameters
that varied 20% around the value estimated for a reference cultivar IR72. In this study, as
in other similar research (Paruelo and Sala, 1993; Kropff et al., 1995; Hammer et al., 1996;
Sinclair and Muchow, 2001), parameter controlling crop traits were considered stochastic
and independent. This research found that no trait individually or in combination offered
more than a 5% increase in yield in the simulated breeding program. Similarly, Boote
et al. (2003) showed more response to certain traits, when placed in good management
(high population and narrow row spacing) and high carbon dioxide environment, than in
poor management or environment. Ideotype design must hence include not only infor-
mation about the target population of environments, but also about the management of
the crop to account for the genotype × management interactions. Hammer et al. (1996)
acknowledged these problems and proposed a method for ideotype design that linked a
sunflower model with a simplex algorithm to optimize crop traits and its management for
a given environment. This numerical optimization method searched effectively the genetic
coefficient space. In this particular case, the response surface was smooth enough for local
search algorithms to provide solutions close to expected global optima. However, these
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conditions may not be met (Royce et al., 2001) due to the complex interactions between
physiological processes, crop management and the environment.

There are often non-linear correlations between genetic traits, or considered in terms
of physiology, there are connections between morphological traits and process traits. For
example, a thicker leaf causes higher leaf photosynthesis, but lower leaf area. Ignoring
correlations between genetic coefficients and designing ideotypes by selecting combina-
tions of physiological model parameters under the assumption of independence can lead
to (a) infeasible combinations of traits, and (b) local maximum yield. Little attention has
been paid to this important problem, however. Boote et al. (2001) illustrated the impli-
cations of ignoring correlations between genetic coefficients (pleiotropic effects). Early
research showed a strong correlation between maximum photosynthesis and leaf-specific
leaf weight (SLW) (Dornhoff and Shibles, 1970). Boote et al. (1994, 2001, 2003) con-
ducted a sensitivity analyses in which grain yield variations were recorded for variations in
the genetic coefficients LFMAX and SLAVAR when these coefficients were varied inde-
pendently and when considering the appropriate coupling between parameters. In the
presence of coupling between increased SLW and leaf photosynthesis, the yield response
to increasing leaf photosynthesis (via SLW) rapidly reaches an asymptote (Fig. 5). This
response is caused by the negative feedback between SLW and LAI, and therefore light
interception. In contrast, in the absence of coupling, seed yield continues to increase with
increasing maximum leaf photosynthesis. However, trait “interaction” with environment
and management (narrow row spacing, high sowing density, high fertility or elevated car-
bon dioxide), could overcome the LAI-light interception limitation, and allow response
to increased photosynthesis even if linked to SLW, as suggested by Boote et al. (2003).
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Figure 5. Simulated soybean yield as a function of variation in leaf Pmax, attributed to inherent
rate (no change in SLW), or attributed (coupled) only to SLW, over 17 rainfed seasons at Ames,
IA. Horizontal bar represents feasible genetic range for Pmax about the mean of reported literature
values. (Adapted from Boote et al., 2003. Agronomy Journal 95, 32–51.)
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5. Crop models that incorporate gene information

A major challenge in plant breeding is making inferences about how a given genetic
material, a commercial hybrid, an F1 topcross or an ideotype we are interested in creating,
will perform over the TPE. Crop models could allow us to make informed quantitative
predictions over yield trials and TPE based on local experimental results and sensitivity
analyses (Fig. 6a). Achieving this capability depends on a number of factors, including how
well physiological mechanisms controlling the phenotypic variation are represented in the
model and the accuracy with which model parameters that capture the genetic variation
are estimated. Considering a crop model developed using a sound physiological basis,
parameter estimation becomes a limiting factor for model application to plant breeding.
Most genetic coefficients are seldom measured directly. Expensive experimentation may
be required to measure some genetic coefficients, and that makes this practice difficult
to use for large numbers of genotypes. One way to make crop models more useful for
plant breeding applications is to include more basic information on the genetic makeup
of specific cultivars.

Advances in agricultural genomics can facilitate the inclusion of genetic information in
crop models. New technologies developed in agricultural genomics allow us to perturb one
of many functions in an organism (Valenzuela et al., 2003), monitor whole-genome gene
expression (Brown and Botstein, 1999), protein concentrations (Ghaemmaghami et al.,
2003), protein modification dynamics (Raghothama and Pandey, 2003) and large numbers
of metabolite concentrations (Weckwerth, 2003). Gene mapping technologies have also
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evolved allowing us to have more precision in identifying genomic locations associated
with plant traits (Syvänen, 2001; Darvasi and Pisanté-Shalom, 2002). It is now possible
to make use of such information to help parameterize crop models and make them more
useful for plant breeding purposes.

Figure 6b shows how this approach can operate. At the molecular level, genes and
QTL-associated markers are identified for each cultivar through laboratory techniques.
Relationships between gene combinations and crop model genetic coefficients are devel-
oped through field research (see below). These relationships are the core of the parameter
model, which is used to estimate coefficients in the crop model. Some authors proposed
terms such as meta-mechanisms (Hammer et al., 2002, 2004; Tardieu, 2003) and gene-
based modeling (White and Hoogenboom, 1996) to refer to the parameter model and to
acknowledge the empirical nature of the approach, yet highlight the causal link between
the genetic controls and the physiological process. This approach follows the philosophy
of modeling hormone effects without simulating hormone action (de Wit and Penning
de Vries, 1984) and iterative model building. Then, these cultivars can be simulated for
different target environments and management practices to predict performance, optimize
cultivar choice, design ideotypes and simulate breeding strategies.

This procedure allows improving the links between genes and plant traits, thus better
representing epistatic and pleiotropic effects, yet maintaining phenotypic predictability.
By linking genetic information to processes mediating physiological responses to the
environment we can simulate explicit genotype by environment interactions. White and
Hoogenboom (1996) developed the first gene-based crop model, Genegro; a process-
oriented model that incorporated effects of seven genes affecting phenology, growth habit
and seed size of common bean (Phaseolus vulgaris L.). Genetic coefficients in Genegro
were based on the allelic configuration of a set of loci, and a set of linear functions. Gene-
gro accurately predicted dry bean phenological development but poorly explained yield
variations between sites (Hoogenboom et al., 1997). Recent improvements of Genegro
included the simulation of the effects of temperature on photoperiod sensitivity regulated
by the gene Tip, and a new function to predict seed weight (Hoogenboom and White, 2003;
Hoogenboom et al., 2004). Similar modeling approaches were used to incorporate quan-
titative trait loci (QTL) effects on leaf elongation rate in maize (Zea mays L.) (Reymond
et al., 2003), plant height, pre-flowering duration, carbon partitioning to spike, spike num-
ber and radiation use efficiency in barley (Hordeum vulgare L.) (Yin et al., 2003) (Table 1).

Gene-based crop model development is an iterative process with a core three-step
procedure (Fig. 7). The first step consists in measuring (e.g. Reymond et al., 2003) traits
for known genotypes grown in experiments or yield trials. The second step is estimating
the genetic coefficients of those data (e.g. Hoogenboom et al., 2004). The third step
is finding a parameter model that estimates the genetic coefficients using marker, and
other genetic information across all genotypes. When the parameter model uses molecular
markers as inputs and mapping algorithms (Wang et al., 2003) to predict the genetic
coefficients (e.g. composite interval mapping), the genetic coefficients are mapped in the
genome and QTL are estimated as part of the same procedure. These relationships should
be evaluated using independent data. This is particularly relevant for QTL-based models.
Most QTL studies use bi-parental populations, therefore, genetic context dependencies
are unknown. QTL models must be validated across genetic backgrounds as a condition
for model application. Here we summarize the work done by Messina et al. (2006) and
Messina (2003) for soybean to illustrate this approach.
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Table 1. Gene-based approaches to simulate crop growth and development.

Reference Crop Genetic
material

Genetic
information

Observations

Tardieu (2003),
Reymond et al.
(2003)

Corn RIL QTL Demonstrated
predictability for new
QTL combinations but
within RIL population

White and
Hoogenboom (1996),
Hoogenboom et al.
(2004)

Bean Cultivars Allelic
information
at given loci

Demonstrated
predictability across
cultivars

Welch et al. (2003) A. thaliana Mutants Gene mutation Not transferable to other
crops

Yin et al. (2003) Barley RIL QTL Valid within RIL
population

Messina (2003),
Messina et al. (2004),
Stewart et al. (2003)

Soybean NIL Allelic
information
at selected
loci

Demonstrated
predictability in
independent genetic
background

RIL – recombinant inbred line; QTL – quantitative trait loci; NIL – near-isogenic line.
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methodologies used by Messina et al. (2002) and Messina (2003).
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5.1. Experimental work and parameter estimation

Gene-based models can be developed using a number of genetic resources, including near
isogenic lines (NILs), recombinant inbred lines (RILs), mutants, transgenics or simply
plant populations for which one or many loci or pedigrees are known (Fig. 7). The impor-
tant aspect of the selection of the plant material to use is the availability of information
about their allelic makeup at loci with known effects on physiological processes. This can
involve discovering new loci or assigning new functions to known loci. Near-isogenic
lines are created by introgression of a locus or group of loci from a donor parent into
a recurrent parent of interest, and subsequent backcrossing to a recurrent parent. This
procedure leads to a set of plants with almost identical genetic background except for
the loci of interest. NILs are particularly suitable to identify and test for epistatic and
pleiotropic effects. A family of recombinant inbred lines (RILs) is created from an F2
obtained between two parental inbred lines with contrasting genetic backgrounds. The
F2 progeny is then advanced to latter generations by a program of single seed descent.
During this process, recombination is fixed and homozygosity is attained at practically
every locus. Thus, each RIL in the family represents a unique combination of the parental
alleles, and all members of a line are genetically identical to each other. Recombinant
inbred lines are created by an initial crossing between two parental lines with contrasting
genetic backgrounds followed by several cycles of self-pollination. The resulting offspring
carry several homozygous combinations of the parental alleles at each locus. Recombinant
inbred lines are commonly used for QTL studies (e.g. Reymond et al., 2003; Yin et al.,
2003), but large populations and precise measurements are required for obtaining good
estimates of the QTL effects. Recombinant inbred lines are most suitable for identifying
additive effects and have less power to identify epistatic interactions.

Messina et al. (2002) used the physiological framework in CROPGRO-Soybean (Boote
et al., 1998) to develop a gene-based approach to simulate growth and development of
soybean (herein Genegro-Soybean). Field experiments were conducted using NILs with
different allelic combinations for a set of six E loci (E1, E2, E3, E4, E5, E7) (step 1, Fig. 7).
These loci were known to regulate time to flowering and maturity responses to photoperiod
(Cober et al., 1996, 2001). The developmental phenotypes of the NILs were recorded under
two contrasting daylength at the same site; this was accomplished with two sowing dates.
Plant development was measured at several stages, emergence, first flower, first small
pod, last small pod, first seed and physiological maturity. Genetic coefficients CSDL
(critical short daylength), PPSEN (photoperiod sensitivity), EMFL (photothermal time
to flowering), FL-SD (photothermal time to first seed), FL-PM (photothermal time from
flowering to physiological maturity), VI-JU (photothermal time duration of the juvenile
phase), and R1PRO (post-flowering reduction in CSDL) were estimated for each NIL
using inverse modeling, as described by Mavromatis et al. (2001) (step 2 in Fig. 7).
(See Chapter 4 for more information on parameter estimation.)

5.2. Parameter models from known gene combinations in genotypes

There are several statistical methods to model associations between genotypes and genetic
coefficients. In Genegro-Soybean the parameter models are linear models estimated
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using regression. For example, in the case of a single gene with two alleles,

GCi = a + b · L

where GC is the genetic coefficient controlling the physiological process i. The variable L

indicates which allele of the given loci gene is present. This variable can take a value of 1
or 0 for dominant and recessive alleles, respectively. Different degrees of dominance can
be modeled by letting L vary continuously between 0 and 1, or between –1 and 1 as used in
Falconer and MacKay (1996). Parameters a and b are estimated through linear regression.
An example of this model in Genegro-Soybean is represented by the function describing
the effects of E3 on R1PRO, the reduction in photoperiod sensitivity after flowering:

R1PRO = 0.24 + 0.13E3 (R2 = 0.69)

Genes that affect more than one trait or physiological process, are said to have
pleiotropic effects (MacKay, 2001). Additional equations are used to model pleiotropic
effects, for example,

GCi = a + b · L

GCi+1 = c + d · L

where GCi+1 is the genetic coefficient for a different trait, c and d are regression param-
eters and L is the same allele for both equations. Pleiotropy is common in physiological
traits expressed at the crop level. In soybean, the gene dt controls the type of growth habit
the soybean plant is going to have – determinate vs. indeterminate. The time between the
appearance of the first flower and that of the last node in the main stem (FL-VS) or the
end of leaf area expansion (FL-LF) is shorter in determinate (Dt / 1

H ) than in indeterminate
(dt/dt) soybeans. Boote et al. (2001) estimated that on average, the Dt allele shortens
FL-VS from 26 to 6 physiological days, and FL-LF from 26 to 18 physiological days.
It also increases the rate of pod addition (1/PODUR) by about 33%.

The vast majority of agronomic traits are complex and polygenic (Daniell and Dhingra,
2002; Stuber et al., 2003). In their simplest form, the effects of multiple genes or loci on
a trait can be represented by additive effects,

GCi+2 = a + b · L + c · L1

For example, in Genegro-Soybean, the photothermal time between the crop emergence
and flowering is regulated by E1 and E3,

EM-FL = 20.77 + 2.1E1 + 1.8E3 (R2 = 0.78)

Interactions among loci or between genes and environmental factors make a substan-
tial contribution to variation in complex traits (Carlborg and Haley, 2004). When one
or more genes influence the effects of other gene(s) we refer to this interaction as
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epistasis (MacKay, 2001). In linear models, epistasis can be represented as the product of
interacting genes,

GCi+3 = a + b · L + c · L1 + d · L · L1

The genetic coefficient PPSEN in Genegro-Soybean is an example of epistasis between
E loci. The E1 locus interacts with all other E loci as shown by the term E1 · NLOCI in
the Genegro-Soybean model equation to estimate the genetic coefficient for photoperiod
sensitivity (PPSEN):

PPSEN = 0.11 + 0.063 NLOCI + 0.58E1 − 0.13E1 · NLOCI (R2 = 0.70)

Epistasis becomes an important issue when modeling complex traits using QTL analy-
sis, as the opportunity for identifying epistatic effects not only increases but also does the
uncertainty associated with them. Methodological requirements often cause researchers
to neglect epistasis in complex trait studies (MacKay, 2001; Carlborg and Haley, 2004).
The power to detect epistasis between QTL in mapping populations is low for a number of
reasons. The number of interactions increases with the number of genes controlling a trait.
Often, after adjusting the significance threshold for the multiple statistical tests involved in
searching for epistatic interactions, only extremely strong interactions remain significant
(MacKay, 2001). Several statistical models were developed to address these problems in
QTL analysis (e.g. Lander and Schork, 1994; Doerge et al., 1997; Carlborg and Haley,
2004). From an experimental point of view, this implies phenotyping an increasing num-
ber of individuals carrying many of all possible combinations of genes controlling the trait
in different genetic backgrounds so that spurious correlations are minimized; even large
mapping populations contain few individuals in the rarer two-locus genotype classes.

5.3. From loci-based model to a molecular marker-based model

Genegro-Soybean was developed using information about Mendelian loci. Cultivars car-
rying the gene Fin or dt can be easily recognized by their phenotype. The tagging of a
locus controlling a trait of agricultural importance was first described by Sax (1923) who
reported linkage between a phenotypic marker controlling pigmentation in seed coat of
common bean and a locus controlling seed size. In fact, extensive linkage maps were con-
structed with phenotypic markers during most of the twentieth century. However, practical
applications of these maps are very limited as almost all loci were identified by reces-
sive mutant alleles. Another limitation of phenotypic markers is that they are not always
reliable predictors of the genotype. For instance, different soybean cultivars can display
the same phenotypic photoperiodic response with different allelic combinations at E loci.
Genotypic characterization of these cultivars would only be possible by genetic analysis.
Therefore, a reformulation of the model is needed to use information about the genotype
that is relatively easy to obtain (step 3, Fig. 7). Molecular markers provide the means for
cultivar genotyping and molecular maps allow us to select those markers closely linked
to the gene of interest. Then, the parameter models will take the form,

GCi+3 = a + b · MM1 + c · MM2 + d · MM1 · MM2
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where MM are molecular markers. Their values will depend upon the effect of the loci
with which they are associated and the mode of gene action. For example, MM associated
with E1 will take a value of 1, while the MM allele corresponding to e1 will take a value
of 0. In Genegro-Soybean, Messina (2003) estimated EM-FL by replacing the alleles at
E1 and E3 by the alleles for the microsatellites Satt357 and Satt229,

EM-FL = 20.77 + 2.1 Satt357 + 1.8 Satt229

This approach was used to genotype commercial cultivars and predict growth and develop-
ment under different conditions. To test Genegro-Soybean, cultivars were genotyped using
simple sequence repeats (Akkaya et al., 1992; Ellegren, 2004) (microsatellites) at marker
loci closely linked to E loci and QTL regulating soybean development. Genegro-Soybean
predicted 75% of the variance in the time to maturity and 54% of the yield variance in
variety trials conducted in Illinois (Messina, 2003; Messina et al., 2004, 2006). This result
shows that gene-based approaches can reduce expensive and time-consuming experimen-
tation for model parameterization. It also demonstrates that gene-based approaches have
potential to design cultivars in silico, provided there is a careful validation of the model
across genetic backgrounds.

Various molecular marker types include allozymes (Tanksley and Orton, 1983), RFLP
(Restriction Fragment Length Polymorphism) (Botstein et al., 1980), RAPD (Random
Amplification of Polymorphic DNA) (Williams et al., 1990), SSR (Simple Sequence
Repeat), AFLP (Amplified Fragment Length Polymorphisms) (Vos et al., 1995) and SNP
(Single Nucleotide Polymorphism) (Syvänen, 2001). The selection of molecular markers
for use in gene-based models can restrict the portability of the model to other cultivars and
genetic backgrounds for a species. Markers sensitive to ploidy level should be avoided in
polyploidy species (e.g. wheat) or ancient polyploids (e.g. soybean) as the same marker
cannot differentiate between members in a gene family. Codominant markers are necessary
only in species of interest, as on hybrids (e.g. Maize). Locus specificity dictates the
portability of a gene-based model. For example, a gene-based model that uses RAPD or
AFLP markers as variables in the parameter models has a limited scope and domain of
application. Inferences can only be made within the plant population used for developing
the model (e.g. Yin et al., 2003).

6. Use of gene-based crop models in plant breeding applications

Availability of gene-based models can improve the efficiency of breeding programs. Plant
breeders may not need to rely entirely on extensive field trials to fit model parame-
ters for each cultivar, a major limitation for crop model application in plant breeding
(White, 1998). But they can concentrate their efforts in conducting directed experimenta-
tion to develop the parameter model that adequately accounts for epistatic and pleiotropic
effects. Gene-based crop models have the potential to predict the performance of a cul-
tivar over the multiple environment trials and TPE (Fig. 6). In cases where the cultivar
is already available, crop models can help identify those environments where it is best
adapted. It can also be a synthetic cultivar generated through the combination of different
alleles at a given set of loci. Synthetic cultivars could be created and evaluated through
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computer simulation for many possible or target environments. Pattern analyses (Cooper
and DeLacy, 1994) can help identify positive GEI interactions and thus help optimize the
structure of testing sites. Gene-based models can predict phenotypes for a given geno-
type generated at each stage of a simulated breeding program. In summary, crop models
can help us maximize the efficiency of the breeding strategies through simulation and
optimization (Chapman et al., 2003).

6.1. Using gene-based crop models for ideotype design

Gene-based crop models can account for some of the epistatic and pleitropic effects
described above. Messina (2003) compared soybean ideotype design using the Genegro-
Soybean model with that obtained using the original CROPGRO-Soybean model (Boote
et al., 1998). He used a robust optimization method that has characteristics somewhat
analogous to the plant breeding process (simulated annealing (SA)). This algorithm was
developed for solving large complex functions in combinatorial optimization problems
(Kirkpatrick et al., 1983). It evaluates many combinations of parameters and compares
each new combination of parameters with all combinations in the set. One analogy with
the plant breeding process is that many genotypes are retained in a breeding program and
new breeding lines are compared with this set in target environments. The objective func-
tion in plant breeding is typically maximum yield over a number of target environments.
In the simulated annealing method, optimization involves selecting a new combination
of parameters that lead to a higher or more stable yield at each step in the algorithm.
This new combination may be retained, depending on how many combinations are being
kept in the set. At first, many combinations are retained in the search process, but as the
value of the objective function converges to its highest value, the number of combinations
retained is decreased. Plant breeding uses a selection process that searches for genotypes
that produces the highest yield in a similar manner.

Simulated annealing allows search of the parameter space in continuous and discrete
domains and is robust to discontinuities in the objective function (Goffe et al., 1994).
It includes checks for global optima and bounds to restrict the search to a subset of the
parameter space. In plant breeding, one seeks to maximize the objective function,

f = max

∑

i

wiE(Y )i

where, wi is the weight given to a certain environment class i, and E(Y )i is the expected
yield in that environment. In the simplest case, f is a simple average across environments
in the TPE. The SA algorithm starts by estimating the value for the objective function
(e.g. average simulated crop yields over the TPE) at a given initial combination of parame-
ters X, an n-dimensional vector; in the application to plant breeding X is a vector of genetic
coefficients of genes. A second evaluation f ′ is made at X′ by varying the ith element,

x′
i = xi + rvi (1)

where r is a uniformly distributed random number and vi is the step length for parameter
xi . In maximization problems, if f ′ is greater than f, then X′ replaces X, and the algorithm
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moves uphill. If this combination of parameters produces the largest value of f, then both
X and f are recorded as the best current value of the optimum. When f ′ is lower or equal
to f, the Metropolis criterion (Eq. 2) is used to decide acceptance of X. The Metropolis
criterion is based on a simplified Boltzman probability distribution,

p =
exp (f ′ − f )

Φ
(2)

where probability p is compared with a uniformly distributed random number pr . If p is
greater than pr then X′ is accepted and the algorithm could temporarily move downhill.
Both, the difference between function values and Φ, affects the probability of accepting
downhill movements. At the beginning the user defines the parameter Φ high enough such
that there is a wide sampling of the function. As the optimization progresses, Φ gradually
decreases based on the function,

Φ ′ = rΦΦ (3)

where rΦ [0,1] controls the rate at which the algorithm (a) increases the probability of
rejecting non-optimal steps, and (b) narrows the search to the neighborhood of the current
best solution. Φ ′ is the updated parameter after each time the function is computed. Low
initial Φ and rΦ can lead SA towards local optima. Adequate initial values for Φ are
such that the parameter space is fully sampled at the beginning of the simulation process.
Values of rΦ greater than one will gradually increase Φ and the breadth of the sample
space. Corana et al. (1987) showed that a value of 0.85 for rΦ is adequate to avoid local
optima in complex problems. The algorithm ends by comparing the last Nε values for the
largest function values, where ε denotes a subjective small difference.

Messina et al. (2004) used this methodology to design ideotypes for five target envi-
ronments in Argentina. Environments differed in magnitude and timing of drought stress.
For every environment, the coupled model found ideotypes yielding at least 40% more
than actual varieties grown in the region and fourfold higher than estimates from pre-
vious studies that used local sensitivity analyses (Fig. 8). When the Genegro-Soybean
model was used, Messina et al. (2004) found that ideotypes yielded less than the one
optimized using the CROPGRO-Soybean model. By restricting combinations of genetic
coefficients to those that could be obtained through known combinations of loci, yield
gain was less than that obtained when all coefficients were varied independently (Fig. 8).
Thus it is clear that ideotype design needs to account for correlations among genetic coef-
ficients due to pleiotropic effects and epistasis. These effects are commonly ignored in
ideotype design (e.g. Hammer et al., 1996; Aggarwal et al., 1997; Sinclair and Muchow,
2001), misrepresenting the ideotype capacity of adaptation to the environment. If these
effects are ignored, the optimization process can lead to infeasible solutions. Gene-based
models can increase the realism of the ideotype by selecting infeasible combinations
of traits and overestimating genetic gains. Gene-based models however, are not avail-
able for all crops and all traits for a given crop. Application of traditional crop models
in combination with global optimization may assist genetic improvement despite their
limitations.
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Figure 8. Probabilities of exceedence of simulated yields for a reference cultivar (control), an
ideotype designed using SA and (a) CROPGRO (−E loci), and (b) Genegro-Soybean (+E loci).
Simulated over 10 years in Argentina.

6.2. Other applications of crop models in plant breeding

Sensitivity analyses have been useful to evaluate all genotypes resulting from a relatively
low number of genes of interest. Hoogenboom et al. (2004) used CSM-Genegro model to
show how specific genes and gene combinations at seven loci can simulate yield and yield
variability for four sites in major bean production areas in the USA under actual and pos-
sible global change scenarios. To facilitate examining multiple traits across genotypes and
temperature regimes, simulation outputs were plotted as pseudo-maps using ArcMap 8.2
(Environmental Systems Research Institute, Inc., Redlands, California). Phenotypic traits
or environments were plotted as rows and genotypes as columns in a matrix arrangement.
This technique allows the rapid identification of best genotypes and the causes responsible
for the GEI.

The biplot graphic display (Gabriel, 1971) is another methodology that can be used
to visualize and identify GEI patterns (Cooper and Delacy, 1994) in a simulated multi
environment trial. Figure 9 shows a biplot of simulated yield results for soybean. Soy-
bean yields were simulated using Genegro-soybean for 32 combinations of five E loci
in six locations in Illinois, USA, over five years. Locations were classified according to
the latitude (high, mid- and low latitudes). Other outputs generated by the model could
be used to improve this classification (e.g. water stress, temperature, Fig. 1). By looking
at the orthogonal projection into the environment vectors, it can be shown that geno-
types e1e2E3e4E5, e1E2E3e4E5 and E1e2e3e4e5 are best adapted to high, mid- and low
latitudes, respectively. These genotypes represent a gradient of photoperiod sensitivity;
E1e2e3e4e5 was the most sensitive in the set. Higher photoperiod sensitivity is required
in a lower latitude environment for the genotype to fully explore the growing season,
maximizing the capture of resources such as light, nitrogen and water. Genotypes too
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Figure 9. Environment-standardized GGE biplot of seed yield for a set of synthetic soybean isolines
differing only in the E loci (E1 through E7) makeup. Simulations were conducted with Genegro-
Soybean for six environments over five years in Illinois. Environments were stratified by latitude.

sensitive to photoperiod such as E1E2E3E4e5 have low yields due to delayed maturity
and freeze damage. Note that the projection of this genotype in any of the environment
vectors falls opposite to the projections of best-adapted genotypes. The Biplot can help
to rapidly identify positive GEI for further study.

Either sensitivity analyses or optimization can be used to characterize ideotypes by
their genotypes. However, a second optimization may be necessary to create an ideotype
by gene pyramiding (Bertrand et al., 2004). Servin et al. (2004) proposed an algorithm
to create ideotypes, by combining into a single genotype a series of target genes coming
from different parents. In other words, the procedure searches for the succession of crosses
over a number of generations that produces the optimal pedigree corresponding to the best
gene-pyramiding scheme.

Gene-based models can assist in the optimization of breeding strategies via com-
puter simulation. This application of crop models to plant breeding is now feasible
due to the availability of high-speed computers and critical developments in modeling
quantitative genetics and plant breeding programs, more specifically the development of
QU-GENE (Podlich and Cooper, 1998). QU-GENE was developed on the basis of the
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E(N:K) framework as a simulation platform for the study of genetic models. The E(N:K)

framework allows the definition of a family of genetic models based on the frequencies of
environments (E) occurring in the TPE, the number of genes (N) in the genetic network
and the degree of gene interaction or epistasis (K). QU-GENE combines deterministic
and stochastic features of both linear and adaptation landscape models. The stochas-
tic components in QU-GENE allow the simulation of gene recombination, segregation
of genes based on map distances and the search for genotypes with highest fitness in
the adaptation landscape. Note the analogy between this component in QU-GENE and
optimization algorithms. Linear models are the basis to predict phenotypes from genotypes
using conventional quantitative genetic models. Thus, there is no biophysical connection
between genotypes and phenotypes. Specific modules in QU-GENE allow the simula-
tion of alternative breeding strategies: (a) mass selection, (b) pedigree and single-seed
descent, (c) double haploid, (d) S1 recurrent selection and (e) half-sib reciprocal recur-
rent selection, by managing the creation, evaluation and selection of genotypes within the
breeding program.

Dynamic simulation biophysical models of plant growth and development (Jones et al.,
2003; Keating et al., 2003; van Ittersum et al., 2003) can be used to predict phenotypes for
environments in the TPE or MET using genotypic information generated by QU-GENE,
and parameter models of the form presented in section 5.2 (Fig. 6). Under this scheme,
epistasis and GEI are emergent properties of the dynamics of the crop simulation model.
Further statistical analysis using QU-GENE would determine the best-adapted genotypes
based on simulated yield, and these would be carried forward during the simulation of
the breeding program. Chapman et al. (2003) demonstrated this approach using Sorghum
breeding for dry land environments in Australia as a case study. This particular implemen-
tation used APSIM-Sorg (Keating et al., 2003) to predict sorghum yields for six locations
and 108 years. Their parameter model included four traits: transpiration efficiency, flower-
ing time, osmotic adjustment and stay green. The parameter model was developed mainly
on expert knowledge due to the limitations on the current understanding of genetic control
of the traits. However, this study conducted to demonstrate the feasibility of the approach
if such information was available, proved useful to demonstrate: (a) the potential for study-
ing the dynamics of breeding programs via biophysical and quantitative genetic modeling
and simulation, (b) that additive effects at the trait level can give rise to complex epistatic
and GEI effects at the physiological/crop level, and (c) an approach to design ideotypes,
which is the last genotype at the end of the simulation of the breeding program.

7. Discussion

Crop models can assist plant breeding by integrating physiological and biochemical under-
standing, agronomic practices, the environment and genetic information. Use of such
models in plant breeding will increase for characterizing environments, for assessing the
value of putative traits, for understading adaptation and for designing improved plant
types. They will also be used for integrating knowledge and promoting discussion among
researchers across disciplines and, as a means to make inferences from experimental
plots to the TPE. Advances in plant genetics, genomics, biochemistry and allied fields
offer opportunities for improving the representation of growth and development process.
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We presented a simple methodology based on linear equations to link genes to crop model
parameters. Future approaches could improve sub-models using more complex representa-
tions of gene action. Crop models, by representing plants as systems in a modular manner,
will provide the necessary organized framework to incorporate the new representations,
yet retaining the required predictability necessary for plant breeding applications.
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1. Introduction

A corn crop model was developed with the intention of coupling it with a decision model
in order to evaluate irrigation strategies for corn. The decision model is described in
Chapter 19, and the uses of the combined model are also presented therein. This chapter
presents information about parameter estimation and evaluation of the crop model.

Section 2 describes the model very briefly and presents the data used for parameter
estimation. Section 3 describes how the model parameters were estimated. Section 4
presents an evaluation of the parameterized model, based on comparisons with the data.
Conclusions are presented in Section 5.

2. Model and data

The state variables in the model are thermal time, leaf area index, fraction senescent
leaves, aboveground biomass, rooting depth, harvest index and soil water in 4 soil layers.
Thermal time is used to calculate development stage and potential leaf area increase. Total
and senescent leaf area index are used to calculate radiation interception which in turn is
used to calculate potential biomass increase. Rooting depth defines the soil depth from
which the plant can extract water. Soil moisture in the root zone is used to calculate
the daily ratio of actual to potential transpiration, and from that ratio, stress factors are
calculated which reduce the daily increases in leaf area index, biomass and harvest index.
Nitrogen stress is not taken into account. Final aboveground biomass times final harvest
index gives yield. The model equations can be found in Wallach et al. (2001).

Over the last few years, a fairly large number of experiments comparing irrigation
treatments for corn have been carried out in southwest France. As many as possible of
these data were collected into a database to serve as the basis for parameterization and
evaluation of the model. The data span the period from 1986 to 1997 and come from
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16 different locations. Overall there are 181 different situations (i.e. site-year-treatment
combinations). Crop management in all these experiments was based on recommended
practices except for irrigation, which was varied to cover a range of strategies.

Yield data were available for every experimental situation, and final biomass for most.
For most situations there were also several measurements of leaf area index and biomass
during the growing season. Unfortunately, there were very few soil water measurements
available and so these data were not used.

3. Parameter estimation

Parameter estimation for this model is described in Wallach et al. (2001). There are
24 parameters in the model. No attempt was made to estimate all parameters from the
available data. It was felt that this would not be a good idea. Not only is the number
of parameters fairly large, but also certain parameters are only remotely related to the
measured data and so would be very poorly estimated.

The parameter estimation procedure consisted of 4 steps.

(1) An initial value was assigned to each parameter, based on information in the
literature or on an informed guess.

(2) A criterion MSEm of model fit to the data was defined. The criterion takes into
account model errors with respect to yield, aboveground biomass and leaf area
index. The smaller the value of the criterion the better the fit of the model to
the data.

(3) A forward regression procedure was used to create an ordered list of parameters
to be adjusted to the data. First, each parameter was adjusted individually to the
data. The parameter that gave the smallest value of MSEm was the first parameter
in the list. Next all combinations of this first parameter and one other were adjusted
to the data. The combination that gave the smallest value MSEm gave the second
parameter in the list. The procedure was continued until the best four parameters
to adjust were identified. At the end of this step we had four candidate models,
corresponding to the model with 1, 2, 3 or 4 adjusted parameters. We could have
extended the list to include more parameters but this is not necessary as shown by
the next step.

(4) Cross validation was used to estimate prediction error for each candidate model.
The final model chosen was that with the smallest estimated prediction error.

The criterion of model fit for the model with estimated parameter vector θ̂m is

MSEm =
wY

N

N
∑

i=1

MSEY,i(θ̂m) +
wB

NB

NB
∑

i=1

MSEB,i(θ̂m) +
wL

NL

NL
∑

i=1

MSEL,i(θ̂m) (1)

where

MSEY,i(θ̂m) = [yi − ŷi(θ̂m)]2
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MSEB,i(θ̂m) =
1

MB,i

MB,i
∑

j=1

[bij − b̂ij(θ̂m)]2

MSEL,i(θ̂m) =
1

ML,i

ML,i
∑

j=1

[lij − l̂ij(θ̂m)]2

The first term in the criterion refers to yield, the second to biomass and the third to leaf area
index. The weightings are wY = σ−2

Y , wB = σ−2
B and wL = σ−2

L , where σ 2
Y, σ 2

B and σ 2
L are

the empirical measurement variances based on replicates, for yield, biomass and leaf area
index, respectively. N is the total number of situations, and NB and NL are the number of
situations with at least one biomass or leaf area index measurement. In MSEY,i(θ̂m), yi and
ŷi are respectively observed and calculated yields for the ith situation. MSEB,i(θ̂m) is the
squared error for biomass estimation, averaged over all the MB,i biomass measurements
for situation i. Here bij and b̂ij are respectively observed and calculated biomass values for
the jth biomass measurement date in the ith situation. The term for the average squared
error for leaf area index estimation is analogous. ML,i is the number of leaf area index
measurements in situation i and lij and l̂ij are respectively observed and calculated leaf
area index values for the jth measurement date in the ith situation. If there are no biomass
or leaf area measurements for a situation, then the corresponding mean squared error is
set to 0.

In generalized least squares, the criterion to be minimized includes the variance–
covariance matrix between errors for different measurements. In the present case that
would involve estimating the covariances between yield, biomass at various dates and leaf
area index at various dates. Instead, we chose to use the simplified criterion of Eq. (1).
This criterion weights each type of measurement by the inverse of the measurement error
variance but ignores covariances between different types of measurement. Furthermore,
no attempt is made to estimate covariances between different dates for the same type of
measurement. Rather, the criterion uses the squared error averaged over all measurements
of a given type for each situation.

The cross validation estimate of prediction error for the combined criterion of Eq. (1),
noted M̂SEPm, is calculated as

M̂SEPm =
wY

N

N
∑

i=1

MSEY,i(θ̂m,−i) +
wB

NB

NB
∑

i=1

MSEB,i(θ̂m,−i)

+
wL

NL

NL
∑

i=1

MSEL,i(θ̂m,−i)

where θ̂m,−i is calculated in the same way as θ̂m but excluding the data from situation i

and from situations from the same site and/or year.
Table 1 shows the results of the forward regression procedure and the estimated

mean squared error of prediction M̂SEPm values. As expected, MSEm decreases systema-
tically as more parameters are adjusted to the data whereas M̂SEPm has a minimum.
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Table 1. The candidate models with different numbers of adjusted parameters. The model chosen
is that with 3 adjusted parameters.

Number of
parameters
adjusted

0 1 2 3 4

Names of adjusted
parameters

– p2logi p2logi,
r2hi

p2logi, r2hi,
himax

p2logi, r2hi,
himax,
p2evap

√

MSEm 10.72 9.15 8.01 7.68 7.49
√

M̂SEPm 10.72 9.55 8.39 8.20 8.34
√

M̂SEPY,m (t/ha) 2.48 2.17 1.68 1.50 1.57
√

M̂SEPB,m (t/ha) 2.31 2.35 2.36 2.30 2.38
√

M̂SEPL,m 1.17 1.0 0.95 1.01 0.99

The minimum occurs with 3 adjusted parameters and therefore this is chosen as the
candidate model.

We are interested in prediction not only of the combined criterion but also individually
of yield, biomass and LAI. The estimated mean squared errors of prediction for these
quantities, noted respectively MSEPY,m, MSEPB,m and MSEPL,m are also given in Table 1.

The use of cross-validation is meant to avoid over-parameterization, i.e. estimating
more parameters than the number that minimizes prediction error. However, using esti-
mated MSEP values to choose among candidate models creates a “selection bias”. This
is easily understood if we imagine selecting one model from among several, all with
the same true value of MSEP. The estimated MSEP values will in general be different
because of estimation error. By construction we will choose the model with the smallest
MSEP value. That is, the selection procedure leads us to choose an MSEP value that is
underestimated, though it is difficult to know by how much.

4. Comparison with data

We now have a model with its estimated parameters, as well as estimates of prediction
error. We would however like to go further in the analysis of model quality, in order to
try to determine the major causes of model error. This should help to guide future efforts
toward model improvement. This leads us to examine in detail the comparison between
calculated and measured values.

4.1. Contributions of errors in yield components to errors in yield

Yield can be written as the product of final biomass and final harvest index. The first
question concerns the relative importance of errors in these two terms. Let ry,i = yi − ŷi

be the model error in predicting yield for situation i, rf ,i = fi − f̂i the error in predicting
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Table 2. Average absolute error
in yield prediction and for the
individual terms in Eq. (2).

Term Value

1
N

N
∑

i=1

∣

∣ry,i

∣

∣ 1.09

1
N

N
∑

i=1

∣

∣hirf ,i

∣

∣ 0.84

1
N

N
∑

i=1

∣

∣firh,i

∣

∣ 0.54

1
N

N
∑

i=1

∣

∣rf,irh,i

∣

∣ 0.09

final biomass for situation i, where fi and f̂i are respectively measured and calculated
final biomass values for this situation, and rh,i = hi − ĥi the error in predicting final
harvest index, where hi and ĥi are respectively measured and calculated final harvest
index values for situation i. Then it can easily be shown that

ry,i = yi − ŷi = (fihi − f̂i ĥi) = hirf ,i + firh,i − rf ,irh,i (2)

Table 2 shows the average absolute value of each of the three terms on the right hand
side of the equation. The first term, proportional to the error in final biomass, is somewhat
larger than the second term which depends on the error in final harvest index, but both
terms are appreciable. The conclusion is that it is worthwhile to work on reducing both
errors. The third term, the interaction term, is small.

4.2. First analysis of errors

Table 3 shows for each output the mean squared error (MSE), the three terms the sum
of which is equal to MSE (squared bias, SDSD and LCS) and the modeling efficiency
(see Chapter 2).

Table 3. Mean squared error (MSE), the three terms in its decomposition (squared bias, SDSD and
LCS) and modeling efficiency (EF) for various model outputs.

MSE Bias2 SDSD LCS EF

Yield 1.96 0.003 (0%) 0.25 (13%) 1.71 (87%) 0.56
Final biomass 5.53 0.23 (4%) 0.20 (4%) 5.09 (92%) 0.71
Harvest index 0.00706 0.00053 (7%) 0.00602 (85%) 0.00051 (7%) −0.016
Biomass, all dates 3.36 0.18 (5%) 0.12 (4%) 3.06 (91%) 0.92
LAI, all dates 0.63 0.02 (3%) 0.06 (9%) 0.56 (89%) 0.78
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The most arresting feature is the problem with harvest index. The modeling efficiency
is very low, so that the model is in fact slightly worse than just using the average of all
measurements as a predictor. It is the SDSD term that makes the major contribution to the
mean squared error. This indicates that the overall variability is very different between
observed and calculated values. This is discussed in more detail below.

Figures 1 and 2 show calculated versus observed yield and yield residuals versus

observed yield, respectively. One noticeable feature of these graphs is that yield is
generally over-predicted for small yield values and under-predicted for the highest yields.
This is perhaps easier to see from the residuals (Fig. 2) than from the graph of calculated
versus observed values (Fig. 1). It is also clear that there are 3 values with very low
observed yield values, and there is severe over-prediction for all three of these situations.
The corresponding graphs for final biomass (not shown) do not show any obvious trends,
though the three situations with very low observed yields again stand out.

Figures 3 and 4 show the results for harvest index. Figure 3 shows clearly that the range
of calculated values is much smaller than the range of observed values, as already noted.
The harvest index residuals show a tendency to over-prediction for small yield values
and over-prediction for the highest yield values, similar to the results for yield (Fig. 4).
The values for the three situations with very small yields are very severely over-predicted.
The conclusion is that a good starting point for improving the model would be to try
to improve the calculation of harvest index. In particular, harvest index should be made
more variable, decreasing more in unfavorable conditions. It would also be worthwhile

Figure 1. Calculated versus observed yields.
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Model errors

Figure 2. Yield residuals versus observed yield.

Figure 3. Calculated versus observed harvest index.
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Model errors

Figure 4. Harvest index residuals versus observed yield.

to examine in detail the three situations with very small yields. For these situations, both
final biomass and harvest index are appreciably over-predicted.

Figures 5 and 6 show respectively calculated versus observed LAI values (all dates)
and LAI residuals versus observed LAI. There seems to be over-prediction for small LAI
values and under-prediction for large values. This is another systematic error that should
be investigated further. The graphs of biomass for all dates are not presented because they
do not exhibit any obvious trend.

4.3. Residuals as functions of explanatory variables

Residuals plotted against explanatory variables should not reveal any clear trends. If there
are such trends, then the effect of that explanatory variable is incorrectly specified in
the model. Crop models have literally thousands of explanatory variables (due to their
dependence on daily climate), so it is neither of interest nor feasible to study each individ-
ual explanatory variable. For the climate explanatory variables, we use summary variables
related to average climate over part or all of the growth period.

4.3.1. Variety

The only differences between varieties according to the model are in phenology. For
each variety the model uses published values for the thermal time between emergence and
flowering and between flowering and maturity. However, the training data cover a number
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Figure 5. Calculated versus observed LAI.
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Figure 6. LAI residuals versus observed LAI.
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Figure 7. Yield residuals versus the year of introduction of the variety.

of years, and so it was thought that there might also be an increase in average yield not
explained by phenology in going from earlier to later varieties. Figure 7 shows the yield
residuals as a function of the year of introduction of the different varieties. No clear trend
is apparent.

4.3.2. Density

The role of planting density according to the model is very simple. Leaf area index is
simply multiplied by the number of plants per unit area. No account is taken of reduced
growth per plant due to competition at high densities. This could lead to overestimating
leaf area index at high densities. The graph of LAI residuals versus density (not shown)
did not show such a trend.

4.3.3. Temperature

We defined two summary variables, namely calculated days from sowing to flowering
and calculated days from flowering to maturity. These variables measure approximately
average temperature over each period. Figure 8 shows yield residuals as a function of
days from sowing to flowering. There is no clear trend in the residuals. There was no
clear trend as a function of days from flowering to maturity either (not shown).

4.3.4. Soil moisture

The effect of soil moisture is of major importance, but analyzing the residuals as a function
of soil moisture poses two problems. First, we have very few measurements of soil
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Figure 8. Yield residuals versus days from sowing to flowering.

moisture. Second, as for temperature, we are not interested in the effects of soil moisture
for each day. We therefore defined a summary stress index, defined as the ratio of final
biomass to final biomass in the absence of water stress, using calculated values for both
terms. A stress index of 1 corresponds to no stress, and a value of 0 to no growth.

Figure 9 shows observed yield as a function of the stress index. As expected, yield
clearly increases as the stress index increases (i.e. as the effect of stress decreases).
However, the yield residuals showed no obvious trend with stress index (graph not shown).

5. Conclusions

Here, as in most crop models, there is not enough data to permit adjustment of all the
model parameters. (This despite the major effort in collecting past data, and the relative
simplicity of the model.) There is the problem of deciding which and how many parameters
to adjust, the danger being that adjusting too many parameters will lead to a model with
poor predictive ability. We based the choice of the number of parameters to estimate on the
estimated prediction error for each number of parameters. This illustrates clearly the close
connection between evaluation and parameter estimation. Parameter estimation should be
based, as far as possible, on the criteria that are important for judging model quality.

We then evaluated the agreement between the adjusted model and the data. The objec-
tive was not only to judge the quality of the model, but also to reveal specific types of



348 D. Wallach

Stress index

O
b
s
e
rv

e
d
 y

ie
ld

 (
t/
h
a
)

0.4 0.6 0.8 1.0

0
2

4
6

8
1

0
1

2

Figure 9. Observed yield versus stress index.

error that could be targeted in the next round of model improvement. The major con-
clusion here is that there is a problem in the way harvest index is modeled. The model
predicts very little variability in harvest index compared to the observed variability. That
is, it seems that harvest index is not sufficiently sensitive to conditions, and in particular
to water stress. It should be noted that the necessary correction is more fundamental than
simply adjusting a parameter, because the major parameter that determines the effect of
water stress on harvest index was among the adjusted parameters.

The analysis here shows that it is worthwhile to investigate the discrepancies between
model predictions and the data in many different ways since each representation brings
out a different aspect of model quality.
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1. Introduction

Kiwifruit is a fruiting perennial vine that only crops on new growth originating from
1-year-old stems called canes (Doyle et al., 1989). The plant is dioecious and so plots
have both male and female plants. The number of canes is adjusted by winter pruning
to get about 20–30 canes per female plant, the corresponding expected fruit number
being 700–1000 (Agostini, 1995). Numerous studies have reported a positive relationship
between seed number (up to 2000) and fruit size at harvest, which is thought to result
from the promotion of fruit cell growth by some seed-elicited hormonal factors (Hopping,
1976). A major question is how to plant and then manage a plot of kiwifruit in order to
maximize profit. Among the major management options are planting geometry, pruning
of the vines and fruit thinning. Profit is not simply related to total yield, because the
value of the crop also depends on the sizes of the individual fruits. It is thus important
to predict how the distribution of fruit size depends on management. This point does not
only concern kiwifruit but all the fruit crops where a fresh individual product is sold.
It leads to models that are very different from models of annual crops, and the nature of
the outputs leads to different requirements for model evaluation.

In the following section first we very briefly describe the model. Then we describe
how the model was evaluated. This involved two different studies. The first involved a
qualitative evaluation of the model, where various aspects of the behavior of the model
were compared with results from the literature. In the second study the distribution of
fruit sizes was compared quantitatively with experimental data.

2. A model for kiwifruit

The model for kiwifruit orchards used here is composed of three sub-models (Lescourret
et al., 1999). The first describes flowering (Agostini et al., 1999). The initial number of
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buds is generated by drawing at random from a distribution function which is chosen to
mimic the range of observed values. The number of buds that develop and the number
of flowers that abort are also obtained by drawing from appropriate distribution functions
at random. Finally, the distribution of flowering over time is also treated as random.
Temperature, variety, size (the number of new canes and cane length) and thinning at the
flowering stage, if applied, are taken into account in this sub-model. For the female vines,
the flowering sub-model operates at the cane level and the results are summed up at the
vine level. For the male vines, the flowering sub-model operates at the vine level. The
outputs of the flowering sub-model, which are inputs of the second sub-model described
below, are the number of flowers that open per day on each vine, i.e. that are ready to
receive (on female vines) or to shed pollen (on male vines).

The second sub-model describes the pollination and fertilization of flowers and fruit
setting (Lescourret et al., 1998a,b, 1999). It operates at the flower level. The number of
pollen grains that are deposited on the stigmas of female flowers, the fraction that are
viable, the number of ovules that are fertilized and the fraction of fruits that are set are
all treated as random variables with appropriate distributions. This sub-model takes into
account the effect of rainfall as well as planting options (proximity of males and females,
distances between and within rows, male:female ratio, male varieties). The outputs are
the number of seeds in each fruit of each vine of the orchard.

The final sub-model, which operates at the fruit level, is based on a deterministic
description of fruit growth as a function of the number of seeds (predicted by the second
sub-model), the fruit load of the vine (modulated by thinning) and the level of water stress
which is related to climate and irrigation.

The effect of including randomness in the model is twofold. First of all, different
flowers have different numbers of ovules that are fertilized leading to a distribution in
fruit size. As already noted this is important since the value of the crop depends on the
fruit size distribution. The second effect of randomness is that each simulation run with
the model gives a different result. However, as we show, the differences between different
model runs are relatively slight. This allows us to present simulated results for just a single
simulation, unless noted otherwise.

3. Qualitative evaluation

There are experiments reported in the literature on the effect of various management
decisions on kiwifruit orchards. In general, the information is not sufficiently complete
to allow one to run the model and make quantitative comparisons with the data. Often
the results are presented in the form of graphs or figures. However, one can compare
model behavior and reported results qualitatively. This was done in the early stages of
our modeling project. Note that in these studies some of the model parameters had to be
estimated based simply on intelligent guessing.

The first example of qualitative evaluation is based on the study by Testolin (1991), who
examined the consequences of an extreme planting design wherein there is a single male
vine fertilizing the flowers. The results are presented in the form of a three-dimensional
graph of the numbers of seeds per vine. The output of our pollination/fertilization sub-
model, shows similar behavior (Fig. 1). This is in particular evidence in favor of the
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Figure 1. The total number of seeds per vine as a function of distance from a single male vine.
Experimental results of Testolin (1991, left) and results from one simulation run of the pollination
sub-model (right).

hypothesis in the model that the number of pollen grains per female flower declines
exponentially with the distance between the male vine (source) and female vine (target).

The second example of qualitative evaluation is based on the results obtained by
Antognozzi et al. (1991) and Lahav et al. (1989), who studied the effects of different
modalities of thinning (no thinning, thinning at the flower bud stage or thinning at the set
fruit stage) on mean fruit size per vine at harvest. Information on the number of seeds per
fruit and on the intensity and date of thinning was either imprecise or lacking. Correspond-
ing values plus parameters were estimated based on intelligent guessing (see above) to
run the model. Comparison of the observations made by these authors and our simulations
(Fig. 2) show good agreement between data on thinning at the flower bud stage or at the
set fruit stage.

4. Evaluation of the predictions of fruit size distribution

The objective here is to compare observed and calculated distributions of fruit sizes. The
experimental data come from the harvest of a plot in a kiwifruit orchard in Corsica, in
1995 (Lescourret et al., 1999). The original data give the number of harvested fruit in each
of 9 weight categories. Figure 3 shows observed and simulated numbers of fruit in each
of 4 weight categories based on European Union (EU) standards. The weight limits of the
categories are presented in Table 1.

It is possible to compare separately, for each category, the simulated and observed
numbers or fractions of harvested fruits. However, this is not convenient or easy to ana-
lyze, especially for larger numbers of categories. It is of interest then to summarize the
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Figure 2. Simulated (by the fruit growth sub-model) versus observed average weight of fruit per vine
at harvest. On the left, experimental results of Antognozzi et al. (1991). On the right experimental
results of Lahav et al. (1989). △ – unthinned vines; � – vines thinned at the flower bud stage and
� – vines thinned at setting.

Figure 3. Number of fruit in each of 4 weight categories. Black bars represent observed values,
white bars the simulated values from one run of the model. The weight limits for each category are
given in Table 1.

comparisons with a single number, which represents a distance between the observed and
simulated distributions.

A simple approach is to calculate a summary variable which is some weighted sum
or average of the number of fruit per category, and then to compare observed and calcu-
lated values of this new variable. This comparison then simply involves comparing two
numbers, and the distance can be the difference between them.
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In our case, a summary variable of particular interest is the monetary value of the
kiwifruit crop, which is given by

VC =
∑

Ni Vi

where VC is the total value of the crop, Ni is the number of fruit in weight category i,
Vi is the value per fruit in category i and the sum is over categories. The observed and
calculated values of VC based on the results shown in Figure 3 are VCobs = 3490E and
VCsim = 3493E. The difference is a negligible 3E. These values are based on average
prices paid to fruit growers over the years 1991–2001 (data from the Kiwifruit Producers
Organization communicated by J.M. Fournier).

A second distance that more directly reflects the differences between the observed
and simulated distributions is the Kolmogorov–Smirnov statistic presented in the chapter
“Evaluating crop models.” Here we adapt this statistic to our specific case. We first define

Sobs,i =
total observed number of harvested fruits in categories 1, . . . i)

nobs

Ssim,i =
total simulated number of harvested fruits in categories 1, . . . , i)

nsim

We then define the step cumulative distribution function as Sobs(z) = Sobs, i , where z

is harvested fruit weight and i is the weight class to which the weight z corresponds.
For example, if the weight z places a fruit in Category 2, then Sobs(z) is the sum of the
simulated numbers of harvested fruits in Categories 1 and 2 divided by the total simulated
number of harvested fruits. Ssim(z) is defined similarly but using simulated values. Finally
the statistic ks is defined as

ks = max
z

|Sobs(z) − Ssim(z)| = max
i

|Sobs,i − Ssim,i |

(Sprent, 1992). The Splus® function cdf.compare can be used to compare the distribu-
tion functions. The calculation of the ks statistic here is very easy since few categories
are involved.

Figure 4 shows the observed and calculated step cumulative distribution functions for
various numbers of categories. For all numbers of categories the two distribution functions
seem quite similar, but the details of the comparison and the value of the ks statistic depend
on the number of categories. The largest difference between the observed and calculated
distribution functions occurs at Category 1 if only 3 Categories are defined, but occurs at
Category 6 in the case of 9 categories.

Using a probabilistic model, such as that employed here, each simulation produces
a different result. To examine the variability of the results, we did multiple simulations
with the pollination/fertilization sub-model, using only a single run of the flowering sub-
model. The upper panel of Figure 5 shows the resulting number of harvested fruit in
each of 4 weight categories, for 100 simulations. As can be seen, the variability is quite
limited. The lower histogram in Figure 5 shows the distribution of the ks statistic for the
100 simulations. The mean value is 0.08 and the standard deviation is 0.004, giving a
coefficient of variation of 5%. The distribution is slightly skewed. Simulations employing
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(a) (b)

(c) (d)

Figure 4. Values of the observed and calculated step distribution functions Sobs(z) and Ssim(z) for
3, 4, 5 or 9 weight categories (a–d, with ks = 0.07, 0.07, 0.13 and 0.15, respectively).

the random aspect of the flowering sub-model produced similar results. This suggests that
we can meaningfully make comparisons using just one model run, since other runs will
not be very different.

5. Conclusions

This chapter shows that model evaluation should be adapted to the objectives and nature
of the model. The model used here was a good case since features like randomness and
the type of outputs – distribution of individual products amongst categories – are unusual
compared to classical crop models. The techniques used here are part of what Balci (1994)
called VV&T techniques, which means Validation (building the right model), Verification
(building the model right) and Testing (performing validation and verification). VV&T
is a continuous activity throughout the entire cycle of a simulation study (Balci), and it
is a key point because credibility of simulation results is especially important in models
dealing with agricultural management.
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Figure 5. Classification of 100 simulated harvests into four size categories (cf. Figure 2). Each
vertical line in a black bar represents the number of fruits in the corresponding category according
to one simulation (above). A histogram of the ks values for the 100 simulations is in the lower figure.
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1. Introduction

Denitrification is the process in the global nitrogen cycle which transforms soil and aquatic
nitrate to the gases N2 and N2O, which are then returned to the atmosphere. It is a
major pathway for atmospheric emissions of N2O, a greenhouse gas, from terrestrial
agroecosystems. The literature reports much data on gaseous flux measurements in various
situations, and particularly in agricultural systems. However, there have been relatively
few attempts to model the process, primarily because of the large variability in the exper-
imental data at the field scale. In addition, these models require site-specific parameters
due to the fact that soil structure and aggregate characteristics exert a major influence on
denitrification. These parameters are usually estimated indirectly using laboratory incu-
bation studies (Hénault and Germon, 2000). They may alternatively be estimated on the
basis of measured denitrification data, by fitting simulated data to field observations, or
set to default values.

As is the case for any model, there are thus uncertainties associated with the parameters
of NEMIS, due to the variance of the parameter estimators for a given site. This variance
may, for instance, be estimated when fitting model parameters to observed data. Another
source of uncertainty, more specific to crop models, and truer still of the NEMIS model,
is that parameters vary widely across agricultural fields (Hénault and Germon, 2000).
A final source of uncertainty lies in the input data known to control denitrification (soil
temperature, moisture, carbon and nitrogen content), which are spatially variable within
an agricultural field. There are thus two sources of uncertainty that should be dealt with
while simulating a new field situation: the uncertainty due to parameter variance, and that
due the spatial variability of model input variables within the particular field selected.
Secondly, the variation of parameter values across fields should also be addressed, for
instance by analyzing a range of fields representative of the area under study.
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In this example, I show how some of the methods described in Chapter 3 can be used
to assess the influence of these sources of uncertainty on model outputs, at the field-
scale, and across two particular field conditions. The objective is to identify the soil input
variables or parameters which should be determined with most accuracy while using a
model to predict denitrification rates. Such results may be used to issue guidelines while
designing an experiment to predict denitrification at the field-scale. This example also
examines how the sensitivity results may vary across fields – i.e. whether the variables or
parameters identified as most sensitive in a given field are likely to be sensitive in another
field characterized by different pedoclimatic conditions.

The sensitivity analysis (SA) methods used here fall in the variance-based category. The
uncertainty in model input data (e.g. soil moisture content) was estimated from within-
field spatial variability studies, whereas within-field parameter uncertainty was estimated
from bootstrap samples of experimental denitrification data sets. The rationale for using
bootstrap versus a more ordinary Monte-Carlo sampling technique was that it made it
possible to take correlations between parameters into account. Finally, I used data sets
collected at two field sites to capture the variability in SA results across agricultural
fields.

2. Materials and methods

2.1. The NEMIS denitrification model

The NEMIS denitrification model (Hénault and Germon, 2000) uses a semi-empirical
equation to calculate daily denitrification flux from the topsoil (Ŷ S

m):































Y S
m = PDR

(

SW/V0 − w0

1 − w0

)d

if (SW/V0 − w0) > 0 and T > 0

×
[NO−

3 ]

KN + [NO−
3 ]

10[A(T −20)]

Y S
m = 0 otherwise

(1)

where SW is the soil volumetric moisture content (m3 m−3), [NO−
3 ] the nitrate concen-

tration (mg N kg−1 soil), T the temperature (°C), and V0 the soil porosity (m3 m−3).
Equation (1) expresses the denitrification rate as the product of a potential rate, PDR

(kg N ha−1 day−1), with three unitless factors accounting for the response of denitrifica-
tion to soil environmental conditions. The effect of temperature is modelled with a Q10
function (Q10 = 1010A, with A in °C−1). The response of denitrification to nitrate follows
Michaelis–Menten kinetics, with half-saturation constant KN (mg N kg−1). The water
content SW is taken as a predictor of the soil anoxic volume, with a power relationship
parameterized by the unitless coefficient d. Parameter w0 is the water-filled pore space
threshold below which no denitrification occurs.
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2.2. Experimental data

Two published denitrification data sets are used, against which NEMIS was initially tested
(Hénault, 1993). They represent contrasting pedoclimatic and cropping conditions: a light
clay soil managed as a fertilized grassland in Germany (Corré et al., 1990), and a barley-
cropped clay loam with high organic C in Southern England (Webster et al., 1993).
Denitrification rates were measured over a one year period on 22 (Webster et al. data
set) to 46 (Corré et al. data set) dates. In both experiments, the authors incubated intact
soil cores in situ or in the laboratory, and used the acetylene inhibition technique to mea-
sure denitrification. Model inputs (soil nitrate, water content and temperature) were also
recorded. The measurements were made on 5–30 replicates, and presented coefficients of
variation ranging from 20% to over 100%. Although very significant, this variability was
not used in the uncertainty on input variables since only the natural within-field spatial
variability was of concern in this study.

2.3. Sensitivity analysis

Figure 1 shows the sequence of steps in the sensitivity analysis (SA) undertaken with
NEMIS. Prior to the global SA, a one-at-a-time analysis showed that, among the five

Figure 1. Diagram of the uncertainty analysis of the NEMIS model.
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parameters of Eq. (1), parameter d had very little influence. It was thus left at its nominal
value of 1.74 throughout the analysis.

The first step of the SA then consisted of generating random samples of parameter
values and input variables, whose source of uncertainty were parameter estimator variance
and spatial variability within the field, respectively. First, we generated bootstrap estimates
for the four model parameters considered, in the two experimental sites under study. For
each site, 1000 Least-Square (L-S) estimates of model parameters were calculated with
a constrained, Gauss–Newton-like algorithm (Numerical Algorithms Group, 1993), from
bootstrap samples of the data drawn with a balanced method (Shao and Tu, 1995; p. 211).

Next, 1000 random values of each of NEMIS’ three input variables (SW, T and NO−
3 )

were drawn independently from Gaussian distributions. For soil temperature and water
content, we used coefficients of variations of 5% and 10%, respectively (Boulier, 1985;
Cellier et al., 1996). For nitrate concentrations, we used a CV of 20%, as reported by
Cambardella et al. (1994). Finally, we assessed the respective contribution of the above
sources of error to the variance of the simulated denitrification rates Var(Y S

m) with the
winding stairs method proposed by Jansen et al. (1994). The method is a modified Latin
Hypercube sampling which makes it possible to estimate the firstorder sensitivity coef-
ficient Si (see Chapter 3) of model output Y to a particular input variable or parameter,
denoted Xi . Si is defined as:

Si =
Var[E(Y S

m|Xi = xi)]

Var(Y S
m)

Si indicates the average influence of the input Xi on the model output.

3. Results

3.1. Boostrap parameter sets

Table 1 summarizes the univariate statistics of the model parameters and root mean squared
errors (RMSE) derived from the bootstrap procedure for the two experimental data sets.
The RMSE represented up to 90% of the mean observation, which indicates a weak ability
of the model to explain the experimental data. Overall, the accuracy of the model ranged
from 10 to 217 g N ha−1 day−1, which is within the order of magnitude of the figures
obtained by Johnsson et al. (1991) after calibrating a similar denitrification model on their
data sets. Refer to Chapter 4 (Parameter estimation) for more details on these techniques.

Within each experimental field, parameter variance was moderate, with coefficients of
variation (CVs) in the 10–30% range. The water threshold w0 showed the least dispersion,
as opposed to PDR which was the most variable parameter. An accurate identification of
PDR is also likely to have been hampered because of its correlations with other parameters,
as illustrated in Table 2. Such correlations between parameters indicate a poor resolution
in the parameter space around the optimum set. Finally, the CVs associated with the
PDR compare well with the 40–70% range reported by Hénault (1993) from laboratory
measurements on a variety of soils.
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Table 1. First moments of the bootstrap estimates of the NEMIS model parameters and root mean
squared error (RMSE), for the 2 data sets. To remove tail effects, the statistics were calculated over
the 2.5–97.5% percentile interval of the bootstrap distributions, whose boundaries are indicated in
brackets. Below the RMSEs, the bracketed figures express the RMSEs as a percentage of the mean
observed fluxes.

Data sets Parameters (Means ±1 standard deviation) Error

N* KN w0 A PDR RMSE
(mg N/kg soil) (%) (×10−3 °C−1) (kg N ha−1 day−1)

Webster et al.
(1993)

22 5.00 ± 0.00 65.9 ± 2.3 49.2 ± 7.2 5.06 ± 0.90 0.010 ± 0.003

(5.00–5.00) (58.3–69.5) (31.9–67.1) (3.18–7.67) (32.0)

Corré et al.
(1990)

46 5.00 ± 1.16 50.0 ± 0.0 40.7 ± 9.3 7.82 ± 2.03 0.217 ± 0.060

(5.00–10.04) (50.0–50.0) (31.9–62.7) (4.19–10.00) (87.5)

*Number of observations.

Table 2. Bootstrap estimates of the model parameters correlation matrix, for the two data sets.

Data sets Correlation coefficients
KN w0 A PDR

Webster et al. (1993) KN 1.0 −0.062 −0.026 −0.217
w0 1.0 −0.789 0.892
A 1.0 −0.526
PDR 1.0

Corré et al. (1990) KN 1.0 −0.009 0.137 0.529
w0 1.0 0.049 0.073
A 1.0 0.669
PDR 1.0

Across the two experimental fields, the three model parameters considered as fixed
by the model’s author, whatever the environmental conditions (KN, w0 and A), differed
only to a minor extent. In both cases the nitrate half-saturation constant KN took the
minimum value of 5 mg N kg−1 soil prescribed in the optimization, which implies that
denitrification was little sensitive to nitrate for concentrations above this bottom value of
5 mg N kg−1 soil. The water-filled porosity threshold, w0, ranged from its bottom value of
50% to a mid-range value of 66% for the experiment of Webster et al. (1993). Interestingly,
this value is close to that of 62% reported by Rolston and Grundmann (1987) and Hénault
(1993). The temperature response parameter A varied from 40 to 50 10−3 °C−1, with the
upper value being rather high for biological phenomena since it translates a Q10 value
of 3.1. However, Stanford et al. (1975) reported Q10 values of 60–120 for temperatures
below 11◦C, because of an abrupt decrease of denitrification in this lower temperature
range.
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3.2. First-order sensitivities of various uncertainty sources

Figure 2 presents the relative contributions of the four identified sources of uncertainty to
the variance of the simulated denitrification rates, for two of the data sets. Overall, the input
variables contributed the greatest share in the total simulated variance, totalling 60–70%,
with moisture content and temperature being most sensitive. The variability in parameters
contributed less to the variance in output. Their share of total variance was around 20%,
which is relatively small given that the individual parameters had rather greater coefficients
of variation. The net contribution of the uncertainty in the parameter sets is then likely
to have been lower than may have been expected for individual parameters because these
were correlated to some extent.

The analysis of Figure 2 may point at strategies for reducing the uncertainty in the
prediction of denitrification. Increasing the frequency of denitrification measurements at a
given site could be expected to improve the L-S estimates of the model parameters, thereby
reducing their uncertainty. On the other hand, taking more replicates may increase the
accuracy on the measurements, and decrease the model’s residual error. Finally, increasing
the number of replicates while measuring the input variables would decrease their uncer-
tainty. Figure 2 shows that this last option would be the most efficient, since about 65%
of the variance in the simulated denitrification fluxes may be ascribed to the uncertainty

Figure 2. First-order sensitivity coefficients (Si ) of the four sources of uncertainty in the NEMIS
denitrification model, for the data sets of Corré et al. (white bars) and Webster et al. (black bars).
The sources comprise the three input variables (soil moisture, temperature, and nitrate content), and
model parameters.
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in the input variables. However, this strategy is also somewhat limited by the spatial
variability inherent to these variables at the field scale, combined with the measurement
errors. A better representation of the denitrification process at this scale may thus require
a stochastic approach. Otherwise it seems essential to check the values of the parameters
against actual measurements of field-denitrification, with a number of 20–40 observations
allowing to reach a satisfactory accuracy of the model.

4. Conclusion

This example illustrated the use of variance-based sensitivity analysis, and showed how
it could be applied to sort the various sources of uncertainty according to their effect
on model outputs. This ranking may serve to guide future use and development of the
model, for instance, by emphasizing the need to measure a particular input with sufficient
accuracy.

Although somewhat complex, the method proposed here has the advantage of taking
into account possible correlations between model parameters. This is definitely important
since most crop models include a vast number of parameters compared to the number
of outputs that can actually be tested against experimental data. This means that model
parameters are frequently cross-correlated (as appeared here), and that ignoring this fact in
the sensitivity analysis may result in misleading conclusions. The major drawback of this
method is that it requires some parameters to be simultaneously optimized, a task which
might be daunting with full-fledged, dynamic crop models. Traditional steepest-descent
algorithms such as used here may indeed not always give good results (see Chapter 4 on
Parameter estimation). Moreover, the information retrieved on model sensitivity to the set
of parameters investigated might prove difficult to interpret since it no longer pertains to
one single parameter but to the parameter set as a whole. Finally, as with all sensitivity
analysis methods, the outcome depends on the experimental conditions tested, and on the
values selected for the parameters not included in the analysis. However, in the study
presented here it appeared that the patterns of the uncertainty analysis were similar across
experimental sites.
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1. Introduction

PASTIS (Prediction of Agricultural Solute Transformations In Soils) is a mechanistic
model that simulates the movement of water, heat and solute in the soil as well as the
transformations of soil carbon and nitrogen (Garnier et al., 2001, 2003). The model
considers just one spatial dimension (depth) and simulates processes over a short period
(a crop cycle). The model is used as a research tool.

This chapter presents the results of a sensitivity analysis of various model outputs to
several of the model inputs. The objectives of the sensitivity analysis were threefold. The
first objective was to identify the model parameters to which the outputs are particularly
sensitive. It is important to determine the values of these parameters accurately. The second
objective was to determine the processes to which the outputs are particularly sensitive in
order to better understand the functioning of the system. The third objective concerned the
fit of the model to experimental data. Sensitivity analysis in general is purely model based.
It explores how model outputs vary when model inputs are changed. However, it is also
of interest to see how model agreement with data varies when model inputs are varied.

The following section describes the model. Section 3 describes the experimental situ-
ation to which the sensitivity analysis is applied. Section 4 defines the sensitivity indices
that are calculated, Section 5 presents results and Section 6 conclusions.

2. Model description

PASTIS consists of two submodels, a transformation submodel named CANTIS (Car-
bon And Nitrogen Transformations In Soil) and a transport submodel. The transformation
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submodel calculates the amount of mineralized nitrate in the soil as a function of temper-
ature and water potential which are calculated by the transport submodel. The transport
submodel calculates the nitrate transported by convection and dispersion. The model state
variables, input variables, output variables and parameters are listed in Table 1.

Table 1. Model input variables, state variables, output variables and parameters.

Input variables Initial conditions *NO−
3,INI(z): initial nitrate content (kg N/ha)

θINI(z): initial water content (cm3/cm3)
CINI,i : initial carbon content in pool i (kg C/ha)
C:NINI,i : initial C:N ratio in pool i

Boundary conditions *PET(t): potential evapotranspiration (cm/h)
R(t): rain (cm)
hB(t): water pressure head at bottom of profile (cm)
TB (t): temperature at bottom of profile
TT(t): temperature at soil surface

State variables Ci (z, t): carbon content of the organic matter pool i,
h(z, t): matric potential (cm)
θ(z, t): water content (cm3/cm3)
K(z, t): hydraulic conductivity (cm/h)
T (z, t): soil temperature (K)
S(z, t): solute concentration (kg m−3)

Input Biological parameters *ki : decomposition rate of the organic matter pool i

parameters under reference conditions
*BT: temperature factor coefficient
Tref : 15 ◦C
h′: water potential at which microbial activity ceases

(−75 800 cm of water)
href : −100 cm of water
KMZ: parameter of the biomass-dependent function

Physical parameters Ch: capillary capacity (m−1)
*a0: first coefficient for hydraulic conductivity

function
ai : other coefficients for hydraulic conductivity

function
θs, θr : saturated and residual water content (cm3cm−3)
α, n, m: coefficients for water retention function
D: dispersion coefficient (m2s−1).
D′: dispersivity coefficient (m2 s−1)
q: Darcy flux (m s−1)
*λ′

T: thermal conductivity coefficient
λT: thermal conductivity (W m−1 K−1)
CT: volumetric thermal capacity of soil (J m−3 K−1)
Cw: volumetric thermal capacity of water

(J m−3 K−1)

continued
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Table 1.—Cont’d

Output **ŶLN: nitrogen leached below 150 cm (1 year)
variables ŶNO3(z, t): nitrate content

ŶCO2(t): mineralized CO2

ŶGNM(t): gross N mineralization
Ŷh(z, t): water pressure head (cm)
Ŷθ (z, t): volumetric water content (cm3/cm3)
ŶT(z, t): temperature (ºC)

*indicates a factor in the sensitivity analysis.
**indicates an output in the sensitivity analysis.

2.1. The transformation submodel

The CANTIS model simulates the carbon and nitrogen cycles (Fig. 1). The processes
that are modeled are decomposition of organic matter, mineralization, immobilization,
nitrification and humification. Soil organic matter is divided into five main organic pools.
The microbial population is split into an autochtonous biomass (AUB) that decomposes
the humified organic matter (HOM), and a zymogenous biomass (ZYB) that decomposes
fresh (FOM) and soluble (SOL) organic matter. The FOM pool is composed of four
biochemical fractions, namely, rapidly decomposable material (RDM), hemicelluloses
(HCE), cellulose (CEL) and lignin (LIG).

Soluble Organic Matter (SOL)

Zymogenous

Biomass

(ZYB)

Humified Organic Matter

(HOM)

Autochtonous

Biomass

(AUB)

Fresh Organic Matter (FOM)
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Figure 1. Flow diagram of the CANTIS model.
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Table 2. Equations for decomposition limiting factors.

Factors Equation References

Temperature limitation factor fT = expBT(T −Tref ) Rodrigo et al. (1997)

Moisture limitation factor fW =
ln(h/h′)

ln(href /h′)
h′ < h < href Andrén et al. (1992)

fW = 1 h ≥ href

fW = 0 h ≤ h′

Contact limitation factor related
to zymogenous biomass

fB =
BZ

KMZ + BZ
Hadas et al. (1998)

Decomposition of fresh or soluble organic matter is assumed to follow first-order
kinetics relative to microbial biomass size:

dCi

dt
= −kiCifTfWfBfN

where Ci is carbon content of organic matter pool i, ki is the decomposition rate under
reference conditions and fT, fW, fB and fN are factors related respectively to temperature,
water, zymogenous biomass, and nitrate. Expressions for the first three of those factors
are given in Table 2. The factor fN is equal to 1 when the amount of mineral nitrogen
available is sufficient for microbial needs, and less than 1 when the available nitrogen
limits decomposition rate (Recous et al., 1995).

2.2. The transport submodel

The transport equations are given in Table 3. Water flow is described using Richards’ equa-
tion. The classical convection–dispersion equation is used to simulate solute movement.
Heat transport is described using the convection–diffusion equation.

Table 3. Transport equations. t is time (s), z is depth (m).

Equations Simulated Functions necessary to solve the
variable equations

Water flow Ch
∂h

∂t
=

∂

∂z

[

K

(

∂h

∂z
− 1

)]

h h(θ) =
1

α

[

(

θ − θr

θs − θr

)−1/m

− 1

]1/n

K(θ) = a0 + a1θ + a2θ
2 + a3θ

3

Solute
movement

∂(θS)

∂t
=

∂

∂z
(θD

∂S

∂z
− qS) S D(θ) = Dθ

Heat transport CT
∂T

∂t
=

∂

∂z
(λT

∂T

∂z
− qCwT ) T λT(θ) = λ′

Tθ
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3. Experimental data

An experiment was carried out from October 1993 to September 1994 in a bare field
with loamy soil located at Mons-en-Chaussée in Northern France. The absence of a crop
allowed more precise estimates of the C and N pools than would be possible otherwise.

The input variables listed in Table 1 were measured. These include rainfall (R) and
potential evapotranspiration (PET), temperature at the soil surface (TT) and at a depth of
1.5 m (TB), and matric potential at 1.5 m (hB). Measurements were made every hour. Soil
samples were collected to measure initial water content (θINI) and initial mineral nitrogen
(NO−

3,INI) every 20 cm from 0 to 1.5 m. The amount of initial carbon (CINI
i ) and the initial

C:N ratio (C : N INI
i ) were measured in the pools of fresh organic matter, humified organic

matter and microbial biomass.
Measurements of the output variables of Table 1 were also made (every hour each

day). Our experimental field was equipped to measure matric potential Yh, volumetric
water content Yθ and temperature YT from the surface to a depth of 1.5 m in increments
of 20 cm. Also nitrate content (YNO3) every 20 cm and CO2 flux at the soil surface (YCO2)

were measured.
The physical parameters and some of the biological parameters were measured in soil

samples in the laboratory (Garnier et al., 2001). The remaining parameters were estimated
by fitting the CANTIS submodel to incubation data (C and N mineralization curves).

4. Sensitivity analysis

Sensitivity analysis was carried out for two output variables, namely the amount of nitrate
mineralized from 0 to 60 cm (ŶMN) and the amount of nitrate leached below 150 cm
soil depth (ŶLN). Furthermore, we examined the sensitivity of model efficiency for nitrate
content, which measures how well the model reproduces observed nitrate content. The
definition of modeling efficiency here is

YEF =

∑Nt
i=1 [

∑Nz

j=1 (YNO3(ti,zj )−ȲNO3)
2−

∑Nz

j=1 (ŶNO3(ti,zj )−YNO3(ti,zj ))
2]

∑Nt
i=1 [

∑Nz

j=1 (YNO3(ti,zj )−ȲNO3)
2]

where Nt and Nz are respectively the number of dates and the number of depths represented
in the data.

The input factors for the sensitivity analysis were chosen to include factors likely
to be important for different processes. The coefficient a0 of the hydraulic conductivity
function and the potential evapotranspiration PET were chosen because they should be
important for drainage. To study the effect of temperature on mineralization, the thermal
conductivity coefficient λ′

T and the temperature factor coefficient of the humified organic
matter decomposition BT were included. The autochthonous biomass decomposition rate
(kA) was included because it strongly influences mineralization. Finally, initial nitrate
content NO−

3,INI was included because it is difficult to measure (coefficient of variation
of 20%). It is therefore important to determine the consequences of errors in this input
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variable. Sensitivity analysis of the model was carried out for one factor at a time, all
the other factors being fixed at their nominal values. Each factor was varied in the range
(nominal value − 60%) to (nominal value − 60%). The sensitivity index (SI) for model
output Y with respect to factor X was calculated as:

SI =

Max
X∈U

[Y (X)] − Min
X∈U

[Y (X)]

Max
X∈U

[Y (X)]
(1)

where U is the range of values explored for the factor X.

5. Results

The response profiles are shown in Figure 2 for each output variable – input factor pair.
Figure 3 shows a comparison of observed and simulated nitrate content in two soil layers
over time for the nominal values of all factors and when KA or PET is changed.

Consider first the effect of the autochtonous biomass decomposition rate kA. This
parameter had a strong effect on mineralization, (Fig. 2a) but only a small effect on the
amount of leached nitrate (Fig. 2b). N mineralization in the first layer (0–30 cm) was
reduced in the spring and summer of 1994 when kA was decreased (Fig. 3a), but kA had
only a slight effect on the earlier period from October to March because the degree of
mineralization was low during this period. Changing kA had only a small influence on the
simulated amount of leached nitrate because the nitrate produced during the second period
moved downwards during the autumn and winter of 1994 and this period is not simulated.
The sensitivity analysis results would probably have been different if the experiment had
continued over a period of two years. The model efficiency remained close to its initial
value of 0.75 as kA varied (Fig. 2c). This is probably because kA mainly affects nitrate in
the upper layers whereas modeling efficiency concerns nitrate in all layers.

The temperature factor coefficient BT had a strong effect on mineralization of N
(Fig. 2a). The effect of BT depends on the temperature. If the temperature is below
Tref (15◦C) then an increase in BT increases mineralization, whereas, if the temperature
exceeds 15◦C BT decreases mineralization. The amount of leached nitrate and model
efficiency were not strongly affected by BT.

The initial nitrate content of the first layer NO−
3,INI had a strong influence on the amount

of leached nitrate and on model efficiency (Fig. 2b,c) but did not affect the mineralization
of N (Fig. 2a). The mean coefficient of variation of nitrate measured in the first layer
was 21%.

Figure 2 shows that a0 has a strong influence on the amount of leached nitrate and
on model efficiency but not on the mineralization of N. The transfer velocity of nitrate is
increased when a0 is increased. This effect reduced the remaining nitrate content at the
bottom of the soil profile at the end of the experiment. The model efficiency is increased
when a0 has a higher value.

The thermal conductivity λ′
T had a very small effect on the model outputs. The sim-

ulation of the nitrate dynamics is slightly improved when the thermal conductivity is
increased.

Finally, Figure 2 shows that the potential evapotranspiration PET had a strong influence
on the amount of leached nitrate, but only a slight influence on the amount of mineralized
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thin continuous line represents simulations when PET is decreased by 40%.

nitrogen. When PET is decreased by 40%, the nitrate contents of the deeper layers are
strongly reduced and are very close to the measured values (Fig. 3b), and the efficiency
is increased (Fig. 2c).

The sensitivity indices are presented in Table 4. These indices are a summary of the
more detailed information in the response profiles. It can be seen that mineralized nitrogen
ŶMN is most sensitive to the biological input parameters kA and BT. Leached nitrogen ŶLN
is most sensitive to the input variables PET and NO−

3,INI and to the physical parameter a0.

Model efficiency YEF, like ŶLN, is most sensitive to PET, NO−
3,INI and a0. The parameter

λ′
T seems to have relatively little effect on model outputs.

6. Conclusion

The sensitivity analysis shows that model efficiency depends mainly on the hydraulic
conductivity a0, on PET and on NO−

3,INI, and not on biological inputs or parameters.
We conclude that the overestimation of simulated nitrate content at 150 cm was probably
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Table 4. Sensitivity indices.

kA BT PET λ′
T a0 NO−

3,INI
ŶMN 0.414 0.123 0.105 0.070 0.039 0

PET a0 NO−
3,INI BT KA λ′

T

ŶLN 0.547 0.35 0.191 0.043 0.027 0.006
a0 NO−

3,INI PET BT KA λ′
T

ŶEF 0.686 0.655 0.56 0.351 0.159 0.032

due to uncertainty in the simulation of transport processes rather than to the simulation of
biological processes.

The sensitivity analysis further shows that the factors that had a strong effect on nitrate
leaching but not on mineralization (a0, PET and NO−

3,INI) also had a strong effect on
model efficiency. On the other hand, the factors that had a strong effect on mineralization
but not on leaching (the autochtonous biomass decomposition rate kA and the temper-
ature factor coefficient of HOM decomposition BT) had only a small effect on model
efficiency.

The fact that it is the factors that affect leaching, and not the factors that affect miner-
alization, that also affect model efficiency is probably due to the fact that only one year
was simulated. This tends to increase the importance of transport processes compared to
biological processes. The nitrate produced after May had no time to leach out before the
end of the experiment in September. An experimental period of 2 years would no doubt
have increased the sensitivity of the model to biological parameters. A related problem
is that model efficiency based on nitrate content data is probably not a good measure of
how well the model simulates biological processes.
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1. Introduction

GeneSys-Colza (Colbach et al., 2001a,b) quantifies the effects of cropping systems
(regional field pattern, crop succession, cultivation techniques, oilseed rape varieties)
on gene flow from new rapeseed varieties to volunteers and feral populations over time in
agricultural regions. The present version models a transgene coding for herbicide-tolerance
to a non-selective herbicide. This gene flow can lead to (a) the spread of herbicide-tolerant
rape volunteers and to (b) the contamination of non-GM (genetically modified) harvests
by transgenes, making them unsuitable for a non-GM commercialisation label. The aim
of the model is to rank cropping systems according to their risk of gene flow in order to
(a) evaluate gene flow in existing cropping and farming systems, to (b) design new field
and regional cropping systems limiting gene flow, and to (c) identify the characteristics
of rape varieties that increase or decrease gene flow.

The model was evaluated by confronting its simulated output with independent field
data (Colbach et al., 2005a). It has also been used to evaluate and design cropping systems
in the case of coexisting GM, non-GM and organic crops (Angevin et al., 2002; Colbach
et al., 2004a). During these studies, questions concerning the survey of cropping history
in farmers’ fields and the choice of input variables for the simulations arose frequently:

• When gene flows are simulated in a cluster of fields, how far is it necessary to survey
and simulate fields around the cluster, in order to obtain accurate simulations in the
cluster?

• For how many past years is it necessary to know and simulate the cropping history of
all these fields? After how many years of simulation does the effect of the initial seed
bank, which is usually unknown in a field, become insignificant?
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• Which cultivation techniques must be described with the greatest precision for accurate
simulations? Which are the cultivation techniques that influence gene flow most and
are to be modified first to limit gene flow?

Conceptually, the simplest method for sensitivity analysis is to vary repeatedly one
input variable at a time while keeping the others fixed. This type of one-at-a-time analysis
only assesses sensitivity relative to point estimates and not to the entire input distribu-
tions, which better reflect the uncertainty on the model inputs (Hamby, 1994). Because
of the number and the complexity of input variables and their interactions present in
GeneSys, this conventional technique where each input variable varies and is analysed
separately is neither appropriate nor feasible. The model structure requires to assess sensi-
tivity with regard to the combined variability resulting from considering all input variables
simultaneously, which has never been attempted yet.

The number of input variables was, however, much too large to study them all simul-
taneously. Consequently, the analysis was split into several parts (Fig. 1) and only the
results concerning the effect of the initial seed bank are presented here. Furthermore, the
sensitivity of the model to input variables depends on the output variable studied. Only
two major output variables were studied here, (a) the pollution rate of conventional rape
harvests by a transgene or any other extraneous gene that would render the harvest less
valuable or improper for commercialising; (b) the density of rape volunteers in winter
cereals where the volunteers are considered as weeds and responsible for yield losses.
The present study was carried out, assuming that the newly introduced gene/allele was a

Steps

Initial seed bank

Nb of years to simulate
Initial seed bank 

Number of years to simulate

Cropping system
effects in time

Contrasted cropping systems

Results

• Number of years to survey

• Ranking of cultivation techniques

Field pattern Effects of shapes, areas and distances

Contrasted field patterns

Cropping system
effects in time
and in space

• Survey distance
• Number o fyears to survey

• Ranking of cultivation techniques

SURVEY PLAN

T
em

poral analysis
S

patial analysis

Figure 1. Temporal and spatial steps in the sensitivity analysis of the GeneSys model.
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dominant allele A and that the new variety was a homozygous AA, as is the case for the
new herbicide-tolerant transgenic varieties.

2. Presentation of the model GENESYS

Only the temporal part of the GeneSys model is considered here, and so only one field is
considered for each simulation. Details are given by Colbach et al. (2001a,b). The model
uses the following input variables:

(1) the crop grown each year on the simulated field, with eight modalities, i.e. GM
rape, non-GM rape, winter or spring cereals, unsown, autumn-sown, spring-sown
or permanent set-aside.

(2) the cultivation techniques used to manage each crop, comprising stubble breaking,
tillage, sowing date and density, herbicide spraying, cutting and harvest loss
(i.e. seeds lost before or while harvesting rape crops).

(3) the genetic variables. The genotypes of the transgenic and conventional rape vari-
eties are AA and aa, respectively, where A is the transgene or any dominant allele
coding for herbicide tolerance and a the associated recessive allele. The varieties
can differ in pollen and seed production, and the difference depends on whether the
plants grow in rape crops or in other crops. Self-pollination rates also vary according
to genotype.

The initial seed bank must be determined on the onset of simulation, with the number
of seeds and their genotype proportions in each soil layer.

These input variables influence the annual life cycle of both cultivated and volunteer
rape plants, which comprises seedlings, adults, flowers, seed production and seed bank
left after harvest. The life cycle is repeated for each simulated year. For each life stage,
both the number of individuals per square meter and the proportion of the three genotypes
AA, Aa and aa are calculated.

The main output variables are, for each simulated year, the adult plants (whether
cultivated or volunteer), the seed production and the seed bank left after harvest. For
each of these variables, both the number of individuals per square meter and the genotype
proportions are calculated.

3. Materials and methods

The sensitivity analysis to the initial seed bank was based on extensive simulations
followed by statistical analyses on the simulated output. In the simulations, the input
variables describing the seed bank were treated as controlled experimental factors (e.g.
total seed density, proportion of AA seeds . . .). All combinations of factor levels were used
in the simulations except unrealistic ones (e.g. deeply buried recently shed seeds). The
model input variables describing the cropping systems, on the other hand, were determined
by Monte Carlo sampling. Each Monte Carlo sample of cropping systems was crossed
with each combination of the controlled factors related to the initial seed bank. After the
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simulations were completed, the simulated output was analysed statistically, as the result
of a virtual experiment.

3.1. Choice of input factors

3.1.1. Initial seed bank

The series of initial seed banks was obtained by combining the following factors:

• the distribution among seed age classes, with 3 modalities: either 100% of seeds less
than one-year-old (hence “young seeds”), 100% of seeds older than one year (“old
seeds”) or a 50–50% mixture of each class.

• the distribution of old seeds among the four 5-cm-thick soil layers, with 3 modalities:
either 100% of seeds in the top 5 cm, 100% of seeds on the deepest 5 cm, or a
homogeneous distribution among the four layers, with 25% of seeds in each layer.
Young seeds can only be found in the top layer as the initial seed bank illustrates a
seed bank left immediately after a crop harvest.

• genotype proportions with 7 modalities: 100% of AA, Aa or aa seeds, respectively;
50–50 mixtures of AA and Aa, AA and aa or Aa and aa, respectively; or a homogeneous
mixture with a third of AA, Aa and aa.

• total number of seeds of the seed bank, with 4 levels: 0, 100, 1000 or 10 000 seeds
per m2. The latter value is approximately the amount of seeds left after a rapeseed
harvest with 5% of seed loss. When the total seed bank was zero, the first three factors
did not vary.

In total, there were 1 × 1 × 7 × 3 (young seeds) + 2 × 3 × 7 × 3 (old seeds and
mixture of old and new) + 1 (empty seed bank) = 148 initial seed banks tested.

3.1.2. Cropping system

3.1.2.1. Genetic input factors

In all simulations, the transgenic allele was a dominant A. The first genetic input factor
was the variety type when rape was grown, with two modalities: transgenic varieties
AA and conventional ones aa. The remaining seven genetic input factors were the self-
pollination rates of AA, Aa and aa genotypes; the relative pollen emission and yield rates
for GM vs. non-GM plants in rape crops; and the relative pollen emission and yield rates in
environments other than rape. The levels of these seven quantitative factors were sampled
randomly within [0; 1] at the beginning of each simulation, according to the uniform
distribution.

3.1.2.2. Crop succession and management

Each year other than the final one, the simulated crop was sampled with equal probabilities
among the eight possible crops given in Section 2, according to the uniform distribution.
The only exception was permanent set-aside which could only follow a sown set-aside.



16. Sensitivity analysis of GeneSys 381

When the analysed output variable was harvest pollution, the last crop was always a
non-GM rape. When the rape volunteers in winter cereals were studied, the last crop was
a winter cereal.

Each year, cultivation techniques were also sampled with uniform probability, but the
sampled techniques depended on the simulated crop (Table 1). For instance, a rape crop
could be preceded by chisel ploughing, mouldboard ploughing or zero tillage and be sown
between 1 August and 30 October, whereas unsown set-aside could never be preceded by
tillage and was of course never sown.

3.2. Duration of simulation runs and number of replications

The duration of each simulation run was 25 years. For each of the 148 initial seed banks
tested, 10 000 simulations with random cropping system variables were run. For better pre-
cision when comparing initial seed banks, the same 10 000 cropping systems, determined
by Monte Carlo sampling, were crossed with the 148 initial seed banks.

These numbers of replications were ridiculously low compared to the enormous number
of possible combinations of input variables and/or parameters. However, it will never be
possible to explore more than a tiny proportion of these combinations. Therefore, to test
the stability of the observed simulation results, all the analysis steps were repeated with
a different set of simulated replications.

3.3. Statistical methods

In order to synthesise the results and to identify the major input factors, the simulated
output was analysed, using analysis of variance (see the Chapter 3). The analysed output
variable was either (a) the proportion of GM seeds (genotypes AA or Aa) in non-GM rape
harvests (hence “harvest pollution”); or (b) the total density of rapeseed volunteers in
winter cereals.

For each year t, the analysis was restricted to the simulation runs with either a non-GM
rape variety in year t (output variable = harvest pollution) or winter cereals in year t

(output = volunteer density). The main model was:

output variable (t) = constant + initial seed bank effect + cropping system effect

+ error
(1)

The sensitivities to the initial seed bank and to the cropping system were evaluated by
comparing the r2 of Eq. (1) with the r2 of Eq. (2) and Eq. (3) below,

output variable (t) = constant + cropping system effect + error (2)

output variable (t) = constant + initial seed bank effect + error (3)
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r2 is defined as r2 =
∑N

i=1(Ŷi − Ȳ )2/
∑N

i=1(Yi − Ȳ )2 where Yi is the ith output value
simulated by GeneSys; Ŷi the corresponding value predicted by one of the linear models,
and Ȳ the average value of the output simulated by GeneSys.

In these models, initial seed bank was a categorical factor with 148 levels; cropping
system was also treated as a categorical factor, with each Monte Carlo sample being
considered as a distinct modality. Because in each year, only those runs with non-GM
rape or winter cereals could be used, depending on whether harvest pollution or volunteer
density was analysed, the cropping system factor had approximately 1300 modalities
instead of 10 000. In order to identify the seed bank characteristics that influence gene
flow, the following linear model was also tested:

output variable (t) = constant + cropping system effect + seed bank density effect

+ seed age effect + vertical distribution effect

+ genotypic composition effect + error

(4)

All seed bank variables were treated as categorical factors. Seed bank density had four
levels (0, 100, 1000 or 10 000 seeds/m2), seed age three levels (young seeds, old seeds or
a mixture of both), vertical distribution three levels, nested in the seed age (young seeds:
top; old seeds: top, bottom, uniform) and genotype composition had 7 levels (100% AA,
100% Aa, 100% aa, 50% AA–50% Aa, 50% AA–50% aa, 50% Aa–50% aa and 33%
AA–33% Aa–33% aa).

These analyses of variance were carried out with the GLM procedure of SAS (Statistical
Analysis System, SES institute Inc, Cary, NC, USA).

4. Results

4.1. Harvest pollution

The year following the initial seed bank, the variability in harvest pollution of the
non-GM rape was explained in approximately the same proportion by the main effect
of the initial seed bank and by the main effect of the cropping system, with a strong
interaction between the two factors (Fig. 2). Indeed, the r2 of the two models reduced to
the single factors initial seed bank and cropping system, respectively, were roughly half of
the r2 of the additive model comprising the both factors. But this model did not comprise
any interaction and its r2 was only 0.60 and therefore considerably less than 1. The effect
of the initial seed bank decreased rapidly with time and from the 7th year onwards, the
part of variability (0.0004) explained by the effect of the initial seed bank decreased below
0.001 and became negligible, especially compared to that explained by cropping system
effects (0.98).

The most important characteristic of the initial seed bank was its genotypic compo-
sition which influenced harvest pollution for approximately 9 years (Table 2A) until the
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Figure 2. Proportion of variability in non-GM rape harvest pollution explained by initial seed bank
(�), cropping system (△) or both factors (�), as a function of time since initial seed bank. ns =

not significant at alpha = 0.01 in model [3] (Colbach et al., 2004c).

part of explained variability (partial r2) decreased below 0.0001 and became negligible.
Harvest pollution increased with the frequency of the transgene in the seed bank (Table
2B). Total seed density was significant during 4 years and harvest pollution increased with
density. Seed age influenced harvest pollution during 3 years only, with a mixture of both
young and old seeds resulting in the highest risk and a seed bank comprising old seeds
only resulting in the lowest risk. The initial vertical seed distribution influenced harvest
pollution only during the first two year, with superficial or uniformly distributed seed
banks resulting in a higher risk.

4.2. Rape volunteer density

The effect of the initial seed bank on rape density in winter cereals was much smaller than
on harvest pollution and its effect had already disappeared after two years (Fig. 3), when
the variability explained by the seed bank effect decreased below 0.001. However, there
was even more interaction between seed bank and cropping system than in the case of
harvest pollution as the r2 of the additive model comprising both seed bank and cropping
system effects (but not their interaction) was only 0.26 for the first year after simulation
onset.

The ranking of the various components of the seed bank was different from the one for
harvest pollution. In contrast to harvest pollution, the genotype composition of the initial
seed bank did not influence volunteer density at all (Table 3A). The other factors were
ranked as for harvest pollution but their effects did not last as long, with only 3 years after
simulation onset for seed density and one year for seed age and seed distribution. The levels
of seed density and vertical distribution were ranked identically for both volunteer density
and harvest pollution (Table 3B). For seed age and genotypic composition, the ranking was
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Table 2. Effects of characteristics of initial seed bank on harvest pollution of non-GM rape. Results
of linear model: harvest pollution = constant + cropping system effect + seed bank density effect +

seed age effect + vertical distribution effect + genotypic composition effect + error (Colbach et al.,
2004b).

A. Variability explained by each variable (partial r2)

Years since initial
seed bank

Partial r2 (sum of squares/total sum of squares) r2

Cropping
system

Seeds/m2 Seed age Vertical
distribution

Genotypic
composition

1 0.3596 0.1055 0.0021 0.0049 0.0757 0.5480
2 0.7385 0.0118 0.0016 0.0006 0.0219 0.7746
3 0.8683 0.0023 0.0005 0.0001 0.0077 0.8791
4 0.9178 0.0003 <0.0001 <0.0001 0.0037 0.9221
5 0.9551 <0.0001 <0.0001 <0.0001 0.0014 0.9567
6 0.9579 <0.0001 <0.0001 <0.0001 0.0011 0.9590
7 0.9777 <0.0001 <0.0001 <0.0001 0.0004 0.9782
8 0.9865 <0.0001 <0.0001 <0.0001 0.0002 0.9865
9 0.9850 <0.0001 <0.0001 <0.0001 0.0001 0.9850

10 0.9839 <0.0001 <0.0001 <0.0001 0.0001 0.9839

B. Comparison of means for the year following the initial seed bank

Seeds/m2 Mean Seed Mean Vertical Mean Genotypic Mean
pollution age pollution distribution pollution composition pollution

10 000 0.1690 young 0.0947 Top 0.1006 AA 0.1651
1000 0.0749 + old Uniform 0.0942 AA–Aa 0.1396

100 0.0208 young 0.0941 distribution Aa 0.1094
old 0.0758 Bottom 0.0699 AA–Aa–aa 0.0834

AA–aa 0.0746
Aa–aa 0.0454
aa 0.0000

different: volunteers densities were highest if the initial seed bank consisted exclusively
of old seeds and increased with the proportion of aa seeds in the initial seed bank.

5. Discussion

5.1. Explaining effects

The experimental plan used for exploring seed bank effects in combination with cropping
system avoided concluding on the effects of a given input variable while only using one
set of values for the remaining input variables, which has frequently been done in previous
sensitivity analyses (Hamby, 1994). The analyses of variance allowed us to identify the
most important input variables and their effects on the simulated output.
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Figure 3. Proportion of variability in rape volunteer density in winter cereals explained by initial
seed bank (�), cropping system (△) or both factors (�), as a function of time since initial seed
bank. ns = not significant at alpha = 0.01 in model [3].

The results of the two output variables were consistent with the known biological and
physical processes occurring in the field. First, the relative importance of the various
components of the initial seed bank depended on the analysed output. For instance, for
output variables illustrating genotype proportions such as harvest pollution of non-GM
rape (i.e. the rate of AA and Aa seeds in aa harvests), the most important characteristic of
the initial seed bank was its genotypic composition, whereas frequency output variables
such as volunteer densities in winter cereals depended mostly on the seed density of the
initial seed bank.

The effects of each seed bank characteristic could also be explained consistently. The
effect of initial seed density was easy to understand: whatever the analysed output variable,
the more seeds there were initially, the higher the simulated output. The effect of the
genotypic composition of the initial seed bank depended on the output variable. The
relationship was again obvious for harvest pollution which increased with the content of
AA and Aa seeds in the initial seed bank. In contrast, volunteer densities slightly increased
with the aa content in the seed bank. Indeed, depending on the variety characteristics
chosen for GM and non-GM varieties in the cropping system, the aa genotype could
produce more pollen and seeds than AA or Aa genotypes. This difference is usually referred
to as “cost of herbicide tolerance”.

The effect of seed age was more difficult to analyse. Harvest pollution was highest
when the seed bank consisted mostly of young seeds whereas the opposite was true for
volunteer densities. Consequently, as the main advantage of old seeds over young seeds
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Table 3. Effects of characteristics of initial seed bank on the density of rape volunteers in winter
cereals. Results of linear model: volunteer density = constant + seed bank density effect + seed
age effect + vertical distribution effect + genotypic composition effect + error.

A. Variability explained by each variable (partial r2)

Years since initial
seed bank

Partial r2 r2

Cropping
system

Seeds/m2 Seed age Vertical
distribution

Genotypic
composition

1 0.1847 0.0480 0.0078 0.0030 0.0001 0.2437
2 0.8824 0.0006 <0.0001 <0.0001 <0.0001 0.8832
3 0.9138 0.0004 <0.0001 <0.0001 <0.0001 0.9143
4 0.9499 <0.0001 <0.0001 <0.0001 <0.0001 0.9501
5 0.9570 <0.0001 <0.0001 <0.0001 <0.0001 0.9571
6 0.9801 <0.0001 <0.0001 <0.0001 <0.0001 0.9802
7 0.9921 <0.0001 <0.0001 <0.0001 <0.0001 0.9921
8 0.9981 <0.0001 <0.0001 <0.0001 <0.0001 0.9981
9 0.9986 <0.0001 <0.0001 <0.0001 <0.0001 0.9986

10 0.9138 <0.0001 <0.0001 <0.0001 <0.0001 0.9138

B. Comparison of means for the year following the initial seed bank

Seeds/m2 Mean Seed Mean Vertical Mean Genotypic Mean
density age density distribution density composition density

10 000 1.1631 Old 0.6848 Top 0.6003 aa 0.4658
1000 0.1316 Young 0.4490 Uniform 0.4228 Aa–aa 0.4493

100 0.0133 Young 0.1742 distribution AA–aa 0.4493
+ old Bottom 0.2849 AA–Aa–aa 0.4401

Aa 0.4159
AA–Aa 0.4159
AA 0.4159

is their better survival ability, it appeared that seed survival was a major process for
volunteer densities in winter cereals, even for the year following the initial seed bank. For
the earlier sown rape crops of which harvest pollution was analysed, this aspect was less
important as there would be less time for seed bank to decrease between the onset of the
simulation and the sowing of the crop. In the case of rape crops, the main aspect seemed
to be the relative emergence of volunteers (which are at least partially GM) vs. cultivated
non-GM plants and the emergence of volunteers is best if seeds are close to soil surface
which is usually the case of younger seeds.

This aspect is consistent with the ranking observed for the vertical seed distribution
of the initial seed bank. Whatever the analysed output variable, the risk was highest
when seeds were concentrated in the top soil layer and lowest when they were buried.
Indeed, emergence decreases with seed depth and even soil-inverting tillage modes such
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as mouldboard ploughing will only carry back part of the buried seeds (Cousens and Moss,
1990; Colbach et al., 2000; Roger-Estrade et al., 2002).

The results varied little between the two simulated data sets, and this despite the low
number of simulations compared to the huge number of possible combinations of input
variables.

5.2. Determination of input data for evaluations and simulations

The first step of the sensitivity analysis was to evaluate the long-term effect of the initial
seed bank. Its result is crucial for the future evaluation and use of GeneSys as the initial
seed bank is difficult to estimate for a single field (Dessaint et al., 1992) and impossible to
determine for all fields and borders constituting a field plan. The analysis showed that the
effect of the initial seed bank became negligible after approximately 7 years of simulation
when analysing harvest pollution of conventional rape. This duration is the necessary span
of simulated years to initialise the system and to have a realistic seed bank to start the
“real” simulation. Consequently, if the user wants to analyse harvest pollution in a region
with a seven-year-long rotation comprising transgenic rapeseed, he/she should start with
an empty seed bank followed by a transgenic rapeseed and then simulate for 14 years at
least and only analyse the last 7 years of the simulation. If, however, the user is interested
in what happens when a transgenic crop is introduced into a region formerly cultivated
with non-transgenic rapeseed, then he/she first needs to simulate a 7-year crop succession
with non-transgenic rape before switching to a rotation with transgenic rape, and then
analyse the last rotation only.

The main effect of initial seed bank on volunteers in winter wheat lasted only for
two years but as the analysis indicated a strong interaction between the seed bank and
the cropping system effects, the necessary simulation span should be extended for a few
years, as a precaution.

However, whatever the analysed output variable, when the model is used to compare
simulations and observations as in the case of model evaluation, it is not always possible
to gather the field history for such a long period. It is therefore necessary to analyse the
sensitivity of the model to the cropping system variables to identify the most pertinent
ones that must be obtained in field surveys. It is probably not necessary to estimate all
variables with the same degree of precision.

5.3. Determination of pertinent changes in cropping systems

The sole analysis of the effect of initial seed bank is of course insufficient to advise
farmers on how to modify their cropping systems to limit gene flow, especially as this
first step of the sensitivity analysis showed cropping system to be the dominant factor in
this process. However, a few ideas already take shape. For instance, the importance for
harvest pollution of the genotype composition of the seed bank would indicate the ratio
of GM to non-GM varieties in the rotation as well as the use of herbicides eliminating
exclusively one genotype to be major factors. In the case of volunteer density, it would
rather be the overall frequency of rape crops, regardless of their variety, illustrated by the
importance of the seed bank density. The impact of seed age could be translated as the
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time since the last rape crop. The analysis of the effect of vertical distributions indicates
that tillage modes are not that easy to reason. When all seeds are initially close to soil
surface, the optimal solution is easy to find: to till with a mouldboard plough to create a
“bottom” seed bank. However, in the next year, the seed bank would resemble a uniform
distribution, with the older surviving seeds still at the bottom and the newer seeds shed
on top. This situation would present a risk as high as the sole top configuration. The
effects of tillage as well as of other cropping system effects must therefore be studied
more in detail. Furthermore, the present analysis was limited a single field and the effects
of initial seed bank disappear probably more rapidly in case of pollen and seed import
from neighbouring fields.

6. Conclusion

This first part of the sensitivity analysis already contributed to the set of rules for the future
use of the GeneSys model. It determined the minimum simulation duration to initialise
the seed bank for further realistic simulations. This kind of information is crucial for the
future evaluation of the model as field seed bank is usually unknown.

However, while the present study revealed the overall importance of cropping system, it
did not analyse the elements of cropping system individually. This is absolutely necessary
both for determining survey plans for farmers’ fields and designing new cropping systems.
Furthermore, the present study was restricted to a single field whereas both the actual
processes related to gene flow (i.e. pollen and seed dispersal) and the associated model
also comprise a spatial dimension. Not only is it necessary to study the sensitivity of the
model to field areas, forms and distances, but also the ranking and effects of cropping
system elements which may vary for fields interacting with their neighbouring fields.
These aspects, i.e. cropping system in time and in space, are analysed in further studies
(Colbach et al., 2004b, 2005b).

References

Angevin, F., Colbach, N., Meynard, J.M., Roturier, C., 2002. Analysis of necessary adjustments of
farming practices. In: Bock, A.-K., Lheureux, K., Libeau-Dulos, M., Nilsagard, H., Rodriguez-
Cerezo, E. (Eds), Scenarios for Co-existence of Genetically Modified, Conventional and Organic
Crops in European Agriculture, EUR 20394 EN. Technical Report Series of the Joint Research Center
of the European Commission.

Colbach, N., Roger-Estrade, J., Chauvel, B., Caneill, J., 2000. Modelling vertical and lateral seed bank
movements during mouldboard ploughing. European Journal of Agronomy 13, 111–124.

Colbach, N., Clermont-Dauphin, C., Meynard, J.M., 2001a. GeneSys: a model of the influence of
cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers. I. Temporal
evolution of a population of rapeseed volunteers in a field. Agriculture, Ecosystems and Environment
83, 235–253.

Colbach, N., Clermont-Dauphin, C., Meynard, J.M., 2001b. GeneSys: a model of the influence of
cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers. II. Genetic
exchanges among volunteer and cropped populations in a small region. Agriculture, Ecosystems and
Environment 83, 255–270.



390 N. Colbach and N. Molinari

Colbach, N., Angevin, F., Meynard, J.M., Messéan, A., 2004a. Using the GeneSys model quantifying the
effect of cropping systems on gene escape from GM rape varieties to evaluate and design cropping
systems. OCL 11, 11–20.

Colbach, N., Molinari, N., Clermont, C., 2004b. Sensitivity analyses for a model simulating demography
and genotype evolutions with time. Application to GeneSys modelling gene flow between rapeseed
varieties and volunteers. Ecological Modelling 179, 91–113.

Colbach, N., Fargue, A., Sausse, C., Angevin, F., 2005a. Evaluation and use of a spatio-temporal model
of cropping system effects on gene flow. Example of the GeneSys model applied to three co-existing
herbicide tolerance transgenes. European Journal of Agronomy 22, 417–440.

Colbach, N., Molinari, N., Meynard, J.M., Messéan, A., 2005b. Integrating spatial aspects into sensi-
tivity analyses for models simulating demography and genotype evolutions with time. Application to
GeneSys modelling gene flow between rapeseed varieties and volunteers. Agronomy for Sustainable
Development in press.

Cousens, R., Moss, S.R., 1990. A model of the effects of cultivation on the vertical distribution of weed
seeds within the soil. Weed Research 30, 61–70.

Dessaint, F., Barralis, G., Beuret, E., Caixinhas, M.L., Post, B.J., Zanin, G., 1992. Étude coopérative
EWRS: la détermination du potentiel semencier: II. estimation de la précision relative sur la moyenne
à partir de composites. Weed Research 32, 95–101.

Hamby, D.M., 1994. A review of techniques for parameter sensitivity analysis of environmental models.
Environmental Monitoring and Assessment 32, 135–154.

Roger-Estrade, J., Colbach, N., Leterme, P., Richard, G., Caneill, J., 2001. Modelling vertical and lateral
weed seed movements during mouldboard ploughing with a skim-coulter. Soil and Tillage Research
63, 35–49.



Working with Dynamic Crop Models
Edited by Daniel Wallach, David Makowski and James W. Jones
© 2006 Elsevier B.V. All rights reserved. 391

Chapter 17

Data assimilation and parameter estimation for precision

agriculture using the crop model STICS

M. Guérif, V. Houlès, D. Makowski
and C. Lauvernet

1. Introduction 391

2. Materials and method 392

3. Results and discussion 394

4. Conclusion 397

References 398

1. Introduction

Crop models simulating soil–plant dynamics as a function of weather and cultural practices
are convenient tools for improving nitrogen fertilization decision support systems. One
possible approach consists of simulating, before fertilizer application, the effect of differ-
ent nitrogen doses for a series of possible weather patterns, and selecting the dose that
optimizes a given agro-environmental criterion (Meynard et al., 2002; Houlès et al., 2004).
There is a big challenge from both the economic and environmental points of view to
develop such approaches to support precision agriculture and to recommend spatially
variable fertilizer doses. An important problem is therefore to determine the input vari-
ables and parameter values at a high spatial resolution. Remote sensing images acquired
from satellites or airplanes provide high resolution information on crop characteristics
(growth, nitrogen status) through inversion of radiative transfer models (Moulin et al.,
2003). This information allows agronomists to estimate, through data assimilation tech-
niques, some of the unknown input variables and parameters and to perform a spatial
calibration of the crop model (Guérif and Duke, 1998; Guérif et al., 2001).

This approach is illustrated in this chapter with the STICS wheat crop model for one
agricultural plot located in France. In this case study, leaf area index and the amount of
nitrogen absorbed by the crop are estimated from airborne remote sensing for 280 cells
(20 m × 20 m resolution). Ten model parameters are then estimated cell by cell from
these data. The benefits of this approach are discussed.
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2. Materials and method

2.1. The STICS model

STICS is a crop model developed by INRA to describe on a daily time step the C, N,
and water cycles in the soil–plant system (Brisson et al., 1998). Its main features are
its modular construction, uniform level of complexity, and the generic nature of the
formalisms chosen to represent the processes. As a consequence, this model can be used to
describe a lot of different crops. Among the many (more than 200) parameters of the model
equations, some are not supposed to be adjusted to data; some others may be determined
for each plant or for each genotype; finally, a number of these parameters represent soil
characteristics and may be estimated from soil measurements (soil depth, water holding
capacity, apparent density, depth of rooting impediments due to soil constraints, clay
content, organic nitrogen content of the cultivated horizon, etc.). Several of the many
state variables of the model describe the crop growth. Some of these variables are the leaf
area index (LAI), the crop biomass, and the crop nitrogen uptake (QN). Other variables
represent soil physicochemical characteristics such as the water and nitrogen content of
different soil layers. STICS can be used to predict many output variables. In this study,
we consider only two of them, namely grain yield and grain protein content. These two
output variables can be used to compute interesting objective functions for optimizing the
amount of applied fertilizer (Houlès et al., 2004).

The model can be expressed as:

Zt+1 = F(Zt , Xt ; θ) + εt

where Zt is the (p × 1) vector including the true p state variables at time t, Xt is the
vector including the input variables (weather, applied nitrogen fertilizer, etc.) for day t, θ

is defined here as a set of 10 parameters to be adjusted cell by cell, and εt is the errors
vector (p × 1). The ten parameters are defined in Table 1 and will be referred hereafter as
“the parameters”. Eight of them represent soil characteristics and the other two represent
some crop characteristics.

Table 1. Prior information for the 10 parameter values. Hn refers to the nth soil horizon.

Parameter Acronym Lower bound Higher bound

Organic nitrogen content (H1) (%) Norg 0.04 0.17
Lime content (H1) (%) Calc 0 40
Rooting impediment depth (cm) Obstarac 50 150
Water content at field capacity (H1) (%) Hcc(H1) 17 22
Water content at field capacity (H2) (%) Hcc(H2) 14 22
Water content at field capacity (H3) (%) Hcc(H3) 14 26
Bulk density (H2) (g cm−3) DA(H2) 1.45 1.6
Mineral nitrogen content at sowing (H1) (kg ha−1) Nmin_ini(H1) 50 85
Life duration of leaves (°C day) durvieF 140 220
LAI growth coefficient vlaimax 1.5 2.5
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2.2. Data

Data were obtained from a precision agriculture experiment carried out near Laon (northern
France) during the year 1999–2000 (Guérif et al., 2001) in a farmer’s wheat plot of
10 ha. Airborne remote sensing measurements were made at four dates in April, May,
and June during the growth cycle with a CASI sensor; yield (using a yield monitor) and
protein content (using sampling and laboratory analysis) were measured at harvest. Soil
measurements made on a grid defined in the plot were used to derive the prior distribution
of the soil parameters.

The hyper spectral reflectance measurements were inverted through radiative transfer
models to estimate LAI and chlorophyll content of the leaf (denoted Cab, g m−2) with
a spatial resolution of 20 m (Moulin et al., 2003). QN was estimated from LAI and Cab

using mathematical functions established from destructive measurements. LAI and QN

data were then called “measurements” and these measurements were denoted mjtc where
j is the index of the measurement type (j = 1, 2 for LAI and QN respectively), t is the
time index (t = 1, . . . , 4), and c is the cell index (c = 1, . . . , 280).

The simulation units were the 280 cells (20 m × 20 m resolution) of the plot and a
set of measurements denoted Mc, c = 1, . . . , 280, was defined for each cell. Each set Mc

includes eight measurements (4 measurements of LAI and 4 measurements of QN). For
illustration, data obtained at two dates in the 280 cells are displayed in Figure 1.

Figure 1. Spatial distribution of “observed” LAI and QN values at two dates in the 280 cells of
the plot.
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2.3. Statistical method

The parameters were estimated using the GLUE method described in Chapter 4. This
method was used to estimate the ten parameters for each of the 280 cells from the
measurements Mc, c = 1, . . . , 280. Note that only ten parameters were estimated from
the data and that the other parameters were set equal to fixed values. The 10 parameters
were selected from a set of 32 soil parameters and two plant parameters from a sensitivity
analysis (Houlès, 2004).

As explained in Chapter 4, the principle of the method is to discretize the parameter
space by generating randomly a large number of parameter values θi (i = 1, . . . , N) from
a prior parameter distribution. For each cell, the posterior parameter distribution P(θ |Mc)

was approximated by calculating weights pi at each parameter value θi from likelihood
P(Mc|θi) and prior density P(θi) (see Chapter 4 for more details).

The prior distribution of the 10 parameters was defined as a uniform distribution whose
upper and lower bounds (Table 1) were determined from soil measurements as explained
above. The parameters were assumed independent and the likelihood function P(Mc|θi)

was assumed normal.
The implementation of the estimation method requires the definition of the sample

size N. After testing six different values, the value N = 200 000 was selected. Model
outputs were simulated with STICS for each generated parameter vector θi (i = 1, . . . , N)
and each cell. The likelihood and weight values are then calculated from the model
simulations.

2.4. Evaluation of the model predictions

The value of using cell-specific LAI and QN data for predicting yield and grain protein
content was evaluated by calculating root mean squared error (RMSE) (see Chapter 2).
Two types of predictions were derived with STICS. First, the model parameters were
fixed to the mean values of the prior distributions, i.e. to the central values of the intervals
displayed in Table 1. In this case, the model returned a single yield value and a single
grain protein content value for all the 280 cells. Second, the model parameters were fixed
to the mean values of the posterior distributions computed for each cell. In this case, the
model predictions were different between cells because the posterior distributions were
determined from the remote sensing data. A RMSE value was computed for each type of
output variable and for each series of predictions.

3. Results and discussion

3.1. Posterior parameter distribution

For each cell, a posterior distribution is obtained for each of the 10 parameters. As an
example, Figure 2 presents the posterior distribution for four parameters and three cells.

The results show that the 10 parameters can be divided into two groups:

• “active” parameters have their posterior distributions greatly modified (mean and
variance) compared to the uniform prior distribution (e.g. Obstarac and durvieF).
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Figure 2. Posterior distribution obtained for four parameters and three cells. The x axis gives the
parameter values. The y axis gives the density. Each line corresponds to one cell and each column
corresponds to one parameter.

These parameters have a strong effect on the simulated values of the state variables
(LAI, QN) and on the likelihood;

• “inactive” parameters have a mean value of the posterior distribution very close to
the mean value of the prior distribution (e.g. HCC(H3) and Nmin_ini(H1)). These
parameters do not have a strong influence on the model output and, consequently, their
posterior parameter distributions do not differ much from their prior distributions.

For the “active” parameters, the posterior standard deviation is smaller than the prior
standard deviation, indicating that the use of the measurements has reduced the uncertainty
associated with parameter values.

The means of the posterior parameter distributions can be used as parameter estimates.
Figure 3 shows the means of the posterior distributions for four parameters and for
the 280 cells of the plot. The mean values of the posterior distributions of the param-
eters HCC(H3) and Nmin_ini(H1) do not vary much among cells. Those parameters
can be considered as “inactive” because their posterior means do not differ much from
the prior means. On the contrary, considerable variability is observed for the param-
eters Obstarac and durvieF. The spatial distribution of the estimated values exhibits a
spatial structure that reflects the structure observed in the remote sensing images (Fig. 1).
Figure 3 also reveals that the estimated values of the parameters Obstarac and durvieF are
negatively correlated (high values of durvieF correspond to low values of Obstarac and
vice versa).
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Figure 3. Spatial distribution of four estimated parameters.

3.2. Evaluation of model predictions obtained with and without data assimilation

The accuracies of the two series of model predictions are compared via RMSE and RRMSE

(see Chapter 2). These two criteria are calculated from the yield and grain protein content
values measured at harvest for each of the 280 cells of the plot. The results are shown
in Table 2.

Grain yield predictions are improved when the parameters are adjusted to cell-specific
data; RMSE and RRMSE are divided by more than 2 when the STICS parameters are
fixed to the posterior means. On the contrary, the grain protein content predictions are
less accurate with data assimilation than without. This rather surprising result may be due
to several reasons:

• grain protein content may be only weakly correlated to the assimilated variables LAI

and QN;

Table 2. Root mean squared error (RMSE) and relative root mean squared error (RRMSE) for yield
and grain protein with and without data assimilation.

Output variable RMSE RRMSE

Without data
assimilation

With data
assimilation

Without data
assimilation

With data
assimilation

Yield (t · ha−1) 1.80 0.72 22.2 8.91
Grain protein content (%) 0.54 1.21 4.95 11
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(a) (b)

Figure 4. Values of simulated grain yield versus observed ones for the 280 cells of the plot (a) before
and (b) after assimilation of 4 dates of LAI and QN data. Each point represents the average simulation
for a pixel; the grey bars above and below each point represent ±1 standard deviation of the
simulations made with (a) the prior and (b) the posterior distribution of the parameters.

• grain protein content may depend on other parameters than those considered in this
study;

• the model equations used to predict grain protein content may be unsatisfactory;
• the method used to estimate the model parameters may not be very efficient: the esti-

mated values that optimize the retrieval of LAI and QN are not the “true” ones and
degrade the simulation of grain protein content.

Beyond the possible reduction of the errors in simulating some output variables (true
for grain yield, false for protein content with our model), the method provides spatial
distribution of the output variables, whereas the prior information on the parameters gives
a single estimate for the whole cells, as illustrated for grain yield in Figure 4.

4. Conclusion

This case study illustrates the potential interest of data assimilation for precision agricul-
ture. We showed how the data provided by remote sensing systems can be used to adjust
the model parameters to site characteristics. Data assimilation methods may also be used
for assimilating other spatialized observations such as yield maps provided by combine
harvesters. This kind of data may be more strongly correlated to the variable predicted at
harvest than LAI and QN.

A number of issues still have to be investigated, notably about the definition of prior
parameter distributions, the description of the model and measurement errors, the selection
of the parameters to be estimated, the optimization of the number and dates of measure-
ments, and the choice of the statistical method for estimating parameters and/or state
variables. In this paper, only some of the model parameters were estimated using a variant
of the method GLUE. Other estimation methods could be used. For example, parameters
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could be estimated by minimizing a cost function taking into account both the data and the
prior information about parameter values. The minimization of such a function is difficult
for complex models but algorithms were developed for this purpose (e.g. Le Dimet and
Talagrand, 1986). These algorithms using the adjoint model for calculating the gradient
are being developed for complex models as STICS (Lauvernet, 2005). It would be inter-
esting to compare this approach to the results obtained by updating the state variables
with the Ensemble Kalman filter or the particle filter introduced in Chapter 5.
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1. Introduction

Variations of the Kalman Filter have been developed for nonlinear models (e.g. Gelb,
1974; Albiol et al., 1993; Graham, 2002). One variation, the Extended Kalman Filter
(Gelb, 1974), uses linear approximations of the expressions for propagating the conditional
mean of the state and its associated covariance matrix. This approach requires derivation of
analytical expressions for propagation based on the first term of a Taylor series expansion.
The second approach, the Ensemble Kalman Filter (Burgers et al., 1998; Eknes and
Evensen, 2002; Margulis et al., 2002), uses Monte Carlo sampling techniques to generate
an ensemble of state variable realizations that are each propagated and updated using the
Kalman update equations. The Ensemble Kalman Filter was used by Jones et al. (2004)
for optimally estimating soil carbon and a decomposition rate parameter over time for a
single field using a nonlinear model. This case study uses that same simple, nonlinear soil
carbon model to illustrate the use of the Ensemble and Extended Kalman Filter methods.

2. The soil carbon model

The model has one state variable, the mass of carbon (Zt , kg ha−1) in the top 20 cm
of soil in a single field. Changes in soil C are simulated dynamically on an yearly basis.
The model also has one unknown parameter, R, the fraction of soil C that is decomposed
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per year (yr−1). The equations that describe the dynamics of this system are adapted from
Jones et al. (2004):

Zt+1 = Zt − R · Zt + b · Ut + εt

R ∼ N(µR, σ 2
R)

Z0 ∼ N(µZ0 , σ
2
Z0

)

εt ∼ N(0, σ 2
ε )

(1)

where t is time (in years) from an arbitrary starting year when initial values of soil C are
known, Zt is the true soil C in year t , R is the true soil C decomposition rate (yr−1),
Ut is the amount of C in crop biomass added to the soil in year t (kg[C]ha−1 yr−1), b is
the fraction of crop biomass C that is added to the soil in year t that remains after one
year (yr−1), and εt is a random term representing model error (kg[C] ha−1). This simple
model is nonlinear; variables R and Zt are multiplied in Eq. (1). In this example, we
assume that Ut and b are known constants.

There are three sources of uncertainty in this model: uncertainty about the true decom-
position rate R, uncertainty about the initial value of soil C, Z0, and uncertainty in the
model structure (εt ). It is assumed that the model error εt , the parameter R, and the initial
value Z0 are normally distributed and uncorrelated. The model error (εt ) is also assumed
uncorrelated with time (i.e. white noise).

3. Measurements

Soil C measurements (mt ) may be made yearly or less frequently, but measurements of
R are not possible. Thus, the model has two variables that are to be estimated, but only
one is observable. Furthermore, it is assumed that soil C measurement error is normally
distributed, independent in time and independent from Z and R. Thus,

mt = µ.ϕt + τt

ϕt =
(

Zt

R

)

µ = (1, 0)

τt ∼ N(0, σ 2
m)

(2)

where mt is the measurement of soil C in year t, kg[C] ha−1 and τt is measurement error,
and σ 2

m is the variance of soil C measurement error. Measurements made from time 0 until
the current time t are represented by the vector M1:t , where M1:t = (m1, m2, . . . , mt )

T.
Our objective is to estimate ϕt =

(

Zt
R

)

from the measurements M1:t . As the model
is nonlinear, it is not possible to determine the analytical expression of the posterior
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distribution of ϕt i.e. the distribution of ϕt |M1:t . In the next sections, we describe two
methods to estimate the expected values and variance–covariance matrix of ϕt |M1:t .

4. The Ensemble Kalman Filter (EnKF)

The EnKF was already introduced in Chapter 5. This method uses a Monte Carlo approach
to generate an ensemble of N realizations of system states, propagating each realization
using the stochastic model Eq. (1), and updating each realization at each measurement
time (Burgers et al., 1998; Margulis et al., 2002). For the simple soil C model, each

ensemble realization consists of value for ϕt =
(

Zt
R

)

, denoted by ϕ
j
t =

(

Z
j
t

Rj

)

, for the jth

ensemble member at time t. After updating this ensemble member using the measurement

at time t, it is written as ϕ
j

t,K =

(

Z
j
t,K

R
j
K

)

. ϕ
j

t,K is related to ϕ
j
t by

ϕ
j

t,K = ϕ
j
t + Ke

t

(

m
j
t − µϕ

j
t

)

where m
j
t = mt + τ

j
t , τ

j
t ∼ N(0, σ 2

m), Ke
t is a (2 × 1) vector of Kalman gains defined

by Ke
t = �e

t µ
T(µ�e

t µ
T + σ 2

m)−1, and �e
t is the (2 × 2) variance–covariance matrix of N

state vectors ϕ
j
t , j = 1, . . . , N. According to the latter equation, we have

Z
j

t,K = Z
j
t + KX,t (mt + τ

j
t − Z

j
t )

R
j

K = Rj + KR,t (mt + τ
j
t − Z

j
t )

where

KZ,t = var(Zj
t |M1:t−1)

var(Zj
t |M1:t−1) + σ 2

m

,

KR,t = cov(Z
j
t , Rj |M1:t−1)

var(Zj
t |M1:t−1) + σ 2

m

,

and τ
j
t is a synthetic random measurement error, drawn from N(0, σ 2

m), that represents
uncertainty in the jth ensemble member measurement (Margulis et al., 2002). KZ,t and
KR,t are Kalman gains at time t for Z and R, respectively. Finally, soil C and decomposition

rate are estimated after updating all ensemble members by computing the means of Z
j

t,K

and R
j

K over all N ensemble members. For additional details, see Jones et al. (2004).
Note that the EnKF does not have explicit equations for updating the covariance matrix.
Instead, this matrix is computed from the ensemble members numerically, prior to updating
each ensemble member and then again after updating them to obtain prior and posterior
estimates, respectively (see Chapter 5).
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5. The Extended Kalman Filter (EKF)

To present the EKF method, it is convenient to express the model Eq. (1) as

dZt

dt
= −RZt + bUt + εt = f1(Zt , R, t)

dR

dt
= 0 = f2(Zt , R, t)

(3)

In the Extended Kalman Filter, the differential equations (3) describing the system dynam-
ics are expanded about the current estimate (the conditional means) of the state variables
using a Taylor series, assuming that all of the partial derivatives exist. All but the first
term in the Taylor series are dropped to create a first-order approximation of the system
state equations. The conditional mean of the state and its associated covariance matrix are
propagated through time using the first-order (linearized) relationships, and updates are
made at measurement times (Gelb, 1974; Welch and Bishop, 2002; Pastres et al., 2003).

Equation (3) describes the two functions (f1 and f2) of the soil C model. Equations
are needed to propagate the conditional means of system states (Z and R) as well as the
variances and covariances of these states. The covariance matrix (Pt ) defining these terms
is given by:

Pt =

[

var(Ẑt ) cov(Ẑt , R̂)

cov(Ẑt , R̂) var(R̂)

]

(4)

where the “hats” over the variables indicate the best estimates of the conditional mean
of the state variables, not the true values. The major challenge of the EKF approach is
the development of the set of equations for propagating the covariance matrix between
measurement times. This is where the Taylor series is necessary. To implement the Taylor
series, we define F as the matrix of partial derivatives of f1 and f2 with respect to Z and R:

F =









∂f1

∂Z

∂f1

∂R

∂f2

∂Z

∂f2

∂R









=

[

−R −Z

0 0

]

(5)

The equation to update the state covariance matrix (P) is given by (Gelb, 1974):

Ṗ −
t = F · Pt + Pt · F TQ (6)

where the (−) superscript on P designates the covariance matrix estimated at time t before
a measurement is used to update the estimate. Q is the initial model covariance matrix:

Q =

[

σ 2
ε 0

0 0

]

(7)
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Equations (5)–(7) are expanded to develop equations for propagating each of the terms
in the covariance matrix Eq. (4). The propagation of the expected values (conditional
means, R̂t and Ẑt ) is used to obtain best estimates of the state variables. The system
of equations for propagating conditional mean and covariance matrix terms between
measurement times becomes:

dẐt

dt
= −R̂Ẑt + bUt

dR̂

dt
= 0

dvar(Ẑt )

dt
= −2[R̂var(Ẑt ) + Ẑtcov(Ẑt , R̂)] + σ 2

ε

dvar(R̂)

dt
= 0

dcov(Ẑt , R̂)

dt
= −R̂cov(Ẑt , R̂) − Ẑtvar(R̂)

(8)

The initial conditions for solving this system of equations are assumed to be:

Ẑ0 = µZ0

R̂ = µR

var(Ẑ0) = σ 2
Z0

cov(Ẑ0, R̂) = 0

(9)

The five equations in Eq. (8) were transformed into discrete difference equations and
a time step of one year was used to propagate the variables over time until a measure-
ment was available. Then, all values were updated using the Kalman Gain matrix (K).
The following equation was derived to compute K for our example problem, based on
Gelb (1974):

(

KZ,t

KR,t

)

=

[

var (Ẑt |M1:t−1) cov(Ẑt , R̂|M1:t−1)

cov(Ẑt , R̂|M1:t−1) var(R̂|M1:t−1)

]

. µT.

{

µ ·

[

var (Ẑt |M1:t−1) cov(Ẑt , R̂|M1:t−1)

cov(Ẑt , R̂|M1:t−1) var(R̂|M1:t−1)

]

· µT + σ 2
m

}−1

where µ = (1 0). The conditional notation designates that the variances and covariance
at time t are based on all measurements through time t − 1 (before updates are made).
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Substituting variables into the above equations results in the following Kalman gains:

KZ,t =
var(Ẑt |M1:t−1)

var(Ẑt |M1:t−1) + σ 2
m

KR,t =
cov(Ẑt , R̂|M1:t−1)

var(Ẑt |M1:t−1) + σ 2
m

(10)

Note that although R is not measured, the measurement of soil C provides information
for refining the estimate of R via the covariance term. Also note that these gains vary with
time; they are recalculated each time a measurement is made. If measurements are not
made in a particular year, model predictions provide estimates of soil C and the update
step is omitted. When a measurement is made, state variables are updated by:

Ẑt |M1:t = Ẑt |M1:t−1 + KZ,t (mt − Ẑt |M1:t−1)

R̂|M1:t = R̂|M1:t−1 + KR,t (mt − Ẑt |M1:t−1)

(11)

The Kalman Gain variables are used to weight the updated estimate on the basis of
error variances. Note that if measurement error variance is very small relative to model
prediction variance, then KZ,t approaches 1.0 and the updated model prediction Eq. (11)
will be approximately the measured value. In contrast, if measurement error is large
relative to prediction error, KZ,t will be closer to 0.0, and the updated soil C estimate will
be near the predicted value. Furthermore, if the covariance term used to compute KR,t is
small, the updated R will remain close to its estimate from the previous step. However,
if the covariance term is large, differences between measured and predicted soil C will
result in adjustments to R̂ in the update step.

The covariance matrix is updated using the equation (Gelb et al., 1974):

P + = (I − Kµ)P − (12)

where µ = (1 0). The (+) superscript on P designates the covariance matrix after it is
updated using measurement at time t. For our problem, the terms in the updated covariance
matrix derived from Eq. (12) are:

var(Ẑt |M1:t ) = var(Ẑt |M1:t−1) ·

[

1 −
var(Ẑt |M1:t−1)

var(Ẑt |M1:t−1) + σ 2
m

]

var(R̂|M1:t ) = var(R̂|M1:t−1) −

[

cov(Ẑt , R̂|M1:t−1)
2

var(Ẑt |M1:t−1) + σ 2
m

]

cov(Ẑ
,
t R̂|M1:t ) = cov(Ẑ

,
t R̂|M1:t−1) −

[

cov(Ẑt , R̂|M1:t−1).var(Ẑt |M1:t−1)

var(Ẑt |M1:t−1) + σ 2
m

]

(13)
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These equations were programmed using a discrete time step of one year to implement
the EKF for optimal estimation of soil C (Z) and decomposition rate (R) for this problem.

6. Comparison of Extended and Ensemble Kalman Filters

Thirty years of measurements were generated by using Eq. (1) with true values of R and
initial soil C (Z0) to generate true values of Zt , then randomly sampling from the distri-
bution of τt at each annual time step to compute mt using Eq. (2). Realistic parameters
and error terms were selected for examples presented in this chapter and are summarized
in Table 1 (from Jones et al., 2004). Two numerical cases are compared. The first case
compared EKF and EnKF using the simple model and the values in Table 1 with mea-
surements each year. The second case demonstrates the effects of measurements made at
5-year intervals. Comparisons of Z, R, and their variances are shown.

Figure 1 shows EKF and EnKF estimates of soil organic C for the inputs used (Table 1)
as well as annual measurements (generated as discussed above). It also shows the “true”
soil C values created as discussed above. Estimates made by both Kalman Filters are
smooth and in most years are closer to the “true” values than measured values. Estimates
of R decreased from an unconditional mean of 0.020 yr−1 to values less than the “true”
value of 0.010 after about six years and then converged to its true value after about
20 years. Standard errors of soil C estimates first increased from the initial value of about
141 to over 400, then decreased to about 320 (Fig. 1). This value is less than half of the
standard error in estimates if measurements alone were used each year (707 kg[C] ha−1).
The standard error of R decreased considerably over time.

When measurements were only made every 5 years, model predictions of soil C each
year still followed “true” values very well (Fig. 2). However, standard errors of those
estimates were higher, increasing between measurements but decreasing to less than mea-
surement error every time a measurement was available. After twenty years, standard
errors of Kalman Filter estimates remained lower than those of measurements alone for
all years and was less than 500 kg[C] ha−1 in years with measurements. Estimates of
R and its standard errors for the 5-year measurement interval were similar to those for
1-year measurement.

Table 1. Values of parameters, initial conditions, and inputs (adapted from Jones et al., 2004).

Variable Definition Units Value

Z0 Initial estimate of soil C at time 0 kg[C] ha−1 16 000
σ 2

Z0
Variance of initial soil C estimate (kg[C] ha−1)2 20 000

R True value of mineralization parameter yr−1 0.010
σ 2

m Variance of measurement, constant over time (kg[C] ha−1)2 500 000
σ 2

ε Variance in model estimates of soil C, each year time step (kg[C] ha−1)2 20 000
µR Unconditional mean of soil C decomposition parameter yr−1 0.020
σ 2

R Variance of decomposition rate parameter yr−2 0.0001
Ut Input of C to the soil each year (assumed constant) kg[C] ha−1 2000
b Proportion of annual soil C input that remains after one year – 0.20
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Figure 1. Comparison of EKF and EnKF methods of estimating soil C (upper left figure) and
decomposition rate parameter (upper right figure) when measurements are made every year. True
soil C and R values are also shown. Standard deviations of estimates are compared in the bottom
two graphs for soil C and R, respectively. All comparisons are based on parameters and initial values
in Table 1.
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Figure 2. Comparison of EKF and EnKF methods of estimating soil C (upper left figure) and
decomposition rate parameter (upper right figure) for the case when measurements are made every
five years. True soil C and R values are also shown. Standard deviations of estimates are compared
in the bottom two graphs for soil C and R, respectively.
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Results for both EKF and EnKF were similar for the cases shown in Figures 1 and 2
as well as others that are not presented. The advantages of the EKF is in the speed
with which computations are made. The computer code was easier to write and debug for
EKF vs. EnKF. A disadvantage is the requirement of deriving the first order approximation
equations for propagating system states and covariance matrix. It is not possible to use this
approach on nonlinear models which cannot be written in compact analytical form. Thus,
a clear advantage for the EnKF is that one does not have to develop those mathematical
relationships. Although the EnKF is slower, one could not detect differences in runtime
for this problem.
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1. Introduction

Given the pressure on water resources, new irrigation scheduling approaches, not neces-
sarily based on satisfying the full crop water requirement but rather aimed at increasing
efficient use of the allocated irrigation water and use of stored ground water are needed
(Kirda and Kanber, 1999). However, irrigation scheduling is among the most complex of
crop management problems. There are in general a number of irrigation dates and that
number is not known in advance but depends on circumstances. Whether or not to irrigate
on a particular day depends on the state of the crop and of the soil, and thus not only
on past irrigation decisions, but also on future irrigation decisions i.e. it is necessary to
consider the overall irrigation strategy. Furthermore, irrigation requires resources, namely
water, equipment and labor, that are often limiting factors and so it is necessary to take
that into account.

The major irrigated crop in France, in terms of area as well as in terms of water use, is
corn. The most common irrigation method for corn in France is by traveling gun, which
is a high pressure gun mounted on a trolley which is self propelled. The gun irrigates a
sector of the assigned area and then must be moved to the next sector. When the entire
irrigation area assigned to the gun has been irrigated, a new round of irrigation can begin.

The purpose of MODERATO is to evaluate current irrigation strategies for corn and to
propose improved strategies applicable to irrigation by traveling gun as well as to other
methods. To achieve this, MODERATO combines a dynamic and biophysical corn crop
model with a dynamic decision model (Bergez et al., 2001a). The crop model is described
in Wallach et al. (2001) and also in Chapter 12 of this book. It will not be discussed
further. The decision model consists of a set of decision rules for different management
decisions, in particular, irrigation management decisions. The use of decision rules is
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important because they allow the decisions to depend on the specific conditions in each
field in each year as well as on the level of available resources (Aubry et al., 1998).

The crop model and the decision model interact every day in MODERATO. The crop
model updates the state variables each day and passes their values to the decision model
together with the explanatory variables that day. Within that collection of variables are the
indicator variables of the decision rules. The decision model then evaluates the decision
rules to decide if a management action is to be taken. If so the information concerning
the decision is passed back to the crop model (e.g. amount of water or sowing density).

The decision model of MODERATO is described in Section 2. Section 3 explains
how resource limitations are taken into account. Section 4 describes the different types
of study that can be performed using MODERATO are presented in. Section 5 contains
conclusions.

2. The decision model

The full set of decisions that are taken into account in MODERATO is presented in Table 1.
Table 1 also gives an example of each decision rule as used in a specific study by Bergez
et al. (2002). The following discussion only concerns the decision rules for irrigation
since MODERATO is particularly oriented toward irrigation decisions. These decision
rules were developed in collaboration with irrigation engineers. Similar rules have been
used in the past (Leroy et al., 1996, 1997).

The timing of irrigation is determined by five separate decision rules:

(1) Sowing rule. This rule determines whether or not to apply irrigation shortly after
sowing and the amount of water to be applied.

(2) Starting rule. This rule determines the day on which to begin irrigation during the
growing season and the amount for the first irrigation round.

(3) Next round rule. This rule is invoked after a round of irrigation has been terminated.
It determines when to start the next round and the irrigation amount for rounds after
the first.

(4) Climatic events rules. Irrigation can be temporarily suspended after a rainfall event
or due to strong wind. This rule determines the length of the interruption.

(5) Stopping rule. This rule is invoked at the end of an irrigation round. It has one of
three conclusions. Either the previous round of irrigation was the last, or another
round of irrigation is to be performed and that will be the last, or another round
of irrigation is to be performed and when finished this rule will be invoked again.
If the next round is the last, the amount of irrigation is given.

Many of the rules in MODERATO are based on the general form:
IF (condition 1a OR condition 1b) AND (condition 2a OR condition 2b) THEN

decision; define amount.

where conditions 1a and 1b concern crop development while conditions 2a and 2b refer
to water status in the soil. The first condition in each pair (conditions 1a and 2a) uses
meteorological variables as indicator variables while the second condition in each pair is
based on state variables. The user can choose to ignore one of the two conditions in each
part of the premise.
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Table 1. The management decisions in MODERATO, with an example of decision rule for each
decision.

Decision Rules

Sowing date IF (April 20 < date < May 30) AND (cumulative rainfall during the

previous 3 days < 15 mm) AND (crop not yet sown) THEN sow.
IF (date = May 30) AND (crop not yet sown) THEN sow

Sowing density Density = 80 000 plants ha−1

Variety Variety = Cécilia

Fertilisation date Fertilisation date = sowing date

Fertilisation
amount

Fertilisation amount = 200 kg N ha−1

Harvest date IF (grain moisture content < 20% OR cumulative thermal units from

sowing ≥ 2100◦C days) AND (cumulative rainfall during the previous

3 days <15 mm) AND (crop not yet harvested) THEN harvest. IF (date

= 14 October) AND (crop not yet harvested) THEN harvest.

Irrigation Sowing rule: IF (time after sowing = 15 days OR degree days after sowing

has just passed 70◦C days) AND (cumulative rainfall since sowing

< 20 mm) AND (no irrigation after sowing yet applied) THEN irrigate

with 20 mm.
Starting rule: IF (date ≥ June 15) AND (cumulative rainfall in previous

5 days < 15 mm) AND (cumulative potential evapotranspiration in

previous 5 days > 15 mm) THEN begin first irrigation round. Irrigation

amount in first round = 30 mm.
Next round rule: IF (development stage < flowering) AND (days since start

of last round = 9) THEN start next round. IF (flowering ≤ stage ≤ 50%
grain moisture content) AND (days since start of last round = 6) THEN
start next round. IF (development stage > 50% grain moisture content

flowering) AND (days since start of last round = 9) THEN start next

round. Irrigation amount in rounds after first = 30 mm.

Stopping rule: IF (date = 1 September) AND (cumulative rainfall over

previous 5 days <15 mm) AND (cumulative potential evapotranspiration

over previous 5 days <20) THEN do one more irrigation round after

present round. OTHERWISE irrigation ceases.
Rainfall rule: IF (cumulative rainfall over previous 5 days > 15 mm)

THEN no irrigation for min (5, cumulative rainfall over previous 5 days

(in mm)/4) days.

An example of a rule for irrigation after sowing is (see Fig. 1)
IF (time after sowing = 15 days OR cumulative degree days after sowing has just

passed 70◦C days) AND (cumulative rainfall since sowing < 20 mm) THEN irrigate.
The rule also specifies the amount of water to apply. The amount can either be a fixed

quantity (for example, 20 mm for the rule defined in Fig. 1) or it can be calculated based
on soil water depletion. This rule has an additional section which says that the irrigation
round after sowing is abandoned if cumulative rainfall since the beginning of the round
exceeds 10 mm before all sectors have been irrigated. Finally, in the case of irrigation
after sowing, one can decide whether or not the total available water includes the water
used for this round or not.
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Figure 1. Graphical user interface for defining the sowing rule in MODERATO that determines
whether or not to irrigate at sowing.

Note that the decision model does not have total flexibility but rather has a built-in
structure adapted to the specific irrigation context in question. Flexibility arises from the
possibility of using either one or both the conditions 1a and 1b combined with either one
or both the conditions 2a and 2b. Also the choice of parameter values for the decision rules
allows one to test a range of decision rules. However, we did not opt for total flexibility,
which could be achieved by allowing the user to freely define his own decision rules
(Shaffer and Brodahl, 1998). Instead, we chose a compromise between flexibility on the
one hand and ease-of-use in inputting the decision rules on the other. As Figure 1 shows,
the user can input decision rules quite easily by way of the graphical user interface.

The decision rules in MODERATO are meant to be compatible with actual practice
but are not meant to mimic farmer behavior completely. Indeed, although surveys in
south western France have shown that some farmers implicitly use decision rules similar
to those given above, the indicator variables that they use may be quite different from
those of MODERATO. For example, responses to a question about the basis for the
start of irrigation included “when leaves start to roll”, “when the soil changes color”,
“when tensiometer values reach a given threshold”, “when the neighbor starts to irrigate”,
“when the soil dug up by moles is dry” etc. These indicator variables are not used by
MODERATO and furthermore are not available from the crop model.

3. The constraints

There are various constraints that affect irrigation which can be taken into account with
MODERATO (see Fig. 2). These are:

• Maximum flow rate. Flow rate may be limited by the available equipment, by the
contract with the water provider or by regulation. Note that flow rate and amount to
apply determine the time necessary to irrigate a sector, and thus also the minimum
time for a full round of irrigation. In MODERATO, one can specify both an equipment
limitation on flow rate and also lower flow rates for certain periods, such as might be
imposed by a water provider.

• Total available water. Total available water may be limited by contract, or because the
farmer is pumping from a reservoir of limited capacity.
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Figure 2. Graphical user interface for defining the constraints to be taken into account in
MODERATO.

• Available time for irrigation. In case of drought, irrigation can be prohibited on certain
days. Labor may also not be available on certain days, or may only be available for a
certain number of hours each day. The effect is to reduce the time during which the
irrigation equipment can operate and thus to increase the minimum time for a full round
of irrigation.

• One can specify a maximum and a minimum amount of irrigation water to be applied
in a round.

4. Uses of MODERATO

4.1. Evaluating a strategy

To evaluate an irrigation strategy with MODERATO the user specifies the strategy by
using the graphical user interface to define the decision rules (or if an expert user by using
specific text files). MODERATO can then be used to simulate the results of that strategy
for a series of climate scenarios or soil types. Companion tools have been developed
to help analyze the results of the strategy for those climates. One tool creates a table
giving the mean, standard deviation, minimum value, maximum value and the second
and forth quartiles for grain yield, amount of water applied in irrigation, amount of water
lost by drainage, water use efficiency, yield loss compared to yield in the absence of
water stress, first and last days with irrigation and a measure of profit. The tool also
indicates extreme results, which one might want to analyze in more detail. Other tools
provide graphical representations of the results. One graph gives cumulative frequencies
for grain yield, profit and starting and ending irrigation day. A second graph shows, for
each climate, actual and potential grain yield, the amount of water applied in irrigation
and profit (Fig. 3). A third graph displays soil water deficit on the first and last days of
irrigation.



414 J.-E. Bergez, J.-M. Deumier and B. Lacroix

50

60

70

80

90

100

110

120

130

140

150

19
49

19
51

19
53

19
55

19
57

19
59

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

0

500

1000

1500

2000

2500

3000

Grain yield 15% (q/ha) Margin ( /ha) Irrigation (m3) Pot. Grain yield 15% (q/ha)

Figure 3. Graphical representation provided by MODERATO of results over a series of climates.

4.2. Analyzing the results for a specific climate

A set of 5 graphs is available to analyze in detail the results of an irrigation strategy for
a particular climatic year and soil. The first graph provides a graphical representation of
the climate variables. The second graph gives details of soil water dynamics. The third
graph displays plant variables versus time. The fourth graph displays information about the
irrigation applications. The last is a calendar, which shows the starting date of each round
of irrigation, days when no irrigation is applied because of recent rainfall, etc (Fig. 4).

4.3. Providing parameters for tensiometer-based irrigation

A set of recommendations for corn irrigation based on measurements of soil moisture
using tensiometers has recently been developed in France. The overall method is known
as IRRINOV®MAIS (Deumier et al., 2002). The recommendations are based on thresholds
of soil moisture. If soil moisture falls below the threshold, irrigation should be applied. The
method proposes different thresholds depending on soil type, stage of crop development
and level of irrigation equipment.

The thresholds are to a large extent based on experimental results. However, experimen-
tation is limited as to the number of contexts that can be tested. MODERATO is therefore
being used as a second approach to determining the thresholds. For this, an equation is
required which converts between tensiometer values and soil moisture. The decision rules
in MODERATO allow one to test different soil water thresholds for irrigation at various
stages, and the conversion equation converts those thresholds into tensiometer values.

4.4. Optimizing decision rules

One method of seeking improved decision rules with MODERATO is by trial and error.
One creates and evaluates different strategies in order to find strategies better than the
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1994 Irrigation

Irrigation ban

Stop due to wind

x Stop due to rainfall. x days to wait

Out of irrigation round

S Final stop

Avril 21 22 23 24 25 26 27 28 29 30

Mai 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Juin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 7 7 6 5 4 3

1

Juill 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 1 1 1 1 1 4

2 3 4 5

Aout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

3 2 1 1 1 1

6 7 8

Sept 1 2 3 4

1

9

Figure 4. Graphical representation of the calendar of irrigation decisions for a particular context
provided by MODERATO.

initial strategy. The tools of MODERATO for analyzing a strategy can be very valuable
here in suggesting what changes might lead to improved strategies.

When one seeks only simple changes in the decision rules, it might be possible to
do a systematic search. For example, different parameters related to the soil moisture
thresholds for starting the first and subsequent rounds of irrigation were tested (Bergez
et al., 2002). The other decision rules were kept constant (Fig. 5).

For more extensive changes compared to the initial strategy, automated optimization
algorithms as described in Chapter 6 are necessary. One such algorithm was used to
optimize the 8 parameters in the following decision rules (Bergez and Garcia, 2002;
Bergez et al., 2001b):

(1) Starting rule. IF (cumulative degree day after sowing > T1) AND (soil water

deficit > D1) THEN begin first round of irrigation. Irrigation amount in first

round = I1.
(2) Next round rule. IF (soil water deficit > D2) THEN start a new round of irrigation.

Irrigation amount in rounds after first = I2.
(3) Stopping rule. IF (cumulative degree day after sowing > T3) AND (soil water

deficit > D3) THEN do a last round of irrigation. OTHERWISE stop irrigation.
Irrigation amount if last round is applied = I3.

4.5. Evaluating heterogeneity between sectors

The irrigated area is not irrigated simultaneously but rather sector by sector. The results
will then differ between sectors and the variability will be greater, the longer it takes
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Figure 5. Net margin (E ha−1) iso-contours as a function of two decision rule parameters: soil water
deficit for starting the first round of irrigation (starting deficit) and soil water deficit for subsequent
rounds (return deficit).

to complete a round of irrigation. The previous results refer to the first sector, but
MODERATO can also be used to analyze the variability between sectors. Bergez and
Nolleau (2003) found a corn grain yield difference of 1.41 Mg ha−1 between the highest
and lowest yielding sectors on the average over a series of climates. The greatest yield
difference between sectors was 2.11 Mg ha−1. Yield variability decreases as flow rate
increases, as irrigation amount decreases, as soil depth increases or as gravimetric soil-
available water capacity increases. The first two variations (increased flow rate, decreased
amount) decrease the time necessary to finish a round of irrigation and therefore the delay
between the first and last sectors. The last two variations (increased soil depth, increased
water capacity) increase maximum soil water storage and therefore make the crop less
dependent on irrigation timing.

4.6. Real-time use of MODERATO

The specific real-time use of MODERATO that is being developed concerns the use of
short-term weather predictions. Five-day or even longer predictions are now available,
and should certainly be useful in determining irrigation management. Real-time use of
MODERATO means that one inputs actual climate and management decisions up to the
day when MODERATO is run. MODERATO can then be used in real time to compare
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two different decisions, namely irrigate this day or not. This use does not involve decision
rules, but simply looks at the consequences of each decision over a one-week period.

4.7. MODERATO as a diagnostic aid

The main objective of MODERATO is to test irrigation management strategies. However,
the companion tools are also useful for analyzing the results of past management. In this
case one inputs actual decisions rather than decision rules.

5. Conclusions

Coupling decision rules with a crop model allows one to evaluate management strategies
and to propose improved decisions. As MODERATO shows, this is possible and useful
even for complex management decisions such as those concerning irrigation. The structure
of the decision rules is very important, since that determines the range of strategies that
can be tested. In MODERATO, the structure of the decision rules is largely dictated by
the specific irrigation context, but there is still quite a bit of latitude in the rules. Defining
decision rules that are both flexible and applicable is an area where further research is
required.

We have concentrated here on the decisional part of MODERATO. However, in using
models as an aid in crop management, both the decision model and the crop model are
essential.
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1. Introduction

The European Union has an obligatory fallow policy, but since 1993 it has been legal to
consider non-food crops as fulfilling the fallow requirement. Agricultural professionals
promote such production as a way of increasing farmer revenue. Among non-food crops
are crops for bio-fuels and in particular wheat for ethanol production.

Current production of bio-fuels is very low, despite the fact that they offer a diversifica-
tion of both farmer income and energy sources. A number of problems with bio-fuels have
been raised by critics. In France they are deemed too costly for society since unlike fossil
fuels they are tax exempt. Without this advantage they would not be competitive. Environ-
mentalists argue that although bio-fuels reduce CO2 emissions compared to fossil fuels,
this is offset by the fact that intensive wheat production causes water and air pollution.
Finally, critics point out that bio-fuel production must be judged according to net energy
production which is the energy in the ethanol minus the energy required for producing it.

Some of the criteria for judging wheat production for ethanol clearly are not the same
as for wheat production for food. For example, the energy balance is essential for the
former but is far less relevant for the latter. In addition, the economic context differs:
the price of ethanol wheat is lower than that of regular wheat (about 76E/ton versus

122E/ton in 1995). This suggests that wheat production for ethanol may require very
different production systems than those commonly used. The purpose of this study was
to generate and evaluate a large number of production systems, in order to identify those
that are adapted to wheat production for ethanol (Loyce et al., 2002a,b). The study is
specifically adapted to wheat production for ethanol in the Champagne Crayeuse region
in north-east France.
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In order to screen management strategies we developed a decision support tool called
BETHA (for “blé éthanol”). The steps involved in using this tool are as follows:

(1) Define the different management decisions that make up an overall management
strategy for wheat, and list the possible modalities for each decision (Section 2).

(2) Define a series of climates representative of those that might be encountered. Here
we used past climates (from 1978 to 1996) from the region in question.

(3) Define a crop model, which determines the results for each combination of
management strategy and climate (Section 3).

(4) Generate all possible combinations of management decisions and eliminate those
that are unrealistic. Associate with each management strategy and climate combina-
tion the results of the crop model. The algorithm used for this step is based on the
Constraint Satisfaction Problem (CSP) approach (Mackworth, 1987; Schiex, 1993;
Tsang, 1993). This approach has been proposed previously for the design of wheat
crop management plans (Martin-Clouaire and Rellier, 1995).

(5) Define the criteria for evaluating a given management strategy for a given climate
(Section 4).

(6) For each management strategy – climate combination, use a multiple criteria
evaluation method in order to classify the results as “good” or “bad” (Section 5).

(7) Select management strategies suited to the requirements of ethanol wheat produc-
tion. A management strategy is selected if a sufficient fraction of management
strategy – climate combinations for that strategy is classified as “good” and not
classified too often as “bad” (Section 5).

Some characteristics of wheat management strategies suited to bio-fuel production are
presented in Section 6. Section 7 contains a discussion.

2. The strategies defined in BETHA

The management decisions and the possible modalities for each are shown in Table 1. The
decisions concern sowing period and density, cultivar, fungicide and insecticide protec-
tion, nitrogen fertilization and the use of a growth regulator. We did not consider different
possible weed control or tillage decisions, since these decisions should be determined at
the crop rotation level and not on the basis of a single cropping season. The present version
of BETHA assumes standard tillage and complete herbicide protection. It is thus assumed
that weeds are under control and that soil structure does not hamper crop emergence.
Finally, as winter wheat is normally grown without irrigation in France, only non-irrigated
systems are considered. For some of the decisions, such as cultivar, the possibilities are
completely specified. For others, such as fungicide protection, the possibilities are not
completely defined and the actual value will be based on decision rules (see Chapter 6).
Actual type of fungicide treatments will then depend on climatic conditions which deter-
mine the risk of disease. A management strategy is a combination of modalities, one for
each decision.

Some combinations of management decisions are unrealistic. For example, one would
not combine low density and nitrogen fertilization with the use of a growth regulator.
The CSP algorithm eliminates such combinations.
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3. The crop model

The crop model is not dynamic but rather a static model that consists of simple relationships
that link crop results (yield and quality) to crop characteristics, to the environment (soil,
climate) and to crop management (Fig. 1). An example of a model equation is P0 =

p1(Qn/Yr) + p2, where P0 is grain protein content, Qn is nitrogen absorbed by the crop,
Yr is yield and p1 and p2 are parameters.

First, the choice of a static model was made because there exist in the literature static
relationships that take into account the effects of the major factors (nitrogen and disease
according to Meynard et al. (1981)) that influence wheat production in the north and
center of France (Rémy and Viaux, 1982; Meynard, 1985, 1991; Spiertz and Vos, 1985;
Bergström and Brink, 1986; Chaney, 1990; van Keulen and Stol, 1991; Gate, 1995;
Richards et al., 1996; Meynard et al., 1997; Makowski et al., 1999). Second, the CSP
algorithm is not adapted to the use of dynamic models.

4. Criteria for judging bio-fuel wheat production systems

Different stakeholders (farmers, industry, government, conservationists) have different
criteria for judging management strategies and results for bio-fuel wheat. Overall, 8 dif-
ferent criteria were used to evaluate management strategies, based on discussions with all
stakeholder groups.

(1) Semi-net profit to the farmer, defined as value of the crop minus the costs of inputs,
manpower and equipment operations. Fixed expenses such as rents, taxes, salaries, etc.
are not taken into account.

Yield losses due to
diseases Lo,
to fungicide
 protection Lf

Potential
yield Yhv

Cultivar
CULT

Sowing
period SP

Sowing
density SD 

 Actual yield
Yr

Nitrogen absorbed by the
crop Qno for an optimal

nitrogen dose Dno

Climate

Nitrogen
dose applied

Dn

Protein
content Po

Nitrogen
at harvest

Nh

Climate, soil

Climate

Fungicide
protection

FUN

 Nitrogen
absorbed by
the crop Qn

Reference
nitrogen
dose X

Soil

Figure 1. General framework of the crop model.
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(2) Number of interventions. Since the value of the crop per hectare is low, the time
devoted to the crop must be low.

(3) Production cost per ton. It is important to lower the costs so that government
subsidies could be reduced.

(4) and (5) Impact of the crop on the environment. The two criteria we use are residual
mineral N left in the soil after harvest and the volume of active ingredients in pesticides
applied to the crop. The last criteria has been used by Wijnands (1997). The use of
a simple pesticide criterion is reasonable because the production systems that we will
compare use the same type of active ingredients and the same application methods for
pesticides. If required to compare production systems with a variety of active ingredients
or application methods, we need more complex criteria (Van der Werf and Zimmer, 1998).

(6) The net energy, defined as the energy produced (tons of wheat per hectare times
ethanol yield per ton of wheat times energy content of ethanol) minus the energy used
for production (including energy for crop production and transformation as well as for
packaging by-products and transportation).

(7) and (8) Quality of the cakes for animal feed which are by-products of ethanol
production. The quality determines the economic value of the by-product. Two specific
criteria are used here, namely protein percentage (too low a value reduces the nutrient
value of the cakes, while too high a value makes the cakes stick together too much)
and grain hardness, which depends on the wheat variety. With a low hardness value
it is easier to separate the bran and kernel and grinding into flour requires less energy
(Abecassis, 1993).

5. Multiple criteria analysis with BETHA

A number of different methods for taking multiple criteria into account in decision making
have been proposed (Schärlig, 1985). The simplest is to aggregate the different criteria
into a single criterion. Often the combined criterion is a weighted sum of the various
individual criteria (Charnes and Cooper, 1977; Brans, 1983; Morgan et al., 1989). In the
present case however this approach would be difficult to apply. First of all, the different
criteria are on different scales and it would be difficult to combine them. Second, different
stakeholders are interested by different criteria, so that a high value for one criterion in
many cases cannot compensate for a low value for another criterion. For example, revenue
is important to the farmer while energy balance is important to the government and to
conservationists. For neither group will a high value for one of these criteria compensate
for a low value for the other.

The multiple criteria method we use here is based on the concepts of concordance and
discordance (Roy, 1985; Roy and Bouyssou, 1993). A management strategy a is preferred
to strategy b if a majority of the criteria are concordant with the proposition “a is preferred
to b” and if there are no criteria that are so discordant as to invalidate this proposition.

In BETHA we use a version of this approach to classify management strategies into one
of the two categories called “good” and “bad,” for a given climate (Perny, 1998). Then,
depending on the number of climates for which it is “good” and “bad,” a management
strategy is selected or not. The classification proceeds as follows:

(1) Define for each category Ki (K1 = “good”, K2 = “bad”) and for each criterion
Xj (X1 = semi-net profit, X2 = number of interventions, etc.) the concordance and
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1

C(x)

0
D(x)

Xjx

Figure 2. Concordance function (dashed line) and discordance function (solid line). The dotted
vertical line indicates a particular result for this criterion, which translates into a concordance index
C(x) and a discordance index D(x).

discordance functions Ci,j (·) and Di,j (·) (Fig. 2). Suppose for example, that the value of
criterion Xj for the management strategy a and for a given climate is xj.a . Then the con-
cordance value Cgood,j (xj.a) measures how much we agree with the statement “a is a good
strategy as far as criterion Xj is concerned” and the discordance value Dgood,j (xj.a) mea-
sures how much we disagree with this statement. Similarly Cbad,j (xj.a) and Dbad,j (xj.a)

indicate our agreement or disagreement with the proposition that a is “bad” with
respect to criterion Xj . To simplify somewhat, we set Dbad,j (xj.a) = Cgood,j (xj.a) and
Cbad,j (xj.a) = Dgood,j (xj.a). The concordance and discordance functions express our
subjective ideas about what values are good or bad. A category Ki has the nature of a
fuzzy set, i.e. to which strategies more or less belong. That reflects the imprecise nature
of the stakeholders’ criteria, which makes it unrealistic to set sharp boundaries between
categories.

(2) Define for each category Ki and for each criterion Xj , the absolute veto value vi,j ,
such that if the criterion value x goes beyond, for instance, vgood,j then Dgood, j (x) = 1
resulting in the strategy in question having no chance to be a “good” strategy, regardless
of the results for the other criteria. On the other side of vi,j , the veto strength may
decrease gradually. For example, a strategy that results in net energy production below
3000 MJ ha−1 cannot be a “good” strategy in the considered climate and may be more or
less retained to be “good” for greater values.

(3) Define the set of weights Wj that expresses the relative importance of each
criterion Xj . This again is a subjective statement. The overall concordance score for
the strategy a relative to the category Ki is then the weighted sum over all criteria,
CTi(a) = �WjCi,j (xj.a). The overall discordance score is given by DTi(a) = 1 −

�[1 − Di,k(xj.a)]
Wj . Notice that the weights are identical in the concordance and

discordance score equations.
(4) Define the decision variable Rgood(a) = CTgood(a). [1 − DTgood(a)] and the

threshold tgood such that if Rgood(a) > tgood then the strategy a is assigned to the “good”
category. Similarly define Rbad(a) = CTbad(a). [1−DTbad(a)] and the threshold tbad such
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that if Rbad(a) > tbad then a is assigned to the “bad” category. Note that it is possible that
a be assigned to both categories.

(5) Evaluate the results of each strategy for N different climates. Let ngood be the
number of climates for which strategy a is considered as “good” and nbad the number of
contexts in which it is considered as “bad”. Then the management strategy a is selected if
ngood/N ≥ MINgood and nbad/N ≤ MAXbad , where MINgood and MAXbad are thresholds
that will depend on the decision maker’s aversion to risk.

6. Results

The management strategies selected by BETHA for ethanol wheat are very different than
typical strategies for wheat for food. In particular, the ethanol-wheat strategies are much
less intensive. Compared to management recommended for wheat for food, the most
extensive strategy for ethanol wheat has 40% less nitrogen fertilizer, 100% less fungicide
and growth regulators and a 50% lower sowing density.

The semi-net profit is higher for low levels of inputs due in large part to the low price of
ethanol wheat (46E per ton less than for wheat for food). Furthermore, low input strategies
improve the production cost per ton and the environmental criteria compared to inten-
sive strategies. However, such strategies do not improve the energy balance but remain
acceptable because their energy balance is higher than the veto value (3000 MJ ha−1).

7. Discussion

It is difficult to define criteria for judging management strategies. A major problem is
that in many cases the relevant criteria really apply to other spatial or temporal scales
than a single field and just the wheat growing season. For example, nitrogen pollution
can be reduced by introducing a catch crop after harvesting wheat, so we would consider
both wheat and the following catch crop (Machet and Mary, 1990). Also, wheat has an
impact on the succeeding crop which we have not taken into account. For example, wheat
diseases can be transmitted via crop residue from one season to another. We would need
multi-year simulations to take this into account. We have not done this, because in any
case we do not know how to quantify these effects, which furthermore depend on the
succeeding crop.

Another difficulty is that there is often insufficient knowledge on which to base the cri-
teria. Judging environmental impact in particular is difficult. No doubt the environmental
criteria that we used are insufficient to completely characterize pollution risks. In future,
we may consider replacing them with the nitrate content in drained water and indicators
of the risk associated with the use of plant protection products.

It is also difficult to determine relevant concordance and discordance functions and
weights Wj . We finally chose a set of weights that gives priority to economic and envi-
ronmental objectives. However, identifying the different criteria and fixing the weights
can be a rewarding learning experience. In our case it was the result of talking to the
different stakeholders and trying to understand their objectives. The quality of the initial
work done to formulate the problem affects to a large extent the quality of the solution.
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The use of fuzzy logic hopefully means that small changes in the concordance and
discordance functions will only lead to small changes in the results. To verify, we did
a sensitivity analysis to investigate the effect of slightly changing weights. Five sets of
weights other than the standard set, each giving priority to a particular coalition of criteria,
were tested. Care was taken to ensure that the values of the weights did not deviate too
much from the standard values. Results showed that the solutions were not very sensitive
to limited variations in the weights.

Overall, the approach of BETHA seems to be a promising way of developing manage-
ment strategies for agricultural systems. It makes it possible to comply with the complex
requirements of agricultural production and to sort strategies using criteria with different
units. We used BETHA for the specific case of ethanol wheat, but it could be used in gen-
eral as a tool for identifying management strategies for winter wheat when a compromise
has to be found between economic, environmental and quality considerations.
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Schärlig, A., 1985. Dècider sur plusieurs critères. Panorama de l’aide à la décision multicritére, Vol. 1,

pp. 304.
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1. Random variable

For our purposes a random variable, say X, is a function defined on the set of all possible
outcomes of an experiment involving some degree of randomness, that takes values in
the set of integers or on the real line. A classic example is a throw of a die, with X being
the number of dots on the upturned side. This X is a random variable because one does
not know in advance what the result of throwing the die will be. It can be any number
between 1 and 6. Another example would be X = yield in a randomly chosen French corn
field. This X is a random variable both because the choice of field is random and because
yield in a particular field is not known in advance.

It is important to identify the range, or “population”, of experiments or observations
which give rise to a random variable. The die throwing experiment concerns some par-
ticular die and throws that make the die turn over several times before it lands. The
population consists of possible throws. For the random variable X = yield in a randomly
chosen French corn field, the population can be thought of as all near future years and
in each year all fields planted to corn. The notion of future years includes the diversity
of possible climates, pest and disease levels, initial conditions, etc. If we restricted the
population to fields with conventional practices (eliminating for example organic farmers),
that would give rise to a different random variable.



430 Appendix

2. Cumulative distribution and density functions

The cumulative distribution function of a random variable X is defined as FX(x) =

P [X ≤ x], the probability that X is less than or equal to the value x. For a fair die
for example FX(2) = P [X = 1] + P [X = 2] = 2/6.

For a discrete random variable, the probability density function (we will also call it
simply the density function) fX(x) is the probability that X = x. For a fair die, the
probability of each number from 1 to 6 is 1/6 so that fX(x) = 1/6 for x = 1, . . . , 6.

For a continuous random variable fX(x)dx is the probability that X is in the range x to
x + dx for infinitesimal dx. The relationship between the cumulative distribution function
and the density function is FX(x) =

∫ x

−∞
fX(u)du. Since the probability of having some

value between minus and plus infinity is 1, we have
∫ ∞

−∞
fX(u)du = 1.

We will often refer to the “distribution” or “probability distribution” of a random
variable. This could be defined by its cumulative distribution function or equivalently by
its density function.

3. Several random variables

Let X = (X1, . . . , Xn)
T be a random vector. The notation (X1, . . . , Xn)

T means to take
the transpose of the vector, which converts the row vector (convenient for display), into
a column vector (the form we work with).

The joint density function of the random variables X1, . . . , Xn, noted
fX1,...,Xn

(x1, . . . , xn) is the probability that X1 is in the range x1 to x1 + dx1 and that
X2 is in the range x2 to x2 + dx2, etc.

The marginal distribution of a random variable X1 is defined by fX1(x1) =
∫ ∞

−∞
. . .

∫ ∞

−∞
fX1,...,Xn

(x1, . . . , xn)dx2, . . . , dxn.

4. Expectation, variance, covariance, and correlation

The definition of the expectation of a continuous random variable is E(X) =
∫ ∞

−∞
xfX(x)dx. The expectation of a function of a random variable, say g(X), is defined

by E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx. If X1 and X2 are random variables and c1 and c2 are

constants then E(c1X1 + c2X2) = c1E(X1) + c2E(X2).
The expectation of a function of several random variables, say g(X1, . . . , Xn), is

E[g(X1, . . . , Xn)] =
∫ ∞

−∞
. . .

∫ ∞

−∞
g(x1, . . . , xn)fX1,...,Xn

(x1, . . . , xn)dx1, . . . , dxn. In
this book, unless explicitly noted otherwise, operators are assumed to refer to all random
variables in the expression that is operated upon. Thus an expression like E[g(X1, X2)]

means to take the expectation over both random variables. If the intention is to take the
expectation over say only X1 then we write either EX1 [g(X1, X2)] or E[g(X1, X2)|X2]

which means to treat X2 as a fixed value and to take the expectation only over X1
(see the section “Conditional Distribution” below). Note that EX2{EX1 [g(X1, X2)]} =

E[g(X1, X2)], i.e. if we first take the expectation over X1 treating X2 as fixed, and then
take the expectation over X2, this is the same as taking the expectation over both random
variables.
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The definition of the variance of a continuous random variable is var(X) = σ 2
X =

E[X − E(X)]2. If X is a random variable and c a constant, then var(cX) = c2var(X).
The square root of the variance is called the standard deviation and noted as σX.

The covariance between two random variables X1 and X2 is defined as cov(X1, X2) =

σX1,X2 = E{[X1 − E(X1)][X2 − E(X2)]}. Note that cov(X1, X2) = cov(X2, X1). The
variance–covariance matrix of a random vector X = (X1, . . . , Xn)

T has the variances of
the random variables as diagonal elements and has covariances as off-diagonal elements:

�X =











var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) var(X2) · · · cov(X2, Xn)
...

...
. . .

...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)











The correlation coefficient of two random variables X1 and X2 is defined by
ρ(X1, X2) =

cov(X1,X2)
σX1σX2

. The correlation coefficient has the property −1 ≤

ρ(X1, X2) ≤ 1.

5. Some particular distributions

A very simple probability distribution is the uniform distribution, whose probability density
function is noted as U(a, b). A random variable whose density function is U(a, b) has
equal probability of taking any value in the range (a, b) and zero probability of being
outside this range. The notation X ∼ U(a, b) means that X has the probability density
function U(a, b). It is equivalent to fX(x) = 1/(b − a) for a ≤ x ≤ b and fX(x) = 0
otherwise.

Another very commonly encountered distribution is the normal distribution whose
probability density function is noted as N(µ, σ 2). The two parameters are the expectation
µ and the variance σ 2. If X has a normal distribution with expectation µ and variance σ 2

then fX(x) = N(µ, σ 2) = 1√
2πσ

e−(x−µ)2/(2σ 2). We will also write this as X ∼ N(µ, σ 2).

If a random vector X = (X1, . . . , Xn)
T has a multivariate normal distribution then the

density function is

fX(x1, . . . , xn) = Nn(µ, �) =
1

(2π)n/2 |�|1/2
e− 1

2 (x−µ)T�−1(x−µ)

where µ = (µ1, . . . , µn)
T is the vector of expectations, x = (x1, . . . , xn)

T is the vector
of the values of X = (X1, . . . , Xn)

T, � is the variance–covariance matrix and |�| is the
determinant of �.

6. Conditional distribution

The conditional density function of X1 given X2, noted as fX1|X2(x1|x2) is the probability
that X1 is in the range x1 to x1 + dx1 given that X2 has the value x2. The conditional
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density function is related to the joint and marginal density functions by

fX1|X2(x1|x2) =
fX1,X2(x1, x2)

fX2(x2)
(1)

The random variable that has the above density function, say X3 = (X1|X2), is a new
random variable which may have a different distribution for each possible value of X2.
When we want the random variable that corresponds to a particular value of X2 we write
X3 = (X1|X2 = x2). To help understand the difference, note that E(X1|X2) is a random
variable because X2 is a random variable, whereas E(X1|X2 = x2) is a number.

In the case of the multivariate normal distribution, all the conditional distributions
are also normal. Suppose that we partition a random vector X into two sub-vectors
noted as XA (with expectation vector µA) and XB (with expectation vector µB). The

variance–covariance matrix of X is correspondingly partitioned as �X =
(

�A �A,B
�B,A �B

)

.

The conditional distribution of XA given that XB = b, where b is a vector of constants,
is then a normal distribution with expectation and conditional variance

E(XA|XB = b) = E(XA) + �A,B�−1
B (b − µB)

var(XA|XB = b) = �A,B�−1
B �B,A.

An often useful formula is var(X1) = var [E(X1|X2)]+E [var(X1|X2)]. In words, the
overall variance is equal to the variance of the conditional expectation plus the expectation
of the conditional variance.

Two random variables are defined to be independent if fX1,X2(x1, x2) =

fX1(x1)fX2(x2). This has consequences for the conditional distributions. Substituting
into Eq. (1) gives

fX1|X2(x1|x2) =
fX1,X2(x1, x2)

fX2(x2)
=

fX1(x1)fX2(x2)

fX2(x2)
= fX1(x1)

This shows that in the case of independence the distribution of X1 given that X2 has some
particular value is exactly the same as the distribution of X1 which completely ignores X2.
In the case of independence then, knowledge of the value of X2 contains no information
about the value of X1.

7. Regression

The major purpose of regression is to study the dependence of one set of variables on
another. In simple linear regression the relationship is assumed to be of the form

E(Y |X = x) = α + βx
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where Y and X are random variables and α and β are parameters which are fixed but
unknown. The more general non-linear regression equation is

E(Y |X = x) = k(x; θ) (2)

where k is an arbitrary function, X is a random vector, x is a corresponding vector of fixed
values and θ is a vector of parameters. It is often further assumed that var(Y |X = x) = σ 2

so that the variance is independent of the value of x.
The response form of a crop model is usually written as Y = f (x; θ), but in fact is

usually treated like a regression equation (for example, for parameter estimation) and so
it would be more logical to write it in the form of Eq. (2). The assumption then is that the
model represents an expectation, and the true responses vary around that.

8. Estimators and estimates

In essentially all cases of interest here, the random variables are associated with an infinite
“population” of experiments and so the expectation, variance or any other function of the
random variables cannot be obtained by observing all the individuals in the population.
One can however estimate those values, based on a random sample from the population
in question.

Suppose that one has a random sample of n individuals from the population to which
the random variable X refers, and that one performs on each the same experiment or
observation that gives rise to X. This gives a collection of n random variables noted as
X1, X2, . . . , Xn. X1 for example is the random variable associated with the first individual
in the sample. By definition of a random sample this could be any individual in the
population with equal probability. Thus X1 has exactly the same probability distribution
as X, and so do X2, X3, . . . , Xn.

Unbiased estimators of the expectation and variance of X are

Ê(X) =
1

n

n
∑

i=1

Xi

vâr(X) =
1

n − 1

n
∑

i=1

[Xi − Ê(X)]
2
.

(3)

Suppose now that X is a vector with n components. We now use the notation Xj to denote
the jth component of X and Xi,j to note the jth component of Xj, the random variable
associated with the ith individual. An unbiased estimator of the covariance of Xj and Xj′ is

côv(Xj, Xj′) = 1

n − 1

n
∑

i=1

[Xi,j − Ê(Xj)][Xi,j ′ − Ê(Xj′)]

Here and throughout we indicate estimators with a hat.
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Equation (3) says that we can obtain an estimated value for E(X) by drawing a random
sample of size n, measuring the random variable in question for each individual and then
taking the average of the measured values. Note that this is a recipe and not a numerical
value. The recipe is itself a random variable since it is a function of random variables.
Such a recipe is called an estimator. The distribution of an estimator represents how it
would vary if the entire experiment were repeated. The variation arises because in each
repetition different individuals would be chosen for the random sample, and in addition
the results for a given individual have a random element. The expressions for vâr(X) and
for côv(Xj, Xj′) are also estimators. The value of an estimator obtained for a given sample
of data is called an estimate. Contrary to an estimator, an estimate is a numerical value.

Two important notions for estimators are bias and variance. Suppose that an estimator
of some quantity is denoted µ̂ and the true value µ. Remember that an estimator is
a random variable. The bias of the estimator is defined as bias(µ̂) = E(µ̂) − µ and
the variance is var(µ̂) = E{[µ̂ − E(µ̂)]2}. The mean squared error of the estimator is
MSE(µ̂) = E[(µ̂ − µ)2] = E[(µ̂ − E(µ̂) + E(µ̂) − µ)2] = var(µ̂) + [bias(µ̂)]2.

Suppose that the variance of X is σ 2 (where X is a random variable with only one
component). Then the variance of the estimator Ê(X) in Eq. (3) is

var[Ê(X)] = 1

n2

n
∑

i=1

var(Xi) = σ 2

n

Once we actually do the measurements on the n individuals in the random sample,
we have n measured values x1, x2, . . . , xn. These can be used to obtain estimates of the
mean and variance of X, where, as we said, an estimate (as opposed to an estimator)
is a numerical quantity. Given the n measured values the estimate of the expecta-
tion of X is Ẽ(X) = (1/n)

∑n
i=1 xi and the estimate of the variance is ṽar(X) =

(1/(n − 1))
∑n

i=1 [xi − Ẽ(X)]2
.

The parameters in the regression equation (Eq. (2)) can be estimated if one has a sample
of n pairs (Yi, Xi). A simple approach, with desirable properties if the Yi are uncorrelated
and the assumptions of the regression equation are correct, is that of ordinary least squares.
The least squares estimator is defined by

θ̂ = arg min
ϑ

n
∑

i=1

[Yi − f (Xi, ϑ)]2 (4)

9. Bayesian and frequentist statistics

The major difference between these two schools of statistics is not in how they do calcula-
tions but in what they choose to calculate. The difference applies particularly to parameter
values.

In frequentist statistics, a parameter is treated as a fixed quantity and one concentrates
on obtaining an estimator θ̂ of the parameter, based on the data in a sample. The least
squares estimator of Eq. (4) is an example. This estimator will be, like the estimators intro-
duced above, a random variable because different samples would give different results.
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Frequentist statistics concentrate on the distribution of the estimator, in particular its bias
and variance. The important point here is that the random variability concerns how the
estimated value would vary if the sampling, and the experiment for each individual in the
sample, were repeated.

Bayesian statistics on the other hand treat the parameter as a random variable whose
distribution represents our knowledge about the parameter. This knowledge is assumed to
have two sources. First, there is prior information available independently of the measured
sample. Before the measured data are available, our information about θ is given by
the prior distribution noted as π(θ). (We use here the notation that is commonly used
in Bayesian statistics, which is somewhat different than the notation introduced above.
In our previous notation the prior distribution might be noted f

prior
Θ (θ), where Θ is the

parameter treated as a random variable). The prior distribution gives the probability that
the parameter value is in the range θ to θ + dθ based on our prior information. The second
source of information is measurements of a random variable Y. After the measured values
y are available, our information about the parameter is given by the posterior distribution
noted as fΘ|Y (θ |Y = y). This is the probability that the parameter value is in the range
θ to θ + dθ based on both the prior information and on the measured values. It is this
distribution that is of primary interest. It can be calculated from the fundamental equation
of Bayesian statistics which is

fΘ|Y (θ |Y = y) =
fY |Θ(y|θ)π(θ)

mY (y)
,

where mY (y) is the marginal distribution of Y. Unlike frequentist statistics, there is no
notion here of how quantities would vary if the experiment were repeated. The posterior
distribution is conditional on the results actually obtained from the experiment that was
performed.
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Answers to Exercises

Chapter 2

1. (b) Bias = 0.27, MSE = 0.122, RMSE = 0.349, MAE = 0.283, RRMSE = 0.235,
RMAE = 0.180, EF = 0.490, r = 0.899, index = 0.856, ρC = 0.735, TDI(25%) = 0.46,
CP(0.2) = 33%, Bias2 = 0.073, SDSD = 0.011, LCS = 0.038.

2. Bias = 0.0, MSE = 0.239, RMSE = 0.488, MAE = 0.427, RRMSE = 0.329,
RMAE = 0.405, EF = 0.0, r = 0.0, index = 0.0, ρC = 0.0, TDI(25%) = 0.53,
CP(0.2) = 17% Bias2 = 0.0, SDSD = 0.239 LCS = 0.0.

3. (a) Λ = 0.04, ∆ = 1.05, MSEP(θ̂) = 1.09

4. (a) Λ = 0.01, ∆ = 0.123, MSEP(θ̂) = 0.133

5. (a) intercept = 0.667, slope = 0.172 (b) MSE = 0.045. (c) M̂SEPCV(θ̂) = 0.14

6. (a) 1.8

7. (a) 52 (b) 26

8. (a) 0.27 (c) 0.049 (e) 0.070

9. (a) 80

Chapter 3

Only the numerical results are supplied.

1. (b) The expected value and standard deviation are equal to 81.15 and 27, respectively.

1. (c) About 0.6.

2. (d) 0.96 for c1 and 0.51 for c2.

3. (a) 9.

3. (c) 68.82.

3. (d) 1545.9.

3. (e) 33.15, 82.89 and 90.42.

3. (f) 40.18, 67.76 and 98.52.
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3. (g)
var

{

E[Ŷ (2300)|c1 ]
}

var[Ŷ (2300)]
= 0.42.

3. (h)
var

{

E[Ŷ (2300)|c2 ]
}

var[Ŷ (2300)]
= 0.37.

3. (j) 2925.01, 855.51 and 271.1.

3. (k) 1333.82, 3060.91 and 6.57.

3. (l)
E
{

var[Ŷ (2300)|c1 ]
}

var[Ŷ (2300)]
= 0.88.

3. (m)
E
{

var[Ŷ (2300)|c2 ]
}

var[Ŷ (2300)]
= 0.48.

Chapter 4

Only the numerical results are supplied.

2. (d) If Y = 9 and σ = 1, E(θ |Y ) = 8.2 and var(θ |Y ) = 0.8. If Y = 9 and σ = 2,
E(θ |Y ) = 7 = (5 + 9)/2 and var(θ |Y ) = 2.

3. (b) The smallest MSEP possible value is equal to 0.36.

Chapter 5

Only the numerical results are supplied.

1. (d) E(Z|M) = 0.718 and var(Z|M) = 6.49 × 10−4.

2. (f) E(Z10) = 0.188, var(Z10) = 0.009, E(Z10|M) = 0.7097, and var(Z10|M) =

6.45 × 10−4.

3. (h)

(

Z
(1)
10

Z
(2)
10

)

∼ N

[(

1.67
408

)

,

(

0.00452 0.00324
0.00324 0.81

)]

,

Kalman Gain =
(

0.722
0.518

)

,

(

Z
(1)
10

Z
(2)
10

|M
)

∼ N

[(

0.873
407.43

)

,

(

0.0006 0.000432
0.000432 0.808

)]

Chapter 7

1. (a) Horizon (i) (ii)

θ100 θ15 000 θ100 θ15 000

Ap 31.96 14.85 38.88 16.57
E 30.92 15.49 35.09 14.50
BT 32.68 20.77 35.70 20.44
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(b) Horizon AWC (mm per cm of soil)

(i) (ii)

Ap 1.71 2.23
E 1.54 2.06
BT 1.19 1.53

(c) The AWC predicted for the entire soil with the PTFs (i) and (ii) is 130.8 and
171.0 mm of water, respectively.

2. The AWC measured for the entire soil is 135.1 mm of water. This value of AWC
shows that with the PTFs selected, the PTFs predicting the water content at particular
points of the water retention curve are more accurate than the PTFs predicting the
parameters of the water retention curve. The error with the latter is essentially related
to overestimation of θ100.

3. (b) Median values

St Bonnet-le-Froid Villesèque Mideulville

Precipitation decision rule 11/5 13/5 10/5
Water balance 10/5 11/5 10/5

(c) Areas sown in sunflower at Mideulville (ha).

Date (i) Precipitation decision rule (ii) Water balance

April 24 0 735
April 26 0 1021
April 27 0 481
April 28 735 0
May 4 0 3186
May 5 0 2207
May 6 1021 0
May 7 481 0
May 10 3186 0
May 11 2207 0

4. (a) Case 1: M̂SEP = 1.06 × 106 tons2. Case 2: M̂SEP = 0.31 × 106 tons2.

(b) Case 1 and 2: MSE = 00208 (t/ha)2.
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evaluating heterogeneity, 415
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holding capacity, 270
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humus, 272
hydrological model, 274
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soil water, 222
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irrigation strategy, 409
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Markov chain Monte Carlo (MCMC), 134
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26, 105, 116, 118–19, 132, 151–2, 235,
237, 253, 339

decomposition, 30, 42–3
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generic, 261
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optimization problems with continuous

domains, 191
optimization problems with discrete

domains, 187
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overparametrization, 116
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parameter estimation, 8, 101, 151, 175, 252,

281, 284–95, 297, 303, 338, 391
GLUE, 252
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genotype, 281, 284

partial correlation coefficient (PCC), 81
partial derivatives, 402
partial least squares, 94
particle filter, 164
Pearson Product Moment Correlation

Coefficient (PEAR), 81
pedotransfer function, 216
Penman-Montieth, 269
phenological stages, 258
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plant development, 258
plant growth, 258
pleiotropic effects, 312
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grain, 262
quality of the cakes for animal feed, 423
quantitative trait loci (QTI), 311

r2, 383
partial, 383, 385

radiation, 267
radiation interception efficiency, 300–1
radiation use efficiency (RUE), 258, 287,

294–6, 298, 300–1
radiative transfer model, 229
random, 350, 355

randomness, 350, 355
random search algorithm, 190
random weather generators, 187
rank tests, 287
rate of development, 264
real-time use, 416
recommendations for corn irrigation, 414
reflectance, 229
regression equation, 7
regression model, 81

reinforcement learning, 199
relative mean absolute error, 19, 22
relative root mean squared error, 19, 22
remobilization, 268
remote sensing, 210, 223, 234, 252, 391
replications, 381
residuals, 344
residues, 16
respiration, 266
response model, 6, 178
response surface methodology, 80
response variables, 6
risk analysis, 55
risk aversion/inclination toward

risk, 181
risks, 180
robustness, 287
root density, 270
root growth rate, 231
root mean squared error (RMSE), 18, 22,

123, 166
root mean squared error of

prediction, 27
root system, 258
row spacing, 264

sample path optimization, 186
SAS QC, 94
saturated hydraulic conductivity, 220
scenario testing, 176, 210
scientific hypothesis, 7, 47

test, 47
validate, 48

seed bank, 380
selection, 284
selection bias, 340
selection of parameters, 116
semi-net profit, 422
senescence, 264
sensitivity analysis, 7, 55, 67, 118, 252–3, 290,

361–2, 426
global, 61, 68
input factors, 58
input scenario, 59
Latin Hypercube, 252
local, 61, 67
model independent, 57
one-at-a-time, 71
spatial, 378
temporal, 378
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sensitivity analysis response profiles, 373
sensitivity index, 372

interaction, 75
main effects, 75
total, 75

simple relationships, 422
simulated annealing, 189
simulation

duration, 381, 388
simulation units, 234
simulation-based control, 195
simulation-based optimization, 185–6
sink, 267
sink strength, 268
Sobol decomposition, 84
soil

carbon, 399
hydrodynamic properties, 273
nitrogen, 258
optimal estimation, 405
water, 258

balance, 257
transpirable fraction, 258

soil carbon, 252
soil denitrification, 252
soil moisture, 346
soil physiochemical characteristics, 392
soil properties, 216
source, 267
sowing, 176
sowing date, 225, 229
sowing density, 264
spatial variability, 359–362, 365
Spearman correlation coefficient, 81
specific leaf area (SLA), 264
stakeholders, 422
standardized regression coefficient (SRC), 82
state variable, 4, 151–2, 258, 337, 410
static model, 422
statistical cartography, 223
statistical environment, 274
statistical package, 94
STICS, 56, 261
stochastic approximation, 193
stochastic dynamic equation, 5
stochastic dynamic programming, 198
stochastic models, 26
stochastic optimization problem, 185
stress indices, 258
sucrose crop model, 230

sugar beet, 230
yield, 231

sunflower, 292, 300–1
support unit, 233
supra-optimum temperature, 264

target distribution, 27, 45
target environments, 311–12
Taylor series, 402
temperature, 346
tensiometer-based irrigation, 414
top marginal variance, 70
total deviation index, 22
total sensitivity index, 70
traits, 311

complex, 311–2
epistasis, 312

transfers, 233
pathogen, 233
pollen, 233
water, 233
weed, 233

transpiration, 267, 269
trial and error, 415
trophic competition, 268
typology, 225–6

farm, 225–6
irrigation strategies, 228

uncertainty, 128–9, 137, 400
uncertainty analysis, 55, 61–2, 361

cumulative probability distribution, 65
uncertainty in input factors, 60

climate generation, 60
coding, 60
control scenario, 60
correlations between input parameters, 63
nominal value, 60
probability distributions, 60, 62
uncertainty range, 60

unconditional mean, 405
unconstrained optimal decisions, 182
uptake, 270

value iteration, 198
vapor pressure deficit (VPD), 267
variability, 212

spatial, 212
variance based measures of sensitivity, 84
variance–covariance matrix, 110–12, 127
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variety, 344
transgenic/GM or transgenic/genetically

modified, 379
vernalization, 264
veto value, 424
virtual experiment, 380
volunteer density, 384

water retention, 216
water stress, 258
water use efficiency (WUE), 266
weather data, 211
weather generator, 213
weighted least squares, 110, 118, 121, 123, 252
weights, 424
wheat for ethanol, 252

wheat, multi-resistant, 283, 286
wheat production for ethanol, 419
wilting point, 270
winding stairs sampling scheme, 87
winter wheat dry matter, 58
WTGROWS, 56

yield
decomposition of error, 340

yield components, 285, 290
yield gap analysis, 175
yield loss due to disease, 285
yield variability, 416

zoning, 211




