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Introduction

To a large extent this book is an updated version of Lectures on Topological
Dynamics by Robert Ellis [Ellis, R., (1969)]. That book gave an exposition
of what might be called an algebraic theory of minimal sets. Our goal here
is to give a clear, self contained exposition of a new approach to the theory
which allows for more straightforward proofs and develops a clearer language
for expressing many of the fundamental ideas. We have included a treatment
of many of the results in the aforementioned exposition, in addition to more
recent developments in the theory; we have not attempted, however, to give
a complete or exhaustive treatment of all the known results in the algebraic
theory of minimal sets. Our hope is that the reader will be motivated to use the
language and techniques to study related topics not touched on here. Some of
these are mentioned either in the exercises or notes given at the end of various
sections. This book should be suitable for a graduate course in topological
dynamics whose prerequisites need only include some background in topology.
We assume the reader is familiar with compact Hausdorff spaces, convergence
of nets, etc., and perhaps has had some exposure to uniform structures and
pseudo metrics which play a limited role in our exposition.

A flow is a triple (X, T , π) where X is a compact Hausdorff space, T is a
topological group, and π : X × T → X is a continuous action of T on X,
so that xe = x and (xt)s = x(ts) for all x ∈ X, s, t ∈ T . Here we write
xt = π(x, t) for all x ∈ X and t ∈ T , and e is the identity of the group
T . Usually the symbol π will be omitted and the flow (X, T , π) denoted by
(X, T ) or simply by X. In the situations considered here there is no loss of
generality if T is given the discrete topology. The assumptions made thus far
do not suffice to produce an interesting theory. The group T may be too “small”
in its action on X. Thus for example, the trivial case where xt = x0, a fixed
element of X, for all x ∈ X and t ∈ T , is not ruled out. To eliminate such
degenerate behavior it is convenient to assume that the flow (X, T ) is point

ix



x Introduction

transitive, i.e. that there exists x0 ∈ X such that its orbit x0T ≡ {x0t | t ∈ T }
is dense in X.

The category P of point transitive flows has the remarkable property that
it possesses a universal object; i,e, there exists a point transitive flow (βT , T )

such that any flow in P is a homomorphic image of βT . (See section 1 for a
description of (βT , T ) and the proof of its universality.) Moreover, one may
associate in a canonical fashion with any flow (X, T ) a point transitive flow
E(X, T ). The latter, called the enveloping semigroup has proved extremely
useful in the study of the dynamical properties of the original flow (X, T ). The
enveloping semigroup is defined and studied in section 2, and examples of its
use are scattered throughout the subsequent sections.

This exposition focuses, however, on the category, M, of minimal flows.
These are flows for which the orbit of every point x ∈ X is dense; that is
xT = {xt | t ∈ T } = X for all x ∈ X. Again there exists a (unique up to
isomorphism) universal object M in M. This fact was exploited in several
papers to develop an “algebraic theory” of minimal flows. In particular a group
was associated with each such flow and various relations among minimal flows
studied by means of these groups. One purpose of this volume is to collect in
one place the techniques which have proved useful in this study; another goal
is to provide an exposition of a new approach to this material.

The account of this algebraic theory of minimal flows given in Lectures on
Topological Dynamics depends heavily on an algebraic point of view derived
by studying the collection C(X) of continuous functions on X rather than X

itself. In this volume we instead exploit the fact that X, as a homomorphic
image of M , is of the form M/R for some icer (invariant closed equivalence
relation) on M . We study the flow (X, T ) via the icer R rather than the algebra
C(X).

Another change is that the role of the group of automorphisms of a flow is
emphasized. In particular the group G of automorphisms of M plays a crucial
role. It is used both to codify the algebraic structure of M , and to define the
groups associated to the minimal flows in M. In the earlier approach G was
viewed as a subset Mu of M , where u ∈ M was a fixed idempotent. The new
approach eliminates the asymmetrical treatment of the idempotents. Instead
we view M = ⊎

G(u) as a disjoint union (taken over all the idempotents
in u ∈ M) of the images of the idempotents under the group G. Thus we
explicitly take advantage of the fact that every p ∈ M can be written uniquely
in the form α(u) with α ∈ G and u an idempotent in M . This approach also
makes reliance on the concept of a pointed flow unnecessary. Previously the
concept of a pointed flow was used to define, up to conjugacy, the group of
a minimal flow; a different choice of base point corresponding to a conjugate
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subgroup of Mu. From the point of view of icers on M , the group of the flow
M/R is the subgroup:

G(R) = {α ∈ G | gr(α) ⊂ R},
of G. Here gr(α) = {(p, α(p)) | p ∈ M} is the graph of the automorphism
α of M . Again if S is an icer with M/R ∼= M/S, then G(S) is conjugate to
G(R).

One of the important tools for the study of minimal flows is the so-called
τ -topology on G. In section 10 we show how one can define a topology on the
automorphism group Aut(X) of any regular flow (X, T ). Since G = Aut(M)

and (M, T ) is regular, this allows one to define a topology on G. This topology
on G coincides with the original definition of the τ -topology. (The idea for
this viewpoint stems from J. Auslander’s approach to the τ -topology–private
communication.)

We would now like to make a few comments on some of the results which
have been included herein. In part I we lay the foundation for what follows by
treating the universal constructions upon which much of the later material is
based. This includes an introduction to βT , the enveloping semigroup, and the
universal minimal flow. The flow (2X, T ) whose minimal subflows are the so-
called quasi-factors of the minimal flow (X, T ) is discussed in section 5. Here
2X is the collection of non-empty closed subsets of X. The space 2X is given
the Vietoris topology detailed in the appendix to section 5. The extension of
the action of T on 2X to an action of βT on 2X via the circle operator is also
discussed in section 5, and used later in sections 12 and 17.

Part II develops many of the techniques and language critical to our approach.
As mentioned above, this approach hinges on identifying minimal flows as
quotients of M by icers. We need not only to associate to any minimal flow an
icer on M , but to any icer on M a minimal flow. The basic topological result
needed is that the quotient of any compact Hausdorff space by a closed equiv-
alence relation is again a compact Hausdorff space. Section 6 includes a proof
of this result and a discussion of the relative product of two relations, a useful
tool for constructing equivalence relations.

The fundamental result concerning icers on M is proven in section 7. We
show that any icer R on M can be written as a relative product

R = (R ∩ P0) ◦ gr(G(R))

where P0 = {(α(u), α(v)) | α ∈ G and u, v are idempotents in M} (see 7.21).
Regular flows, whose original definition is motivated in terms of automor-
phisms, are those flows whose representation as a quotient M/R is unique.
The flow (M, T ) is of course regular, and its structure serves as a prototype
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for the algebraic structure of regular flows outlined in section 8. In particular,
if (X, T ) is a regular flow, then the pair {X,Aut(X)} has properties analogous
to those of the pair {M,G}, some of which were alluded to above.

In part III we give a detailed exposition of the approach to the τ -topology
mentioned earlier. When applied to the group Aut(X), for any regular minimal
flow (X, T ), we obtain a topology which is compact and T1 but not Hausdorff.
The construction of a derived group F ′ for any closed subgroup F ⊂ Aut(X)

is given in section 11. F ′ is a normal subgroup of F which measures the extent
to which F fails to be Hausdorff; in fact for any closed subgroup H ⊂ F ,
the quotient space F/H is Hausdorff if and only if F ′ ⊂ H (see 11.10). In
section 12 we give a proof of the fact that there exists a minimal flow X whose
group G(X) = A if and only if A is a τ -closed subgroup of G. One example
of such a flow is M/R where

R = gr(A) =
⋃

{gr(α) | α ∈ A}.
The basic idea of the proof, which uses the material on quasi-factors, is the
same as in Lectures on Topological Dynamics but the language of the current
approach allows a more efficient treatment.

Part IV is motivated by the questions: How are the various subgroups of G

related to one another, and what do they tell us about the dynamics of minimal
flows? It has long been known that the subcategories D and E of minimal
distal and minimal equicontinuous flows respectively also possess universal
objects XD and XE . Heretofore the groups D and E have been defined as
the groups associated to these flows, i.e. D = G(XD) and E = G(XE ). In
sections 14 and 15 we obtain intrinsic characterizations of D (see 14.6), and E

(see 15.23) respectively. This gives content to the statements: if X is distal, then
D ⊂ G(X), and if X is equicontinuous, then E ⊂ G(X). In fact, emphasizing
the language of icers, M/R is distal (respectively equicontinuous) if and only if

R = P0 ◦ gr(A)

with D ⊂ A (respectively E ⊂ A). For proofs see 14.10 and 15.14 respec-
tively. In particular distal and equicontinuous flows are completely determined
by their groups. We show in 15.21 that G′D = E, from which it follows
immediately that (X, T ) is equicontinuous if and only if (X, T ) is distal and
G′ ⊂ G(X). In section 13 we discuss the proximal relation P(X) on a min-
imal flow X. In analogy with the distal and equicontinuous cases, we give a
description of a subgroup P ⊂ G and show that P(X) is an equivalence rela-
tion if and only if P ⊂ G(X). Another subgroup GJ ⊂ G is introduced and
we show that P(X) is an equivalence relation with closed cells if and only
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if PGJ ⊂ G(X). In fact PGJ ⊂

=

D which is consistent with the well-known

result that P(X) is a closed invariant equivalence relation on X if and only if
D ⊂ G(X). (see 14.8) In section 15 the regionally proximal relation, Q(X) of
a minimal flow (X, T ) is introduced to facilitate the study of equicontinuous
flows. (Recall that (X, T ) is equicontinuous if and only if Q(X) = �X the
diagonal in X × X.) The case Q ≡ Q(M) is also used to define the group E.
Equicontinuous minimal flows are discussed from the point of view of icers on
M in the body of section 15, while the approach to the same material via the
enveloping semigroup is treated in the appendix. Q(X) is discussed in further
detail in section 15 where we give a new proof of the fact that if E ⊂ G′G(X),
then Q(X) is an equivalence relation.

To a large extent part V is concerned with generalizing the results of part IV
to homomorphisms (extensions) of minimal flows. For instance for icers R ⊂
S on M , the canonical projection M/R → M/S is a distal homomorphism if
and only if

S = (R ∩ P0) ◦ gr(G(S)),

moreover the extension is equicontinuous if and only if G(S)′ ⊂ G(R). We
close with a section devoted to four theorems all of which are equivalent to
the Furstenberg structure theorem for distal extensions; this section uses the
language of icers and the techniques developed in the earlier sections to give
proofs that all four theorems are equivalent. This fact does not seem to have
been emphasized in the literature, and provides a good opportunity to illus-
trate the language and techniques developed in the book. This analysis also
illustrates an interesting twist to the icer approach. Here not only does the
structure of the icers R and S come into play in understanding the extension
M/R → M/S, the dynamics of the icer on M/R whose quotient gives M/S

also plays an important role. The construction of the so-called Furstenberg
tower provides another nice illustration of the language of icers; the stages
in the tower are explicitly constructed using icers which are themselves con-
structed from the groups involved.

Section 20 itself does not contain the proof of the Furstenberg theorem.
Instead we give a chart describing where proofs of various special cases appear
in the text. On the other hand a complete proof for compact Hausdorff spaces,
of the fact that any icer on a minimal flow which is both topologically tran-
sitive and pointwise almost periodic must be trivial (one of the equivalents
of the Furstenberg structure theorem) appears in 9.13. This is because our
proof relies on the concept of the quasi-relative product developed in section 9.
Indeed the quasi-relative product arose during our attempt to give a proof of
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the Furstenberg theorem in its full generality. The metric case of the theorem
follows immediately from the fact that for metric flows the notions of point-
transitivity and topological transitivity coincide. Our proof in the general case
proceeds by reducing it to the metric case; the key tool in the construction
which enables this is the quasi-relative product. While the quasi-relative prod-
uct is only necessary for the most general version of the Furstenberg theorem,
it turns out to be closely connected to quasi-factors (hence the name) and RIC
extensions. We detail these connections in sections 9 and 17 respectively.

A word about format

We have written this book using a theorem-proof format. All the proofs are
given using a sequence of numbered steps for which reasons are given at each
stage. There are two main reasons for this approach. The first is to make sure
that the arguments are as clear and accessible as possible. We found that insist-
ing on numbering our steps and giving reasons forced a rigor, clarity, and atten-
tion to detail we hope the reader will appreciate. We have attempted to avoid
situations where as the material becomes more complex the reader is expected
to fill in more gaps in the arguments.

In addition to a better understanding of the details of the individual argu-
ments, we hope that the format adds to the clarity of the overall exposition.
The assumptions and conclusions of each of the lemmas, propositions, and
theorems are stated carefully and precisely in a consistent format. These items
are all numbered so that they can be referred to in a precise and unambiguous
way as the exposition proceeds. We have tried to keep the proofs reasonably
short and have divided the material into short sections, typically ten to fifteen
pages long. In addition, we begin each section with an introduction designed
to give an informal outline and motivation for the material in that section. The
reader who wishes to go lightly on the intricate details, may wish to follow the
train of thought by focusing on the introductions to each section and skipping
the proofs. In this case, if a specific result attracts the reader’s interest, then
the numbering system should facilitate a more careful reading of the details.
This format is designed especially for the student who is not yet an expert; it
assures that careful attention is paid to the details and that the train of thought
is readily accessible.



PART I

Universal constructions

Our focus in the first part of this book is on the construction of certain universal
objects that are crucial to the algebraic approach to the study of the asymptotic
behavior of dynamical systems (flows). For the purposes of this exposition a
flow is a pair (X, T ), where X is a compact Hausdorff space, and T is a group
which acts on X (on the right). A homomorphism of flows is a continuous map-
ping which preserves the actions. When the orbit closure of some point x0 ∈ X

is all of X, that is x0T = X, we say that the flow (X, T ) is point transitive. If
xT = X for all x ∈ X we say that (X, T ) is minimal. The collection of point
transitive flows has a universal object, (βT , T ), in the sense that every point
transitive flow is a homomorphic image of (βT , T ) (see 2.5). The action of T

on βT extends in a natural way to a semigroup structure on βT which plays an
important role in the study of flows. In section 1, we give an exposition of the
structure of βT , relegating its construction via ultrafilters on T to an appendix.

We exploit the properties of βT in section 2 to give a treatment of the
enveloping semigroup E(X, T ) of a flow (X, T ). In Section 4 βT and E(X, T )

are used to introduce many of the fundamental notions which will be studied
throughout the book. Of particular importance is the structure of the minimal
ideals in E(X, T ) discussed in section 3. The fact that βT is its own enveloping
semigroup allows us to apply these ideas to a minimal right ideal M ⊂ βT .
On the other hand for such a minimal ideal, the flow (M, T ) is a universal
object for the collection of all minimal flows (see 3.16). Our approach to the
study of minimal flows involves exploiting the structure of M and the group
of automorphisms of M to gain an understanding of the structure of the icers
(closed invariant equivalence relations) on M . These ideas are pursued further
in section 7 of Part II.

Another construction which will play a significant role in our exposition is
that of a quasi-factor of the flow (X, T ); this is by definition a subflow of the
flow (2X, T ). Here by 2X we mean the space whose elements are closed non-
empty subsets of X. In the appendix to section 5, we give an outline of the
construction of the Vietoris topology, a compact Hausdorff topology on 2X. In
the body of section 5 we develop some of the properties of the flow (2X, T ),
including the extension of the natural action of T on 2X to an action of βT on
2X given by the so-called circle operator.
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The Stone-cech compactification βT

The Stone-Cech compactification βT , is a compact Hausdorff space contain-
ing the discrete group T as a dense subset. Of course one can construct the
Stone-Cech compactification of any discrete set; a construction via ultrafilters
is outlined in the appendix to this section. On the other hand βT is character-
ized by certain properties which we take as its definition for the purposes of
this section. When T is a group there is a natural semigroup structure on βT ,
for which left multiplication by all elements, and right multiplication by ele-
ments of T are continuous. This semigroup structure plays a fundamental role
in our study. In proposition 1.3 we deduce this structure as a consequence of
the characterizing properties of βT ; in the appendix the semigroup structure is
defined directly in terms of ultrafilters.

Definition 1.1 Let T be a set with the discrete topology. The Stone-Cech
compactification βT of T is determined up to homeomorphism by the fol-
lowing properties:

(i) T ⊂ βT with T = βT ,
(ii) βT is a compact Hausdorff space, and

(iii) if X is a compact Hausdorff space and f :T → X, then there exists a
unique continuous extension f̂ : βT → X.

The uniqueness of the extension in (iii) above is crucial. For instance it has
as a consequence the fact that βT is unique up to homeomorphism. Indeed
if Y is any space satisfying (i), (ii), and (iii), then the inclusions T ⊂ Y and
T ⊂ βT extend to continuous maps ϕ : βT → Y and ψ : Y → βT . The
composition ϕ ◦ ψ is thus a continuous extension of the inclusion T ⊂ Y to Y ,
and hence by uniqueness must be the identity. Similarly ψ ◦ ϕ is the identity
on βT , and therefore ϕ is a homeomorphism with inverse ψ . This shows that
as a topological space βT is completely determined by the conditions in 1.1.

3



4 The Stone-cech compactification βT

The following theorem confirms this by exhibiting a base for the topology on
βT . It is interesting to note that this base consists of sets which are both open
and closed in βT .

Theorem 1.2 Let:

(i) T be a set with the discrete topology and βT be its Stone-Cech compact-
ification,

(ii) A ⊂ T , and
(iii) V ⊂ βT be an open set.

Then:

(a) βT = A ∪ T \ A is a disjoint union, and thus A is both open and closed
(clopen) in βT ,

(b) V = V ∩ T , and hence V is both open and closed, and
(c) {A | A ⊂ T } is a base for the topology on βT .

PROOF: (a) 1. Let ∅ 
= A ⊂ T .

2. Let χA : T → {0, 1} be defined by χA(t) =
{

1 if t ∈ A

0 otherwise
.

3. There exists a continuous extension χ̂A : βT → {0, 1}. (by 2, 1.1(iii))
4. χ̂−1

A (1) and χ̂−1
A (0) are clopen with A ⊂ χ̂−1

A (1) and T \ A ⊂ χ̂−1
A (0).

(by 2, 3)
5. Let p ∈ χ̂−1

A (1) and W ⊂ βT be open with p ∈ W .
6. There exists t ∈ T with t ∈ W ∩ χ̂−1

A (1). (by 4, 5, 1.1(i))
7. t ∈ A ∩ W . (by 2, 3, 6)
8. p ∈ A. (by 5, 7)
9. χ̂−1

A (1) ⊂ A. (by 5, 8)
10. χ̂−1

A (0) ⊂ T \ A. (similar argument)
11. χ̂−1

A (1) = A and χ̂−1
A (0) = T \ A. (by 4, 9, 10)

(b) 1. Clearly V ∩ T ⊂ V .
2. Let W ⊂ βT be open and p ∈ V ∩ W .
3. There exists t ∈ T with t ∈ V ∩ W . (by 2, 1.1(i))
4. t ∈ (V ∩ T ) ∩ W . (by 3)
5. p ∈ V ∩ T . (by 2, 4)

(c) 1. Let ∅ 
= V ⊂ βT be open and p ∈ V .
2. There exists W open with p ∈ W ⊂ W ⊂ V . (βT is compact Hausdorff)
3. p ∈ W = W ∩ T ⊂ V . (by 2, part (b))
4. {A | A ⊂ T } is a base for the topology on βT . (by 1, 3)

We will be most interested in the space βT when T is a group. In this case,
and in fact whenever T is a semigroup, the semigroup structure on T induces a
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semigroup structure on βT . Once again the uniqueness of the extension in 1.1
(iii) is crucial. The following proposition details the construction.

Proposition 1.3 Let T be a semigroup, so that T is provided with an associa-
tive binary operation:

T × T → T

(s, t) → st.

Then the semigroup structure on T extends to one on βT ,

βT × βT → βT

(p, q) → pq

such that:

(a) the right multiplication map Rt : βT → βT

p → pt

is continuous for all t ∈ T ,

and
(b) the left multiplication map Lp : βT → βT

q → pq

is continuous for all p ∈ βT .

PROOF: 1. Let mt(s) = st for all s, t ∈ T .
2. There exists a continuous extension Rt : βT → βT of mt for every t ∈ T .

(by (iii) of 1.1)
3. There exists a continuous extension Lp : βT → βT of the map

T → βT

t → Rt(p)
. (by (iii) of 1.1)

4. For p, q ∈ βT we define pq ≡ Lp(q).
5. Let t, s ∈ T . Then the maps βT → βT and βT → βT

p → (ps)t p → p(st)

are both continuous extensions of the map

T → βT

t ′ → (t ′s)t = t ′(st).

6. p(st) = (ps)t for all p ∈ βT and s, t ∈ T .
(by 5 and uniqueness in (iii) of 1.1)

7. Let p, q ∈ βT . Then the maps βT → βT and βT → βT

q → (pq)t q → p(qt)

are both continuous extensions of the map

T → βT

s → (ps)t = p(st). (by 3, 6)
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8. p(qt) = (pq)t for all p ∈ βT and t ∈ T .
(by 7 and uniqueness in (iii) of 1.1)

9. The maps βT → βT and βT → βT

r → (pq)r r → p(qr) are both continuous extensions
of the map

T → βT

t → (pq)t = p(qt). ( by 3, 8)

10. p(qr) = (pq)r for all p, q, r ∈ βT . (by 9 and uniqueness in (iii) of 1.1)

The space βT can be provided with a (different) semigroup structure in which
left multiplication is continuous for all t ∈ T , and right multiplication is
continuous for all p ∈ βT . Merely mimic the proof of 1.2 starting with the
map mt : T → T

s → ts

. We will most often be interested in right actions of a

group T .
Henceforth we will always assume unless explicitly indicated otherwise that

T is a group, and that βT is provided with the semigroup structure of 1.2. In
the upcoming sections we will make extensive use of this semigroup structure
and in particular the fact that it makes (βT , T ) into a flow. It is important to
note that the assumption that T is a group, so that every element of T has an
inverse does not guarantee that the elements of βT have inverses. In fact βT

is a group only if T is finite and βT = T . In general, the only elements of βT

which have inverses are the elements of T . This follows immediately from the
fact that p, q ∈ βT with pq ∈ T implies that p, q ∈ T . Indeed if pq = t ∈ T ,
then t ∈ Lp(βT ) = Lp(T ) = Lp(T ) since Lp is continuous. On the other
hand T ⊂ βT has the discrete topology so {t} is an open subset of βT . It
follows that t ∈ Lp(T ) and there exists s ∈ T with ps = t . But this implies
that p = ts−1 ∈ T and q = s ∈ T .

We end this section with an elementary proposition which speaks to the
naturality of the construction of βT .

Proposition 1.4 Let:

(i) T be a semigroup,
(ii) ∅ 
= H ⊂ T , and

(iii) j : βH → βT be the continuous extension to βH of the inclusion
H → βT .

Then:

(a) j is injective,
(b) im j = H , and
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(c) if H is a subsemigroup of T , then j (pq) = j (p)j (q) for all p, q ∈ βH .
(Thus we will identify βH with H ⊂ βT .)

PROOF: (a) 1. Let h0 ∈ H .

2. Let ϕ : T → βH be defined by ϕ(t) =
{

t if t ∈ H

h0 if t 
∈ H
.

3. Let ϕ̂ : βT → βH be the continuous extension of ϕ to βT .
4. Let ψ = ϕ̂ ◦ j : βH → βH .
5. ψ(h) = h for all h ∈ H . (by 2, 3, 4)
6. ψ(p) = p for all p ∈ βH . (by 3, (iii), 1.1(iii))
7. j is injective. (by 4, 6)

(b) and (c) We leave these to the reader.

APPENDIX TO SECTION 1: ULTRAFILTERS
AND THE CONSTRUCTION OF βT

Our goal here is the construction of the compact Hausdorff space βT , which
is characterized up to homeomorphism by 1.1. Those readers already familiar
with ultrafilters will recall that a topological space X is compact if and only
if every ultrafilter on X converges to a point in X (see 1.A.16 and Ex. 1.5).
This motivates the approach we will take; in analogy with the construction of
the real numbers as Cauchy sequences of rational numbers, βT will be iden-
tified as the collection of ultrafilters on T . We have attempted to make this
presentation self-contained, so that filters and ultrafilters are defined, and the
elementary properties necessary for the construction explicitly introduced. We
make use of one of these properties, namely 1.A.8, in the appendix to section 5.
All the other sections of the book, while occasionally using the terminology of
this appendix, rely only on the results of section 1 itself. In the interest of
brevity, proofs of some of the results in this appendix are left as exercises for
the reader. We begin with some background material on filters and ultrafilters.

Definition 1.A.1 Let T be a nonempty set and F a collection of nonempty
subsets of T . We make the following definitions:

(a) F is a filter base on T if

F1, . . . , Fn ∈ F =⇒ there exists F ∈ F with F ⊂ F1 ∩ · · · ∩ Fn.

(b) Fc = {A | A ⊂ T and there exists F ∈ F with F ⊂ A}.
(c) F is a filter on T if F is a filter base on T and F c = F . Thus if F is a

filter, then it has the finite intersection property (F.I.P.), meaning

F1, . . . , Fn ∈ F =⇒ F1 ∩ · · · ∩ Fn ∈ F .
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(d) U is an ultrafilter on T if U is a filter on T such that

F a filter on T with U ⊂ F =⇒ U = F

(so that U is a maximal filter on T ).

The neighborhoods of a point x in a topological space provide an important
motivating example; we leave it as an exercise for the reader to verify this.

Example 1.A.2 Let X be a topological space and x ∈ X. Then the collection

Nx = {A | there exists U open in X with x ∈ U ⊂ A}
is a filter on X. We refer to Nx as the neighborhood filter at x.

Another elementary example which plays a fundamental role in the con-
struction of βT is the following:

Example 1.A.3 Let t ∈ T . Then the collection

h(t) = {A | t ∈ A ⊂ T }
is an ultrafilter on T . Moreover h(t) is the only ultrafilter on T which contains
the singleton set {t}. We refer to h(t) as the principal ultrafilter generated
by t .

PROOF: We leave the proof as an exercise for the reader.

According to 1.A.3, every t ∈ T generates an ultrafilter on T ; we now observe
that any filter is contained in some ultrafilter. Suppose that {Fi | i ∈ I } is a
collection of filters on T , where I is a totally ordered set. Assume further that
if i < j ∈ I , then Fi ⊂ Fj . (These assumptions amount to saying that this
collection is an increasing chain of filters on T .) Then it is straightforward to
check that the union

⋃
i∈I

Fi is a filter on T . This shows that every increasing

chain of filters has a maximal element; hence as an immediate consequence of
Zorn’s lemma (see also 3.3 for a statement) every filter is contained in some
maximal filter (i.e an ultrafilter). We state this result as a lemma for future
reference:

Lemma 1.A.4 Let F be a filter (or filter base) on T . Then there exists an
ultrafilter U on T such that F ⊂ U .

The next few results examine the structure of ultrafilters on T . In particular
they allow us to characterize those filters which are ultrafilters. In fact a filter F
is an ultrafilter if and only if for every ∅ 
= A ⊂ T , either A or its complement
lie in F . (This is the content of 1.A.6 and 1.A.7.)
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Proposition 1.A.5 Let:

(i) U be an ultrafilter on T , and
(ii) A ⊂ T .

Then A ∈ U if and only if A ∩ U 
= ∅ for all U ∈ U .

PROOF: 1. Since U is a filter it is clear that A ∈ U ⇒ A ∩ U 
= ∅ for all
U ∈ U .
2. Assume that A ∩ U 
= ∅ for all U ∈ U .
3. Let G = {G ⊂ T | A ∩ U ⊂ G for some U ∈ U}.
4. Let G1, . . . ,Gn ∈ G.
5. There exist Ui ∈ U such that A ∩ Ui ⊂ Gi for 1 ≤ i ≤ n. (by 3, 4)
6. U = U1 ∩ · · · ∩ Un ∈ U . (by 5, (i))
7. A ∩ U ⊂ G1 ∩ · · · ∩ Gn. (by 5, 6)
8. G1 ∩ · · · ∩ Gn ∈ G. (3, 7)
9. G is a filter on T . (by 4, 8)
10. U ⊂ G. (by 3)
11. U = G. (by 10, (i))
12. A ∈ U . (by 3, 11)

Corollary 1.A.6 Let:

(i) U be an ultrafilter on T , and
(ii) A ⊂ T .

Then either A ∈ U or T \ A ∈ U .

PROOF: 1. Assume that A /∈ U .
2. There exists U ∈ U such that A ∩ U = ∅. (by 1, 1.A.5)
3. U ⊂ T \ A. (by 2)
4. T \ A ∈ U . (by 3, (i))

Proposition 1.A.7 Let:

(i) F be a filter on T , and
(ii) A ∈ F or T \ A ∈ F for all A ⊂ T .

Then F is an ultrafiter on T .

PROOF: 1. Let G be a filter on T with F ⊂ G.
2. Let G ∈ G.
3. T \ G /∈ G. (by 1, 2)
4. T \ G /∈ F . (by 1, 3)
5. G ∈ F . (by 4, (ii))
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6. G ⊂ F . (by 2, 5)
7. F is an ultrafilter on T . (by (i), 1, 5)

The following natural generalization of 1.A.6 will be useful here and is used
in proposition 5.A.3 of the appendix to section 5.

Corollary 1.A.8 Let:

(i) U be an ultrafilter on T ,
(ii) A1, . . . , An be subsets of T , and

(iii) A1 ∪ · · · ∪ An ∈ U .

Then there exists j with Aj ∈ U .

PROOF: 1. Assume that Ai /∈ U for all i 
= j .
2. T \ Ai ∈ U for all i 
= j . (by 1, (i), 1.A.6)
3.

⋂
i 
=j

(T \ Ai) ∈ U . (by 2, (i))

4. Aj ∩ ⋂
i 
=j

(T \ Ai) = (A1 ∪ · · · ∪ An) ∩ ⋂
i 
=j

(T \ Ai) ∈ U . (by 3, (i), (iii))

5. Aj ∈ U . (by 4, (i))
6. There exists j with Aj ∈ U . (by 1, 5)

Having discussed a few of the elementary properties of ultrafilters, we are
ready to define the Stone-Cech compactification βT of T . As a set βT simply
consists of all the ultrafilters on T ; the next step is to define a topology on βT .
Describing this topology requires some notation.

Definition 1.A.9 Let T be a nonempty set. We define βT by

βT = {U | U is an ultrafilter on T }.

Definition and Notation 1.A.10 Let ∅ 
= A ⊂ T . We define the hull of A by
h(A) = {u ∈ βT | A ∈ u}.

Note that for t ∈ T we have used the notation h(t) for the single element

h(t) = {A | t ∈ A ⊂ T } ∈ βT ,

whereas the hull h({t}) as defined above is a subset of βT . This notation is
justified by the fact that h({t}) = {h(t)} since h(t) is the only ultrafilter which
contains {t}. We will identify T with the subset {h(t) | t ∈ T } ⊂ βT and thus
write t for the element h(t) ∈ βT .

Note that if an ultrafilter u ∈ h(A) ∩ h(B), then A ∈ u and B ∈ u. This
implies that A ∩ B ∈ u and hence u ∈ h(A ∩ B). It follows that the collection

{h(A) | A ⊂ T }
is a base for a topology on βT . This gives us the following proposition.
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Proposition 1.A.11 Let
T = {
 ⊂ βT | for every u ∈ 
 there exists A ∈ u with h(A) ⊂ 
}.

Then T is a topology on βT .
Henceforth we will assume that βT is provided with the topology T . In this

topology if A ⊂ T ⊂ βT , then h(A) is the closure of A in βT . We leave the
proof as an exercise for the reader; one immediate consequence is the fact that
A is both open and closed in βT , as we saw in 1.2. On the other hand every
ultrafilter on T contains the set T , so βT = h(T ) = T , in other words T is
dense in βT . We restate this for emphasis.

Proposition 1.A.12 T is dense in βT .

Having constructed the space βT satisfying condition (i) of 1.1, we now wish
to show that βT is a compact Hausdorff space (condition (ii) of 1.1).

Lemma 1.A.13 Let:

(i) {Ai | i ∈ I } be nonempty subsets of T , and
(ii)

⋃
i∈I

h(Ai) = βT .

Then there exists a finite subset F ⊂ I with
⋃
i∈F

Ai = T .

PROOF: 1. Assume that BF = T \
( ⋃

i∈F

Ai

)

= ∅ for all finite sets F ⊂ I .

2. Let B = {BF | F ⊂ I finite}.

3. BF1∪···∪Fn = T \
⎛
⎝ ⋃

i∈F1∪···∪Fn

Ai

⎞
⎠ =

n⋂
j=1

⎛
⎝T \

⎛
⎝ ⋃

i∈Fj

Ai

⎞
⎠

⎞
⎠ =

BF1 ∩ · · · ∩ BFn . (by 1)
4. B is a filter base on T . (by 2, 3)
5. There exists an ultrafilter U on T with B ⊂ U . (by 4, 1.A.4)
6. There exists k ∈ I with U ∈ h(Ak), and hence Ak ∈ U . (by 5, (ii))
7. T \ Ak = B{k} ∈ B ⊂ U . (by 1, 2, 4)
8. BF = ∅ and hence

⋃
i∈F Ai = T for some finite set F ⊂ T .

(6, 7 contradict 1)

Theorem 1.A.14 (βT , T ) is a compact Hausdorff topological space.

PROOF: 1. Let {
i | i ∈ I } be a family of open subsets of βT with⋃
i∈I


i = βT .

2. For every u ∈ βT , there exists Au ∈ u and iu ∈ I with h(Au) ⊂ 
iu . (by 1)
3.

⋃
u∈βT h(Au) = βT . (by 2)

4. There exists a finite subset F ⊂ βT . such that
⋃

u∈F

Au = T . (by 3, 1.A.13)
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5. Let v ∈ βT .
6. Au ∈ v for some u ∈ F . (by 4, 5, 1.A.8)
7. v ∈ h(Au) ⊂ 
iu . (by 2, 6)
8.

⋃
u∈F


iu = βT . (by 5, 7)

9. (βT , T ) is compact. (by 1, 8)
10. Let u1 
= u2 ∈ βT .
11. There exists a subset A ⊂ T such that A ∈ u1 and A /∈ u2. (by 1)
12. T \ A ∈ u2. (by 11, 1.A.7)
13. u1 ∈ h(A) and u2 ∈ h(T \ A). (by 11, 12)
14. h(A) and h(T \ A) are disjoint open subsets of βT .
15. (βT , T ) is Hausdorff. (by 10, 13, 14)

In order to show that βT satisfies the final condition of 1.1, we make use of
the fact that in a compact Hausdorff space X, every ultrafilter converges to a
unique point in X. This is the content of 1.A.16 whose proof we include in the
interest of completeness. The converse also holds, but since we will not make
explicit use of it, we have left its proof as an exercise.

Definition 1.A.15 Let X be a topological space, x ∈ X and F be a filter on
X. We say that F converges to x and write F → x, if the neighborhood filter
at x, Nx ⊂ F .

Lemma 1.A.16 Let:

(i) X be a compact Hausdorff topological space,
(ii) ∅ 
= Y ⊂ X,

(iii) U be an ultrafilter on X, and
(iv) Y ∈ U .

Then there exists a unique x ∈ Y such that U → x.

PROOF: 1. Assume that U 
→ x for all x ∈ Y .
2. For every x ∈ Y there exists Vx ∈ Nx with Vx /∈ U . (by 1)
3. There exists a finite subset F ⊂ Y such that Y ⊂

⋃
x∈F

Vx .

(by 2, (Y is compact by (i)))
4. Y = ⋃

x∈F

(Vx ∩ Y ) ∈ U . (by 3, (iv))

5. There exists x ∈ F such that Vx ∩ Y ∈ U . (by 4, (iii), 1.A.8)
6. There exists x ∈ Y such that U → x. (5 contradicts 2)
7. Uniqueness follows from the fact that X is Hausdorff.

We now wish to prove that every mapping from T to a compact Hausdorff
space Y can be extended to a continuous map βT → Y . The proof uses the fol-
lowing elementary lemma, whose proof we leave as an exercise for the reader.
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Lemma 1.A.17 Let:

(i) f : T → Y ,
(ii) U be an ultrafilter on T , and

(iii) f̄ (U) = {B ⊂ Y | there exists A ∈ U with f (A) ⊂ B}.
Then f̄ (U) is an ultrafilter on Y .

Theorem 1.A.18 (Compare with 1.1.) Let:

(i) X be a compact Hausdorff topological space, and
(ii) f : T → X.

Then there exists a unique continuous map f̂ : βT → X with f̂ (t) = f (t) for
all t ∈ T .

PROOF: 1. Let u ∈ βT .
2. f̄ (u) = {B ⊂ X | there exists A ∈ u with f (A) ⊂ B} is an ultrafilter on X.

(by 1, 1.A.17)
3. There exists a unique element f̂ (u) ∈ X such that f̄ (u) → f̂ (u).

(by 2, 1.A.16)
4. Let t ≡ h(t) ∈ T ⊂ βT .
5. f̄ (t) = {B ⊂ X | f (t) ∈ B} ⊃ Nf (t). (by 2, 4)
6. f̂ (t) = f (t). (by 3, 5)
7. Let V ⊂ X be open and u ∈ βT with u ∈ f̂ −1(V ).
8. There exists W ⊂ X open with f̂ (u) ∈ W ⊂ W ⊂ V . (by 7, (i))
9. f̄ (u) → f̂ (u) ∈ W . (by 3, 8, 1.A.16)
10. W ∈ f̄ (u). (by 8, 9)
11. There exists B ∈ u with f (B) ⊂ W . (by 10)
12. Let v ∈ h(B) (so that B ∈ v).
13. W ∈ f̄ (v). (by 11, 12)
14. There exists x ∈ W such that f̄ (v) → x. (by 13, 1.A.16)
15. f̂ (v) = x ∈ V . (by 3, 8, 14)
16. v ∈ f̂ −1(V ). (by 15)
17. u ∈ h(B) ⊂ f̂ −1(V ). (by 11, 12, 16)
18. f̂ −1(V ) is open and hence f̂ is continuous. (by 7, 17)
19. f̂ is unique because T is dense in βT (by 1.A.12) and X is Hausdorff.

We turn now to the case where T is a semigroup. We saw in 1.3 that in this case
there is a unique semigroup structure on βT which makes right multiplication
by elements of T and left multiplication by all elements of βT continuous.
Having constructed the topological space βT using the ultrafilters on T , we
complete this appendix by showing that a semigroup structure on T allows us
to define the product of two ultrafilters on T , giving βT a semigroup structure.
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This definition is motivated by the fact that for an ultrafilter u ∈ βT , and an
element t ∈ T , one expects their product to be given by:

ut = {At | A ∈ u} = {A | At−1 ∈ u}
which in fact makes sense when T is a group but may not be an ultrafilter
when the right multiplication map Rt is not one-one. Instead we will use

ut = {A | R−1
t (A) ∈ u},

which gives the same result when T is a group since R−1
t = Rt−1 in that case.

Thus the ultrafilter ut = uh(t) should be characterized by the fact that:

A ∈ ut ⇐⇒ t ∈ {s | R−1
s (A) ∈ u} ⇐⇒ {s | R−1

s (A) ∈ u} ∈ h(t).

This viewpoint generalizes in a natural way to the product uv of two ultrafil-
ters:

A ∈ uv ⇐⇒ {s | R−1
s (A) ∈ u} ∈ v.

There are many details to check; for instance it needs to be shown that uv

as defined above is an ultrafilter. We content ourselves with giving a precise
outline of the notation and results involved while leaving the details of the
proofs to the reader.

Definition and Notation 1.A.19 Let T be a semigroup, t ∈ T , A ⊂ T , and
u ∈ βT . We use the notation:

Rt : T → T Lt : T → T

s → st s → ts

for the multiplication maps in T , and

At = Rt(A) = {at | a ∈ A}.
We define

A ∗ u = {s ∈ T | R−1
s (A) ∈ u}.

Note that

R−1
s (A) ∈ h(t) ⇐⇒ t ∈ R−1

s (A) ⇐⇒ ts ∈ A ⇐⇒ s ∈ L−1
t (A),

so that A ∗ h(t) = L−1
t (A).
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Proposition 1.A.20 Let:

(i) T be a semigroup,
(ii) u, v ∈ βT , and

(iii) w = {A ⊂ T | A ∗ u ∈ v}.
Then w is an ultrafilter on T .

PROOF: We leave the proof as an exercise for the reader.

Definition 1.A.21 Let T be a semigroup, and u, v ∈ βT . We define

uv = {A ⊂ T | A ∗ u ∈ v},
so that uv ∈ βT by 1.A.20.

For any two elements s, t ∈ T , applying 1.A.21 yields:

h(s)h(t) = {A | A ∗ h(s) ∈ h(t)} = {A | t ∈ L−1
s (A)} = {A | st ∈ A} = h(st),

so this definition of a product on βT agrees with the semigroup structure on T .
It follows immediately from the next lemma that this product is associative and
hence gives βT a semigroup structure which extends the semigroup structure
on T .

Lemma 1.A.22 Let:

(i) T be a semigroup,
(ii) u, v ∈ βT , and

(iii) ∅ 
= A ⊂ T .

Then A ∗ (uv) = (A ∗ u) ∗ v.

PROOF: We leave the proof as an exercise for the reader.

Proposition 1.A.23 Let:

(i) T be a semigroup, and
(ii) u, v,w ∈ βT .

Then (uv)w = u(vw).

PROOF: A ∈ (uv)w ⇐⇒ (A ∗ u) ∗ v = A ∗ (uv) ∈ w ⇐⇒ A ∗ u ∈
vw ⇐⇒ A ∈ u(vw). (by 1.A.22)

We complete our discussion of βT by indicating how to verify that the maps
Rt and Lp are continuous for all t ∈ T and p ∈ βT respectively.

Lemma 1.A.24 Let:

(i) T be a semigroup,
(ii) ∅ 
= A ⊂ T ,
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(iii) t ∈ T ,
(iv) u ∈ βT ,
(v) Rt : βT → βT

v → vt

, and

(vi) Lu : βT → βT .

v → uv

Then

(a) R−1
t (h(A)) = h(R−1

t (A)),
(b) L−1

u (h(A)) = h(A ∗ u).

PROOF: We leave the proof as an exercise for the reader.

Proposition 1.A.25 (Compare with 1.3) Let:

(i) T be a semigroup,
(ii) t ∈ T ,

(iii) u ∈ βT ,
(iv) Rt : βT → βT ,

v → vt

and

(v) Lu : βT → βT

v → uv

.

Then Rt and Lu are both continuous.

PROOF: This follows immediately from 1.A.24.

EXERCISES FOR CHAPTER 1

Exercise 1.1 (See 1.4) Let:

(i) T be a semigroup,
(ii) ∅ 
= H ⊂ T be a subsemigroup, and

(iii) j : βH → βT be the continuous extension to βH of the inclusion
H → βT .

Then j (pq) = j (p)j (q) for all p, q ∈ βH (so that βH ≡ H is a subsemi-
group of βT ).

Exercise 1.2 Let X be a topological space and x ∈ X. Prove that the collection

Nx = {A | there exists U open in X with x ∈ U ⊂ A}
is a filter on T .
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Exercise 1.3 Let:

(i) F be a filter on T , and
(ii) U(F) = {U | U is an ultrafilter on T withF ⊂ U}.
Prove that F = ⋂

U∈U(F)

U .

Exercise 1.4 Let t ∈ T . Prove that the collection

h(t) = {A | t ∈ A ⊂ T }

is the unique ultrafilter on T containing {t}.
Exercise 1.5 Let X be a topological space. Show that X is compact if and only
if every ultrafilter on X converges. (Compare with 1.A.16.)

Exercise 1.6 Let:

(i) f : T → Y ,
(ii) U be an ultrafilter on T , and

(iii) f̄ (U) = {B ⊂ Y | there exists A ∈ U with f (A) ⊂ B}.
Show that f̄ (U) is an ultrafilter on Y .

Exercise 1.7 Let

T = {
 ⊂ βT | for every u ∈ 
 there exists A ∈ u with h(A) ⊂ 
}.

Show that T is a topology on βT ; since ∅, βT ∈ T this amounts to proving:

(a) if {
i | i ∈ I } ⊂ T , then
⋃
i∈I


i ∈ T , and

(b) if {
1, . . . , 
n} ⊂ T , then 
1 ∩ · · · ∩ 
n ∈ T .

Exercise 1.8 Let:

(i) T = {
 ⊂ βT | ∀u ∈ 
, ∃A ∈ u with h(A) ⊂ 
}, and
(ii) A ⊂ T .

Show that A = h(A); so that A is both open and closed with respect to the
topology T .

Exercise 1.9 Let:

(i) T be a semigroup,
(ii) u, v ∈ βT , and

(iii) uv = {A ⊂ T | A ∗ u ∈ v}.



18 The Stone-cech compactification βT

Show that

(a) uv is an ultrafilter on T , and
(b) A ∗ (uv) = (A ∗ u) ∗ v for all ∅ 
= A ⊂ T .

Exercise 1.10 Let:

(i) T be a semigroup,
(ii) ∅ 
= A ⊂ T ,

(iii) t ∈ T ,
(iv) u ∈ βT ,
(v) Rt : βT → βT ,

v → vt

and

(vi) Lu : βT → βT ,

v → uv

Show that

(a) R−1
t (h(A)) = h(R−1

t (A)), and
(b) L−1

u (h(A)) = h(A ∗ u).
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Flows and their enveloping semigroups

For us a flow will be a compact Hausdorff space X provided with a continuous
(right) action of a group T on X. In Topological Dynamics we are concerned
with the so-called asymptotic behavior of this action. This motivates the con-
sideration of not just the collection T thought of as a subset of the set XX

of self-mappings of X, but all of the limit points of T in XX. This gives rise
to the notion of the enveloping semigroup E(X, T ) of the flow. The compo-
sition of functions gives a natural semigroup structure on E(X, T ) which as
we will see in subsequent sections, can be exploited to study the asymptotics
of the original flow (X, T ). The semigroup structure on βT discussed in the
previous section and its appendix serves as a prototype example. Indeed since
T ⊂ βT , this semigroup structure makes (βT , T ) itself a flow, and we will see
in proposition 2.9 that E(βT , T ) ∼= βT in a natural way.

In this section we introduce the appropriate notation, the details of the con-
struction, and give an exposition of some of the elementary properties of
E(X, T ). Many of these properties will be used directly, and serve as moti-
vation in what follows. Several accounts of this material appear in the text-
book-literature (see for example [Auslander, J., (1988)] and [Ellis, R., (1969)].
However, the point of view we have adopted here is slightly different. In order
to emphasize the connection between the two, we have involved βT in the
definition of E(X, T ) (see 2.8). In particular the fact that E(X, T ) is a homo-
morphic image of βT , both as a flow and as a semigroup has important conse-
quences. We begin with some basic notation and definitions.

Definition 2.1 Let X be a set and S a semigroup. Then an action of S on X is
a function

π : X × S → X

(x, s) → xs such that x(st) = (xs)t

19
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for all x ∈ X and s, t ∈ S. If S has an identity e we require that xe = x for all
x ∈ X. If π is an action of S on X, we say that S acts on X via π or simply
that S acts on X.

Definition 2.2 A flow is a triple (X, T , π) where X is a compact Hausdorff
space, T is a topological group, and π is an action of T on X such that the map
π is continuous. Let A ⊂ X. We say that A is invariant if AT ≡ {at | a ∈
A, t ∈ T } ⊂ A. If A is invariant, then the restriction of π to A × T defines
an action of T on A. If A is also closed, the resulting flow (A, T , π) is called
a subflow of the flow (X, T , π). Most of the time the symbol π is suppressed,
i.e. the flow (X, T , π) is denoted (X, T ) or simply, X.

For all of the flows (X, T , π) considered here we will assume that T is pro-
vided with the discrete topology. In this case for π to be continuous it suffices
that the maps πt : X → X

x → xt

be continuous for all t ∈ T .

As we mentioned above, it follows from 1.3 that the map π : βT ×T → βT

defined by π(p, t) = pt makes (βT , T ) a flow.

We now make explicit the definition of a homomorphism of flows mentioned
earlier.

Definition 2.3 Let (X, T ), (Y, T ) be flows and f : X → Y . Then f is a homo-
morphism if f is continuous and f (xt) = f (x)t for all x ∈ X, and t ∈ T .
The set of homomorphisms from X to Y will be denoted Hom(X, Y ). The set
of automorphisms (bijective elements of Hom(X,X)) of X, will be denoted
Aut(X).

One example of an asymptotic property of a flow is point transitivity as
defined below.

Definition 2.4 Let (X, T ) be a flow. We say that (X, T ) is point transitive if
there exists x0 ∈ X with x0T = X.

Clearly the flow (βT , T ) is point transitive since eT = T = βT . Note also
that if f : (X, T ) → (Y, T ) is an epimorphism (surjective homomorphism),
and (X, T ) is point transitive, then (Y, T ) is point transitive. Thus any homo-
morphic image of (βT , T ) is point transitive. As we show in 2.5, the converse
of this statement also holds. For this reason the flow (βT , T ) is often called
the universal point transitive flow.

Proposition 2.5 Let (X, T ) be a point transitive flow. Then there exists an
epimorphism f : (βT , T ) → (X, T ).
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PROOF: 1. There exists x0 ∈ X with x0T = X.
2. The map T → X

t → x0t

has a unique continuous extension f : βT → X

p → x0p

.

(by 1.1)
3. Let t ∈ T .
4. The maps

βT → X

p → x0(pt)

and βT → X

p → (x0p)t

are continuous extensions of the map

T → X

t ′ → (x0t
′)t = x0(t

′t).

5. x0(pt) = (x0p)t and hence f is a homomorphism. (by 2, 3, 4, 1.1)
6. x0T = f (T ) ⊂ f (βT ). (by 1)
7. X = x0T ⊂ f (βT ).

(by 2, 6, since βT and X are compact Hausdorff spaces)

In order to describe the so-called enveloping semigroup of a flow (X, T ) we
introduce the space of self-maps of X, along with some useful notation. Since
our actions are on the right, it is natural write xπt = xt for the value at x of
the element πt of XX associated with t ∈ T . For this reason we will write all
of the functions in XX on the right.

Notation 2.6 Let X be a compact Hausdorff space. Then XX will denote the
set of maps of X to X provided with the topology of pointwise convergence. Let
f, g ∈ XX and x ∈ X. Then xf will denote the image of x under f , and fg the
composite map first f then g. Thus x(fg) = (xf )g. Finally ρ : XX × XX →
XX will denote the map defined by ρ(f, g) = fg for all f, g ∈ XX.

We will make use of the following elementary properties of XX.

Proposition 2.7 Let X be compact Hausdorff. Then:

(a) XX is compact Hausdorff,
(b) ρ provides XX with a semigroup structure,

(c) the maps ρf : XX → XX

g → gf

are continuous for all continuous f ∈ XX,

(d) the maps ρf : XX → XX

g → fg

are continuous for all f ∈ XX, and

(e) ρ defines an action of the semigroup XX on the set XX.
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PROOF: (a) and (b) are standard.
(c) 1. Let gα −→ g be a convergent net, and f be continuous.

2. xgα −→ xg for all x ∈ X.
3. x(gαf ) = (xgα)f −→

1,2
(xg)f = x(gf ) for all x ∈ X.

4. gαf −→ gf . (by 3)
(d) 1. Let gα −→ g.

2. ygα −→ yg for all y ∈ X. (by 1)
3. x(fgα) = (xf )gα−→

2
(xf )g = x(fg) for all x ∈ X.

4. fgα −→ fg. (by 3)
(e) This follows immediately from parts (b) and (c).

It is clear that the map

X × XX → X

(x, f ) → xf

defines an action of the semigroup XX on X. Thus if T is any subgroup of XX

which consists entirely of continuous maps, then (X, T ) is a flow. Conversely
given any flow (X, T ), the set {πt | t ∈ T } is a subgroup of XX consisting of
continuous maps. In this case we obtain a group homomorphism of T into a
subgroup of XX, allowing the following definition of the enveloping semigroup
of the flow (X, T ).

Definition 2.8 Let (X, T ) be a flow. By 1.1 the map T → XX

t → πt

has a con-

tinuous extension �X : βT → XX. The image of �X,

�X(βT ) = {πt | t ∈ T } ≡ E(X, T )

is clearly a subsemigroup of XX, which we call the enveloping semigroup of
the flow (X, T ) and denote by E(X, T ) or simply E(X). The map �X will
be referred to as the canonical map of βT onto E(X). Since we write xt for
xπt = x�X(t) for all x ∈ X and t ∈ T , it will be convenient to write xp for
x�X(p) for all x ∈ X and p ∈ βT .

Some of the properties of E(X) which follow directly from the definition are
collected and detailed below in order that they may be referred to as needed.
We leave it as an exercise for the reader to provide detailed proofs.

Proposition 2.9 Let (X, T ) be a flow. Then:
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(a) The action

E(X) × T → E(X)

(p, t) → pπt

where

πt = Rt : E(X) → E(X)

q → qt

makes E(X, T ) a point transitive flow.
(b) The canonical map �X : βT → E(X) is both a flow and a semigroup

homomorphism.
(c) The map E(X) → X

p → xp

is a flow homomorphism for all x ∈ X.

(d) The map �βT : βT → E(βT ) is an isomorphism.
(e) Let f : (X, T ) → (Y, T ) be a homomorphism of flows. Then f (xp) =

f (x)p for all x ∈ X and p ∈ βT .

The association of E(X, T ) to a flow (X, T ) is natural in the sense outlined in
the following proposition.

Proposition 2.10 Let f : (X, T ) → (Y, T ) be a surjective flow homomor-
phism. Then there exists a map θ : E(X) → E(Y ) such that:

(a) the following diagram is commutative

βT = βT

�X ↓ ↓ �Y

a E(X)
θ→ E(Y ) b

↓ ↓ ↓ ↓
xa X

g→ Y g(x)b

for all homomorphisms g : X → Y and x ∈ X,
(b) θ is surjective and continuous,
(c) θ(pq) = θ(p)θ(q) for all p, q ∈ E(X) so that θ is both a flow and a

semigroup homomorphism, and
(d) if ψ : E(X) → E(Y ) is a homomorphism with ψ◦�X = �Y , then θ = ψ .

PROOF: (a) 1. Let a ∈ E(X) and define θ(a) = �Y (p) where p ∈ βT

with �X(p) = a.
2. To see that θ is well-defined, suppose p, q ∈ βT with �X(p) = �X(q) and
let y ∈ Y .
3. Since f is onto, there exists x ∈ X with f (x) = y.
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4. y�Y (p)=
3
f (x)�Y (p) =

2.9(e)
f (x�X(p))=

2
f (x�X(q)) =

2.9(e)
f (x)�Y (q)

= y�Y (q).
5. Thus θ is well-defined and θ ◦ �X = �Y , so the top half of the diagram is
commutative.
6. Now let x ∈ X, a ∈ E(X), and p ∈ βT with �X(p) = a.
7. Then g(xa) = g(x�X(p)) =

2.9(e)
g(x)�Y (p)=

5
g(x)θ(�X(p)) = g(x)θ(a)

which shows that the bottom half of the diagram is commutative.
(b) 1. θ is surjective because �Y is.

2. Let C ⊂ E(Y ) be closed.
3. θ−1(C) = �X(�−1

Y (C)) is closed.
(�X,�Y are continuous, βT is compact)

4. θ is continuous. (by 2, 3)
(c) 1. Let a, b ∈ E(X), and p, q ∈ βT with �X(p) = a and �X(q) = b.

2. θ(ab) = θ(�X(p)�X(q)) =
2.9(b)

θ(�X(pq))

= �Y (pq) =
2.9(b)

�Y (p)�Y (q) = θ(�X(p))θ(�X(q)) = θ(a)θ(b).

(d) 1. Assume that ψ : E(X) → E(Y ) satisfies ψ ◦ �X = �Y .
2. For a = �X(p), f (xa)= f (x�X(p)) =

2.9(e)
f (x)�Y (p)=

1
f (x)ψ(�X(p))

= f (x)ψ(a).
3. f (x)ψ(a) = f (x)θ(a) for all x ∈ X and a ∈ E(X). (by 2 and part (a))
4. ψ(a) = θ(a) for all a ∈ E(X). (by 2, 3, because f is onto)

We end this section with a few examples of how 2.10 is used to identify certain
enveloping semigroups. Note that if (X, T ) is a flow, then T acts diagonally on
the Cartesian product X × X, so that (x, y)t = (xt, yt), making (X × X, T ) a
flow.

Corollary 2.11 Let (X, T ) be a flow. Then E(X, T ) ∼= E(X × X, T ).

PROOF: 1. The maps g1 : X × X → X

(x, y) → x

and g2 : X × X → X are
(x, y) → y

surjective homomorphisms of flows.
2. There exists a surjective flow and semigroup homomorphism θ :
E(X × X) → E(X). (by 1, 2.10)
3. Let p, q ∈ βT with θ(�X×X(p)) = θ(�X×X(q)).
4. �X(p) = �X(q). (by 2, 3, 2.10)
5. Let (x, y) ∈ X × X.
6. g1((x, y)�X×X(p)) =

2.10
g1(x, y)�X(p) = x�X(p)=

4
x�X(q)

=
2.10

g1((x, y)�X×X(q)).
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7. g2((x, y)�X×X(p)) =
2.10

g2(x, y)�X(p) = y�X(p)=
4
y�X(q) =

2.10
g2((x, y)

�X×X(q)).

8. (x, y)�X×X(p) = (g1((x, y)�X×X(p)), g2((x, y)�X×X(p)))

=
7
(g1((x, y)�X×X(q)), g2((x, y)�X×X(q)))

= (x, y)�X×X(q).

9. �X×X(p) = �X×X(q). (by 5, 8)

10. θ is an isomorphism. (by 2, 3, 9)

Proposition 2.12 Let:

(i) (X, T ) be a flow,
(ii) x0 ∈ X with x0T = X (so that (X, T ) is point transitive), and

(iii) f : E(X) → X be defined by f (p) = x0p for all p ∈ E(X).

Then f induces an isomorphism, θ : E(E(X)) ∼= E(X).

PROOF: We leave the proof as an exercise for the reader.

Proposition 2.13 Let (X, T ) be a flow. Then E(E(E(X))) ∼= E(E(X)).

PROOF: This follows from 2.12 and the fact that (E(X, T ), T ) is point
transitive.

EXERCISES FOR CHAPTER 2

Exercise 2.1 (see 2.9) Let:

(i) (X, T ) and (Y, T ) be flows, and
(ii) f : (X, T ) → (Y, T ) be a homomorphism.

Show that

(a) The canonical map �X : βT → E(X) is both a flow and a semigroup
homomorphism.

(b) The map E(X) → X

p → xp

is a flow homomorphism for all x ∈ X.

(c) The map �βT : βT → E(βT ) is an isomorphism.
(d) f (xp) = f (x)p for all x ∈ X and p ∈ βT .
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Exercise 2.2 (see 2.12) Let:

(i) (X, T ) be a flow,
(ii) x0 ∈ X with x0T = X (so that (X, T ) is point transitive), and

(iii) f : E(X) → X be defined by f (p) = x0p for all p ∈ E(X).

Then f induces an isomorphism, θ : E(E(X)) ∼= E(X).

Exercise 2.3 Let:

(i) E be a compact Hausdorff space provided with a semigroup structure,
(ii) Lp : E → E

m → pm

for all p ∈ E,

(iii) Rp : E → E

m → mp

for all p ∈ E, and

(iv) ϕ : E → EE be defined by ϕ(p) = Rp for all p ∈ E(X).

Then

(a) ϕ is a semigroup homomorphism, and
(b) ϕ is continuous if and only if Lp is continuous for all p ∈ E. In this

case ϕ identifies E with a subsemigroup of EE , and E is referred to as an
E-semigroup (see also [Akin, E. (1997)]). It is immediate from 2.7, that for
any flow (X, T ), its enveloping semigroup E(X, T ) is an E-semigroup.
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Minimal sets and minimal right ideals

A subset M ⊂ X of a flow (X, T ) is minimal (see 3.1) if it is a closed non-
empty invariant set which is minimal with respect to those properties. One
illustration of the interplay between the algebraic and topological properties
of the enveloping semigroup is the fact that the minimal subsets of E(X, T )

are exactly the minimal right ideals in E(X, T ) with respect to its semigroup
structure. This motivates a study of the algebraic structure of E(X, T ) and its
minimal ideals in particular.

The key to understanding the structure of a minimal ideal I ⊂ E(X), is an
investigation of the idempotents in I (those u ∈ I with u2 = u). In a group, of
course, the identity is the only idempotent. We will see that in E(X), any closed
sub-semigroup contains an idempotent, so that in general E(X) contains many
idempotents in addition to the identity. In particular any right ideal contains
an idempotent. In 3.12 we show that if I is a minimal right ideal, then I is
a disjoint union

⊎{Iv | v ∈ J }, where J = {v ∈ I | v2 = v} is the set of
idempotents in I . In fact all of the sets Iv, with v ∈ J are subgroups of I

which are isomorphic to one another.

We saw in 2.9 that E(βT , T ) ∼= βT . Thus the preceding discussion applies
to any minimal right ideal M in βT . In this case the flow (M, T ) is a universal
minimal flow meaning that every minimal flow, is the image of M under some
epimorphism. Thus every minimal flow can be identified with the quotient flow
(M/R, T ) for some closed, invariant equivalence relation (icer) R on M . This
is the basis for our approach to the algebraic theory of minimal flows, in which
the structure of M plays a crucial role.

This section begins with some background material on minimal sets. We
then make explicit the relationship between the minimal sets, and minimal
ideals in the enveloping semigroup. We go on to describe the structure of the
minimal ideals in E(X, T ), and the section closes with some brief remarks on
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M which motivate the notation, terminology and approach which will be used
in the later sections.

Definition 3.1 A subset, M of the flow X is minimal if:

(i) ∅ 
= M ,
(ii) M is closed,

(iii) M is invariant, meaning Mt ⊂ M for all t ∈ T , and
(iv) if N ⊂ M satisfies (i), (ii), (iii), then N = M . That is M is minimal with

respect to (i),(ii), and (iii).

The flow X is minimal (or a minimal set) if X is minimal. Notice that if M is a
minimal subset of X, then the flow (M, T ) is a minimal set.

We begin with an elementary characterization of minimal sets. This shows
that the minimal subsets of a flow reflect its asymptotic properties in the sense
that minimality can be characterized in terms of orbit closures.

Proposition 3.2 Let:

(i) (X, T ) be a flow, and
(ii) ∅ 
= M ⊂ X be closed and invariant.

Then the following are equivalent:

(a) M is minimal,
(b) xT = M for all x ∈ M , and
(c) if U ⊂ X is open with M ∩ U 
= ∅, then M = (U ∩ M)T .

PROOF: (a) =⇒ (b)

1. Assume that M is minimal and let x ∈ M .
2. xT ⊂ M satisfies (i), (ii), and (iii) of 3.1.
3. xT = M . (by 1, 2)

(b) =⇒ (c)

1. Assume that xT = M for all x ∈ M and let U ⊂ X be open with
U ∩ M 
= ∅.
2. xT ∩ U 
= ∅ for all x ∈ M . (by 1)
3. x ∈ UT for all x ∈ M . (by 2)

(c) =⇒ (a)

1. Assume that (c) holds and N ⊂ M is a nonempty closed, invariant subset
of M .
2. Let U = X \ N .
3. U is open. (by 1, 2)
4. N ∩ (U ∩ M)T ⊂ NT ∩ U = N ∩ U = ∅. (by 1, 2)
5. (U ∩ M)T 
= M . (by 1, 4)
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6. U ∩ M = ∅. (by 1, 5)
7. N = M . (by 1, 2, 6)

We use the axiom of choice in the form of Zorn’s lemma both in the following
proposition, to show that minimal sets exist, and later to show that certain
semigroups contain idempotents. Zorn’s lemma was also used in the appendix
to section 1; for the sake of completeness we give a statement here.

Zorn’s Lemma 3.3 If (S,≤) is a partially ordered set such that any increasing
chain s1 ≤ · · · ≤ si ≤ · · · has a supremum in S, then S itself has a maximal
element.

Proposition 3.4 Let (X, T ) be a flow. Then there exists a minimal subset
in X.

PROOF: 1. Let C = {∅ 
= C ⊂ X | C is closed and invariant}.
2. C is partially ordered by the relation C1 ⊃ C2.
3. Let 
 = {C1 ⊃ C2 ⊃ · · · Ci ⊃ · · · } be an increasing chain of elements of C.
4. C = ⋂

Ci is nonempty, closed and invariant, hence C ∈ C is a supremum
for 
. (X is compact)
5. C has a maximal element M ⊂ X. (by Zorn’s lemma)
6. M is a minimal subset of X. (by 1, 2, 5)

It is an elementary but important fact, detailed in the next proposition, that
minimality is preserved by homomorphisms.

Proposition 3.5 Let ϕ : X → Y be a flow homomorphism.

(a) If M is a minimal subset of X, then ϕ(M) is a minimal subset of Y .
(b) If N is a minimal subset of ϕ(X), then there exists a minimal subset M of

X with ϕ(M) = N .

PROOF: (a) 1. Let K be a non-empty closed invariant subset of ϕ(M).
2. ϕ−1(K) ∩ M is a closed non-empty invariant subset of the minimal set M .
3. ϕ−1(K) ∩ M = M .
4. K = ϕ(M). (by 3)

(b) 1. ϕ−1(N) is a non-empty closed invariant subset of X.
2. There exists a minimal subset M of ϕ−1(N). (by 3.4)
3. ϕ(M) is a minimal subset of the minimal set N , so ϕ(M) = N . (by (a))

Now we turn to a discussion of the minimal ideals in the enveloping semigroup
E(X, T ) of a flow (X, T ). We first show that they coincide with the minimal
sets of the flow (E(X, T ), T ); then we will describe the structure of these
minimal ideals.
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Definition 3.6 Let X be a flow, and E its enveloping semigroup. Then a
nonempty subset I of E is a (right) ideal if IE ⊂ I . The ideal is minimal
if it contains no ideals as proper subsets.

Note that if I ⊂ E(X, T ) is an ideal, then IT ⊂ I , whence if I is closed,
(I, T ) is a flow. In fact as the following proposition shows, (I, T ) is a minimal
flow.

Proposition 3.7 Let:

(i) (X, T ) be a flow,
(ii) E = E(X, T ), and

(iii) I an ideal in E.

Then I is a minimal ideal if and only if I is closed and the flow (I, T ) is
minimal.

PROOF: =⇒ 1. Assume that I is minimal and let p ∈ I .

2. pT = pE ⊂ I . (I is an ideal)
3. Lp(E) = pE = I . (pE is an ideal and I is minimal)
4. I is closed. (by 3, E is compact and Lp is continuous by 2.7)
5. (I, T ) is minimal. (by 2, 3, 3.2)

⇐= 1. Assume that (I, T ) is a minimal flow, let J ⊂ I be an ideal, and
p ∈ J .

2. I = pT = pE ⊂ J .
3. I = J . (by 1, 2)

Corollary 3.8 Let:

(i) (X, T ) be a flow,
(ii) E = E(X, T ), and

(iii) I an ideal in E.

Then I contains a minimal ideal.

PROOF: This follows from 3.7 and 3.4; we leave the details to the reader.

The description of the structure of a minimal ideal I ⊂ E(X, T ) relies on the
existence of idempotents u2 = u ∈ I . Thus the importance of the following
theorem, which is an interesting example of the interplay between the topolog-
ical and algebraic structure in a topological space which is also a semigroup.

Theorem 3.9 Let X be a compact T1 (single points are closed) semigroup
such that the left-multiplication maps
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Lx : X → X

y → xy

are continuous and closed for all x ∈ X. Then there exists an idempotent u in
X. (u is an idempotent if u2 = u.)

PROOF: 1. Let � = {S ⊂ X | ∅ 
= S = S and S2 ⊂ S}.
2. Then � 
= ∅ and by Zorn’s lemma there exists a minimal element, S of �

when the latter is ordered by inclusion.
3. Let s ∈ S.
4. sS = Ls(S) is a closed subset of S. (by 1, 2, 3, Ls is closed)
5. sSsS ⊂ sSS ⊂ sS ⊂ S, whence sS = S by the minimality of S.
6. Let R = {t ∈ S | st = s}.
7. ∅ 
= R. (by 3, 5)
8. R2 ⊂ R = L−1

s {s} = R. (Ls is continuous, X is T1)
9. R = S. (by 2, 6, 7, 8)
10. s2 = s (by 3, 6, 9)

Since every continuous map from a compact space to a Hausdorff space is a
closed map, the following is an immediate consequence of 3.9.

Corollary 3.10 Let X be a compact Hausdorff semigroup such that the maps

Lx : X → X

are continuous for all x ∈ X. (We often refer to such a semigroup as an
E-semigroup, see 2.E.3.) Then there exists an idempotent u in X.

Corollary 3.11 Let X be a compact T1 group such that left multiplication is
continuous, and let S be a closed sub-semigroup of X. Then S is a subgroup
of X.

PROOF: 1. Let x ∈ S.
2. xS = L−1

x−1(S) is a closed subsemigroup of S. (Lx−1 is continuous)
3. There exists an idempotent u ∈ xS. (by 1, 2, 3.9)
4. u = id. (X is a group)
5. x−1 ∈ S. (by 3, 4)

For any flow (X, T ), the enveloping semigroup E(X, T ) is an E-semigroup
in the sense of 3.10, and hence any minimal ideal I ⊂ E(X) is also an
E-semigroup and therefore contains idempotents. It turns out that each of
the idempotents in I acts as a left-identity on I . In fact the ideal I can be
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partitioned into a disjoint union of groups, each one containing exactly one
idempotent (which serves as the identity for that group). We give the details in
the following theorem.

Theorem 3.12 Let:

(i) (X, T ) be a flow,
(ii) E = E(X, T ), and

(iii) I ⊂ E be a minimal ideal in E.

Then:

(a) The set J of idempotents of I is non-empty,
(b) vp = p for all v ∈ J and p ∈ I ,
(c) Iv is a group with identity v, for all v ∈ J ,
(d) {Iv | v ∈ J } is a partition of I , and
(e) if we set G = Iu for some u ∈ J , then I = ⊎{Gv | v ∈ J } (disjoint

union).

PROOF: (a) 1. This follows immediately from 3.10.
(b) 1. Let v ∈ J , and p ∈ I .

2. vI ⊂ I . (I is an ideal)
3. vI = I . (by 2, I is minimal)
4. There exists q ∈ I with vq = p. (by 3)
5. vp =

4
vvq = vq =

4
p.

(c) 1. Let q ∈ Iv.
2. There exists p ∈ I with q = pv.
3. qv = pvv = pv = q.
4. v is both a left and right identity for Iv. (by (b), and 3)
5. qI is an ideal. (I is an ideal)
6. qI = I . (I is minimal)
7. There exists q ′ ∈ I with qq ′ = v. (by 6)
8. q(q ′v) = (qq ′)v = vv = v. (by 7)
9. (q ′q)(q ′q) = q ′(qq ′)q =

7
q ′(vq) =

(b)
q ′q.

10. (q ′v)q =
(b)

q ′q =
3

(q ′q)v =
9,(b)

v.

11. q ′v is a left and right inverse of q in Iv. (by 8, 10)
(d) 1. Let p ∈ I .

2. As before pI = I . (I is a minimal ideal)
3. K = {q ∈ I | pq = p} = L−1

p (p) is a nonempty closed subsemigroup of I .
(by 2, 2.9)

4. There exists an idempotent u ∈ J with pu = p. (by 3.9)
5. p ∈ Iu. (by 4)
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6. I = ⋃{Iv | v ∈ J }. (by 1, 5)
7. Finally let u, v ∈ J and p ∈ Iv ∩ Iu.
8. p = pu = pv and there exists q ∈ Iv with qp = v. (by 8, (c))
9. u =

(b)
vu = (qp)u = q(pu) =

8
qp =

8
v.

(e) This is just a restatement of (d).

Note that each of the groups Iv in proposition 3.12 is isomorphic to the group
G = Iu; indeed the map pu → pv is an isomorphism since (pv)(qv) =
p(vq)v = (pq)v. It is interesting to note that given an abstract group G and
an index set J , one can define a semigroup structure on the disjoint union
I = ⊎

v∈J Gv of copies of G, in which J can be identified with the set of
idempotents. We simply define pvqw = (pq)w ∈ Gw for p, q ∈ G and
v,w ∈ J . Then {ev | v ∈ J } is the set of idempotents in I . Proposition 3.12
shows that every minimal ideal in E(X, T ) has this structure.

For any semigroup E one can define an equivalence relation on the set J of
idempotents in E as follows:

u ∼ v ⇐⇒ uv = u and vu = v.

This relation is clearly reflexive and symmetric; to check transitivity we observe
that:

u ∼ v ∼ w ⇒ uw = (uv)w = u(vw) = uv = u

and wu = (wv)u = w(vu) = wv = w.

This motivates the following definition.

Definition 3.13 Let (X, T ) be a flow. An idempotent u2 = u ∈ E(X, T )

is said to be a minimal idempotent if u is contained in some minimal ideal
I ⊂ E(X, T ). If u, v ∈ E(X, T ) are idempotents with uv = u and vu = v,
we write u ∼ v and refer to u and v as equivalent idempotents.

When u and v are in the same minimal ideal I , then u ∼ v ⇒ u = v

since by 3.12 both u and v act as left-identities on I . Thus for any minimal
idempotent, the equivalence class [u] intersects each minimal ideal at most
once; we leave it as an exercise for the reader to check that [u] contains only
minimal idempotents. The following proposition says that [u] intersects every
minimal ideal exactly once, so that [u] consists of one idempotent from every
minimal ideal in E(X, T ).

Proposition 3.14 Let:

(i) (X, T ) be a flow,
(ii) E = E(X, T ),
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(iii) I,K ⊂ E be minimal ideals in E, and
(iv) u2 = u ∈ I be an idempotent.

Then there exists a unique idempotent v ∈ K with uv = u and vu = v.

PROOF: 1. Let u2 = u ∈ I .
2. uK is a closed ideal in I , whence uK = I .
3. N ≡ {k ∈ K | uk = u} 
= ∅. (by 2)
4. N = L−1

u (u) ∩ K is closed, and N2 ⊂ N .
5. There exists v2 = v ∈ N . (by 4, 3.10)
6. uv = u. (by 3, 5)
7. Similarly there exists w2 = w ∈ I with vw = v. (applying 1-6 to v ∈ K)
8. w =

1,3.12
uw =

6
uvw =

7
uv =

6
u.

9. vu = v. (by 7, 8)
10. Now suppose η2 = η ∈ K with uη = u and ηu = η.
11. η =

10
ηu =

6
ηuv =

10
ηv.

12. η ∈ Kη ∩ Kv. (by 10, 11)
13. η = v. (by 3.12)

As an immediate consequence of 3.12 we see that any two minimal ideals in
E(X, T ) are isomorphic as minimal flows in a natural way.

Proposition 3.15 Let:

(i) (X, T ) be a flow,
(ii) E = E(X, T ),

(iii) I,K ⊂ E be minimal ideals in E,
(iv) u2 = u ∈ I be an idempotent, and
(v) v2 = v ∈ K with u ∼ v.

Then the map Lv : (I, T ) → (K, T )

p → vp

is an isomorphism, its inverse being

the map Lu.

PROOF: We leave the proof as an exercise for the reader.

The structure of the minimal ideals in the enveloping semigroup E(X, T ) of
any flow (X, T ) described above, and the minimal idempotents themselves
play an important role (see in particular section 4) in the study of the dynamics
of (X, T ). The minimal ideals in the semigroup βT have exactly the same
structure. This can be seen by noting that the proofs of 3.12, 3.14, and 3.15
rely only on properties of E(X, T ) which are shared by βT . On the other hand
we saw in 2.9, that E(βT ) ∼= βT as semigroups. Thus 3.12, 3.14, and 3.15 can
be applied directly to βT . In particular, we can speak of minimal idempotents
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in βT , and the minimal subsets (ideals) of βT are isomorphic to one another.
The importance of the minimal ideals in βT stems from the fact that any such
minimal ideal M ⊂ βT is a universal minimal set, meaning that every minimal
flow (X, T ) is a homomorphic image of the flow (M, T ).

Theorem 3.16 Let M be a minimal subset of βT , and (X, T ) be a minimal
flow. Then there exists an epimorphism f : M → X.

PROOF: 1. Let x ∈ X.
2. The map T → X

t → xt

has a continuous extension g : βT → X. (by 1.1)

3. g is a homomorphism of flows.
4. The restriction f of g to M is an epimorphism. (X is minimal)

We end this section with an observation which emphasizes the importance of
the preceding theorem. Let f : M → X be an epimorphism and

Rf = {(p, q) ∈ M × M | f (p) = f (q)}.

Then Rf is an invariant closed equivalence relation (icer for short) on M , such
that M/Rf

∼= X. Thus theorem 3.16 shows that every minimal flow can be
obtained as a quotient of M by an icer. Conversely for every icer R on M ,
the quotient M/R is a minimal flow. This follows from the purely topological
result (included here as 6.2) that the quotient of any compact Hausdorff space
by a closed equivalence relation is itself a compact Hausdorff space. Minimal
flows and their properties can therefore be studied by studying icers on the
universal minimal set M . This is one of the major themes of this book. We
begin the development of this theme in part II. In particular the structure of M

given in 3.12 will be used in section 7 to facilitate the study of icers on M , and
lay the foundation for our approach to the algebraic theory of minimal sets.

EXERCISES FOR CHAPTER 3

Exercise 3.1 (see 3.15) Let:

(i) (X, T ) be a flow,
(ii) E = E(X, T ),

(iii) I,K ⊂ E be minimal ideals in E,
(iv) u2 = u ∈ I be an idempotent, and
(v) v2 = v ∈ K with u ∼ v.
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Show that Lv : (I, T ) → (K, T )

p → vp

is an isomorphism, its inverse being the

map Lu.

Exercise 3.2 Let:

(i) (X, T ) be a flow,
(ii) E = E(X, T ),

(iii) u be a minimal idempotent in E, and
(iv) v ∈ E be an idempotent with u ∼ v.

Show that v is a minimal idempotent in E.

Exercise 3.3 Show that a compact Hausdorff semigroup X is an E-semigroup
if and only if the map X → XX

x → Rx

is continuous. (see 3.10)

Exercise 3.4 Prove analogs of 3.12, 3.14, and 3.15 for E-semigroups.
(see 3.10)

Exercise 3.5 Show that any topological group S which is T1 must be
Hausdorff.
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Fundamental notions

Certain important notions in topological dynamics serve as the language,
foundation and motivation for the theory. These include pointwise almost
periodicity, minimality, distality, proximality, weak-mixing, and topological
transitivity for flows. This section is devoted to defining and discussing these
concepts and some of their analogs and generalizations to homomorphisms of
flows.

Our exposition emphasizes the role played by the semigroups βT , and
E(X, T ), and the minimal ideals therein in understanding the properties of
the flow (X, T ). Many of the fundamental notions can be cast in terms of the
algebraic structure of these semigroups, their minimal ideals and idempotents.
One example of this is proposition 4.9 which shows that (X, T ) is distal if and
only if E(X, T ) is a group. This algebraic approach also leads to 4.12, where
it is shown that every distal flow is pointwise almost periodic.

The later part of this section is devoted to a discussion of topological tran-
sitivity and related questions. For metric flows, the notions of point transi-
tivity and topological transitivity are quite easily seen to be equivalent (see
4.18). This allows certain results (notably the Furstenberg structure theorem
for distal flows) to be deduced for metric flows in a straightforward way. On
the other hand topological transitivity and point transitivity are not equivalent
in general for flows on compact Hausdorff spaces. Despite this, some deep
results along these lines can be obtained by deducing the general case from
metric considerations. As one example of this technique we show in 4.24 that
every flow which is both topologically transitive and distal, must be minimal.
This result has the general case of the Furstenberg theorem as an immedi-
ate consequence. This result can also be generalized to the case of homomor-
phisms of minimal flows. Here one can prove that a homomorphism of minimal
flows which is both weak mixing (so that the corresponding equivalence rela-
tion is topologically transitive) and distal must be trivial. Our proof (given in
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section 9) of this more general result again involves reducing the argument to
the metric case, but also requires the introduction of what we call the quasi-
relative product of two icers.

We begin with the definition of an almost periodic point which is given here
in terms of minimal sets.

Definition 4.1 Let (X, T ) be a flow and x ∈ X. Then x is an almost periodic
point if the orbit closure of x, denoted xT , is minimal. We say that the flow
(X, T ) is pointwise almost periodic if every x ∈ X is an almost periodic point.

It is clear that any minimal flow is pointwise almost periodic, and that any
pointwise almost periodic flow is a disjoint union of minimal sets. For semi-
groups, which we do not assume contain the identity, the definition needs to
be modified slightly. In this case xT need not contain x, so we require that
an almost periodic point satisfy x ∈ xT . Thus any pointwise almost periodic
semigroup action on X partitions X into a disjoint union of minimal sets.

Note that if a point x ∈ X is fixed by every element of T , or more generally
if the orbit xT is finite (where we might think of x as a periodic point), then
x is an almost periodic point of the flow (X, T ). The terminology is further
motivated by the case T = Z, the group of integers. Here by abuse of notation
we think of

T = {. . . , T −n, . . . , T −2, T −1, id, T , T 2, . . . , T n, . . .},
where T : X → X is a homeomorphism. For this special case a periodic point
of period n has as set of return times the set

A(x) = {T j | xT j = x} = {T nk| k ∈ Z}.
This set is large in the sense that its product with the finite set {T 1, . . . , T n−1}
gives the whole group T . This way of characterizing a periodic point when
T = Z has a natural generalization which makes sense for any group T . For
any x ∈ X and neighborhood U of x we consider the set of return times to U :

A(U) = {t ∈ T | xt ∈ U}.
The next proposition proves that A(U) is large in the sense mentioned above
if and only if x is an almost periodic point, thus motivating the terminology.

Proposition 4.2 Let:

(i) (X, T ) be a flow,
(ii) x ∈ X,

(iii) Nx = {U ⊂ X| x ∈ U and U is open}, and
(iv) A(U) = {t ∈ T | xt ∈ U}.
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Then x is an almost periodic point if and only if for every U ∈ Nx , there exists
a finite set F ⊂ T , such that A(U)F = T . In other words A(U) is a syndetic
subset of T .

PROOF: =⇒
1. Assume that x is an almost periodic point and let U ∈ Nx .
2. xT ⊂ (U ∩ xT )T . ((xT , T ) is minimal by 1)
3. There exists a finite set F ⊂ T such that xT ⊂ UF . (by 2, xT is compact)
4. Let t ∈ T .
5. xt ∈ Us for some s ∈ F . (by 3)
6. ts−1 ∈ A(U). (by 5, (iv))
7. t ∈ A(U)F . (by 6)
8. A(U)F = T . (by 4, 7)

⇐=
1. Assume that A(U) is syndetic for every U ∈ Nx .
2. Let W ⊂ X be open with W ∩ xT 
= ∅.
3. Let W0 be open with W0 ⊂ W and W0 ∩ xT 
= ∅.
4. There exists t ∈ T such that W0t ∈ Nx . (by 3, (iii))
5. There exists a finite subset F ⊂ T such that A(W0t)F = T . (by 1, 4)
6. xT ⊂

4
xA(W0t)F =

4
xA(W0t)F ⊂ (W0t ∩ xT )F ⊂ (W0 ∩ xT )tF ⊂

3
(W ∩

xT )T .
7. xT is minimal. (by 2, 6)

We now characterize the almost periodic points of (X, T ) in terms of the min-
imal idempotents in the enveloping semigroup E(X, T ).

Proposition 4.3 Let:

(i) (X, T ) be a flow,
(ii) E = E(X, T ),

(iii) I ⊂ E be a minimal ideal in E, and
(iv) x ∈ X.

Then the following are equivalent:

(a) x is an almost periodic point of X,
(b) xT = xI ≡ {xp | p ∈ I }, and
(c) there exists u2 = u ∈ I with xu = x.

PROOF: (a) ⇒ (b) 1. Assume that x is an almost periodic point of (X, T ).
2. ϕx : E → X

p → xp

is a homomorphism of E onto xT . (by 2.9)
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3. xI = ϕx(I ) is a closed invariant subset of xT . (by (iii), 3.7)
4. xI = xT . (by 1, 3)

(b) ⇒ (c) 1. Assume that xT = xI .
2. The set S = {p ∈ I | xp = x} is a closed nonempty subsemigroup of I .

(by 1)
3. There exists u2 = u ∈ S. (by 2, 3.10)

(c) ⇒ (a) 1. Assume that there exists u = u2 ∈ I with xu = x.
2. xT = (xu)T = x(uT ) ⊂ xI .
3. xT ⊂ xI . (by 2 and 3.7)
4. xT = xI . (xI is minimal by 3.7)
5. x is an almost periodic point. (by 4)

Continuing with our theme of characterizing dynamical notions in terms of
the semigroups βT and E(X, T ), the following proposition considers notions
which are equivalent to what we call proximality.

Proposition 4.4 Let (X, T ) be a flow and x, y ∈ X. Then the following are
equivalent:

(a) there exists a net {ti} ⊂ T with lim xti = lim yti ,
(b) (x, y)T ∩ � 
= ∅, (here � = {(x, x) | x ∈ X} is the diagonal),
(c) there exists p ∈ βT with xp = yp,
(d) there exists r ∈ E(X) with xr = yr ,
(e) there exists a minimal right ideal I ⊂ E(X) with xr = yr for all r ∈ I ,

and
(f) there exists a minimal right ideal K ⊂ βT with xq = yq for all q ∈ K .

PROOF: (a) =⇒ (b)

1. Assume that {ti | i ∈ L} ⊂ T is a net with lim xti = z = lim yti .
2. Let V ⊂ X × X be a neighborhood of (z, z).
3. There exists N ⊂ X open with (z, z) ∈ N × N ⊂ V . (by 2)
4. There exist i1, i2 ∈ L such that i > i1 ⇒ xti ∈ N and i > i2 ⇒ yti ∈ N .

(by 1, 3)
5. Let i ∈ L with i > i1 and i > i2.
6. (x, y)ti = (xti , yti) ∈ N × N ⊂ V . (by 3, 4, 5)
7. ((x, y)T ) ∩ V 
= ∅. (by 6)
8. (z, z) ∈ (x, y)T ∩ �. (by 2, 7)

(b) =⇒ (c)

This follows from the fact that (x, y)T = (x, y)βT .

(c) =⇒ (d)

1. Let p ∈ βT with xp = yp.
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2. Let � : βT → E(X) be the canonical map. (see 2.8)
3. Set r = �(p) ∈ E(X).
4. xr = x�(p) = xp = yp = yr .

(d) =⇒ (e)

1. Assume that xr = yr for some r ∈ E(X).
2. xrq = yrq for all q ∈ E(X).
3. There exists a minimal ideal I ⊂ rE(X). (by 3.8)
4. xm = ym for all m ∈ I . (by 2, 3)

(e) =⇒ (f)

1. Assume that xq = yq for all q ∈ I , a minimal ideal in E(X).
2. �−1(I ) ⊂ βT is a right ideal in βT .
3. There exists a minimal ideal K ⊂ �−1(I ). (by 2.9 and 3.8)
4. xq = x�(q) = y�(q) = yq for all q ∈ K .

(g) =⇒ (a)

1. Assume xq = yq for all q ∈ K with K a minimal right ideal in βT .
2. Let k ∈ K and {ti} ⊂ T with ti → k.
3. lim xti = x lim ti = xk = yk = y lim ti = lim yti .

Definition 4.5 Let (X, T ) be a flow and x, y ∈ X. Then the pair (x, y) is prox-
imal if it satisfies any one of the equivalent conditions of 4.4. The collection of
proximal pairs in X × X will be denoted P(X), so that

P(X) = {(x, y) ∈ X × X | (x, y)T ∩ � 
= ∅}.
We will also be interested in the proximal cells; anticipating the notation of
6.1, for general relations, we write

xP (X) = {z ∈ X | (x, z) ∈ P(X)}
for the proximal cell containing x. We say that the flow (X, T ) is a proximal
flow if every pair (x, y) ∈ X × X is proximal; that is P(X) = X × X. We say
that the flow (X, T ) is a distal flow if the only proximal pairs are of the form
(x, x) ∈ X × X; that is P(X) = � ⊂ X × X.

The relation P(X) described above is invariant reflexive and symmetric, but
is in general not transitive. In section 13 we will study conditions under which
P(X) is transitive, i.e. when P(X) is an equivalence relation. In this section
we focus on how the proximal relation P(X), and consequently the notion of
distality, can be studied via the idempotents in βT or E(X, T ).



42 Fundamental notions

Let u2 = u ∈ βT be an idempotent in βT , and x ∈ X where (X, T ) is a
flow. Since T is dense in βT , there exists a net {ti} ⊂ T , such that ti → u in
βT . Thus

lim(x, xu)ti = (lim xti, lim(xu)ti) = (xu, xu2) = (xu, xu),

and hence x is proximal to xu. This elementary observation makes a key con-
nection between proximality and the idempotents in βT , and is the basis for
many interesting results. We describe some of them below, beginning with a
characterization of the proximal relation.

Lemma 4.6 Let (X, T ) be a minimal flow. Then:

(a) P(X) = {(x, xw) | x ∈ X and w is a minimal idempotent in βT } ≡ K ,
and

(b) P(X) = {(x, xw) | x ∈ X and w is a minimal idempotent in E(X)} ≡ L.

PROOF: The proof of parts (a) and (b) are similar. We give a proof of part
(b), leaving the proof of part (a) to the reader.

Proof that L ⊂ P(X):

1. Let x ∈ X and w be any idempotent in E(X).
2. (x, xw)w = (xw, xw).
3. (x, xw) ∈ P(X). (by 2, 4.4)

Proof that P(X) ⊂ L:

4. Let (x, y) ∈ P(X).
5. There exists a minimal ideal I ⊂ E(X) such that xq = yq for all q ∈ I .
6. There exists w = w2 ∈ I such that yw = y. (by 4.3, since X is minimal)
7. xw =

5
yw =

6
y.

8. (x, y) = (x, xw) ∈ L.

The characterization of P(X) given in 4.6 allows us to prove that, for minimal
flows, the proximal relation is preserved by homomorphisms.

Proposition 4.7 Let:

(i) X and Y be minimal flows, and
(ii) π : X → Y be a homomorphism.

Then:

(a) π(P (X)) = P(Y ), and
(b) π(xP (X)) = π(x)P (Y ) for all x ∈ X.

PROOF: (a) 1. It is clear that π(P (X)) ⊂ P(Y ),
2. Let (y1, y2) ∈ P(Y ).
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3. There exists a minimal right ideal I in βT with y1p = y2p for all p ∈ I .
4. There exists u ∈ I with u2 = u and y2u = y2. (Y is minimal)
5. Let x ∈ X with π(x) = y1.
6. (x, xu) ∈ P(X). (by 4.4)
7. (y1, y2) =

4
(y1, y2u) =

3,4
(y1, y1u) =

5
(π(x), π(x)u) = π(x, xu) ∈ π(P (X)).

(b) 1. If (x, y) ∈ P(X), then (π(x), π(y)) ∈ P(Y ). (by part (a))
2. π(xP (X)) ⊂ π(x)P (Y ). (by 1)
3. Let y ∈ π(x)P (Y ).
4. There exists η2 = η in some minimal ideal in βT with π(x)η = y.

(by 3, 4.6)
5. (x, xη) ∈ P(X). (by 4, 4.6)
6. y = π(x)η = π(xη) ∈ π(xP (X)). (by 4, 5)

We observed earlier that for any flow (X, T ) and x ∈ X, the pair (x, xu) is
proximal for any idempotent u ∈ E(X, T ). This of course means that in a
distal flow xu = x, so that the identity is the only idempotent in E(X). This
basic idea (made explicit in 4.8), is exploited in 4.9 to characterize a distal
flow in terms of its enveloping semigroup.

Proposition 4.8 Let (X, T ) be a flow. Then (X, T ) is distal if and only if
xu = x for all x ∈ X and idempotents u = u2 ∈ βT .

PROOF: 1. Assume that (X, T ) is distal and let u2 = u ∈ βT .
2. (x, xu)u = (xu, xu2) = (xu, xu). (by 1)
3. (x, xu) ∈ P(X). (by 2, 4.4)
4. x = xu. (by 1, 3)
5. Assume that xu = x for all u2 = u ∈ βT , and x ∈ X.
6. Let (x, y) ∈ P(X).
7. There exists a minimal right ideal K ⊂ βT such that (x, y)p ∈ � for every
p ∈ K . (by 6, 4.4)
8. There exists an idempotent u2 = u ∈ K . (by 7, 3.10)
9. x = xu = yu = y (by 5, 7, 8)

The proof given above shows somewhat more: if xu = x for all x ∈ X and all
minimal idempotents, then (X, T ) is distal.

Proposition 4.9 Let (X, T ) be a flow and � : βT → E(X) be the canonical
map. Then the following are equivalent:

(a) X is distal,
(b) e is the only idempotent in E(X),
(c) E(X) is a group,
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(d) E(X) = �(M), and
(e) E(X) is minimal.

PROOF: The proof is similar to that of 4.8; we leave the details as an exer-
cise for the reader.

The fact that distality is preserved by homomorphisms will be used extensively
in later sections. This could be deduced immediately from 4.7 in the case of
minimal flows, or directly from the definition. As a means of emphasizing the
algebraic approach we give a very short proof using the idempotents in βT .

Proposition 4.10 Let:

(i) f : (X, T ) → (Y, T ) be a surjective homomorphism of flows, and
(ii) (X, T ) be distal.

Then (Y, T ) is distal.

PROOF: 1. Let u2 = u ∈ βT and y = f (x) ∈ Y .
2. yu = f (x)u = f (xu) = f (x) = y. (by 1, 4.8)
3. (Y, T ) is distal. (by 1, 2, 4.8)

The following result, though it is an immediate consequence of the elemen-
tary observation made earlier, is of independent interest. Historically, the result
which we derive from it, that every distal flow is pointwise almost periodic, was
proven first. The Auslander-Ellis theorem was in some sense an afterthought.

Theorem 4.11 (Auslander-Ellis): Let (X, T ) be a flow and x ∈ X. Then there
exists an almost periodic point y ∈ X with (x, y) ∈ P(X).

PROOF: 1. There exist a minimal ideal I ⊂ E(X, T ) and an idempotent
u ∈ I . (by 3.8 and 3.12)
2. y = xu is an almost periodic point of (X, T ). (by 1, and 4.3)
3. (x, y) ∈ P(X). (by 2, and 4.6)

Theorem 4.12 Let (X, T ) be a distal flow. Then (X, T ) is pointwise almost
periodic.

PROOF: 1. Let x ∈ X.
2. There exists y ∈ X an almost periodic point with (x, y) ∈ P(X). (by 4.11)
3. x = y and hence (X, T ) is pointwise almost periodic.

(by 1, 2, since P(X) = �)

It is worth noting that 4.12 is not at all obvious from the definitions, yet
the algebraic techniques allow a very elementary proof. Another interesting
connection between the notions of distal and pointwise almost periodic flows
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is given below. The result is of independent interest, but as we will see it
also serves as motivation for many other results involving homomorphisms
of flows.

Theorem 4.13 Let (X, T ) be a flow, then the following are equivalent:

(a) (X, T ) is a distal flow,
(b) (X × X, T ) is a distal flow, and
(c) (X × X, T ) is pointwise almost periodic.

PROOF: (a) =⇒ (b)

1. Assume that (X, T ) is distal.
2. Let (x, y) ∈ X × X and u2 = u ∈ βT .
3. (x, y)u = (xu, yu) = (x, y). (by 1, 2, and 4.8)
4. (X × X, T ) is distal. (by 2, 4, and 4.8)

(b) =⇒ (c)

This follows from 4.12.

(c) =⇒ (a)

1. Assume that (X×X, T ) is pointwise almost periodic and let (x, y) ∈ P(X).
2. (x, y)T ∩ �X 
= ∅. (by 1, 4.4)
3. (x, y)T is a minimal subset of (X × X, T ). (by 1)
4. (x, y)T ⊂ �X. (by 2, 3, �X is closed and T -invariant)
5. x = y. (by 4)
6. P(X) = �X and (X, T ) is distal. (by 1, 5)

There are natural generalizations of the notions of proximal and distal to homo-
morphisms of flows. These notions are defined in such a way that the trivial
homomorphism (X, T ) → ({pt}, T ) is proximal (resp. distal) if and only if
the flow (X, T ) is proximal (resp. distal).

Definition 4.14 Let f : (X, T ) → (Y, T ) be a homomorphism of flows. We
say that f is a proximal homomorphism if whenever f (x) = f (y), the pair
(x, y) is proximal. We say that f is a distal homomorphism if whenever f (x) =
f (y), and (x, y) is proximal, we have x = y. When f : (X, T ) → (Y, T ) is
a surjective homomorphism of flows, we often refer to X as an extension of
Y , and Y as a factor of X. If f is a proximal homomorphism, then we refer
to (X, T ) as a proximal extension of (Y, T ). If f is a distal homomorphism,
then we refer to (X, T ) as a distal extension of (Y, T ). Using this terminology,
a flow is proximal (resp. distal) if and only if it is a proximal (resp. distal)
extension of the one-point flow.
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Let f : X → Y be a homomorphism of flows. Generalizing the notation
introduced at the end of section 3, the icer (closed invariant equivalence rela-
tion) Rf is defined by:

Rf = {(x, y) | f (x) = f (y)} ⊂ X × X.

Then f is a proximal homomorphism if and only if Rf ⊂ P(X). Similarly f

is distal if and only if Rf ∩ P(X) = �, the diagonal in X × X. These are two
elementary examples of how the dynamics of the homomorphism f is related
to the structure of the icer Rf . A deeper illustration of this idea where the
dynamics of the flow (Rf , T ) plays a role is motivated by 4.13. For the constant
homomorphism c, we have Rc = X×X, so 4.13 says that c is distal if and only
if Rc is pointwise almost periodic. This is true for any homomorphism under
the assumption that the flow (X, T ) is itself pointwise almost periodic (this is
the best we can hope for since � ⊂ Rf , so (Rf , T ) pointwise almost periodic
implies (X, T ) pointwise almost periodic). The following theorem gives the
details.

Theorem 4.15 Let f : (X, T ) → (Y, T ) be a homomorphism of flows, then:

(a) if (Rf , T ) is pointwise almost periodic, then f is distal, and
(b) if (X, T ) is pointwise almost periodic, and f is distal, then (Rf , T ) is

pointwise almost periodic.

PROOF: (a) The proof is similar to that of 4.13, we leave it as an exercise
for the reader.

(b) 1. Assume that (X, T ) is pointwise almost periodic, and f is distal.
2. Let (x, y) ∈ Rf .
3. There exist a minimal ideal I ⊂ E(X, T ) and an idempotent u ∈ I with
xu = x. (by 1, 4.3)
4. (x, yu) = (xu, yu) = (x, y)u ∈ Rf u ⊂ Rf .

(by 3, Rf is closed and invariant)
5. (y, yu) ∈ Rf . (by 2, 4, Rf is an equivalence relation)
6. (yu, yu) = (y, yu)u ∈ (y, yu)T .
7. (y, yu) ∈ Rf ∩ P(X) = �X. (by 1, 5, 6)
8. (x, y) = (x, y)u, so (x, y) is an almost periodic point. (by 3, 7, 4.3)

The remainder of this section is devoted to a discussion of topological tran-
sitivity, the related notion of weak mixing, and their relationship to the ideas
introduced so far. Recall that an action of T on X is transitive if and only if the
orbit xT = X. We have introduced the notions of minimality (where xT = X

for all x ∈ X) and point-transitivity (where x0T = X for some x0 ∈ X). Both
of these are examples of “topological weakenings” of the notion of transitivity.
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Another approach is to require for every pair x, y ∈ X, not that there exist
t ∈ T with xt = y, but that for every neighborhood U of x and V of y, there
exist xU ∈ U , and t ∈ T with xU t ∈ V . This gives us topological transitivity;
we give an equivalent formulation as the definition.

Definition 4.16 We say that (X, T ) is topologically transitive if for any pair
V,W of nonempty open subsets of X, the intersection V T ∩ W 
= ∅. This is
equivalent to saying that V T = X for any nonempty open set V ⊂ X. We say
that (X, T ) is weak mixing if the flow (X × X, T ) is topologically transitive.
As in 4.14, we generalize this terminology to homomorphisms, referring to a
surjective homomorphism f : (X, T ) → (Y, T ) as a weak mixing extension if
the corresponding icer Rf ⊂ X × X is topologically transitive.

Let (X, T ) be a flow. If (X, T ) is minimal, then for every x ∈ X and open set
V ⊂ X, xT ∩ V 
= ∅, because xT = X. It follows that X = V T and (X, T ) is
topologically transitive. More generally, suppose that (X, T ) is point transitive,
that is there exists x0 ∈ X with x0T = X. Then for every open subset V ⊂ X,
there exists t ∈ T with x0t ∈ V . Thus x0T ⊂ V T so V T = X. In other words
any flow which is point transitive is also topologically transitive. It is worth
noting that the argument above fails for semigroup actions; indeed, in general,
a point transitive semigroup action need not be topologically transitive. For
metric flows (where T is a group), as the following lemma states, the converse
also holds; for completeness sake we give an outline of a proof. We first give
an example of a topologically transitive flow which is not point transitive.

Example 4.17 Let Y be a compact Hausdorff space which is not separable
(so Y has no countable dense subset). Consider the flow (X, Z) where Z is the
group of integers under addition,

X ≡ Y Z = {f |f : Z → Y },
is the symbol space with symbols in Y , and the action of Z on X is given by
the homeomorphism (shift map) σ : X → X defined by:

(n)(f σ) = (n + 1)f for all n ∈ Z.

Note that since X is not separable, and Z is countable, the flow (X, Z) is not
point transitive. We leave it as an exercise for the reader to check that (X, Z)

is topologically transitive.

Lemma 4.18 Let:

(i) (X, T ) be a topologically transitive flow, and
(ii) X be metrizable.

Then there exists x ∈ X with xT = X. (That is (X, T ) is point transitive.)
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PROOF: 1. Let V be a countable base for the topology on X.
2. V T is open and dense in X for every V ∈ V . (by 1, (i))
3. There exists x ∈ ⋂{V T |V ∈ V}. (1, 2, X is a Baire space by (ii))
4. xT = X. (by 3)

The following immediate corollaries of 4.18 are of independent interest, and
also motivate deeper investigations in the case of non-metric flows.

Corollary 4.19 Let:

(i) (X, T ) be a topologically transitive flow,
(ii) (X, T ) be pointwise almost periodic, and

(iii) X be metrizable.

Then (X, T ) is minimal.

PROOF: This follows immediately from 4.18.

Corollary 4.20 Let:

(i) (X, T ) be a topologically transitive flow,
(ii) (X, T ) be distal, and

(iii) X be metrizable.

Then (X, T ) is minimal.

PROOF: This follows immediately from 4.12 and 4.19.

Proposition 4.21 Let:

(i) π : (X, T ) → (Y, T ) be an epimorphism of flows, and
(ii) (X, T ) be topologically transitive.

Then (Y, T ) is topologically transitive.

PROOF: We leave the proof of this proposition as an exercise for the reader.

We will see in later sections that 4.19 has important consequences for minimal
distal flows and distal extensions of minimal flows. As a preview note that if R

is an icer on a minimal metrizable flow such that (R, T ) is both topologically
transitive and pointwise almost periodic, then it follows from 4.19 that R =�.
This fact is equivalent to the so-called generalized (relative) Furstenberg Struc-
ture Theorem (see section 20). It turns out that the metrizability assumption can
be dropped, so that among icers on any minimal flow, � is the only one which
is both pointwise almost periodic and topologically transitive. In the language
of 4.16, this says that any extension of minimal flows which is both distal and
weak mixing must be trivial. The proof in the general case is considerably more
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difficult than in the metric case. Our proof, given in 9.13, is an application of
the quasi-relative product introduced in section 9.

The remainder of this section will be devoted to exploring various gen-
eralizations and consequences of 4.19 and 4.20 for compact Hausdorff (not
necessarily metric) spaces, which are accessible without the use of the quasi-
relative product. The proofs are a bit technical and rely on some familiarity
with pseudo-metrics (see 15.A.7). On a first reading, or for a reader focusing
on the metric case, the technical details of the two proofs which follow might
well be skipped. We begin with a technical lemma which we use to deduce
4.19 for general compact Hausdorff topological spaces X under the assump-
tion that the group T is countable. We then use the same lemma to deduce 4.20
in general.

Lemma 4.22 Let:

(i) (X, T ) be a topologically transitive flow,
(ii) H ⊂ T be a countable subgroup of T , and

(iii) V ⊂ X be an open set.

Then there exist a countable subgroup K ⊂ T , a surjective homomorphism

π : (X,K) → (Y,K), and an open subset B ⊂ V,

such that:

(a) H ⊂ K ,
(b) (Y,K) is a topologically transitive flow,
(c) Y is metrizable, and
(d) π−1(π(B)) = B.

PROOF: 1. Let y ∈ V .
2. There exists a continuous psuedo-metric d on X and an ε > 0 such that

B ≡ {z ∈ X | d(y, z) < ε} ⊂ V.

3. For any subgroup F ⊂ T set

R[F ] = {(a, b) ∈ X × X | d(at, bt) = 0 for all t ∈ F }.
4. (X/R[F ], F ) is a compact metrizable flow when F is countable. (by 3)
5. Set H0 = H , and let π0 : X → X0 = X/R[H0] be the canonical map.
6. There exists a countable base U0 for the topology on X0. (by 4, 5)
7. V = ⋂{π−1

0 (U)T | U ∈ U0} is a residual subset of X. (X0 is a Baire space)
8. Let x0 ∈ V .
9. π0(x0T ) ∩ U 
= ∅ for all U ∈ U0. (by 7, 8)
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10. There exists a countable subgroup H1 of T with H0 ⊂ H1 and

π0(x0H1) = X0. (by 6, 9)

11. Set X1 = X/R[H1] and let π1 : X → X1 be the canonical map.
12. There exist x1 ∈ X and a countable subgroup H2 of T with H1 ⊂ H2 and

π1(x1H2) = X1. (apply 6-10 to X1)

13. There exist a countable subgroups

H = H0 ⊂ · · · ⊂ Hn ⊂ · · · ⊂ T

and points (xn) ⊂ X such that

πn(xnHn+1) = X/R[Hn], for n = 0, 1, . . . . (by induction)

14. Let K = ⋃
Hn and V1 
= ∅ 
= V2 be two open subsets of X/R[K].

15. Let φi : X/R[K] → X/R[Hi] be the canonical map.
16. X/R[K] = lim← X/R[Hn]. (by 14, 15)

17. There exist n and open subsets U1, U2 ⊂ X/R[Hn] with

φ−1
n (Ui) ⊂ Vi for i = 1, 2. (by 14, 16)

18. There exist h1, h2 ∈ Hn+1 ⊂ K with

φn(πK(xnhi)) = πn(xnhi) ∈ Ui for i = 1, 2. (by 13, 17)

19. πK(xn)hi = πK(xnhi) ∈
18

φ−1
n (Ui) ⊂

17
Vi for i = 1, 2.

20. V1K ∩ V2 
= ∅. (by 19)
21. (Y,K) ≡ (X/R[K],K) is topologically transitive. (by 14, 20)
22. Let q ∈ π−1

K (πK(B)) so πK(q) = πK(b) for some b ∈ B.
23. d(y, q) ≤ d(y, b) + d(b, q) = d(y, b) < ε. (by 3, 22)
24. q ∈ B. (by 2, 23)
25. π−1

K (πK(B)) = B. (by 22, 24)

Proposition 4.23 Let:

(i) (X, T ) be a topologically transitive flow,
(ii) (X, T ) be pointwise almost periodic, and

(iii) T be countable.

Then (X, T ) is minimal.
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PROOF: 1. Let V be open in X.
2. There exists a topologically transitive metrizable flow (Y, T ), an open subset
B ⊂ V , and a surjective homomorphism

π : (X, T ) → (Y, T ) with π−1(π(B)) = B. (by 4.22 with H = T )

3. (Y, T ) is pointwise almost periodic. (by 2, (ii))
4. (Y, T ) is minimal. (by 2, 3, 4.19)
5. π(B) is open in Y . (by 2)
6. X = π−1(Y ) = π−1(π(B)T ) = π−1(π(B))T = BT ⊂ V T . (by 2, 4, 5)
7. (X, T ) is minimal. (by 1, 6)

Proposition 4.24 Let (X, T ) be topologically transitive and distal. Then (X, T )

is minimal.

PROOF: 1. Let V be an open subset of X.
2. There exists a countable subgroup K ⊂ T , a surjective homomorphism

π : (X,K) → (Y,K), and an open subset B ⊂ V,

such that
(a) (Y,K) is topologically transitive flow,
(b) Y is metrizable, and
(c) π−1(π(B)) = B. (by 4.22 with H = {id})

3. (X,K) is distal. (since (X, T ) is distal)
4. (Y,K) is distal. (by 2, 3, 4.10)
5. (Y,K) is minimal. (by 2ab, 4, 4.20)
6. X = π−1(Y ) = π−1(π(B)K) = π−1(π(B))K = BK ⊂ V T . (by 2, 4, 5)
7. (X, T ) is minimal. (by 1, 6)

Corollary 4.25 Let:

(i) (X, T ) be a distal flow, and
(ii) (X, T ) be weak mixing.

Then X = {pt}.
PROOF: 1. (X × X, T ) is distal. (by (i), 4.13)
2. (X × X, T ) is minimal. (by 1, (ii), 4.24)
3. X = {pt}. (by 2)

Corollary 4.26 Let:

(i) (X, T ) be a distal flow,
(ii) L be an icer on X, and

(iii) (L, T ) be topologically transitive.

Then L = �X.
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PROOF: 1. (X × X, T ) is distal. (by (i), 4.13)
2. (L, T ) is distal. (by 1)
3. (L, T ) is minimal. (by 2, (iii), 4.24)
4. L = �X. (by 3)

Note that 4.26 uses the fact that when L is an icer on a distal flow (X, T ), the
flow (L, T ) is distal. Conversely if a flow (X, T ) admits an icer L such that
(L, T ) is distal, then (X, T ) is distal (because (X, T ) ∼= (�X, T ) ⊂ (L, T )).
Thus we may regard 4.26 as saying that the only icer L on a flow (X, T ) for
which (L, T ) is distal and topologically transitive is L = �X. As remarked
earlier, we will prove a natural generalization of this result: the only icer L

on a minimal flow (X, T ) for which (L, T ) is pointwise almost periodic and
topologically transitive is L = �X (see 9.13). It should be pointed out that
the situation for pointwise almost periodic icers is different from that for distal
icers. If L is an icer on X and (L, T ) is pointwise almost periodic, then (X, T )

is pointwise almost periodic (again because �X ⊂ L). On the other hand when
(X, T ) is pointwise almost periodic, an icer L on X need not be pointwise
almost periodic. Indeed an icer L on X is pointwise almost periodic if and
only if (X, T ) is pointwise almost periodic and the extension X → X/L is a
distal extension (see 4.15). Here (L, T ) is pointwise almost periodic but will
not be distal unless (X, T ) is distal.

Note that the analog of 4.25 holds for homomorphisms of minimal flows.
Namely if f : (X, T ) → (Y, T ) is a distal homomorphism of minimal flows
and (Rf , T ) is topologically transitive, then f is trivial (that is X = Y ). This
follows immediately from 4.15, and 9.13 mentioned above: the icer Rf is both
topologically transitive and pointwise almost periodic, so Rf = � and hence
X = Y .

EXERCISES FOR CHAPTER 4

Exercise 4.1 Give the details of the proof of 4.6 (a).

Exercise 4.2 (See 4.9) Let (X, T ) be a flow and � : βT → E(X) be the
canonical map. Then the following are equivalent:

(a) X is distal,
(b) e is the only idempotent in E(X),
(c) E(X) is a group,
(d) E(X) = �(M), and
(e) E(X) is minimal.
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Exercise 4.3 Let X be distal. Show that E(X) is distal.

Exercise 4.4 Formulate and prove analogs of 4.2, 4.3, 4.4, 4.8, 4.9, 4.11, 4.12,
and 4.13 for semigroup actions.

Exercise 4.5 Let:

(i) T be a group and S ⊂ T a subsemigroup,
(ii) sS = Ss for all s ∈ S (this holds in particular if S is abelian), and

(iii) (X, T ) be a flow.

Prove that (X, S) is distal ⇐⇒ (X, S−1) is distal ⇐⇒ (X, S ·S−1) is distal.

Exercise 4.6 Let:

(i) ϕ : (X, T ) → (Y, T ) be a homomorphism of flows, and
(ii) ψ : (X, T ) → (X, T ) be an isomorphism of flows.

Show that ϕ is proximal if and only if ϕ ◦ ψ is proximal.

Exercise 4.7 (see 4.15) Let f : (X, T ) → (Y, T ) be a homomorphism of
flows, and assume that (Rf , T ) is pointwise almost periodic. Show that f is
distal.

Exercise 4.8 (see 4.21) Let:

(i) π : (X, T ) → (Y, T ) be an epimorphism of flows, and
(ii) (X, T ) be topologically transitive.

Show that (Y, T ) is topologically transitive.

Exercise 4.9 Verify that the symbol space (X, Z) of 4.17 is topologically
transitive.

Exercise 4.10 Let:

(i) (X, T ) be pointwise almost periodic,
(ii) f : (X, T ) → (Y, T ) be a distal epimorphism of flows,

(iii) (Rf , T ) be topologically transitive, and
(iv) X be metrizable.

Show that X = Y .
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Quasi-factors and the circle operator

For a minimal flow (X, T ), the set 2X of non-vacuous closed subsets of X is
a compact Hausdorff space when provided with the Vietoris topology (see the
following appendix). There is a natural action of T on this space, resulting in a
flow (2X, T ). The minimal subsets of this flow provide many interesting exam-
ples of minimal flows. These are the so-called quasi-factors of (X, T ). Fol-
lowing the themes developed in the preceding sections quasi-factors and more
generally the flow (2X, T ) can be studied using the extension of the action of T

on 2X to an action of βT on 2X. Some elementary properties of this extension,
which we refer to as the circle operator, are outlined in this section. The circle
operator will be used in section 12 to construct icers on M and in section 17 to
study open and highly proximal extensions.

Notation, Definition, and Assumptions 5.1

(a) All the topological spaces that occur are assumed to be compact and
Hausdorff.

(b) For any topological space X, 2X will denote the collection of non-vacuous
closed subsets of X.

(c) If ∅ 
= A = A ⊂ X, then [A] will denote the element of 2X determined by
A. Thus the locution “let [A] ∈ 2X” means that ∅ 
= A = A ⊂ X, and [A]
is the corresponding element of 2X.

(d) Let π: X → Y be continuous. Then the map:

2π : 2X → 2Y is defined by 2π ([A]) = [π(A)].

If in addition π is onto, it induces a map:

π∗ : 2Y → 2X given by π∗([B]) = [π−1(B)].

By “abuse of notation” the map 2π will often be designated simply by π .

54
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We will need an understanding of the topology on 2X which is provided by
the following proposition; we relegate its proof to the appendix to this section.

Proposition 5.2 Let:

(i) X be a compact Hausdorff space,
(ii) < V1, . . . , Vk > = {[A] ∈ 2X | A ⊂ ⋃k

i=1 Vi and A ∩ Vi 
= ∅ for
1 ≤ i ≤ k} for any finite collection {V1, . . . , Vk} of subsets of X, and

(iii) C = {< V1, . . . , Vk > | k = 1, 2, . . . and Vi is an open subset of X for 1 ≤
i ≤ k}.

Then C is a base for a compact Hausdorff topology, V , on 2X called the Vietoris
topology on 2X.

Using 5.2, we deduce some elementary properties of the Vietoris topology.

Proposition 5.3 Let:

(i) X be a compact Hausdorff space,
(ii) [Ai] → [A] in (2X,V),

(iii) [Bi] → [B] in (2X,V), and
(iv) Ai ⊂ Bi for all i.

Then A ⊂ B.

PROOF: 1. Let a ∈ A and Ua ⊂ X be open with a ∈ Ua .
2. There exists an open set U ⊂ X with a ∈ U ⊂ U ⊂ Ua . (by 1, (i))
3. Assume that B ∩ U = ∅.
4. X \ U is open with B ⊂ X \ U . (by 3)
5. There exists i with [Ai] ∈ < U > and [Bi] ∈ < X \U >. (by 2, 4, (ii), (iii))
6. ∅ 
= Ai = U ∩ Ai ⊂ U ∩ Bi ⊂ U ∩ (X \ U) = ∅ (a contradiction).

(by 5, (iv))
7. ∅ 
= U ∩ B ⊂ Ua ∩ B. (since 3 ⇒ 6 which is false)
8. a ∈ B = B. (by 1, 7)

Proposition 5.4 Let:

(i) X, Y be compact Hausdorff spaces, and
(ii) π: X → Y be continuous.

Then 2π : 2X → 2Y is continuous.

PROOF: For any open subsets V1, . . . , Vk of X,

(2π )−1(< V1 . . . , Vk >) =< π−1(V1), . . . , π
−1(Vk) >.

Corollary 5.5 Let:

(i) (X, T ), (Y, T ) be flows, and
(ii) π : X → Y be a homomorphism of flows.
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Then:

(a) The maps 2X → 2X

[A] → [At]
define an action of T on 2X, and

(b) 2π is a homomorphism of flows.

PROOF: (a.) 1. Each of the maps [A] → [A]t ≡ [At] is continuous.
(by 5.2)

2. [A](ts) = [A(ts)] = [(At)s] = [At]s = ([A]t)s, for all [A] ∈ 2X, and
s, t ∈ T .

3. [A]e = [Ae] = [A] for all [A] ∈ 2X.

(b) 1. 2π is continuous. (by 5.4)

2. 2π ([A]t) = 2π ([At]) = [π(At)] =
(ii)

[π(A)t] = [π(A)]t = 2π ([A])t for all

t ∈ T .

Lemma 5.6 Let:

(i) X be a compact Hausdorff space, and

(ii) σ : X → 2X

x → [{x}]
.

Then σ is continuous.

PROOF: We leave the proof as an exercise for the reader.

We have seen that for a continuous map π : X → Y the map 2π : 2X → 2Y

is continuous. This is not true in general for the map π∗ : 2Y → 2X which is
defined when π is onto; in fact π∗ is continuous if and only if the map π is
open. The proof of this result given below requires careful use of the basis for
the Vietoris topology described in 5.2.

Proposition 5.7 Let:

(i) X, Y be compact Hausdorff spaces,
(ii) π : X → Y be continuous and onto, and

(iii) ϕ : Y → 2X be defined by ϕ(y) = [π−1(y)] for all y ∈ Y .

Then the following are equivalent:

(a) π∗ is continuous.
(b) ϕ is continuous.
(c) π is open.
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PROOF: (a) ⇒ (b)

1. Assume that π∗ is continuous.
2. Let σ: Y → 2Y be defined by σ(y) = [{y}] for all y ∈ Y .
3. σ is continuous. (by 5.6)
4. ϕ = π∗ ◦ σ is continuous. (by 1, 2, 3)

(b) ⇒ (c)

1. Assume that ϕ is continuous.
2. Let U ⊂ X be open, x ∈ U and y = π(x).
3. Case 1: Assume that π−1(y) ⊂ U .

3.1 < U > is a neighborhood of ϕ(y) = [π−1(y)]. (by 3)
3.2. There exists an open neighborhood V of y with ϕ(V ) ⊂ < U >.

(by 1, 3.1)
3.3. ϕ(z) = [π−1(z)] ∈ < U > for all z ∈ V . (by 3.2)
3.4. π−1(V ) ⊂ U . (by 3.3)
3.5 y ∈ V ⊂ π(U). (by 3.2, 3.4)

4. Case 2: Assume that π−1(y) 
⊂ U .
4.1. < U,X \ {x} > is an open neighborhood of ϕ(y) = [π−1(y)]. (by 2, 4)
4.2. There exists an open neighborhood V of y with ϕ(V ) ⊂ < U,X\{x} >.

(by 1, 4.1)
4.3. ϕ(z) = [π−1(z)] ∈ < U,X \ {x} > for all z ∈ V . (by 4.2)
4.4. ∅ 
= π−1(z) ∩ U for all z ∈ V . (by 4.3)
4.5. y ∈ V ⊂ π(U). (by 3.2, 4.4)

5. π is open. (by 2, 4, 5)

(c) ⇒ (a)

1. Assume that π is open.
2. Let [B] ∈ 2Y with π∗([B]) = [π−1(B)] ∈ < U1, . . . , Uk >.
3. π−1(B) ⊂ ⋃

Ui ≡ U . (by 2)
4. There exists an open set W ⊂ Y with B ⊂ W and π−1(W) ⊂ U . (by 1, 3)
5. Let Vi = π(Ui) ∩ W for 1 ≤ i ≤ k.
6. Vi is open for 1 ≤ i ≤ k. (by 1, 4)
7. B =

(ii)
π(π−1(B)) ⊂

3,4
W ∩ π(U) = W ∩ ⋃

π(Ui) = ⋃
(W ∩ π(Ui))=

5

⋃
Vi .

8. B ∩ Vi = B ∩ π(Ui) ∩ W

=
4

π(π−1(B)) ∩ π(Ui)

⊃ π(π−1(B) ∩ Ui) 
=
2

∅ for 1 ≤ i ≤ k.

9. < V1, . . . , Vk > is an open neighborhood of [B]. (by 6, 7, 8)
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10. Let [C] ∈ < V1, . . . , Vk >.
11. π−1(C)⊂

10
π−1

(⋃
Vi

) = ⋃
π−1(Vi)⊂

5
π−1(W)⊂

4
U =

3

⋃
Ui .

12. ∅ 
= C ∩ Vi ⊂ C ∩ π(Ui) for all 1 ≤ i ≤ k. (by 5, 10)
13. π−1(C) ∩ Ui 
= ∅ for all 1 ≤ i ≤ k. (by 12)
14. π∗([C]) ∈ < U1, . . . , Uk >. (by 11, 13)
15. [B] ∈ < V1, . . . , Vk > ⊂ (π∗)−1(< U1, . . . , Uk >). (by 9, 14)

Even though it follows from 5.7 that the map ϕ is not continuous in general,
the following result will be useful.

Lemma 5.8 Let:

(i) X and Y be compact Hausdorff,
(ii) π : X → Y be continuous and onto,

(iii) U ⊂ X be an open set, and
(iv) V = {y | π−1(y) ⊂ U}.
Then V is an open subset of Y .

PROOF: 1. Y \ V = π(X \ U) = π(X \ U). (by (i), (ii), (iii), (iv))
2. V is open. (by 1)

Let (X, T ) be a flow. Then according to 5.5, (2X, T ) is also a flow. Thus the
action of T on 2X may be extended to an action of βT on 2X. We would
like, given a closed non-empty subset A ⊂ X, which represents an element
[A] ∈ 2X, to describe explicitly the closed subset of X which represents the
element [A]p ∈ 2X where p ∈ βT . For this we need the so-called circle
operator defined below.

Definition 5.9 Let (X, T ) be a flow, ∅ 
= A = A ⊂ X, and p ∈ βT . We
define the circle operation of βT on X by

A ◦ p = {x ∈ X | there exist nets (ai) ⊂ A,

and (ti) ⊂ T with ti → p and ai ti → x}.

The following proposition shows that the circle operator does indeed charac-
terize the action of βT on 2X. This proposition and its corollary also detail
some of the properties of the circle operator that will be used later.

Proposition 5.10 Let:

(i) (X, T ) be a flow,
(ii) ∅ 
= A ⊂ X, and

(iii) t ∈ T and p, q ∈ βT .
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Then:

(a) A ◦ t = At ,
(b) A ◦ p = ⋂{A(N ∩ T ) | N is a neighborhood of p in βT },
(c) Ap ⊂ A ◦ p = A ◦ p,
(d) A ◦ p = A ◦ p,
(e) [A ◦ p] = [A]p, and
(f) (A ◦ p) ◦ q = A ◦ (pq).

PROOF: (a), (b) We leave these to the reader.
(c) 1. Ap = {ap | a ∈ A} ⊂ A ◦ p. (this is clear from the definition)

2. Let x ∈ A ◦ p, and U ⊂ X be open with x ∈ U .
3. U ∩ (A ◦ p) 
= ∅. (by 2)
4. Let N ⊂ βT be open with p ∈ N .
5. There exist a(U,N) ∈ A and t (U,N) ∈ N ∩ T with a(U,N)t (U,N) ∈ U .

(by 3, 5.9)
6. There exist {a(U,N)} ⊂ A, {t (U,N)} ⊂ T with t (U,N) → p and
a(U,N)t (U,N) → x.

(by 2, 4, 5)
7. x ∈ A ◦ p. (by 6)

(d) We leave this to the reader.
(e) 1. Let V1, . . . , Vk be open subsets of X with [A]p ∈ < V1, . . . , Vk >.

2. There exist open sets W1, . . . , Wk with Wi ⊂ Wi ⊂ Vi and [A]p
∈ < W1, . . . ,Wk >.
3. limt→p[At] = limt→p[A]t = [A]p.
4. There exists N ⊂ βT open with p ∈ N such that [At] ∈ < W1, . . . ,Wk >

for all t ∈ N ∩ T . (by 3)
5. A ◦ p ⊂ ⋃

Wi = ⋃
Wi ⊂ ⋃

Vi . (by 4)
6. (A ◦ p) ∩ Vi ⊃ (A ◦ p) ∩ Wi 
= ∅. (by 4)
7. [A ◦ p] ∈ < V1, . . . , Vk >. (by 5, 6)
8. [A ◦ p] =

(d)
[A ◦ p] =

(1,7)
[A]p.

(f) [(A ◦ p) ◦ q] =
(e)

[A ◦ p]q = ([A]p)q = [A](pq) = [A ◦ (pq)].

Corollary 5.11 Let:

(i) (X, T ), (Y, T ) be flows, and
(ii) π : X → Y be a homomorphism of flows.

Then:

(a) π(A ◦ p) = π(A) ◦ p for all ∅ 
= A ⊂ X and all p ∈ βT , and
(b) π−1(y) ◦ p ⊂ π−1(yp) for all y ∈ Y and p ∈ βT .
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PROOF: 1. π(A◦p) = π
(⋂{A(N ∩ T ) | N is a neighborhood of pin βT }

)
⊂ ⋂{π(A)(N ∩ T ) | N is a neighborhood of p in βT }
= π(A) ◦ p. (by 5.10)

2. Let y ∈ π(A) ◦ p = ⋂{π
(
A(N ∩ T )

)
| N is a neighborhood of p in βT }.

3. π−1(y) ∩ A(N ∩ T ) 
= ∅ for all neighborhoods N of p. (by 2)
4. π−1(y) ∩ ⋂{A(N ∩ T ) | N is a neighborhood of p in βT } 
= ∅.

(by 3, compactness)

5. y ∈ π
(⋂{A(N ∩ T ) | N is a neighborhood of p in βT }

)
= π(A ◦ p).

(by 5.10)
(b) 1. π(π−1(y) ◦ p) = π(π−1(y)) ◦ p = {y} ◦ p = {yp}. (by part (a))

2. π−1(y) ◦ p ⊂ π−1(yp). (by 1)

APPENDIX TO SECTION 5:
THE VIETORIS TOPOLOGY ON 2X

In this appendix we show that when X is a compact Hausdorff space, the space
2X provided with the Vietoris topology is also a compact Hausdorff space.

Notation 5.A.1 Let X be a set provided with a compact Hausdorff topology
T . We set

C = {< Vi, . . . , Vk > | Vi ∈ T for 1 ≤ i ≤ k}.
Recall that

< Vi, . . . , Vk >= {[A] ∈ 2X | A ⊂ ⋃k
i=1 Vi and A ∩ Vi 
= ∅ for all 1 ≤ i ≤ k}.

Lemma 5.A.2 Let X be a compact Hausdorff space.
Then C is a base for a Hausdorff topology V on 2X.

PROOF: 1. Let < V1, . . . , Vk >, < W1, . . . ,Wn > ∈ C with

[A] ∈ < V1, . . . , Vk > ∩ < W1, . . . ,Wn > .

2. Set V = ⋃k
i=1 Vi and W = ⋃n

j=1 Wj .

3. Set V̂i = Vi ∩ W and Ŵj = V ∩ Wj for 1 ≤ i ≤ k and 1 ≤ j ≤ n.
4. [A] ∈ < V̂1, . . . , V̂k, Ŵ1, . . . , Ŵn > ⊂ < V1, . . . , Vk > ∩ < W1, . . . ,Wn >.

(by 1, 2, 3)
5. Let [A], [B] ∈ 2X with [A] 
= [B].
6. We may assume without loss of generality that there exists a ∈ A \ B.

(by 5)
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7. Let U,V ⊂ X be open with a ∈ U , B ⊂ V and V ∩ U = ∅.
8. [A] ∈ < U,X \ {a} > or [A] = [{a}] ∈< U >, and [B] ∈ < V >. (by 7)
9. Let C ⊂ X with C ⊂ V .
10. C ∩ U = ∅. (by 7)
11. < U,X \ {a} > ∩ < V > =< U > ∩ < V >= ∅. (by 9, 10)
12. (2X,V) is Hausdorff. (by 5, 8, 11)

Proposition 5.A.3 Let X be a compact Hausdorff space. Then 2X provided
with the Vietoris topology V , is compact.

PROOF: 1. Let F be a collection of closed subsets of 2X which has the
finite intersection property, and let U be an ultrafilter containing F . (see
1.A.4)
2. For every collection �, of subsets of X, (e.g. every � ∈ U ) set �̂ =⋃{A | [A] ∈ �}.
3. ˆ�1 ∩ �2 ⊂ �̂1 ∩ �̂2 for any �1,�2 ∈ U . (by 2)
4. {�̂ | � ∈ U} is a collection of closed subsets of X which has the finite
intersection property. (by 3)
5. Set A = ⋂

�∈U
�̂.

6. A is closed and non-empty. (by 4, 5, X is compact)
7. Let [A] ∈ < V1, . . . , Vk > ∈ C, and �0 ∈ F .

8. X \ (
k⋃

i=1
Vi) ⊂ X \ A = ⋃

�∈U
(X \ �̂). (by 5, 7)

9. There exist �1, . . . , �n ∈ F with X \ (
⋃

Vi) ⊂ (X \ �̂1) ∪ · · · ∪ (X \ �̂n).
(by 8, X \ (

⋃
Vi) is compact)

10. Set � = �0 ∩ �1 ∩ · · · ∩ �n.

11. � ∈ F with � ⊂ �0 and �̂ ⊂
k⋃

i=1
Vi . (by 1, 7, 9, 10)

12. Set �i = {[B] ∈ � | B ∩ Vi = ∅} for 1 ≤ i ≤ k.
13. Assume that �1 ∪ · · · ∪ �k = �.
14. �1 ∪ · · · ∪ �k ∈ F ⊂ U . (by 11, 13)
15. There exists j with �j ∈ U . (by 1, 1.A.18)
16. A ⊂ �̂j ⊂ X \ Vj = X \ Vj . (by 5, 12, 15)
17. �1 ∪ · · · ∪ �k ⊂


=
�. (by 12, 13, since 16 contradicts 7)

18. There exists [B] ∈ � such that B ∩ Vi 
= ∅ for all 1 ≤ i ≤ k. (by 12, 17)
19. ∅ 
= � ∩ < V1, . . . , Vk > ⊂ �0 ∩ < V1, . . . , Vk >. (by 11, 18)
20. [A] ∈ �0 = �0. (by 1, 7, 19)
21. [A] ∈ ⋂

F . (by 7, 20)
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EXERCISES FOR CHAPTER 5

Exercise 5.1 Let X be a set provided with a compact Hausdorff topology T .
Let

U = {α ⊂ X × X | α is a neighborhood of �}
be the unique uniformity on X which induces T . We refer to an element α ∈ U
as an index on X and write

xα = {y | (x, y) ∈ α} and Aα =
⋃
x∈A

xα

for any x ∈ X and A ⊂ X. Given any index α ∈ U we set

α̂ = {([A], [B]) | B ⊂ Aα and A ⊂ Bα} ⊂ 2X × 2X.

We then define

Û = {α̂ | α ∈ U}.
Then

(a) Û is a base for a uniformity on 2X.
(b) For any [A] ∈ 2X and α ∈ U , there exists W ∈ C with [A] ∈ W ⊂ [A]α̂.
(c) For any [A] ∈ < V1, . . . , Vk > ∈ C, there exists α ∈ U such that

[A]α̂ ⊂ < Vi, . . . , Vk >.
(d) The uniformity Û induces the topology V .

Exercise 5.2 (See 5.6) Let:

(i) X be a compact Hausdorff space, and
(ii) σ : X → 2X.

x → [{x}]
Show that σ is continuous.

Exercise 5.3 Let π : X → Y be continuous, open and onto. Then

(a) 2π (< V1, . . . , Vk >) =< π(V1), . . . , π(Vk) >.
(b) 2π : 2X → 2Y is open.

Exercise 5.4 (See 5.10) Let:

(i) X be compact metric space with metric d: X × X → R, and
(ii) h : 2X × 2X → R be defined by

h([A], [B]) = max
{
sup{d(x, B) | x ∈ A}, sup{d(x,A) | x ∈ B}}.

Show that h is a metric on 2X which induces the Veitoris topology.
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Exercise 5.5 Let:

(i) (X, T ) be a flow,
(ii) ∅ 
= A ⊂ X, and

(iii) p ∈ βT .

Show that A ◦ p = ⋂{A(N ∩ T ) | N is a neighborhood of p in βT }.
Exercise 5.6 Let:

(i) π : (X, T ) → (Y, T ) be a homomorphism, and
(ii) (Y, T ) be minimal.

Then the following are equivalent:

(a) π is open,
(b) π−1(B ◦ p) = π−1(B) ◦ p for all [B] ∈ 2Y and p ∈ M ,
(c) π−1(yp) = π−1(y) ◦ p for all y ∈ Y and p ∈ M , and
(d) π−1(y0p) = π−1(y0) ◦ p for some y0 ∈ Y and all p ∈ M .

Notice that (i) and (ii) imply that π is onto.

Exercise 5.7 Let:

(i) R1 ⊂ R2 be icers on M ,
(ii) X = M/R1, Y = M/R2, and

(iii) Ŷy = {[(πR1
R2

)−1(yp)] | p ∈ M} ⊂ 2X for all y ∈ Y .

Then

(a) Ŷy = Ŷz for all y, z ∈ Y .
(b) Ŷy is minimal.
(c) M/(R1 ∩ S) → M/(R2 ∩ S) is open where Ŷy = M/S.
(d) if N is an icer on M with M/(R1 ∩N) → M/(R2 ∩N) open, then N ⊂ S.





PART II

Equivalence relations and automorphisms of
flows

According to 3.16, every minimal flow is a quotient (M/R, T ) of the universal
minimal flow (M, T ) by some icer R on M . We now proceed to investigate the
icers on M using the structure of M and its group of automorphisms. Applying
3.12, 3.16, and 3.15, to M (a fixed minimal ideal in βT ∼= E(βT , T )), we
conclude that M can be written as a disjoint union of copies of a subgroup
G ⊂ M , one for each of the idempotents u2 = u ∈ M . We show (see 7.4) that
this group G can be identified with the group of automorphisms of the flow
(M, T ). The icers on M can then be characterized in terms of the idempotents
in M and the subgroups of G. This characterization relies on the so-called
relative product of two relations which is discussed in section 6. Given two
relations R and S on a space X, the relative product R ◦ S is a relation on X

which contains R ∪ S. Theorem 7.21 shows that every icer R on M can be
written uniquely as a relative product

R = (R ∩ P0) ◦ gr(G(R)). (∗)

Here P0 ⊂ P(M) is a an equivalence relation generated by the pairs of idem-
potents in M , and the subgroup

G(R) = {α ∈ G | gr(α) ⊂ R} ⊂ G

consists of the automorphisms of M whose graphs are contained in R. The
expression (∗) of every icer on M as a relative product plays a fundamen-
tal role in our study of minimal flows via the icers on M . Section 7 devel-
ops the language and techniques for proving this result and understanding its
consequences.

Section 8 is concerned with the so-called regular flows; these are the flows
which can be uniquely expressed in the form M/R. We show that the regular
flows are those which have as many automorphisms as possible. For a regular
flow the pair {X,Aut(X)} has properties analogous to those of the pair {M,G}.

In section 9 we introduce what we call the quasi-relative product R(S) of
two icers. R(S) though it need not be closed is always an invariant equivalence
relation. When R ◦ S is an icer, R(S) = R ◦ S, but R(S) is an icer in situations
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when R ◦ S is not. We show that when R(S) is an icer the flow M/R(S) is a
quasi-factor of X/S (see 9.9). R(S) arose originally as we searched for a new
proof of the Furstenberg structure theorem for distal extensions of compact
Hausdorff (not necessarily metric) spaces. The resulting proof (see 9.13) of a
result which is equivalent to the Furstenberg theorem, requires a construction
of metric flows via icers in a situation where the relative product alone does
not suffice.



6

Quotient spaces and relative products

Any continuous mapping f : X → Y of compact Hausdorff spaces which is
onto is a quotient map, and the equivalence relation Rf = {(x1, x2) | f (x1) =
f (x2)} is closed. Conversely any closed equivalence relation R onX gives rise to
a compact Hausdorff space X/R and continuous quotient map X → X/R. Thus
continuous mappings can be defined by constructing closed equivalence rela-
tions; this motivates the study of the so-called relative product of two relations.

In the interest of completeness we include a proof (see also [Massey, (1977)])
of the fact that if R is a closed equivalence relation on a compact Hausdorff
space X, then X/R is Hausdorff. We then introduce and investigate some
basic properties of the relative product of two relations on a compact Haus-
dorff space. The techniques developed here are used extensively throughout
the remainder of the text; for example the relative product is used in section
7 to construct and characterize the icers on the universal minimal flow M .
Another example is seen in 6.18 where we obtain a generalization of the fact
that any factor of a distal flow is itself a distal flow; a refinement of this result
will be used in section 9.

The following notation will be used to facilitate our discussion of equiva-
lence relations, quotient spaces, and quotient mappings.

Definition and Notation 6.1 Let R ⊂ S be closed equivalence relations on a
compact Hausdorff space X. We define an R-cell to be a set of the form:

xR = {y ∈ X | (x, y) ∈ R} ⊂ X.

If A ⊂ X is any subset of X we write

AR =
⋃
x∈A

xR = {y ∈ X | (x, y) ∈ R for some x ∈ A}

67
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for the union of the R-cells corresponding to points of A. We use the notation

X/R = {xR | x ∈ X}
for the quotient space (provided with the quotient topology). The notation
πR and πR

S will be used for the quotient map, and canonical projection map
respectively:

πR : X → X/R

x → xR

and πR
S : X/R → X/S

xR → xS.

Thus the composition πR
S ◦ πR = πS . By “abuse of notation" we will also

write:

πR ≡ πR × πR : X × X → X/R × X/R.

(x, y) → (xR, yR)

Proposition 6.2 Let:

(i) X be a compact Hausdorff space, and
(ii) R be a closed equivalence relations on X.

Then X/R is Hausdorff.

PROOF: 1. Let x, y ∈ X.
2. U ⊂ X be open with xR ⊂ U .
3. xR ∩ (X \ U) = ∅. (by 2)
4. x /∈ (X \ U)R which is closed. (by 3, (ii), X is compact)
5. x ∈ F ≡ X\(

(X\U)R
) = π−1

R (πR(X\(X\U)R)) = π−1
R (πR(F )) = FR

which is open. (by 4)
6. xR ⊂ F ⊂ U . (by 5)
7. xR = ⋂{F | x ∈ F open with FR = F }. (by 2, 6, (i), (ii))
8. yR = ⋂{H | y ∈ H open with HR = H }. (by 2-7 applied to y)
9. Assume every open neighborhood of πR(x) intersects every open neighbor-
hood of πR(y).
10. Let F,H be open sets with x ∈ F , y ∈ H , FR = F , and HR = H .
11. πR(F ) and πR(H) are open neighborhoods of πR(x) and πR(y)

respectively. (by 10)
12. ∅ 
= π−1

R (πR(F ) ∩ πR(H)) ⊂ π−1
R (πR(F )) ∩ π−1

R (πR(H)) = F ∩ H .
(by 10, 11)

13. {H ∩ F | x ∈ F open with FR = F } has the finite intersection property.
(by 12)

14. H ∩ xR 
= ∅. (by 7, 13, compactness)
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15. {H ∩xR | y ∈ H open with HR = H } has the finite intersection property.
(by 10, 14)

16. yR ∩ xR 
= ∅. (by 8, 15, compactness)
17. xR = yR and πR(x) = πR(y). (by 16)
18. X/R is Hausdorff. (by 9, 17)

Applying 6.2 allows us to study continuous mappings via closed equivalence
relations. In particular if S is another closed equivalence relation on X, one is
often interested in spaces Y that fit into a commutative diagram of the form.

X → X/S

↓ ↓

X/R → Y.

(∗)

Any such Y is a quotient of X, so finding such a Y amounts to finding a closed
equivalence relation on X which contains both R and S. This motivates the
following definition.

Definition 6.3 Let R, S be any relations on X (a compact Hausdorff space).
We define the relative product, R ◦ S, of R and S by

R ◦ S = {(p, q) ∈ X × X | there exists r ∈ X with (p, r) ∈ R and (r, q) ∈ S}.
Using the notation introduced above the cells of the relative product R ◦ S of
two relations can be written

x(R ◦ S) = (xR)S;
in other words

(x, z) ∈ R ◦ S ⇐⇒ there exists y ∈ xR with z ∈ yS.

In this sense the relative product is indeed a product.
Our investigation of the properties of the relative product begins with a few

preliminary results; many of the proofs are direct consequences of the defini-
tions and are left to the reader. Though we will be primarily interested in the
case of closed equivalence relations where the quotient spaces are Hausdorff,
often these results hold in somewhat greater generality.

Lemma 6.4 Let:

(i) X be a compact Hausdorff space,
(ii) R, S be closed equivalence relations on X,

(iii) A ⊂ X × X, and
(iv) B,C ⊂ X/R × X/R.
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Then:

(a) (πR × πS)−1((πR × πS)(A)) = R ◦ A ◦ S,

(b) π−1
R (B−1) =

(
π−1

R (B)
)−1

, and

(c) π−1
R (B ◦ C) = π−1

R (B) ◦ π−1
R (C).

PROOF: We leave this as an exercise for the reader.

Corollary 6.5 Let:

(i) X be a compact Hausdorff space,
(ii) N be a closed equivalence relation on X, and

(iii) R ⊂ X/N × X/N be a closed equivalence relation on X/N .

Then π−1
N (R) is a closed equivalence relation on X.

PROOF: 1. �X ⊂ N = π−1
N (�X/N) ⊂ π−1

N (R). (by (ii), (iii))
2. (π−1

N (R))−1 = π−1
N (R−1) = π−1

N (R). (by (iii), and 6.4)
3. π−1

N (R) ◦ π−1
N (R) = π−1

N (R ◦ R) = π−1
N (R). (by (iii), and 6.4)

Lemma 6.6 Let:

(i) X be a compact Hausdorff space,
(ii) N be a closed equivalence relation on X, and

(iii) R, S ⊂ X × X be arbitrary relations on X.

Then:

(a) π−1
N (πN(R)) = N ◦ R ◦ N ,

(b) πN(R ◦ S) ⊂ πN(R) ◦ πN(S) ⊂ πN(R ◦ N ◦ S), and
(c) if either R ◦ N or S ◦ N are closed equivalence relations on X, then

πN(R ◦ S) = πN(R) ◦ πN(S).

PROOF: We leave this as an exercise for the reader.

Note that if R and S are closed, then the relative product R ◦ S is also closed.
Similarly if (X, T ) is a flow, and R and S are invariant, then R ◦ S is invariant.
On the other hand the relative product of two equivalence relations is reflexive,
but need not be symmetric or transitive. However in this case if R ◦ S is sym-
metric, then R ◦ S = S ◦ R and it is also transitive (see 6.9). It is clear that any
equivalence relation which contains both R and S must also contain R◦S. Con-
sequently if R ◦ S is an equivalence relation, then it must be the smallest one
which contains R∪S. This says that Y = X/(R◦S) fits into the diagram in (∗),
and is maximal in the sense that any other Y is a quotient of X/(R ◦ S). In this
maximal example the diagram in (∗) has particularly nice properties which are
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used throughout the text. Moreover we will see that the relative product can be
used to understand these diagrams in general by describing the equivalence
relations involved in their construction. We proceed to make these notions
precise.

Proposition 6.7 Let:

(i) R1, R2 be closed equivalence relations on X, and
(ii) N = ⋂{S | S is a closed equivalence relation with R1 ∪ R2 ⊂ S}.
Then:

(a) N is a closed equivalence relation on X, and
(b) if S is a closed equivalence relation on X with R1 ∪ R2 ⊂ S, then N ⊂ S.

PROOF: This is clear.

Definition 6.8 Let R, S be closed equivalence relations on X. We define the
infimum of R and S, inf(R, S) by

inf(R, S) =
⋂

{N | N is a closed equivalence relation on Xwith R ∪ S ⊂ N}.

According to proposition 6.7, inf(R, S) is a closed equivalence relation on
X; we proceed to show that R ◦ S is an equivalence relation if and only if
R ◦ S = inf(R, S).

Proposition 6.9 Let R, S be closed equivalence relations on X.
Then the following are equivalent:

(a) S ◦ R = R ◦ S,
(b) R ◦ S is a closed equivalence relation on X, and
(c) R ◦ S = inf(R, S).

PROOF: (a) ⇒ (b)
1. Assume that R ◦ S = S ◦ R.
2. As has been previously remarked R ◦ S is closed and reflexive.
3. (R ◦ S)−1 = S−1 ◦ R−1 = S ◦ R = R ◦ S so R ◦ S is symmetric.
4. (R ◦ S) ◦ (R ◦ S) = R ◦ (R ◦ S) ◦ S = R ◦ S so R ◦ S is transitive.

(b) ⇒ (c)

1. Assume that R ◦ S is a closed equivalence relation on X.
2. R ∪ S ⊂ R ◦ S. (by 6.3)
3. inf(R, S) ⊂ R ◦ S. (by 6.7)
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4. R ◦ S ⊂ inf(R, S) ◦ inf(R, S) = inf(R, S). (by 6.7)
5. R ◦ S = inf(R, S). (by 3, 4)

(c) ⇒ (a)

1. Assume that R ◦ S = inf(R, S).
2. R ◦ S is a closed equivalence relation on X. (by 1)
3. S ◦ R = S−1 ◦ R−1 = (R ◦ S)−1 = R ◦ S. (by 2)

There are many situations where the projection πR(S) is an equivalence rela-
tion on X/R even though S is not an equivalence relation on X. For flows
(X, T ), one such example is when S = P(X) is the proximal relation intro-
duced earlier; we investigate this further in section 13. Another example is the
regionally proximal relation introduced in section 15 and studied further in sec-
tions 16 and 19. Though the main application of the following proposition is
the corollary which follows, where R, S and R ◦S are closed equivalence rela-
tions on X, it does give a condition under which the projection of a reflexive
symmetric relation is an equivalence relation.

Proposition 6.10 Let:

(i) X be a compact Hausdorff space,
(ii) R be a closed equivalence relation on X, and

(iii) S be a closed reflexive symmetric relation on X.

Then the following are equivalent:

(a) R ◦ S ◦ R is a closed equivalence relation on X,
(b) R ◦ S ◦ R ◦ S = R ◦ S ◦ R, and
(c) πR(S) is a closed equivalence relation on X/R.

Moreover all of these conditions imply:

(d) (X/R)/πR(S) ∼= X/(R ◦ S ◦ R).

PROOF: (a) ⇒ (b)
1. Assume that R ◦ S ◦ R is a closed equivalence relation on X.
2. R ◦ S ◦ R ⊂ R ◦ S ◦ R ◦ S ⊂ (R ◦ S ◦ R) ◦ (R ◦ S ◦ R) ⊂ R ◦ S ◦ R.

(by 1, (ii), (iii))

(b) ⇒ (c)

1. Assume that R ◦ S ◦ R ◦ S = R ◦ S ◦ R.
2. It suffices to show that πR(S) is transitive. (by (iii))
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3. π−1
R (πR(S) ◦ πR(S)) =

6.4
π−1

R (πR(S)) ◦ π−1
R (πR(S))

=
6.6

R ◦ S ◦ R ◦ R ◦ S ◦ R

=
(ii)

R ◦ S ◦ R ◦ S ◦ R =
1

R ◦ S ◦ R ◦ R

=
(ii)

R ◦ S ◦ R = π−1
R (πR(S)).

4. πR(S) ◦ πR(S) = πR(S). (by 3)

(c) ⇒ (a)

1. Assume that πR(S) is a closed equivalence relation on X/R.
2. π−1

R (πR(S)) is a closed equivalence relation on X. (by 1, and 6.5)
3. π−1

R (πR(S)) = R ◦ S ◦ R. (by 6.6)

(c) ⇒ (d)

(X/R)/πR(S) ∼= X/π−1
R (πR(S)) ∼= X/(R ◦ S ◦ R).

Corollary 6.11 Let R, S be closed equivalence relations on X such that R ◦ S

is a closed equivalence relation on X. Then:

(a) πR(S) is a closed equivalence relation on X/R,
(b) πS(R) is a closed equivalence relation on X/S, and
(c) (X/R)/πR(S) ∼= X/(R ◦ S).

PROOF: 1. S ◦ R ◦ S = S ◦ S ◦ R = S ◦ R = S ◦ R ◦ R = R ◦ S ◦ R.
(by 6.9)

2. S ◦ R ◦ S and R ◦ S ◦ R are closed equivalence relations on X. (by 1)
3. πS(R) and πR(S) are closed equivalence relations on X/S and X/R

respectively. (by 2, 6.10)
Part (c) follows from 6.9 and 6.10.

We will make extensive use of 6.11 in constructing icers on M and on flows
in general; it can be interpreted as saying that when R, S, and R ◦ S are
closed equivalence relations on X, the following diagram of quotient maps is
commutative:

X
πS→ X/S

↓ πR ↓ πS
R◦S

X/R
πR

R◦S→ X/(R ◦ S).
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In fact we now show that in this diagram πR and πS map fibers onto fibers, a
property which characterizes the relative product.

Proposition 6.12 Let:

(i) X be a compact Hausdorff space,
(ii) R, S,N be closed equivalence relations on X, and

(iii) R ∪ S ⊂ N .

Then we can form the commutative diagram

X
πS→ X/S

↓ πR ↓ πS
N

X/R
πR

N→ X/N

and the following are equivalent:

(a) πS maps the fibers of the map πR onto the fibers of πS
N ; i.e. πS({xR}) =

(πS
N)−1(xN) or equivalently πS({xR}) = πS({xN}) for all x ∈ X.

(b) N = R ◦ S.
(c) πR maps the fibers of the map πS onto the fibers of πR

N ; i.e. πR({xS}) =
(πR

N )−1(xN) or equivalently πR({xS}) = πR({xN}) for all x ∈ X.
(d) {(xR, yS) ∈ X/R × X/S | πR

N (xR) = πS
N(yS)} = (πR × πS)(�).

PROOF: (a) =⇒ (b)
1. Assume that πS maps the fibers of πR onto the fibers of πS

N .
2. Let (p, q) ∈ N .
3. πN(p) =

1
πN(q) =

6.1
πS

N(πS(q)) so πS(q) is in the fiber over πN(p).

4. There exists r ∈ X in the fiber over πR(p) with πS(r) = πS(q). (by 1, 3)
5. (p, r) ∈ R, and (r, q) ∈ S. (by 4)
6. (p, q) ∈ R ◦ S. (by 5)
7. N ⊂

2,6
R ◦ S ⊂

(iii)
N ◦ N =

(ii)
N .

(b) =⇒ (a)

1. Assume that N = R ◦ S.
2. Let q ∈ X with πS(q) in the fiber over πN(p).
3. πN(q) = πS

N(πS(q)) = πN(p). (by 2)
4. (p, q) ∈ N . (by 3)
5. There exists r ∈ X with (p, r) ∈ R and (r, q) ∈ S. (by 1, 4)
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6. πR(r) = πR(p) so r is in the fiber over πR(p). (by 5)
7. πS(r) = πS(q). (by 4)

(b) ⇐⇒ (c)

Interchange the roles of R and S in the proof that (a) ⇐⇒ (b).

(b) =⇒ (d)

1. Assume that N = R ◦ S.
2. (πR × πS)(�) ⊂ {(xR, yS) ∈ X/R × X/S | πR

N (xR) = πS
N(yS)} is

immediate.
3. Let (xR, yS) with πR

N (xR) = πS
N(yS).

4. xN = yN . (by 3)
5. There exists z ∈ X with (x, z) ∈ R and (z, y) ∈ S. (by 1, 4)
6. (xR, yS) = (zR, zS) = (πR(z), πS(z)) ∈ (πR × πS)(�). (by 5)

(d) =⇒ (b)

1. Assume (πR × πS)(�) = {(xR, yS) ∈ X/R × X/S | πR
N (xR) = πS

N(yS)}.
2. Let (x, y) ∈ N .
3. πR

N (xR) = xN = yN = πS
N(yS). (by 2)

4. There exists z ∈ X with (πR(z), πS(z)) = (xR, yR). (by 1, 3)
5. (x, z) ∈ R and (z, y) ∈ S. (by 4)
6. (x, y) ∈ R ◦ S. (by 5)

Another useful property of the relative product is given below.

Proposition 6.13 Let:

(i) X be a compact Hausdorff space,
(ii) R, S,N be closed equivalence relations on X, and

(iii) R ◦ S = N .

Then as in 6.12 we can form the commutative diagram

X
πS→ X/S

↓ πR ↓ πS
N

X/R
πR

N→ X/N

and

(a) πS open implies that πR
N is open,

(b) πR open implies that πS
N is open.



76 Quotient spaces and relative products

PROOF: (a) 1. Assume that πS is open.
2. Let V ⊂ X/R be open.
3. πS((πR)−1(V )) = (πS

N)−1(πR
N (V )) is open in X/S. (by 1, 2, 6.12)

4. πR
N (V ) is open in X/N . (by 3)

(b) This is just (a) with the roles of R and S interchanged.

The basic properties of the relative product outlined above will be used to
construct equivalence relations and quotient maps. We will also need a result
which says that the relative product construction commutes with the inverse
limit construction. First note that any descending chain

S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ · · ·
of closed equivalence relations on X gives rise to a sequence of continuous
maps

X/S1 ← X/S2 ← · · · ← X/Sn ← · · ·
whose inverse limit

lim← X/Si
∼= X/

⋂
Si.

For completeness sake and for future reference, we make this precise in the
slightly more general context where {Si} is a filter base of equivalence relations
on X.

Proposition 6.14 Let:

(i) R be a closed equivalence relation on X, and
(ii) {Si | i ∈ I } be a filter base of closed equivalence relations on X.

Then:

(a) X/
⋂
i∈I

Si
∼= lim← X/Si (the inverse limit), and

(b) x ∈ U ⊂ X/
⋂
i∈I

Si with U open implies that there exists Uj open in X/Sj

such that x ∈ π−1
j (Uj ) ⊂ U where πj : X/

⋂
Si → X/Sj is the canonical

map.

PROOF: Left as an exercise for the reader.

The relative product construction commutes with this inverse limit construc-
tion in the following sense. If R is a closed equivalence relation on X such that
each of the R ◦ Si is an equivalence relation, then R ◦ (⋂

Si

) = ⋂
(R ◦ Si) is

an equivalence relation and

lim← X/(R ◦ Si) ∼= X/
(
R ◦

⋂
Si

)
.
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This result holds when {Si} is a filter base of closed equivalence relations; the
details are given in the next proposition and its corollary.

Proposition 6.15 Let:

(i) R be a closed relation on X (a compact Hausdorff space), and
(ii) {Si | i ∈ I } be a filter base (see 1.A.1) of closed relations on X.

Then:

(a) R ◦
(⋂

i∈I

Si

)
= ⋂

i∈I

(R ◦ Si), and

(b)

(⋂
i∈I

Si

)
◦ R = ⋂

i∈I

(Si ◦ R).

PROOF: (a) 1. Let S = ⋂
i∈I

Si .

Proof that: R ◦ S ⊂ ⋂
i∈I

(R ◦ Si)

2. Let (p, q) ∈ R ◦ S.
3. There exists r ∈ S with (p, r) ∈ R and (r, q) ∈ S. (by 2)
4. (p, q) ∈ ⋂

i∈I

(R ◦ Si). (by 1, 3)

Proof that:
⋂
i∈I

(R ◦ Si) ⊂ R ◦ S

1. Let C be a closed subset of X × X with C ∩ Sj 
= ∅ for all j ∈ I .
2. Let {i1, . . . in} ⊂ I .
3. There exists i ∈ I with Si ⊂ Si1 ∩ · · · ∩ Sin . (by (ii))
4. ∅ 
= C ∩ Si ⊂ (C ∩ Si1) ∩ · · · ∩ (C ∩ Sin). (by 1, 3)
5. The collection {C ∩ Si | i ∈ I } has the finite intersection property. (by 2, 4)
6. C ∩ S = ⋂

i∈I

(C ∩ Si) 
= ∅. (by 5, X × X is compact)

7. Let (p, q) ∈ ⋂
i∈I

(R ◦ Si) and N be an open neighborhood of S in X × X.

8. ((X × X) \ N) ∩ S = ∅.
9. ((X × X) \ N) ∩ Sj = ∅ for some j ∈ I .

(by 1, 6, 7 with C = (X × X) \ N )
10. Sj ⊂ N . (by 9)
11. (p, q) ∈ R ◦ Sj ⊂ R ◦ N . (by 7, 10)
12. There exists rN with (p, rN) ∈ R and (rN , q) ∈ N . (by 11)
13. The set KN = {r | (p, r) ∈ R and (r, q) ∈ N} is nonempty. (by 12)
14. {KN | N is an open neighborhood of S} has the finite intersection property.

(by 8, 13)
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15. Let x ∈
⋂
N

KN and V be an open neighborhood of x in X.

16. V ∩ KN 
= ∅ for all N . (by 15)
17. There exists r ∈ V with (p, r) ∈ R and (r, q) ∈ N . (by 13, 16)
18. (p, x) ∈ R = R and (x, q) ∈ ⋂

N N = S. (by 15, 17)
19. (p, q) ∈ R ◦ S.

(b) Similar argument.
The following result will be used in section 20.

Corollary 6.16 Let:

(i) R be a closed equivalence relation on X,
(ii) {Si | i ∈ I } be a filter base of closed equivalence relations on X, and

(iii) R ◦ Si be an equivalence relation for every i.

Then R ◦
( ⋂

i∈I

Si

)
is a closed equivalence relation.

PROOF: 1.
⋂
i∈I

Si is a closed equivalence relation. (by (ii))

2. R ◦
( ⋂

i∈I

Si

)
=

6.15

⋂
i∈I

(R ◦ Si) =
(iii)

⋂
i∈I

(Si ◦ R) =
6.15

( ⋂
i∈I

Si

)
◦ R.

3. R ◦
( ⋂

i∈I

Si

)
is an equivalence relation. (by 1, 2, 6.9)

The results in this section have been stated for closed equivalence relations
on any compact Hausdorff space X. If (X, T ) is a flow and the equivalence
relations are invariant under the action of T , then the results remain valid for
icers on X, and the quotient maps are homomorphisms of flows. In particular
we recover results on minimal flows by setting X = M and requiring that the
equivalence relations be icers.

We end this section with some applications of the relative product to homo-
morphisms of flows. These results are motivated by considering the following
diagram:

f

X → Y

πL ↓ ↓ π

X/L → Z

where f is an epimorphism of flows, L is an icer on X, and π is a homomor-
phism of flows. Assuming that πL is a distal homomorphism, when can we
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conclude that π is also distal? Note that when X/L = {pt} = Z, the answer
is always. (In this case we are just asking whether (X, T ) distal implies that
(Y, T ) is distal, which is the content of 4.10.) In general, using Rf to denote
the icer on X corresponding to f , if Rπ◦f ⊂ Rf ◦L◦Rf , and (X, T ) is point-
wise almost periodic, then π is distal. In the interest of clarity, we state this as
the next proposition. If the diagram is a relative product, that is Rπ◦f = L◦Rf

and Z = X/(L◦Rf ), then π is distal under the weaker assumption that (Y, T )

is pointwise almost periodic. We give a proof of this in 6.17.

Proposition 6.17 Let:

(i) (X, T ) be a pointwise almost periodic flow,
(ii) L be an icer on X,

(iii) πL : X → X/L be distal,
(iv) f : (X, T ) → (Y, T ) be an epimorphism of flows,
(v) the following be a commutative diagram of flows and flow homomor-

phism, and

f

X → Y

πL ↓ ↓ π

X/L → Z

(vi) Rπ◦f ⊂ Rf ◦ L ◦ Rf .

Then π : Y → Z is distal.

PROOF: 1. (L, T ) is pointwise almost periodic. (by (i), (ii), (iii), and 4.15)
2. f (L) = f (Rf ◦ L ◦ Rf ) =

(vi)
f (Rπ◦f ) = f (f −1(Rπ)) =

(iv)
Rπ .

3. (Rπ , T ) is pointwise almost periodic. (by 1, 2)
4. π is distal. (by 4.15)

Lemma 6.18 Let:

(i) (X, T ) be a flow,
(ii) L and N be an icers on X,

(iii) X → X/L be distal,
(iv) (X/N, T ) be pointwise almost periodic, and
(v) L ◦ N be an icer on X.
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In other words assume that the following is a commutative diagram of flows
such that the flows in the right hand column are pointwise almost periodic and
the left hand column is a distal extension.

X → X/N

↓ ↓

X/L → X/(L ◦ N)

Then X/N → X/(L ◦ N) is distal.

PROOF: 1. πN(L ◦ N) = πN(L) is a closed equivalence relation on X/N

with

(X/N)/πN(L) = X/(L ◦ N). (by 6.11)

2. Let πN(x1, x2) ∈ P(X/N) with (x1, x2) ∈ L ◦ N .
3. There exists a minimal ideal I ⊂ E(X, T ) with (x1p, x2p) ∈ N for all
p ∈ I . (by 2, 4.4)
4. There exists a minimal idempotent u ∈ I with

πN(x1u) = πN(x1)u = πN(x1). (by 3, (iv), 4.3)

5. (x1u, x2) ∈ N ◦ L ◦ N = L ◦ N . (by 2, 3, (v))
6. There exists x3 ∈ X with (x1u, x3) ∈ L and (x3, x2) ∈ N . (by 5)
7. (x1u, x3u) = (x1u, x3)u ∈ Lu ⊂ L. (by 6, (ii))
8. (x3, x3u) ∈ L. (by 6, 7, (ii))
9. x3 = x3u. (by 8, (iii))
10. (x3, x2u) = (x3u, x2u) ∈ Nu ⊂ N . (by 6, 9)
11. (x3, x1u) ∈ N ◦ N = N . (by 3, 5, 10, (ii))
12. (x3, x1) ∈ N . (by 4. 11)
13. (x2, x1) ∈ N and so πN(x1, x2) ∈ �X/N . (by 6, 12)
14. P(X/N) ∩ πN(L) = �X/N . (by 2, 13)
15. X/N → X/(L ◦ N) is distal. (by 1, 14, and (v))

A refinement of the preceding result will be needed in section 9.

Corollary 6.19 Let:

(i) (X, T ) be a (not necessarily minimal) flow,
(ii) L be an icer on X,

(iii) X → X/L be distal,
(iv) H ⊂ T be a subgroup of T ,
(v) N be a closed H -invariant equivalence relation on X,
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(vi) (X/N,H) be pointwise almost periodic, and
(vii) L ◦ N be an H -invariant equivalence relation on X.

In other words assume that the following is a commutative diagram of H -flows
such that the flows in the right hand column are H -pointwise almost periodic
and the left hand column is a T -distal extension.

X → X/N

↓ ↓

X/L → X/(L ◦ N)

Then (πN(L),H) is pointwise almost periodic.

PROOF: The assumption that X → X/L is distal as a T -homomorphism,
implies that it is distal as an H -homomorphism. Thus the result follows imme-
diately by applying 6.18 and 4.15 to the group H .

EXERCISES FOR CHAPTER 6

Exercise 6.1 (See 6.4) Let:

(i) X be a compact Hausdorff space,
(ii) R, S be icers on X,

(iii) A ⊂ X × X, and
(iv) B,C ⊂ X/R × X/R.

Then:

(a) (πR × πS)−1((πR × πS)(A)) = R ◦ A ◦ S,

(b) π−1
R (B−1) =

(
π−1

R (B)
)−1

, and

(c) π−1
R (B ◦ C) = π−1

R (B) ◦ π−1
R (C).

Exercise 6.2 (See 6.9) Let:

(i) X be a compact Hausdorff space, and
(ii) R, S ⊂ X × X be equivalence relations on X.

Show that R ◦ S is an equivalence relation on X if and only if R ◦ S ⊂ S ◦ R.

Exercise 6.3 (See 6.6) Let:

(i) X be a compact Hausdorff space,
(ii) N be a closed equivalence relation on X, and

(iii) R, S ⊂ X × X be arbitrary relations on X.
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Show that:

(a) π−1
N (πN(R)) = N ◦ R ◦ N ,

(b) πN(R ◦ S) ⊂ πN(R) ◦ πN(S) ⊂ πN(R ◦ N ◦ S), and
(c) if R ◦ N or S ◦ N is a closed equivalence relations on X, then

πN(R ◦ S) = πN(R) ◦ πN(S).

Exercise 6.4 (See 6.14) Let:

(i) R be a closed equivalence relation on X, and
(ii) {Si | i ∈ I } be a filter base of closed equivalence relations on X.

Show that:

(a) X/
⋂
i∈I

Si
∼= lim← X/Si (the inverse limit), and

(b) x ∈ U ⊂ X/
⋂
i∈I

Si with U open implies that there exists Uj open in X/Sj

such that x ∈ π−1
j (Uj ) ⊂ U where πj : X/

⋂
Si → X/Sj is the canonical

map.
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Icers on M and automorphisms of M

For this section, and the remainder of this book, we will use M to denote a fixed
minimal ideal in βT . As we saw in 3.16, given any minimal flow (X, T ) there
exists an epimorphism of flows f : M → X, so that M/Rf

∼= X. Here Rf =
{(p, q) ∈ M × M | f (p) = f (q)} is an invariant closed equivalence relation
on M . We will study minimal flows and their properties by studying invariant
closed equivalence relations on the universal minimal set M . We emphasize
this point of view by defining a category M.

Definition 7.1 The category M.
We define a category M whose objects, obj (M) are the icers (closed invariant
equivalence relations) on M . If R and S are icers on M with R ⊂ S, then πR

S

will denote the canonical map

πR
S : M/R → M/S.

We refer to M/S as a factor of M/R and to M/R as an extension of M/S. We
then define

morph(R, S) =
{

{πR
S } if R ⊂ S

∅ if R 
⊂ S
.

We write πR for

πR ≡ π�
R : M → M/R,

Note that if R ⊂ S, then πS = πR
S ◦ πR .

Given an icer R on M , the quotient space is a compact Hausdorff space (by 6.2)
on which T acts. In other words (M/R, T ) is a flow; moreover it’s minimal
since it’s an image of M . Conversely any minimal flow (X, T ) is represented
by the element Rf in the category M, where f : M → X is a homomorphism
of flows. In general however, if g is another such homomorphism, then Rg

83



84 Icers on M and automorphisms of M

need not equal Rf . Thus X may have many distinct representatives in the cat-
egory M. In other words obj (M) is not in one-one correspondence with the
collection of minimal flows. We will see in section 8 (see 8.1 and 8.3) that the
regular minimal flows are exactly those minimal flows (X, T ), for which there
is a unique icer with X ∼= M/R. Similarly morph(R, S) consists of at most
one element and is not in one-one correspondence with Hom(M/R,M/S).
In particular morph(R,R) consists of a single element, while Aut(M/R), in
general, contains many automorphisms of the flow (M/R, T ). Nevertheless
M provides a useful context in which to frame many of the questions con-
cerning minimal flows and their extensions. Before addressing some of these
questions we state an elementary proposition which will be used frequently in
subsequent discussions.

Proposition 7.2 Let:

(i) X = M/R be a flow,
(ii) N be an icer on X, and

(iii) S = π−1
R (N).

Then:

(a) S is an icer on M , and
(b) M/S ∼= X/N .

PROOF: Straightforward.

In section 3 we showed (see 3.12) that any minimal ideal I in the enveloping
semigroup E(X) of a flow (X, T ) can be written as a disjoint union of iso-
morphic groups, one for each idempotent in I . Since E(βT ) ∼= βT this holds
for M . In fact M can be written as a disjoint union of copies of the group
G of automorphisms of M . In particular any element p ∈ M can be written
uniquely in the form p = α(u) where α ∈ G and u is an idempotent in M .
This description, which is a consequence of the proposition below, plays a key
role in our study of the category M.

Proposition 7.3 Let:

(i) p, q ∈ M ,
(ii) Lp : M → M be defined by Lp(m) = pm, and

(iii) α : M → M be any homomorphism of the flow (M, T ).

Then:

(a) there exists a unique idempotent u ∈ M such that Lp(u) = pu = p,
(b) Lp is an automorphism of (M, T ),
(c) Lp = Lq if and only if p = qu, and
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(d) α = Lα(v) for any idempotent v ∈ M , and hence α is an automorphism
of M .

PROOF: (a) This follows immediately from 3.12.
(b) 1. Lp(qt) = p(qt) = (pq)t = Lp(q)t for all q ∈ M and t ∈ T .

2. Lp is a homomorphism of flows. (by 1)
3. There exists q ∈ M with qp = u = pq. (by 3.12)
4. Lp(Lq(r)) = p(qr) = ur = r = (qp)r = Lq(Lp(r)) for all r ∈ M .

(by 3.12)
5. Lq is the inverse of Lp. (by 4)

(c) 1. If Lp = Lq , then p = Lp(u) = Lq(u) = qu. (by part (a))
2. If p = qu, then Lp(r) = pr = (qu)r = q(ur) = qr = Lq(r) for all
r ∈ M , so Lp = Lq . (by 3.12)

(d) Lα(v)(r) = α(v)r = α(vr) = α(r) for all r ∈ M . (by 3.12)

We state the following corollary for emphasis, and so that it may be referred to
later in the text.

Corollary 7.4 Let:

(i) G = {α | α : M → M} be the group of automorphisms of M , and
(ii) J = {u ∈ M | u2 = u} be the set of idempotents of M .

Then the map G × J → M

(α, u) → α(u)

is bijective.

PROOF: This follows immediately from 7.3 and 3.12.

Given two minimal flows (X, T ) and (Y, T ), we would like to study homo-
morphisms

ϕ : X → Y.

It is clear that we can find icers R and S on M such that X ∼= M/R and
Y ∼= M/S; we would like to do this in such a way that R ⊂ S, and then relate
ϕ to the canonical projection map πR

S . As a first step we show that there exists
an automorphism α ∈ G such that

M
α−→ M

πR

⏐⏐⏐�
⏐⏐⏐� πS

M/R
ϕ−→ M/S
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is a commutative diagram of flow homomorphisms. This is a consequence
of the fact that every minimal subset of M × M is of the form gr(α) ≡
{(p, α(p)) | p ∈ M} for some automorphism α ∈ G. This result, an ana-
log of which holds for regular flows (see 8.9), is of independent interest and
will also be used in section 10 to analyze the τ -topology on G.

Proposition 7.5 A nonvacuous subset Y ⊂ M × M is minimal if and only if
Y = gr(α) for some α ∈ G (that is Y is the graph of an automorphism of M).

PROOF: 1. The graph of an automorphism of M is a homomorphic image
of M and hence is a minimal subset of M × M . (by 3.5)
2. Let Y ⊂ M × M be a minimal set and (p, q) ∈ Y .
3. There exists an idempotent u ∈ M with pu = p. (by 3.12)
4. There exists p′ = p′u ∈ M with pp′ = u = p′p. (by 3.12)
5. α = Lqp′ ∈ G. (by 7.3)
6. (u, α(u)) = (pp′, (qp′)u) = (p, q)p′ ∈ Yp′ ⊂ Y . (by 2, 4, 5)
7. gr(α) ∩ Y 
= ∅. (by 6)
8. Y = gr(α). (by 2, 7, since gr(α) is minimal)

We now use 7.5 to characterize homomorphisms. For this purpose, and for the
remainder of the text, it will be convenient to write:

α(p, q) ≡ (α × α)(p, q) = (α(p), α(q)),

for any α ∈ G and (p, q) ∈ M × M . Thus when R is an icer on M , we will
use the notation:

α(R) ≡ {α(p, q) | (p, q) ∈ R}.
Proposition 7.6 Let R, S be icers on M . Then:

(a) if ϕ ∈ Hom(M/R,M/S), there exists α ∈ G with α(R) ⊂ S and ϕ◦πR =
πS ◦ α,

(b) if α ∈ G with α(R) ⊂ S, there exists ϕ ∈ Hom(M/R,M/S) such that
ϕ ◦ πR = πS ◦ α,

(c) if ϕ ∈ Iso(M/R,M/S), there exists α ∈ G with α(R) = S and ϕ ◦ πR =
πS ◦ α, and

(d) if α ∈ G with α(R) = S, there exists ϕ ∈ Iso(M/R,M/S) such that
ϕ ◦ πR = πS ◦ α.

PROOF: (a) 1. Let ϕ : M/R → M/S be a flow homomorphism.
2. gr(ϕ) is a minimal subset of M/R × M/S. (by 3.5)
3. There exists a minimal set Y ⊂ M × M with (πR × πS)(Y ) = gr(ϕ).

(by 3.5, since πR × πS is an epimorphism)
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4. There exists α ∈ G with Y = gr(α). (by 3, and 7.5)
5. Let p ∈ M .
6. There exists q ∈ M with (πR(p), ϕ(πR(p))) = (πR × πS)(q, α(q)).

(by 3, 4)
7. ϕ(πR(q)) = ϕ(πR(p)) = πS(α(q)). (by 6)
8. ϕ ◦ πR = πS ◦ α. (7, M is minimal)
9. (πS × πS)(α(R)) = (ϕ × ϕ)(πR × πR)(R) = � ⊂ M/S × M/S. (by 8)
10. α(R) ⊂ S. (by 9)

(b) 1. Let α ∈ G with α(R) ⊂ S.
2. Let (p, q) ∈ R.
3. (α(p), α(q)) ∈ S. (by 1, 2)
4. πS(α(p)) = πS(α(q)). (by 3)
5. ϕ:M/R → M/S

pR → α(p)S

is a well-defined homomorphism. (by 2, 4)

6. ϕ ◦ πR = πS ◦ α. (by 5)
(c) This follows from (a); we leave the details to the reader.
(d) This follows from (b); we leave the details to the reader.

Corollary 7.7 Let R, S be icers on M . Then M/R ∼= M/S if and only if
α(R) = S for some α ∈ G.

PROOF: This follows immediately from 7.6.

As an additional consequence of 7.6 we note that up to pre-composition with an
isomorphism, any homomorphism of flows can be represented by the canonical
homomorphism πR

S : M/R → M/S, for some choice of R ⊂ S. Thus not only
properties of individual flows, but also properties of homomorphisms of flows
can be studied using the category M.

Corollary 7.8 Let ϕ : X → Y be a homomorphism of minimal flows. Then
there exist icers R ⊂ S on M , and an isomorphism ψ : X → M/R such that
M/S ∼= Y and ϕ = πR

S ◦ ψ .

PROOF: 1. There exists an icer S on M such that Y ∼= M/S. (by 3.16)
2. There exists an icer R1 on M such that X = M/R1. (by 3.16)
3. There exists α ∈ G such that R ≡ α(R1) ⊂ S and πS ◦ α = ϕ ◦ πR1 .

(by 7.6)
4. There exists an isomorphism ψ : X = M/R1 → M/R such that πR ◦ α =
ψ ◦ πR1 . (by 7.6)
5. Let x ∈ X.
6. There exists p ∈ M with πR1(p) = x. (by 2)
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7. πR
S (ψ(x)) =

6
πR

S (ψ(πR1(p))) =
4

πR
S (πR(α(p)))= πS(α(p)) =

3
ϕ(πR1(p))

=
6

ϕ(x).

According to 7.6, every automorphism ϕ : M/R → M/R fits into a commuta-
tive diagram:

M
α←→ M

πR

⏐⏐⏐�
⏐⏐⏐� πR

M/R
ϕ←→ M/R

for some choice of α ∈ G. In this sense every automorphism of M/R is
induced by an α ∈ G with α(R) = R. This motivates us to consider the
subgroup

aut (R) = {α ∈ G | α(R) = R} ⊂ G

consisting of the automorphisms of M which descend to automorphisms of
M/R. Of special interest are those α which induce the identity on M/R; this
happens when:

πR(α(p)) = πR(p)

for all p ∈ M , or equivalently: gr(α) ⊂ R. In other words those α which
descend to the identity on M/R are the members of the subgroup G(R) =
{α ∈ G | gr(α) ⊂ R} ⊂ aut (R) ⊂ G. We make these ideas precise and set
some notation in the following definition and proposition.

Definition 7.9 Let R be an icer. As indicated above we will use the notation:

aut (R) = {α ∈ G | α(R) = R} G(R) = {α ∈ G | gr(α) ⊂ R}
and we refer to G(R) as the group of the flow M/R. (It will also be denoted by
G(M/R).)

It should be noted that the terminology introduced in 7.9 is an abuse of
language since G(M/R) depends on the choice of icer R. This terminology is
consistent with the literature where the group of a flow is defined for pointed
flows (where a base point is specified), and it depends on the choice of base
point. This abuse of language is often justified by 7.8 since we are most often
interested in properties of flows and homomorphisms which are invariant under
isomorphisms. It is important to keep in mind however that in general
(M/R, T ) ∼= (M/α(R), T ) for every α ∈ aut (R). We will show (see 7.16)
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that G(α(R)) = αG(R)α−1 which implies that G(M/R) is well-defined up to
conjugacy. (A change of base point in the original definition given in
[Ellis, R., 1969] also results in a conjugate subgroup.)

Clearly, if R ⊂ S are icers on M , then G(R) ⊂ G(S). Of course this is not
necessarily the case for aut (R); indeed we will show that any icer S contains
an icer reg(S) (the so-called regularizer of S, see 8.4) with aut (reg(S)) = G.

Proposition 7.10 Let:

(i) R be an icer on M , and
(ii) X = M/R.

Then:

(a) there exists a group epimorphism χR : aut (R) → Aut(X) such that

πR(α(p)) = χR(α)(πR(p)) for all p ∈ M and α ∈ aut (R), (∗)

(b) ker(χR) = G(R), and
(c) G(R) is a normal subgroup of aut (R).

PROOF: (a) The fact that χR is well-defined and onto follows immediately
from 7.7. We leave it to the reader to verify that χR is a group homomorphism.

(b) Proof that ker(χR) ⊂ G(R):
1. Assume that χR(α) = id.
2. πR(α(p)) = πR(p). for all p ∈ M . (by 1, and (∗))
3. (p, α(p)) ∈ R for all p ∈ M . (by 2)
4. gr(α) ⊂ R. (by 3)
5. α ∈ G(R). (by 4)

Proof that G(R) ⊂ ker(χR):

1. Assume that gr(α) ⊂ R.
2. (p, α(p)) ∈ R for all p ∈ M . (by 1)
3. πR(α(p)) = πR(p) for all p ∈ M . (by 2)
4. χR(α) = id. (by 3 and (∗))

(c) This follows immediately from (a) and (b).

When R is an icer on M , the group G(R) plays a fundamental role in under-
standing the dynamics of the minimal flow M/R. This motivates and serves
as one of the main themes of parts IV and V of this text. As a first elementary
example of this principle we show that a homomorphism of minimal flows
ϕ : X → Y is proximal if and only if the groups G(X) = G(Y) are equal. As
we remarked above this is technically an abuse of language. We make things
precise by appealing to 7.8 and writing X = M/R, Y = M/S with R ⊂ S

icers on M . Then ϕ = πR
S ◦ ψ for some isomorphism ψ : X → M/R. Now it
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is clear (see exercise 4.6) that ϕ is proximal if and only πR
S is proximal. Thus

in the category M we will show that πR
S : M/R → M/S is proximal if and

only if G(R) = G(S).

Proposition 7.11 Let:

(i) R ⊂ S icers on M , and
(ii) X = M/R, and Y = M/S.

Then πR
S : M/R → M/S is proximal if and only if G(R) = G(S).

PROOF: =⇒
1. Assume that X is a proximal extension of Y .
2. Let α ∈ G(S) and u ∈ J .
3. πR

S (πR(u)) = πS(u) =
2

πS(α(u)) = πR
S (πR(α(u))).

4. (πR(u), πR(α(u))) ∈ P(X). (by 1, 3)
5. There exists p ∈ βT with πR(up) = πR(α(up)). (by 4)
6. α ∈ G(R). (by 5)
7. G(S) ⊂ G(R). (by 2, 6)
8. G(R) ⊂ G(S). (since R ⊂ S)

⇐=
1. Assume that G(S) = G(R).
2. Let x1, x2 ∈ X with πR

S (x1) = πR
S (x2).

3. There exist α1, α2 ∈ G and u1, u2 ∈ J with (x1, x2) = πR(α1(u1), α2(u2)).
(by 7.4)

4. πS(α1(u)) = πR
S (πR(α1(u1))) = πR

S (x1) = πR
S (x2) = πS(α2(u2)). (by 2)

5. (α1(u1), α2α
−1
1 (α1(u1))) = (α1(u1), α2(u2))u1 ∈ Su1 ⊂ S. (by 4)

6. α2α
−1
1 ∈ G(S) = G(R). (by 1, 4)

7. (x1, x2)u1 = πR(α1(u1), α2(u2))u1 = πR(α1(u1), α2(u1)) ∈ �X. (by 6)
8. (x1, x2) ∈ P(X). (by 7, and 4.4)

Corollary 7.12 Let X = M/R. Then X is a proximal flow if and only if
G(R) = G.

PROOF: This is immediate from 7.11

Returning to our consideration of homomorphisms ϕ : X → Y of minimal
flows, the case where there exists a point y0 ∈ Y such that the fiber ϕ−1(y0)

over y0 consists of a single point is referred to as an almost one-one extension.
This terminology is motivated by the observation that ϕ−1(y0)t = ϕ−1(y0t)

so that if the fiber over y0 is a single point then the same is true for every point
in the orbit of y0. Since we are assuming that (Y, T ) is minimal this means
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that the set of y for which ϕ−1(y) is a single point is dense in Y. Just as in the
case of proximal extensions ϕ is almost one-one if and only if ϕ ◦ ψ is almost
one-one for any isomorphism ψ : X → X. Applying 7.8 we need only focus
on the canonical projection πR

S : M/R → M/S for R ⊂ S. We make this
the definition of an almost one-one extension and then show that any almost
one-one extension is a proximal extension.

Definition 7.13 Let X = M/R, and Y = M/S be flows with R ⊂ S icers on
M . We say that X is an almost one-one extension of Y if there exists p ∈ M

such that pR = pS. Clearly this is equivalent to the existence of y0 ∈ Y such
that (πR

S )−1(y0) consists of a single point.

Proposition 7.14 Let:

(i) X = M/R, and Y = M/S be flows with R ⊂ S icers on M , and
(ii) X be an almost one-one extension of Y .

Then X is a proximal extension of Y .

PROOF: 1. G(R) ⊂ G(S). (by (i))
2. Let α ∈ G(S).
3. There exists p ∈ M with pR = pS. (by (ii), 7.13)
4. α(p) ∈ pS = pR. (by 2, 3)
5. α ∈ G(R). (by 4)
6. G(S) ⊂ G(R). (by 2, 5)
7. G(R) = G(S). (by 1, 6)
8. X is a proximal extension of Y . (by 7, 7.11)

We will be interested in what the group G(R) tells us about an icer R, and to
what extent R is determined by G(R). In order to answer these questions we
first deduce some elementary properties of G(R). We will use an elementary
lemma concerning the graphs of elements of G; it will be convenient to use the
notation:

gr(A) =
⋃

{gr(α) | α ∈ A}
for any subset A ⊂ G.

Lemma 7.15 Let:

(i) α, γ ∈ G, and
(ii) ∅ 
= A ⊂ G.

Then:

(a) gr(αγα−1) = α(gr(γ )), and
(b) gr(αAα−1) = α(gr(A)).
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PROOF: (a) 1. Let p ∈ M .

2. (p, αγ α−1(p)) = (α(α−1(p)), α(γ (α−1(p))) ∈ α(gr(γ )).

3. gr(αγα−1) ⊂ α(gr(γ )). (by 1, 2)
4. α(gr(γ )) = α(gr(α−1(αγ α−1)α))⊂

3
α(α−1(gr(α−1γα))) = gr(αγα−1).

(b) 1. gr(αAα−1) = α(gr(A)). (by (a))

2. α(gr(A)) ⊂ α(gr(A))=
1

gr(αAα−1). (α is continuous)

3. α(gr(A)) is compact hence closed.

4. gr(αAα−1) ⊂ α(gr(A)). (by 1, 3)

Proposition 7.16 Let R be an icer on M and α ∈ G. Then:

(a) α(R) is an icer on M , and
(b) G(α(R)) = αG(R)α−1.

PROOF: We leave this as an exercise for the reader.

Note that if α ∈ aut (R), then α(R) = R and applying 7.16 we get

αG(R)α−1 = G(α(R)) = G(R),

which gives an alternate proof that G(R) is a normal subgroup of aut (R).
This idea is also used in the following proposition to determine when G(R) is
a normal subgroup of G.

Proposition 7.17 Let R be an icer on M . Then the following are equivalent:

(a) G(R) is a normal subgroup of G,
(b) G(α(R)) = G(R) for all α ∈ G,
(c) α(gr(G(R))) ⊂ R for all α ∈ G, and
(d) α(gr(G(R))) ⊂ R for all α ∈ G.

PROOF: This follows immediately from 7.15 and 7.16.

Proposition 7.18 Let R and S be icers on M with M/R ∼= M/S. Then
G(S) = αG(R)α−1 for some α ∈ G.

PROOF: 1. There exists α ∈ G with α(R) = S. (by 7.7)
2. G(S) = G(α(R)) = αG(R)α−1. (by 7.16)

Proposition 7.19 Let {Ri} be a family of icers on M . Then G(
⋂

Ri) =⋂
G(Ri).
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PROOF:

α ∈ G
(⋂

Ri

)
⇐⇒ gr(α) ⊂

⋂
Ri ⇐⇒ gr(α) ⊂ Ri for all i

⇐⇒ α ∈ G(Ri) for all i ⇐⇒ α ∈
⋂

G(Ri).

An immediate consequence of 7.19 is the statement that the group of an inverse
limit of flows is the intersection of the groups of those flows.

We turn now to the task of identifying and constructing icers on M . A key
role is played by a certain subset, P0 of the proximal relation P(M) in M;
intuitively P0 is the subset generated by the pairs of idempotents in M .

Definition 7.20 Let M ⊂ βT be a fixed minimal ideal in βT , G= aut (M),
and J ⊂ M be the set of idempotents in M . Now we define a set P0 ⊂ P(M)

by:

P0 = {(α(u), α(v)) | u, v ∈ J and α ∈ G} = {(p, pv) | v ∈ J and p ∈ M}.
It is easy to see that P0 is an equivalence relation on M × M (though it is
neither closed nor invariant). Our plan is to show that every icer on R on M

is determined by its intersection with P0 and its group G(R); in fact we will
show that:

R = (R ∩ P0) ◦ gr(G(R)). (∗)

By way of motivation we begin with the icer M × M . It follows from 7.4 that
for any (p, q) ∈ M × M , we can write

(p, q) = (α(u), β(v)) = (α(u), βα−1(α(v))),

for some α, β ∈ G and idempotents u, v ∈ J . Now

(α(u), α(v)) ∈ P0 and (α(v), βα−1(α(v))) ∈ gr(βα−1) ⊂ gr(G),

so (p, q) ∈ P0 ◦ gr(G). Thus we have shown that

M × M = P0 ◦ gr(G);
in other words equation (∗) holds for the icer M ×M . The next theorem shows
that (∗) holds in general.

Theorem 7.21 Let R be an icer on M . Then

R = (R ∩ P0) ◦ gr(G(R)) = gr(G(R)) ◦ (R ∩ P0).

PROOF: 1. (R ∩ P0) ◦ gr(G(R)) ⊂ R. (R is transitive)
2. Let (p, q) = (α(u), β(v)) ∈ R.
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3. (p, q)α−1(v) = (α(u)α−1(v), β(v)α−1(v))

= (α(uα−1(v)), β(vα−1(v))) =
3.12

(v, βα−1(v)) ∈ R.

(R is closed and invariant)

4. βα−1 ∈ G(R). (by 3)
5. (α(u), α(v)) = (p, αβ−1(q)) ∈ R ◦ R = R. (by 2, 4, R is transitive)
6. (α(v), β(v)) = (α(v), βα−1(α(v))) ∈ gr(βα−1) ⊂ R. (by 4)
7. (p, q) = (α(u), β(v)) ∈ (P0 ∩ R) ◦ gr(G(R)). (by 5, 6)
8. R = (R ∩ P0) ◦ gr(G(R)). (by 1, 2, 7)
9. gr(G(R)) ◦ (R ∩ P0) = R−1 = R = (R ∩ P0) ◦ gr(G(R)).

(by 8, R is symmetric)

Corollary 7.22 Let R, S be icers on M . Then the following are equivalent:

(a) S ∩ P0 ⊂ R ∩ P0,
(b) S ⊂ R ◦ gr(G(S)), and
(c) πR(G(S)(p)) = πR(pS) for all p ∈ M .

PROOF: (a) =⇒ (b)

1. Assume that S ∩ P0 ⊂ R ∩ P0.
2. S = (S ∩ P0) ◦ gr(G(S)) ⊂ R ◦ gr(G(S)). (by 1, 7.21)

(b) =⇒ (a)

1. Assume that S ⊂ R ◦ gr(G(S)).
2. S ∩ P0 ⊂ (

R ◦ gr(G(S))
) ∩ P0 ⊂ R ∩ P0. (by 1, 7.21)

(a) =⇒ (c)

1. Assume that S ∩ P0 ⊂ R ∩ P0 and let q ∈ pS.
2. (p, q) ∈ S = (S ∩ P0) ◦ gr(G(S)). (by 1, 7.21)
3. There exists v ∈ J and α ∈ G(S) such that (p, pv) ∈ S∩P0 and q = α(pv).

(by 2)
4. (α(p), q) = α(p, pv) ∈ α(S ∩ P0) = S ∩ P0 ⊂ R ∩ P0. (by 1, 3)
5. πR(q) = πR(α(p)) ∈ πR(G(S)(p)). (by 3, 4)
6. πR(pS) ⊂ πR(G(S)(p)). (by 1, 5)

(c) =⇒ (a)

1. Assume that πR(pS) ⊂ πR(G(S)(p)) for all p ∈ M .
2. Let (p, pv) ∈ S ∩ P0.
3. There exists α ∈ G(S) with (α(p), pv) ∈ R. (by 1, 2)
4. α ∈ G(R) and (p, pv) ∈ R. (by 3, 7.21)
5. S ∩ P0 ⊂ R ∩ P0. (by 2, 4)
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The characterization of icers given in 7.21 will play a fundamental role in
our exposition. We mention one important consequence here; namely that any
distal extension (homomorphism) of minimal flows is an open extension.

Proposition 7.23 Let:

(i) R ⊂ S be icers on M , and
(ii) π ≡ πR

S : M/R → M/S be a distal homomorphism.

Then:

(a) R ∩ P0 = S ∩ P0, and
(b) π is an open map.

PROOF: (a) 1. Clearly R ∩ P0 ⊂ S ∩ P0. (by (i))
2. Let α ∈ G and u, v ∈ J with (α(u), α(v)) ∈ S ∩ P0.
3. π (πR(α(u))) = πS(α(u)) = πS(α(v)) = π (πR(α(v))). (by 2, (ii))
4. πR(α(u), α(v)) ∈ πR(P0) ⊂ πR(P (M)) = P(M/R). (by 2, 4.7)
5. πR(α(u)) = πR(α(v)). (by 3, 4, (ii))
6. (α(u), α(v)) ∈ R ∩ P0. (by 2, 5)
7. R ∩ P0 = S ∩ P0. (by 1, 2, 6)

(b) 1. Let U be open in M/R.
2. π−1

R

(
π−1(π(U))

)
= {p ∈ M | π(pR) ∈ π(U)}
= {p ∈ M | π(pR) = π(qR) for some qR ∈ U}
= {p ∈ M | (p, q) ∈ S for some qR ∈ U}
=

7.21
{p ∈ M | (β(p), q) ∈ P0 ∩ S

for some β ∈ G(S) and q ∈ π−1
R (U)}

=
(ii),7.22

{p ∈ M | (β(p), q) ∈ P0 ∩ R

for some β ∈ G(S) and q ∈ π−1
R (U)}

= {p ∈ M | β(p) ∈ π−1
R (U) for some β ∈ G(S)}

= {p ∈ M | p ∈ β(π−1
R (U)) for some β ∈ G(S)}

=
⋃

β∈G(S)

β(π−1
R (U)).

3. π−1
R

(
π−1(π(U))

)
is open. (by 1, 2)

4. π−1(π(U)) is open. (by 3)
5. π(U) is open. (by 4)

We will study distal extensions in more detail in section 18; in particular we
will show (see 18.5) that for R ⊂ S, the extension M/R → M/S is distal if
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and only if R ∩P0 = S ∩P0. The reader may wish to verify this as an exercise
now since the proof does not rely on any results not yet discussed.

Theorem 7.21 will often allow us to construct icers and hence minimal flows
by manipulating relative products. To facilitate this we present the following
lemma.

Lemma 7.24 Let:

(i) R be an equivalence relation on M ,
(ii) A,B ⊂ G be subgroups of G, and

(iii) A ⊂ aut (R).

Then:

(a) gr(A) ◦ gr(B) = gr(BA),
(b) if AB = BA, then gr(AB) is an equivalence relation on M ,
(c) R ◦ gr(A) = gr(A) ◦ R, and
(d) R ◦ gr(A) is an equivalence relation on M .

PROOF: (a) 1. Let (p, q) ∈ gr(A) ◦ gr(B).
2. There exists r ∈ M with (p, r) ∈ gr(A) and (r, q) ∈ gr(B).
3. There exist α ∈ A and β ∈ B with r = α(p) and β(r) = q. (by 2)
4. (p, q) = (p, β(α(p))) ∈ gr(BA). (by 3)
5. gr(A) ◦ gr(B) ⊂ gr(BA). (by 1, 4)
6. Let (p, β(α(p))) ∈ gr(BA) with α ∈ A and β ∈ B.
7. (p, α(p)) ∈ gr(A) and (α(p), β(α(p))) ∈ gr(B). (by 6)
8. (p, β(α(p))) ∈ gr(A) ◦ gr(B). (by 7)
9. gr(BA) ⊂ gr(A) ◦ gr(B). (by 6, 8)

(b) 1. Assume that AB = BA.
2. AB is a group. (by 1)
3. gr(AB) is an equivalence relation on M . (by 2)

(c) 1. Let (p, r) ∈ R ◦ gr(A).
2. There exists q ∈ M with (p, q) ∈ R and α(q) = r for some α ∈ A. (by 1)
3. (α(p), r) = α(p, q) ∈ R. (α ∈ A ⊂ aut (R) by 2, (iii))
4. (p, α(p))) ∈ gr(A) so (p, r) ∈ gr(A) ◦ R. (by 3)
5. R ◦ gr(A) ⊂ gr(A) ◦ R. (by 1, 4)
6. gr(A) ◦ R = (R ◦ gr(A))−1 ⊂ (gr(A) ◦ R)−1 = R ◦ gr(A). (by 5)
7. R ◦ gr(A) = gr(A) ◦ R. (by 5, 6)

(d) follows immediately from part (c). (by Ex. 6.2)

It is clear from 7.21 that an icer R on M is completely determined by R ∩ P0

and G(R); we make this precise for future reference in the following
proposition.
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Proposition 7.25 Let N, S be icers on M such that:

(i) P0 ∩ S ⊂ P0 ∩ N , and
(ii) G(S) ⊂ G(N).

Then S ⊂ N .

PROOF: S =
7.21

(S ∩ P0) ◦ gr(G(S)) ⊂
(i),(ii)

(N ∩ P0) ◦ gr(G(N)) =
7.21

N.

Clearly we will be interested in how G(R ◦ S) is related to G(R) and G(S)

when R, S and R◦S are icers on M . This question is answered by the following
proposition.

Proposition 7.26 Let R, S be icers on M such that R◦S is an icer on M . Then
G(R ◦ S) = G(R)G(S).

PROOF: 1. R ⊂ R ◦ S and S ⊂ R ◦ S.

2. G(R) ⊂ G(R ◦ S) and G(S) ⊂ G(R ◦ S). (by 1)

3. G(R)G(S) ⊂ G(R ◦ S). (by 2)

4. Let α ∈ G(R ◦ S) and u2 = u ∈ M .

5. (u, α(u)) ∈ R ◦ S = S ◦ R. (by 4)

6. There exists β(v) ∈ M with (u, β(v)) ∈ S and (β(v), α(u)) ∈ R.
(by 5, 7.4)

7. (u, β(u)) = (u, β(v))u ∈ Su ⊂ S and (βα−1(α(v)), α(v)) = (β(v), α(u))

v ∈ Rv ⊂ R. (by 6)

8. β ∈ G(S) and αβ−1 = (βα−1)−1 ∈ G(R). (by 7)

9. α = (αβ−1)β ∈ G(R)G(S). (by 8)

When R and S are icers on M 7.26 can be thought of as giving an obstruction
to R ◦ S being an icer on M . In order for R ◦ S to be an icer, the product
G(R)G(S) = G(R ◦ S) must be a group. This motivates our next result which
gives a sufficient condition for R ◦ S to be an icer.

Proposition 7.27 Let:

(i) R, S be icers on M ,
(ii) G(R)G(S) = G(S)G(R), and

(iii) R ∩ P0 = S ∩ P0.

Then R ◦ S is an icer on M .

PROOF: Since R ◦ S is reflexive, closed and invariant it suffices to show
that R ◦ S = S ◦ R.
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R ◦ S =
7.21

(R ∩ P0) ◦ gr(G(R)) ◦ (S ∩ P0) ◦ gr(G(S))

=
(iii)

(R ∩ P0) ◦ gr(G(R)) ◦ (R ∩ P0) ◦ gr(G(S))

=
(i)

(R ∩ P0) ◦ gr(G(R)) ◦ gr(G(S))

=
7.24

(R ∩ P0) ◦ gr(G(S)G(R))

=
(ii),(iii)

(S ∩ P0) ◦ gr(G(R)G(S))

=
7.24

(S ∩ P0) ◦ gr(G(S)) ◦ gr(G(R))

=
(i)

(S ∩ P0) ◦ gr(G(S)) ◦ (S ∩ P0) ◦ gr(G(R))

=
(iii)

(S ∩ P0) ◦ gr(G(S)) ◦ (R ∩ P0) ◦ gr(G(R))

=
7.21

(S ◦ R).

We end this section with another sufficient condition for R ◦ S to be an icer;
we will use this result in sections 15, 18, and 19.

Proposition 7.28 Let:

(i) R, S be icers on M ,
(ii) G(S) ⊂ aut (R), and

(iii) S ∩ P0 ⊂ R ∩ P0.

Then:

(a) R ◦ S is an icer on M ,
(b) πR(S) is an icer on M/R, and
(c) πS(R) is an icer on M/S.

PROOF: (a) It suffices to show that R ◦ S = S ◦ R.

1. R ◦ S =
7.21

gr(G(R)) ◦ (R ∩ P0) ◦ (S ∩ P0) ◦ gr(G(S)).

=
(iii)

gr(G(R)) ◦ (R ∩ P0) ◦ gr(G(S)).

=
(ii),7.24

gr(G(R)) ◦ gr(G(S)) ◦ (R ∩ P0).

=
7.24

gr(G(S)G(R)) ◦ (R ∩ P0).
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2. S ◦ R =
7.21

gr(G(S)) ◦ (S ∩ P0) ◦ (R ∩ P0) ◦ gr(G(R))

=
(iii)

gr(G(S)) ◦ (R ∩ P0) ◦ gr(G(R))

=
7.21

gr(G(S)) ◦ gr(G(R)) ◦ (R ∩ P0)

=
7.24

gr(G(R)G(S)) ◦ (R ∩ P0).

3. G(R) is a normal subgroup of aut (R). (by 7.10)
4. G(R)G(S) = G(S)G(R). (by 3, (ii))
5. R ◦ S = S ◦ R. (by 1, 2, 4)

Parts (b) and (c) follow from part (a) and 6.11.

NOTES ON SECTION 7

In the body of this section we have identified a minimal flow with an object in
the category M, of icers on M . Following the treatment in [Ellis (1969)], one
can instead identify a minimal flow with an object in the category al(M), of
T -invariant uniformly closed subalgebras of C(M) where

C(M) = {f :M → R | f is continuous}.
We now examine a few of the key ideas in this section from this point of
view. The objects in the two categories are related by the following propo-
sition which is an immediate consequence of the Stone-Weierstrass theorem.
(see [Rudin, Walter (1953)])

Note 7.N.1 For every R ∈ obj (M) and A ∈ al(M) let

(i) al(R) = {f ∈ C(M) | f (x) = f (y) for all (x, y) ∈ R}, and
(ii) R(A) = {(x, y) ∈ M × M | f (x) = f (y) for all f ∈ A}.

Then the map obj (M)→al(M)

R →al(R)

is bijective, with inverse al(M)→obj (M)

A → R(A)

.

We now describe the group G(R) of an icer on M in terms of the subalgebra
al(R) ⊂ C(M). We begin with a preliminary lemma.

Note 7.N.2 Let f, g ∈ Hom(M,X) with X minimal. Then:

(a) there exists α ∈ G with f = g ◦ α,
(b) G(Rf ) = {β ∈ G | fβ = f }, and
(c) G(Rf ) = α−1G(Rg)α.
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PROOF: (a) 1. Let S be an icer on M with X = M/S.
2. There exist β, γ ∈ G with β(�) ⊂ S, γ (�) ⊂ S and f ◦ π� = πS ◦ β,
g ◦ π� = πS ◦ γ . (by 7.6)
3. f = πS ◦ β = (πS ◦ γ ) ◦ (γ −1β) = g ◦ (γ −1β). (by 2)

(b) 1. Let γ ∈ G(Rf ).
2. gr(γ ) ⊂ Rf .
3. f (p) = f (γ (p)) for all p ∈ M . (by 2)
4. f = f ◦ γ . (by 3)
5. Let γ ∈ G with f γ = f .
6. f (p) = f (γ (p)) for all p ∈ M . (by 5)
7. (p, γ (p)) ∈ Rf . (by 6)

(c) γ ∈ G(Rf ) ⇐⇒ f γ = f ⇐⇒ g ◦ α ◦ γ = g ◦ α

⇐⇒ g ◦ (α ◦ γ ◦ α−1) = g ⇐⇒ α ◦ γ ◦ α−1 ∈ G(Rg)

⇐⇒ γ ∈ α−1G(Rg)α.

Note 7.N.3 Let R be an icer on M and A = al(R). Then

G(R) = {α | f α = f for allf ∈ A} ≡ B.

PROOF: 1. Let α ∈ G(R), and f ∈ A.
2. gr(α) ⊂ R. (by 1)
3. f (x) = f (α(x)) for all f ∈ A and x ∈ M . (by 2, A = al(R))
4. α ∈ B. (by 3)
5. Now let α ∈ B, and x ∈ M .
6. f (α(x)) = f (x) for all f ∈ A. (by 5)
7. (x, α(x)) ∈ R. (by 6)
8. gr(α) ⊂ R. (by 5, 7)
9. α ∈ G(R). (by 8)

The preceding result shows that the definition of the group G(R) associated
to the flow (M/R, T ) coincides with the group of the flow associated to the
corresponding algebra A as defined in [Ellis, R., (1969)]. We end the notes on
this section with the observation that the inf of two icers (which is their relative
product when it’s an icer) corresponds to the intersection of the corresponding
subalgebras of C(M).

Note 7.N.4 Let:

(i) R, S be icers on M , and
(ii) A = al(R) and B = al(S).

Then al(inf(R, S)) = A ∩ B.
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PROOF: 1. Let C ≡ al(inf(R, S)).
2. R, S ⊂ inf(R, S).
3. C ⊂ A ∩ B. (by 1, 2, and 7.N.1)
4. R = R(A) ⊂ R(A ∩ B) and S = R(B) ⊂ R(A ∩ B). (by 7.N.1)
5. inf(R, S) ⊂ R(A ∩ B). (by 4)
6. A ∩ B ⊂ al(inf(R, S)) = C. (by 5)

EXERCISES FOR CHAPTER 7

Exercise 7.1 (See 7.16) Let R be an icer on M and α ∈ G. Show that

(a) α(R) is an icer on M , and
(b) G(α(R)) = αG(R)α−1.

Exercise 7.2 Let R be an icer. Then

G(R) = {α ∈ G | (1 × α)(R) ⊂ R} = {α ∈ G | (1 × α)(R) = R}.
Exercise 7.3 Let R be an icer on M . Then

R = {(α(u), β(v)) | αβ−1 ∈ G(R), (u, v) ∈ (J × J ) ∩ α−1(R)}.
Exercise 7.4 Let R be an icer on M . Then R = ⋃

α∈G(R)

(1 × α)(R ∩ P0).

Exercise 7.5 Suppose that R is an icer on M; given the results of Ex. 7.3 and
Ex. 7.4 it is natural to consider the relations

RH = {(α(u), β(v)) | αβ−1 ∈ H, (u, v) ∈ (J × J ) ∩ α−1(R) ∩ β−1(R)}
and

RH =
⋃
α∈H

(1 × α)(R ∩ P0)

where H is a subgroup of G. Note that if H = G(R), then Ex. 7.3 and Ex.
7.4 imply that RH = R = RH . In general RH and RH need not be equal, and
neither are icers. Prove the following:

(a) RH ⊂ RH ,
(b) if H ⊂ aut (R), then RH = RH is an equivalence relation, and
(c) if G(R) ⊂ H , then RH = ⋃

α∈H

(1 × α)(R).

Exercise 7.6 Complete the proof of proposition 7.10.

Exercise 7.7 Let R, S be icers on M . Then:
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(a)
⋃

α∈G(S)

(1 × α)(R) ⊂ R ◦ S, and

(b) if S ∩ P0 ⊂ R ∩ P0, then R ◦ S = ⋃
α∈G(S)

(1 × α)(R).

Exercise 7.8 (A partial converse to 7.24) Let:

(i) R ⊂ P0 be an equivalence relation on M ,
(ii) A be a subgroup of G, and

(iii) R ◦ gr(A) = gr(A) ◦ R.

Then A ⊂ aut (R). (In particular G(R) ⊂ aut (R ∩ P0) for any icer R.)

Exercise 7.9 Let:

(i) R, S be icers on M , and
(ii) N be an icer on M with R ∪ S ⊂ N .

Then we can form the commutative diagram

(πR × πS)(N) ⊂ M/R × M/S → M/S

↓ ↓ πS
N

M/R
πR

N→ M/N

and (πR × πS)(N) is minimal if and only if N = R ◦ S.

Exercise 7.10 Let:

(i) R, S be icers on M , and
(ii) N = inf(R, S).

Then G(N) = G(R)G(S) if and only if (πR × πS)(N) contains only one
minimal set.
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Regular flows

Regular flows were introduced in [Auslander, J., Regular minimal sets, 1966].
The original definition is motivated by the idea that regular flows are those
which admit as many automorphisms as possible. Indeed for a regular flow, its
group of automorphisms, Aut(X), acts almost transitively in the sense that for
any p, q ∈ X there exists an α ∈ Aut(X) such that α(p) is proximal to q. Here
we focus on the icer R on the universal minimal ideal M , writing X = M/R.
In this context it is natural to consider those icers for which aut (R) = G,
which motivates our definition of a regular flow.

Definition 8.1 Let R be an icer on M . We say that R is regular if α(R) = R

for every α ∈ G. Thus R is regular if and only if aut (R) = G (see 7.9). We
also refer to the flow X = M/R as a regular flow.

We begin with a few immediate consequences of the definition.

Proposition 8.2 Let:

(i) R be an icer on M , and
(ii) α(R) ⊂ R for all α ∈ G.

Then:

(a) R is regular, and
(b) G(R) is a normal subgroup of G.

PROOF: (a) 1. R = α(α−1(R)) ⊂ α(R) for all α ∈ G. (by (ii))
2. R = α(R) for all α ∈ G. (by 1, (ii))

(b) R is regular so aut (R) = G, and hence G(R) is a normal subgroup
of G. (by 7.10)

For a given minimal flow (X, T ), there may be many icers R on M with
M/R ∼= X. The flows for which R is unique are exactly the regular flows,
as shown in the next proposition.
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Proposition 8.3 Let:

(i) R and S be icers on M ,
(ii) R be regular, and

(iii) ϕ : M/R → M/S be a homomorphism.

Then:

(a) R ⊂ S, and
(b) if ϕ is one-one, then R = S.

PROOF: (a) 1. There exists α ∈ G with α(R) ⊂ S. (by (ii), 7.6)
2. R ⊂ S. (by 1, (iii))

(b) 1. Assume that ϕ is one-one.
2. ϕ−1:M/S → M/R is a homomorphism. (by 1)
3. There exists α ∈ G with α(S) ⊂ R. (by 7.6)
4. R ⊂

(a)
S ⊂

3
α−1(R) =

(iii)
R.

Given any icer R on M we construct the largest regular icer reg(R) ⊂ R, the
so-called regularizer of R.

Definition 8.4 Let R be an icer on M . The regularizer of R is defined by

reg(R) =
⋂
α∈G

α(R).

When X = M/R we will write reg(X) = M/reg(R).

It is clear from the definition that aut (reg(R)) = G so that reg(R) is a regular
icer on M . We now show that when R is an icer the flow reg(M/R) can be
identified with a minimal ideal in the enveloping semigroup of M/R.

Proposition 8.5 Let:

(i) R be an icer and X = M/R,
(ii) �X: βT → E(X) the canonical map,

(iii) I (X) = �X(M), and
(iv) N = R�X

≡ {(p, q) ∈ M × M | �X(p) = �X(q)}.
Then N = reg(R) and hence I (X) = reg(X).

PROOF: Proof that N ⊂ reg(R):
1. Let (p, q) ∈ N , α ∈ G, and u ∈ J .
2. πR(α(p)) = πR(α(up)) = πR(α(u)p) =

2.9
πR(α(u))�X(p)

= πR(α(u))�X(q) = πR(α(u)q) = πR(α(uq)) = πR(α(q)).
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3. (α(p), α(q)) ∈ R. (by 2)
4. (p, q) ∈ reg(R). (by 1, 3)

Proof that reg(R) ⊂ N :

1. Let (p, q) ∈ reg(R) and x ∈ X.
2. There exists α ∈ G and u ∈ J with πR(α(u)) = x.
3. x�X(p) = πR(α(u))�X(p) = πR(α(p))=

1
πR(α(q)) = x�X(q).

4. �X(p) = �X(q). (by 1, 3)
5. (p, q) ∈ N . (by 1, 4)

Applying 8.5 in the case where R is a regular icer on M , so that R = reg(R),
we see that X ∼= I (X) = �X(M). Here X = M/R and �X: βT → E(X)

is the canonical map. As a result X inherits a semigroup structure which is
given by:

πR(p)πR(q) = πR(pq),

for all p, q ∈ M . The semigroup X has a structure analogous to that of the
universal minimal flow M; we state this precisely in the following propositions.

Proposition 8.6 Let:

(i) R be a regular icer on M , and
(ii) X = M/R.

Then:

(a) X has a semigroup structure for which πR: M → X is both a flow and a
semigroup homomorphism, in particular πR(p)πR(q) = πR(pq), for all
p, q ∈ M .

(b) the maps Lx : X → X

y → xy

are flow homomorphisms for all x ∈ X.

In particular X is an E-semigroup (see Ex. 2.3 and Ex. 3.4).

PROOF: This follows immediately from 8.5 and 2.9.

We saw in 7.4 that the elements of M can be written uniquely in the form α(u)

where α ∈ G and u is an idempotent in M; the analogous statement holds for
the elements of a regular flow X. In order to state this result and some of its
consequences we introduce some notation.

Notation 8.7 Let R be an icer on M and X = M/R. When X is regular, the
group Aut(X) of automorphisms of X will often be denoted GX. The collec-
tion of idempotents in X will be denoted JX = {u ∈ X | u2 = u}.
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We proceed with a series of results which show that when X is a regular
minimal flow, the pair {X,GX} has properties analogous to those of the pair
{M,G}.
Proposition 8.8 Let:

(i) X = M/R be a regular flow, and
(ii) JX = {u ∈ X | u2 = u}.
Then:
(a) the map Gx → Xu is an isomorphism of groups for every u ∈ JX, and

α → α(u)

(b) the map ϕ: Gx × JX → X is bijective. Thus any element of X can be
(α, u) → α(u)

written uniquely in the form α(v) for some α ∈ GX and v ∈ JX.

PROOF: We leave this to the reader (compare 7.4).

Proposition 8.9 Let X be a minimal flow. Then the following are equivalent:

(a) X is regular,
(b) Y ⊂ X × X is minimal if and only if Y = gr(β) for some β ∈ Aut(X)

(compare 7.5), and
(c) for any x, y ∈ X there exists β ∈ Aut(X) such that β(x) is proximal to y.

PROOF: We leave the proof as an exercise for the reader.

In section 7 we developed the machinery which allows us to analyze the factors
of M (all minimal flows) using the icers on M and the subgroups of the group
G of automorphisms of M . The structure of any regular flow X allows for the
same treatment of the factors of X in terms of the icers on X and the subgroups
of the group GX of automorphisms of X. In order to outline these ideas we
introduce some additional notation.

Definition 8.10 Let X = M/R be a regular flow. Let N be an icer on X. We
define the X-group of N by

GX(N) = {α ∈ GX | gr(α) ⊂ N}.

We will also use the notation

autX(N) ≡ {α ∈ GX | α(N) = N}.

As in 7.10, GX(N) is a normal subgroup of autX(N). For reference we restate
proposition 7.10 here using the current notation.
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Proposition 8.11 Let X = M/R be a regular flow. Then there exists a group
epimorphism

χR: G = aut (R) → GX

such that:

(a) πR(α(p)) = χR(α)(πR(p)) for all p ∈ M and α ∈ aut (R),
(b) ker(χR) = G(R), and
(c) GX

∼= G/G(R).

The next three results explore the naturality of these constructions with respect
to the map χR . The following definition will be used in later sections; the
naturality results can easily be extended to the map χR

S .

Definition 8.12 Let X = M/R and Y = M/S be regular flows with R ⊂ S.
Then the (canonical) map of GX

∼= G/G(R) onto GY
∼= G/G(S) induced by

the inclusion G(R) ⊂ G(S) will be denoted χR
S . Thus χR

S ◦ χR = χS .

Proposition 8.13 Let:

(i) X = M/R be a regular flow,
(ii) N be an icer on X, and

(iii) S = π−1
R (N).

Then:

(a) S is an icer on M ,
(b) M/S ∼= X/N , and
(c) χR(G(S)) = {α ∈ GX | gr(α) ⊂ N} ≡ GX(N).

PROOF: (a) and (b) are simply 7.2 in the case where R is regular.
(c) Proof that χR(G(S)) ⊂ GX(N):

1. Let α ∈ G(S) and x ∈ X.
2. There exists p ∈ M with πR(p) = x.
3. (p, α(p)) ∈ S. (by 1)
4. (x, χR(α)(x)) =

2
(πR(p), χR(α)(πR(p)))

=
8.11

(πR(p), πR(α(p))) = πR(p, α(p))∈
3

πR(S) =
(iii)

N.

5. χR(α) ∈ GX(N). (by 1, 4)

Proof that GX(N) ⊂ χR(G(S)):

1. Let γ ∈ GX(N) and p ∈ M .
2. There exists α ∈ G with χR(α) = γ . (by 8.11)
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3. πR(p, α(p)) = (πR(p), πR(α(p))) =
2,8.11

(πR(p), γ (πR(p)))∈
1

N .

4. (p, α(p))∈
3

π−1
R (N) =

(iii)
S.

5. γ =
2

χR(α)∈
4
χR(G(S)).

Corollary 8.14 Let:

(i) X = M/R be a regular flow,
(ii) N be an icer on X,

(iii) S = π−1
R (N), and

(iv) autX(N) = {α ∈ GX | α(N) = N}.
Then χR(aut (S)) = autX(N).

PROOF: Similar to 8.13.

Corollary 8.15 Let:

(i) X = M/R be a regular flow,
(ii) N be an icer on M , and

(iii) πR(N) be an icer on X.

Then χR(G(N)) = GX(πR(N)) ≡ {α ∈ GX | gr(α) ⊂ πR(N)}.
PROOF: Set S = π−1

R (πR(N)) =
6.4

R ◦ N ◦ R.

Proof that χR(G(N)) ⊂ GX(πR(N)):

1. N ⊂ S.
2. G(N) ⊂ G(S). (by 1)
3. χR(G(N)) ⊂ χR(G(S)) = GX(πR(N)). (by 2, 8.13)

Proof that GX(πR(N)) ⊂ χR(G(N)):

1. GX(πR(N)) =
8.13

χR(G(S)) = χR(G(R◦N◦R)) ⊂ χR(G(R)G(N)G(R)) =
χR(G(N)).

(We leave it to the reader to check that G(R ◦ N ◦ R) ⊂ G(R)G(N)G(R).)

We end this section with a generalization of the notion of regular flows to
homomorphisms (extensions) of minimal flows which will be useful in part V.

Definition 8.16 Let πR
S : M/R → M/S be the canonical homomorphism of

minimal flows where R ⊂ S are icers on M . We say that πR
S is regular homo-

morphism and that R ⊂ S is a regular extension if G(S) ⊂ aut (R).
Note that if S = M×M , then G(S) = G, so that M/R is a regular extension

of the point flow if and only if R is a regular icer. A construction analogous
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to that of the regularizer associates to any extension a corresponding regular
extension.

Proposition 8.17 Let:

(i) N ⊂ S be icers on M , and
(ii) R = ⋂

α∈G(S)

α(N).

Then πR
S is regular (R ⊂ S is a regular extension).

PROOF: Straighforward.

Proposition 8.18 Let:

(i) R ⊂ S be icers on M , and
(ii) π ≡ πR

S : X ≡ M/R → M/S.

Then the following are equivalent:

(a) R ⊂ S is regular,
(b) Y ⊂ πR(S) is minimal if and only if Y = gr(β) for some β ∈ Aut(X),

and
(c) for any y ∈ π−1π(x) ⊂ X there exists β ∈ Aut(X) such that β(x) is

proximal to y.

PROOF: We leave the proof as an exercise for the reader.

NOTES ON SECTION 8

Note 8.N.1 A close reading of section 7 reveals that none of the results depend
on any special property of M other than regularity. This suggests that they
remain valid when M is replaced by an arbitrary regular minimal flow. We have
touched on this in 8.8, 8.9, and 8.10. For emphasis and to be more specific: Let
Z be a regular minimal flow. Then mimicking 7.1 we define the category Z:

obj (Z) ≡ icers on Z

morph(Z) =
{{πR

S } if R ⊂ S are icers on Z,

∅ otherwise.

Here πR
S is the canonical map Z/R → Z/S when R ⊂ S.

Other relevant definitions and notation:

1. GZ ≡ the set of automorphisms of Z.
2. Let R be an icer on Z. Then:
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2.1. the Z-group of R is defined by GZ(R) = {α ∈ GZ | gr(α) ⊂ R}.
(as in 8.10)
2.2. autZ(R) ≡ {α ∈ GZ | α(R) = R}. (again as in 8.10)
2.3. R is Z-regular if autZ(R) = GZ .
2.4. πR: Z → Z/R denotes the canonical map.

Finally all the results of sections 8 and 9 remain valid if the category M
and related concepts are replaced be the category Z and the concepts defined
above. Moreover these constructions behave naturally with respect to the canon-
ical projection map (see for example 8.13, 8.14, and 8.15).

EXERCISES FOR CHAPTER 8

Exercise 8.1 Let R be an icer on M and α ∈ G. Then α(pR) = α(p)(α(R)).
In particular if R is regular, then α(pR) = α(p)R.

Exercise 8.2 (See 8.9) Let X be a minimal flow. Then the following are equiv-
alent:

(a) X is regular,
(b) Y ⊂ X × X is minimal if and only if Y = gr(β) for some β ∈ Aut(X),

and
(c) for any x, y ∈ X there exists β ∈ Aut(X) such that β(x) is proximal to y.

Exercise 8.3 (See 8.15) Let:

(i) X = M/R be a regular flow,
(ii) N be an icer on M , and

(iii) πR(N) be an icer on X.

Show that G(R ◦ N ◦ R) ⊂ G(R)G(N)G(R).

Exercise 8.4 (See 8.18) Let:

(i) R ⊂ S be icers on M , and
(ii) π ≡ πR

S : X ≡ M/R → M/S.

Then the following are equivalent:

(a) R ⊂ S is regular,
(b) Y ⊂ πR(S) is minimal if and only if Y = gr(β) for some β ∈ Aut(X),

and
(c) for any y ∈ π−1π(x)(π (x)) ⊂ X there exists β ∈ Aut(X) such that β(x)

is proximal to y.
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The quasi-relative product

The definition of the quasi-relative product given below is motivated by the fact
that when R and S are closed equivalence relations on X, the relative product
R ◦ S, though closed, may not be an equivalence relation. The quasi-relative
product R(S), while not always closed, is the largest equivalence relation N

with R ⊂ N ⊂ R◦S. In 9.8, we show that when the projection map πR is open,
R(S) is closed. Under the same assumption we show in 9.9, that (X/R(S), T )

is a quasi-factor of X/S. That is, (X/R(S), T ) is isomorphic to a sub-flow of
(2X/S, T ). This motivates the use of the term quasi-relative product.

At the end of this section we use the quasi-relative product to give a proof
that if R is an icer on a minimal flow such that (R, T ) is both pointwise almost
periodic and topologically transitive, then R = �. This result (which is equiva-
lent to the generalized Furstenberg structure theorem for distal extensions) was
proven for metric flows in 4.19, and will be discussed further in section 20. We
will also use the quasi-relative product in section 17 as a means of studying
so-called RIC extensions of minimal flows.

We begin this section by deriving some properties of the quasi-relative prod-
uct and using them to give conditions under which the relative product of two
equivalence relations is an equivalence relation. As in section 6 which dealt
with the relative product, many results in this section are stated for equivalence
relations on any compact Hausdorff space X. If (X, T ) is a flow and the equiva-
lence relations are invariant under the action of T , then the results remain valid.

In order to state the definition of the quasi-relative product we recall the
notation introduced in 6.1; namely if R is a relation on X, then

xR = {y ∈ X | (x, y) ∈ R},
denotes the R-cell containing x.

Definition 9.1 Let R and S be any relations on X. We define the quasi-relative
product of R and S

111
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R(S) = {(p, q) ∈ X × X | p(R ◦ S) = q(R ◦ S)}.

It is immediate from the definition that even when neither R nor S is an equiv-
alence relation, R(S) is an equivalence relation. When S is an equivalence
relation on X note that

z ∈ p(R ◦ S) ⇐⇒ there exists x ∈ pR with (x, z) ∈ S ⇐⇒ πS(z) ∈ πS(pR).

Thus in this case p(R ◦ S) = π−1
S (πS(pR)), which proves the following

lemma.

Lemma 9.2 Let:

(i) X be a compact Hausdorff space,
(ii) R be any relation on X, and
(ii) S be an equivalence relation on X.

Then R(S) = {(p, q) | πS(pR) = πS(qR)}.
The elementary properties of the quasi-relative product are readily deduced
from those of the relative product. In section 6 (see 6.3) we observed that for
any two relations, x(R ◦S) = (xR)S; since we will refer to this fact frequently
we state it explicitly as part of the next lemma.

Lemma 9.3 Let:

(i) (X, T ) be a flow,
(ii) R, S be subsets of X × X,

(iii) t ∈ T , and
(iv) z ∈ X.

Then:

(a) (zR)t = (zt)(Rt), and
(b) (zR)S = z(R ◦ S).

PROOF: We leave this as an exercise for the reader.

The quasi-relative product R(S) is the largest equivalence relation which con-
tains R and is contained in R ◦ S. We deduce this and a couple of elementary
consequences before examining the question of when R(S) is closed.

Proposition 9.4 Let:

(i) (X, T ) be a flow,
(ii) H ⊂ T be a subgroup of T , and

(iii) R, S be H -invariant equivalence relations on X.
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Then:

(a) R(S) is an H -invariant equivalence relation on X,
(b) R ⊂ R(S) ⊂ R ◦ S, and
(c) R(S) = R ◦ (R(S) ∩ S) = (R(S) ∩ S) ◦ R.

PROOF: (a) 1. R(S) is clearly reflexive, symmetric, and transitive.

2. Let (p, q) ∈ R(S) and t ∈ H .
3. (pt)(R ◦ S) = (pt)(Rt ◦ St) =

9.3
((pt)(Rt))(St) =

9.3
((pR)t)(St)

=
9.3

((pR)S)t = (p(R ◦ S))t =
2
(q(R ◦ S))t =

9.3,(iii)
(qt)(R ◦ S).

4. (pt, qt) ∈ R(S). (by 3)

(b) 1. (p, q) ∈ R(S) ⇒ p(R ◦ S) = q(R ◦ S) ⇒ q ∈ p(R ◦ S) ⇒ (p, q) ∈
R ◦ S.

2. Let (p, q) ∈ R.

3. pR = qR. (by 2, R is transitive)

4. p(R ◦ S) = (pR)S = (qR)S = q(R ◦ S). (by 3, 9.3)

5. (p, q) ∈ R(S). (by 4)

(c) 1. The fact that R ◦ (R(S) ∩ S) ⊂ R(S) follows from parts (a) and (b).

2. Let (p, q) ∈ R(S).

3. p(R ◦ S) = q(R ◦ S). (by 2)

4. q ∈ p(R ◦ S).

5. There exists x ∈ X with (p, x) ∈ R and (x, q) ∈ S. (by 4)

6. x(R ◦ S) =
5

p(R ◦ S) =
3

q(R ◦ S).

7. (x, q) ∈ R(S) ∩ S. (by 5, 6)

8. (p, q) ∈ R ◦ (R(S) ∩ S). (by 5, 7)

9. R(S) = R ◦ (R(S) ∩ S). (by 1, 2, 8)

10. R ◦ (R(S) ∩ S) = (R(S) ∩ S) ◦ R. (by 9, and part (a))

Proposition 9.5 Let:

(i) X be a compact Hausdorff space,
(ii) R, S, and K be equivalence relations on X, and

(iii) R ⊂ K ⊂ R ◦ S.

Then K ⊂ R(S).

PROOF: 1. K ◦ R ◦ S =
(ii),(iii)

K ◦ S ⊂
(iii)

R ◦ S ◦ S =
(ii)

R ◦ S.

2. Let (p, q) ∈ K .
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3. p(R ◦ S) =
1

p(K ◦ (R ◦ S)) =
9.3

(pK)(R ◦ S) =
2,(i)

(qK)(R ◦ S)

=
9.3

q(K ◦ (R ◦ S)) =
2

q(R ◦ S).

4. (p, q) ∈ R(S). (by 3)

Corollary 9.6 Let:

(i) X be a compact Hausdorff space,
(ii) R, S, and K be equivalence relations on X,

(iii) K ⊂ S, and
(iv) R ◦ K be an equivalence relation.

Then K ⊂ R(S).

PROOF: Applying 9.5 to R ◦ K we obtain K ⊂ R ◦ K ⊂ R(S).

Corollary 9.7 Let R and S be equivalence relations on X. Then the following
are equivalent:

(a) S ⊂ R(S),
(b) R(S) = R ◦ S, and
(d) R ◦ S is an equivalence relation.

PROOF: (a) ⇒ (b)
1. Assume that S ⊂ R(S).
2. R ◦ S ⊂ R(S) ⊂ R ◦ S. (by 1, 9.4)

(b) ⇒ (c)

1. Assume that R(S) = R ◦ S.
2. R ◦ S is an equivalence relation. (by 9.4)

(c) ⇒ (a)

1. Assume that R ◦ S is an equivalence relation.
2. S ⊂ R(S). (by 1, and 9.6 with K = S)

As we have seen the quasi-relative product of two equivalence relations is an
equivalence relation. In general R(S) need not be closed even when both R

and S are closed. We will often make use of the fact, proven in the following
proposition, that if the canonical projection map associated to R is an open
mapping, then R(S) is closed.

Proposition 9.8 Let:

(i) R and S be closed equivalence relations on X, and
(ii) π : X → X/R (the canonical projection) be an open map.

Then R(S) is closed.
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PROOF: 1. Let (x, z) ∈ R(S).
2. Let y ∈ x(R ◦ S).
3. There exists p ∈ X with (x, p) ∈ R and (p, y) ∈ S. (by 2)
4. Let V and W be open neighborhoods of p and z respectively.
5. π(V ) is an open neighborhood of π(p) = π(x) in X/R. (by 3, 4, (ii))
6. π−1(π(V )) is an open neighborhood of x in X. (by 5)
7. There exists an open neighborhood U of x with π(U) ⊂ π(V ). (by 6)
8. There exists (xU , zW ) ∈ (U × W) ∩ R(S). (by 1, 4, 7)
9. There exists xV ∈ V with π(xV ) = π(xU). (by 7, 8)
10. xV (R ◦ S) = (xV R)S =

9
(xUR)S = xU (R ◦ S) =

8
zW (R ◦ S).

11. (zW , xV ) ∈ R ◦ S. (by 10, (i))
12. (z, p) ∈ R ◦ S = R ◦ S. (by 4, 8, 9, 11, (i))
13. (z, y) ∈ R ◦ S ◦ S = R ◦ S. (by 3, 12, (i))
14. y ∈ z(R ◦ S). (by 13)
15. x(R ◦ S) ⊂ z(R ◦ S). (by 2, 14)
16. z(R ◦ S) ⊂ x(R ◦ S). (by 1-15 with the roles of x and z interchanged)
17. (x, z) ∈ R(S). (by 15, 16)

Our use of the terminology quasi-relative product for R(S) is motivated by the
fact that under certain assumptions the flow X/R(S) is a quasi-factor of the
flow X/S. Keeping in mind that R(S) is invariant if R and S are invariant this
amounts to showing that there is a homomorphism of flows ψ : X → 2X/S with
R(S) = {(x, y) | ψ(x) = ψ(y)}.
Proposition 9.9 Let:

(i) (X, T ) be a flow,
(ii) R and S be icers on X,

(iii) πR : X → X/R and πS : X → X/S be the canonical maps, and
(iv) πR be open.

Then the map

ψ : X → 2X/S

x → [πS(xR)]

is a flow homomorphism which induces an isomorphism of X/R(S) onto a
subflow of 2X/S .

PROOF: 1. The map σ : X → 2X/R

x → [{πR(x)}]
is continuous. (by 5.6)

2. π∗
R is continuous. (by (iv), 5.7)
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3. ψ = 2πS ◦ π∗
R ◦ σ is a homomorphism of flows. (by 2, 5.5)

4. R(S) =
9.2

{(x, y) | πS(xR) = πS(yR)} = {(x, y) | ψ(x) = ψ(y)}.

Note that the argument given in 9.9 applies when there is no T -action on X,
producing a continuous map ψ : X → 2X/S with R(S) = {(x, y) | ψ(x) =
ψ(y)}. In particular this shows that R(S) is closed, giving an alternative proof
of 9.8.

We will need to use the quasi-relative product to construct metrizable flows.
As long as X/S is metrizable it follows from 9.9 that X/R(S) is metrizable.

Corollary 9.10 Let:

(i) X be a compact Hausdorff space,
(ii) R and S be icers on X,

(iii) X → X/R be an open map, and
(iii) X/S be metrizable.

Then X/R(S) is metrizable.

PROOF: This follows immediately from 9.9 and the fact that 2X/S is
metrizable. (by Ex. 5.4)

We saw in section 6 that the relative product construction commutes with this
inverse limit construction. We wish to prove that the same is true for the quasi-
relative product. Recall from 6.15 that

⋂
i∈I

(R ◦ Si) = R ◦
(⋂

i∈I

Si

)

from which we deduced that under appropriate assumptions:

lim← X/(R ◦ Si) ∼= X/
(
R ◦

⋂
Si

)
.

Here we prove the corresponding results for the quasi-relative product.

Proposition 9.11 Let:

(i) R be a closed equivalence relation on X, and
(ii) {Si | i ∈ I } be a filter base of closed equivalence relations on X.

Then:

(a) R

(⋂
i∈I

Si

)
= ⋂

i∈I

R(Si), and

(b) lim← X/R(Si) ∼= X/R(
⋂

Si).
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PROOF: (a) We leave it to the reader to check that S1 ⊂ S2 =⇒ R(S1) ⊂
R(S2), from which it follows immediately that R

(⋂
i∈I

Si

)
⊂ ⋂

i∈I

R(Si).

Proof that
⋂
i∈I

R(Si) ⊂ R

(⋂
i∈I

Si

)
:

1. R(Si) is an equivalence relation with R ⊂ R(Si) ⊂ R ◦ Si . (by 9.4)
2.

⋂
i∈I

R(Si) is an equivalence relation with R ⊂ ⋂
i∈I

R(Si) ⊂ ⋂
i∈I

R ◦ Si =

R ◦
(⋂

i∈I

Si

)
. (by 1, 6.15)

3.
⋂
i∈I

R(Si) ⊂ R

(⋂
i∈I

Si

)
. (by 2, 9.5)

(b) This follows immediately from part (a) and 6.14.

We end this section with a proof that the diagonal is the only icer on a minimal
flow which is both pointwise almost periodic and topologically transitive. As
we have seen this follows immediately from 4.19 in the case of a metric flow.
The result in the general case also uses 4.19, but since 4.19 only applies to
metric flows, the proof requires a technical lemma relating the general case to
the metric case. The idea behind this lemma is that if L is a topologically tran-
sitive pointwise almost periodic icer on X, then the extension X → X/L can
be “shadowed” by a metric extension of the same type, though we may have to
restrict ourselves to a countable subgroup of T . In fact if we are given homo-
morphisms of minimal T -flows with X/N metrizable and (L, T ) topologically
transitive:

X → X/N

↓
X/L

then there exists a countable subgroup H ⊂ T , an icer N∞ on X, and a
commutative diagram of minimal H -flows such that X/N∞ is metrizable and
(πN∞(L),H) is topologically transitive:

X → X/N∞ → X/N

↓ ↓
X/L → X/(L ◦ N∞).

The extension X → X/L can be shadowed closely in the sense that an N∞
with these properties can be found for any N with X/N metrizable. The proof
of this lemma relies on a technical construction involving inverse limits, rel-
ative products, and quasi-relative products. The reader interested primarily in
the metric case may wish to skip the technical details of 9.12 and 9.13. The
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details of the shadowing lemma are laid out below; a close inspection reveals
that the assumption that L ⊂ X×X is pointwise almost periodic (equivalently,
by 4.15, X → X/L is a distal homomorphism) can be weakened slightly to
the assumption that X → X/L is an open map.

Lemma 9.12 Let:

(i) X be a minimal flow,
(ii) L be an icer on X,

(iii) X → X/L be an open mapping,
(iv) L be topologically transitive, and
(v) N be a closed equivalence relation on X with X/N metrizable.

Then there exists a countable subgroup H ⊂ T and a closed equivalence rela-
tion N∞ on X such that:

(a) N∞ ⊂ N ,
(b) N∞H = N∞,
(c) (X/N∞,H) is minimal and metrizable,
(d) L ◦ N∞ is a H -invariant closed equivalence relation on X, and
(e) the flow (πN∞(L),H) is topologically transitive.

In other words assume that we are given homomorphisms of minimal T -flows
with X/N metrizable and (L, T ) topologically transitive:

X → X/N

↓
X/L

then there exists a countable subgroup H ⊂ T and a commutative diagram of
minimal H -flows such that X/N∞ is metrizable and (πN∞(L),H) is topolog-
ically transitive:

X → X/N∞ → X/N

↓ ↓
X/L → X/(L ◦ N∞).

PROOF: (a), (b), and (c) 1. Let U0 and V0 be countable bases for the topolo-
gies on X/N and πN(L) ⊂ X/N × X/N respectively.
2. π−1

N (U) is open in X for every U ∈ U0.
3. For every U ∈ U0 there exists a finite set FU ⊂ T with π−1

N (U)FU = X.
(by 2, (i))

4. For every pair V1, V2 ∈ V0 there exists t(V1,V2) ∈ T with

π−1
N (V1)t(V1,V2) ∩ π−1

N (V2) ∩ L 
= ∅. (by 1, (iv))
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5. Let T1 be the subgroup of T generated by⋃
{FU | U ∈ U0} ∪ {t(V1,V2) | V1, V2 ∈ V0}.

6. Then:
6.1 T1 is countable. (by 1, 3, 4, 5)
6.2 π−1

N (W)T1 = X for all open sets ∅ 
= W ⊂ X/N . (by 1, 3, 5)
6.3 π−1

N (V1)T1 ∩ π−1
N (V2) ∩ L 
= ∅ for any pair of nonvacuous open sets

V1, V2 ⊂ πN(L). (by 1, 4, 5)
7. Let N ′

1 = ⋂
t∈T1

Nt .

8. Set N1 = L(N ′
1) ∩ N ′

1 ⊂ N ′
1 ⊂ N .

9. N1 is a closed T1-invariant equivalence relation on X.
(by 7, 8, (iii), 9.4, and 9.8)

10. X/N ′
1 is metrizable. (by 6, 7, (v))

11. X/L(N ′
1) is metrizable. (by 10, (iii), and 9.10)

12. X/N1 is metrizable. (by 8, 10, 11)
13. L ◦ N1 = L(N ′

1) is a T1-invariant closed equivalence relation. (by 8, 9.4)
14. Assume that

T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ T and N ⊃ N1 ⊃ · · · ⊃ Nn

have been constructed so that for all 1 ≤ i < n:
14.1 Ti is countable,
14.2 Ni is a closed Ti-invariant equivalence relation with X/Ni metrizable,
14.3 L ◦ Ni is a closed Ti-invariant equivalence relation on X,
14.4 π−1

Ni
(W)Ti+1 = X for all open sets ∅ 
= W ⊂ X/Ni , and

14.5 π−1
Ni

(V1)Ti+1∩π−1
Ni

(V2)∩L 
= ∅ for any pair of open sets V1 
= ∅ 
= V2

in πNi
(L).

15. Let Un and Vn be countable bases for the topologies on X/Nn and πNn(L)

respectively.
16. For every U ∈ Un there exists a finite set FU ⊂ T with π−1

Nn
(U)FU = X.

(by (i))
17. For every pair V1, V2 ∈ Vn there exists t(V1,V2) ∈ T with

π−1
Nn

(V1)t(V1,V2) ∩ π−1
Nn

(V2) ∩ L 
= ∅. (by 15, (iv))

18. Let Tn+1 be the subgroup of T generated by

Tn

⋃
{FU | U ∈ Un} ∪ {t(V1,V2) | V1, V2 ∈ Vn}.

19. Then: (by 15-18)
19.1 Tn+1 is countable and contains Tn,
19.2 π−1

Nn
(W)Tn+1 = X for all open sets ∅ 
= W ⊂ X/Nn, and
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19.3 π−1
Nn

(V1)Tn+1∩π−1
Nn

(V2)∩L 
= ∅ for any pair of open sets V1 
= ∅ 
= V2

in πNn
(L).

20. Let N ′
n+1 = ⋂

t∈Tn+1

Nnt .

21. Set Nn+1 = L(N ′
n+1) ∩ N ′

n+1 ⊂ N ′
n+1 ⊂ Nn.

22. Nn+1 is a closed Tn+1-invariant equivalence relation on X.
(by 20, 21, (iii), 9.4, and 9.8)

23. X/N ′
n+1 is metrizable. (by 19, 20, and (v))

24. X/L(N ′
n+1) is metrizable. (by 23, (iii), and 9.10)

25. X/Nn+1 is metrizable. (by 21, 23, 24)
26. L ◦ Nn+1 = L(N ′

n+1) is a Tn+1-invariant closed equivalence relation.
(by 21, 9.4)

27. There exist

T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ · · · ⊂ T and N ⊃ N1 ⊃ · · · ⊃ Nn ⊃ · · ·
such that:

27.1 Ti is countable,
27.2 Ni is a closed Ti-invariant equivalence relation on X with X/Ni metriz-

able,
27.3 L ◦ Ni is a closed Ti-invariant equivalence relation on X,
27.4 π−1

Ni
(W)Ti+1 = X for all open sets ∅ 
= W ⊂ X/Ni , and

27.5 π−1
Ni

(V1)Ti+1∩π−1
Ni

(V2)∩L 
= ∅ for any pair of open sets V1 
= ∅ 
= V2

in πNi
(L). (by induction)

28. Let H = ⋃
Ti and N∞ = ⋂

Ni .
29. N∞ is a closed H -invariant equivalence relation on X. (by 27, 28)
30. X/N∞ is metrizable. (by 27, 28)
31. Let U0 ⊂ X/N∞ be open.
32. There exist i and U ⊂ X/Ni open with π−1

Ni
(U) ⊂ U0. (by 28, 31, 6.14)

33. U0H ⊃
32

π−1
Ni

(U)H ⊃
28

π−1
Ni

(U)Ti+1 =
27,32

X.

34. X/N∞ is minimal. (by 31, 33)

(d) 1. L◦N∞ = L◦
(⋂

Ni

)
= ⋂

(L◦Ni) is a closed equivalence relation

on X. (by 6.16, since L ◦ Ni is a closed equivalence relation for every i)
2. L ◦ N∞ is H -invariant. (L and N∞ are both H -invariant)

(e) 1. Let V0 
= ∅ 
= W0 be open subsets of πN∞(L) ⊂ X/N∞ × X/N∞.
2. There exist i, j , V and W be open subsets of X/Ni × X/Ni and X/Nj ×
X/Nj respectively with

∅ 
= (π
N∞
Ni

)−1(V ) ∩ πN∞(L) ⊂ V0 and

∅ 
= (π
N∞
Nj

)−1(W) ∩ πN∞(L) ⊂ W0. ( by 2, 6.14)
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3. We may assume without loss of generality that i < j .

4. ∅ 
= L ∩ π−1
Nj

((
π

Nj

Ni

)−1
(V )

)
Tj ∩ π−1

Nj
(W) ≡ Y . (by 2, 3, and 27 above)

5. ∅ 
= πN∞(Y ) ⊂ πN∞(L) ∩
(
π

N∞
Ni

)−1
(V )Tj ∩

(
π

N∞
Nj

)−1
(W) ⊂ πN∞(L) ∩

V0H ∩ W0. (by 2, 4)
6. (πN∞(L),H) is topologically transitive. (by 1, 5)

Theorem 9.13 Let:

(i) (X, T ) be a minimal flow,
(ii) L be an icer on X, and

(iii) (L, T ) be topologically transitive and pointwise almost periodic.

Then L = �X.

PROOF: 1. Assume that (x, y) ∈ X × X with x 
= y.
2. There exists a continuous function f : X → R with f (x) 
= f (y).

(by 1, X is compact Hausdorff)
3. Let N = {(p, q) ∈ X × X | f (p) = f (q)}.
4. N is a closed equivalence relation on X, X/N is metrtizable and (x, y) 
∈ N .

(by 1, 2)
5. X → X/L is open. (by (iii), 4.15 and 7.23)
6. By 5 and 9.12 there exists a countable subgroup H ⊂ T and a closed
equivalence relation N∞ on X such that:

(a) N∞ ⊂ N ,
(b) N∞H = N∞,
(c) (X/N∞,H) is metrizable and minimal,
(d) L ◦ N∞ is a H -invariant equivalence relation on X, and
(e) The flow (πN∞(L),H) is topologically transitive.

7. In the diagram

X → X/N∞
↓ ↓

X/L → X/(L ◦ N∞),

the first column is a minimal distal T -extension and the second column is a
homomorphism of minimal H -flows. (by 6, (iii), and 4.15)
8. (πN∞(L),H) is pointwise almost periodic. (by 7, 6.19)
9. (πN∞(L),H) is minimal. (by 6(c), 6(e), 8, and 4.19)
10. πN∞(L) = �X/N∞ . (by 9)
11. πN(L) =

6(a)
π

N∞
N (πN∞(L)) =

10
π

N∞
N (�X/N∞) = �X/N .

12. L ⊂ N . (by 11)
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13. (x, y) 
∈ L. (4, 12)
14. L ⊂ �X. (by 1, 13)

Corollary 9.14 Let:

(i) (X, T ), (Y, T ) be minimal flows,
(ii) f : (X, T ) → (Y, T ) be a distal homomorphism, and

(iii) Rf ≡ {(x, y) ∈ X × X | f (x) = f (y)} be topologically transitive.

Then X = Y .

PROOF: 1.. Rf is pointwise almost periodic. (by (ii) and 4.15)
2.. Rf = �X and hence X = Y . (by 1, (iii), and 9.13)

Restated in terms of icers on M , 9.14 says that if R ⊂ S is a distal extension
and (πR(S), T ) is topologically transitive, then R = S. Recalling the termi-
nology of 4.16, this says that if R ⊂ S is both distal and weak mixing, then
R = S. When S = M × M , this reduces to saying that if (M/R, T ) is a weak
mixing flow which is also distal, then M/R = {pt}; thus 9.14 generalizes
4.25. We will discuss 9.13 and its consequences further in section 20.

EXERCISES FOR CHAPTER 9

Exercise 9.1 (See 9.3) Let:

(i) (X, T ) be a flow,
(ii) R, S be subsets of X × X,

(iii) t ∈ T , and
(iv) z ∈ X.

Show that:

(a) (zR)t = (zt)(Rt), and
(b) (zR)S = z(R ◦ S).

Exercise 9.2 (See 9.11) Let:

(i) X be a compact Hausdorff space,
(ii) R, S1, S2 be subsets of X × X, and

(iii) S1 ⊂ S2.

Show that R(S1) ⊂ R(S2).

Exercise 9.3 Let R and S be regular icers on M . Show that α(R(S)) = R(S)

for all α ∈ G. (Thus if R(S) is closed, then it is a regular icer on M .)



The quasi-relative product 123

Exercise 9.4 Let:

(i) R and S be icers on M , and
(ii) R(S) be closed.

Then aut (R) ∩ G(S) ⊂ G(R(S)).

Exercise 9.5 Let:

(i) R and S be icers on M , and
(ii) R(S) be closed.

Then G(R(S)) = {α ∈ G | (α × 1)(R ◦ S) = R ◦ S}.
Exercise 9.6 Let:

(i) R and S be icers on M , and
(ii) R(S) be closed.

Then G(R(S)) = G(R)G(S) if and only if G(S) ⊂ aut (R ◦ S). (Note: we do
not assume that R ◦ S is an equivalence relation.)

Exercise 9.7 Let:

(i) R and S be icers on M ,
(ii) G(S) ⊂ aut (R), and

(iii) R(S) be closed.

Then G(R(S)) = G(R)G(S).





PART III

The τ -topology

In this section we introduce the τ -topology on the group G of automorphisms
of the universal minimal set M . Though (G, τ) is not a topological
group it is a compact space in which points are closed, inversion is continuous,
and multiplication is unilaterally continuous. Most importantly for our pur-
poses the properties of (G, τ) reflect the structure of the category M of mini-
mal flows. There are several approaches to the construction of this
topology. (See for example the books [Auslander, (1988)] [Ellis, (1969)] and
[Glasner, (1976)]). We will begin by giving a new approach to defining a
τ -topology on the group Aut(X) of automorphisms of any minimal flow X.
Our approach was motivated by an observation of J. Auslander’s (personal
communication) that the τ - topology on G could be obtained from the graphs
of the left multiplication maps in M . In the present context this observation
amounts to the statement (see 10.7) that the τ -topology on G is characterized
by the fact that α ∈ G, is an element of the τ -closure of A ⊂ G, if and only if,
gr(α) ⊂ gr(A).

In section 10 we explicitly construct a base for a topology on Aut(X) for a
minimal flow (X, T ). In general this topology is T1 (points are closed), multi-
plication is unilaterally continuous, and inversion is continuous. When (X, T )

is a regular flow, Aut(X) is also compact. In particular taking X = M , we
obtain a compact T1 topology on G (the τ -topology).

The construction of the so-called derived group is the subject of section 11.
When F ⊂ G is a closed subgroup of G, the derived group F ′ ⊂ F is a
closed normal subgroup of F which measures the degree to which F fails to be
Hausdorff. Indeed, for any closed subgroup H ⊂ F , the quotient space F/H

is Hausdorff if and only if F ′ ⊂ H (see 11.10). The derived group G′ ⊂ G

plays a particularly important role in analyzing equicontinuous flows and their
relationship to distal flows; this is discussed in section 15.

It follows immediately from the characterization of the τ -topology men-
tioned above that if R is an icer on M , then the group G(R) is a τ -closed sub-
group of G. We exploit the interplay between quasi-factors and the τ -topology
in section 12 to show that a subgroup A of G is the group of some icer on M

if and only if A is τ -closed. In particular we show in 12.2 that if A is τ -closed,
then R = gr(A) is an icer with G(R) = A, and M/R is a quasi-factor of M .
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The icer gr(A) is clearly the smallest icer with group A, and as such is a prox-
imal extension of any icer with group A. We show in 12.5 that (gr(A), T ) is
topologically transitive if and only if A = A′. This result is used in sections 14
and 20.
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The τ -topology on Aut(X)

For a minimal flow (X, T ), we explicitly construct a base for a topology on
Aut(X). In general this topology is T1 (points are closed), multiplication is
unilaterally continuous, and inversion is continuous. When (X, T ) is a regular
flow, Aut(X) which we denote by GX, is also compact (see 10.6).

Definition and Notation 10.1 In this section the following will be in force.

(i) (X, T ) will denote a minimal flow,
(ii) Aut(X) will denote the group of automorphisms of X, and

(iii) for nonempty open sets U,V ⊂ X, we will write:

< U,V > = {α ∈ Aut(X) | α(U) ∩ V 
= ∅}.
We will show that the collection of unions of sets of the form < U,V >

forms a topology on Aut(X). This will follow once we show that for every
pair < U1, V1 >, < U2, V2 > and α ∈ < U1, V1 > ∩ < U2, V2 >, there
exist U and V with

α ∈ < U,V > ⊂ < U1, V1 > ∩ < U2, V2 >;
in other words we need to prove the following lemma.

Lemma 10.2 The collection Bτ (X) = {< U,V > | U,V ⊂ X are nonempty
open sets} forms a basis for a topology on Aut(X).

PROOF: 1. Assume that α ∈ < U1, V1 > ∩ < U2, V2 >.
2. There exist p1, p2 ∈ X with (p1, α(p1)) ∈ U1 × V1 and (p2, α(p2)) ∈
U2 × V2. (by 1)
3. p2 ∈ α−1(V2) ∩ U2 
= ∅. (by 2)
4. There exists t ∈ T such that p1t ∈ α−1(V2) ∩ U2.

(by 2, 3, α is continuous, X is minimal)
5. p1 ∈ U1 ∩ U2t

−1 and α(p1) ∈ V1 ∩ V2t
−1. (by 2, 4)

127
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6. Set U = U1 ∩ U2t
−1 and V = V1 ∩ V2t

−1.

7. α ∈
5,6

< U,V > ⊂
6

< U1, V1 > ∩ < U2t
−1, V2t

−1 > = < U1, V1 >

∩ < U2, V2 >.

Definition and Notation 10.3 The topology on Aut(X) generated by the basis
Bτ (X) will be denoted τX and referred to as the τ -topology on Aut(X). Thus
we have the topological space (Aut (X), τX). When X is regular, following
8.7, we write GX = Aut(X), obtaining the topological space (GX, τX). In
particular for X = M , the universal minimal set, we simply write (G, τ).

Note that for any λ ∈ Aut(X) and ∅ 
= U ⊂ X, the set λ(U) is open in X

and hence < U, λ(U) > is an open neighborhood of λ in Aut(X). In fact the
collection of all such sets forms a neighborhood base for λ.

Corollary 10.4 Let:

(i) λ ∈ Aut(X),
(ii) p ∈ X, and

(iii) Np = {V ⊂ X|V is open and p ∈ V }.
Then {< U, λ(U) > | U ∈ Np} is a neighborhood base for λ in the τ -topology
on Aut(X).

PROOF: This follows immediately from 10.2.

The next lemma will be used to show that inversion, left multiplication, and
right multiplication are continuous in Aut(X).

Lemma 10.5 Let:

(i) λ, γ ∈ Aut(X), and
(ii) ∅ 
= V ⊂ X be open.

Then

(a) < V, λ(V ) >−1=< λ(V ), V >,
(b) γ < V, λ(V ) > = < V, γ λ(V ) >, and
(c) < V, λ(V ) > γ = < γ −1V, λ(V ) >.

PROOF: (a) α ∈ < V, λ(V ) >−1⇐⇒ α−1(V ) ∩ λ(V ) 
= ∅
⇐⇒ V ∩ αλ(V ) 
= ∅
⇐⇒ α ∈ < λ(V ), V >.

(b) α ∈ γ < V, λ(V ) >⇐⇒ γ −1α(V ) ∩ λ(V ) 
= ∅
⇐⇒ α(V ) ∩ γ λ(V ) 
= ∅
⇐⇒ α ∈ < V, γ λ(V ) >.
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(c) α ∈ < V, λ(V ) > γ ⇐⇒ αγ −1(V ) ∩ λ(V ) 
= ∅ ⇐⇒ α ∈ < γ −1(V ),

λ(V ) >.

Proposition 10.6 (a) (Aut (X), τX) is T1 (points are closed),
(b) multiplication in (Aut (X), τX) is unilaterally continuous,
(c) inversion is continuous in (Aut (X), τX), and
(d) if X is regular, then (Aut (X), τX) = (GX, τX) is compact.

PROOF: (a) 1. Let α 
= λ ∈ Aut(X).
2. There exists p ∈ X such that α(p) 
= λ(p). (by 1)
3. There exist disjoint open sets W1,W2 ⊂ X such that α(p) ∈ W1 and λ(p) ∈
W2. (by 2, X is T2)
4. There exists an open set V ⊂ X such that p ∈ V , α(V ) ⊂ W1 and λ(V ) ⊂
W2. (by 3, α and λ are continuous)
5. α(V ) ∩ λ(V ) = ∅. (by 3, 4)
6. α 
∈ < V, λ(V ) >. (by 5)
7. α /∈ {λ}. (by 6)
8. {λ} = {λ}. (by 1, 7)
(b) This follows immediately from 10.5(b) and 10.5(c).
(c) This follows immediately from 10.5(a).
(d) 1. Assume that X is regular and let {Ui | i ∈ I } be an open cover of
Aut(X) = GX.
2. For every λ ∈ GX there exists a nonempty open set Vλ ⊂ X and iλ ∈ I with
< Vλ, λ(Vλ) > ⊂ Uiλ . (by 1, 10.4)
3. Let U = ⋃

λ∈GX

(Vλ × λ(Vλ))T .

4. U ⊂ X × X is open and invariant. (by 3)
5. gr(λ) ⊂ U for all λ ∈ GX. (by 3, gr(λ) is mimimal)
6. (X × X) \ U is a closed invariant set containing no minimal sets.

(by 1, 4, 5, and 8.9)
7. U = X × X. (by 6, and 3.4)

8. There exist λ1, . . . , λn ∈ GX with X × X =
n⋃

i=1
(Vλi

× λi(Vλi
))T .

(by 3, 7, X is compact)
9. For any α ∈ GX we have:

gr(α) ∩ (Vλi
× λi(Vλi

)T 
=
8

∅ for some 1 ≤ i ≤ n,

=⇒ α(Vλi
) ∩ λi(Vλi

) 
= ∅ for some 1 ≤ i ≤ n,

=⇒ α ∈ < Vλi
, λi(Vλi

) > for some 1 ≤ i ≤ n.

10. GX ⊂
n⋃

i=1
< Vλi

, λi(Vλi
) > ⊂

n⋃
i=1

Uλi
. (by 2, 9)

11. {Uλi
| 1 ≤ i ≤ n} is a finite subcover of {Ui | i ∈ I }. (by 10)
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Let A ⊂ Aut(X) where (X, T ) is a minimal flow. Then gr(A) = ⋃{gr(α) |
α ∈ A} need not be a closed subset of X×X, indeed gr(A) may contain gr(β)

for some β 
∈ A. When A is τ -closed, however gr(β) ⊂ gr(A) implies β ∈ A,
in fact we will prove that

A = {α | gr(α) ⊂ gr(A)}. (∗)

It should be noted that as an alternate approach to the τ -topology one can show
that the equation above defines a closure operator on subsets of Aut(X), and
hence generates a topology on Aut(X) (which coincides with the topology
we have defined above). Hence the τ -topology is completely characterized by
equation (∗).

Proposition 10.7 Let ∅ 
= A ⊂ Aut(X), and α ∈ Aut(X). Then

α ∈ A ⇐⇒ gr(α) ⊂ gr(A).

(Here of course A denotes the τX-closure of A in Aut(X).)

PROOF: =⇒
1. Assume that α ∈ A.
2. Let p ∈ X and U × W be any open neighborhood of (p, α(p)).
3. There exists an open neighborhood V of p with V × α(V ) ⊂ U × W .

(by 2, α is continuous)
4. There exists β ∈ A ∩ < V, α(V ) >. (by 1, 3, and 10.4)
5. ∅ 
= (V × α(V )) ∩ gr(β) ⊂ (U × W) ∩ gr(A). (by 3, 4)
6. (p, α(p)) ∈ gr(A). (by 2, 5)

⇐=
1. Assume that gr(α) ⊂ gr(A).
2. Let p ∈ X and V be any open neighborhood of p.
3. gr(A) ∩ (V × α(V )) 
= ∅. (by 1, 2)
4. There exists β ∈ A with β(V ) ∩ α(V ) 
= ∅. (by 3)
5. There exists β ∈ A ∩ < V, α(V ) >. (by 4)
6. α ∈ A. (by 2, 5, 10.4)

It follows immediately from 10.7 that the group G(R) of any icer R on M is
a τ -closed subgroup of G; for emphasis the explicit details are given in the
corollary below. We will see in section 12 that every closed subgroup of G is
of the form G(R) for some icer on M .

Corollary 10.8 Let:

(i) R be an icer on M , and
(i) G(R) = {α ∈ G = Aut(M) | gr(α) ⊂ R}.

Then G(R) is τ -closed.
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PROOF: 1. Let α ∈ G(R).
2. gr(α) ⊂ gr(G(R)) ⊂ R. (by 1, (i), and 10.7)
3. α ∈ G(R). (by 2)
4. G(R) is closed. (by 1, 3)

Using 10.7 we give a description of the τ -closure of any subset A ⊂ Aut(X)

by characterizing the elements of gr(A).

Proposition 10.9 Let:

(i) (X, T ) be a minimal flow,
(ii) ∅ 
= A ⊂ Aut(X), and

(iii) α ∈ Aut(X).

Then:

(a) gr(A) = {(p, q) | q ∈ ⋂{A(U) | U an open neighborhood of p in X}},
and

(b) α ∈ A if and only if there exists a proximal pair (x, y) ∈ X × X with

α(y) ∈
⋂

{A(U) | U an open neighborhood of x in X}.
(Here of course A denotes the τ -closure of A in Aut(X), and A(U) denotes
the closure of A(U) = {β(z) | β ∈ A, z ∈ U} in X.)

PROOF: (a) 1. Let (p, q) ∈ gr(A).
2. There exists α ∈ A such that

∅ 
= gr(α) ∩ (U × V )

for all U,V ⊂ X open neighborhoods of p and q respectively. (by 1)
3. There exists z ∈ U with α(z) ∈ V for all U ∈ Np and V ∈ Nq . (by 2)
4. A(U) ∩ V 
= ∅ for all U ∈ Np and V ∈ Nq . (by 3)
5. q ∈ ⋂{A(U) | U ∈ Np}. (by 4)
6. gr(A) ⊂ {(p, q) | q ∈ ⋂{A(U) | U an open neighborhood of p}}. (by 1, 5)
7. gr(A) ⊃ {(p, q) | q ∈ ⋂{A(U) | U an open neighborhood of p}}.

(read 1-5 in reverse)
(b) 1. Let α ∈ A, and x ∈ X.

2. (x, α(x)) ∈ gr(A). (by 1, 10.7)
3. α(x) ∈ ⋂{A(U) | U ∈ Nx}. (by 2, part (a))
4. Assume that (x, y) is a proximal pair such that α(y) ∈ ⋂{A(U) | U ∈ Nx}.
5. There exists z ∈ X and p ∈ βT such that (x, y)p = (z, z). (by 4)
6. (x, α(y)) ∈ gr(A). (by 4, part (a))
7. gr(α) ⊂ (z, α(z))T ⊂

5
(x, α(y))T ⊂

6
gr(A).

8. α ∈ A. (by 7, 10.7)
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As we will see in section 12, the collection of τ -closed subgroups of the group
G of automorphisms of the universal minimal set M is exactly the collection
{G(R) | R is an icer on M} of groups of minimal flows. Thus any result con-
cerning the closed subsets of G is of potential interest in studying minimal
flows. The description of the closure of a subset A ⊂ Aut(X) given in 10.9
allows us, in the case where X is regular, to prove that the product of two
τ -closed subsets of GX is τ -closed. This result will be used in sections 11, 12,
18, 19, and 20.

Theorem 10.10 Let:

(i) X be regular, and
(ii) A,B be non-empty closed subsets of GX.

Then AB is also closed.

PROOF: 1. Let γ ∈ AB, u ∈ JX be an idempotent in X, and U ∈ Nu.

2. AB ∩ < U, γ (U) >
= ∅. (by 1)

3. AB(U) ∩ γ (U) 
= ∅. (by 2)

4. B(U) ∩ A−1γ (U) 
= ∅. (by 3)

5. {B(U) ∩ A−1γ (U) | U ∈ Nu} is a filter base of closed subsets of X.
(by 1, 4)

6. There exists x ∈ ⋂
N∈Nu

B(U) ∩ A−1γ (U). (by 5, X is compact)

7. There exist β ∈ GX and v ∈ JX such that x = β(v). (by 6, (i), and 8.8)

8. β(v) ∈ ⋂
Nu

B(U) ∩ ⋂
Nu

A−1γ (U). (by 6, 7)

9. (u, v) is a proximal pair. (by 1, 8)

10. β ∈ B ∩ A−1γ . (by 8, 9, 10.9)

11. β ∈ B ∩ A−1γ . (by 10, (ii), 10.6)

12. γ ∈ Aβ ⊂ AB. (by 11)

Corollary 10.11 Let:

(i) X be regular, and
(ii) A,B be non-empty subsets of GX.

Then AB = ĀB̄.

PROOF: This follows from 10.10 and 10.6. We leave the details as an exer-
cise for the reader.

Another result concerning the closed subsets of G which will be of use to us is
the following.
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Lemma 10.12 Let:

(i) X be regular,
(ii) A be a closed subset of GX, and

(iii) B be a filter base of closed non-empty subsets of GX, (i. e. B1, . . . , Bn ∈
B implies there exists B ∈ B with B ⊂ B1 ∩ · · · ∩ Bn).

Then:

(a) A(
⋂

B) = ⋂
B∈B

AB, and

(b) (
⋂

B)A = ⋂
B∈B

BA.

PROOF: (a) Proof that A
(⋂

B∈B B
) ⊂ ⋂

B∈B AB:
1. A(

⋂
B) ⊂ AB for all B ∈ B.

2. A(
⋂

B) ⊂ ⋂
B∈B

AB.

Proof that
⋂
B∈B

AB ⊂ A

( ⋂
B∈B

B

)
:

1. Let α ∈ ⋂
B∈B

AB.

2. {A−1α ∩ B | B ∈ B} is a filter base of non-empty closed subsets of GX.
(by 1, (iii), 10.6)

3. There exists β ∈ ⋂
B∈B

B with β ∈ A−1α. (by 2, and compactness from 10.6)

4. α ∈ A

( ⋂
B∈B

B

)
. (by 3)

(b) The proof is completely analogous to the proof of part (a).

The fact that for A ⊂ Aut(X), we have A = {α | gr(α) ⊂ gr(A)} can be
thought of as giving conditions under which an α ∈ Aut(X) can be obtained
as a limit of elements of A. Another approach to this is via nets. Namely, given
α ∈ Aut(X), under what conditions does a net (αi) converge to α? We now gve
a few results in this direction which can be thought of as refinements of 10.7.

Proposition 10.13 Let:

(i) (pi), (αi) be nets in X and Aut(X) respectively,
(ii) pi → p, and

(iii) αi(pi) → α(pv) for some v ∈ J ≡ {u ∈ M | u2 = u}.
Then αi → α.
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PROOF: 1. Let ∅ 
= W ⊂ X be open.
2. There exists q ∈ M with pq ∈ W . (X is minimal so X = pM)
3. α(pv)q = α(pq) ∈ α(W). (by 2, 3.12)
4. There exists t ∈ T with pt ∈ W and α(pv)t ∈ α(W).

(by 2, 3, Lp,Lα(pv) are continuous)
5. pit → pt and αi(pi t) → α(pv)t . (by 4, (ii), (iii), Rt is continuous)
6. There exists i0 such that if i > i0, then pit ∈ W and αi(pi t) ∈ α(W).

(by 1, 4, 5)
7. There exists i0 such that if i > i0, then αi ∈ < W,α(W) >. (by 6)
8. αi → α. (by 1, 7, 10.4)

Corollary 10.14 Let:

(i) X be regular,
(ii) (pi), (αi) be nets in X and GX respectively,

(iii) pi → β(u), where β ∈ GX and u ∈ JX, and
(iv) αi(pi) → γ (v), where γ ∈ GX and v ∈ JX.

Then αi → γβ−1.

PROOF: 1. αi(pi) → γ (β−1(β(v))) = γβ−1(β(u)v). (by (iv))
2. αi → γβ−1. (by 1, (iii), 10.13)

Proposition 10.15 Let:

(i) αi → α in Aut(X), and
(ii) p ∈ X.

Then there exists a subnet {αiV } ⊂ {αi}, and a net {piV } ⊂ X, such that

piV → p and αiV (piV ) → α(p).

PROOF: We leave the proof as an exercise for the reader.

When X = M/R is a minimal regular flow we have defined a topology τX on
the group GX of automorphisms of X; in particular this gives us the τ -topology
on the group G of automorphisms of M . On the other hand we saw in 8.11
and 7.10, that the map χR : G → GX has kernel G(R), and hence induces
an isomorphism of G/G(R) onto GX. In the next proposition we prove that
this isomorphism is a homeomorphism when G/G(R) is provided the quotient
topology. For simplicity we denote the maps πR and χR by π and χ respectively.

Proposition 10.16 Let:

(i) (X, T ) = (M/R, T ) be a regular minimal flow, and
(ii) U and V be nonempty open subsets of X.
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Then:

(a) < π−1(U), π−1(V ) > = χ−1(< U, V >),
(b) the canonical map χ ≡ χR : (G, τ) → (GX, τX) is continuous,
(c) the map χ : (G, τ) → (GX, τX) is closed, and
(d) χ induces a homeomorphism (G/G(R), τ ) → (GX, τX).

PROOF: (a) 1. π−1(U) and π−1(V ) are nonempty open subsets of M .
(by (i), π ≡ πR : M → M/R ≡ X is continuous)

2. Let α ∈ < π−1(U), π−1(V ) >.
3. There exists p ∈ M with π(p) ∈ U and π(α(p)) ∈ V . (by 2)
4. χ(α)(π(p)) = π(α(p)). (by 8.11)
5. χ(α) ∈ < U,V >. (by 3, 4)
6. < π−1(U), π−1(V ) > ⊂ χ−1(< U, V >). (by 2, 5)
7. Now let β ∈ χ−1(< U, V >).
8. There exists x ∈ U with χ(β)(x) ∈ V . (by 7)
9. There exists p ∈ M with π(p) = x. (by (i))
10. p ∈ π−1(U) and π(β(p)) = χ(β)(π(p)) = χ(β)(x) ∈ V . (8, 9)
11. β ∈ < π−1(U), π−1(V ) >. (by 10)
12. χ−1(< U, V >) ⊂ < π−1(U), π−1(V ) >. (by 7, 11)

(b) This follows immediately from part (a) and 10.3.
(c) 1. Let ∅ 
= K be a closed subset of G and let η ∈ χ(K).

2. π(gr(K)) = gr(χ(K)). (by 8.11)
3. π(gr(K)) = gr(χ(K)). (by 2)
4. gr(η) ⊂ π(gr(K)). (by 1, 3, 10.7)
5. There exists a minimal subset Y ⊂ gr(K) with π(Y ) = gr(η). (by 4)
6. There exists α ∈ G with gr(α) = Y . (by (i), 5, 7.5)
7. α ∈ K . (by 1, 5, 6, 10.7)
8. χ(α) = η. (by 5, 6)
9. η ∈ χ(K). (by 7, 8)
10. χ(K) is closed. (by 1, 9)

(d) This follows immediately from parts (b), (c), and 7.10.

NOTES ON SECTION 10

According to part (d) of 10.6, when X is regular, (Aut (X), τX) is compact.
The key to the proof is 8.9 (when X is regular all the minimal subsets of X ×
X are graphs of automorphisms of X). In general it is possible to define a
τ -topology on the set of minimal subsets of X × X making this collection
into a compact space. Identifying each automorphism α of X with the minimal
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subset gr(α) ⊂ X × X, the resulting subspace topology on Aut(X) is the
topology τX we have defined above. In the regular case GX = Aut(X) is the
whole space and the two topologies coincide.

In these notes we will outline the construction of a τ -topology on the col-
lection of minimal subsets of any flow (the case X × X is the one alluded to
above), leaving the proofs as exercises for the reader.

Notation 10.N.1 In these notes the following will be in force.

(i) X will denote a not necessarily minimal flow.
(ii) Q ≡ Q(X) will denote the collection of minimal subsets of X.

(iii) U will denote the collection of open invariant subsets of X, here ∅ ∈ U .
(iv) When U ∈ U , we will write H(U) = {Y ∈ Q | Y ⊂ U}.
(v) τ = {H(U) | U ∈ U}.

The following lemma is used to show that τ is a topology on Q.

Lemma 10.N.2 Let Y ∈ Q and U ∈ U . Then Y ∩ U = ∅ or Y ⊂ U .

Proposition 10.N.3 (a) Let (Ui | i ∈ I ) be a family of elements of U and
U = ⋃

Ui . Then U ∈ U and H(U) = ⋃
H(Ui).

(b) Let U1, . . . , Uk ∈ U . Then
⋂

Ui ∈ U , and H(
⋂

Ui) = ⋂
H(Ui).

(c) τ is a topology on Q.

The analog of 10.7 in this context identifies the τ -closure of a subset of Q as
the closure in X of the union of its elements.

Proposition 10.N.4 Let 
 ⊂ Q, Y ∈ Q. Then Y ∈ clsτ
 ⇐⇒ Y ⊂ ⋃

.

Proposition 10.N.5 (Q, τ ) is compact T1.

The construction of a topology on Q(X) for a flow (X, T ) is natural in the
sense that a homomorphism of flows gives rise to a continuous map of the
corresponding topological spaces.

Proposition 10.N.6 Let φ : W1 → W2 be a homomorphism of flows. Then

� : Q(W1) → Q(W2)

Y → φ(Y )

is continuous.

Let W be a minimal set, Z a flow, and f : W → Z a homomorphism. Then the
graph of f , gr(f ) is a minimal subset of W × Z, and the map
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f → gr(f ) : Hom(W,Z) → Q(W × Z)

is injective. Thus the τ -topology on Q(W × Z) induces a topology on
Hom(W,Z) which will also be called the τ -topology. Once again this con-
struction is natural in the sense that for fixed homomorphisms the left and
right composition operations are continuous. In particular this approach yields
the full strength of 10.6 in this context.

Corollary 10.N.7 Let X, Y be minimal and g ∈ Hom(Y,Z). Then the map

Hom(X, Y ) → Hom(X,Z)

f → g ◦ f

is continuous.

Lemma 10.N.8 Let X, Y be minimal and h ∈ Hom(X, Y ). Then the map

Hom(Y,Z) → Hom(X,Z)

f → f ◦ h

is continuous.

Proposition 10.N.9 Let X be minimal. Then:

(a) The map (f, g) → f ◦ g : Hom(X,X) × Hom(X,X) → Hom(X,X) is
unilaterally continuous.

(b) The map f → f −1 : Aut(X) → Aut(X) is continuous. (Here Aut(X) is
the set of invertible elements of Hom(X,X).)

EXERCISES FOR CHAPTER 10

Exercise 10.1 (See 10.15) Let:

(i) αi → α in Aut(X), and
(ii) p ∈ X.

Then there exists a subnet {αiV } ⊂ {αi}, and a net {piV } ⊂ X, such that

piV → p and αiV (piV ) → α(p).

Exercise 10.2 Let:

(i) X be regular, and
(ii) A,B be non-empty subsets of GX.

Then AB = ĀB̄.
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The derived group

If F ⊂ Aut(X) is a closed subgroup of the group of automorphisms of a
minimal flow (X, T ), then the derived group F ′ ⊂ F is a closed normal sub-
group of F which measures the degree to which the τ -topology on F fails
to be Hausdorff. The most interesting case is when (X, T ) is regular so that
Aut(X) = GX is compact; the case X = M with Aut(X) = G being of par-
ticular interest. The key result in this case is that for a closed normal subgroup
H ⊂ F , the quotient F/H is a compact Hausdorff topological group if and
only if F ′ ⊂ H (see 11.11) This result along with a few more technical results
such as 11.14, 11.15, will play an important role in the study of equicontinuous
flows and almost periodic extensions of minimal flows in sections 15 and 19
respectively.

Definition 11.1 Let X be a minimal flow and F be a closed subgroup of
Aut(X). Then the derived group F ′ of F is the intersection of the closed neigh-
borhoods of the identity in F . More precisely

F ′ =
⋂

V ∈Np

< V, V > ∩ F,

where p ∈ X is any element of X and as in 10.4 we are using the following
notation:

Np = {U | p ∈ U ⊂ X, and U is open}.

This definition is independent of the choice of p since for any p the collection

{ < V,V > ∩ F | V ∈ Np}

is a neighborhood base at 1F ∈ F (see 10.4). The fact that < V,V > ∩ F ⊂
F follows from the assumption that F is closed.

138
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It will be convenient to reformulate the definition of F ′ using the fact that
the collection

{ < V, α(V ) > ∩ F | V ∈ Np}

is a neighborhood base at α ∈ F .

Proposition 11.2 Let:

(i) (X, T ) be a minimal flow,
(ii) F is a closed subgroup of Aut(X),

(iii) α, β ∈ F , and
(iv) p ∈ X.

Then

(a) α ∈ F ′ ⇐⇒ < W,α(W) > ∩ < V,V > 
= ∅ for all V,W ∈ Np, and
(b) β−1α ∈ F ′ ⇐⇒ < W,α(W) > ∩ < V, β(V ) > 
= ∅ for all

V,W ∈Np.

PROOF: (a) This follows immediately from 11.1 and 10.4.
(b) 1. β−1(< W, α(W) > ∩ < V, β(V ) >)

= β−1(< W, α(W) >) ∩ β−1(< V, β(V ) >)

=< W,β−1α(W) > ∩ < V,V > . (by 10.5)

2. β−1α ∈ F ′ ⇐⇒ < W,α(W) > ∩ < V, β(V ) > 
= ∅ for all V,W ∈ Np.
(by 1, part (a))

In 11.1 F ′ is referred to as the derived group of F . This terminology will be
justified when we show that F ′ is indeed a group. This requires two preliminary
lemmas.

Lemma 11.3 Let:

(i) (X, T ) be a minimal flow,
(ii) F be a closed subgroup of Aut(X), and

(iii) U be a non-vacuous open subset of F .

Then UF ′ = U = F ′U .

PROOF: 1. Let α ∈ F ′ and β ∈ U .
2. β−1U is open in F , and 1F ∈ β−1U . (by 1, and 10.6)
3. α ∈ β−1U = β−1U . (by 1, 2, 10.6)
4. βα ∈ U . (by 3)
5. Uα = Uα ⊂ U . (by 1, 4, 10.6)
6. UF ′ ⊂ U . (by 1, 5)
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7. UF ′ = U . (by 6, 1F ∈ F ′)
8. F ′U = U . (by an analogous argument)

Lemma 11.4 Let:

(i) (X, T ) be a minimal flow,
(ii) F,H be closed subgroups of Aut(X),

(iii) ϕ : F → H be continuous, and
(iv) ϕ(1F ) = 1H .

Then ϕ(F ′) ⊂ H ′.

PROOF: 1. Let V be a neighborhood of 1H .
2. There exists a neighborhood U of 1F with ϕ(U) ⊂ V . (by 1, (ii), (iii))
3. ϕ(U) ⊂ V . (by 2, (iii))
4. ϕ(F ′) ⊂ ϕ(U) ⊂ V . (by 2, 3)
5. ϕ(F ′) ⊂ ⋂

V = H ′.

Proposition 11.5 Let:

(i) (X, T ) be a minimal flow, and
(ii) F be a closed subgroup of Aut(X).

Then F ′ is a subgroup of F .

PROOF: 1. Let U be an open neighborhood of 1F in F .
2. F ′α ⊂ Uα ⊂ UF ′ =

11.3
U for all α ∈ F ′.

3. F ′α ⊂ F ′ for all α ∈ F ′. (by 1, 2)
4. F ′ is a closed semigroup. (by 3)

5. The map F → F is continuous.
α → α−1

(by 10.6)

6. (F ′)−1 = F ′. (by 5, 11.4)
7. F ′ is a subgroup of F . (by 4, 6)

Corollary 11.6 Let:

(i) (X, T ) be a minimal flow,
(ii) F be a closed subgroup of Aut(X), and

(iii) α ∈ Aut(X).

Then α(F ′)α−1 = (αFα−1)′.

PROOF: Apply 11.4 to the map ϕ : F → αFα−1 and to its inverse.
β → αβα−1
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Corollary 11.7 Let:

(i) (X, T ) be a minimal flow,
(ii) F ⊂ B be closed subgroups of Aut(X), and

(iii) F be normal in B.

Then F ′ is a normal subgroup of B.

PROOF: For any α ∈ B, α(F ′)α−1 = (αFα−1)′ = F ′. (by 11.6)

According to 11.6, when F is a closed subgroup of Aut(X), F ′ is a nor-
mal subgroup of F so that F/F ′ is group. If the flow (X, T ) is regular, then
GX = Aut(X) and hence F is compact. Thus F/F ′ is a compact Hausdorff
group in which multiplication is unilaterally continuous by 10.6. We will see in
the appendix to section 15 that any compact Hausdorff group in which multipli-
cation is unilaterally continuous is a topological group. In this section we use
the next few results to prove directly that F/F ′ is a topological group. These
results can be proved in a slightly more general context (see [Ellis, R., (1969)]),
but we wish to prove them using the techniques developed herein. Moreover,
these proofs are much simpler than the ones given in the reference above.

Proposition 11.8 Let:

(i) (X, T ) be a regular minimal flow,
(ii) F be a closed subgroup of GX,

(iii) ∅ 
= V ⊂ F be open, and
(iv) F ′ ⊂ V .

Then there exists an open set W with 1F ∈ W and F ′WW−1 ⊂ V .

PROOF: 1. Let N be the collection of open neighborhoods of 1F in F .
2.

⋂
U∈N

(F \ V ) ∩ U = (F \ V ) ∩ ⋂
N∈N

U = (F \ V )∩ F ′ = ∅. (by (iii), (iv))

3. There exists U0 ∈ N with (F \ V ) ∩ U0 = ∅. (by 2, GX is compact T1)
4. Set U = U0 ∩ U−1

0 .
5. U ⊂ U0 ⊂ V . (by 3, 4)

6.
⋂

N∈N
N U =

10.12

( ⋂
N∈N

N

)
U = F ′U =

11.3
U ⊂

5
V .

7.
⋂

N∈N
(F \ V ) ∩N U = ∅. (by 6)

8. There exists N0 ∈ N with (F \ V ) ∩ N0 U = ∅. (by 7, and compactness)
9. Set N = N0 ∩ N−1

0 and W = N ∩ U .
10. F ′WW−1 ⊂

9
F ′N U =

11.3
N U ⊂

8,9
V .



142 The derived group

Proposition 11.9 Let:

(i) (X, T ) be a regular minimal flow, and
(ii) F be a closed subgroup of GX.

Then F/F ′ is a compact topological group.

PROOF: 1. F/F ′ is a compact group in which multiplication is unilaterally
continuous. (by (i), 10.6, 11.7)
2. Let π : F → F/F ′ be the canonical map.
3. Let V ⊂ F/F ′ be an open neighborhood of the identity.
4. F ′ ⊂ π−1(V ) is open in F . (by 3)
5. There exists an open neighborhood W of 1F with F ′WW−1 ⊂ π−1(V ).

(by 4, 11.8)
6. π(W) is an open neighborhood of the identity in F/F ′. (by 5, π is open)
7. π(W)π(W)−1 = π(WW−1) ⊂

5
π(π−1(V )) = V .

8. F/F ′ is a topological group. (by 1, 3, 7)

Theorem 11.10 Let:

(i) X be regular,
(ii) F be a closed subgroup of GX, and

(iii) H be a closed subgroup of F .

Then F/H is Hausdorff if and only if F ′ ⊂ H .

PROOF: =⇒
1. Let π : F → F/H be the canonical map, and α /∈ H .
2. There exists an open set V with π(1F ) ∈ V , and π(α) /∈ V .

(F/H is Hausdorff)
3. 1F ∈ π−1(V ) ⊂ π−1(V ) ⊂ π−1(V ).
4. α /∈ π−1(V ). (by 2, 3)
5. α /∈ F ′. (by 4)

⇐=
1. Let F ′ ⊂ H , and α 
∈ H .
2. F ′ ⊂ H ⊂ F \ αH . (by 1)
3. There exists an open neighborhood W of 1F with W = W−1 and
F ′WW−1 ⊂ F \ αH . (by 2, (iii), 10.6, 11.8)
4. W 2 ⊂ F ′W 2 ⊂ F \ αH . (by 3)
5. W 2 ∩ αH = ∅. (by 4)
6. W ∩ WαH = ∅. (by 3, 5)
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7. WH ∩ WαH = ∅. (by 6, (iii))

8. F/H is Hausdorff. (by 1, 7)

Corollary 11.11 Let:

(i) X be regular,
(ii) F be a closed subgroup of GX, and

(iii) H be a closed normal subgroup of F .

Then F/H is a compact (Hausdorff) topological group if and only if
F ′ ⊂ H .

PROOF: =⇒
1. Assume that F/H is a topological group.

2. F/H is T1. (by 10.6)

3. F/H is Hausdorff. (by 1, 2, and Ex. 3.5)

4. F ′ ⊂ H . (by 3, 11.10)

⇐=
1. Assume that F ′ ⊂ H .

2. Let π : F/F ′ → F/H be the canonical projection.

3. π−1(π(V )) = ⋃{V α | α ∈ H/F ′} for any subset V ⊂ F/F ′. (by 2, (iii))

4. π is an open map. (by 2, 3)

5. Let W ⊂ F/H be an open neighborhood of the identity.

6. π−1(W) ⊂ F/F ′ is an open neighborhood of the identity. (by 2, 5)

7. There exists an open neighborhood V of the identity in F/F ′ with V V −1 ⊂
π−1(W). (by 6, 11.9)

8. π(V ) is an open neighborhood of the identity in F/H with
π(V )(π(V ))−1 = π(V V −1) ⊂ π(π−1(W)) = W . (by 4, 7)

9. F/H is a topological group. (by 5, 8)

The next two technical lemmas are used to prove 11.14, 11.15, and 11.16,
which are needed in future sections.

Lemma 11.12 Let:

(i) X be regular,
(ii) F be a closed subgroup of GX,

(iii) A,B be closed subgroups of F ,
(iv) W be a B-open set with 1F ∈ W , and
(v) K = B\AW .
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Then:

(a) K is a closed subset of F ,
(b) 1F 
∈ AK , and
(c) there exists an F -open set N with 1F ∈ N and B ∩ AN ⊂ B ∩ AW .

PROOF: (a) 1. Let b ∈ B ∩ AW .
2. b = aw for some a ∈ A and w ∈ W . (by 1 and (v))
3. a ∈ B. (by (iii), (iv), and 2)
4. b ∈ (A ∩ B)W . (by 2, 3)
5. B ∩ AW ⊂ B ∩ (A ∩ B)W ⊂ B ∩ AW . (by 1, 4)
6. B \ AW = B \ (A ∩ B)W . (by 5)
7. (A ∩ B)W is open in B. (by (iii), (iv))
8. K = B \ AW = B \ (A ∩ B)W is closed in B. (by 7)
9. K is closed. (by 8, (iii))
(b) 1. A = A{1F } ⊂ AW . (by (iii), (iv))
2. A ∩ K = ∅. (by 1)
3. A ∩ AK = ∅. (by 2, (iii))
4. 1F 
∈ AK . (by 3, (iii))
(c) 1. AK is closed in F . (by (iii), (a), 10.10)
2. N = F \ AK is an F -open set with 1F ∈ N . (by 1, (b))
3. Let b ∈ B ∩ AN .
4. b = an with a ∈ A and n ∈ N . (by 3)
5. a−1b = n 
∈ AK . (by 2, 4)
6. b 
∈ K . (by 5)
7. b ∈ AW . (by 3, 6, (v))
8. B ∩ AN ⊂ B ∩ AW . (by 3, 7)

Lemma 11.13 Let:

(i) X be regular,
(ii) F be a closed subgroup of GX,

(iii) A,B be closed subgroups of F ,
(iv) N (F ) = {N | N is an open neighborhood of 1F in F },
(v) L0 = ⋂{B ∩ AU | U ∈ N (F )}, and

(vi) L = ⋂{AB ∩ U | U ∈ N (F )}.
Then:

(a) L0 ⊂ AB ′,
(b) B ′ ⊂ L ⊂ AB ′, and
(c) AL = AB ′.
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PROOF: (a) 1. Let N (B) = {N | N is an open neighborhood of 1B in B}.
2. L0 =

(v)

⋂
{B ∩ AU | U ∈ N (F )} ⊂

1,11,12

⋂
{B ∩ AW | W ∈ N (B)}

⊂ ⋂{AW | W ∈ N (B)} =
10,12

A
⋂

{W | W ∈ N (B)} = AB ′.

(b) 1. It is clear that B ′ ⊂ L since B ∩ U ⊂ AB ∩ U for all U ∈ N (F ).
2. AB ∩ U ⊂ A(B ∩ AU) for all U ∈ N (F ).

(αβ ∈ AB ∩ U ⇒ β ∈ AU ∩ B ⇒ αβ ∈ A(B ∩ AU))
3. AB ∩ U ⊂ A(B ∩ AU) = A(B ∩ AU) = A(B ∩ AU) for all U ∈ N (F ).

(by 2, (iii), 10.11)
4. L =

(vi)

⋂
U∈N

AB ∩ U ⊂
3

⋂
U∈N

A(B ∩ AU)

=
10.12

A

( ⋂
U∈N

B ∩ AU

)
=
(v)

AL0 ⊂
(a)

A(AB ′) =
(iii)

AB ′.

(c) 1. AB ′ ⊂ AL ⊂ A(AB ′) = AB ′. (by part (b), (iii))

Corollary 11.14 Let:

(i) X be regular,
(ii) F be a closed subgroup of GX,

(iii) A,B be closed subgroups of F , and
(iv) AB = BA.

Then:

(a) B ′ ⊂ (AB)′ ⊂ AB ′, and
(b) A(AB)′ = AB ′.

PROOF: This follows immediately from 11.13. (In this case L = (AB)′.)
Let p ∈ X with (X, T ) a regular minimal flow. For any closed subgroup

F ⊂ GX and open neighborhood V of p in X we consider the set Ap(V ) =
{α ∈ F | α(p) ∈ V }. We would like to characterize F ′ using the collection
{Ap(V ) | V ∈ Np}. Clearly

Ap(V ) ⊂ {α ∈ F | α(V ) ∩ V 
= ∅} = F ∩ < V, (V ) >,

so F ′ ⊂ ⋂ {Ap(V ) | V ∈ Np}. On the other hand in general, Ap(V ) may have
empty interior. When p is an almost periodic point of the flow (F,X) where F

acts on X on the left, int
(
Ap(V )

)

= ∅, and the following proposition gives a

complete description of F ′.

Proposition 11.15 Let:

(i) (X, T ) be a regular minimal flow,
(ii) F be a closed subgroup of GX,
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(iii) p be an almost periodic point of the flow (F,X) (F acts on X on the left),
and

(iv) Ap(V ) = {α ∈ F | α(p) ∈ V } for any ∅ 
= V ⊂ X.

Then F ′ = ⋂ {
int (Ap(V )) | V ∈ Np

}
.

We write cic(Ap(V )) for int (Ap(V )) and Dp for
⋂{cic(Ap(V )) | V ∈

Np}. Note that all topological references are to the space (F, τ ).

PROOF: 1. Let V ∈ Np.
2. There exists a finite subset K of F such that F ⊂ K(Ap(V )).

(by (iii), and 4.2)
3. F = KAp(V ). (by 2, (ii))
4. int (Ap(V )) 
= ∅. (by 3, K is finite)
5. Dp 
= ∅. (by 4, (F, τ ) is compact by (ii), 10.6)
6. F ′cic(Ap(V )) ⊂ cic(Ap(V )) for all V ∈ Np. (by 11.3)
7. F ′Dp ⊂ Dp. (by 6, 10.12)
8. Let Z be a neighborhood of 1F .
9. There exists V ∈ Np such that 1F ∈ < V,V > ⊂ Z. (by 8, 10.4)
10. cic(Ap(V )) ⊂ cic(< V, V >) ⊂ < V,V > ⊂ Z. (by 9, (iii))
11. Dp ⊂ ⋂

Z = F ′. (by 8 and 10)
12. F ′ =

11
F ′Dp ⊂

7
Dp. (F ′ is a group)

13. F ′ = Dp. (by 11, 12)

Proposition 11.16 Let:

(i) (X, T ) be a regular minimal flow,
(ii) F be a closed subgroup of GX,

(iii) p be an almost periodic point of the flow (F,X), and
(iv) α ∈ F ′.
Then there exists a net (αi) in F with αi(p) → α(p) and αi → 1F .

PROOF: 1. Let Ap(V ) = {β ∈ F | β(p) ∈ V }.
2. α−1 ∈ F ′ ⊂ cic(Ap(V )) for all V ∈ Np. (by 11.15)
3. Let T denote the set of neighborhoods of α−1.
4. Z ∩ Ap(V ) 
= ∅ for all Z ∈ T , and V ∈ Np. (by 1 and 2)
5. Let β(Z, V ) ∈ Z ∩ Ap(V ) for all Z ∈ T , and V ∈ Np.
6. For Z1, Z2 ∈ T , V1, V2 ∈ Np set (Z1, V1) ≥ (Z2, V2) if Z1 ⊂ Z2 and
V1 ⊂ V2.
7. Then (β(Z, V ) | Z ∈ T , V ∈ Np) → α−1 and (β(Z, V )(p) | Z ∈
T , V ∈ Np) → p.
8. Finally (αβ(Z, V ) | Z ∈ T , V ∈ Np) is the required net.
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We end this section with an iteration of the derived group construction which
will be used in later sections.

Definition 11.17 Let (X, T ) be a regular minimal flow and A a closed sub-
group of GX = Aut(X). Then we associate with A, a closed subgroup A∞ ⊂
A, by transfinite induction, as follows:

set A0 = A,Aα+1 = (Aα)′andAβ =
⋂
α<β

Aα if β is a limit ordinal.

Now if the cardinal number of the set of ordinals less than or equal to ν is
greater than the cardinal number of the set A, there must exist an ordinal α < ν

with Aα = Aβ for all β with α ≤ β ≤ ν. We define A∞ = Aα where α is the
least such ordinal. Note that it follows from 11.7 that A∞ is a normal subgroup
of A.

Corollary 11.18 Let:

(i) (X, T ) be a regular minimal flow,
(ii) B ⊂ A be closed subgroups of GX, and

(iii) A′B = A.

Then A∞B = A.

PROOF: This follows from 11.14 and 10.12. We leave the details as an
exercise for the reader.

EXERCISES FOR CHAPTER 11

Exercise 11.1 Let:

(i) X be minimal flow,
(ii) F be a closed subgroup of Aut(X), and

(iii) α, β ∈ F ′.
Then every open neighborhood of α in F intersects every open neighborhood
of β in F .

Exercise 11.2 Let:

(i) X be a regular minimal flow,
(ii) F be a closed subgroup of GX, and

(iii) α ∈ F ′.
Then there exists a net (αi) in F with αi → α and αi → 1F .
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Exercise 11.3 Let:

(i) X be a minimal flow,
(ii) F be a closed subgroup of GX, and

(iii) A be a closed subgroup of F .

Then A′ ⊂ A ∩ F ′.

Exercise 11.4 Let R, S be regular icers with R ⊂ S. Then the natural map
(GR, τ) → (GS, τ ) is continuous, open, and closed.

Exercise 11.5 Let:

(i) R, S be regular icers with R ⊂ S,
(ii) A ⊂ GR be a closed subgroup, and

(iii) κ : A → GS be the restriction of the natural map to A.

Then:

(a) κ is continuous.
(b) κ is closed.
(c) κ induces a homeomorphism A/ker(κ) → χR

S (A).
(d) κ is open.

Exercise 11.6 Let:

(i) (X, T ) be a regular minimal flow,
(ii) A be a closed subgroup of G, and

(iii) χX : G → GX be the natural map.

Then χX(A′) = (χX(A))′.

Exercise 11.7 Give the details of the proof of 11.18.
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Quasi-factors and the τ -topology

The study of the transformation group (2M, T ) provides another approach to
the τ -topology on G. We use this approach to prove that given any closed
subgroup, A ⊂ G there exists an icer R on M with G(R) = A. In fact we
show that R = gr(A) is such an icer. The key tool is the action of βT on 2M

via the circle operator which was introduced in section 5.
The notation and definitions of 5.1 will be in force throughout this section. In

particular all the topological spaces that occur (other than G and its subgroups)
are assumed to be compact Hausdorff.

Let A ⊂ G be a subgroup; we would like to associate with A a quasi-factor
of M , that is a minimal sub-flow of (2M, T ). Let u ∈ M be an idempotent,
then the element [A(u)]u = [A(u) ◦u] ∈ 2M is an almost periodic point of the
flow (2M, T ). Thus the orbit closure of [A(u)◦u] is a minimal flow, and hence
a quasi-factor of M . We show in 12.2 that this orbit closure is isomorphic to
the flow M/gr(A); the proof relies on the following lemma.

Lemma 12.1 Let:

(i) p, q ∈ M , u ∈ J , and
(ii) A ⊂ G be a subgroup of G.

Then:

(a) A(u) ◦ p ⊂ pgr(A).
(b) A(u) ◦ p = A(u) ◦ α(p) for all α ∈ A.
(c) [A(u)]p = [A(u)]α(p) for all α ∈ A.

PROOF: (a) 1. Let q ∈ A(u) ◦ p.
2. There exist αi ∈ A and ti ∈ T with ti → p and αi(u)ti → q. (by 1)
3. (p, q) =

2
lim(uti , αi(uti)) ∈ gr(A).

4. q ∈ pgr(A).
(b) 1. Let z ∈ A(u) ◦ p.

149
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2. There exist αi ∈ A and ti → p with αi(u)ti → z. (by 1)
3. α(uti) → α(p). (by 2)
4. αiα

−1(u)α(uti) = αi(α
−1α(u))ti → z. (by 2)

5. Let U,Z ⊂ βT be open neighborhoods of α(p) and z respectively.
6. There exists i such that α(uti) ∈ U and (αiα

−1)(u)(α(uti)) ∈ Z.
(by 3, 4, 6)

7. There exists t (U,Z) ∈ T with t (U,Z) ∈ U and (αiα
−1)(u)

t (U,Z) ∈ Z. (Lαiα
−1(u) is continuous)

8. There exist nets tU,Z ∈ T and αU,Z ∈ A with tU,Z → α(p) and αU,Z(u)

tU,Z → z. (by 7)
9. z ∈ A(u) ◦ α(p). (by 8)
10. A(u) ◦ p ⊂ A(u) ◦ α(p). (by 1, 9)
11. A(u) ◦ α(p) ⊂ A(u) ◦ α−1(α(p)) = A(u) ◦ p. (by 10 applied to α−1)

(c) This follows immediately from 5.10 and part (b).

Theorem 12.2 Let:

(i) A be a subgroup of G,
(ii) u ∈ M be an idempotent,

(iii) π : M → 2M be defined by π(p) = [A(u) ◦ p] for all p ∈ M ,
(iv) R = {(p, q) | π(p) = π(q)}.
Then:

(a) π is a homomorphism,
(b) R is an icer on M ,
(c) R = gr(A),
(d) pR = A(u) ◦ p = pgr(A),
(e) π is open, and
(f) G(R) = A.

PROOF: (a) follows from the fact that [A(u)◦p] = [A(u)]p and (b) follows
immediately from (a).

(c) Proof that R ⊂ gr(A):
1. Let (p, q) ∈ R.
2. q = uq ∈ A(u)q ⊂ A(u) ◦ q = A(u) ◦ p ⊂ pgr(A).

(by 1, (iii), (iv), and 12.1)

Proof that gr(A) ⊂ R:

1. A(u) ◦ p = A(u) ◦ α(p) for all α ∈ A and p ∈ M . (by 12.1)
2. gr(A) ⊂ R. (by 1)
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3. gr(A) ⊂ R. (by 2, and part (b))
(d) 1. Let q ∈ pR.

2. q = uq ∈ A(u)q ⊂ A(u) ◦ q = A(u) ◦ p. (by 1, (iii), (iv))
3. pR ⊂ A(u) ◦ p. (by 1, 2)
4. A(u) ◦ p ⊂ pgr(A). (by 12.1)
5. pR = A(u) ◦ p = pgr(A). (by 3, 4, and part (c))

(e) 1. Let ϕ : π(M) → 2M be defined by ϕ(y) = [π−1(y)] for all y ∈
π(M).
2. Let y = [A(u) ◦ p] = π(p) ∈ π(M).
3. π−1(y) = yR = A(u) ◦ p. (by 1, (iv) and part (d))
4. ϕ(y) = [A(u) ◦ p] = y. (by 2, 3)
5. ϕ is the identity map and hence is continuous. (by 2, 4)
6. π is open. (by 1, 5, and 5.7)

(f) 1. α ∈ G(R) ⇔ gr(α) ⊂ R ⇔ gr(α) ⊂ gr(A) ⇔ α ∈ A.
(by (c), 10.7)

One immediate consequence of theorem 12.2 is a characterization of the
τ -closure of a subgroup of G in terms of the circle operator on M .

Corollary 12.3 Let:

(i) u ∈ J , and
(ii) A be a subgroup of G.

Then A = {α ∈ G | α(u) ∈ A(u) ◦ u}.

PROOF: α ∈ A ⇐⇒
10.7

gr(α) ⊂ gr(A) ⇐⇒ α(u) ∈ ugr(A) =
12.2

A(u) ◦ u.

We now prove a theorem which gives conditions under which the (gr(A), T )

is topologically transitive. This proof uses a brief technical lemma.

Lemma 12.4 Let:

(i) A ⊂ G be a closed subgroup,
(ii) α ∈ A′,

(iii) U ⊂ M × M be open and invariant, and
(iv) gr(α) ∩ U 
= ∅.

Then gr(A′) ⊂ U ∩ gr(A).

PROOF: 1. There exists V ⊂ M open with V × α(V ) ⊂ U . (by (iii), (iv))
2. A′ ⊂ < V,V > ∩ A. (by 1)



152 Quasi-factors and the τ -topology

3. gr(A′) ⊂
2,10.7

gr(< V, V > ∩ A) ⊂ (V × V )T ∩ gr(A)

⊂
1,(iii)

(1 × α−1)(U) ∩ gr(A)

= (1 × α−1)(U ∩ gr(A)) = (1 × α−1)
(
U ∩ gr(A)

)
.

4. gr(A′) = gr(αA′) = (1 × α)(gr(A′)) ⊂
3

U ∩ gr(A).

Theorem 12.5 Let A ⊂ G be a closed subgroup. Then (gr(A), T ) is topolog-
ically transitive if and only if A = A′.

PROOF: ⇐=
1. Assume that A = A′ and let W ⊂ M × M be open with W ∩ gr(A) 
= ∅.
2. There exists α ∈ A′ with gr(α) ∩ W 
= ∅. (by 1)

3. gr(A′) ⊂ WT ∩ gr(A) = (W ∩ gr(A))T ⊂ (W ∩ gr(A))T . (by 2, 12.4)

4. gr(A) = gr(A′) ⊂ (W ∩ gr(A))T ⊂ gr(A). (by 1, 3)

5. (W ∩ gr(A))T = gr(A). (by 4)
6. gr(A) is topologically transitive. (by 1, 5)

=⇒
1. Assume that gr(A) is topologically transitive.
2. Let α ∈ A and V,W ⊂ M be open sets.

3.
(
(V × V ) ∩ gr(A)

)
T ∩ (W × α(W)) ∩ gr(A) 
= ∅. (by 1, 2)

4. There exists β ∈ A with gr(β) ∩ (V × V ) 
= ∅ 
= gr(β) ∩ (W × α(W)).
(by 3)

5. β ∈ A ∩ < V,V > ∩ < W,α(W) > 
= ∅. (by 4)
6. α ∈ A ∩ < V,V >. (by 2, 5)
7. α ∈ A′. (by 2, 6)
8. A = A′. (by 2, 7)

EXERCISES FOR CHAPTER 12

Exercise 12.1 Let:

(i) X = M/R be regular,
(ii) K be a subgroup of GX, and

(iii) u ∈ JX, and w ∈ J with πR(w) = u.

Then α ∈ K if and only if α(u) ∈ K(u) ◦ w.
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Exercise 12.2 Let:

(i) X = M/R be regular,
(ii) ∅ 
= A ⊂ GX, and

(iii) B = χ−1
R (A) ⊂ G.

Then:

(a) πR(B(u) ◦ p) = A(πR(u)) ◦ p for all u ∈ J and p ∈ M .
(b) if πR is open, then πR(pgr(B)) = πR(p)gr(A) for all p ∈ M .
(c) if πR is open and A is a closed subgroup of GX, then gr(A) is an icer on

X with GX(gr(A)) = A.

Exercise 12.3 Let:

(i) A and B be closed subgroups of G, and
(ii) AB = BA.

Then gr(A) ◦ gr(B) = gr(AB).

Exercise 12.4 Let:

(i) A be a closed subgroup of G, and
(i) R an icer on M .

Show that there exists an icer R0 ⊂ R such that:

(a) R0 ⊂ R is a proximal extension, and
(b) R0 ◦ gr(A) is an icer on M .

Hint: Use the quasi-relative product.





PART IV

Subgroups of G and the dynamics of
minimal flows

Every minimal flow is determined by an icer R on the universal minimal set M .
According to 7.21, this icer must be of the form

R = (R ∩ P0) ◦ gr(G(R)),

where G(R) ⊂ G is a τ -closed subgroup of G. This motivates one of the
important themes of this book: What does the group G(R) tell us about the
minimal flow M/R? We pursue this theme by introducing τ -closed subgroups
P , D, and E, of G in sections 13, 14, and 15 respectively. These groups and
their relationship to G(R) and to the derived group G′ play a key role in the
study of the dynamics of the flow (M/R, T ).

We show that the proximal relation on M/R is an equivalence relation if
and only if P ⊂ G(R) (see 13.8). In section 14, we show that (M/R, T )

is a distal flow if and only if R = P0 ◦ gr(G(R)) with D ⊂ G(R). Simi-
larly, in section 15, we see that (M/R, T ) is an equicontinuous flow if and
only if R = P0 ◦ gr(G(R)) with E ⊂ G(R). Showing that E = DG′, then
implies that a distal flow M/R is equicontinuous if and only if G′ ⊂ G(R)

(see 15.22). Traditionally the group E has been defined as the group of the
maximal equicontinuous minimal flow M/Seq where Seq = P0 ◦ gr(E) is the
equicontinuous structure relation on M . At the end of section 15 we give an
intrinsic description of E.

The regionally proximal relation Q(X) for a minimal flow (X, T ) is intro-
duced in section 15 in order to study equicontinuity. The relation Q(X) = �X

if and only if the flow (X, T ) is equicontinuous (see 15.5). Moreover if Q(X)

is an equivalence relation, then Q(X) = Seq(X), the equicontinuous structure
relation on X (16.2). Section 16 makes a more detailed study of the regionally
proximal relation; including a proof that if E ⊂ G(R)G′, then Q(M/R) is an
equivalence relation.





13

The proximal relation and the group P

In this section we wish to examine in more detail the proximal relation

P(X) = {(x, y) ∈ X × X | (x, y)T ∩ �X 
= ∅}
for a flow (X, T ) (see 4.5). The relation P(X) is invariant reflexive and
symmetric, but is in general neither closed nor transitive. We begin with an
investigation of conditions under which P(X) is transitive, i.e. when P(X) is
an equivalence relation. Recall that (x, y) ∈ P(X) if and only if there exists
p ∈ βT with xp = yp, which is equivalent to saying that xp = yp for all p

in some minimal ideal in βT . But this ideal may depend upon the pair (x, y).
Our first proposition shows that P(X) is an equivalence relation if and only if
P(X) = {(x, y) | xp = yp for all p ∈ M

}
.

Proposition 13.1 Let (X, T ) be a flow. Then the following are equivalent:

(a) E(X) contains only one minimal ideal,
(b) P(X) = {(x, y) ∈ X × X | xm = ym for all m ∈ M}, and
(c) P(X) is an equivalence relation on X.

PROOF: (a) =⇒ (b)
1. Assume that I ⊂ E(X, T ) is the unique minimal ideal in E(X, T ).
2. {(x, y) ∈ X × X | xm = ym for all m ∈ M} ⊂ P(X). (by 4.4)
3. Let �X : βT → E(X) be the canonical map.
4. �X(M) is a minimal subset of E(X).
5. �X(M) = I . (by 1, 4)
6. Let (x, y) ∈ P(X).
7. xm = x�X(m) = y�X(m) = ym. (by 1, 5, 6, and 4.4)

(b) =⇒ (c)

1. Assume that P(X) = {(x, y) ∈ X × X | xm = ym for all m ∈ M}.
2. It suffices to show that P(X) is transitive.

157
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3. Let (x, y), (y, z) ∈ P(X).
4. xm = ym = zm for all m ∈ M . (by 1, 2)
5. (x, z) ∈ P(X). (by 1, 4)

(c) =⇒ (a)

1. Assume that P(X) is an equivalence relation.
2. Let I1 and I2 be minimal right ideals in E(X).
3. There exists idempotents u1 ∈ I1 and u2 ∈ I2 with u1u2 = u1 and u2u1 =
u2. (by 3.14)
4. Let x ∈ X.
5. (x, xu1), (x, xu2) ∈ P(X). (by 1, 3, 4, 4.4)
6. (xu1, xu2) ∈ P(X). (by 1, 5)
7. There exists a minimal right ideal I3 ⊂ E(X) with xu1q = xu2q for all
q ∈ I3. (by 6, and 4.4)
8. There exists an idempotent u3 ∈ I3 with u3u1 = u3 and u1u3 = u1.

(by 3, 7, 3.14)
9. xu1 =

8
xu1u3 =

7
xu2u3 =

3
x(u2u1)u3 = xu2(u1u3)=

8
xu2u1 =

3
xu2.

10. u1 = u2. (by 4, 9)
11. I1 =

2
u1I1 =

10
u2I1 =

2
I2.

One consequence of 13.1 is a characterization of those minimal flows for
which the proximal relation is an equivalence relation. We identify those icers
R on M for which P(M/R) is an equivalence relation using the notion of
equivalent minimal idempotents. Recall from 3.13 that a minimal idempotent
is an idempotent in some minimal ideal, and u1 ∼ u2 means u1u2 = u1 and
u2u1 = u2.

Proposition 13.2 Let X = M/R with R an icer on M . Then P(X) is an
equivalence relation if and only if (pu1, pu2) ∈ R for all p ∈ M and pairs
u1, u2 of equivalent minimal idempotents in βT .

PROOF: =⇒
1. Assume that P(X) is an equivalence relation.
2. Let u1 ∼ u2 be minimal idempotents and p ∈ M .
3. πR(p, pu1), πR(p, pu2) ∈ πR(P (M)) = P(X). (by 1, 2, 4.6, and 4.7)
4. πR(pu1, pu2) ∈ P(X). (by 1, 3)
5. There exists a minimal ideal I ⊂ βT with πR(pu1, pu2)q ∈ � for all
q ∈ I . (by 4, and 4.4)
6. There exists an idempotent u ∈ I with u ∼ u1 ∼ u2. (by 3.14)
7. πR(pu1)=

6
πR(pu1u) = πR(pu1)u=

5
πR(pu2)u = πR(pu2u)=

6
πR(pu2).
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8. (pu1, pu2) ∈ R. (by 7)

⇐=
1. Assume that (pu1, pu2) ∈ R whenever u1 ∼ u2 are minimal idempotents
in βT .
2. Let I1 and I2 be minimal ideals in E(X).
3. There exist minimal idempotents u1 ∼ u2 ∈ βT with �X(u1) ∈ I1 and
�X(u2) ∈ I2. (by 2.9)
4. Let x = πR(p) ∈ X.
5. x�X(u1)=

4
πR(pu1)=

1
πR(pu2)=

4
x�X(u2).

6. �X(u1) = �X(u2). (by 4, 5)
7. I1 ∩ I2 
= ∅. (by 2, 3, 6)
8. I1 = I2. (by 2, 7)
9. P(X) is an equivalence relation. (by 2, 9, 13.1)

The next two corollaries can be deduced more directly but are easily seen to be
immediate consequences of 13.2.

Corollary 13.3 Let:

(i) R ⊂ S be icers on M , and
(ii) P(M/R) be an equivalence relation.

Then P(M/S) is an equivalence relation.

Corollary 13.4 Let:

(i) {Ri | i ∈ I } be a family of icers on M , and
(ii) R = ⋂

i∈I Ri .

Then P(M/R) is an equivalence relation if and only if P(M/Ri) is an equiv-
alence relation for all i ∈ I .

Another important corollary involves the regularizer of an icer S on M .
Recall from 8.4 that reg(S) = ⋂

α∈G α(S) and that G(reg(S)) = ⋂
α−1G(S)α

is a normal subgroup of G.

Corollary 13.5 Let:

(i) S be an icer on M , and
(ii) R = ⋂

α∈G α(S) be the regularizer of S.

Then P(M/R) is an equivalence relation if and only if P(M/S) is an equiva-
lence relation.

PROOF: This follows immediately from 7.16 and 13.4.
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It is an interesting consequence of 13.2 that for a minimal flow (X, T ), if P(X)

is closed, then it is also an equivalence relation. This means that in this case
P(X) is an icer and the quotient flow X/P (X) is distal. We will examine this
situation further in section 13; here we give a proof that if P(M/R) is closed,
then it is an equivalence relation.

Proposition 13.6 Let:

(i) R be an icer on M , and
(ii) S = ⋂

α∈G

α(R).

Then:

(a) P(M/R) closed implies that P(M/R) is an equivalence relation, and
(b) P(M/R) is closed if and only if P(M/S) is closed.

PROOF: (a) 1. Assume that P(M/R) is closed.
2. Let p ∈ M and u1 ∼ u2 be minimal idempotents in βT .
3. (p, pu2) ∈ P(M).
4. (pt, pu2t) ∈ P(M) for all t ∈ T .
5. πR(pu1, pu2) = πR(p, pu2)u1 ∈

3,4
πR(P (M)) = πR(P (M)) =

4.7
P(M/R)

=
1

P(M/R).

6. There exists a minimal ideal K ⊂ βT with πR(pu1, pu2)q ∈ � for all
q ∈ K . (by 5, 4.4)
7. There exists u3 ∈ K with u1 ∼ u3 ∼ u2. (by 2, 6, and 3.14)
8. πR(pu1, pu2) = πR(pu1, pu2)u3 ∈ �. (by 6, 7)
9. (pu1, pu2) ∈ R. (by 8)
10. P(M/R) is an equivalence relation. (by 2, 9, and 13.2)

(b) ⇐=
This follows immediately from 4.7.

=⇒
1. Assume that P(M/R) is closed.
2. Let (p, q) ∈ P(M).
3. Let α ∈ G.
4. α(p, q) ∈ α

(
P(M)

)
= α(P (M)) = P(M).

5. πR(α(p), α(q)) ∈ πR

(
P(M)

)
= P(M/R) = P(M/R).

(by 1, 4, and 4.7)
6. P(M/R) is an equivalence relation since we are assuming it is closed.

(by (a))
7. πR(α(p), α(q))m ∈ � for all m ∈ M . (by 5, 6, 13.1)
8. α(pm, qm) ∈ R for all α ∈ G and m ∈ M . (by 3, 7)
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9. (pm, qm) ∈ S for all m ∈ M . (by 8, (ii))
10. πS(p, q) ∈ P(M/S). (by 9, and 4.4)

11. P(M/S) =
4.7

πS(P (M)) = πS

(
P(M)

)
⊂

2,10
P(M/S).

It is natural to ask whether the converse of 13.6 (a) is true. A counterexample
is given in [Shapiro, Proximality in minimal transformation groups, (1970)].
Indeed, in this example not only is P(X) an equivalence relation but every
proximal cell

xP (X) = {z ∈ X | (x, z) ∈ P(X)}
is closed, and yet P(X) is not closed. We now investigate this situation from
the group-theoretic point of view; our goal is to define closed subgroups P ⊂
G and GJ ⊂ G so that P(M/R) is an equivalence relation if and only if
P ⊂ G(R) and P(M/R) is an equivalence relation with closed cells if and
only if PGJ ⊂ G(R).

We first observe that the collection {β(J ) | β ∈ G} (where as usual J

denotes the set of idempotents in M) forms a partition of M (by 7.4). On the
other hand the subsets β(J ) ⊂ M with β ∈ G are not the proximal cells
in M . In particular for u ∈ J , uP (M) 
= J . Indeed (u, uu1) ∈ P(M) for
any u ∈ J and any idempotent u1 ∈ βT , so uu1 ∈ uP (M) but uu1 need
not be an idempotent. On the other hand uu1 must be of the form α(v) for
some α ∈ G and v ∈ J . Now if R is any icer for which P(M/R) is an
equivalence relation we must have (πR(u), πR(α(v))) ∈ P(M/R). Using 13.1
this gives πR(gr(α)) ⊂ � and thus α ∈ G(R). In this sense the elements α ∈
G with (u, α(v)) ∈ P(M) are “obstructions” to P(M/R) being an equivalence
relation. This motivates the definition of the subgroup P ⊂ G, which, as the
next proposition shows, characterizes those icers on M for which P(M/R) is
an equivalence relation.

Definition 13.7 Let P ⊂ G denote the closed normal subgroup of G generated
by the set

{α | (u, α(v)) ∈ P(M) for some u, v ∈ J }.
Proposition 13.8 Let X = M/R. Then P(X) is an equivalence relation if and
only if P ⊂ G(R).

PROOF: =⇒
1. Assume that P(X) is an equivalence relation.
2. Let u, v ∈ J with (u, α(v)) ∈ P(M) where α ∈ G.
3. Set S = ⋂

β∈G

β(R) and Y = M/S.
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4. P(Y ) is an equivalence relation. (by 1, 13.5)
5. πS(u, α(v)), πS(u, v) ∈ πS(P (M)) = P(Y ). (by 2, 4.7)
6. πS(v, α(v)) ∈ P(Y ). (by 4, 5)
7. There exists q ∈ βT with πS(vq) = πS(α(vq)). (by 6, and 4.4)
8. α ∈ G(S) which is a normal subgroup of G. (by 3, 7, 8.2, 8.4)
9. P ⊂ G(S) ⊂ G(R). (by 2, 8)

⇐=
1. Assume that P ⊂ G(R).
2. Since P is normal in G, P ⊂ ⋂

α∈G

αG(R)α−1 = ⋂
α∈G

G(α(R)) =

G

( ⋂
α∈G

α(R)

)
. (by 1, 7.16, and 7.19)

3. Let u1 ∼ u2 be minimal idempotents in βT , and p ∈ M .
4. There exists u2 = u ∈ M with u ∼ u1 ∼ u2. (by 3.14)
5. There exists v2 = v ∈ M and β ∈ G with β(v) = p. (by 7.4)
6. There exists α ∈ G with α(u) = vu1. (by 4, 5, and 7.4)
7. (v, α(u)) = (v, vu1) ∈ P(M). (by 3, 6, and 4.6)
8. α ∈ P . (by 7)
9. βαβ−1 ∈ P ⊂ G(R). (by 1, 8)
10. (pu, pu1)=

5
(β(v)u, β(v)u1)=

6
(β(u), βα(u)) = (β(u), βαβ−1(β(u)) ∈

gr(βαβ−1)⊂
9

R.

11. (pu, pu2) ∈ R. (applying 6-10 to u2)
12. (pu1, pu2) ∈ R. (by 10, 11)
13. P(X) is an equivalence relation. (by 3, 12, 13.2)

As we remarked earlier the partition {β(J ) | β ∈ G} is not the collection of
proximal cells in M . On the other hand for any icer R for which P(M/R) is
an equivalence relation this partition does project under πR to the collection
of proximal cells in M/R, i.e. πR(β(J )) = πR(β(v))P (M/R). This follows
from 13.1; we leave the proof as an exercise for the reader. In particular, in this
case πR(J ) is one of the proximal cells in M/R. If the proximal cells are to be
closed, then we must have πR(J ) = πR(J ). This means that for α(u) ∈ J we
must have πR(α(u)) ∈ πR(J ) which implies that α ∈ G(R). Once again this
motivates the appropriate definition.

Definition 13.9 As usual let J = {u ∈ M | u2 = u} denote the set of idempo-
tents in a fixed minimal ideal M ⊂ βT . We denote by:

J ∗ ≡ {α ∈ G | α(J ) ∩ J 
= ∅},

and define GJ to be the closed normal subgroup of G generated by J ∗.
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The following lemma will be used to prove that the subgroup PGJ charac-
terizes those icers for which M/R is an equivalence relation with closed cells.

Lemma 13.10 Let:

(i) X be a flow,
(ii) N ⊂ X × X,

(iii) α ∈ Aut(X), and
(iv) x ∈ X.

Then α(x)α(N) = α(xN).

PROOF: We leave the proof as an exercise for the reader.

Theorem 13.11 Let:

(i) R be an icer on M , and
(ii) S = ⋂

α∈G

α(R).

Then the following are equivalent:

(a) P(M/R) is an equivalence relation with closed cells,
(b) P(M/S) is an equivalence relation with closed cells,
(c) PGJ ⊂ G(S), and
(d) PGJ ⊂ G(R).

PROOF: (a) ⇒ (b)
1. Assume that P(M/R) is an equivalence relation with closed cells.
2. P(M/S) is an equivalence relation. (by 1, 13.5)
3. Let x ∈ yP (M/S).
4. There exist p, q ∈ M with πS(p, q) = (x, y).
5. Let α ∈ G.
6. πR(α(p))

= πS
R(πS(α(p))) =

8.11
πS

R(χS(α)(πS(p))) ∈
3,4

πS
R

(
χS(α)

(
πS(q)P (M/S)

))
= πS

R

(
χS(α)(πS(q))P (M/S))

)
=

13.10
πS

R

(
χS(α)(πS(q))χS(α)(P (M/S))

)
=

8.11
πS

R

(
πS(α(q))πS(α(P (M)))

)
= πS

R

(
πS(α(q))πS(P (M))

)
=
4.7

πS
R

(
πS(α(q)P (M))

)
= πR(α(q)P (M))

=
4.7

πR(α(q))P (M/R) =
1

πR(α(q))P (M/R).

7. πR(α(p))m = πR(α(q))m for all m ∈ M . (by 1, 6, and 13.1)
8. (α(pm), α(qm)) ∈ R for all m ∈ M . (by 7)
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9. (pm, qm) ∈ S for all m ∈ M . (by 5, 8)
10. xm = πS(pm) = πS(qm) = ym for all m ∈ M . (by 9)
11. (y, x) ∈ P(M/S). (by 10)
12. x ∈ yP (M/S). (by 11)
13. yP (M/S) is closed. (by 3, 12)

(b) =⇒ (c)

1. Assume that P(M/S) is an equivalence relation with closed cells.
2. P ⊂ G(S). (by 1, 13.8)
3. Let α ∈ J ∗.
4. There exists u ∈ J with α(u) ∈ J ⊂ uP (M). (by 3)
5. πS(α(u))∈

4
πS(uP (M)) = πS(uP (M)) =

4.7
πS(u)P (M/S) =

1
πS(u)P (M/S).

6. πS(α(m)) = πS(α(u))m = πS(u)m = πS(m) for all m ∈ M .
(by 1, 5, and 13.1)

7. α ∈ G(S). (by 6)
8. GJ ⊂ G(S). (by 3, 7, and the fact that G(S) is normal in G)

(c) ⇒ (d)

G(S) ⊂ G(R) so this is immediate.

(d) ⇒ (a)

1. Assume that PGJ ⊂ G(R).
2. P(M/R) is an equivalence relation. (by 13.8)
3. Let x ∈ yP (M/R).
4. There exist β ∈ G and v ∈ J with y = πR(β(v)).
5. There exist α ∈ G and u ∈ J with x = πR(α(u)).
6. πR(α(u)) ∈ β(v)P (M/R) = πR(β(J )) = πR(β(J )). (by 2, and 13.1)
7. There exists γ ∈ J ∗ and w ∈ J with πR(α(u)) = πR(β(γ (w))). (by 6)
8. βγα−1 ∈ G(R). (by 7)
9. βα−1 = (βγ −1β−1)(βγ α−1) ∈ G(R). (by 1, 8)
10. (y, x) = πR(α(u), β(v)) = πR(β(u), β(v)) ∈ P(M/R). (by 9)
11. x ∈ yP (M/R). (by 10)
12. P(M/R) has closed cells. (by 3, 11)

The definition of the subset J ∗ ⊂ G though motivated by the fact that when
P(M/R) is an equivalence relation πR(J ) is a proximal cell in M/R, identifies
the elements of G which are obsructions to πR(J ) being closed. We make this
precise in the following proposition.

Proposition 13.12 Let X = M/R be a minimal flow. Then J ∗ ⊂ G(R) if and
only if πR(J ) is closed.
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PROOF: =⇒
1. Assume that J ∗ ⊂ G(X).
2. Let y ∈ πR(J ).
3. y = πR(p) for some p ∈ J . (by 2)
4. There exists an idempotent u ∈ J and α ∈ G with α(u) = p. (by 7.4)
5. α ∈ J ∗ ⊂ G(R). (by 1, 3, 4, and 13.9)
6. y =

3
πR(p)=

4
πR(α(u))=

5
πR(u) ∈ πR(J ).

⇐=
1. Assume that πR(J ) is closed and let α ∈ J ∗.
2. There exists an idempotent u ∈ J with α(u) ∈ J .
3. πR(α(u)) ∈ πR(J ) = πR(J ). (by 1, 2)
4. (v, α(u)) ∈ R for some v ∈ J . (by 3)
5. (u, α(u)) ∈ Ru ⊂ R. (by 4)
6. α ∈ G(R). (by 5)
7. J ∗ ⊂ G(R). (by 1, 6)

Let X = M/R be a regular flow and JX = {u ∈ X | u2 = u}. We first recall
from 8.6 that the canonical map πR: M → X is a homomorphism both of flows
and of semigroups. It follows that

πR(J ) = JX and πR(J ) = JX.

Thus the previous proposition shows that JX is closed if and only if J ∗ ⊂
G(R).

EXERCISES FOR CHAPTER 13

Exercise 13.1 Let R be an icer on M . Show that P(M/R) is an equivalence
relation if and only if P(M/R) = πR(P0).

Exercise 13.2 Let:

(i) R be an icer on M ,
(ii) P(M/R) be an equivalence relation,

(iii) u, v ∈ J (the set of idempotents in M), and
(iv) β ∈ G.

Then the partition {β(J ) | β ∈ G} of M projects onto the proximal cells in
M/R, i.e. πR(β(J )) = πR(β(v))P (M/R).

Exercise 13.3 (See 13.10) Let:

(i) X be a flow,
(ii) N ⊂ X × X,
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(iii) α ∈ Aut(X), and
(iv) x ∈ X.

Then α(x)α(N) = α(xN).

Exercise 13.4 Let:

(i) X = M/R be a flow, and
(ii) N = {(x, xu) | x ∈ X and u ∈ J }.
Then:

(a) N is an invariant equivalence relation on X.
(b) N has closed cells if and only if GJ ⊂ G(R).
(c) N = P(X) if and only if P ⊂ G(R).

Exercise 13.5 Let:

(i) X = M/R be a flow,
(ii) G(R) be a normal subgroup of G, and

(iii) P(X) be an equivalence relation with one closed cell.

Then all the cells of P(X) are closed.

Exercise 13.6 Let X = M/R and Y = M/S with R ⊂ S icers on M .
Then the following are equivalent:

(a) X is a proximal extension of Y ,
(b)

(
(πR

S )−1(y)
)
p = {xp} for all y ∈ Y, x ∈ (πR

S )−1(y), and p ∈ M , and
(c) there exist y0 ∈ Y and p ∈ M such that

(
(πR

S )−1(y0)
)
p is a singleton.
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Distal flows and the group D

In this section we characterize those icers on M for which the minimal flow
M/R is distal. We introduce a τ -closed subgroup D ⊂ G and show that M/R

is distal if and only if R = P0◦gr(A), where A = G(R) is a τ -closed subgroup
with D ⊂ A. (See 7.20 for the definition of P0.) In particular Sd = P0 ◦
gr(D) the so-called distal structure relation is an icer on M , and every minimal
distal flow is an image of M/Sd . Indeed a minimal distal flow is completely
determined by its group, and the collection of distal minimal flows, {M/R |
Sd ⊂ R} can be put in one-one correspondence with the collection {A = A ⊂
G | D ⊂ A}, of τ -closed subgroups of G which contain D.

Let (X, T ) be a flow. Recall that as in 4.5, we say that (X, T ) is a distal flow
if P(X) = � (the diagonal of X × X). Here P(X) is the proximal relation
consisting of all the proximal pairs in X ×X. We will be interested in minimal
distal flows; in this case X = M/R for some icer R on M . We will often use the
phrase: R is distal to mean that the flow (M/R, T ) is distal. This terminology
needs to be used carefully; this does not mean that the subflow (R, T ) of
(M × M,T ) is a distal flow. Note that the homomorphic image of a distal
flow is distal (see 4.10). Hence, using the terminology above, R is distal, if
and only if, α(R) is distal for every α ∈ G. (Recall that by 7.6, α induces an
isomorphism of the flows M/R and M/α(R).)

Now assume that R is a distal icer on M; then according to 4.7, πR(P (M)) =
P(M/R), so we must have P(M) ⊂ R. Recalling the notation from 7.20:

P0 = {(α(u), α(v)) | α, β ∈ G and u, v ∈ J } ⊂ P(M).

The following proposition shows that M/R is distal if and only if P0 ⊂ R.

Proposition 14.1 Let:

(i) R be an icer on M ,
(ii) X = M/R, and

(iii) J ⊂ M be the set of idempotents in M .

167
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Then the following are equivalent:

(a) X is a distal flow,
(b) P(M) ⊂ R, and
(c) P0 ≡ ⋃

α∈G α(J × J ) ⊂ R.

PROOF: (a) ⇐⇒ (b)
This follows immediately from the fact that πR(P (M)) = P(X) (see 4.7).

(b) =⇒ (c)

Clear since P0 ⊂ P(M).

(c) =⇒ (b)

1. Assume that P0 ⊂ R and let (p, q) ∈ P(M).
2. There exists a minimal ideal I ⊂ βT and an idempotent w ∈ I

with q = pw. (by 4.6)
3. There exists v ∈ J with vw = v and wv = w. (by 3.14)
4. (p, pv) ∈ P0 ⊂ R. (by 1)
5. (pv, pw)=

3
(pvw, pw) = (pv, p)w ∈

4
Rw ⊂ R.

6. (p, q)=
2
(p, pw) ∈

4,5
R ◦ R ⊂ R.

We deduce some immediate consequences of 14.1.

Corollary 14.2 Let R ⊂ S be distal icers on M . Then the map πR
S : M/R →

M/S is open.

PROOF: R ∩ P0 = P0 = S ∩ P0 so this follows immediately from 7.23.

Corollary 14.3 Let R be a regular icer on M , and J ⊂ M be the set of idem-
potents in M . Then R is distal if and only if J × J ⊂ R.

Corollary 14.4 Let R be an icer on M . Then (M/R, T ) is distal if and only if
R = P0 ◦ gr(G(R)).

PROOF: Recall that by 7.21, R = (R ∩ P0) ◦ gr(G(R)).

Suppose that S is a compact Hausdorff topological space with a group structure
which is a compactification of T in the sense that there exists a homomorphism
of T onto a dense subgroup of S. Assume further that for every t ∈ T right
multiplication by the image of t in S is continuous (this is a much weaker than
assuming S is a topological group). Then (S, T ) is a minimal flow where T

acts on S by right multiplication. In fact in this case (s1, s2)T ∩ �S 
= ∅ ⇒
(s1, s2)s ∈ � for some s ∈ S ⇒ s1 = s2. Thus (S, T ) is a minimal distal flow.
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The following proposition shows that every regular minimal distal flow is of
this form.

Proposition 14.5 Let:

(i) X = M/R be a regular distal flow, and
(ii) u ∈ J be any idempotent in M .

Then:

(a) X = {πR(α(u)) | α ∈ G} is a group with identity πR(u),
(b) the map

T → X

t → πR(ut)

is a homomorphism of T onto a dense subgroup of X, and
(c) the map

ϕ : G → X

α → πR(α(u))

is an epimorphism which induces an isomorphism

G/G(R) → X.

PROOF: (a) 1. Let x ∈ X.
2. There exists p ∈ M with πR(p) = x.
3. There exist α ∈ G and v ∈ J with α(v) = p. (by 7.4)
4. x = πR(p) = πR(α(v)) = πR(α(u)). (by 2, 3, (i), and 14.1)
5. πR: M → X = M/R is a semigroup homomorphism. (by (i), 8.6)
6. πR(α(u))πR(β(u)) = πR(α(u)β(u)) = πR(α(β(u))) for all α, β ∈ G.

(by 5)
7. πR(u)πR(β(u)) = πR(β(u)) = πR(β(u))πR(u) for all β ∈ G. (by 6)

(b) 1. Let t, s ∈ T .
2. πR(ut)πR(us) = πR(ut)πR(u)s = πR(uts). (by part (a))
3. {πR(ut) | t ∈ T } = {πR(u)t | t ∈ T } = X. (X is minimal)

(c) 1. ϕ is an epimorphism of the group G onto the group X. (by (a))
2. α ∈ ker ϕ ⇐⇒ πR(α(u)) = πR(u) ⇐⇒ (u, α(u)) ∈ R ⇐⇒ α ∈ G(R).

It is important to note that 14.5 does not say that any regular minimal distal
flow is a compact topological group. The map ϕ while it is an isomorphism of
groups is not in general continuous. Indeed (by 11.11) the quotient G/G(R)

is a compact Hausdorff topological group if and only if the derived group
G′ ⊂ G(R). We will see in the next section that this is the case if and only
if (X, T ) is an equicontinuous flow.
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We now wish to define the closed subgroup D ⊂ G which allows us to
identify all of those icers R for which M/R is distal. The group D char-
acterizes those icers R for which P(M/R) is closed in the same sense that
the subgroup P ⊂ G characterizes those for which P(M/R) is an equiv-
alence relation. Since πR(P (M)) = P(M/R), if the latter is closed, then
πR

(
P(M)

) = P(M/R) so that gr(α) ⊂ P(M) implies that α ∈ G(R). This
motivates the following definition.

Definition 14.6 Let K = {α ∈ G | gr(α) ⊂ P(M)}. We define D to be the
closed subgroup of G generated by K . More generally, for any regular minimal
flow (X, T ), we define DX to be the closed subgroup of GX generated by
KX = {α ∈ GX | gr(α) ⊂ P(X)}. Thus in particular D = DM .

As an immediate consequence of the definitions we have the following
lemma.

Lemma 14.7 Let:

(i) X = M/R be a regular minimal flow, and
(ii) β ∈ GX.

Then:

(a) KX = {α ∈ G | gr(α) ∩ P(X) 
= ∅}
(b) β−1KXβ = KX, and
(c) DX is normal in GX.

PROOF: (a) This follows immediately from the fact that P(X) is closed
and invariant.

(b) 1. Let α ∈ KX.

2. (β(p), α(β(p))) ∈ P(X). (by 1, (i))

3. (p, β−1αβ(p)) ∈ β−1
(
P(X)

)
= P(X). (by 2)

4. β−1αβ ∈ KX. (by 3)

5. β−1KXβ ⊂ KX. (by 1, 4)

6. βKXβ−1 ⊂ KX. (by 5 applied to β−1)

7. β−1KXβ = KX. (by 5, 6)

(c) 1. KX ⊂ β−1DXβ for all β ∈ GX. (by part (b))

2. DX ⊂ β−1DXβ for all β ∈ GX. (by 1)

3. DX ⊂ βDXβ−1 for all β ∈ GX. (by 2 applied to β−1)

4. DX is normal in GX. (by 2, 3)

We use the preceding lemma to verify that the group D does indeed character-
ize those icers for which P(M/R) is closed.
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Proposition 14.8 Let X = M/R be a minimal flow. Then the following are
equivalent:

(a) P(X) is closed,
(b) D ⊂ G(R), and
(c) (X, T ) is a proximal extension of the distal flow (M/(P0 ◦gr(G(R))), T ).

PROOF: (a) =⇒ (b)
1. Assume that P(X) is closed.
2. Let α ∈ G with gr(α) ⊂ P(M) and u ∈ J .
3. πR(u, α(u)) ∈ πR(P (M)) = πR(P (M)) = P(X) = P(X). (by 1, 4.7)
4. There exists p ∈ βT with πR(u, α(u))p ∈ � ⊂ X × X. (by 3, 4.4)
5. πR(gr(α)) ∩ � 
= ∅. (by 4)
6. πR(gr(α)) is a minimal subset of X × X. (by 3.5, 7.5)
7. πR(gr(α)) ⊂ �. (by 5, 6)
8. gr(α) ⊂ R. (by 7)
9. α ∈ G(R). (by 8)
10. D ⊂ G(R). (by 2, 9)

(b) =⇒ (a)

1. Assume that D ⊂ G(R).
2. Let (α(u), β(v)) ∈ P(M).
3. (α(u), βα−1(α(u))) = (α(u), β(u)) = (α(u), β(v))u ∈ P(M)u ⊂ P(M).

(by 2)
4. gr(βα−1) ∩ P(M) 
= ∅. (by 3)
5. βα−1 ∈ D ⊂ G(R). (by 1, 4, and 14.7)
6. πR(α(u), β(v))=

5
πR(α(u), α(v)) ∈ πR(P (M)) =

4.7
P(X).

7. πR(P (M)) = P(X). (by 1, 6, 4.7)
8. P(X) is closed. (by 7)

(a) =⇒ (c)

1. Assume that P(X) is closed.
2. P(X) is an icer. (by 13.6)
3. Let Y = X/P (X) = M/S.
4. X is a proximal extension of Y . (by 3)
5. P(Y ) = πR

S (P (X)) = �Y . (by 3, and 4.7)
6. Y is distal with G(S) = G(R). (by 3, 4, 5, 7.11)
7. S = P0 ◦ gr(G(S)) = P0 ◦ gr(G(R)). (by 5, 6, 14.4)

(c) =⇒ (a)

1. Assume that X is a proximal extension of the distal flow Y = M/S.
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2. P(M) ⊂ S. (by 1)
3. D ⊂

2
G(S) =

1,7.11
G(R).

Recall that the group P ⊂ G was defined to be the closed normal subgroup of
G generated by the set {α | (u, α(v)) ∈ P(M) for some u, v ∈ J }. But

(u, α(v)) ∈ P(M) ⇒ gr(α) ⊂ P(M),

thus since D is closed and normal in G, it follows that P ⊂ D. Since the
proof given above that (a) ⇒ (b) makes no use of 13.6, it provides an alter-
nate proof of 13.6(a). Namely P(M/R) closed ⇒

14.8
D ⊂ G(R) ⇒ P ⊂

G(R) ⇒
13.8

P(M/R) is an equivalence relation. Thus as an immediate conse-

quence of 14.8, P(M/R) is an icer if and only if D ⊂ G(R).
Of course if P(M/R) is closed, then each of its cells are closed. We saw

in 13.11 that this is the case if and only if PGJ ⊂ G(R), so it follows that
GJ ⊂ D. To see this directly we observe that

α(J ) ∩ J 
= ∅ ⇒ ∅ 
= gr(α) ∩ (J × J ) ⊂ gr(α) ∩ P(M)

⇒ gr(α) ⊂ P(M) ⇒ α ∈ D.

This shows that J ∗ ⊂ D (see 13.9); since D is closed and normal in G this
argument shows that GJ ⊂ D. For emphasis we restate these observations in
the following proposition.

Proposition 14.9 Let:

(i) R be an icer on M , and
(ii) P , GJ , and D be the subgroups of G defined in 13.7, 13.9, and 14.6

respectively.

Then:

(a) PGJ ⊂ D, and
(b) P(M/R) is an icer if and only if D ⊂ G(R).

As we remarked earlier, in [Shapiro, L., Proximality in minimal transforma-
tion groups, (1970)] Shapiro gives an example where P(X) is an equivalence
relation and every proximal cell is closed, yet P(X) is not closed. Thus for
this example it follows from 13.11 that PGJ ⊂ G(X). On the other hand it
follows from 14.8 that D 
⊂ G(X). Thus PGJ ⊂ D, but PGJ 
= D.

We saw in 14.1, that the flow (M/R, T ) is distal if and only if P0 ⊂ R. On
the other hand if M/R is distal, then P(M/R) = � is closed, so it follows
from 14.8 that D ⊂ G(R). Thus it follows from 14.4 that any distal icer R is
of the form R = P0 ◦ gr(A) for some τ -closed subgroup of G with D ⊂ A.
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The main theorem of this section says that {P0 ◦ gr(A) | D ⊂ A = A} is
exactly the collection of all distal icers on M .

Theorem 14.10 Let A be a closed subgroup of G. Then P0 ◦ gr(A) is a distal
icer on M if and only if D ⊂ A.

PROOF: =⇒
1. Assume that R = P0 ◦ gr(A) is an icer.
2. R is distal. (by 1, 14.1)
3. P(M/R) = � is closed. (by 2)
4. D ⊂ G(R) = A. (by 1, 3, 14.8)

⇐=
1. Assume that D ⊂ A.
2. Let S = gr(A).
3. S is an icer on M with D ⊂ G(S). (by 1, 2, 12.2)
4. S is a proximal extension of the distal flow P0 ◦ gr(G(S)) = P0 ◦ gr(A).

(by 3, 14.8)

As an immediate consequence of theorem 14.10 we obtain the so-called
“Galois theory” of minimal distal flows discussed in [Ellis, R. (1969)] (see
proposition 13.23 of that reference).

Theorem 14.11 Let:

(i) D = {R | R is a distal icer on M},
(ii) G = {H | H is a closed subgroup of G with D ⊂ H },

(iii) ϕ: D → G
N → G(N), and

(iv) ψ: G → D
A → P0 ◦ gr(A).

Then:

(a) ϕ is bijective, its inverse being the map ψ , and
(b) ψ(A) is regular if and only if A is normal.

PROOF: (a) This is basically a restatement of 14.10.
(b) =⇒

1. Assume that A ∈ G is normal, and let α ∈ G.
2. A = G(ψ(A)) is normal.
3. G(α(ψ(A)) = G(ψ(A)). (by 2, 7.17)
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4. α(ψ(A)) = ψ(A). (by 3, and part (a))
5. ψ(A) is regular. (by 1, 4)

⇐=
The group of any regular flow is normal by 8.2.

When R and S are icers on M we know that R◦S is an icer on M if and only
if R ◦ S = S ◦ R. Thus in particular the condition G(R)G(S) = G(S)G(R)

(that G(R)G(S) be a group) is necessary in order for R ◦S to be an icer. When
one of the icers R or S is distal, this condition is also sufficient.

Proposition 14.12 Let:

(i) R, S be icers on M ,
(ii) S be distal, and

(iii) G(R)G(S) be a group.

Then:

(a) R ◦ S = P0 ◦ gr(G(R)G(S)) is a distal icer on M ,
(b) G(R ◦ S) = G(R)G(S),
(c) πR(S) is an icer on M/R, and
(d) (M/R)/πR(S) is distal.

PROOF: (a), (b):
1. S = P0 ◦ gr(G(S)). (by (ii), and 14.4)
2. R ◦ S =

1,7.21
(P0 ∩ R) ◦ gr(G(R)) ◦ P0 ◦ gr(G(S))

= gr(G(R)) ◦ (P0 ∩ R) ◦ P0 ◦ gr(G(S))

= gr(G(R)) ◦ P0 ◦ gr(G(S)) = gr(G(R)) ◦ gr(G(S)) ◦ P0

= gr(G(S)G(R)) ◦ P0 =
(ii),(iii),14.10

P0 ◦ gr(G(R)G(S)).

3. R ◦ S is a distal icer. (by 2, and 14.10)
(c) This follows from part (a) and 6.11.
(d) 1. (M/R)/πR(S) ∼= M/(π−1

R (πR(S))) = M/(R ◦ S). (by 7.2)
2. (M/R)/πR(S) is distal. (by 1, (a))

As one application of the material discussed above, along with the results from
sections 4 and 12 on topological transitivity and pointwise almost periodicity, we
obtain the following important relationship between the groups G∞ and D. We
will explore these ideas further in section 20 where we show that this theorem is
equivalent to the generalized Furstenberg structure theorem for distal extensions.

Theorem 14.13 Let A ⊂ G be a closed subgroup with A = A′. Then A ⊂ D;
in particular G∞ ⊂ D.
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PROOF: 1. Let R = P0 ◦ gr(D).
2. (M/R, T ) is distal. (by 14.10)
3. Let S = gr(A).
4. S is an icer on M with G(S) = A. (by 12.2)
5. (S, T ) is a topologically transitive flow. (by 12.5)
6. G(R)G(S) = DA = AD = G(S)G(R). (by 1, 2, D is normal in G)
7. R ◦ S is an icer on M and πR(S) is an icer on M/R with

(
M/R

)
/πR(S) ∼=

M/(R ◦ S). (by 2, 5, 14.12)
8. (πR(S), T ) is topologically transitive. (by 5, 4.21)
9. (πR(S), T ) is distal. (by 2, 7, 4.13)
10. (πR(S), T ) is minimal. (by 8, 9, 4.24)
11. πR(S) = � and hence S ⊂ R. (by 7, 10)
12. A = G(S) ⊂ G(R) = D. (by 1, 4, 11)

Using the “classical” terminology, the distal structure relation on M is the
smallest icer on M such that the quotient flow is distal. We present the def-
inition from the point of view of theorem 14.10.

Definition 14.14 We define the distal structure relation on M by Sd = P0 ◦
gr(D).

Proposition 14.15 Let R be an icer on M . Then R is distal if and only if
Sd ⊂ R.

PROOF: This follows immediately from 14.10.

More generally for any minimal flow (X, T ), we would like to produce Sd(X),
the smallest icer on X such that X/Sd(X) is distal. The following corollary
shows that the projection of Sd onto X is a distal icer on X which we define to
be the distal structure relation on X.

Corollary 14.16 Let X = M/R. Then:

(a) R ◦ Sd is an icer on M ,
(b) G(R ◦ Sd) = G(R)D,
(c) πR(Sd) is an icer on X, and
(d) X/πR(Sd) is distal.

PROOF: This follows immediately from 14.12 since D is normal in G

Definition 14.17 Let X = M/R be a minimal flow. We define the distal struc-
ture relation on X by Sd(X) = πR(Sd).

It should be pointed out that Sd(X) depends only on the minimal flow (X, T )

not on the icer R, even when X is not regular. This amounts to saying that if
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S is an icer on M with X ∼= M/S, then the isomorphism ϕ: M/R → M/S

takes πR(Sd) to πS(Sd). But in this situation S = α(R) for some α ∈ G (by
7.7) with ϕ ◦ πR = πS ◦ α. But Sd is regular (since D is normal) and hence
ϕ(πR(Sd)) = πS(α(Sd)) = πS(Sd).

We leave it as an exercise for the reader to verify that if S is an icer on X

with X/S distal, then Sd(X) ⊂ S. When R is regular, the icer Sd(X) can be
constructed directly from the subgroup DX of the group GX of automorphisms
of X. To this end in analogy with 7.20, we denote by:

P0(X) =
⋃

α∈GX

α(JX × JX),

where as usual JX is the set of idempotents of X. Note that P0(X) ⊂ P(X)

is an equivalence relation on X; in general it is neither invariant nor closed.
Clearly the analog of the fact that Sd = P0 ◦ gr(D) is the statement that
Sd(X) = P0(X) ◦ gr(DX). We leave it to the reader to verify this in exercise
14.6 below.

NOTES ON SECTION 14

Notation 14.N.1 In [Ellis (1969)] the algebra, D of distal functions on T was
defined. This turned out to be a uniformly closed T -invariant subalgebra of
C(βT ) such that the associated flow |D| was minimal, distal, and had the prop-
erty that every minimal distal flow was a homomorphic image thereof. Hence
by 14.15 |D| is isomorphic to M/Sd and the group D introduced above coin-
cides with G(D) which was also denoted D in the reference above.

EXERCISES FOR CHAPTER 14

Exercise 14.1 (An extension of Ex. 4.2.) Let (X, T ) be a flow and �: βT →
E(X) be the canonical map. Then the following are equivalent:

(a) X is distal.
(b) e is the only idempotent in E(X).
(c) E(X) is a group.
(d) E(X) = �(G(u)) for all idempotents u ∈ J .
(e) The map G → E(X)

α → �(α(u))

is an epimorphism for all u ∈ J .

(f) E(X) = �(M).
(g) E(X) is minimal.
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Exercise 14.2 Let X = M/R be distal and u ∈ J be any idempotent in M .
Then the map

ϕ: G → X

α → πR(α(u))

induces a bijection

G/G(R) → X.

Exercise 14.3 (Local version of 14.13) Let:

(i) (X, T ) be a regular minimal flow,
(ii) A ⊂ GX be a closed, and

(iii) A = A′.
Then A ⊂ DX.

Hint: this can be deduced from 14.13, or from 4.24 directly.

Exercise 14.4 Let:

(i) R ⊂ S be icers on M ,
(ii) X = M/R, Y = M/S, and

(iii) f ∈ Hom(M,X).

Then:

(a) f (Sd) = Sd(X).
(b) πR

S (Sd(X)) = Sd(Y ).

Exercise 14.5 Let:

(i) X = M/R be a minimal flow, and
(ii) N be an icer on X.

Then X/N is distal if and only if Sd(X) ⊂ N .

Exercise 14.6 Let X = M/R be regular.
Then:

(a) χR(D) = DX.
(b) Sd(X) = P0(X) ◦ gr(DX).
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Equicontinuous flows and the group E

In this section we introduce the concept of an equicontinuous flow. Basically
a flow (X, T ) is equicontinuous when the group T , thought of as a family
of continuous elements of XX, is uniformly equicontinuous [Rudin (1953)].
Every equicontinuous flow is distal (see 15.3), but the converse is false. The
prototype example of an equicontinuous minimal flow is a compact group K

with a dense subgroup which is a homomorphic image of T (see 15.9 for a
precise statement). In fact every regular equicontinuous minimal flow, (X, T ),
is of this form (see 15.10). Indeed in this situation G/G(X) ∼= X ∼= E(X, T )

as compact Hausdorff topological groups. Thus one approach to the study of
equicontinuity is via the enveloping semigroup. This approach, which does not
require that (X, T ) be minimal, will be pursued in the appendix to this section.
In the body of this section we study equicontinuity for minimal flows in the
context of icers on M and subgroups of G. In particular we introduce both the
regionally proximal relation Q(X) and a subgroup E ⊂ G which play roles
analogous to those played by the proximal relation P(X) and the subgroup D

for minimal distal flows.

Definition 15.1 We say that (X, T ) is an equicontinuous flow if given any
neighborhood U of the diagonal � ⊂ X × X, there exists a neighborhood
V of � with V T ⊂ U . Let x ∈ X. Then the flow (X, T ) is equicontinuous
at x if given any neighborhood U of �, there exists a neighborhood V of x

such that (xt, yt) ∈ U for all y ∈ V and t ∈ T . The flow (X, T ) is pointwise
equicontinuous if it is equicontinuous at x for every x ∈ X.

Since for our flows (X, T ) the space X is compact, pointwise equicontinu-
ity and equicontinuity are equivalent. For future reference we state this in the
following lemma, leaving the proof as an exercise for the reader.

Lemma 15.2 (X, T ) is pointwise equicontinuous if and only if (X, T ) is
equicontinuous.

178
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For the compact Hausdorff space X, the collection of neighborhoods of � in
X×X is the unique uniformity on X compatible with its topology (see [James,
I.M., (1987)] page 106). Hence 15.1 amounts to requiring that the family
of maps {πt : X → X | t ∈ T }

x → xt

is uniformly equicontinuous. (See [Munkres,

James R., (1975)] for the definition in the metric case.)
We begin our study of equicontinuity with the elementary observation that

any equicontinuous flow is distal.

Proposition 15.3 Let (X, T ) be an equicontinuous flow. Then (X, T ) is distal.

PROOF: 1. Let (x, y) ∈ P(X).
2. Let V be a neighborhood of � ⊂ X × X.
3. There exists a neighborhood U of � such that UT ⊂ V .

((X, T ) is equicontinuous)
4. (x, y)T ∩ � 
= ∅. (by 1)
5. There exists t ∈ T such that (x, y)t ∈ U . (by 3, 4)
6. (x, y) ∈ Ut−1 ⊂ V . (by 3, 5)
7. y = x. (by 2, 6, X is Hausdorff)

The converse of 15.3 is false. Before giving an example of a distal flow which
is not equicontinuous we introduce the so-called regionally proximal relation,
Q(X) which will play an important role in our exposition. Q(X) is an analog
of the proximal relation; just as (X, T ) is distal if and only if P(X, T ) = �,
we will show that (X, T ) is equicontinuous if and only if Q(X) = �. By way
of motivation note that

(x, y) ∈ P(X) ⇐⇒ (x, y)T ∩ � 
= ∅
⇐⇒ (x, y)T ∩ V 
= ∅ for all open V with � ⊂ V.

Thus P(X) = ⋂{V T | V is open and � ⊂ V } and it is natural to consider the
intersection

⋂{V T | V is open and � ⊂ V }; this is precisely the regionally
proximal relation on X.

Definition 15.4 Let (X, T ) be a flow. We define the regionally proximal rela-
tion on X by:

Q(X) =
⋂

{WT | W ⊂ X × X is open with �X ⊂ W }.

When X = M we will often simply write Q ≡ Q(M).

The following propositions outline a few of the basic properties of Q(X).
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Proposition 15.5 Let (X, T ) be a flow. Then:

(a) Q(X) is invariant, closed, reflexive, and symmetric,
(b) α(Q(X)) = Q(X) for all α ∈ Aut(X),
(c) P(X) ⊂ Q(X), and
(d) X is equicontinuous if and only if Q(X) = �X.

PROOF: (a) and (b) are immediate from the definition.
(c) This follows immediately from the fact that P(X) = ⋂{V T | V is open

and � ⊂ V }.
(d) =⇒

1. Assume that (X, T ) is equicontinuous and let V ⊂ X × X be open with
� ⊂ V .
2. There exists U ⊂ X × X be open with � ⊂ U ⊂ U ⊂ V .

(X is compact Hausdorff)
3. There exists W ⊂ X × X be open with � ⊂ W , and WT ⊂ U . (by 1, 2)
4. Q(X) ⊂ WT ⊂ U ⊂ V . (by 2, 3)
5. Q(X) = �. (by 1, 4)

⇐=
1. Assume that Q(X) = � and let V ⊂ X × X be open with � ⊂ V .
2. Assume that WT ∩(X × X \ V ) 
= ∅ for all W ⊂ X×X open with � ⊂ W .
3. {WT ∩ (X × X \ V ) | � ⊂ W open ⊂ X × X} are closed sets with the F.I.P.

(by 1, 2)
4. Q(X) ∩ (X × X \ V ) 
= ∅. (by 3, and compactness)
5. There exists W with WT ∩ (X × X \ V ) = ∅. (4 contradicts 1)
6. WT ⊂ V . (by 5)
7. (X, T ) is equicontinuous. (by 1, 6)

Proposition 15.6 Let X, Y be minimal and π : X → Y be a homomorphism.
Then π(Q(X)) = Q(Y).

PROOF: Clearly π(Q(X)) ⊂ Q(Y).
1. Let (x, y) ∈ Q(Y), and W be an open neighborhood of �X.
2. Let V ⊂ X be closed with nonempty interior and V × V ⊂ W .
3. There exists F ⊂ T finite with X = V F . (X is minimal)
4. π(V )F = Y . (by 3, π is surjective since Y is minimal)
5. U = int(π(V )) 
= ∅. (by 4)
6. �Y ⊂ (U × U)T ⊂

5
int(π((V × V )T ))⊂

2
int(π(WT )).

7. (x, y) ∈ π(WT ) ⊂ π(WT ). (by 1, 6)
8. π−1(x, y) ∩ WT 
= ∅. (by 7)
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9. π−1(x, y) ∩ ⋂{WT | W is an open neighborhood of�X} 
= ∅.
(by 1, 8, and compactness)

10. π−1(x, y) ∩ Q(X) 
= ∅. (by 9)
11. (x, y) ∈ π(Q(X)). (by 10)

Corollary 15.7 Let:

(i) (X, T ) be a an equicontinuous minimal flow,
(ii) (Y, T ) be a flow, and

(iii) π: X → Y be an epimomorphism.

Then (Y, T ) is equicontinuous.

PROOF: Q(Y) =
15.6

π(Q(X)) =
15.5

π(�X) = �Y , so (Y, T ) is equicontinu-

ous by 15.5.

In general transitivity is the only property that Q(X) lacks in order that it be an
icer. In the next section we will study Q(X) itself in more detail. In this section
we will concentrate on the relationship between Q(X) and equicontinuity. His-
torically Q(X) arose in an attempt to determine the equicontinuous structure
relation Seq(X), the smallest icer on X such that X/Seq(X) is equicontinuous.

Note that (x, y) ∈ Q(X) if and only if there exist nets {xi} and {yi} in X and
a net {ti} in T with xi → x, yi → y, and lim xi ti = lim yi ti . This formulation
is often used as the definition of Q(X).

It follows immediately from 15.5 that if Q(X) = �, then P(X) = �

which gives an alternative proof of the fact that any equicontinuous flow is
distal. On the other hand any flow for which � = P(X) 
= Q(X) is distal
but not equicontinuous. We take advantage of this observation in the simple
example below.

Example 15.8 Let:

(i) X = {z ∈ C | |z| ≤ 1} be the unit disk in the complex plane, and
(ii) T : X → X be the homeomorphism defined by zT = zei|z|.
Then:

(a) (X, T ) is a distal flow where T = {T n | n ∈ Z} is identified with the group
of integers, and

(b) (X, T ) is not equicontinuous.

PROOF: (a) P(X, T ) = � because

|z1T − z2T | =
∣∣∣z1e

i|z1| − z2e
i|z2|

∣∣∣ = |z1 − z2| if |z1| = |z2|
and

|z1T − z2T | ≥ ∣∣|z1| − |z2|
∣∣ if |z1| 
= |z2|.
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(b) This follows from the fact that Q(X, T ) = {(z1, z2) | |z1| = |z2|}; we
leave the details to the reader.

We noted in section 14 that a compact Hausdorff topological space S, with a
group structure which contains a homomorphic image of T as a dense sub-
group whose elements act continuously on S by right multiplication (S might
be referred to as a compactification of T ) gives rise to a distal flow (S, T ). If S

is a compact Hausdorff topological group, then the flow (S, T ) is equicontinu-
ous. We give the details in the following proposition.

Proposition 15.9 Let:

(i) K be a compact Hausdorff topological group,
(ii) ψ : T → K a homomorphism with ψ(T ) = K ,

(iii) π : K × T → K be defined by π(k, t) = kψ(t) for all k ∈ K , and t ∈ T ,
(iv) f be the continuous extension of ψ to βT , and
(v) κ: βT → E(K, T ) be the canonical map.

Then:

(a) π defines an action of T on K ,
(b) the flow (K, T ) is equicontinuous, minimal, and regular,
(c) f (pq) = f (p)f (q) = f (p)κ(q) for all p, q ∈ βT ,
(d) E(K, T ) → (K, T )

p → ep

is an isomorphism, and

(e) G(K, T ) = {α ∈ G | f (α(u)) = f (u) for some u ∈ J }.
PROOF: (a) and (d) are straightforward and we leave them to the reader.

(b) It is immediate that (K, T ) is minimal. The fact that (K, T ) is regular
follows from 8.9, and the fact that Lk is an automorphism of (K, T ) for every
k ∈ K . We give a proof that (K, T ) is equicontinuous.
1. Let � ⊂ V ⊂ K × K be open.
2. Let x, y ∈ K .
3. (y, y)x ∈ � ⊂ V .
4. There exist open sets (y, y) ∈ Wx,y ⊂ K × K and x ∈ Ux,y , such that
Wx,yUx,y ⊂ V . (by 3, (i))
5. {Ux,y | x ∈ K} is an open cover of K .

6. There exist Ux1,y , . . . , Uxn,y with K ⊂
n⋃

i=1
Uxi,y . (by 5, (i))

7. Set Wy = ⋂n
i=1 Wxi,y .

8. WyK ⊂
6

Wy

(
n⋃

i=1
Uxi,y

)
=

n⋃
i=1

WyUxi,y ⊂
7

n⋃
i=1

Wxi,yUxi ,y ⊂ V .

9. Set W = ⋃
y∈K

Wy .
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10. W is open with � ⊂ W . (by 4, 7, 9)
11. WT ⊂ WK ⊂ V . (by 8, 9)
12. (K, T ) is equicontinuous. (by 1, 10, 11)

(c) 1. f (pt) =
(iv)

lim
s→p

f (st) =
(iv)

lim
s→p

ψ(st) =
(ii)

lim
s→p

ψ(s)ψ(t) =
(iv)

f (p)ψ(t)

=
(v)

f (p)κ(t).

2. f (pq) = lim
t→q

f (pt)=
1

lim
t→q

f (p)κ(t) =
(v)

f (p)κ(q).

3. f (pq) = lim
t→q

f (pt)=
1

lim
t→q

f (p)ψ(t) =
(i)

f (p) lim
t→q

ψ(t) =
(iv)

f (p)f (q).

(e) 1. Let R = {(p, q) ∈ M × M | κ(p) = κ(q)} so that E(K, T ) = M/R.
2. G(K) = G(E(K)) = {α ∈ G | gr(α) ⊂ R}. (by 1 and part (d))
3. Let α ∈ G(K), u ∈ J .
4. κ(α(u)) = κ(u) = e. (by 1, 2, 3)
5. f (α(u)) = f (uα(u)) = f (u)κ(α(u)) = f (u). (by 4)
6. Now suppose that f (β(u)) = f (u) = e.
7. f (β(u)) = f (uβ(u)) = f (u)κ(β(u)) = κ(β(u)).
8. κ(β(u)) = e = κ(u). (by 6, 7)

Our next goal is to prove the converse of 15.9. Note that when R is regular and
distal, we saw in 14.5, that X = M/R is a group (though multiplication may
not be continuous) and that a homomorphic image of T is a dense subgroup.
We will show that the equicontinuous regular minimal flows are exactly those
for which X is a compact topological group (in fact isomorphic to G/G(R)).
Again there is a homomorphism of T onto a dense subgroup of X, and the right
action of T on X is given by right multiplication in X.

Theorem 15.10 Let:
(i) R be a regular icer on M such that M/R is distal, and

(ii) u2 = u ∈ X = M/R. (Note that in view of (i) u is unique and acts as the
identity in the group X, see 14.5.)

Then the following are equivalent:

(a) (X, T ) is equicontinuous,
(b) π : X × X → X is continuous and X is a compact topological

(x, y) → xy

group,

(c) the map ϕ: Aut(X) → X

α → α(u)

is continuous,

(d) G/G(R) and X are isomorphic as compact topological groups, and
(e) G′ ⊂ G(R).

PROOF: (a) =⇒ (b)
1. Assume that X is equicontinuous and let (x, y) ∈ X × X.
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2. Let W ⊂ X be open with x y ∈ W .
3. There exists U ⊂ X × X open with � ⊂ U and {z | (xy, z) ∈ U} ⊂ W .

(by 2)
4. Let U0 ⊂ X × X be an open neighborhood of � with U0 ◦ U0 ⊂ U .
5. There exists an open set V ⊂ X×X with � ⊂ V , and V T ⊂ U0 ∩L−1

x (U0).
(by 1, 4, Lx is continuous)

6. Let (p, q) ∈ X × X with (x, p) ∈ V and (y, q) ∈ V .
7. (xq, pq) = (x, p)q ∈ V q ⊂ V T ⊂ U0. (by 5, 6)
8. (xy, xq) = Lx(y, q) ∈ Lx(V ) ⊂ U0. (by 5, 6)
9. (xy, pq) ∈ U0 ◦ U0 ⊂ U . (by 4, 7, 8)
10. {(p, q) | (x, p) ∈ V and (y, q) ∈ V } ⊂ π−1{z | (xy, z) ∈ U} ⊂ π−1(W).

(by 5, 8)
11. π−1(W) is a neighborhood of (x, y). (by 10)
12. π is continuous. (by 1, 2, 11)
13. Let W be an open set with x−1 ∈ W .
14. Assume that for every closed neighborhood N of x there exists n ∈ N with
n−1 ∈ X \ W .
15. Let V be any closed neighborhood of the identity e ∈ X.
16. (N × (X \ W)) ∩ π−1(V ) 
= ∅ for every closed neighborhood N of x.
17. {(N × (X \ W)) ∩ π−1(V ) | N,V closed neighborhoods of x and e resp.}
has the F.I.P.. (by 16)
18. There exists (x, y) ∈ ⋂{(N × (X \ W)) ∩ π−1(V )}.

(π is continuous and X × X is compact)
19. y = x−1 ∈ X \ W . (by 18)
20. There exists a neighborhood N of x with N−1 ⊂ W . (19 contradicts 13)

(b) =⇒ (c)
1. Assume that X is a compact topological group.
2. Let W be open in X.
3. Let α ∈ ϕ−1(W) ⊂ Aut(X).
4. α−1(W) is an open neighborhood of u. (by 2, 3)
5. There exists an open neighborhood V of u with V V −1 ⊂ α−1(W). (by 1, 4)
6. Let β ∈ < V, α(V ) >.
7. There exist p, q ∈ V with α(p) = β(q). (by 6)
8. β(u) = β(q)q−1 =

7
α(p)q−1 = α(pq−1) ∈

5,7
α(α−1(W)) = W .

9. α ∈ < V, α(V ) > ⊂ ϕ−1(W). (by 6, 8)
10. ϕ−1(W) is open in Aut(X). (by 3, 9)

(c) =⇒ (d)
1. Assume that ϕ is continuous.
2. ϕ is a homomorphism which is a bijection. (by 14.5, X is regular and distal)
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3. ϕ is a homeomorphism. (by 1, 2, Aut(X) is compact, X is Hausdorff)
4. G/G(R) is homeomorphic to GX = Aut(X) and hence is Hausdorff.

(by 3, 10.16)
5. G′ ⊂ G(R). (by 4, 11.10)
6. G/G(R) and hence Aut(X) is a compact topological group. (by 5, 11.11)
7. ϕ is an isomorphism of topological groups. (by 2, 3, 6)
8. G/G(R) ∼= Aut(X) ∼= X.

(d) =⇒ (e)
1. Assume that G/G(R) ∼= Aut(X) ∼= X.
2. G/G(R) is Hausdorff. (by 1)
3. G′ ⊂ G(R). (by 2, 11.10)

(e) =⇒ (a)
1. Assume that X is not equicontinuous.
2. There exists an open neighborhood U of �X, such that V T 
⊂ U for all
open neighborhoods V of �X. (by 1)
3. There exist pV , qV ∈ M and tV ∈ T with πR(pV , qV ) ∈ V and πR(pV , qV )

tV 
∈ U . (by 2)
4. There exists αV ∈ G with πR(qV ) = πR(αV (pV )). (X is distal)
5. We may assume that πR(pV , αV (pV )) → (z, z) ∈ � and that

πR(pV , αV (pV ))tV → πR(w, β(w)) 
∈ �. (by 3, 4)

6. χR(αV ) → 1 in Aut(X) and χR(αV ) → β in Aut(X). (by 5)
7. 1 
= χR(β) ∈ G′

X = χR(G′). (by 5, 6, 11.2 and Ex. 11.6)
8. G′ 
⊂ ker χR = G(R). (by 7, 8.11)

Let R be a regular icer on M , X = M/R, and u2 = u ∈ M . In 8.11 we
showed that the map χR: G → Aut(X) induces an isomorphism of groups
G/G(R) ∼= Aut(X); we saw in 10.16 that χR is continuous and hence that
this isomorphism of groups is also a homeomorphism. Note that χR induces a
map G → X and hence a map ϕ : G/G(R) → X.

α → πR(α(u)) = χR(α)(u)

In general G/G(R) is a group while X is only a semigroup and the map ϕ

though it is a homomorphism, depends on the choice of u, and is neither onto
nor continuous. In 14.5 we saw that X is distal if and only if ϕ is an isomor-
phism of groups. Even when X is distal the map ϕ need not be a homeomor-
phism; indeed 15.10 shows that in this case ϕ is a homeomorphism if and only
if X is equicontinuous.

We now proceed to identify those icers R for which M/R is equicontinuous.
Just as in the distal case we will define a closed normal subgroup E of G so
that M/R is equicontinuous if and only if R = P0 ◦ gr(A) for some closed
subgroup A ⊂ G which contains E. There are various ways to define the
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subgroup E; our approach will be to use the regionally proximal relation Q =
Q(M) defined above.

Definition 15.11 Let L = {α ∈ G | gr(α) ⊂ Q}. We define E to be the
closed subgroup of G generated by L. More generally when (X, T ) is a regular
flow we let LX = {α ∈ GX | gr(α) ⊂ Q(X)}, and define EX to be the closed
subgroup of GX generated by LX. Note that since Q(X) is closed and invariant
LX = {α ∈ GX | gr(α) ∩ Q(X) 
= ∅}.

We emphasize a few properties of the group EX in the following lemma.

Lemma 15.12 Let (X, T ) be a regular flow and χX: G → GX be the canoni-
cal map. Then:

(a) EX is normal in GX.
(b) DX ⊂ EX.
(c) χX(E) = EX.

PROOF: (a) 1. Let α ∈ LX, and β ∈ GX.
2. gr(β−1αβ) = β−1(gr(α)) ⊂ β−1(Q(X)) = Q(X). (by )
3. β−1LXβ ⊂ LX for all β ∈ GX. (by 1, 2)
4. β−1LXβ = LX for all β ∈ GX. (by 3)
5. β−1EXβ = EX for all β ∈ GX. (by 4)

(b) This follows immediately from the fact that P(X) ⊂ Q(X). (by 15.5)
(c) We leave this as an exercise for the reader.

Our goal now is to show that {P0 ◦ gr(A) | E ⊂ A = A} is exactly the col-
lection of equicontinuous icers on M . Our approach is to first show that those
icers for which P(M/R) = Q(M/R) are exactly those icers with E ⊂ G(R).
This is the content of the following proposition which can be thought of as
saying that E characterizes those flows for which the proximal and regionally
proximal relations coincide.

Proposition 15.13 Let X = M/R be a minimal flow. Then the following are
equivalent:

(a) P(X) = Q(X), and
(b) E ⊂ G(R).

PROOF: (a) =⇒ (b)
1. Assume that P(X) = Q(X).
2. Let α ∈ G with gr(α) ⊂ Q and u ∈ J .
3. πR(u, α(u)) ∈ πR(Q) = Q(X) = P(X). (by 1, 2, 15.6)
4. There exists p ∈ βT with πR(u, α(u))p ∈ � ⊂ X × X. (by 3, 4.4)
5. πR(gr(α)) ∩ � 
= ∅. (by 4)



Equicontinuous flows and the group E 187

6. gr(α) ⊂ R. (by 5)
7. α ∈ G(R). (by 8)
8. E ⊂ G(R). (by 2, 7)

(b) =⇒ (a)
1. Assume that E ⊂ G(R).
2. Let (α(u), β(v)) ∈ Q.
3. (α(u), βα−1(α(u))) = (α(u), β(u)) = (α(u), β(v))u ∈ Qu ⊂ Q. (by 2)
4. gr(βα−1) ∩ Q 
= ∅. (by 3)
5. βα−1 ∈ E ⊂ G(R). (by 1, 4)
6. πR(α(u), β(v))=

5
πR(α(u), α(v)) ∈ πR(P (M)) =

4.7
P(X).

7. Q(X) = πR(Q) = P(X). (by 2, 6, 15.5, 15.6)

Theorem 15.14 Let A be a closed subgroup of G. Then P0 ◦ gr(A) is an
equicontinuous icer on M if and only if E ⊂ A.

PROOF: =⇒
1. Assume that R = P0 ◦ gr(A) is an equicontinuous icer.
2. πR(Q) = Q(M/R) = �. (by 1, 15.5, and 14.14)
3. E ⊂ G(R) = A. (by 2, G(R) is a closed subgroup of G)

⇐=
1. Assume that E ⊂ A.
2. D ⊂ A. (by 1, 15.12)
3. R = P0 ◦ gr(A) is a distal icer. (by 1, 2, 14.10)
4. E ⊂ G(R). (by 1, 3)
5. � = P(M/R) = Q(M/R). (by 3, 4, 15.13)
6. R is equicontinuous. (by 5, 15.5)

It follows immediately from 15.14 that an icer R is a proximal extension of the
equicontinuous icer P0 ◦gr(G(R)) if and only if E ⊂ G(R), which (by 15.13)
holds if and only if P(M/R) = Q(M/R). Moreover if R is equicontinuous,
then R = P0 ◦ gr(G(R)) contains the equicontinuous icer P0 ◦ gr(E). In
analogy with 14.1, we call this icer the equicontinuous structure relation on M .

Definition 15.15 The equicontinuous structure relation on M is given by
Seq = P0 ◦ gr(E).

The group E is a normal subgroup of G by 15.12, so it follows from 14.11, that
Seq is regular. Since Seq is the smallest equicontinuous icer on M , M/Seq is
the maximal equicontinuous flow. In fact as the following proposition shows,
Seq is also the smallest icer on M containing Q.

Proposition 15.16 Let X = M/R. Then the following are equivalent:



188 Equicontinuous flows and the group E

(a) X is equicontinuous,
(b) Q ⊂ R, and
(c) Seq ⊂ R.

PROOF: The fact that (a) ⇐⇒ (b) follows immediately from 15.5 and
15.6. The fact that (a) ⇐⇒ (c) follows immediately from 15.14.

We would like to to define the equicontinuous structure relation Seq(X) on
X = M/R to be the projection of Seq (just as Sd(X) = πR(Sd)). Thus we
need to show that this projection πR(Seq) is an icer on X.

Proposition 15.17 Let X = M/R be a minimal flow. Then

(a) R ◦ Seq is an icer on M .
(b) πR(Seq) is an icer on X.

PROOF: (a) 1. G(R) ⊂ G = aut (Seq). (Seq is regular)
2. R ∩ P0 ⊂ P0 = Seq ∩ P0. (Seq is distal)
3. R ◦ Seq is an icer on M . (1, 2, 7.28)

(b) This follows from part (a) and 6.11.

Definition 15.18 Let X = M/R be a minimal flow. We define the it equicon-
tinuous structure relation on X by Seq(X) = πR(Seq).

As in the case of the distal structure relation Seq(X) depends only on the
minimal flow (X, T ) not on the icer R, even when X is not regular. Again an
isomorphism M/R → M/S takes πR(Seq) to πS(Seq) because Seq is regular
(since E is normal). The fact that Seq(X) is the smallest icer on X such that
X/Seq(X) is equicontinuous follows easily from the fact that Seq is the smallest
icer on M such that M/Seq is equicontinuous.

Proposition 15.19 Let:

(i) X = M/R be a minimal flow, and
(ii) N be an icer on X.

Then X/N is equicontinuous if and only if Seq(X) ⊂ N .

PROOF: =⇒
1. Assume that X/N is equicontinuous and set S = π−1

R (N).
2. M/S ∼= X/N . (by 1, 7.2)
3. S is an equicontinuous icer on M . (by 1, 2)
4. Seq ⊂ S. (by 3, 15.16)
5. Seq(X) = πR(Seq) ⊂ πR(S) = N .

⇐=
1. Assume that Seq(X) ⊂ N .
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2. Seq ⊂ π−1
R (πR(Seq)) = π−1

R (Seq(X)) ⊂ π−1
R (N). (by 1)

3. π−1
R (N) is an equicontinuous icer on M . (by 2, 15.16)

4. X/N ∼= M/π−1
R (N) is equicontinuous. (by 3, 7.2)

We now show that any homomorphism ϕ : X → Y of minimal flows takes
Seq(X) onto Seq(Y ). It suffices to consider the map πR

S : M/R → M/S with
R ⊂ S icers on M .

Proposition 15.20 Let:

(i) R ⊂ S be icers on M ,
(ii) X = M/R, Y = M/S, and

(iii) f ∈ Hom(M,X).

Then:

(a) f (Seq) = Seq(X).
(b) πR

S (Seq(X)) = Seq(Y ).

PROOF: (a) 1. There exists α ∈ G with f = πR ◦ α. (by 7.6)
2. f (Seq) = πR(α(Seq)) = πR(Seq) = Seq(X). (by 1, Seq is regular)
(b) πR

S (Seq(X)) = πR
S (πR(Seq)) = πS(Seq) = Seq(Y ).

Given the importance of the groups D and E in understanding distality and
equicontinuity, it is not surprising that a better understanding of these groups
and the relationship between them leads to interesting results. We devote the
remainder of this section to expanding upon this theme.

Proposition 15.21 Let G′, D, and E be the subgroups of G = Aut(M)

defined in 11.1, 14.6, and 15.11 respectively. Then E = DG′.

PROOF: Proof that DG′ ⊂ E:
1. R = P0 ◦ gr(E) is an equicontinuous regular icer on M . (by 15.14)
2. D ⊂ G(R) = E. (by 1, 14.10, 15.3)
3. G′ ⊂ G(R) = E. (by 1, 15.10)

Proof that E ⊂ DG′:
1. R = P0 ◦ gr(DG′) is a distal regular icer on M . (by 14.10, 14.11)
2. G′ ⊂ G(R). (by 1)
3. R is an equicontinuous icer. (by 1, 2, 15.10)
4. E ⊂ G(R) = DG′. (by 1, 3, 15.13)

Corollary 15.22 Let X = M/R. Then X is equicontinuous if and only if X is
distal and G′ ⊂ G(R).

PROOF: =⇒
1. Assume that X is equicontinuous.
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2. R = P0 ◦ G(R) and E ⊂ G(R). (by 15.14)
3. G′ ⊂ G(R). (by 2, 15.21)

⇐=
1. Assume that R is distal and G′ ⊂ G(R).
2. R = P0 ◦ gr(G(R)) and D ⊂ G(R). (by 14.10)
3. E = DG′ ⊂ G(R). (by 1, 2)
4. R is equicontinuous. (by 2, 3, 15.14)

Traditionally the group E has been defined as the group of the maximal equicon-
tinuous minimal flow. Proposition 15.21 allows us to give an intrinsic descrip-
tion of the group E.

Proposition 15.23 Let:

(i) J be the set of idempotents in the universal minimal ideal M ,
(ii) �(u, v, t) = Lut ◦ L−1

vt for u, v ∈ J , and t ∈ T ,
(iii) � be the closed normal subgroup of G generated by {�(u, v, t) | u, v ∈

J and t ∈ T },
(iv) J ∗ = {α ∈ G | α(J ) ∩ J 
= ∅}, and
(v) GJ be the closed normal subgroup of G generated by J ∗.

Then:

(a) S ≡ P0 ◦ gr(�GJ G′) is an icer on M , and
(b) �GJ G′ = E.

PROOF: (a) Proof that S an equivalence relation:
1. P0 is an equivalence relation on M with aut (P0) = G.
2. �GJ G′ is a subgroup of G. (by (iii), (iv), (v))
3. P0 ◦ gr(�GJ G′) is an equivalence relation. (by 7.24)

Proof that S is closed:
1. Let (α(u), β(v)) ∈ S.
2. There exist nets (αi(ui), βi(vi)) → (α(u), β(v)) with αiβ

−1
i ∈ �GJ G′ for

all i.
3. We may assume that ui → γ (a) and vi → δ(b) for some γ, δ ∈ G and
a, b ∈ J . (compactness)
4. γ, δ ∈ J ∗ ⊂ �GJ G′. (by 3)
5. αi → αγ −1 and βi → βδ−1. (by 2, 3, 10.14)
6. G/�GJ G′ is a compact Hausdorff topological group. (by 11.11)
7. �GJ G′ =

2
�GJ G′αiβ

−1
i →

5,6
�GJ G′αγ −1δβ−1

= �GJ G′αγ −1δα−1αβ−1 =
4

�GJ G′αβ−1.

8. (α(u), β(v)) ∈ S. (by 7)
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Proof that S is invariant:
1. Let (α(u), β(v)) ∈ S and t ∈ T .
2. There exist a, b ∈ J with uta = ut and vtb = vt .
3. (α(u), β(v))t =

2
(α(ut)a, β(vt)b) = (αLut (a), βLvt (b)).

4. (αLut )(βLvt )
−1 = αLutL

−1
vt β−1 ∈ α�GJ G′β−1 = �GJ G′αβ−1 =

�GJ G′. (by 1)
5. (α(u), β(v))t ∈ S. (by 3, 4)

(b) 1. D ⊂ �GJ G′. (by 14.10, and part (a))
2. E = DG′ ⊂ �GJ G′. (by 1, 15.21)
3. Let u, v ∈ J and t ∈ T .
4. There exists b ∈ J with vtb = vt .
5. (vt,�(u, v, t)(vt))=

4
(vt,�(u, v, t)(vtb)) =

(ii)
(vt, utb) =

4
(vt, ut)b ∈

P(M)b ⊂ P(M).
6. gr(�(u, v, t)) ∩ P(M) 
= ∅. (by 5)
7. �(u, v, t) ∈ D. (by 6, 14.6)
8. �GJ G′ ⊂ DG′ = E. (by 7, (iii), 14.9, 15.21)

In general E = DG′ so G′ ⊂ E; similarly (see exercise 15.11) for any regular
minimal flow EX = DXG′

X and G′
X ⊂ EX. Of particular interest are those sit-

uations in which EX = G′
X; one class of examples are the so-called Bronstein

flows.

Proposition 15.24 Let:

(i) (X, T ) be a regular minimal flow, and
(ii) gr(GX) = X×X. (This says that the set of almost periodic points in X×X

is dense in X × X; this is often referred to as the Bronstein condition.)

Then EX = G′
X.

PROOF: 1. Let α ∈ GX with gr(α) ⊂ P(X).
2. Let V,W ⊂ X be any open subsets of X.
3. (V × α(V )) ∩ P(X) 
= ∅. (by 1, 2)
4. �X ⊂ (V × α(V ))T . (by 3)
5. ∅ 
= (V × α(V ))T ∩ (W × W) is open. (by 2, 4)
6. There exists β ∈ GX and p ∈ M with (p, β(p)) ∈ (V ×α(V ))T ∩(W ×W).

(by 5, (ii))
7. β(V ) ∩ α(V ) 
= ∅ and β(W) ∩ W 
= ∅. (by 6)
8. β ∈ < V, α(V ) > ∩ < W,W >. (by 7)
9. α ∈ < W,W >. (by 2, 8)
10. α ∈ ⋂{< W,W > | W open in X} = G′

X. (by 2, 9)
11. DX ⊂ G′

X. (by 1, 10)
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12. EX = χX(E) = χX(DG′) = DXG′
X = G′

X.
(by 11, Ex. 11.6, Ex. 14.6, 15.12, 15.21)

When the group T is abelian, then the flow (M, T ) is Bronstein so we have the
following corollary.

Corollary 15.25 Let T be abelian. Then E = G′.

PROOF: 1. Let u ∈ J , p ∈ M , and t ∈ T .

2. There exists a net ti → p ∈ βT .

3. Lut (p) = lim utti = lim utit = upt = pt . (1, 2, T is abelian)

4. Rt = Lut ∈ G. (by 1, 3)

5. (p, pt) ∈ gr(G). (by 1, 4)

6. gr(G) = M × M . (by 1, 5, M is minimal)

5. E = G′. (by 6, 15.24)
We end this section with one more example of the relationship between the
groups D and E; its proof relies on the fact that any compact Hausdorff group
in which multiplication is unilaterally continuous is a topological group. A
proof of the latter result is given in the appendix to this section.

Proposition 15.26 Let [G,G] denote the commutator subgroup of G. Then:

(a) E ⊂ D[G,G].
(b) If T is abelian, then E = D[G,G].

PROOF: (a) 1. Let R = P0 ◦ gr(D[G,G]) and X = M/R.

2. R is a regular distal icer with G(R) = D[G,G]. (by 1, 14.11)

3. G/G(R) ∼= X as groups. (by 14.5)

4. X is abelian. (by 2, 3)

5. Multiplication in X is unilaterally continuous. (by 4)

6. X is a compact topological group. (by 5, see 15.A.13)

7. (X, T ) is equicontinuous. (by 6, 15.10)

8. E ⊂ G(R) = D[G,G]. (by 1, 2, 7, 15.14)

(b) 1. Assume that T is abelian.

2. G/E and M/Seq are isomorphic as topological groups. (by 15.10)

3. T → M/Seq is a continuous homomorphism of T onto a dense subgroup.
t → ut

(by 14.5, 15.10)

4. G/E is abelian. (by 1, 2, 3)

5. [G,G] ⊂ E. (by 4)

6. D[G,G] ⊂ E. (by 5, 15.21)
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APPENDIX TO SECTION 15:
EQUICONTINUITY AND THE
ENVELOPING SEMIGROUP

In this appendix we examine the enveloping semigroup E(X) more closely in
the context of equicontinuous flows (X, T ). Intuitively if (X, T ) is an equicon-
tinuous flow then T , thought of as a family of maps in E(X) is uniformly
equicontinuous. Since every element of E(X) is a limit point of T , they must
all act continuously on X. Recall that a regular minimal flow X is isomor-
phic both as a flow and as a semigroup to I (X), a minimal ideal in E(X)

(see 8.5 and 8.6). When the flow (X, T ) is also distal X ∼= I (X) ∼= E(X)

are isomorphic groups, though multiplication is continuous if and only if X is
equicontinuous.

The main goal of this appendix is to show that for a minimal flow (X, T ) to
be equicontinuous it suffices that E(X) be a group and that the map X → X

x → xp

be continuous for every p ∈ E(X). This result has as a consequence that any
compact Hausdorff space with a group structure for which multiplication is
unilaterally continuous, is a topological group.

Proposition 15.A.1 Let:

(i) (X, T ) be a flow, and
(ii) π : X × E(X) → X

(x, p) → xp.

Then (X, T ) is equicontinuous if and only if π is continuous.

PROOF: Exercise (similar to 15.10).
As a consequence we have the following proposition.

Proposition 15.A.2 Let (X, T ) be a flow. Then:

(a) if (X, T ) is equicontinuous, then its enveloping semigroup E(X) is a topo-
logical group, and

(b) if E(X) is topological group and (X, T ) is minimal, then (X, T ) is
equicontinuous.

PROOF: (a) We leave this as an exercise for the reader.
(b) 1. Assume that E(X) is a topological group.

2. Let xi → x ∈ X and qi → q ∈ E(X, T ).
3. There exist pi ∈ E(X) with xi = xpi . (using minimality)
4. We may assume that pi → p ∈ E(X). (E(X) is compact)
5. xi = xpi → xp. (by 4)
6. xp = x. (by 2, 5)
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7. xiqi =
3

xpiqi →
1,2,4

xpq =
6

xq.

8. π : X × E(X) → X is continuous.
(x, p) → xp

(by 2, 7)

9. (X, T ) is equicontinuous. (by 15.A.1)

Note that the proof of 15.A.2(b) makes essential use of the fact that the flow
(X, T ) is minimal. Indeed the result is false in general. In fact the flow (X, T )

of example 15.8 is distal but not equicontinuous, and yet E(X, T ) is a topo-
logical group in this case (we leave it to the reader to verify this in exercise
15.2). Here the elements of E(X) do not act continuously on X; on the other
hand their restrictions to each minimal subset Y of X are continuous since they
are elements of E(Y ).

Our main theorem shows that for any minimal flow (X, T ), if every element
of E(X) acts continuously on X, then (X, T ) is equicontinuous (and hence
by 15.A.2, E(X) is a topological group). We begin with the case where X is
metrizable; for this we need the following lemma.

Lemma 15.A.3 Let:

(i) (X, T ) be a metrizable flow, and
(ii) p be continuous for all p ∈ E(X).

Then E(X) is metrizable.

PROOF: 1. Let d be a metric on X, and A a countable dense subset of X.
2. Set R = {(p, q) ∈ E(X) × E(X) | d(ap, aq) = 0 for all a ∈ A}.
3. It is clear that R is a closed equivalence relation on E(X).
4. E(X)/R is a metric space. (by 1)
5. (p, q) ∈ R implies d(xp, xq) = 0 for all x ∈ X. (by 1, 2, (ii))
6. (p, q) ∈ R implies p = q. (by 1, 5)
7. E(X) = E(X)/R is a metric space. (by 4, 6)

The metric case of our theorem can now be deduced from the following well
known result (see for example [Bourbaki, N., (1949)]).

Proposition 15.A.4 Let X, Y be compact metric spaces, C(X, Y ) the set of
continuous functions from X to Y provided with the topology of uniform con-
vergence. Then C(X, Y ) is separable (has a countable dense subset).

Proposition 15.A.5 Let:

(i) X = M/R be minimal.
(ii) X be metrizable.

(iii) p be continuous for every p ∈ E(X).

Then (X, T ) is equicontinuous.
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PROOF: 1. Let ε > 0.
2. Let ϕ: X → C(E(X),X)

x → ϕ(x)

be defined by ϕ(x): E(X) → X.

p → xp

3. E(X) is metrizable. (by (iii), 15.A.3)
4. There exists a countable subset B of X such that ϕ(B) is dense in ϕ(X).

(by (ii), 2, 15.A.4)
5. Set A(b) = {x | d(bt, xt) ≤ ε/4 for all t ∈ T }.
6. A(b) is closed. (x → xt is continuous for all t ∈ T )
7.

⋃
b∈BA(b) = X. (by 4)

8. There exists b ∈ B with int (A(b)) 
= ∅. (by 6, 7, X is a Baire space)
9. Let V = int (A(b)).
10. d(xt, yt) ≤ d(xt, bt) + d(bt, yt) ≤ ε/2 for all x, y ∈ V and t ∈ T .

(by 5, 9)
11. For every z ∈ X, there exists tz ∈ T with ztz ∈ V . (by (i))
12. There exists a neighborhood Wz of z with Wztz ⊂ V . (by 9, 11)
13. Set W = ⋃

z∈X

(Wz × Wz) ⊂ X × X.

14. W is a neighborhood of the diagonal in X × X. (by 12, 13)
15. Let (w1, w2) ∈ W .
16. There exists z ∈ X with (w1, w2) ∈ Wz × Wz. (by 13, 15)
17. (w1tz, w2tz) ∈ V × V . (by 12, 16)
18. d(w1t, w2t) = d(w1tzt

−1
z t, w2tzt

−1
z t) ≤ ε/2 for all t ∈ T . (by 10, 17)

Corollary 15.A.6 Let:

(i) X = M/R be minimal,
(ii) X be metrizable, and

(iii) (X, T ) be equicontinuous.

Then E(X) is metrizable.

PROOF: 1. The map X × E(X) → X

(x, p) → xp

is continuous. (by (iii), 15.A.1)

2. p is continuous. (by 1)
3. E(X) is metrizable. (by 2, 15.A.3)

Our next step is to consider the case where the group T is countable. We will
use the fact that the topology on a compact space X can be recovered from
the pseudo-metrics on X (see [Dugundji, J., (1966)]). These are the maps ρ:
X × X → R satisfying all the conditions necessary to be a metric except that
ρ(x, y) = 0 does not imply that x = y. We first observe that a continuous
pseudo-metric on X gives rise to a quotient space which is metrizable if the
group T is countable. The proof will be left to the reader.
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Lemma 15.A.7 Let:

(i) (X, T ) be a flow,
(ii) S ⊂ T a subgroup of T ,

(iii) d a continuous psuedo-metric on X, and
(iv) RS,d = {(x, y) ∈ X × X | d(xt, yt) = 0 for all t ∈ S}.
Then:

(a) RS,d is a closed equivalence relation which is invariant under S, and
(b) if S is countable, then X/RS,d is metrizable.

Now we can prove our result for the countable group case.

Proposition 15.A.8 Let:

(i) (X, T ) be minimal.
(ii) p be continuous for all p ∈ E(X).

(iii) T be countable.

Then (X, T ) is equicontinuous.

PROOF: 1. Let V be an open neighborhood of � in X × X, and x ∈ X.
2. There exists d, a pseudo-metric on X, and ε > 0 such that {(x1, x2) |
d(x1, x2) < ε} ⊂ V .
3. Set R = RT,d = {(v,w) | d(vt, wt) = 0 for all t ∈ T }.
4. R is an icer on X and X/R is metrizable. (by 1, 3, (iii), and 15.A.7)
5. If (v,w) ∈ R, then (vp,wp) ∈ R for all p ∈ E(X). (by 4)
6. Let π : X → X/R = Y be the canonical map.
7. Let θ : E(X) → E(X/R) be an epimorphism such that π(zp) = π(z)θ(p)

for all z ∈ X, and p ∈ E(X). (as in 2.10)
8. Let {yα} be a net in Y with yα → y and r ∈ E(Y ).
9. There exist zα ∈ X and p ∈ E(X) with π(zα) = yα and θ(p) = r .
10. We may assume that zα → z.
11. π(z) = y. (by 9, 10)
12. zαp → zp. (by 10, (ii))
13. yαr =

9
π(zα)θ(p) =

7
π(zαp)→

12
π(zp)=

7
π(z)θ(p)=

11
yr.

14. The map y → yr is continuous for all r ∈ E(X/R). (by 8, 13)
15. (X/R, T ) is equicontinuous. (by 14, 15.A.5)
16. The map d: X × X → R induces a continuous map ρ: X/R × X/R → R
with

d(x1, x2) = ρ(π(x1), π(x2)). (by 3)

17. {(y1, y2) | ρ(y1, y2) < ε} is an open neighborhood of �X/R . (by 16)
18. There exists π(x) ∈ N open, such that ρ(π(x)t, zt) < ε for all t ∈ T , and
z ∈ N . (by 15, 17)
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19. Let U = π−1(N), y ∈ U and t ∈ T .
20. d(xt, yt) = ρ(π(xt), π(yt)) = ρ(π(x)t, π(y)t) < ε. (by 16, 18, 19)
21. (xt, yt) ∈ V for all y ∈ U and t ∈ T . (by 2, 20)
22. (X, T ) is equicontinuous at x. (by 1, 21)
23. (X, T ) is equicontinuous. (by 1, 22, and 15.2)

In order to deal with the general case we need the following proposition.

Proposition 15.A.9 The flow (X, T ) is equicontinuous if and only if the flow
(X,H) is equicontinuous for all countable subgroups, H of T .

PROOF: =⇒
This is clear.

⇐=
1. Assume that (X,H) is equicontinuous for any countable subgroup H ⊂ T .
2. Assume that (X, T ) is not equicontinuous.
3. There exists an open neighborhood V of �, such that UT ∩(

(X×X) \ V
) 
= ∅

for all open neighborhoods U of �.
4. Let W be an open neighborhood of � with W ◦ W ◦ W ⊂ V .
5. For every t ∈ T set Bt = {s ∈ T | (xt, xs) ∈ W ∩ W−1 for all x ∈ X}.
6. Suppose that T = Bt1 ∪ · · · ∪ Btn .
7. Choose � ⊂ U open with Uti ⊂ W for 1 ≤ i ≤ n.
8. Let t ∈ T and (x, y) ∈ U .
9. t ∈ Btj for some 1 ≤ j ≤ n.
10. (xt, xtj ), (xtj , ytj ), (ytj , yt) ∈ W . (by 5, 7, 9)
11. (xt, yt) ∈ V . (by 4, 10)
12. UT ⊂ V . (by 8, 11)
13. No finite union of sets of the form Bt contains T . (12 contradicts 3)

14. Choose a sequence {ti} ⊂ T such that tn /∈
n−1⋃
i=1

Bti .

15. Let H be the subgroup of T generated by the sequence {tn}.
16. (X,H) is equicontinuous. (by 1)
17. By Ascoli’s theorem (see [Bourbaki, N., (1949)] page 42) H is a compact
subset of C(X,X) when the latter is provided with the topology of uniform
convergence. (by 16)
18. The set {tn | n = 1, 2, . . .} has an accumulation point p ∈ C(X,X).

(by 15, 17)
19. Let W0 be an open neighborhood of � ⊂ X×X with W0◦W0 ⊂ W ∩W−1.
20. Let B0 = {q ∈ H | (xp, xq) ∈ W0 ∩ W−1

0 for all x ∈ X}.
21. There exist k < m with tk, tm ∈ B0. (by 18, 19, 20)
22. (xtk, xp), (xp, xtm) ∈ W0 for all x ∈ X. (by 20, 21)
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23. (xtk, xtm) ∈ W ∩ W−1 for all x ∈ X. (by 19, 22)
24. tm ∈ Btk for all x ∈ X. (by 5, 23)
25. (X, T ) is equicontinuous. (24 contradicts 14, so 2 must be false)

Note that given a minimal flow (X, T ) and a subgroup S ⊂ T , the flow (X, S)

need not be minimal, thus to handle the general case of our theorem we need
one last technical lemma.

Lemma 15.A.10 Let:

(i) (X, T ) be minimal,
(ii) H a countable subgroup of T , and

(iii) d a continuous pseudo-metric on X.

Then there exists a countable subgroup K of T such that H ⊂ K , and
(X/RK,d,K) is a minimal flow.

PROOF: 1. Set H0 = H , X0 = X/RH0,d , and let π0: X → X0 be the
canonical map.
2. There exists a countable base U0 for the topology on X0. (by (i), 15.A.7)
3. Let U ∈ U0.
4. π−1

0 (U)T = X. (by (i))
5. There exists a finite subset FU of T such that π−1

0 (U)FU = X. (by 4)
6. Let H1 be a countable subgroup of T such that H0 ∪ ⋃

U∈U0

FU ⊂ H1.

7. π−1
0 (U)H1 = X for all U ∈ U0. (by 3, 5, 6)

8. π−1
0 (W)H1 = X for all open subsets W of X0. (by 2, 7)

9. Assume H0 ⊂ H1 ⊂ · · · ⊂ Hn have been chosen so that:

Hi is a countable subgroup of T ,

Xi = X/RHi,d ,

πi : X → Xi is the canonical map 0 ≤ i ≤ n − 1, and

π−1
i (W)Hi+1 = X for every nonempty open set W ⊂ Xi.

10. Set Xn = X/RHn,d , let πn: X → Xn be the canonical map, and Un be a
countable base for the topology on Xn.
11. π−1

n (U)T = X for all U ∈ Un. (by (i))
12. As in 5, 6, 7, there exists a countable subgroup Hn+1 with Hn ⊂ Hn+1 and
π−1

n (W)Hn+1 = X for all open subsets W of Xn.
13. Hn,Xn, and πn are defined for all n by induction.
14. Let K = ⋃

Hn.
15. H ⊂ K and K is a countable subgroup of T . (by 14)
16. X/RK,d = lim←−(Xn, π

n+1
n ) where πn+1

n : Xn+1 → Xn is the canonical

map. (by 14)
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17. Let W be open in X/RK,d and π : X → X/RK,d be the canonical map.
18. There exists n and U open in Xn such that φ−1(U) ⊂ W where φ:
X/RK,d → Xn is the canonical map. (by 16)
19. π−1(W)K ⊃

14
π−1(W)Hn+1 ⊃

18
π−1(φ−1(U))Hn+1

= π−1
n (U)Hn+1 =

12
X.

20. π−1(W)K = X for all open subsets W of X/RK,d . (by 17, 19)
21. WK = X/RK,d for every open set W ⊂ X/RK,d . (by 20)
22. (X/RK,d,K) is minimal. (by 21)

We are now in position to deduce the main theorem of this appendix.

Theorem 15.A.11 Let:

(i) (X, T ) be minimal, and
(ii) p be continuous for all p ∈ E(X).

Then (X, T ) is equicontinuous.

PROOF: 1. Let H be a countable subgroup of T .
2. Let d be a continuous pseudo-metric on X and x ∈ X.
3. There exists a countable subgroup K of T with H ⊂ K and (X/RK,d,K)

minimal. (by 15.A.10)
4. As in the proof of 15.A.8 p is continuous for all p ∈ E(X/RK,d,K).

(using (ii))
5. (X/RK,d,K) is equicontinuous. (by 3, 4, 15.A.8)
6. (X/RK,d,H) is equicontinuous. (by 3, 5)
7. As in the proof of 15.A.8, (X,H) is equicontinuous.
8. (X, T ) is equicontinuous. (by 1, 7, 15.A.9)

Corollary 15.A.12 Let:

(i) (X, T ) be minimal, and
(ii) E(X, T ) be abelian.

Then (X, T ) is equicontinuous.

PROOF: 1. Lp = Rp for all p ∈ E(X, T ). (by (ii))
2. p ≡ Rp is continuous for all p ∈ E(X, T ). (by 1)
3. (X, T ) is equicontinuous. (by 15.A.11)

Theorem 15.A.13 Let H be a compact Hausdorff space provided with a group
structure in which multiplication is unilaterally continuous. Then H is a topo-
logical group.

PROOF: 1. Consider the minimal flow (H,H).
2. Let p ∈ E(H,H) and {hα} ⊂ H with hα → p.
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3. We may assume that hα → h ∈ H .
4. xp = lim xhα = xh for all x ∈ H .

(by 3, left multiplication Lx in H is continuous for all x)
5. p = Rh. (by 4)
6. p is continuous. (by 5, right multiplication Rh in H is continuous for all h)
7. (H,H) is equicontinuous. (by 6, 15.A.11)
8. H = E(H,H) is a topological group. (by 2, 5, 7, 15.A.2)

NOTES ON SECTION 15

Note 15.N.1 Let H be a locally compact Hausdorff space provided with a
group structure for which multiplication is unilaterally continuous. Then H is
a topological group.

PROOF: This can be proven using methods similar to those of 15.A.13. For
this and related results see [Ellis, R., Locally compact transformation groups,
(1957)].

Note 15.N.2 Let

(i) π : G → G/G′PGJ be the canonical map,
(ii) ψ : T → G/G′PGJ ,

t → ut

and

(iii) f the continuous extension of ψ to βT .

Then f (α(u)) = π(α) for all α ∈ G and u ∈ J .

PROOF: 1. Let α ∈ G and u ∈ J .
2. There exists a net (ti) in T with uti → α(u). (M ⊂ βT is minimal)
3. There exist ui ∈ J with utiui = uti for all i. (by 3.12)
4. We may assume that ui → β(v) with β ∈ GJ and v ∈ J .

(by compactness and 3.12)
5. Luti → αβ−1. (by 2, 3, 4 and 10.14)
6. f (ti) = f (u)f (ti)f (u) = f (utiu). (as in 15.9)
7. π(Luti ) = f (ti)=

6
f (utiu) = f (Luti (u)).

8. f (α(u)) =
2

lim f (uti)=
6

lim f (Luti (u))=
7

lim π(Luti )

=
5

π(αβ−1) = π(α)π(β)−1 =
4

π(α).

Note 15.N.3 Let E denote the algebra of almost periodic functions on T . Then
the Stone space |E | admits a minimal equicontinuous action of T . Indeed
(|E |, T ) ∼= (M/Seq, T ) thus the E of definition 15.A.6 coincides with the
definition of E given in [Ellis, R., 1969].
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EXERCISES FOR CHAPTER 15

Exercise 15.1 Show that a flow (X, T ) is equicontinuous if and only if it is
pointwise equicontinuous.

Exercise 15.2 Let (X, T ) be the flow given in example 15.8. Show that:

(a) Q(X) = {(z1, z2) | |z1| = |z2|}, and
(b) E(X) is a compact topological group. (Hint: (Y, T ) is equicontinuous for

every minimal set Y ⊂ X.)

Exercise 15.3 Let:

(i) (X, T ) be a minimal flow, and
(ii) R be an icer on X.

Show that (X/R, T ) is equicontinuous if and only Q(X) ⊂ R.

Exercise 15.4 Let (X, T ) be a weak mixing minimal flow. Show that:

(a) Q(X) = X × X, and
(b) X has no non-trivial equicontinuous factors.

Exercise 15.5 Let:

(i) {(Xi, T ) | i ∈ I } be a family of equicontinuous flows, and
(ii) X = �i∈IXi .

Then the product flow (X, T ) is equicontinuous.

Exercise 15.6 Let (X, T ) be an equicontinuous flow. Then:

(a) (E(X), T ) is an equicontinuous flow, and
(b) if in addition X = M/R, the regularizer (reg(R), T ) is an equicontinuous

flow.

Exercise 15.7 Let:

(i) (X, T ) be a flow, and
(ii) π : X × E(X) → X.

(x, p) → xp

Then (X, T ) is equicontinuous if and only if π is continuous.

Exercise 15.8 Let:

(i) (X, T ) be a an equicontinuous flow,
(ii) (Y, T ) be a flow, and

(iii) f : X → Y be an epimomorphism.

Then (Y, T ) is equicontinuous.
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Exercise 15.9 Show that a minimal flow (X, T ) is equicontinuous if and only
if its enveloping semigroup E(X) is a compact topological group.

Exercise 15.10 (See 15.23) Let:

(i) X = M/R be regular,
(ii) J ∗

X = {α ∈ GX | α(JX) ∩ JX 
= ∅},
(iii) GX(JX) be the closed normal subgroup of GX generated by J ∗

X,
(iv) �X(u, v, t) = LutL

−1
vt where u, v ∈ JX and t ∈ T , and

(v) �X be the closed normal subgroup of GX generated by

{�X(u, v, t) | u, v ∈ JX and t ∈ T }.
Then:

(a) EX = GX(JX)�XG′
X,

(b) χR(GJ ) = GJ
X,

(c) χR(�) = �X, and
(d) χR(E) = EX.

Exercise 15.11 (See 15.21) Let X = M/R be regular. Then:

(a) EX = DXG′
X.

(b) Seq(X) = P0(X) ◦ gr(EX).
(c) GX(Seq(X)) = EX.

Exercise 15.12 (See 15.A.7) Let:

(i) (X, T ) be a flow,
(ii) S ⊂ T be a countable subgroup of T ,

(iii) d be a continuous pseudo-metric on X, and
(iv) RS,d = {(v,w) ∈ X × X | d(vt, wt) = 0 for all t ∈ S}.
Show that:

(a) RS,d is a closed equivalence relation on X, and
(b) X/RS,d is metrizable.
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The regionally proximal relation

In this section we examine in more depth the regionally proximal relation
Q(X), which was defined in 15.4. Here we will be primarily interested in the
case where X = M/R is a minimal flow. Note that if E ⊂ G(R), then by 15.13
P(M/R) = Q(M/R), thus in particular P(M/R) is closed and it follows from
13.6 that Q(X) is an equivalence relation and hence an icer on X. In fact a
stronger result holds; the main result of this section is that if E ⊂ G(R)G′,
then Q(M/R) is an icer. We begin this section with a few standard results on
Q(X) and its relationship to the equicontinuous structure relation Seq(X).

Proposition 16.1 Let N be an icer on the minimal flow (X, T ). Then (X/N, T )

is equicontinuous if and only if Q(X) ⊂ N .

PROOF: =⇒
1. Assume that Y = X/N is equicontinuous, and let π : X → Y be the canon-
ical map.
2. Q(Y) = �Y . (by 1, 15.5)
3. π(Q(X)) = Q(Y) = �Y . (by 2, 15.6)
4. Q(X) ⊂ N . (by 1, 3)

⇐=
1. Assume that Q(X) ⊂ N .
2. Q(Y) = π(Q(X)) = �Y . (by 1, 15.6)
3. Y is equicontinuous. (by 2, 15.5)

Proposition 16.2 Let X = M/R. Then the following are equivalent:

(a) Seq(X) = Q(X),
(b) Q(X) is an icer, and
(c) Seq(X) ⊂ Q(X).

203
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PROOF: (a) =⇒ (b) is clear.
(b) =⇒ (c)

1. Assume that Q(X) is an icer.
2. X/Q(X) is equicontinuous. (by 16.1)
3. Let S be an icer on M with X/Q(X) = M/S.
4. Seq ⊂ S. (by 3, 15.16)
5. Seq(X) = πR(Seq) ⊂ πR(S) = Q(X). (by 3, 4, 15.6)

(c) =⇒ (a)

1. Assume that Seq(X) ⊂ Q(X).
2. X/Seq(X) is equicontinuous. (by 15.19)
3. Q(X) ⊂ Seq(X). (by 2, 16.1)

Corollary 16.3 Let:

(i) R and N be icers on M with R ⊂ N ,
(ii) X = M/R, Y = M/N , and

(iii) Q(X) be an icer on X.

Then Q(Y) is an icer on Y .

PROOF: 1. Seq(X) ⊂ Q(X). (by 16.2)
2. Seq(Y ) =

15.20
πR

N (Seq(X))⊂
1

πR
N (Q(X)) =

15.6
Q(Y).

3. Q(Y) is an icer on Y . (by 2, 16.2)

We now prove two technical lemmas which will be used to deduce the main
result of this section.

Lemma 16.4 Let:

(i) N be a non-vacuous open subset of M , and
(ii) AN = {α ∈ G | α(J ) ∩ N 
= ∅}.
Then:

(a) int (AN) ≡ cic(AN) 
= ∅.
(b) G′cic(AN) = cic(AN).

PROOF: (a) 1. The set of almost periodic points of the flow (G,M) is
dense in M . ((M, T ) is minimal)
2. There exists an almost periodic point β(w) of the flow (G,M) with
β(w) ∈ N . (by 1)
3. G′ ⊂ cic{γ | γ (β(w)) ∈ N}. (by 2, 11.15)
4. ∅ 
= cic{γ | γβ(w) ∈ N} ⊂ cic{γ | γβ ∈ AN } = cic(ANβ−1) =
cic(AN)β−1. (by 3, (ii), 10.6)

(b) This follows from (a) and 11.3.
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Lemma 16.5 Let:

(i) v ∈ J ,
(ii) AN = {α ∈ G | α(J ) ∩ N 
= ∅}, and

(iii) Av = ⋂
N∈Nv

cic(AN). (Here Nv = {V | V an open neighborhood of

v in M}.)
Then:

(a) Av 
= ∅,
(b) G′Av = Av ,
(c) (α(w), v) ∈ Q for all α ∈ Av and w ∈ J ,
(d) Av ⊂ E, and
(e) EAv = E.

PROOF: (a) {cic(A(N)) | N ∈ Nv} is a collection of nonempty closed
sets with the finite intersection property so this follows from the fact that G is
compact. (by 16.4, 10.6)

(b) 1. Av ⊂ G′Av = G′ ⋂
N∈Nv

cic(AN) ⊂ ⋂
N∈Nv

G′cic(AN)=⋂
N∈Nv

cic(AN)= Av . (1 ∈ G′, 16.4, 10.12)

(c) 1. Let w ∈ J and α ∈ ⋂
N∈Nv

AN .
2. Let U be an open invariant neighborhood of � in M × M .
3. Let W be an open neighborhood of (α(w), v) in M × M .
4. Let V be an open neighborhood of v with α(V ) × α(V ) ⊂ U and {α(w)} ×
V ⊂ W .
5. α ∈ AV . (by 1, 4)
6. There exists β ∈ AV ∩ < V, α(V ) >. (by 5)
7. There exists u ∈ J and p ∈ V with β(u) ∈ V and β(p) ∈ α(V ). (by 6, (ii))
8. (α(w), β(u))p = (α(p), β(p)) ∈ α(V ) × α(V ) ⊂ U . (by 4, 7)
9. (α(w), β(u)) ∈ U . (by 2, 8)
10. ∅ 
= ({α(w)} × V ) ∩ U ⊂ W ∩ U . (by 4, 7, 9)
11. (α(w), v) ∈ U . (by 3, 10)
12. (α(w), v) ∈ Q. (by 2, 11)

(d) 1. Let α ∈ Av .
2. (α(v), v) ∈ Q. (by part (c))
3. α ∈ E. (by 2, 15.11)

(e) This follows immediately from parts (a) and (d).

Theorem 16.6 Let R be an icer on M with E ⊂ G(R)G′. Then Q(M/R) is
an icer.

PROOF: 1. Let (p, q) ∈ Seq = P0 ◦ gr(E).
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2. (p, q) = (β(v), γ (w)) for some v,w ∈ J and β−1γ ∈ E. (by 1)
3. E = β−1Eβ ⊂ β−1G(R)G′β = β−1G(R)βG′. (E and G′ are normal)
4. E = EAv ⊂ (β−1G(R)βG′)Av = β−1G(R)βAv . (by 3, 16.5)
5. There exist ρR ∈ G(R) and α ∈ Av with β−1γ = β−1ρRβα. (by 2, 4)
6. (v, α(w)) ∈ Q. (by 5, 16.5)
7. (α(w), β−1γ (w)) = (α(w), β−1ρRβα(w)) ∈ gr(β−1G(R)β) =
β−1(gr(G(R))). (by 5, 7.15)
8. (v, β−1γ (w)) ∈ Q ◦ β−1(gr(G(R))). (by 6, 7)
9. (β(v), γ (w)) = β(v, β−1γ (w)) ∈ β

(
Q ◦ β−1(gr(G(R)))

)
= β(Q) ◦ gr(G(R)) = Q ◦ gr(G(R)). (by 8, 15.5)

10. Seq(R) = πR(Seq)⊂ πR (Q ◦ gr(G(R))) = πR(Q) = Q(M/R).
(by 1, 2, 9, 15.9)

11. Q(M/R) is an icer. (by 10, 16.2)

The converse of 16.6 is false. For a counter-example see [Auslander, J., Ellis,
D. B., Ellis, R., The regionally proximal relation, (1995)].

Corollary 16.7 Let X = M/R and P(X) be closed. Then Q(X) is an equiva-
lence relation.

PROOF: 1. D ⊂ G(R). (by 14.8)
2. E =

15.21
DG′ ⊂

1
G(X)G′.

3. Q(X) is an equivalence relation. (by 16.6)

Corollary 16.8 Let:

(i) X = M/R be a regular flow, and
(ii) X be Bronstein, i. e. gr(GX) = X × X.

Then E ⊂ G(X)G′ and hence Q(X) is an equivalence relation.

PROOF: 1. EX = G′
X. (by (i), (ii), 15.24)

2. E ⊂ χ−1
X (EX) = χ−1

X (G′
X) = G′G(R). (by 1, Ex. 11.6, Ex. 15.10)

The result above holds without the regularity assumption, but the map χX:
G→ GX exists only in the regular case. Thus a proof which does not rely on
15.24 is required.

Corollary 16.9 Let:

(i) X = M/R be any minimal flow, and
(ii) X be Bronstein, i. e. πR(gr(G)) = X × X.

Then E ⊂ G(X)G′ and hence Q(X) is an equivalence relation.

PROOF: 1. Let u ∈ J and α ∈ G with (u, α(u)) ∈ Q.
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2. πR(u, α(u)) ∈ Q(X). (by 1, 15.6)
3. There exist nets {pi} ⊂ M and {αi} ⊂ G, such that

πR(pi, αi(pi)) → πR(u, α(u)) and πR(pi, αi(pi))ti → πR(z, z).

(by 2, (ii))

4. We may assume that (pi, αi(pi)) → (p, q) and (pi, αi(pi))ti → (r,m).
(M is compact)

5. πR(p, q) = lim πR(pi, αi(pi)) = πR(u, α(u)). (by 3, 4)
6. πR(r,m) = lim πR(pi, αi(pi))ti = πR(z, z). (by 3, 4)
7. There exist v1, v ∈ J and β1, β2 ∈ G(R) with

(p, q) = (β1(v1), β2α(v)) = (p, β2αβ−1
1 (pv)). (by 5)

8. There exist w ∈ J and β ∈ G(R) with (r,m) = (r, β(rw)). (by 6)
9. αi → β2αβ−1

1 . (by 4, 7, 10.13)
10. αi → β. (by 4, 8, 10.13)
11. β2αβ−1

1 β−1 ∈ G′. (by 9, 10)
12. α ∈ G(R)G′G(R) = G′G(R). (by 7, 8, 11, G′ is normal)

As an immediate consequence we see that Q(X) is also an equivalence relation
for any point distal minimal flow. A flow is said to be point distal if there exists
a point a ∈ X such that (a, x) ∈ P(X) ⇒ x = a.

Proposition 16.10 Let:

(i) X = M/R, and
(ii) a ∈ X with aP (X) = {a}.
Then the almost periodic points of (X×X, T ) are dense in X×X and so Q(X)

is an equivalence relation.

PROOF: 1. Let u ∈ J and t ∈ T .
2. (at, atu) ∈ P(X). (by 1)
3. at = atu. (by 2, (ii))
4. (as, at) is an almost periodic point of X × X for all s, t ∈ T . (by 1, 3)
5. {(as, at) | s, t ∈ T } = X × X. (by (i), X is minimal)

EXERCISES FOR CHAPTER 16

Exercise 16.1 Show that Seq = P0 ◦ Q = Q ◦ Q.

Exercise 16.2 Let:

(i) R and S be icers on M , and
(ii) G(R) = G(S).

Then S ⊂ R ◦ Q
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Exercise 16.3 Let:

(i) R and S be icers on M ,
(ii) G(R) = G(S), and

(iii) π−1
R (Q(M/R)) be an equivalence relation.

Then π−1
S (Q(M/S)) = S ◦ Q ◦ S ⊂ R ◦ Q ◦ R = π−1

R (Q(M/R)).



PART V

Extensions of minimal flows

In this section we study the structure of various types of extensions R ⊂ S

of minimal flows, using the theory of icers and subgroups of G developed in
the preceding sections. The results are often analogous to and motivated by the
corresponding results on minimal flows, thought of as extensions of the one-
point flow. The groups G(R) and G(S) along with the relative product and
quasi-relative product play key roles.

In section 17 we use the circle operator of section 5 to characterize open
extensions and to define the related notions of RIC and highly proximal exten-
sions. We see in 17.3 that R ⊂ S is a RIC extension if and only if S =
R ◦ gr(G(S)).

Section 18 is devoted to an in-depth study of distal extension of minimal
flows, again from the point of view of icers. One key idea here is that an exten-
sion R ⊂ S is distal if and only if S = R ◦ gr(G(S)) (see 18.9). From this
point of view it is evident that every distal extension is a RIC extension.

Almost periodic extensions, which are the natural generalization of equicon-
tinuous flows, are studied in section 19. This is done in large part with the aid
of the regionally proximal relation for equivalence relations, which is the nat-
ural generalization of the regionally proximal relation for flows introduced in
section 15. The classical result is that R ⊂ S is an almost periodic extension
if and only if it is a distal extension and G(S)′ ⊂ G(R). Finally in section 20
we collect four theorems which are equivalent to the Furstenberg structure the-
orem which says that any non-trivial distal extension “factors” into a distal
extension together with a non-trivial almost periodic extension. The Fursten-
berg tower is developed as a consequence of this result; its construction being a
nice application of the machinery on icers, subgroups of G, and the τ -topology
developed in the preceding sections.
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Open and highly proximal extensions

The notion of highly proximal extensions was introduced in [Auslander, J.,
Glasner, S., (1997)]. We will see that every almost one-one extension is a
highly proximal extension, and every highly proximal extension is a proximal
extension. Our account emphasizes the point of view of equivalence relations.
The key tool is the action of βT on 2X (see section 9) given by the circle oper-
ator. We include a brief introduction to relatively incontractible (RIC) exten-
sions which are also defined in terms of the circle operator. We begin by using
the circle operator to characterize open extensions of minimal flows. The fol-
lowing theorem is a restatement of exercise 5.6; we give a proof for the sake
of completeness and in order to motivate the definition of RIC extensions.

Theorem 17.1 Let:

(i) R ⊂ S be icers on M , and
(ii) X = M/R and Y = M/S.

Then the following are equivalent:

(a) πR
S is open,

(b) πR(pS ◦ q) = πR((pq)S) for all p, q ∈ M , and
(c) πR(uS ◦ p) = πR(pS) some u ∈ J and all p ∈ M .

PROOF: (a) =⇒ (b)
1. Assume that πR

S is open and let p, q ∈ M .

2. The map ϕ : Y → 2X is a homomorphism of flows. (by 1, 5.7)
y → [(πR

S )−1(y)]
3. ϕ(πS(pq)) = [(πR

S )−1(πS(pq))] = [πR(π−1
S (pq))] = [πR((pq)S)].

4. ϕ(πS(pq))=
2

ϕ(πS(p))q = [(πR
S )−1(πS(p))]q

= [πR(pS)]q =
5.10

[πR(pS) ◦ q] =
5.11

[πR((pS) ◦ q)].
5. πR((pq)S) = πR((pS) ◦ q). (by 3, 4)

211
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(b) =⇒ (c)
Clear.

(c) =⇒ (a)
1. Assume that u ∈ J with πR(uS ◦ p) = πR(pS) for all p ∈ M .
2. Let yi → y ∈ Y and ϕ : Y → 2X be defined as above.

y → [(πR
S )−1(y)]

3. There exist pi ∈ M with yi = πS(pi) for all i. (Y is minimal)
4. We may assume that pi → p ∈ M .
5. y = lim yi = lim πS(pi) = πS(p). (by 2, 3, 4)
6. lim ϕ(yi) = lim ϕ(πS(pi)) = lim[πR(piS)] =

1
lim[πR(uS) ◦ pi]

=
5.10

lim[πR(uS)]pi = [πR(uS)]p =
5.10

[πR(uS) ◦ p]
=

5.11
[πR(uS ◦ p)] =

1
[πR(pS)] =

2
ϕ(πS(p))=

6
ϕ(y).

7. ϕ is continuous. (by 2, 6)
8. πR

S is open. (by 8, 5.7)

Let R ⊂ S be icers on M , u ∈ J , and p, q ∈ M . It is immediate that
G(S)(p) ⊂ pS and hence that πR(G(S)(p)) ⊂ πR(pS). On the other hand,
by 5.11,

πR(pS ◦ q) = πR(pS) ◦ q ⊂ πR((pq)S),

from which we obtain

πR(G(S)(p)) = πR(G(S)(u)p) ⊂ πR(G(S)(u) ◦ p)

⊂ πR((uS) ◦ p) ⊂ πR(pS)
(∗)

for any extension. Now 17.1 says that the open extensions are those for which
the last containment in equation (∗) is an equality. In particular any extension
for which πR(G(S)(p)) = πR(pS) is an open extension. The latter holds if
R ∩ P0 = S ∩ P0, or equivalently R ⊂ S is a distal extension; this gives
another proof (see 7.23) that distal extensions are open. This argument also
shows that if πR(G(S)(u) ◦ p) = πR(pS) for all p ∈ M , then πR

S is open.
This is one motivation for the following definition.

Definition 17.2 Let R ⊂ S be icers on M . We say that R ⊂ S is a relatively
incontractible (RIC) extension if there exists u ∈ J such that

πR(G(S)(u) ◦ p) = πR(pS)

for all p ∈ M . In the case where S = M × M so that M/R is a RIC extension
of the one-point flow we say the M/R is an incontractible flow.
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It follows from the preceding discussion that every distal extension of mini-
mal flows is RIC, and every RIC extension of minimal flows is open. Intuitively
S is a RIC extension of R if it is the smallest icer containing R which also con-
tains gr(G(S)). Of course any icer which contains gr(G(S)) also contains
gr(G(S)), hence the following characterization of RIC extensions.

Proposition 17.3 Let R ⊂ S be icers on M . Then the following are equivalent:

(a) πR(G(S)(v) ◦ p) = πR(pS) for all v ∈ J and p ∈ M ,
(b) R ⊂ S is a RIC extension, and
(c) S = R ◦ gr(G(S)).

PROOF: (a) =⇒ (b)
Clear.

(b) =⇒ (c)
1. Assume that R ⊂ S is a RIC extension and let (p, q) ∈ S.
2. q ∈ pS. (by 1)
3. πR(q) ∈ πR(pS) =

1
πR(G(S)(u) ◦ p) =

12.2
πR

(
pgr(G(S))

)
for some u∈ J .

4. There exists r ∈ pgr(G(S)) with πR(q) = πR(r). (by 3)
5. (p, r) ∈ gr(G(S)) and (r, q) ∈ R. (by 4)
6. (p, q) ∈ gr(G(S)) ◦ R. (by 5)
7. S ⊂ gr(G(S)) ◦ R. (by 1, 6)
8. S = gr(G(S)) ◦ R = R ◦ gr(G(S)).

(by 7, S is an icer with R ∪ gr(G(S)) ⊂ S)
(c) =⇒ (a)

1. Assume that S = R ◦ gr(G(S)) and let v ∈ J and p ∈ M .
2. πR(pS) = πR

(
pgr(G(S))

) = πR(G(S)(v) ◦ p). (by 1, and 12.2)

We will see in section 18 that S is a distal extension of R if and only if
S = R ◦ gr(G(S)). Here we use 17.3 to show that any extension of minimal
flows can be approximated up to proximal extensions by a RIC extension.

Proposition 17.4 Let:

(i) R ⊂ S be icers on M , and
(ii) A ⊂ G be closed with G(R) ⊂ A ⊂ G(S).

Then there exist icers RA ⊂ R and SA ⊂ S such that:

(a) RA ⊂ R is a proximal extension,
(b) RA ⊂ SA is a RIC extension, and
(c) G(SA) = A.

PROOF: 1. M → M/gr(A) is an open map. (by 12.2)
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2. SA ≡ gr(A)(R) (the quasi-relative product of gr(A) with R) is an icer on
M . (by 1, 9.8)
3. RA ≡ R ∩ gr(A)(R) is an icer on M . (by 2)
4. G(RA) = G(R) ∩ G

(
gr(A)(R)

)
. (by 3, 7.19)

5. G(R) ⊂
(ii)

A =
12.2

G
(
gr(A)

) ⊂ G
(
gr(A)(R)

)
.

6. G(RA) = G(R). (by 4, 5)
7. RA ⊂ R is a proximal extension. (by 3, 6, 7.11)
8. SA = RA ◦ gr(A). (by 2, 3, 9.4)
9. G(SA) = G(RA)G

(
gr(A)

) = G(R)A = A. (by 6, 8, (ii), 7.26)
10. RA ⊂ SA is a RIC extension. (by 8, 9, 17.3)

Corollary 17.5 Let R ⊂ S be icers on M . Then there exist icers R0 ⊂ R and
S0 ⊂ S such that:

(a) R0 ⊂ R is a proximal extension,
(b) R0 ⊂ S0 is a RIC extension, and
(c) S0 ⊂ S is a proximal extension.

PROOF: Take A = G(S) in 17.4.

We now turn to a discussion of highly proximal extensions; as motivation
we recall (see 7.13) that R ⊂ S is an almost one-one extension if there exists
y0 ∈ Y such that (πR

S )−1(y0) is a singleton. Exercise 13.6 says that R ⊂ S is
a proximal extension if and only if there exists y0 ∈ Y and p ∈ M such that(
(πR

S )−1(y0)
)
p is a singleton. Since

(
(πR

S )−1(y0)
)
p ⊂ (

(πR
S )−1(y0)

) ◦ p,
requiring that

(
(πR

S )−1(y0)
) ◦ p is a singleton leads to a condition which is a

priori stronger than the notion of a proximal extension but weaker than that of
an almost one-one extension.

Definition 17.6 Let X = M/R and Y = M/S with R ⊂ S icers on M .
We say that X is a highly proximal extension of Y (h. p. extension) if there
exists y0 ∈ Y and p ∈ M such that

(
(πR

S )−1(y0)
) ◦ p is a singleton. Here

X is a maximally highly proximal flow (m.h.p.) if it has no non-trivial highly
proximal extensions. The flow X is a maximally highly proximal extension
(m.h.p. extension) of Y if it is a highly proximal extension which is maximally
highly proximal.

We gather a few elementary properties of highly proximal extensions begin-
ning with a restatement of the definition.

Proposition 17.7 Let X = M/R and Y = M/S with R ⊂ S icers on M . Then
the following are equivalent:
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(a)
(
(πR

S )−1(y)
) ◦ p is a singleton for all y ∈ Y and p ∈ M ,

(b)
(
(πR

S )−1(y)
) ◦ p = {xp} for all y ∈ Y , x ∈ (πR

S )−1(y), and p ∈ M , and
(c) X is a highly proximal extension of Y .

PROOF: (a) =⇒ (b)
1. Assume that (a) holds and let y ∈ Y , x ∈ (πR

S )−1(y), and p ∈ M .
2. {xp} ⊂ (

(πR
S )−1(y)

)
p ⊂ (

(πR
S )−1(y)

) ◦ p. (by 5.10)
3. {xp} = (

(πR
S )−1(y)

) ◦ p. (by 1, 2)
(b) =⇒ (c)

Clear.
(c) =⇒ (a)

1. Assume that
(
(πR

S )−1(y0)
) ◦ q is a singleton, and let p ∈ M , y ∈ Y .

2. There exists r ∈ M with yr = y0. (Y is minimal)
3. There exists q̂ ∈ M with p = rqq̂. (M is minimal)
4.

(
(πR

S )−1(y)
) ◦ p =

3,5.10

(
(πR

S )−1(y) ◦ r
) ◦ qq̂ ⊂

5.11
(πR

S )−1(yr) ◦ qq̂

=
2

(
(πR

S )−1(y0) ◦ q
) ◦ q̂.

5. (πR
S )−1(y) ◦ p is a singleton. (by 1, 4)

Proposition 17.8 Let π : X → Y be an extension of minimal flows. Then π

is highly proximal if and only if every open subset of X contains a fiber of π .

PROOF: =⇒
1. Assume that π is highly proximal and let U be an open subset of X.
2. Let x ∈ U and u ∈ J with xu = x.
3. Set y = π(x) ∈ Y .
4. π−1(y) ◦ u = {xu} = {x} ⊂ U . (by 2, 3, 17.7)
5. There exists t ∈ T with π−1(yt) = (

π−1(y)
)
t ⊂ U . (by 5, 5.10)

⇐=
1. Assume that every open subset of X contains a fiber of π .
2. Let y0 ∈ Y , x0 ∈ π−1(y0) and U be an open neighborhood of x0.
3. Let V = {y ∈ Y | π−1(y) ⊂ U}.
4. V is a nonempty open subset of Y . (by 1, 2, 5.8)
5. There exists tU ∈ T with y0tU ∈ V . (by 4, Y is minimal)
6. π−1(y0tU ) = π−1(y0)tU ⊂ U .
7. There exists q ∈ βT with π−1(y0) ◦ q = {x0}. (by 2, 6)
8. Let u ∈ J with y0u = y0, and set p = uq.
9. p ∈ M . (by 8)
10. π−1(y0) ◦ p =

5.10

(
π−1(y0) ◦ u

) ◦ q ⊂
5.11

π−1(y0u) ◦ q = π−1(y0) ◦ q =
7
{x0}.

11. π is highly proximal. (by 9, 10)
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Corollary 17.9 Let:

(i) X = M/R and Y = M/S with R ⊂ S icers on M , and
(ii) X be an almost one-one extension of Y .

Then X is a highly proximal extension of Y .

PROOF: This follows immediately from the definitions or from 17.8.

As we remarked above, the following proposition follows immediately from
13.6; we provide a different proof here for the sake of completeness.

Proposition 17.10 Let:

(i) X = M/R and Y = M/S with R ⊂ S icers on M , and
(ii) X be a highly proximal extension of Y .

Then X is a proximal extension of Y .

PROOF: 1. Let x1, x2 ∈ X with πR
S (x1) = y = πR

S (x2).
2. Let p ∈ M .
3. x2p ∈ (

(πR
S )−1(y)

) ◦ p = {x1p}. (by 1, 2, (ii), 17.7)
4. x1p = x2p. (by 3)
5. (x1, x2) ∈ P(X). (by 4)

Corollary 17.11 Let A be a closed subgroup of G. Then Y = M/gr(A) is a
maximally highly proximal flow.

PROOF: 1. Assume that X = M/R is a highly proximal extension of Y

with R ⊂ gr(A).
2. X is a proximal extension of Y . (by 1, 17.10)
3. G(R) = G(gr(A)) = A. (by 2, 7.11)
4. gr(A) ⊂ R. (by 3)
5. R = gr(A) and X = Y . (by 1, 4)
6. Y is maximally highly proximal. (by 1, 5)

In view of 17.10 it is natural to ask for an example of a proximal extension
which is not highly proximal. Note that if π : X → {pt}, then π is a highly
proximal extension only if X = {pt} (by 17.8 any open subset of X would
have to contain X, the only fiber of π ). Thus in this case any non-trivial prox-
imal flow X will be a proximal but not a highly proximal extension of the one
point flow. Of course not every group T admits non-trivial proximal flows.
Indeed T admits such flows if and only if gr(G) 
= M × M . Indeed when
the group T is abelian, the map x → xt is an automorphism of M for every
x ∈ M , so gr(G) = M × M . On the other hand there are plenty of examples
where gr(G) 
= M × M (see for example [Glasner, S., Compressibility prop-
erties in topological dynamics, (1975)])
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In view of 17.9 it is natural to ask for an example of a highly proximal exten-
sion which is not an almost one-one extension. One such example is provided
as follows.

Example 17.12 (two circle) Let:

(i) Y = S1 = {eiα | 0 ≤ α < 2π} be the circle,
(ii) T = Z the integers act on Y by an irrational rotation θ , and

(iii) X = {1} × Y ∪ {2} × Y be provided with a topology for which a neigh-
borhood base at (1, eiα) is given by {Uε | ε > 0} where

Uε = {(1, eiβ) | α ≤ β < α + ε} ∪ {(2, eiβ) | α < β < α + ε},
and a neighborhood base at (2, eiα) is given by {Vε | ε > 0} where

Vε = {(2, eiβ) | α − ε < β ≤ α} ∪ {(1, eiβ) | α − ε < β < α}.
(iv) T act on X by θ on both circles,
(v) π : X → Y be defined by π(j, eiα) = eiα for j ∈ {1, 2}.

Then:

(a) X is a compact Hausdorff space and the action of T on X is minimal,
(b) X is a highly proximal extension of Y , and
(c) X is not an almost one-one extension of Y .

PROOF: (a) We leave this as an exercise for the reader.
(b) This follows from 17.8 since every open subset of X contains a fiber of π .
(c) This is clear since every fiber of π consists of exactly two points.

Given an icer R on M , an extension R0 ⊂ R is a proximal extension if and
only if G(R0) = G(R); we now investigate the collection of highly proximal
extensions of R.

Proposition 17.13 Let:

(i) X = M/R and Y = M/S with R ⊂ S icers on M , and
(ii) u ∈ J .

Then the following are equivalent:

(a) X is a highly proximal extension of Y .
(b) qS ◦ p ⊂ (qp)R for all p, q ∈ M .
(c) uS ◦ u ⊂ uR.

PROOF: (a) =⇒ (b)
1. Assume that X is a highly proximal extension of Y and let p, q ∈ M .
2. πR(qS◦p) =

5.11
πR(qS)◦p = (πR

S )−1(πS(q))◦p =
17.7

{πR(q)p} = {πR(qp)}.
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3. qS ◦ p ⊂ (qp)R. (by 2)
(b) =⇒ (c)

Setting q = u = p in (b) yields (c).
(c) =⇒ (a)

1. Assume that uS ◦ u ⊂ uR.
2. (πR

S )−1(πS(u)) ◦ u = πR(uS) ◦ u =
5.11

πR(uS ◦ u)=
1
{πR(u)}.

4. X is a highly proximal extension of Y . (by 2, 17.7)

Proposition 17.14 Let:

(i) R ⊂ S ⊂ N be icers on M , and
(ii) X = M/R, Y = M/S and Z = M/N .

Then X is a highly proximal extension of Z if and only if X is a highly proxi-
mal extension of Y and Y is a highly proximal extension of Z.

PROOF: =⇒
1. Assume that X is a highly proximal extension of Z and let u ∈ J .
2. uS ◦ u ⊂ uN ◦ u ⊂ uR ⊂ uS. (by 1, 2, (i), 17.13)
3. X is a h. p. extension of Y and Y is a h. p. extension of Z. (by 2, 17.13)

⇐=
1. Assume that X is a h. p. extension of Y , Y is a h. p. extension of Z, and let
u ∈ J .
2. uN ◦ u = (uN ◦ u) ◦ u ⊂ uS ◦ u ⊂ uR. (by 1, 5.10, 17.13)
3. X is a highly proximal extension of Z. (by 2, 17.13)

Corollary 17.15 Let:

(i) X = M/R and Y = M/S with R ⊂ S icers on M ,
(ii) X be a highly proximal extension of Y , and

(iii) πR
S be open.

Then R = S.

PROOF: 1. πR(pS) = πR(uS ◦ p) ⊂ πR(pR) = {πR(p)} for all p ∈ M

and u ∈ J . (by (ii), (iii), 17.1, 17.13)
2. S ⊂ R. (by 1)
3. S = R. (by 2, (i))

We will now construct for an icer R, the maximal highly proximal extension
Rhp ⊂ R; this is a highly proximal extension of R which has the property
that Rhp ⊂ R0 for any R0 where R0 ⊂ R is a highly proximal extension. The
construction of Rhp requires a lemma which analyzes the action of βT on the
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cells {pR | p ∈ M}. Its proof applies results of section 5, in particular 5.3 and
5.10, to do calculations in 2M .

Lemma 17.16 Let:

(i) R be an icer on M ,
(ii) p, q ∈ M , and

(iii) u, v ∈ J .

Then:

(a) pR ◦ q ⊂ (pq)R.
(b) p ∈ uR ◦ q implies uR ◦ p ⊂ uR ◦ q.
(c) p ∈ uR ◦ u implies uR ◦ p is a subsemigroup of M .
(d) uR ◦ p = vR ◦ p.

PROOF: (a) 1. Let r ∈ pR ◦ q.
2. There exist ri ∈ pR and ti → q with lim ri ti = r .
3. (r, pq) = lim(ri ti, pti) ∈ R = R. (by 2, (i))
4. r ∈ (pq)R. (by 3)

(b) 1. Assume that p ∈ uR ◦ q.
2. There exist pi ∈ uR and ti → q with lim piti = p.
3. [uR ◦ p] = [uR]p = lim[uR]piti = lim[(uR ◦ pi)ti]. (by 2, 5.10)
4. (uR ◦ pi)ti ⊂ (piR)ti = (uR)ti . (by 2, and part (a))
5. lim[(uR)ti] = lim[uR]ti = [uR]q = [uR ◦ q]. (by 2, 5.10)
6. uR ◦ p ⊂ uR ◦ q. (by 3, 4, 5, 5.3)

(c) 1. Assume that p ∈ uR ◦ u.
2. Let r1, r2 ∈ uR ◦ p.
3. uR ◦ r1r2 =

5.10
(uR ◦ r1) ◦ r2 ⊂

2,(b)
(uR ◦ p) ◦ r2 ⊂

1,(b)
(uR ◦ u) ◦ r2 =

5.10
uR ◦

r2 ⊂
2,(b)

uR ◦ p.

4. r1r2 = ur1r2 ∈ uR ◦ r1r2 ⊂ uR ◦ p. (by 3)
(d) 1. uR ◦ p =

5.10
(uR ◦ v) ◦ p ⊂

(a)
vR ◦ p.

2. vR ◦ p =
5.10

(vR ◦ u) ◦ p ⊂
(a)

uR ◦ p.

3. uR ◦ p = vR ◦ p. (by 1, 2)

Definition 17.17 Let R be an icer on M and u ∈ J . We define

Rhp = {(p, q) ∈ M | uR ◦ p = uR ◦ q}.
It follows from 17.16 that Rhp is independent of the choice of u. Note also
that by 5.10

Rhp = {(p, q) ∈ M | [uR]p = [uR]q},
so Rhp is an icer on M and M/Rhp is a quasi-factor of M .
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The study of highly proximal extensions of M/R is facilitated by the study
of Rhp. In particular we will use the following lemma to show that Rhp ⊂ R is
a maximal highly proximal extension of R in the sense mentioned earlier.

Lemma 17.18 Let:

(i) R be an icer on M , and
(ii) u ∈ J .

Then:

(a) Rhp ⊂ R.
(b) there exists m ∈ uR ◦ u such that uR ◦ m ⊂ mRhp.
(c) pRhp = uR ◦ p for all p ∈ M .

PROOF: (a) 1. Let (p, q) ∈ Rhp.

2. ∅ 
= uR ◦ p = uR ◦ q ⊂ pR ∩ qR. (by 1, 17.16)

3. pR = qR. (by 2, since R is an equivalence relation)

(b) 1. Set C = {uR ◦ p | p ∈ uR ◦ u}.
2. Let {uR ◦ pi | i ∈ I } ⊂ C be a decreasing chain with respect to inclusion.

3. Set B = ⋂
i∈I (uR ◦ pi).

4. We may assume by passing to a subnet if necessary that pi → p ∈ uR ◦ u =
uR ◦ u.

5. [uR ◦ p] = [uR]p = lim[uR]pi = lim[uR ◦ pi]. (by 4, 5.10)

6. B ⊂ uR ◦ p. (by 5, 5.3)

7. Let i ∈ I .

8. uR ◦ pj ⊂ uR ◦ pi for all j > i.

9. uR ◦ p ⊂ uR ◦ pi . (by 5, 8, 5.3)

10. uR ◦ p ⊂ B. (by 7, 9)

11. B = uR ◦ p = inf{uR ◦ pi | i ∈ I } ∈ C. (by 6, 10)

12. C is inductive when ordered by inclusion.

13. There exists a minimal element uR ◦ m ∈ C. (by 12 and Zorn’s Lemma)

14. Let p ∈ uR ◦ m.

15. p = up ∈ (uR)p ⊂ uR ◦ p ⊂ uR ◦ m ⊂ uR ◦ u. (by 1, 13, 14, 17.16)

16. uR ◦ p = uR ◦ m. (by 13, 14, 15)

17. p ∈ mRhp. (by 16)

18. uR ◦ m ⊂ mRhp. (by 14, 17)

(c) 1. Let p ∈ M .
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2. There exists p̂ ∈ M with mp̂ = p. (M is minimal)
3. uR ◦ p = (uR ◦ m) ◦ p̂ ⊂ (mRhp) ◦ p̂ ⊂ (mp̂)Rhp = pRhp.

(by 2, (b), 17.16)
4. pRhp = {q ∈ M | uR ◦ p = uR ◦ q} ⊂ uR ◦ p. (since q ∈ uR ◦ q)
5. pRhp = uR ◦ p. (by 3, 4)

Proposition 17.19 Let R, N be icers on M with N ⊂ R. Then:

(a) πRhp
is open.

(b) M/N is a highly proximal extension of M/R if and only if Rhp ⊂ N .
(c) (Rhp)hp = Rhp.

PROOF: (a) 1. pRhp ◦ q = (uR ◦ p) ◦ q = uR ◦ (pq) = (pq)Rhp.
(by 17.18)

2. πRhp
is open. (by 1, 17.1)

(b) M/N is a h. p. extension of M/R if and only if pRhp = uR ◦ p ⊂ pN

for all p ∈ M . (by 17.13, 17.18)
(c) p(Rhp)hp = (uRhp)◦p = (uR◦u)◦p = uR◦p = pRhp for all p ∈ M .

(by 17.18)

We now use the preceding results to characterize maximally highly proximal
flows; we show in the appendix that X = M/R is maximally highly proximal
if and only if X is extremely disconnected.

Proposition 17.20 Let R be an icer on M . Then the following are equivalent:

(a) M/R is maximally highly proximal.
(b) R = Rhp.
(c) πR is open.

PROOF: (a) =⇒ (b)
1. Assume that M/R is maximally highly proximal.
2. M/Rhp is a highly proximal extension of M/R. (by 17.19(b))
3. Rhp = R. (by 1, 2)

(b) =⇒ (c)
This follows immediately from 17.19(a).

(c) =⇒ (a)
1. Assume that πR is open and let M/S be a h.p. extension of M/R with
S ⊂ R.
2. pR = uR ◦ p ⊂ pS for all u ∈ J and p ∈ M . (by 1, 17.1, 17.13)
3. S = R. (by 1, 2)
4. M/R is maximally highly proximal. (by 1, 3)
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APPENDIX TO SECTION 17:
EXTREMELY DISCONNECTED FLOWS

We saw in 17.20 that M/R is maximally highly proximal (m.h.p.) if and
only if πR is open. This leads to an interesting topological characterization
of maximally highly proximal flows: a flow (X, T ) is m.h.p. if and only if X is
extremely disconnected. We begin by recalling what it means for a space to be
extremely disconnected.

Definition 17.A.1 The topological space X is extremely disconnected if the
closure of any open subset of X is open.

Note that it follows from 1.2 that the Stone-Cech compactification βT , of
T , is extremely disconnected. The same is true of any minimal ideal in βT .

Proposition 17.A.2 The space M is extremely disconnected.

PROOF: 1. Let V ⊂ M be open and α(u) ∈ V .
2. Set A = {t ∈ T | ut ∈ α−1(V )}.
3. A ∩ M ⊂ α−1(V ). (by 2)
4. u ∈ α−1(V ) = α−1(V ). (by 1)
5. Let W ⊂ T with u ∈ W ⊂ βT .
6. W is open in βT . (by 5, 1.2)
7. There exists q ∈ α−1(V ) ∩ W ∩ L−1

u (W). (by 4, 5, 6)
8. There exists tW ∈ W with utW ∈ α−1(V ). (by 7)
9. There exists a net {tW } ⊂ A with tW → u. (by 5, 8, 1.2)
10. u ∈ A ∩ M ⊂ α−1(V ). (by 3, 9)
11. α(u) ∈ α(A ∩ M) ⊂ V . (by 10)
12. α(u) ∈ int (V ). (by 11, 1.2)
13. V is open. (by 1, 12)

Proposition 17.A.3 Let:

(i) X, Y be compact Hausdorff spaces,
(ii) X be extremely disconnected, and

(iii) π : X → Y be continuous, open, and onto.

Then Y is extremely disconnected.

PROOF: 1. Let V ⊂ Y be open.
2. V = π(π−1(V )) ⊂ π(π−1(V )) ⊂ π(π−1(V )) = V . (by (iii))
3. V = π(π−1(V )). (by 2)
4. π−1(V ) is open. (by 1, (ii), (iii))
5. V is open. (by 3, 4, (iii))
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Proposition 17.A.4 Let:

(i) X = M/R, and Y = M/S be minimal flows with R ⊂ S, and
(ii) X be extremely disconnected.

Then Y is extremely disconnected if and only if πR
S is open.

PROOF: ⇐=
This follows immediately from 17.A.3, since πR

S is continuous and onto.
=⇒

1. Assume that Y is extremely disconnected.

2. Let U ⊂ X be open and y ∈ πR
S (U).

3. Let W ⊂ Y be open with y ∈ W .
4. ∅ 
= U ∩ (

πR
S

)−1
(W) is open in X. (by 2, 3, πR

S is continuous)

5. There exists V ⊂ X open with V = V ⊂ U ∩ (
πR

S

)−1
(W). (by 4, (ii))

6. There exists a finite set F ⊂ T such that V F = X.
(5, X = M/R is minimal)

7. πR
S (V )F = πR

S (V )F = Y . (by 6)
8. ∅ 
=

7
int

(
πR

S (V )
) ⊂

5
int

(
πR

S (U)
) ∩ W .

9. y ∈ int
(
πR

S (U)
)
. (by 3, 8)

10. int
(
πR

S (U)
) = πR

S (U). (by 2, 9)
11. For every x ∈ U , let Ux ⊂ X be open with x ∈ Ux ⊂ Ux ⊂ U .
12. U = ⋃

x∈U Ux . (by 11)

13. πR
S (U) =

12

⋃
x∈X

πR
S (Ux) = ⋃

x∈X

πR
S (Ux) =

10

⋃
x∈X

int (πR
S (Ux)).

14. πR
S (U) is open. (by 1, 12)

Corollary 17.A.5 Let R be an icer on M . Then the following are equivalent:

(a) M/R is extremely disconnected,
(b) πR is open, and
(c) M/R is maximally highly proximal.

PROOF: The equivalence of (a) and (b) follows from 17.A.4 since M is
extremely disconnected by 17.A.2. We showed that (b) and (c) are equivalent
in 17.20.

We end this appendix with two lemmas concerning extremely disconnected
spaces in general.

Lemma 17.A.6 Let:

(i) X and Y be compact Hausdorff spaces,
(ii) π : X → Y be continuous and onto,
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(iii) Y be extremely disconnected, and
(iv) π(A) 
= Y for any closed proper subset of X.

Then:

(a) π(U) ⊂ Y \ π(X \ U) for all open sets U ⊂ X.
(b) π is one-one.

PROOF: (a) 1. Let U ⊂ X be open.
2. Let x ∈ U and V ⊂ Y be open with π(x) ∈ V .
3. Assume that V ∩ (

Y \ π(X \ U)
) = ∅.

4. V ⊂ π(X \ U). (by 3)
5. There exists an open set W ⊂ X with x ∈ W ⊂ U ∩ π−1(V ).
6. π(W) ⊂ V ⊂ π(X \ U) ⊂ π(X \ W). (by 4, 5)
7. π(X \ W) = π(X) = Y . (by 6)
8. V ∩ (

Y \ π(X \ U)
) 
= ∅. (7 contradicts (iv))

9. π(U) ⊂ Y \ π(X \ U). (by 2, 8)
(b) 1. Let x1 
= x2 ∈ X.

2. There exists open sets U1, and U2 with xi ∈ Ui and U1 ∩ U2 = ∅.
3. X \ U1 ∪ X \ U2 = X. (by 2)
4. π(X \ U1) ∪ π(X \ U2) = Y . (by 3, (ii))
5. Y \ π(X \ U1) ⊂ π(X \ U2). (by 4)
6. Y \ π(X \ U1) ⊂ π(X \ U2). (by 5)
7. Y \ π(X \ U2) ⊂ Y \ Y \ π(X \ U1). (by 6)
8. Y \ π(X \ U1) is open. (by (i), (ii), (iii))
9. Y \ π(X \ U2) ⊂ Y \ Y \ π(X \ U1). (by 7, 8)
10. π(U1) ∩ π(U2) ⊂

(a)
Y \ π(X \ U1) ∩ Y \ π(X \ U2) =

9
∅.

11. π(x1) 
= π(x2). (by 2, 10)
12. π is one-one. (by 1, 11)

The following result, (see [Gleason, A., Projective topological spaces,
(1958)]) is important for the study of extremely disconnected spaces.

Proposition 17.A.7 Let:

(i) X and Y be compact Hausdorff spaces,
(ii) π : X → Y be continuous and onto, and

(iii) Y be extremely disconnected.

Then there exists a continuous function g : Y → X such that π(g(y)) = y for
all y ∈ Y .

PROOF: 1. Let C = {C | C = C ⊂ X and π(C) = Y }.
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2. Applying Zorn’s lemma to C yields a closed subset X0 ⊂ X such that
π(X0) = Y and π(A) 
= Y for any proper closed subset of X0.
3. The restriction π0 of π to X0 is one-one. (by 2, 17.A.6)
4. g = π−1

0 : Y → X is continuous. (by 3, (i), (ii))
5. π(g(y)) = y for all y ∈ Y . (by 3, 4)

NOTES ON SECTION 17

Note 17.N.1 Let X be compact Hausdorff space, and A be a uniformly closed
subalgebra of the algebra C(X), of continuous functions f : X → R. We say
that A is complete if given any F ⊂ A with ‖f ‖ ≤ 1 for all f ∈ F , there
exists g ∈ A such that:

(i) f ≤ g for all f ∈ F .
(ii) if f ≤ h ∈ A for all f ∈ F , the g ≤ h.

Clearly such a g, if it exists, is unique. In this case we write g = ∨
A or

g = ∨
f ∈A

f .

Note 17.N.2 Let X be a set. Then C(β(X)) is complete.

PROOF: 1. Let F ⊂ C(β(X)) with ‖f ‖ ≤ 1 for all f ∈ F .
2. Let h(x) = sup

f ∈F
f (x) for all x ∈ X ⊂ βX.

3. There exists a continuous function ĥ : βX → [−1, 1] such that ĥ(x) = h(x)

for all x ∈ X.
4. f ≤ ĥ for all f ∈ F . (by 2, 3)
5. Let g ∈ C(βX) with f ≤ g for all f ∈ F .
6. ĥ(x) ≤ g(x) for all x ∈ X. (by 2, 5)
7. ĥ ≤ g. (by 6 since X = βX)

Note 17.N.3 Let X be a compact Hausdorff space. Then X is extremely dis-
connected if and only if C(X) is complete.

PROOF: =⇒
1. Let X be extremely disconnected and F ⊂ C(X) with ‖f ‖ ≤ 1 for all
f ∈ F .
2. Let T be the topology on X and D be the discrete topology on X.
3. The map (X,D) → (X, T ) has a continuous extension π : βX → (X, T ).

x → x

4. There exists a continuous map σ : (X, T ) → βX with π ◦ σ = 1X.
(by 17.A.7)
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5. Let G = {f ◦ π | f ∈ F} ⊂ C(βX).
6. g = ∨

G ∈ G exists. (by 17.N.2)
7. g ◦ σ = ∨

F . (exercise)
⇐=

1. Assume that C(X) is complete.
2. Let ∅ 
= U ⊂ X.
3. Let F = {f ∈ C(X) | f (X) ⊂ [0, 1] and f (x) = 0 for all x 
∈ U}.
4. Let g = ∨

F .
5. g : X → [0, 1] is continuous and g(U) ⊂ (0, 1].
6. U = g−1((0, 1]). (exercise)
7. U is open. (by 6)

EXERCISES FOR CHAPTER 17

Exercise 17.1 Show that if the group T is abelian, then every minimal flow is
incontractible.

Exercise 17.2 Let R ⊂ S be icers on M . Show that the following are equivalent:

(a) R ⊂ S is a RIC extension, and
(b) R ⊂ S is an open extension and πR(G(S)(u) ◦ u) = πR(uS) for some

u ∈ J .

Exercise 17.3 In this exercise we describe a general method for constructing
almost one-one extensions. Let:

(i) Y = M/S with S an icer on M ,
(ii) y0 ∈ Y , and

(iii) u ∈ J and α ∈ G with πS(α(u)) = y0,
(iv) f : y0T → K be a continuous function where K is a compact Hausdorff

space, (e.g. K = [0, 1])
(v) g : βT → K be the continuous extension to βT of the map T → K

t → f(y0t),
(vi) N = {(p, q) ∈ M × M | g(pt) = g(qt) for all t ∈ T }, and

(vii) R = α(N) ∩ S.

Then:

(a) N is an icer on M .
(b) R is an icer on M .
(c) X = M/R is an almost one-one extension of Y such that (πR

S )−1(y0)

consists of a single point.
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Note that the extension X depends on the function f . When f is constant,
N = M × M and X = Y . The next exercise provides a non-trivial example.

Exercise 17.4 Let:

(i) X be the unit circle,
(ii) ϕ : X → X be an “irrational rotation”,

(iii) T the group generated by ϕ,
(iv) I an open arc of X with ∅ 
= I 
= X,
(v) x0 ∈ I be such that x0T ∩ {a, b} = ∅ where {a, b} is the set of endpoints

of I ,

(vi) f (x0t) =
{

1 if x0t ∈ I

0 if x0t 
∈ I,
and

(vii) π : Z → X the almost one-one extension induced by f as in 17.3.

Then π−1(x0) is a singleton and both π−1(a) and π−1(b) have exactly two
points.

Exercise 17.5 (two circle): (see 17.12) Let:

(i) Y = S1 = {eiα | 0 ≤ α < 2π} be the circle,
(ii) T = Z the integers act on Y by an irrational rotation θ ,

(iii) X = {1} × Y ∪ {2} × Y be provided with a topology for which
a neighborhood base at (1, eiα) is given by {Uε | ε > 0} where

Uε = {(1, eiβ) | α ≤ β < α + ε} ∪ {(2, eiβ) | α < β < α + ε},
and a neighborhood base at (2, eiα) is given by {Vε | ε > 0} where

Vε = {(2, eiβ) | α − ε < β ≤ α} ∪ {(1, eiβ) | α − ε < β < α},
(iv) T act on X by θ on both circles, and
(v) π : X → Y be defined by π(j, eiα) = eiα for j ∈ {1, 2}.

Then:

(a) X is a compact Hausdorff space and the action of T on X is minimal,
(b) π : X → Y is a homomorphism of minimal flows.

Exercise 17.6 Let R ⊂ S be a proximal extension and assume that (πR
S )−1(y)

is finite for some y ∈ M/S. Then R ⊂ S is a highly proximal extension.

Exercise 17.7 Let R be an icer on M . Then M/R is maximally highly proxi-
mal if and only if [pR] is an almost periodic point of (2M, T ) for all p ∈ M .

Exercise 17.8 Let:

(i) R ⊂ S be icers on M ,



228 Open and highly proximal extensions

(ii) M/R be a highly proximal extension of M/S, and
(iii) α ∈ G.

Then:

(a) M/α(R) is a highly proximal extension of M/α(S).
(b) (α(S))hp = α(Shp).

Exercise 17.9 Let R ⊂ S icers on M . Then πR
S is open if and only if S =

Shp ◦ R.
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Distal extensions of minimal flows

In section 4 we defined the notion of a distal homomorphism of flows (see
4.14). In this section we will focus on distal homomorphisms of minimal flows
(distal extensions), studying them from the point of view of icers on M . Note
that a flow is distal if and only if it is a distal extension of a point; thus the
results in section 14 on minimal distal flows can be thought of as results on
distal extensions. The results in this section are to a large extent motivated by,
and analogous to those of section 14. We begin by restating 4.14 in the context
of icers on M .

Definition 18.1 Let X = M/R , and Y = M/S be flows with R ⊂ S icers.
Recall that

πR
S : X → Y

denotes the canonical homomorphism. We say that X is a distal extension of Y

if πR
S is a distal homomorphism in the sense of 4.14, that is:

(x1, x2) ∈ P(X) with πR
S (x1) = πR

S (x2) implies that x1 = x2.

Note that since Y = M/S ∼= X/πR(S), this is equivalent to saying that

P(X) ∩ πR(S) = �X.

When X is a distal extension of Y , we also write πR
S is distal, R is a distal

extension of S, or simply R ⊂ S is distal.
The following proposition follows immediately from the definition.

Proposition 18.2 Let R ⊂ S be icers on M . Then the following are equivalent:

(a) R is a distal extension of S,
(b) P(M) ∩ S ⊂ R, and
(c) P(M) ∩ S = P(M) ∩ R.

229
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PROOF: (a) =⇒ (b)
1. Let R ⊂ S be distal and (p, q) ∈ P(M) ∩ S.
2. (πR(p), πR(q)) ∈ P(M/R). (by 1, 4.7)
3. πR

S (πR(p)) = πS(p)=
1

πS(q) = πR
S (πR(q)).

4. πR(p) = πR(q). (by 1, 2, 3)
5. (p, q) ∈ R. (by 4)
6. P(M) ∩ S ⊂ R. (by 1, 5)

(b) =⇒ (c)
This is immediate since R ⊂ S.

(c) =⇒ (a)
1. Assume that P(M) ∩ S = P(M) ∩ R and let (x1, x2) ∈ P(M/R) with
πR

S (x1) = πR
S (x2).

2. There exist p1, p2 ∈ M with (p1, p2) ∈ P(M), πR(p1) = x1, and πR(p2) =
x2. (by 1, 4.7)
3. πS(p1) = πR

S (πR(p1))=
2

πR
S (x1)=

1
πR

S (x2)=
2

πS(p2).

4. (p1, p2) ∈ P(M) ∩ S = P(M) ∩ R ⊂ R. (by 1, 2, 3)
5. x1 =

2
πR(p1)=

4
πR(p2)=

2
x2.

6. R ⊂ S is distal. (by 1, 5)

Corollary 18.3 Let:

(i) R, S,N be icers on M , and
(ii) R ⊂ S be distal.

Then R ∩ N ⊂ S ∩ N is distal.

PROOF: 1. P(M) ∩ S ⊂ R. (by 18.2)
2. P(M) ∩ S ∩ N ⊂ R ∩ N .
3. R ∩ N is a distal extension of S ∩ N . (by 2, 18.2)

One of the keys to our study of distal extensions is the equivalence relation

P0 = {(α(u), α(v) | α ∈ G and u, v ∈ J } ⊂ P(M) ⊂ M × M

which was defined in 7.20. We have seen that M ×M = P0 ◦gr(G), and more
generally (in 7.21) that any icer R on M is of the form

R = (R ∩ P0) ◦ gr(G(R)).

Moreover (M/R, T ) is a distal flow (a distal extension of the one-point flow)
if and only if P0 ⊂ R. Our first goal is to prove the analogous result for distal
extensions. We showed in 7.23 that if R ⊂ S is distal, then R ∩ P0 = S ∩ P0

and the map πR
S is open. Now we show that R ⊂ S is a distal extension if and

only if R ∩ P0 = S ∩ P0. We deduce this from the fact that for any icer R on
M , R ∩ P(M) is completely determined by R ∩ P0.
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Lemma 18.4 Let R, S be icers on M , and J ⊂ M be the set of idempotents in
M . Then the following are equivalent:

(a) R ∩ P(M) ⊂ S ∩ P(M),
(b) α(R) ∩ (J × J ) ⊂ α(S) ∩ (J × J ) for all α ∈ G, and
(c) R ∩ P0 ⊂ S ∩ P0.

PROOF: (a) =⇒ (b)
1. Assume R ∩ P(M) ⊂ S ∩ P(M) and let (u, v) ∈ α(R) ∩ (J × J ).
2. (α−1(u), α−1(v)) ∈ R ∩ P(M) ⊂ S ∩ P(M).
3. (u, v) ∈ α(S) ∩ (J × J ).

(b) =⇒ (c)
1. Assume that α(R) ∩ (J × J ) ⊂ α(S) ∩ (J × J ) for all α ∈ G.
2. R ∩ α(J × J ) ⊂ S ∩ α(J × J ) for all α ∈ G. (by 1)
3. R ∩ P0 = ⋃

α∈G

R ∩ α(J × J ) ⊂ ⋃
α∈G

S ∩ α(J × J ) = S ∩ P0. (by 2)

(c) =⇒ (a)
1. Assume that R ∩ P0 ⊂ S ∩ P0, and let (p, q) ∈ R ∩ P(M).
2. There exists a minimal idempotent w ∈ βT such that (p, q) = (p, pw).

(by 4.6)
3. There exists an idempotent v ∈ M with vw = v and wv = w. (by 3.14)
4. (pv, pw)=

3
(pv, pwv) = (p, pw)v =

2
(p, q)v ∈ Rv ⊂ R.

5. (p, pv) ∈ R. (by 1, 2, 4)
6. There exists α ∈ G and u ∈ J with α(u) = p.
7. (p, pv) = (α(u), α(v)) ∈ R ∩ P0 ⊂ S ∩ P0. (by 1, 5, 6)
8. (pv, pw)=

3
(pvw, pw) = (pv, p)w ∈

7
Sw ⊂ S.

9. (p, q) = (p, pw) ∈ S. (by 7, 8)
10. R ∩ P(M) ⊂ S ∩ P(M). (by 1, 9)

Theorem 18.5 Let R ⊂ S be icers on M . Then the following are equivalent:

(a) R is a distal extension of S,
(b) R ∩ α(J × J ) = S ∩ α(J × J ) for all α ∈ G,
(c) α(R) ∩ (J × J ) = α(S) ∩ (J × J ) for all α ∈ G, and
(d) R ∩ P0 = S ∩ P0.

PROOF: This follows immediately from 18.2 and 18.4.

As immediate consequences we have the following.

Corollary 18.6 Let R ⊂ S be regular icers on M . Then R is a distal extension
of S if and only if R ∩ (J × J ) = S ∩ (J × J ).
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Corollary 18.7 Let R, S be icers on M with R ⊂ S distal. Then:

(a) α(R) ⊂ α(S) is distal for all α ∈ G, and
(b) reg(R) ⊂ reg(S) is distal.

PROOF: (a) 1. Let α ∈ G.
2. R ∩ P0 = S ∩ P0. (by 18.5)
3. α(R) ∩ P0 = α(R) ∩ α(P0) = α(R ∩ P0) = α(S ∩ P0) = α(S) ∩ P0.

(by 2)
4. α(R) is a distal extension of α(S). (by 3, 18.5)

(b) 1. reg(R) ∩ P0 =
( ⋂

α∈G

α(R)

)
∩ P0 = ⋂

α∈G

(α(R) ∩ P0)

=
(a)

⋂
α∈G

(α(S) ∩ P0) = reg(S) ∩ P0.

2. reg(R) is a distal extension of reg(S). (by 1, 18.5)

Corollary 18.8 Let:

(i) R,N, S be icers on M , and
(ii) R ⊂ N ⊂ S.

Then R ⊂ S is distal if and only if R ⊂ N and N ⊂ S are both distal.

PROOF: =⇒
1. Assume that R ⊂ S is distal.
2. P0 ∩ R = P0 ∩ S. (by 18.5)
3. P0 ∩ R = P0 ∩ N = P0 ∩ S. (by 1, 2, (ii))
4. R ⊂ N and N ⊂ S are both distal. (by 3, 18.5)

⇐=
1. Assume that R ⊂ N and N ⊂ S are both distal.
2. R ∩ P0 = N ∩ P0 = S ∩ P0. (by 1, 18.5)
3. R ⊂ S is distal. (by 2, 18.5)

One key theme, which is embodied in 18.5 is that distal extensions are com-
pletely determined by their groups. We emphasize this by combining 18.5 with
results from sections 4 and 7 to characterize distal extensions.

Theorem 18.9 Let R ⊂ S be icers on M . Then the following are equivalent:

(a) R ⊂ S is a distal extension,
(b) πR(S ∩ P0) = �M/R ,
(c) S = R ◦ gr(G(S)),
(d) πR(S) = πR(gr(G(S))),
(e) (πR(S), T ) is a pointwise almost periodic icer.
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PROOF: (a) ⇐⇒ (b)

R ⊂ S is distal ⇐⇒
18.5

R ∩ P0 = S ∩ P0 ⇐⇒ πR(S ∩ P0) = �.

(a) =⇒ (c)
1. Assume that R ⊂ S is distal so that R ∩ P0 = S ∩ P0.
2. S =

7.21
(S ∩ P0) ◦ gr(G(S))=

1
(R ∩ P0) ◦ gr(G(S))

= (R ∩ P0) ◦ gr(G(R)) ◦ gr(G(S)) =
7.21

R ◦ gr(G(S)).

(c) =⇒ (d)
This is immediate.

(d) =⇒ (e)
1. Assume that πR(S) = πR(gr(G(S))).
2. πR(S) is an icer on X = M/R with X/πR(S) = M/S. (by 6.10)
3. (gr(G(S)), T ) is pointwise almost periodic.
4. (πR(S), T ) is pointwise almost periodic. (by 1, 3)

(e) =⇒ (a)
This follows immediately from 4.15.

Proposition 18.10 Let:

(i) R,N, S be icers on M ,
(ii) S,N ⊂ R,

(iii) N be a distal extension of R, and
(iv) G(S) ⊂ G(N).

Then S ⊂ N .

PROOF: S = (S ∩ P0) ◦ gr(G(S)) ⊂
(ii)

(R ∩ P0) ◦ gr(G(S))

=
(iii)

(N ∩ P0) ◦ gr(G(S)) ⊂
(iv)

(N ∩ P0) ◦ gr(G(N)) = N.

Corollary 18.11 Let N ⊂ R, and S ⊂ R be distal extensions of R with
G(S) = G(N). Then S = N .

PROOF: This follows immediately from 18.10.

We now consider, for any icer R on M , the collection R = {S | S ⊂ R

is distal} of all distal extensions of R. When R = M × M so that M/R is the
one-point flow, the collection R is simply the collection of all minimal dis-
tal flows. In this case as we saw in 14.15, the collection contains a minimal
element Sd , the distal structure relation on M . The following proposition,
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which is an immediate consequence of 18.5, allows us to define an analog in the
general case.

Proposition 18.12 Let N be a collection of distal extensions of R. Then S =⋂
N is a distal extension of R.

PROOF: 1. S ∩ P0 = ⋂
N∈N

(N ∩ P0) =
18.5

⋂
N∈N

(R ∩ P0) = R ∩ P0.

2. S is a distal extension of R. (by 1, 18.5)

Corollary 18.13 Let R, S be icers on M with R ⊂ S distal.

Then

( ⋂
α∈aut (S)

α(R)

)
⊂ S is distal.

PROOF: 1. Let α ∈ aut (S).
2. α(R) ⊂ α(S) = S is distal. (by 18.7)

3.

( ⋂
α∈aut (S)

α(R)

)
⊂ S is distal. (by 1, 18.12)

Definition 18.14 Let R be an icer on M , and R the collection of distal exten-
sions of R. Then we define R∗ = ⋂

R. Note that by 18.12, R∗ is a distal
extension of R. When R = M × M , R∗ = Sd the distal structure relation (see
14.14). For this reason we also refer to R∗ as the R-distal structure relation on
M and sometimes write Sd(R) for R∗.

Clearly the icer R∗ = Sd(R) is defined so that the collection {S ⊂ R |
R∗ ⊂ S} of extensions of R which contain R∗ is exactly the collection of
distal extensions of R.

Proposition 18.15 Let N,R be icers on M with N ⊂ R. Then N is a distal
extension of R if and only if R∗ ⊂ N .

PROOF: =⇒
1. Assume that N is a distal extension of R.
2. N ∈ R (the collection of distal extensions of R).
3. R∗ = ⋂

R ⊂ N . (by 2)
⇐=

1. Assume that R∗ ⊂ N .
2. R∗ ⊂ R is distal. (by 18.12)
3. R∗ ⊂ N , and N ⊂ R are both distal. (by 18.8)

Proposition 18.16 Let R ⊂ S be icers on M . Then:

(a) R∗ ⊂ S∗,
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(b) (α(R))∗ = α(R∗) for all α ∈ G (in particular aut (R) ⊂ aut (R∗)), and
(c) R∗∗ = R∗.

PROOF: (a) 1. S∗ ⊂ S is distal. (by 18.12)
2. S∗ ∩ R ⊂ S ∩ R = R is distal. (by 1, 18.3)
3. R∗ ⊂ S∗ ∩ R ⊂ S∗. (by 18.15)

(b) 1. α(R∗) ⊂ α(R) is distal. (by 18.7 and 18.12)
2. (α(R))∗ ⊂ α(R∗). (by 1, 18.15)
3. (α−1(R))∗ ⊂ α−1(R∗). (by 2 applied to α−1)
4. R∗ = (α−1(α(R)))∗ ⊂ α−1((α(R))∗). (by 3 applied to α(R))
5. α(R∗) ⊂ (α(R))∗. (by 4)
6. α(R∗) = (α(R))∗. (by 2, 5)

(c) 1. R∗∗ ⊂ R∗ is distal. (by 18.12)
2. R∗ ⊂ R is distal. (by 18.12)
3. R∗∗ ⊂ R is distal. (by 1, 2, and 18.8)
4. R∗ ⊂ R∗∗. (by 3, 18.15)
5. R∗∗ = R∗. (by 1, 4)

The distal structure relation on M is of the form Sd = P0 ◦ gr(D) where
D is the subgroup of G defined in 14.6. In fact by 14.11, the minimal distal
flows are all of the form P0 ◦ gr(A) where A is a closed subgroup of G which
contains D. We now define a subgroup DR ⊂ G so that the R-distal structure
relation R∗ = Sd(R) = (R ∩ P0) ◦ gr(DR); then we prove an analog of 14.11
for distal extensions of R.

Definition 18.17 Let R be an icer on M . We define DR to be the closed sub-
group of G generated by {α ∈ G | gr(α) ⊂ P(M) ∩ R}.

Note that the generators of DR are contained in G(R) so that DR ⊂ G(R).

The fact that γ
(
P(M) ∩ R

)
= P(M) ∩ R for all γ ∈ aut (R) implies that

DR is a normal subgroup of aut (R) (and hence of G(R)).

Lemma 18.18 Let R be an icer on M . Then:

(a) P(M) ∩ R ⊂ (R ∩ P0) ◦ gr(DR), and
(b) if N is an icer on M with R ∩ P0 = N ∩ P0, then DR ⊂ G(N) ⊂

aut (R ∩ P0).

PROOF: (a) 1. Let (α(u), β(v)) ∈ P(M) ∩ R.

2. (α(u), βα−1(α(u))) = (α(u), β(u)) ∈
(
P(M) ∩ R

)
u ⊂ P(M) ∩ R.

(by 1, P(M) ∩ R is invariant)
3. βα−1 ∈ DR . (by 2)
4. (α(u), α(v)) ∈ P0 ∩ R. (by 1)
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5. (α(u), β(v)) ∈ (P0 ∩ R) ◦ gr(DR). (by 3, 4)
(b) 1. Assume that N is an icer on M with R ∩ P0 = N ∩ P0.

2. Let α ∈ G with gr(α) ⊂ P(M) ∩ R.
3. gr(α) ⊂ P(M) ∩ R = P(M) ∩ N ⊂ N . (by 2, 18.4)
4. α ∈ G(N). (by 2)
5. Let β ∈ G(N).
6. β(R ∩ P0) = β(N ∩ P0) = β(N) ∩ β(P0) = N ∩ P0 = R ∩ P0.

(by 1, 5)
7. G(N) ⊂ aut (R ∩ P0). (by 5, 6)

Let R be an icer on M and suppose that N is an icer on M with N ∩ P0 =
R ∩ P0. Then by 7.21, we must have

N = (R ∩ P0) ◦ gr(H)

for some closed subgroup H ⊂ G. Lemma 18.18 shows that DR ⊂ H ⊂
aut (R ∩ P0). Note also that gr(H) ∩ P0 ⊂ N ∩ P0 = R ∩ P0. The following
proposition shows that these necessary conditions are also sufficient and hence
allows us to identify all of those icers N for which N ∩ P0 = R ∩ P0.

Proposition 18.19 Let:

(i) R be an icer in M ,
(ii) N = {N | N is an icer with R ∩ P0 = N ∩ P0}, and

(iii) H = {H | H = H is a subgroup of G,DR ⊂ H ⊂ aut (R ∩ P0), P0 ∩
gr(H) ⊂ R}.

Then

ϕ : N → H
N → G(N)

is bijective, its inverse being the map ψ defined by ψ(H) = (R ∩P0) ◦ gr(H)

for all H ∈ H. In particular R∗ = (R ∩ P0) ◦ gr(DR).

PROOF: 1. Let H ∈ H.
2. ψ(H) is an equivalence relation on M since H ⊂ aut (R ∩ P0). (by 7.24)
3. ψ(H)T =

(ii)

(
(P0 ∩ R) ◦ gr(H)

)
T ⊂ (P0 ∩ R)T ◦ gr(H)

⊂ P(M) ∩ R◦gr(H) ⊂
18.18,7.21

(P0 ∩R)◦gr(DR)◦
(
P0 ∩ gr(H)

)
◦

gr(H) ⊂
(iii)

ψ(H) ◦ (P0 ∩ R) ◦ gr(H) = ψ(H) ◦ ψ(H) ⊂
2

ψ(H).

4. ψ(H) is an icer. (by 2, 3)
5. ψ(H) ∈ N . (by 1, 4)
6. ϕ(ψ(H)) = H .
7. Let N ∈ N .
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8. DR ⊂ G(N) ⊂ aut (R ∩ P0). (by 7, 18.18)
9. P0 ∩ gr(G(N)) ⊂ N ∩ P0 = R ∩ P0 ⊂ R. (by 7, (ii))
10. ϕ(N) ∈ H. (by 8, 9)
11. ψ(ϕ(N)) = ψ(G(N)) = (R ∩ P0) ◦ gr(G(N)) = (N ∩ P0) ◦ gr

(G(N)) = N . (by 10, 7.21)
Note that 18.19 is a generalization of 14.11; we see this by taking R = M×M .
In this case

N = {N | N is an icer with P0 ⊂ N} and H = {H | D ⊂ H = H ⊂ G};
the bijections N → G(N) and H → P0 ◦ gr(H) give the one-one correspon-
dence (referred to in theorem 14.11) between the distal icers on M and the
closed subgroups of G which contain D.

It is worth restating the previous remark from the point of view of the spaces
X = M/R and Z = M/S. In this context the assignment

A → X/πR(gr(A))

gives a one-one correspondence:

{A | G(R) ⊂ A = A ⊂ G(S)} → {Y | X → Y → Z},
between the closed subgroups of G which sit between G(R) and G(S), and the
distal extensions of Z which sit between X and Z.

We will have occasion to use the previous result in a slightly different form
which we articulate in the following corollary.

Corollary 18.20 Let:

(i) R ⊂ S be distal,
(ii) N = {N | N is an icer with R ⊂ N ⊂ S}, and

(iii) H = {H | H is a subgroup of G with G(R) ⊂ H = H ⊂ G(S)}.
Then

ϕ : N → H

N → G(N)

is bijective, its inverse being the map ψ defined by ψ(H) = (R ∩ P0) ◦ gr(H)

= R ◦ gr(H).

In proposition 14.5 we showed that any regular distal flow M/R is a group.
We now show that if R ⊂ S is a distal extension which is regular in the
sense of 8.16, then M/S is a quotient of M/R by a subgroup of the group of
automorphisms of M/R. Moreover this subgroup is isomorphic to the group
G(S)/G(R). (Note that for a regular extension G(S) ⊂ aut (R) and hence
G(R) is normal in G(S).)
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Proposition 18.21 Let:

(i) X = M/R be a distal extension of Y = M/S,
(ii) G(S) ⊂ aut (R) (so that R ⊂ S is a regular extension, see 8.16),

(iii) χR : aut (R) → Aut(X) be the canonical epimorphism (see 7.10), and
(iv) L = G(S)/G(R) ∼= χR(G(S)) ⊂ Aut(X).

Then:

(a) πR
S (x1) = πR

S (x2) if and only if x2 = χR(α)(x1) for some α ∈ G(S).
(b) πR

S induces an isomorphism (L\X, T ) ∼= (Y, T ).

PROOF: (a) =⇒
1. Assume that πR

S (x1) = πR
S (x2) for some x1, x2 ∈ X.

2. There exists u ∈ J with x1u = x1.
3. πR

S (x2u)=
1

πR
S (x1u)=

2
πR

S (x1)=
1

πR
S (x2).

4. x2u = x2. (by 3, (i))
5. There exist α1, α2 ∈ G with πR(α1(u)) = x1 and πR(α2(u)) = x2.

(by 2, 4)
6. (α1(u), α2(u)) ∈ S. (by 1, 5)
7. α2α

−1
1 ∈ G(S) ⊂ aut (R). (by 6, (ii))

8. x2 =
5

πR (α2 (u)) = πR (α2 α−1
1 (α1 (u))) =

7.10
χR (α2 α−1

1 ) (πR (α1 (u)) =
5

χR(α2α
−1
1 )(x1).

⇐=
1. Let x2 = χR(α)(x1) with α ∈ G(S) and πR(p) = x1.
2. x2 = πR(α(p)). (by 1, 7.10)
3. πR

S (x2)=
2

πS(α(p))=
1

πS(p)=
1

πR
S (x1).

(b) This follows immediately from part (a).

In the previous proposition, L = G(S)/G(R) is a group since G(R) = ker χR

is normal in aut (R). In general G(S) is a closed subgroup of G (in the
τ -topology), but L will be Hausdorff only if G(S)′ ⊂ G(R) (by 11.10). In
addition it is important to note that the action of L on X is not continuous in
general. Looking in particular at the case where S = M × M we saw in 15.10
that G′ ⊂ G(R) if and only if M/R is an equicontinuous regular flow and
X ∼= G/G(R) is a compact Hausdorff topological group (so L ∼= X acts con-
tinuously on itself by left multiplication). We will prove in the next section that
for a regular distal extension R ⊂ S, the derived group G(S)′ ⊂ G(R) if and
only if R ⊂ S is an almost periodic extension, and L is a compact Hausdorff
topological group whose action on X is continuous. In this case M/R → M/S

is a compact group extension with group L.
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Given an icer R on M , the icer Sd(R) is the smallest icer on M such that
Sd(R) ⊂ R is a distal extension. We now define for any minimal flow X/N ,
and icer R on M with N ⊂ R, an icer Sd(X;R) on X which is the smallest
icer on X such that X/Sd(X;R) → M/R is a distal extension.

Definition 18.22 Let N,R be icers on M with N ⊂ R, and set X = M/N .
Then the R-distal structure relation, Sd(X;R) on X, is defined by

Sd(X;R) =
⋂

{S | X/S → M/R is distal}.
Clearly Sd(X;R) is the smallest icer S on X such that X/S is a distal extension
of M/R. In particular when N = �, Sd(M;R) = R∗ is the R-distal structure
relation on M .

We now show that Sd(X;R) = πN(R∗).

Proposition 18.23 Let:

(i) R,N be icers on M ,
(ii) N ⊂ R, and

(iii) X = M/N .

Then:

(a) N ◦ R∗ = R∗ ◦ N = R∗ ◦ gr(G(N)),
(b) R∗ ◦ N is an icer on M ,
(c) πN(R∗) is an icer on X, and
(d) πN(R∗) = Sd(X;R).

PROOF: (a), (b), (c) 1. G(N) ⊂
(ii)

G(R) ⊂ aut (R) ⊂
18.16

aut (R∗).

2. N ∩ P0 ⊂ R ∩ P0 = R∗ ∩ P0. (by 18.5 since R∗ is a distal extension of R)
3. N ◦ R∗ = R∗ ◦ N is an icer on M and πN(R∗) = πN(N ◦ R∗) is an icer
on X. (by 1, 2, 7.28)
4. R∗ ◦ N =

7.21
R∗ ◦ (N ∩ P0) ◦ gr(G(N)) =

1,7.24
gr(G(N)) ◦ R∗ ◦ (N ∩ P0)

=
7.21

gr(G(N)) ◦ gr(G(R∗)) ◦ (R∗ ∩ P0) ◦ (N ∩ P0)

=
2
gr(G(N)) ◦ gr(G(R∗)) ◦ (R∗ ∩ P0) =

7.21,7.24
R∗ ◦ gr(G(N)).

(d) 1. R∗ ⊂ R∗ ◦ N ⊂ R. (by (ii))
2. X/πN(R∗) = X/πN(R∗ ◦ N) ∼= M/(R∗ ◦ N) is a distal extension of M/R.

(by 1, 18.8, 18.9, and the previous parts)
3. Let S be an icer on X such that X/S is a distal extension of M/R.
4. X/S ∼= M/π−1

N (S).
5. R∗ ⊂ π−1

N (S) ⊂ R. (by 3, 4, 18.15)
6. πN(R∗) ⊂ S. (by 5)
7. πN(R∗) = Sd(X;R). (by 2, 3, 6)
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One immediate consequence of 18.23 is that the construction of the R-distal
structure relation is natural in the sense that a homomorphism X → Y of
minimal flows maps Sd(X;R) onto Sd(Y ;R).

Proposition 18.24 Let:

(i) N ⊂ S ⊂ R be icers on M , and
(ii) X = M/N , and Y = M/S.

Then:

(a) πN
S (Sd(X;R)) = Sd(Y ;R), and

(b) In the commutative diagram:

X −→ Y

↓ ↓
X/Sd(X;R) −→ Y/Sd(Y ;R)

(∗)

where all the maps are the canonical ones, fibers are mapped onto fibers.

PROOF: (a) 1. πN
S (Sd(X;R)) = πN

S (πN(R∗)) = πS(R∗) = Sd(Y ;R).
(by 18.23)

(b) 1. N ◦ R∗ and S ◦ R∗ are both icers. (by 18.23)
2. X/Sd(X;R) ∼= X/πN(R∗) ∼= M/(N ◦ R∗). (by 18.23)
3. Y/Sd(Y ;R) ∼= Y/πS(R∗) ∼= M/(S ◦ R∗). (by 18.23)
4. S ◦ R∗ = (N ◦ R∗) ◦ S. (by 1, (i))
5. Fibers are mapped to fibers in diagram (∗). (by 4, 6.12)

EXERCISES FOR CHAPTER 18

Exercise 18.1 Let:

(i) R ⊂ S be a distal extension,
(ii) A ⊂ G(S) be a τ -closed subgroup, and

(iii) AG(R) = G(R)A.

Then πR(gr(A)) is an icer on M/R.

Exercise 18.2 Let:

(i) R ⊂ S be a RIC extension, and
(ii) G(R)G(S)′ = G(S).

Then:

(a) πR(S) is topologically transitive (so R ⊂ S is a weak mixing extension),
and

(b) R ⊂ S is a distal extension if and only if R = S.
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Exercise 18.3 Let:

(i) N ⊂ R be icers on M ,
(ii) S ⊂ R be distal,

(iii) G(S) ⊂ DRG(N), and
(iii) X = M/N .

Then:

(a) S ◦ N = R∗ ◦ N (and hence S ◦ N is an icer by 18.23), and
(b) πN(S) = Sd(X;R).

Exercise 18.4 Let:

(i) R, S be an icers on M with R ⊂ S distal,
(ii) H be a closed subgroup of G with G(R) ⊂ H ⊂ G(S),

(iii) RH = ⋃
α∈H

(1 × α)(R), and

(iv) RH = {(α(u), β(v)) | αβ−1 ∈ H, (α(u), α(v)) ∈ R}.
Then RH = RH = R ◦ gr(H) ⊂ S.

Exercise 18.5 Let:

(i) R be an icer on M ,
(ii) N ⊂ R be distal, and

(iii) γ ∈ aut (R) with G(N)γ = γG(N).

Then γ ∈ aut (N).

Exercise 18.6 Let:

(i) R be an icer on M , and
(ii) N ⊂ R be distal.

Then:

(a) if G(N) is a normal subgroup of aut (R), then aut (R) ⊂ aut (N), and
(b) if G(N) be a normal subgroup of G(R), then G(R) ⊂ aut (N).

Exercise 18.7 Let A ⊂ G be a closed subgroup with A = A′. Then the fol-
lowing are equivalent:

(a) gr(A) = gr(A),
(b) M → M/gr(A) is distal,
(c) M → M/gr(A) is trivial,
(d) A = {id}, and
(e) P0 ∩ gr(A) = �.

Exercise 18.8 Let R be an icer on M with M → M/R distal. Then G(R)∞ =
{id}.
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Almost periodic extensions of minimal flows

The notion of an equicontinuous minimal flow generalizes in a natural way to
that of an almost periodic extension of minimal flows. Recall that proximal
and distal extensions are defined so that proximal and distal extensions of the
point flow are proximal and distal flows respectively. Similarly almost periodic
extensions are defined so that an almost periodic extension of the point flow is
an equicontinuous flow. We will use a generalization of the regionally proximal
relation to obtain analogs for almost periodic extensions of many of the results
on equicontinuous flows and distal extensions obtained earlier. This section
explores two main themes; the first involves a generalization of 15.10 where we
showed that a regular equicontinuous minimal flow is a compact topological
group containing a homomorphic image of T as a dense subset. The second
theme involves defining an analog of the equicontinuous structure relation for
an arbitrary icer R on M .

Recall that (X, T ) is an equicontinuous flow if for every open set W with
� ⊂ W ⊂ X × X, there exists an open set V with � ⊂ V ⊂ X × X and
V T ⊂ W . Now if X is minimal and N is an icer on X, so that πN : X → X/N

is an extension of minimal flows there is a natural weakening of this notion to
fibers of the map πN . Namely we can require that

(x, y)T ⊂ W for any (x, y) ∈ V with πN(x) = πN(y),

or equivalently that (V ∩N)T ⊂ W . This is the definition of an almost periodic
extension of minimal flows.

Definition 19.1 Let X = M/R , and Y = M/S be flows with R ⊂ S icers.
We say that X is an almost periodic extension of Y (R ⊂ S is almost periodic)
if for every open set W with �M/R ⊂ W ⊂ M/R ×M/R, there exists an open
set V with � ⊂ V and (V ∩ πR(S))T ⊂ W .

242
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Clearly taking S = M×M in the definition above, we see that X is an almost
periodic extension of a point if and only if (X, T ) is an equicontinuous flow.

Next we define for a minimal flow (X, T ) and an icer N on X, the relation
Q(N) ⊂ X × X. This is done so that Q(N) is the analog of the regionally
proximal relation on X.

Definition 19.2 Let (X, T ) be a minimal flow and N be an icer on X. We
define the generalized (relativized) regionally proximal relation, Q(N) by:

Q(N) =
⋂

{WT | W ⊂ N is open with �X ⊂ W }.
Note that the fact that Q(N) ⊂ N follows immediately from the fact that N

is closed and invariant. Note also that when N = X × X, Q(X × X) (which
we sometimes write Q(X) by abuse of notation), is the regionally proximal
relation on X. We will be particularly interested in the case where R ⊂ S are
icers on M , X = M/R and N = πR(S), so that X/N = M/S. In this case we
will sometimes use the notation:

Q(R, S) ≡ Q(πR(S)).

Let π : X → X/N be the canonical map. The relation Q(N) is discussed in
[Auslander, J., (1988)], and [McMahon, D., Wu, T.S., Distal homomorphisms
of nonmetric minimal flows (1980)] where it is referred to as Q(π). It is also
discussed in [Ellis, R., (1969)] (see page 134). Though different definitions
of an almost periodic extension are given in these references they both show
(as we do in the following proposition) that X → X/N is an almost peri-
odic extension if and only if Q(N) = �X. This of course generalizes the fact
(proven in 15.5) that a flow (X, T ) is equicontinuous if and only if Q(X) = �.

Proposition 19.3 Let R ⊂ S be icers on M . Then R ⊂ S is an almost periodic
extension if and only if Q(πR(S)) = �M/R .

PROOF: =⇒
1. Assume that R ⊂ S is almost periodic and let W be a closed neighborhood
of �M/R .
2. There exists V open with (V ∩ πR(S))T ⊂ W . (by 1)
3. Q(πR(S)) ⊂ W . (by 2)
4. Q(πR(S)) = �M/R . (by 1, 3)

⇐=
1. Assume Q(πR(S)) = � and let W be open with �M/R ⊂ W ⊂ M/R ×
M/R.
2. Wc ≡ (M/R × M/R) \ W is closed.
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3. Assume for contradiction that Wc ∩ (V ∩ πR(S))T 
= ∅ for all open V with
� ⊂ V .
4. ∅ 
= Wc ∩ Q(πR(S)). (by 3, compactness)
5. There exists V open with � ⊂ V and (V ∩ πR(S))T ⊂ W .

(4 contradicts 1)

For future reference we include a few properties of the generalized region-
ally proximal relation which are direct consequences of its definition.

Lemma 19.4 Let (X, T ) be a minimal flow and N be an icer on X. Then:

(a) Q(N) is closed, invariant, reflexive and symmetric,
(b) if (N, T ) is a topologically transitive flow, then Q(N) = N ,
(c) (x, y) ∈ Q(N) if and only if there exist nets {(xi, yi)} ⊂ N and {ti} ⊂ T

with xi → x, yi → y, and lim xi ti = lim yiti , and
(d) N ∩ P0 ⊂ N ∩ P(M) ⊂ Q(N).

PROOF: (a) This is immediate from the definition.
(b) If (N, T ) is a topologically transitive flow, then WT = N for all open

sets W ⊂ N and hence Q(N) = N .
(c) We leave this for the reader to check.
(d) 1. Let (x, y) ∈ N be a proximal pair.

2. (x, y)T ∩ W 
= ∅ for all W open with � ⊂ W ⊂ X × X. (by 1)
3. (x, y) ∈ N ∩ ⋂{WT | � ⊂ W, and W is open in X × X}

= ⋂{WT | � ⊂ W, and W is open in N} ⊂ Q(N). (by 1, 2)
4. N ∩ P0 ⊂ N ∩ P(M) ⊂ Q(N). (by 1, 3)

Proposition 19.5 Let:

(i) π : (X, T ) → (Y, T ) be a homomorphism of minimal flows,
(ii) NX be an icer on X,

(iii) NY be an icer on Y , and
(iv) π(NX) = NY .

Then π(Q(NX)) ⊂ Q(NY ).

PROOF: 1. Let W be open with �Y ⊂ W ⊂ Y × Y .
2. There exists V open with �X ⊂ V ⊂ X × X and π(V ) ⊂ W . (by 1, (i))

3. π(Q(NX)) ⊂ π
(
(V ∩ NX)T

)
= π(V ∩ NX)T ⊂ (W ∩ NY )T .

(by 1, 2, (iv))
4. π(Q(NX)) ⊂ Q(NY ). (by 1,3)

Proposition 19.6 Let:

(i) π : (X, T ) → (Y, T ) be a homomorphism of minimal flows,
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(ii) NX be an icer on X,
(iii) NY be an icer on Y , and
(iv) NX = π−1(NY ).

Then π(Q(NX)) = Q(NY ).

PROOF: It follows from 19.5 that π(Q(NX)) ⊂ Q(NY ).
1. Let (y1, y2) ∈ Q(NY ) and W be open with �X ⊂ W ⊂ X × X.
2. Let V ⊂ X be closed with nonempty interior and V × V ⊂ W .
3. There exists a finite set F ⊂ T with V F = X. ((i), 2, X is compact)
4. π(V )F = Y . (by (i), 3)
5. π(V ) has nonempty interior. (by 2, 4)
6. �Y ⊂ int(π((V × V )T )) ⊂ int(π(WT )). (by 2, 5)
7. (y1, y2) ∈

1,6

(
NY ∩ int(π(WT ))

)
T ⊂ (

NY ∩ π(WT )
)
T

= (
NY ∩ π(W)

)
T =

(iv)

(
π(NX ∩ W)

)
T = π

(
(NX ∩ W)T

)
.

8. π−1(y1, y2) ∩ (NX ∩ W)T 
= ∅. (by 7)
9. π−1(y1, y2) ∩ Q(NX) 
= ∅. (by 1, 8, compactness)
10. (y1, y2) ∈ π(Q(NX)). (by 9)

Corollary 19.7 Let R ⊂ S be icers on M . Then πR(Q(S)) = Q(πR(S)).

PROOF: In this case π−1
R (πR(S)) = R ◦ S ◦ R = S so this follows imme-

diately from 19.6.

We now wish to prove an analog of 15.10 which says that a distal flow is
equicontinuous if and only if its group contains G′. We will show that a distal
extension R ⊂ S is almost periodic if and only if G(S)′ ⊂ G(R). The key is
to show that if R ⊂ S is distal, then Q(πR(S)) = πR(gr(G(S)′)). We begin
with a lemma.

Lemma 19.8 Let S be an icer on M . Then gr(G(S)′) ⊂ Q(S).

PROOF: 1. Let V be an open neighborhood of � in M × M .
2. gr(1M) ⊂ V T . (by 1)
3. gr(G(S)′) ⊂ V T ∩ gr(G(S)) ⊂ V T ∩ S = (V ∩ S)T . (by 1, 2, 12.4)
4. gr(G(S)′) ⊂ ⋂

(V ∩ S)T = Q(S). (by 1, 3)

Proposition 19.9 Let:

(i) R ⊂ S be a distal extension, and
(ii) A ⊂ G(S) be a closed subgroup with AG(R) = G(S).

Then πR(gr(A′)) = πR(gr(G(S)′)) = Q(πR(S)).
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PROOF: 1. πR(gr(A′)) ⊂ πR(gr(G(S)′)) ⊂ πR(Q(S)) = Q(πR(S)).

(by (ii), 19.8, 19.7)
2. Let (x, y) ∈ Q(πR(S)).
3. There exist nets {(xi, yi)} ⊂ πR(S) and {ti} ⊂ T with

xi → x, yi → y, and lim xi ti = lim yi ti . (by 2, 19.4)

4. There exist pi ∈ M and αi ∈ A with

πR(pi, αi(pi)) = (xi, yi). (by (i), (ii), 3, 18.9)

5. By passing to subnets we may assume that

(pi, αi(pi)) → (p, α(pv)) ∈ gr(A) ⊂ S

where α ∈ A and v ∈ J . (by (ii))
6. Again we may assume that (pi ti , αi(pi ti)) → (q, β(qu)) ∈ gr(A).
7. πR(q, β(qu))=

6
lim πR(piti , α(piti))=

4
lim(xi ti , yi ti )∈

3
�M/R .

8. β ∈ A ∩ G(R). (by 6, 7)
9. Let V,W be nonempty open subsets of M .
10. Since (p, α(pv))v = (pv, α(pv)) and (q, β(qu))u = (qu, β(qu)) there
exist s, t ∈ T such that

(ps, α(pvs)) ∈ V × α(V ), and (qt, β(qut)) ∈ W × β(W).

11. There exists i such that

(pi, αi(pi))s ∈ V × α(V ) and (pi ti t, αi(pi)ti t) ∈ W × β(W).

(by 5, 6, 9, 10)

12. There exists i such that αi ∈ A ∩ < V, α(V ) > ∩ < W,β(W) >. (by 11)
13. β−1α ∈ A′. (by 8, 9, 12, 11.2)
14. (x, y) =

3
lim(xi, yi)=

4
lim πR(pi, αi(pi))

=
5

πR(p, α(pv)) =
(i),5

πR(p, α(p))=
8

πR(p, β−1α(p)) ∈
13

πR(gr(A′)).

Corollary 19.10 Let R ⊂ S be a distal extension. Then Q(πR(S)) is an equiv-
alence relation.

PROOF: 1. G(S)′ is a closed normal subgroup of G(S). (by 11.7)
2. R ◦ gr(G(R)G(S)′) is an icer on M . (by 1, 18.20)
3. Q(πR(S)) = πR(gr(G(S)′)) = πR(R◦gr(G(R)G(S)′)) is an icer on M/R.

(by 19.9, 6.11)

Theorem 19.11 Let R ⊂ S be icers on M . Then R ⊂ S is an almost periodic
extension if and only if R ⊂ S is distal and G(S)′ ⊂ G(R).
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PROOF: =⇒
1. Assume that R ⊂ S is almost periodic.
2. Q(πR(S)) = �M/R . (by 19.3)
3. πR(S ∩ P0) ⊂

19.4
πR(Q(S)) =

19.7
Q(πR(S))=

2
�M/R .

4. R ∩ P0 = S ∩ P0 so R ⊂ S is distal. (by 3)
5. πR(gr(G(S)′)) =

4,19.9
Q(πR(S))=

2
�M/R .

6. R ⊂ S is distal and G(S)′ ⊂ G(R). (by 4, 5)
⇐=

1. Assume that R ⊂ S is distal and G(S)′ ⊂ G(R).
2. Q(πR(S)) = πR(gr(G(S)′)) = �M/R . (by 1, 19.9)
3. R ⊂ S is almost periodic. (by 19.3)

The characterization of almost periodic extensions given in 19.11 has many
interesting consequences. We begin with two corollaries which will be used to
further study almost periodic extensions.

Corollary 19.12 Let:

(i) R be an icer on M ,
(ii) S be a collection of icers on M ,

(iii) S ⊂ R be almost periodic for all S ∈ S , and
(iv) N = ⋂

S .

Then M/N is an almost periodic extension of M/R.

PROOF: 1. M/N is a distal extension of M/R. (by 18.12)
2. G(R)′ ⊂ G(S) for all S ∈ S . (by (iii))
3. G(R)′ ⊂

2

⋂
S∈S

G(S) =
7.19

G(N).

Corollary 19.13 Let:

(i) R, S,N be icers on M ,
(ii) S ⊂ N be an almost periodic extension, and

(iii) α ∈ G.

Then:

(a) R ∩ S ⊂ R ∩ N is an almost periodic extension, and
(b) α(S) ⊂ α(N) is an almost periodic extension.

PROOF: (a) 1. S ⊂ N is a distal extension. (by (ii), 19.11)
2. R ∩ S ⊂ R ∩ N is a distal extension. (by 1, 18.3)
3. G(N)′ ⊂ G(S). (by (ii), 19.11)
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4. G(R ∩ N)′ ⊂ G(R) ∩ G(N)′ ⊂ G(R) ∩ G(S) = G(R ∩ S).
(by 3, 7.19)

5. R ∩ S ⊂ R ∩ N is an almost periodic extension. (by 2, 4, 19.11)
(b) 1. α(S) ⊂ α(N) is distal. (by (ii), 18.7, 19.11)

2. G(α(N))′ =
7.16

(αG(N)α−1)′ =
11.6

αG(N)′α−1 ⊂
(ii)

αG(S)α−1 =
7.16

G(α(S)).

3. α(S) ⊂ α(N) is an almost periodic extension. (by 1, 2, 19.11)

Note that 19.11 together with 11.10 imply that if R ⊂ S is almost periodic,
then G(S)/G(R) is compact Hausdorff. We will show that if in addition R ⊂
S is a regular extension, then M/R → M/S is a compact group extension
(see the definition below) with group G(S)/G(R). More generally any almost
periodic extension is “group-like”, a notion we make precise in 19.16.

Definition 19.14 Let π : X → Y be a homomorphism of minimal flows. We
say that π is a compact group extension if there exists a compact Hausdorff
topological group H and an action ϕ : H × X → X

(h, x) → hx

such that π : X → Y

is a principal bundle with group H , that is:

(i) ϕ is continuous,
(ii) the action of H commutes with that of T , that is:

(hx)t = h(xt) for all x ∈ X, h ∈ H and t ∈ T , and

(iii) π induces an isomorphism (H\X, T ) ∼= (Y, T ); i. e.

π(x1) = π(x2) if and only if x2 = hx1 for some h ∈ H.

Note that since (X, T ) is minimal, (i) and (ii) imply that hx0 = kx0 for some
x0 ∈ X, if and only if hx = kx for all x ∈ X.

Proposition 19.15 Let:

(i) R,N be icers on M ,
(ii) N ⊂ R be an almost periodic extension, and

(iii) G(R) ⊂ aut (N) (so that N ⊂ R is a regular extension, see 8.16).

Then

(a) G(R)/G(N) is a compact topological group.
(b) the map

ϕ : G(R) × M → M/N

(α, p) → α(p)N

induces a continuous action of G(R)/G(N) on M/N such that:

πN
R (pN) = πN

R (qN) ⇐⇒ (G(R)/G(N)) (pN) = (G(R)/G(N)) (qN).

In other words πN
R is a compact group extension with group G(R)/G(N).
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PROOF: (a) This follows immediately from 7.10 and 11.11.
(b) 1. We first show that the map ϕ is continuous.

2. Let {αi} ⊂ G(R) and {pi} ⊂ M be nets with αi → α and pi → p.
3. Using compactness we may assume that αi(pi) → β(pv) for some β ∈ G

and v ∈ J .
4. αi → β. (by 2, 3, 10.13)
5. α, β ∈ G(R). (by 2, 4, 10.8)
6. G(R)′αi → G(R)′α and G(R)′αi → G(R)′β. (by 2, 4)
7. G(R)′α = G(R)′β. (G(R)/G(R)′ is Hausdorff by 11.9)
8. βα−1 ∈

7
G(R)′ ⊂

(ii),19.11
G(N).

9. (α(p), β(p)) = (α(p), βα−1(α(p))) ∈ N . (by 8)
10. (p, β(pv)) = lim(pi, αi(pi)) ∈ R = R. (by 2, 3)
11. (β(p), β(pv)) ∈

5,10
R ∩ P(M) = N ∩ P(M).

(N ⊂ R is distal by (ii), 19.11)
12. ϕ(αi, pi) = αi(pi)N →

3
β(pv)N =

11
β(p)N =

9
α(p)N = ϕ(α, p).

We leave it to the reader to verify the remaining details.

Proposition 19.16 Let:

(i) R,N be icers on M ,
(ii) N ⊂ R be an almost periodic extension, and

(iii) S = ⋂
α∈G(R)

α(N).

Then

(a) πS
R is a group extension with group H1 = G(R)/G(S).

(b) πS
N is a group extension with group G(N)/G(S) = H2 ⊂ H1.

(c) M/N → M/R is isomorphic to the fiber bundle associated to the principal
H2-bundle M/S → M/R with fiber H1/H2.

PROOF: (a) 1. S ⊂ R is a regular almost periodic extension.
(by 19.12, 19.13, (ii) and (iii), 8.17)

2. S ⊂ R is a group extension with group G(R)/G(S). (by 1, 19.15)
(b) 1. S = S ∩ N ⊂ R ∩ N = N is almost periodic . (by part (a) and 19.13)

2. G(N) ⊂ G(R) ⊂ aut (S). (by (ii), (iii))
3. S ⊂ N is a compact group extension with group G(N)/G(S).

(by 19.15)
(c) 1. Let Z = H1/H2 × M/S.

2. The map (h, (H2h1, z)) → (H2h1h
−1, hz) defines an action of H1 on Z.

3. The map (H2h1, z) → πS
N(h1z) defines an isomorphism of the fiber bundle

Z/H1 → M/R with M/N → M/R.
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We now define for any icer R on M , an icer Seq(R) which is the natural
generalization of the equicontinuous structure relation Seq .

Definition 19.17 Let R be an icer on M . We define the R-equicontinuous
structure relation by

Seq(R) =
⋂

{S | S ⊂ R is an almost periodic extension of R}.

We define the subgroup ER by ER = G(Seq(R)).

It follows immediately from 19.12 that M/Seq(R) is an almost periodic
extension of M/R. When R = M × M , Seq(R) = Seq , and we are back
to the “absolute” case of equicontinuous flows. In this case the results of this
section coincide with those of section 13. This also motivates the use of the
notation ER since E = G(Seq) (see 15.15).

Proposition 19.18 Let R and S be icers on M with R ⊂ S. Then:

(a) R ⊂ S is almost periodic if and only if Seq(S) ⊂ R, and
(b) Seq(R) ⊂ Seq(S).

PROOF: (a) The first implication is clear, and the converse follows from
18.15 and 19.11. The details are left to the reader.

(b) 1. Seq(S) ⊂ S is an almost periodic extension.
2. R ∩ Seq(S) ⊂ R ∩ S = R is an almost periodic extension. (by 1, 19.13)
3. Seq(R) ⊂ R ∩ Seq(S) ⊂ Seq(S). (by 2, and part (a))

Proposition 19.19 Let R be an icer on M and α ∈ G. Then:

(a) α(Seq(R)) = Seq(α(R)),
(b) aut (R) ⊂ aut (Seq(R)),
(c) ER is a normal subgroup of aut (R), and
(d) ER is a normal subgroup of G(R).

PROOF: (a) 1. Seq(R) ⊂ R is almost periodic. (by 19.12, 19.17)
2. α(Seq(R)) ⊂ α(R) is an almost periodic extension. (by 1, 19.13)
3. Seq(α(R)) ⊂ α(Seq(R)). (by 2, 19.17)
4. Seq(R) ⊂ α(Seq(α−1(R))). (by 3, replace R by α−1(R))
5. α(Seq(R)) ⊂ Seq(α(R)). (by 4, replace α by α−1)
6. α(Seq(R)) = Seq(α(R)). (by 3, 5)

(b) This follows immediately from part (a).
(c) This follows immediately from part (b) and 7.10.
(d) This follows immediately from part (c).
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We saw in Proposition 15.21 that E = DG′. Viewing this as a result for the
case R = M × M , the next proposition gives the analogous result when R is
any icer on M .

Proposition 19.20 Let R be an icer on M . Then ER = DRG(R)′.

PROOF: Proof that DRG(R)′ ⊂ ER:
1. Seq(R) ⊂ R is almost periodic.
2. G(R)′ ⊂ G(Seq(R)) = ER . (by 1, 19.11, 19.17)
3. Seq(R) ⊂ R is distal. (by 1, 19.11)
4. R∗ = Sd(R) ⊂ Seq(R). (by 3, 18.15)
5. DR =

18.19
G(R∗)⊂

4
G(Seq(R)) =

19.17
ER .

6. DRG(R)′ ⊂ ER . (by 2, 5)
Proof that ER ⊂ DRG(R)′:

1. DR is a closed normal subgroup of G(R). (by 18.17)
2. G(R)′ is a closed normal subgroup of G(R). (by 11.7)
3. DRG(R)′ is a closed normal subgroup of G(R). (by 1, 2, and 10.10)
4. There exists a distal extension N ⊂ R with G(N) = DRG(R)′. (by 18.19)
5. N ⊂ R is almost periodic. (by 4, 19.11)
6. Seq(R) ⊂ N . (by 5, 19.17)
7. ER = G(Seq(R))⊂

6
G(N)=

4
DRG(R)′.

We now prove an analog of 15.24.

Proposition 19.21 Let:

(i) R be an icer on M , and
(ii) the almost periodic points of the flow (R, T ) be dense in R.

(by 7.5 this is equivalent to saying R = gr(G(R)))

Then:

(a) DR ⊂ G(R)′.
(b) ER = G(R)′.

PROOF: (a) 1. Let α ∈ G with gr(α) ⊂ P(M) ∩ R and let V be any open
subset of M .
2. Let U,W be open subsets of M with α ∈ < U,W >.
3. There exists p ∈ M with (p, α(p)) ∈ U × W . (by 2)
4. There exists (x, y) ∈ P(M) ∩ R ∩ (U × W). (by 1, 3)
5. There exists t ∈ T with (xt, yt) ∈ V × V . (by 1, 4)
6. ∅ 
= (V × V ) ∩ (U × W)t ∩ R. (by 4, 5)
7. There exists β ∈ G(R) and m ∈ M with (m, β(m)) ∈ V × V ∩ (U × W)t .

(by 1, 2, 6, and (ii))
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8. β(mt−1) ∈ β(U) ∩ W . (by 7)
9. β ∈ < V,V > ∩ G(R) ∩ < U,W >. (by 7, 8)
10. α ∈ G(R)∩ < V,V >. (by 2, 9)
11. α ∈ ⋂

G(R)∩ < V,V > = G(R)′. (by 1, 10, see 11.1)
(b) This follows from part (a) and 19.20.

In contrast to 18.16, which states that Sd(Sd(R)) = Sd(R) for all icers R,
Seq(Seq(R)) need not equal Seq(R) even for the “absolute” case R = M × M .
To see this we need only consider a group T for which D 
= E. (For example
T = Z will do.) Then Sd = P0 ◦ gr(D) 
= P0 ◦ gr(E) = Seq , so Sd ⊂
Seq is a non-trivial distal extension. By the generalized Furstenberg structure
theorem (see the following section) there exists an icer Sd ⊂ R ⊂ Seq , such
that R ⊂


=
Seq is a non-trivial almost periodic extension. Hence Seq(Seq)⊂


=
Seq .

Proposition 18.8 which says that a distal extension of a distal extension is
distal, does not hold for almost periodic extensions. Indeed in the example
considered above, R ⊂ Seq is an almost periodic extension, and Seq ⊂ M ×M

is an almost periodic extension, but R ⊂ M × M is not almost periodic.
Given an icer R on M , the factorization

M → M/Seq(R) → M/R

gives the maximal almost periodic extension of M/R. It is natural to gener-
alize this to any extension X → M/R; we now define Seq(X;R) so that the
factorization

X → M/Seq(X;R) → M/R

gives the maximal almost periodic extension of M/R which is a factor of X.

Definition 19.22 Let N and R be icers on M and X = M/N . We define
the R-almost periodic structure relation on X, Seq(X;R) to be the smallest
icer S on X such that X/S is an almost periodic extension of M/R. Note that
Seq(M;R) = Seq(R). Thus when R = M × M , Seq(M;R) = Seq(R) = Seq ,
the equicontinuous structure relation defined in section 13. Therefore the
R-almost periodic structure relation on X is also called the R-equicontinuous
structure relation on X.

Proposition 19.23 Let:

(i) R,N be icers on M ,
(ii) N ⊂ R, and

(iii) X = M/N .

Then:

(a) N ◦ Seq(R) = Seq(R) ◦ N ,
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(b) Seq(R) ◦ N is an icer on M ,
(c) πN(Seq(R) ◦ N) = πN(Seq(R)) is an icer on X, and
(d) πN(Seq(R)) = Seq(X;R).

PROOF: (a), (b), (c) 1. G(N) ⊂
(ii)

G(R) ⊂
7.10

aut (R) ⊂
19.19

aut (Seq(R)).

2. P0 ∩ N ⊂ P0 ∩ R = P0 ∩ Seq(R). (by 18.5, since Seq(R) ⊂ R is distal)
3. N ◦ Seq = Seq ◦ N is an icer on M and πN(Seq(R)) = πN(N ◦ Seq(R)) is
an icer on X. (by 1, 2, 7.28)

(d) 1. Seq(R) ⊂ Seq(R) ◦ N ⊂ R. (by (ii))
2. X/πN(Seq(R)) = X/πN(Seq(R) ◦ N) ∼= M/(Seq(R) ◦ N) is an almost
periodic extension of M/R. (by 1, previous parts)
3. Seq(X;R) ⊂ πN(Seq(R)). (by 2, 19.22)
4. Let S be an icer on X such that X/S is an almost periodic extension of M/R.
5. X/S ∼= M/π−1

N (S).
6. Seq(R) ⊂ π−1

N (S) ⊂ R. (by 4, 5, 19.17)
7. πN(Seq(R)) ⊂ S. (by 6)
8. πN(Seq(R)) = Seq(X;R). (by 3, 7)

Corollary 19.24 Let:

(i) R ⊂ N ⊂ S be icers on M , and
(ii) X = M/N , and Y = M/S.

Then πN
S (Seq(X;R)) = Seq(Y ;R).

PROOF: πN
S (Seq(X;R)) = πN

S (πN(Seq(R))) = πS(Seq(R)) = Seq(Y ;R).
(by 19.23)

NOTES ON SECTION 19

Note 19.N.1 PI-flows. Following [Ellis, R., Glasner, S., Shapiro, L., Proximal-
isometric (PI) flows, (1975)] a flow X is defined to be proximal-isometric (PI
for short) if there exists a family (Yγ | γ ≤ ν) of flows such that:

(i) Y0 = a point,
(ii) Yγ+1 is either an almost periodic or a proximal extension of Yγ for all

γ < ν,
(iii) Yβ = lim(Yα | α < β) if β ≤ ν is a limit ordinal, and
(iv) Yν is a proximal extension of X.

As in 11.17 we define groups:

(i) G0 = G,
(ii) Gγ+1 = (Gγ )′ for all γ < ν,
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(iii) Gβ = ⋂
(Gα | α < β) if β is a limit ordinal, and

(iv) G∞ = Gν(G) where ν(G) is the smallest ordinal α with Gα = Gα+1.

These definitions lead to the following (Proposition 7.3 of the reference
mentioned earlier).

Proposition 19.N.2 Let R be an icer on M . Then M/R is a PI-flow if and only
if G∞ ⊂ G(R).

We prove a more general “relative version”.

Theorem 19.N.3 (The Relative (generalized) PI-tower) Let:

(i) R ⊂ S be an icers on M , and
(ii) G(S)∞ ⊂ G(R).

Then there exists a family (Sα | α ≤ ν) such that:

(a) S0 = S and G(Sν) = G(R),
(b) Sα+1 ⊂ Sα is either an almost periodic extension or a proximal extension,

and
(c) Sβ = ⋂

α<β

Sα for all limit ordinals β ≤ ν.

PROOF: We proceed by induction.
1. Assume that for every ordinal β < γ , a family (S

β
α | α ≤ ν(β)) has been

constructed such that:

(a) S
β
0 = S and G(S

β

ν(β)) = G(R)G(S)β ,

(b) S
β
α+1 ⊂ S

β
α is either an almost periodic extension or a proximal extension,

(c) S
β
ρ = ⋂

α<ρ

S
β
α for all limit ordinals ρ ≤ β, and

(d) if β1 ≤ β2, then ν(β1) ≤ ν(β2) and S
β1
α = S

β2
α for all ordinals α ≤ ν(β1).

2. If γ is a limit ordinal, set S
γ

ν(γ ) = ⋂
β<γ

S
β

ν(β).

3. G(S
γ

ν(γ )) = G
( ⋂
β<γ

S
β

ν(β)

) =
7.19

⋂
β<γ

G(S
β

ν(β))

=
1

⋂
β<γ

G(R)G(S)β =
10.12

G(R)
⋂

β<γ

G(S)β =
11.17

G(R)G(S)γ .

4. If γ = β + 1, and S
β

ν(β) = gr(G(R)G(S)β), set

ν(γ ) = ν(β) + 1 and S
γ

ν(γ )
= gr(G(R)) ◦ Seq

(
S

β

ν(β)

)
.

5. S
γ

ν(γ ) is an icer. (by 4, 19.23)

6. S
γ

ν(γ ) is an almost periodic extension of S
β

ν(β). (by 4, and 19.18)
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7. G(S
γ

ν(γ )
) =

19.17
G(R)E

S
β

ν(β)

=
4,19.21

G(R)
(
G(S

β

ν(β))
)′

=
4

G(R)
(
G(R)G(S)β)

)′ =
11.14

G(R)G(S)β+1 =
8

G(R)G(S)γ .

8. If γ = β + 1, and S
β

ν(β)

= gr(G(R)G(S)β), set ν(γ ) = ν(β) + 2 and

S
γ

ν(β)+1 = gr(G(R)G(S)β), S
γ

ν(γ ) = gr(G(R)) ◦ Seq(gr(G(R)G(S)β)).

9. S
γ

ν(β)+1 is a proximal extension of S
γ

ν(β)
= S

β

ν(β). (by 1(a), 8, and 7.11)

10. S
γ

ν(γ )
is an almost periodic extension of S

γ

ν(β)+1. (by 8, 19.18, 19.23)

11. G(S
γ

ν(γ )
) =

19.17
G(R)ES

γ

ν(β)+1
=

8,19.21
G(R)G(S

γ

ν(β)+1)
′

=
8

G(R)
(
G(R)G(S)β)

)′ =
11.14

G(R)G(S)β+1 =
8

G(R)G(S)γ .

EXERCISES FOR CHAPTER 19

Exercise 19.1 Let R ⊂ S be icers on M . Show that R ⊂ S is an almost
periodic extension if and only if Q(S) ⊂ R.

Exercise 19.2 Let:

(i) R ⊂ S be distal, and
(ii) X = M/R and Y = M/S.

Then X/Q(πR(S)) is an almost periodic extension of Y . Moreover this exten-
sion is trivial only if X = Y .

Exercise 19.3 Let:

(i) R ⊂ S be a RIC extension, and
(ii) A ⊂ G(S) be a closed subgroup with AG(R) = G(S).

Then πR(gr(A′)) = πR(gr(G(S)′)) = Q(πR(S)).

Exercise 19.4 (See 19.18) Let R ⊂ S be icers on M . Show that R ⊂ S is an
almost periodic extension if and only if Seq(S) ⊂ R.

Exercise 19.5 In 19.15 it was shown that if N ⊂ R is an almost periodic
extension and G(R) ⊂ aut (N), then πN

R is a group extension with group
G(R)/G(N). This exercise provides the converse of that result.

Let π : X → Y be a homomorphism of minimal flows which is a compact
group extension with group H . Then there exist icers N and R on M such that:

(a) N ⊂ R is a distal extension,
(b) H ∼= G(R)/G(N) as topological groups,
(c) G(R)′ ⊂ G(N),
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(d) G(R) ⊂ aut (N), and
(e) There is an isomorphism of group extensions:

M/N → X

πN
R ↓ ↓ π

M/R → Y

.



20

A tale of four theorems

In this section we examine four theorems, the Furstenberg Structure Theorem
for distal flows (denoted Theorem 1), and three other theorems (Theorems 2,
3, 4) that are equivalent to it. We can think of these three as the icer, regionally
proximal, and group theoretic versions of the Furstenberg theorem. These three
theorems have generalizations for distal extensions (denoted Theorems 2g, 3g,
4g) which again are equivalent to the Furstenberg structure theorem for distal
extensions (Theorem 1g). The goal of this section is to clarify the relationship
between the different approaches to the structure of distal extensions by giv-
ing explicit arguments showing that the four theorems are equivalent. We then
give a construction of the so-called Furstenberg tower for a distal extension; a
classical consequence of the structure theorem. Finally we comment on vari-
ous proofs of these theorems valid in the metric, countable group, and general
cases. We begin with explicit statements of each of the four theorems along
with their generalizations.

Theorem 1 (Furstenberg Structure Theorem) Let:

(i) R ⊂ S with R 
= S be icers on M , and
(ii) M/R be distal.

Then there exists an icer N on M such that:

(a) R ⊂ N ⊂ S,
(b) M/N → M/S is an almost periodic extension, and
(c) N 
= S.

In particular every non-trivial distal flow has a non-trivial equicontinuous fac-
tor. When S = M × M this theorem shows that any non-trivial distal flow
has a non-trivial equicontinuous factor. This allows an inductive construction
of the so-called Furstenberg tower of almost periodic extensions and inverse
limits. This tower begins with {pt} (when S is taken to be M × M) or with

257
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the maximal equicontinuous factor M/Seq(R) of M/R (when S is taken to be
Seq(R)) and ends with M/R. (See 20.14 at the end of this section.)

Theorem 1g (Furstenberg Structure Theorem for distal extensions) Let:

(i) R ⊂ S with R 
= S be icers on M , and
(ii) M/R → M/S be a distal extension.

Then there exists an icer N on M such that:

(a) R ⊂ N ⊂ S,
(b) M/N → M/S is an almost periodic extension, and
(c) N 
= S.

This theorem is sometimes referred to as the generalized or relative Fursten-
berg theorem. We can think of it as saying that every non-trivial distal exten-
sion “contains" a non-trivial almost periodic extension. This theorem allows
an inductive construction of the so-called Furstenberg tower of almost peri-
odic extensions and inverse limits beginning with M/S and ending with M/R.
(Again see 20.14 at the end of this section.) Note of course that M/R need not
itself be a distal flow in this case.

Our second theorem and it’s generalization are stated in terms of icers.

Theorem 2 Let:

(i) (X, T ) be a distal minimal flow,
(ii) NX be an icer on X, and

(iii) NX be topologically transitive.

Then NX = �X.

This is corollary 4.26. One immediate consequence of this theorem (proven
in 4.25) is that the only weak mixing minimal distal flow is the trivial one-point
flow.

Theorem 2g Let:

(i) (X, T ) be a minimal flow,
(ii) NX be an icer on X, and

(iii) NX be topologically transitive and pointwise almost periodic.

Then NX = �X.

This is theorem 9.13, proven using the quasi-relative product. It says that the
only distal weak mixing extension of minimal flows is the trivial one.

Our third theorem and it’s generalization are stated in terms of the general-
ized regionally proximal relation Q(N) defined for any icer N .
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Theorem 3 Let:

(i) (X, T ) be a distal flow,
(ii) R be an icer on X, and

(iii) Q(R) = R.

Then X = {pt}.
Theorem 3g Let R ⊂ S be a distal extension with Q(πR(S)) = πR(S). Then
R = S.

This theorem appears in [McMahon, D., Wu, T.S., Distal homomorphisms
of nonmetric minimal flows, (1981)]; the authors use it to deduce the Fursten-
berg structure theorem for minimal distal extensions.

Finally our fourth version of the theorem is a “group-theoretic” one, stated
in terms of the iterated derived group A∞.

Theorem 4 G∞ ⊂ D.

This was proven in 14.13.

Theorem 4g Let R ⊂ S be a distal extension. Then G(S)∞ ⊂ G(R).

We now give explicit arguments showing that these four theorems are equiv-
alent. We will concentrate on showing that the generalized versions are equiv-
alent; the arguments in the “absolute" case are essentially the same. We will
prove that 1g =⇒ 2g =⇒ 3g =⇒ 1g and 2g =⇒ 4g =⇒ 3g.

20.1 THM 1g IMPLIES THM 2g: Let (X, T ) be minimal, NX a topologi-
cally transitive pointwise almost periodic icer on X, and assume that Theorem
1g holds. We will show that NX = �X.

PROOF: 1. Let R be an icer on M with X = M/R.

2. Let S = π−1
R (NX).

3. S is an icer on M and πR(S) = NX. (by 2)

4. R ⊂ S is distal. (by 2, 3, 18.9, NX is pointwise almost periodic)

5. Q(πR(S)) = πR(S). (by 3, 19.4, NX is topologically transitive)

6. Let N be an icer on M with R ⊂ N ⊂ S and N ⊂ S an almost periodic
extension.

7. �M/N =
19.3

Q(πN(S)) =
19.6

πR
N (Q(πR(S)))=

5
πR

N (πR(S)) = πN(S).

8. N = S. (by 7)

9. R = S. (by 4, 8, and Theorem 1g)

10. NX = πR(S) = �X. (by 3, 9)
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20.2 THM 2g IMPLIES THM 3g: Let R ⊂ S be a distal extension with
Q(πR(S)) = πR(S), and assume that Theorem 2g holds. We will show that
R = S.

PROOF: 1. πR(gr(G(S)′)) =
19.9

Q(πR(S)) = πR(S) =
18.9

πR(gr(G(S))).

(R ⊂ S is distal)
2. G(S)′G(R) = G(S). (by 1)
3. G(S)∞G(R) = G(S). (by 2, 11.18)

4. πR

(
gr(G(S)∞)

)
= πR(gr(G(S)∞) = πR(gr(G(S))) = πR(S).

(by 3, 18.9, R ⊂ S is distal)
5. (πR(S), T ) is topologically transitive. (by 4, 12.5, 4.21)
6. (πR(S), T ) is pointwise almost periodic. (by 18.9, R ⊂ S is distal)
7. πR(S) = � and hence R = S. (by 5, 6, and Theorem 2g)

20.3 THM 3g IMPLIES THM 1g: Let R ⊂ S be a distal extension with
R 
= S, and assume that Theorem 3g holds. We will show that there exists
R ⊂ N ⊂ S with N 
= S, such that N ⊂ S is an almost periodic extension.

PROOF: 1. πR(gr(G(S)′) =
19.9

Q(πR(S)) 
=
Thm 3g

πR(S) =
18.9

πR(gr(G(S)).

2. G(R)G(S)′ is a proper closed subgroup of G(S). (by 1, 11.7, and 10.10)
3. There exists an icer N on M with R ⊂ N ⊂ S and G(N) = G(R)G(S)′.

(by 2, 18.20)
4. N ⊂ S is a distal extension and N 
= S. (by 2, 3, 18.8, R ⊂ S is distal)
5. N ⊂ S is an almost periodic extension. (by 3, 4, 19.11)

20.4 THM 2g IMPLIES THM 4g: Let R ⊂ S be a distal extension, and
assume that theorem 2g holds. We will show that G(S)∞ ⊂ G(R).

PROOF: 1. G(R)G(S)∞ = G(S)∞G(R).
(G(S)∞ is normal in G(S) by 11.17)

2. Let N = R ◦ gr(G(S)∞).
3. N is an icer on M with R ⊂ N ⊂ S and G(N) = G(R)G(S)∞.

(by 2, 18.20)
4. πR(N) = πR(G(S)∞) = πR(gr(G(S)∞) is an icer on M/R.

(by 2, 3, 6.11)
5. (πR(N), T ) is topologically transitive and pointwise almost periodic.

(by 4, 4.21, 12.5, 18.9)
6. πR(N) = � and hence N = R. (by 5, and Theorem 2g)
7. G(S)∞ ⊂ G(R). (by 3, 6)
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20.5 THM 4g IMPLIES THM 3g: Let R ⊂ S be a distal extension with
Q(πR(S)) = πR(S), and assume that theorem 4g holds. We will show that
R = S.

PROOF: 1. πR(gr(G(S)′)) =
19.9

Q(πR(S)) = πR(S) =
18.9

πR(gr(G(S))).

(R ⊂ S is distal)
2. G(S)′G(R) = G(S). (by 1)
3. G(R) = G(S)∞G(R) = G(S). (by 2, 11.18, and Theorem 4g)
4. R = S. (by 3, 18.20, R ⊂ S is distal)
One important and classical consequence of these theorems is the so-called
Furstenberg tower for a distal extension of minimal flows. This is analogous to
the PI-tower discussed in the notes to section 19. One can give a proof using
that tower (see 19.N.3); instead we give a direct proof which takes advantage
of the properties of the relative product and the subgroups of G developed in
the previous sections.

Theorem 20.6 (the Furstenberg tower) Let R ⊂ S be a distal extension. Then
there exists a family (Sα | α ≤ ν) of icers such that:

(a) S0 = S and Sν = R,
(b) Sα+1 ⊂ Sα is an almost periodic extension, and
(c) Sβ = ⋂

α<β

Sα for all limit ordinals β ≤ ν.

PROOF: We proceed by induction.
1. Assume that for every ordinal β < γ , a family (Sα | α ≤ β) has been
constructed such that:

(a) S0 = S and Sα = R ◦ gr(G(S)α), for all α ≤ β,
(b) Sα+1 ⊂ Sα is an almost periodic extension, and
(c) Sρ = ⋂

α<ρ
Sα for all limit ordinals ρ ≤ β.

2. If γ is a limit ordinal, set Sγ = ⋂
β<γ

Sβ ,

3. G(Sγ ) = G
( ⋂
β<γ

Sβ

) =
7.19

⋂
β<γ

G(Sβ)

=
1

⋂
β<γ

G(R)G(S)β =
10.12

G(R)
⋂

β<γ

G(S)β =
11.17

G(R)G(S)γ .

4. R ⊂ Sγ ⊂ S are distal extensions.
(by 1, 2, 18.8, R ⊂ S is a distal extension)

5. Sγ = R ◦ gr(G(S)γ ). (by 3, 4, 18.9)
6. If γ = β + 1, set Sγ = R ◦ gr

(
(G(S)β)′

) = R ◦ gr(G(S)γ ).
7. Sγ is an icer. (by 6, 18.20)
8. Sγ ⊂ Sβ is an almost periodic extension. (by 6, 18.8, and 19.11)
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9. By induction there exists ν such that Sν = Sν+1.
10. G(S)ν = (G(S)ν)′ = G(S)∞. (by 9, 11.17)
11. Sν = R ◦ gr(G(S)∞ = R. (by 9, 10, Theorem 4g)

It is an interesting exercise to understand how the theorems we have been dis-
cussing can be proven in certain special cases, especially since our proof of
Theorem 2g in the most general context (see 9.13) involves a quite technical
construction using the quasi-relative product. In the chart below we outline
some alternative proofs when certain assumptions are made about either the
space X or the group T ; the approach taken here has been to focus on the icer
version (Theorems 2 and 2g).

Comments on the proof of the Theorems 2 and 2g in various cases:

In order to prove 2 In order to prove 2g

When X is metrizable All metric flows which
are distal and top. tr. are
minimal (by 4.19) Thm
2 follows

All metric flows which
are p.a.p. and top. tr.
are minimal (by 4.19)
Thm 2g follows

When T is countable All flows which are dis-
tal and top. tr. are min-
imal (by 4.23) Thm 2
follows

by All flows which are
p.a.p. and top. tr. are
minimal (by 4.23) Thm
2g follows

The general case All flows which are dis-
tal and top. tr. are min-
imal (by 4.24) Thm 2
follows

Use the proof given in
9.13

Note that in the literature, the most popular approach to proving the Fursten-
berg structure theorem in the metric case is to use the outline above to deduce
Theorem 2 or 2g, and then deduce Theorems 1 and 1g. For the general case
one approach is to prove Theorem 3g (see [Auslander, (1988)]) and use it to
deduce Theorem 1g; here the difficult technicalities appear in the proof of
Theorem 3g (for which Auslander refers to [McMahon, D., Wu, S.T., Distal
homomorphisms of nonmetric minimal flows, (1981)]). Our approach has been
to emphasize Theorem 2g in the general case, introducing the quasi-relative
product as a means of giving a clear proof. In the literature the focus has mainly
been on deducing the Furstenberg theorem, so the fact that all of these theo-
rems are equivalent seems not to have been explicitly emphasized. This fact
and the metric approach leads us to ask the following question: Theorem 2g
says that any icer R, on a minimal flow, with (R, T ) pointwise almost periodic
and topologically transitive must be minimal and hence trivial; what if (R, T )
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is any flow? In other words, does 4.23 hold in the uncountable group case? If
pointwise almost periodicity is strengthened to distality the answer is yes; in
the metric and the countable group case the answer is also yes. In general we
do not know the answer to this question.

EXERCISE FOR CHAPTER 20

Exercise 20.1 Let:

(i) R ⊂ S be a RIC extension, and
(ii) the only factor N ⊃ R such that N ⊂ S is an almost periodic extension,

be N = S.

Show that R ⊂ S is a weak-mixing extension (that is (πR(S), T ) is topologi-
cally transitive).
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2π , 54, 56
2X , 54
�, 190
�(u, v, t), 190
�X , 202
�X(u, v, t), 202
�X , 22, 23
α(R), 86
βT , 3, 10
χR , 89, 107, 134, 186
χR

S , 107
π∗, 54
πR , 68
πR

S , 68
πt , 20, 21
τ -topology on Aut(X), 128
τX , 128

[A], 54
A′ see dervied group, 125, 138, 152
A∞, 147, 259
A ∗ u, 14
A ◦ p, 58, 59
action, 19, 20
al(M), 99
almost periodic point, 38, 39, 146
almost periodic extension, 238, 242, 246
almost one-one extension, 90, 91, 214, 226
AR, 67
Aut(M/R), 84
Aut(X), 20, 127, 138
aut (R), 88, 103, 235
autX(N), 106
automorphisms, see also Aut(X), G, 20

Bτ (X), 127
Bronstein condition, 191, 206

C(M), 99
cic, 146
circle operator, 54, 58
compact group extension, 238, 248

D, 155, 167, 189
DR , 235, 251
DX , 170
derived group, see also G′, A′, 125, 138, 155
distal extension, 45, 95, 212, 229
distal flow, 41
distal homomorphism, 45, 95
distal structure relation on M , see also Sd , 175
distal structure relation on X, see also Sd(X),

175

E, 155, 185, 186, 187
ER , 250
EX , 186, 202
E-semigroup, 26, 31, 36, 105
enveloping semigroup, see E(X)

epimorphism of flows, 20, 35, 83
epimorphism of groups, 89
equicontinuous at x, 178
equicontinuous flow, 169, 178
equicontinuous structure relation on M , see

also Seq , 187
equicontinuous structure relation on X, see

also Seq(X), 188
equivalent minimal idempotents, 33, 158
E(X), 22
E(X, T ), see E(X)

exteremely disconnected, 221, 222
extension, 45
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F ′, see derived group.
Fc , 7
F → x, 12
F converges to x, 12
factor, 45, 83
filter, 7
filter base, 7, 82, 116, 133
finite intersection property, 7
flow, 20
Furstenberg structure theorem, viii, 37, 48, 66,

111, 174, 209, 258, 262
Furstenberg tower, 209, 261

G, see also group of automorphisms of M , 85
G′ see also dervied group, 125, 155, 169, 189
G∞, 147, 190, 254, 259
(G, τ), 128
GJ , 162
GX , 106
GX(JX), 202
GX(N), 106
(GX, τX), 128
generalized regionally proximal relation, 243
generalized regionally proximal relation on N ,

see also Q(N), 243
G(M/R), see also group of the flow, 88
G(R), 88, 89, 93, 130, 155
gr(A), 126, 130, 149, 153, 216
gr(α), 86, 88
gr(A), 91
group of automorphisms of M , 85
group of the flow M/R, see also G(R), 88

h(A), 10
h(t), 10
highly proximal extension, 214, 221
Hom(M/R, M/S), 84, 86
Hom(X, Y ), 20
homomorphism of flows, 20, 23 44, 87
hull, 10
h. p. extension, see highly proximal extension.

icer, 83
ideal, 30
idempotent, 27, 30, 31
incontractible flow, 212
inf(R, S), 71
invariant, 28
invariant set, 20
inverse limit, 76, 82, 93

I (X), 104, 193
Iso(M/R, M/S), 86

J , 32, 33, 85, 93, 161
J ∗, 162, 164, 190
J ∗
X

, 202
JX , 105, 106, 165

Lp , 5, 15, 16

M, 83
M , see also universal minimal set, 83
maximally highly proximal extension, 214, 218
maximally highly proximal flow, 214
minimal ideal, 30, 104
minimal idempotent, 33, 158
minimal set, 27, 28
m.h.p. extension, see maximally highly

proximal extension.
m.h.p., see maximally highly proximal flow.

Nx , 8, 12, 16, 38
neighborhood filter, 8
neighborhood filter at x, see Nx

orbit closure, 38
open extension, 95, 209, 211

P , 155, 161
P0, 93, 167, 230
P0(X), 176
PI-tower, 254
P(M), see also P(X), 93, 229, 230
point distal, 207
point transitive, 20, 47
pointwise almost periodic, 38, 44, 48, 52, 232
pointwise equicontinuous, 178
pricipal bundle with group H , 248
principal ultrafilter, 8
proximal cell, 41, 161
proximal extension, 45
proximal flow, 41
proximal homomorphism, 45
proximal-isometric flow, see also PI-flow, 253
proximal relation, see P(X)

proximal, see also P(X), 41
psuedo metric, 49, 195
P(X), 41, 157, 160

Q, 179, 186
Q(πR(S)), 243, 245, 259
Q(N), 243, 258, 259
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Q(R, S), see also Q(πR(S)), 243
quasi-factors, 54, 115, 125, 149, 219
quasi-relative product, 111, 209, 214
Q(X), 155, 180, 186, 203

R∗, 234, 235
R ◦ S, see relative product.
Rf , 46, 79
Rhp , 218, 219
RS,d , 196
Rt , 5, 14
R-almost periodic structure relation on X, see

R-equicontinuous structure relation on X

R-cell, 67
R-distal structure relation on X, see Sd(X;R),
R-distal structure relation, see R∗,
R-equicontinuous structure relation on X, see

also Seq(X : R), 252
R-equicontinuous structure relation, see

Seq (R), 250, 252
reg(R), see also regularizer, 104
reg(X), see also regularizer, 104
regionally proximal relation, 179, 180, 203
regionally proximal relation on X, see also

Q(X), 179
regionally proximal relation, see also Q(X),

155
regular, 103
regular extension, 108, 248
regular flow, 103
regular homomorphism, 108
regular minimal flows, 84
regularizer, 89, 104, 159
relative product, 65, 67, 69
relatively incontractible extension, 212, 213
return times to U , 38
RIC extension, 211, 213
R(S), see also quasi-relative product, 111,

114

Sd , 175
Sd(R), see also R∗, 234, 239
Sd(X;R), 239
Seq , 187
Seq(R), 250
Seq(X), 181
Seq(X : R), 252
shift map, 47
Stone-Cech compactification, see βT .
subflow, 20
symbol space, 47
syndetic, 39

T1, 31
topological group, 169, 182, 183, 200
topologically transitive, 37, 47, 51, 152
topology of pointwise convergence, 21
transfinite induction, 147
transitive, 47
two circle, 227

<U,V >, 127
ultrafilter, 8, 10
uniformity, 62
universal minimal flow (set), 27, 35, 83
universal point transitive flow, see also βT ,

20

<V1, . . . , Vk>, 55
Vietoris topology, 55, 61

XX , 21
X-group of N , 106
X/R, 68
xR, 68

weak mixing, 47, 51, 201, 258
weak mixing extension, 47, 122, 258

Zorn’s lemma, 8, 29
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