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Preface

During the seven years following the inaugural publication of Simulation for
Designing Clinical Trials: A Pharmacokinetic-Pharmacodynamic Modeling Per-
spective, acceptance and application of clinical trials modeling and simulation

(M&S) in drug development and regulation have greatly expanded. Biopharmaceu-

tical companies have employed M&S in all phases of drug development to achieve

greater efficiency and dosage optimization. The food and Drug Administration’s

(FDA) visionary 2004 Critical Path Initiative highlighted clinical trial simulations

(CTS) in “model based drug development” to facilitate efficient development. In

the meantime, FDA and the European Medicines Agency have encouraged use of

CTS via regulatory guidances, and have employed M&S for labeling and approval

decisions. On the backdrop of these developments, the title of this edition has been

chosen to reflect how CTS is being employed in drug development and regulation,

and trends for expanded applications in the future.

This edition includes updates, new uses, and issues concerning CTS, along with

case studies on how clinical trial simulations are being applied in various therapeutic

and application areas. Importantly, the book expands on the use of CTS for informing

decisions during drug development and regulatory review. Each chapter author was

selected on the basis of demonstrated expertise in state-of-the-art application of CTS.

Editors’ opinions on advances and impactful trends of CTS in model-based drug

development and regulation are introduced (Chap. 1). Regulatory agencies have

been proactive in promoting use of CTS, and Chaps. 2 and 3 present the perspec-

tives and experiences of FDA and European regulatory agencies by the authors

working in these agencies.

Methods to facilitate decision making in drug development are discussed by

pointing out the importance of assessing uncertainty of predicted trial performance

and outcomes in planning of prospective trials (Chap. 4). For quantitative decision-

making, constructing clinical utility curves (Chap. 5) can be useful. Adaptive trial

design has gained attention as a method for more efficient and informative drug

development, and its current status is reviewed in Chap. 6. Chapter 7 illustrates an

M&S application case where personnel from biostatistics, clinical research and

clinical PK-PD could collaborate to make better informed decisions on trial designs
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throughout a clinical development. Chapter 8 illustrates how preclinical data can be

integrated in a model-based drug development program to optimize early stage

development, using CTS to simulate a first-in-human study.

Many successful cases employing CTS in guiding drug development decisions

have been published in the literature and presented at conferences. Representative

cases in selected therapeutic areas provide a general background on how to benefi-

cially employ CTS, followed by the authors’ experiences. Applications of CTS in

eight therapeutic areas (Chaps. 9–16) are covered: diabetes, cardiovascular dis-

eases, viral infections, antimicrobial chemotherapy, cancer, hematology, anxiety

disorder, and epilepsy.

Chapter 17 discusses how CTS can be used in therapeutic biologics develop-

ment. Designing ethical and informative pediatric studies requires integrating all

available information, while gaining pediatric specific knowledge from a limited

number of observations. The factors to consider in using CTS for pediatrics studies

are described in Chap. 18.

The final section of the book includes chapters that describe evolving methodol-

ogies in CTS. The importance of incorporation of disease progression elements in

CTS models is emphasized, especially when the evolution of disease during a trial

is considered in evaluating treatment effects attributable to the drug (Chap. 19).

The systems biology approach incorporates high resolution mechanistic models,

involving fundamental dynamics of cells and biological signaling systems. Using

such models, predictions of clinical responses may ultimately be made by simula-

tions (Chap. 20). Recent advances in in vitro, ex vivo, and in silico methods to

provide input variable information have significantly increased the applicability of

the traditional whole-body physiology-based pharmacokinetic modeling approach,

and its practical implementation is reviewed in the Chap. 21. Simulating drug

responses in a virtual patient population and how to collect and utilize datasets

for construction of covariate distribution models are presented (Chap. 22).

The target audience for this volume,Clinical Trial Simulations includes research-
ers and scientists who wish to consider use of simulations in the design, analysis, or

regulatory review and guidance of clinical trials. This book does not embrace all

aspects of trial design, nor is it intended as a complete recipe for using computers to

design trials. Rather, it is an information source that enables the reader to gain

understanding of essential background and knowledge for practical applications of

simulation for clinical trial design and analysis. It is assumed that the reader has a

working understanding of pharmacokinetics and pharmacodynamics, modeling,

pharmacometric analyses, and the drug development and regulatory processes.

We express our sincere gratitude to all the authors who have contributed to this

book. Many thanks go to the Springer publication team. Lastly, on behalf of all the

contributors of this book, we appreciate the reader’s interest in the application of

clinical trial simulations in order to improve the way we develop useful drugs.

Raritan, NJ Holly H.C. Kimko

San Francisco, CA Carl C. Peck

vi Preface



Contents

1 Clinical Trial Simulation and Quantitative Pharmacology . . . . . . . . . . . . 1

Carl C. Peck and Holly H. C. Kimko

Part I Application of M&S in Regulatory Decisions

2 Contribution of Modeling and Simulation Studies

in the Regulatory Review: A European Regulatory Perspective . . . . . . 15

Siv Jönsson, Anja Henningsson, Monica Edholm,

and Tomas Salmonson

3 Contribution of Modeling and Simulation in the Regulatory

Review and Decision-Making: U.S. FDA Perspective . . . . . . . . . . . . . . . . . . 37

Christine E. Garnett, Joo-Yeon Lee, and Jogarao V.S. Gobburu

Part II Strategic Applications of M&S in Drug Development

4 Decision-Making in Drug Development: Application

of a Model Based Framework for Assessing

Trial Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Mike K. Smith, Jonathan L. French, Kenneth G. Kowalski

Matthew M. Hutmacher, and Wayne Ewy

5 Decision-Making in Drug Development: Application

of a Clinical Utility IndexSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Timothy J. Carrothers, F. Lee Hodge, Robert J. Korsan,

William B. Poland, and Kevin H. Dykstra

6 Adaptive Trial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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Chapter 1

Clinical Trial Simulation and Quantitative

Pharmacology

Carl C. Peck and Holly H. C. Kimko

Abstract Clinical trial simulation (CTS) concepts and techniques comprise a

specialized niche in the field of quantitative pharmacology, enabled by advanced

pharmacostatistical data analytic and simulation techniques. Since the first demon-

strations of the value of CTS in drug development programs, these techniques have

been embraced and advanced by both biopharmaceutical developers and regulatory

agencies. In this introductory chapter, the editors discuss important trends that have

been impacted by CTS, elaborated in more detail in subsequent chapters.

1.1 Introduction

Although pharmacology, the science of drugs and their effects in animals and

humans, may in some ancient time have been purely qualitative in concept, it has

long employed counts and measures. The German-Swiss alchemist Paracelsus

(Philippus Theophrastus Aureolus Bombastus von Hohenheim, 1493–1541), how-

ever, is often credited with first emphasizing the concept of the dose-response

relationship with his famous quote – “Sola dosis facit venenum!” – “All drugs are

poisons; it is only a matter of dose!”

As applied to the subject matter of this book, a broad definition of quantitative
pharmacology is the science of describing, analyzing, interpreting, and forecast-
ing pharmacology in a quantitative fashion, using mathematical-statistical models.
Quantitative pharmacology encompasses concepts of systems biology, genetics,

anatomy, physiology, and pathophysiology to generate causal theories of drug

action and experimental designs to test them. Resulting data observations can be

analyzed using a broad array of pharmacostatistical procedures, by which drug

C.C. Peck (*)
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Sciences, Schools of Pharmacy and Medicine, University of California at San Francisco,
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disposition and pharmacological effects in animals and humans can be interpreted

and utilized according to pharmacometric concepts and techniques (e.g., pharma-

cokinetics [PK], pharmacodymamics [PD], statistics, and modeling and simulation

[M&S]). Quantitative pharmacology can be extensively applied in translational

science, clinical pharmacology, drug development, and regulation.

Clinical trial simulation (CTS) comprises a specialized niche of quantitative

pharmacology. Modified slightly from the book titled Simulation for Designing
Clinical Trials (Kimko and Duffull 2003), a technical definition of CTS is the

generation of biomarker or clinical responses in virtual subjects that take into

account (a) the trial design and execution, (b) pathophysiological changes in

subjects during the trial (disease progress model), and (c) pharmacology (drug

intervention model), using mathematical, statistical and numerical methods and

models. Figure 1.1 depicts information sources that can inform the models under-

lying generation of virtual trial subjects’ responses in CTS. CTS can be applied in

the design, analysis, and interpretation of human clinical drug trials in order to

facilitate key decisions in drug development management and regulatory approval

(Peck 1997; Holford et al. 2000).
In the aforementioned book by Kimko and Duffull (2003), basic concepts of

CTS model structure, development and diagnostics, virtual trial execution, and

examples of applications by drug developers and regulators were presented.

Animal PK/PD

In vitro Data

Disease Severity

Demographics
Adherence

Human PK/PD

Study Design

Regimens
Sampling Times

n(Subject)
etc.

Virtual Patients

Fig. 1.1 Information sources for a model used in generation of responses in virtual trial subjects

by Monte-Carlo simulations

2 C.C. Peck and H.H.C. Kimko



In the 7 years since its publication, significant uptake of CTS by scientists in

the pharmaceutical industry and regulatory agencies has taken place. Previously

described and expanded applications of CTS have increasingly contributed to

pivotal strategic and tactical development and regulatory decisions. Discussed in

this introductory chapter is, according to our view, the most important trends that

have been impacted by CTS; these advances are described in detail in the remaining

chapters of our book. Also commented here are advances concerning a significant

source of variability that should always be considered when constructing a realistic

CTS platform – i.e., variable adherence with the assigned treatment regimen.

1.2 Encouragement by EMA and FDA

In Chaps. 2 and 3, notable and novel contributions of CTS in regulatory review and

decision-making in Europe and the United States are presented. The European

Medicines Agency (EMA) and the Center for Drug Evaluation and Research

(CDER) in the U.S. Food and Drug Administration (FDA) have each issued a

number of guidances for drug developers that pertain to role of CTS in development

and regulation. Although not solely focused on CTS, these guidances describe

standards and expectations concerning regulatory submission that include quanti-

tative pharmacology data on population PK and PD, exposure-response, drug

metabolism, drug–drug interaction studies, effects of extrinsic factors (e.g., con-
current exposure to drugs, herbal products, variations of diet, smoking, and alcohol

use) and intrinsic factors affecting PK/PD (e.g., age (emphasizing pediatrics and

elderly influences), gender, race, weight, height, disease, genetic polymorphisms,

pregnancy, and organ dysfunction).

Interestingly, in 2008 the EMA sponsored a Workshop on Modeling in Pediatric

Medicines (European Medicines Agency 2008) that facilitated a public discussion of

pharmacometric methods for efficient pediatric drug development, including CTS and

physiologically-based pharmacokinetic modeling (PBPK, see below and Chap. 21)

for pediatric dose finding. The EMA endorsement of CTS for support of the required

Pediatric Investigation Plan (PIP, Chap. 2), as well as its receptivity to pharmaco-

metric analyses included in its review of submissions for marketing authorization,

confirms the value of this evolving technology in international regulatory circles.

The US FDA has taken a strong leadership role by aggressively applying

pharmacometrics in a number of ways. As described in Chap. 3 and previously

(Powell and Gobburu 2007), the Office of Clinical Pharmacology (OCP) in CDER

has advanced a strategy for beneficial employment of CTS and related methods. To

this end, in 2009 OCP established a Division of Pharmacometrics to facilitate

implementation of its goals. The Pharmacometrics Webpage (FDA 2010a) presents

its visionary “FDA Pharmacometrics 2020 Strategic Goals” plan, which is

explained in more detail by Gobburu (2010). FDA’s Pharmacometrics 2020 goals

include rationale for the training of 500 pharmacometricians, industry-wide

employment of CTS in all clinical trials, and FDA development and publication

1 Clinical Trial Simulation and Quantitative Pharmacology 3



of data analysis standards for drug products to treat 15 disease conditions and

250 case studies employing advanced pharmacometric methods. In addition to

the Pharmacometrics 2020 plan, the FDA pharmacometrics website includes staff

publications, guidance on model and pharmacometric data formatting, and a disease

model library.

Involved in essentially all aspects of medical product regulation, from preclinical

guidance and generic drug policy development to IND and NDA product guidance,

reviews, and approvals, FDA clinical pharmacologists and pharmacometricians are

making valuable contributions to drug development and regulation. For drug indus-

try pharmacometricians and drug developers, FDA-derived practical tools and

regulatory procedures of specific relevance to CTS include the clinical pharma-

cology question-based review template (QBR), which describes the quantitative

pharmacology data expected by the FDA in an NDA (FDA 2004). The QBR

implicitly encourages modeling by inclusion of specific questions concerning expo-

sure-response modeling of both safety and effectiveness trial outcomes, as well as

rationalization of clinical pharmacology study designs – both queries that are well

served by CTS procedures. The other key regulatory procedure is the opportunity to

meet with FDA scientists and pharmacometricians after the completion of phase 1

trials and the first set of exposure-response trials in patients, and prior to

commencement of phase 2B (i.e., patient dose-ranging trial) and phase 3 clinical

efficacy-safety trials – the so-called End-of-Phase 2A meeting (EOP2A) (FDA

2009). The stated purpose of this voluntary meeting is to “facilitate interaction

between FDA and sponsors who seek guidance related to clinical trial design

employing clinical trial simulation and quantitative modeling of prior knowledge.”

Sponsors accepted by FDA for an EOP2A meeting are expected to “. . . perform
these modeling analyses and include them in the meeting package so that FDA can

review this information in planning subsequent work.”

Described in Chap. 3 are the key roles of pharmacometrics used by FDA in

provision of guidances, (especially, QT and pediatric study design and analyses,

and disease-specific models). The authors highlight the positive impacts of phar-

macometrics on sponsors’ drug labels and regulatory decisions, which are encour-

aging for greater uptake by industry. FDA’s own publications cited in Chap. 3

confirm the large number of IND and NDA programs that have been positively

impacted (since 2000, more than 52 pediatric and 198 adult NDAs). These impacts

have included trial design and analysis enhancements, approved dosage regimens

that were not directly evaluated in phase 3 trials, endorsement of model-based

primary clinical trial endpoints and NDA approval decisions. A few of these

impacts were pioneered in 1990s, such as the FDA-requested CTS of a proposed

randomized concentration controlled trial of mycophenolate mofetil (Hale et al.
1998), and the 1991 (Toradol® (Dobin 2000; Gobburu 2010)) and 1996 (Remifen-

tanil (Egan et al. 2001; Gobburu 2010)) FDA approvals of dosing regimens of new

drugs based on data-informed M&S without clinical trial confirmation. It important

to recognize that the increase in FDA acceptance and utility of pharmacometrics,

M&S and CTS in the last decade marks a major shift from reliance solely on

empirical data to acceptance of mechanistic evidence of effectiveness and safety.
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Although not mentioned in Chap. 3, physiologically based PK modeling (PBPK,

Chap. 21) has also gained traction in regulatory agencies and industry (Rowland

et al. 2011). The first application of PBPK by FDA concerned the review and

approval of the highly teratogenic topical “wrinkle cream” active ingredient,

tretinoin (Renova®) (Clewell et al. 1997; Rowland et al. 2004). In consideration

of the potential risk of fetal exposure and birth defects, FDA requested PBPK

simulation to assess risk of fetal exposure, from which FDA concluded that the risk

is de minimus (FDA 2000). In 2002, a workshop was held on PBPK in drug

development and regulation, which revealed little regulatory application of this

technique (Rowland et al. 2004). Nonetheless, 8 years later, it is evident that FDA

has been employing PBPK modeling in both new drug review and the development

of generic drug policy and standards. CDER new drug review scientists are employ-

ing PBPK to (a) evaluate mechanisms and the potential for multiple comedications

that may affect each other’s metabolism, leading to adverse effects and (b) to guide

drug–drug interaction trial designs (Oo and Chen 2009; Zhao et al. 2009, 2010;
Zhang et al. 2010; Duan et al. 2010). In addition, use of PBPK is encouraged in the

FDA clinical lactation study guidance (FDA 2005).

Interestingly, the Office of Generics Drugs (OGD) review section of FDA

is also employing PBPK M&S for challenging generic drug testing policy conun-

drums (Lionberger 2008, 2009). For example, PBPK models of drug absorption

(Huang et al. 2009) are being employed to rationalize for regulatory policies on

biowaivers for certain BCS Class drugs, oral drug products exhibiting multiple

concentrations peaks, locally acting GI drugs, and drugs applied topically on

skin and in the lung. Other PBPK applications by OGD include evaluation of (1)

methods for characterizing complex drug delivery systems, substances, and

products, (2) drug release profile criteria and improved in vitro–in vivo correlation

methods, (3) prediction of alcohol induced dose-dumping, and (4) bioequivalence

testing procedures of nonsmall molecule products, such as liposomes, nanotechno-

logy, multiple-component mixtures.

1.3 Clinical Trial Protocol Deviations and Adherence

The book, Simulation for Designing Clinical Trials (Kimko and Duffull 2003),

included chapters concerning trial protocol deviations (Kastrissios and Girard

2003) and pharmacodynamic consequences of unintended irregular dosing (“adher-

ence”) (Urquhart 2003). Variable adherence has been identified previously as one of

the largest sources of variability in drug response in drug therapy and clinical trials

(Harter and Peck 1991; Urquhart 1991). References to these realities of clinical trial

execution are sparse in the remainder of this book (Chap. 11), despite growing

published literature documenting negative impacts of unappreciated variable adher-

ence on PK (Vrijens and Goetghebeur 1999) and PK/PD analyses (Vrijens et al.
2005a, b, c), and clinical trial results and interpretation (Vrijens et al. 2005a, b, c),
using objective adherence monitoring techniques such as electronic medication
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event monitoring systems (Vrijens et al. 2005a, b, c). Therefore, key advances

in adherence science (termed “pharmionics” (Urquhart and Vrijens 2005)) are

discussed here in order to emphasize the need for intensified attention to the special

problem of the confounding effects of variable adherence on analysis and interpre-

tation of clinical trial results.

The taxonomy of variable adherence phenomena has been refined with the aim

of comprising the most important characteristics of an intended dosage regimen;

i.e., prescription, initiation, and quality of execution, discontinuation(s) (including

“drug holidays”), persistence, and termination (Urquhart and Vrijens 2005). Lack

of consensus on precise definition and utility of these terms have motivated a

concerted effort to resolve and finalize a rigorous taxonomy. As of the writing of

this chapter, a project commissioned by the Seventh Framework Program of the

European Commission (European Commission: Seventh Framework Programme

2010), “Ascertaining Barriers for Compliance: policies for safe, effective and

cost effective use of medicines in Europe” is under way, which will be informed

by a “Consensus Report on European Taxonomy and Terminology of Patient

Compliance.”

In a 2008 conference on “Improving Drug Development Using Patient Adher-

ence Data in Clinical Trials (UCSF-CDDS-DIA 2008),” the extent and negative

consequences of objectively documented variable adherence in clinical trials

were presented. For example, in a summary analysis of electronically monitored

adherence in 21 short and long-term antihypertension trials, almost 50% of subjects

had terminated their assigned long-term treatment regimen by the end of 1 year,

mostly in the first 3 months. Eight to ten percent of patients omitted their dose on

any given day, whereas 43% of subjects engaged in multiday dosing omissions

(“holidays”) (Vrijens et al. 2008). Not confined to antihypertensive trials, variable

adherence is a ubiquitous phenomena in clinical trials that can seriously dilute

estimates of both drug effectiveness and safety when statistical analyses ignore this

sometimes large source of variability according to the “intention to treat” (ITT)

policy (Sheiner 1991, 1997). Variable adherence in clinical trials is not only a

nuisance source of variability and contributor to bias and misinterpretation of trials

results; it can lead to serious harm to both the patient and the community, as

illustrated by the emergence of resistance to HIV therapy when patients do not

adhere to prescribed antiretroviral therapy (Vrijens et al. 2005a, b, c). Indeed, safety
of dosing recommendations in regulatory agency approved labels that are based on

ITT may be misleading for the fully compliant patient (Lasagna and Hutt 1991;

Peck 1999). An exception to the almost complete lack of label information on what

a patient should do when one or more prescribed doses are missed is that of low

dose oral contraceptive pills (LDOC). Because nearly perfect adherence according

to labeled dosing instructions is associated with the maximum contraceptive

protection, the FDA approved drug label provides both prescriber and patient

with detailed directions on what to do when one or more LDOC’s are missed

(FDA 2008).

Given the implications of variable compliance in clinical trials described

above, it is surprising that drug developers and regulatory authorities have so rarely
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incorporated scientific evaluations of temporal dosing patterns or employed

objective adherence monitoring to improve efficiency and informativeness of

clinical trials and accuracy of approved drug labels. To proactively provide knowl-

edge of the potential influence of typical adherence deviations of a new drug, small

dose-response trials employing a “minimum cassette of temporal patterns of drug

input for robust modeling” were rationally proposed by Urquhart (Urquhart 2003),

but there are few published reports using this approach. Nonetheless, in an illustra-

tive recent example, investigators evaluated the effects on bone density and turn-

over of discontinuing and restarting treatment with denosumab, which is a recently

approved human monoclonal antibody that inhibits osteoclast formation (Miller

et al. 2008). In this 3-year osteoporosis treatment trial in 412 postmenopausal

women with low bone mass, reversible effects on bone turnover biomarkers,

correlated with bone mineral density changes, which provided sound data on the

consequences of stopping and restarting therapy for inclusion in the FDA approved

drug label (FDA 2010b). Finally, solution to the long-standing concerns of

frequentist statisticians to ITT-violative analysis of adherence-informed clinical

trial outcomes has recently been advanced by demonstration of the application

of structural mean models to estimation of treatment efficacy in the presence of

variable adherence (Comté et al. 2009).

1.4 CTS-Supported Strategic Decisions in Drug Development

Further evidence of the emerging value of CTS in drug development is presented in

Chaps. 4–16. Although numerous simulation-based evaluations of sample size

requirements of simple, ITT analyzed, hypothesis-testing clinical trial designs

have been undertaken in the past, simulation evaluations of model-based trial

designs and analysis procedures are of more recent origin (Pharsight Reference

Library 2010). Early examples of model-based simulations of trial design compared

dose-ranging designs (Sheiner et al. 1991), and evaluated statistical power and

sample size requirements of randomized dose-controlled and concentration-

controlled trials (Sanathanan and Peck 1991). The novel leap from simulation-

based evaluation of a trial design’s statistical power to the likelihood of achieving

the target treatment effect, along with assessment of the probability of making a

correct decision are described in Chap. 4. Chapter 6 also presents application of

CTS for evaluation of operating characteristics of the growingly popular class of

adaptive clinical trial designs. In Chap. 5, the principles of the multiattribute utility

modeling theory are explained, along with an example of application in a model-

based drug development program, illustrating how a CTS-informed reformulation

decision of a new drug candidate supported a “go decision” for continued develop-

ment.

CTS-supported development decisions sometimes present internal organiza-

tional tensions and conflicts because of the challenge of a potentially disruptive,

philosophical shift from reliance on empirical data to the more assumption-rich,
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mechanistic/causal quality of model-based information. Bridging such a gap

requires leadership, motivation and incentives to overcome inevitable barriers.

In Chap. 7, opportunities are identified for resolution of common internecine

challenges among drug developers with various backgrounds – especially, biosta-

tistics, clinical research and clinical PK/PD – along with description of an example

of successful accomplishment of productive collaboration. Philosophy and overall

procedures in pharmacometrics-based drug development paradigms are described

in Chap. 8, and application to efficient decision making in early development is

illustrated.

The increasing complexity and richness of disease and drug intervention models

applied in CTS, supporting model-based drug development programs, are illu-

strated in Chaps. 9 (diabetes), 10 (cardiovascular), 11 (viral infections), 12 (antimi-

crobial chemotherapy), 13 (cancer), 14 (hematological conditions), 15 (anxiety

disorders), and 16 (psychoses). Biomarkers reflecting disordered biological effects

of disease and drugs (both efficacy and toxicity), informed by concepts of mecha-

nism-based disease progression and systems biology (Chaps. 19 and 20), are

emerging to identify drug targets, PK/PD covariates (Chap. 21), and elements of

disease progress and drug intervention model components in CTS models. Drug

resistance elements are being incorporated into CTS models in viral, bacterial and

oncology development projects (Chaps. 11–13). Current CTS models involving

biological therapeutic interventions (Chap. 17) must integrate the elements that

differ uniquely from conventional small molecule drugs, including target-mediated

drug disposition and drug-mediated target disposition, immunogenic and complex

inflammatory and biological systems control mechanisms. Chapter 10 describes

two cases in which pharmacogenomic information was included in CTS.

Many chapters in this book briefly address applications of CTS in pediatric drug

development programs, which are fully considered in Chap. 18. Stimulated by

United States and European government derived economic incentives and

regulatory requirements, and much enhanced by availability of pharmacometric

and CTS procedures, pediatric dosage regimens and indications are being

greatly expanded.

1.5 Conclusion

Within just a few years after the first employment of CTS in drug development

programs, it has become a frequently used tool in quantitative pharmacology

investigations in academia, regulatory and the biopharmaceutical industry. This

has resulted from a combination of recognition of the urgent need for more cost-

effective drug development procedures, and advances in quantitative pharmacology

and pharmacometrics. Previously, clinical trials were designed using ad hoc empir-

ical approaches, unaided by a systematic clinical pharmacology orientation or a

quantitative PK/PD framework, leading to highly inefficient drug development
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programs. The advent of modern CTS is transforming clinical drug development

from empiricism to a mechanistic scientific discipline.

References

Clewell HJ, Andersen ME, Wills RJ, Latriano L (1997) A physiologically based pharmacokinetic

model for retinoic acid and its metabolites. J Am Acad Dermatol 36:S77–S85
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Chapter 2

Contribution of Modeling and Simulation

Studies in the Regulatory Review: A European

Regulatory Perspective1

Siv Jönsson, Anja Henningsson, Monica Edholm, and Tomas Salmonson

Abstract Modeling and simulation of pharmacokinetic and pharmacodynamic/

response data has been increasingly advocated during drug development, to allow

more efficient utilization of collected clinical data and to support informed decision

making, e.g., regarding future study designs and dosing strategies in subpopula-

tions. This chapter reflects the view of the Swedish Medical Products Agency, one

of the European regulatory bodies, on howM&S studies contribute in the regulatory

review. The availability of European guidelines related to modeling and simulation

is discussed and some insight is provided into the types of recommendations given,

together with a few examples.

2.1 Introduction

Modeling and simulation (M&S) of pharmacokinetic (PK) and pharmacodynamic

(PD)/response data has been increasingly advocated during drug development, to

allow more efficient utilization of collected clinical data and to support informed

decision making regarding future studies and study designs including dose selection

(Sheiner 1997; Breimer and Danhof 1997; Minto and Schnider 1998; Derendorf and

Meibohm 1999; Balant and Gex-Fabry 2000; Holford et al. 2000; Bonate 2000;

Sheiner and Steimer 2000; Aarons et al. 2001; Meibohm and Derendorf 2002;

Stanski et al. 2005). The application of M&S has been found beneficial in clinical

drug development in terms of time and cost savings as well as being influential on

the direction of the development program (Chaikin et al. 2000; Reigner et al. 1997;
Gieschke and Steimer 2000; Olson et al. 2000; Blesch et al. 2003; Veyrat-Follet
et al. 2000; Lockwood et al. 2006). From the regulatory side, several European

1This chapter reflects the view of the Swedish Medical Products Agency and may not be the view

of the European Medicines Agency or any other European regulatory agency.
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guidelines recommend M&S as a useful tool to support dose selection and establish

dose recommendations in special populations and some specific proposals have

been described (Edholm et al. 2008; Manolis and Pons 2009). Moreover, the US

Food and Drug Administration (FDA) has emphasized this technology in its

discussion of the critical path from laboratory concept to commercial product

(Food and Drug Administration 2004, 2006; Lesko 2007) and proposed that com-

puter-based predictive modeling is one opportunity to improve predictability and

efficiency during drug development. Recent publications describe the implementa-

tion of model-based drug development in large pharmaceutical companies

(e.g., Miller et al. 2005; Chien et al. 2005; Zhang et al. 2006; Lalonde et al.
2007; Grasela et al. 2007) and the FDA has been active in reporting the use of

M&S in regulatory decision making (Gobburu and Marroum 2001; Gobburu and

Sekar 2002; Bhattaram et al. 2005, 2007; Powell and Gobburu 2007; Wang et al.
2008; Jadhav et al. 2009). FDA’s views on this technology are described as a

separate chapter within this book (Chap. 3). As a consequence of the increased

usage, applications submitted to regulatory agencies increasingly contain reports

where M&S has been employed. Thus, regulatory agencies must be resourced with

capabilities to assess and understand this type of documentation.

The European regulatory system is based on collaboration between the national

regulatory agencies allocated in the 30 member states of the European Union (EU)

and EEA-EFTA (European Economic Area–European Free Trade Association).

In general, the marketing authorization of a new medicinal product requires the

cooperation between member states through various regulated procedures according

to Directive 2001/83/EC (EU Legislation – Eudralex 2001), i.e., the Centralised,

Decentralised and Mutual Recognition Procedures (EU Legislation – Eudralex,

Volume 2A). These procedures have their foundation via Rapporteurs or Reference

Member States who are appointed with the main responsibility to thoroughly review

submitted applications. Their initial review is subjected to secondary assessment by

the other member states, eventually leading to a common decision for each market-

ing authorization application. European regulatory guidance is developed in various

areas through joint efforts by Working Parties composed of delegates from several

member states. The websites of the European commission and the European

Medicines Agency provide further reading on European pharmaceutical legislation

(European Commission; European Medicines Agency).

The experience with use and application of M&S documentation in regulatory

decision making is limited among European regulators. Accordingly, common

European views are currently not settled but are under development. However,

generally, the use of M&S during drug development is accepted and encouraged,

for the reasons stated above. This chapter will focus on how M&S studies contrib-

ute to the regulatory review process from the perspective of one European

regulatory agency, the Swedish Medical Product Agency. Thus, the views given

here may not reflect the European community overall. It should also be noted

that the focus of this chapter is not on clinical trial simulation specifics but rather

on how models and their simulation results can be useful in making regula-

tory decisions.
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2.2 Regulatory Guidance

2.2.1 Available Guidelines

At present, there is one European guideline that specifically deals with population

pharmacokinetic modeling, namely the Guideline on reporting the results of popu-

lation pharmacokinetic analyses (CHMP 2007). This guideline does not explicitly

state views on when and how M&S should be used from a regulatory perspective

but describes what is expected to be reported by the applicant when submitting

a population pharmacokinetic analysis. These expectations should be considered

applicable to other types of modeling, e.g., exposure-response modeling. The

contents of this guideline describe what the regulatory assessor needs to know to

be able to make an assessment of the developed model. Thus, the aim of the model,

the assumptions and methodology used during model development, and the qualifi-

cation of the model are main topics discussed in the guideline. Using the guideline,

drug developers can understand what is expected and how the model is assessed by

the regulators. Apart from this document, there are several other European guidance

texts that refer to M&S or exposure-response modeling as summarized in Table 2.1.

One guideline that advocates the use of modeling in more general terms is the

internationally adopted guideline ICH Topic E 4: Note for guidance on dose

response information to support drug registration (CPMP/ICH/378/95). The ICH

guideline states that regulators, as well as developers, should be open to new

approaches and statistical/pharmacometric techniques, e.g., Bayesian and popula-

tion methods and pharmacokinetic-pharmacodynamic modeling, which may

increase information extraction and interpretability of the data.

Guidelines with encouraging wording concerning the use of modeling and/or

the evaluation of exposure-response relationships include the Clinical investigation

of pharmacokinetics of therapeutic proteins (CHMP/EWP/89249/04) and the devel-

opment of medicinal products in pediatric patients (CHMP/EWP/147013/04 and

EMEA/536810/08). The pediatric guidelines emphasize the importance of taking

into account organ maturation and physiology, as well as body size, to predict

systemic exposure in pediatric patients and suggest the use of physiologically-based

pharmacokinetic models to predict characteristics in the pediatric population.

Furthermore, it is also pointed out that pharmacokinetic data alone may be of

limited value for the extrapolation of efficacy and safety from other age patient

groups. In general, there is also a need for PD data to elucidate whether the

exposure-response relationship is different in children compared with other sub-

populations (e.g., older children and adults).

The usefulness of simulation is specifically mentioned in the guidance docu-

ments on evaluation of pharmacokinetics in organ impairment (CHMP/EWP/225/

02 and CPMP/EWP/2339/02) and in pediatric patients (CHMP/EWP/147013/04) as

a valuable mean to establish adequate dosing recommendations.

Finally, a therapeutic area where the modeling approach has clearly won

acceptance is anti-infectives (CPMP/EWP/2655/99, CHMP/EWP/4713/03, CHMP/

2 Contribution of Modeling and Simulation Studies in the Regulatory Review 17
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EWP/6172/03, EMEA/CPMP/EWP/633/02, CPMP/EWP/1343/01). Here, the use of

pharmacodynamic measurements is highly encouraged and exploration of exposure-

response by means of modeling is recommended, both in dose-response and confir-

matory studies to support dose selection.

Thus, it can be concluded from the available guidance documents that there

is impetus and encouragement from the European regulatory agencies for an

increased use of M&S methodologies, to better understand and interpret the col-

lected data, to improve study designs and to move toward adequate dosing recom-

mendations resulting in safe and efficacious treatment in all subpopulations.

2.2.2 Would a Specific European Guideline on M&S
Be of Value?

As stated in the previous section, there is currently only one specific guideline

concerning modeling, i.e., the Guideline on reporting the results of population

pharmacokinetic analyses. There are several reasons for the limited availability of

more specific guidance in this area. One major reason is that the methodology used

for M&S involves advanced and rapidly evolving techniques. Consequently, there

is a risk that the guideline, when adopted, is already outdated. Accordingly, in order

not to constrain science and innovation, any guidance will have to be very general,

and may therefore not provide specialized assistance, but merely provide a confir-

mation of the regulatory agencies’ acceptance of M&S in drug development.

So, can such a document still be of value? We think that the answer to this

question is “Yes” and that it is time to reconsider the development of a new

guidance. The production and adoption of such a guidance document would, in

addition to extensive discussions, lead to training sessions for regulators, thereby

increasing the awareness among regulators of the potential for using this type

of information. Eventually, the guidance would describe the common European

view and serve as a support for regulatory assessors as well as encouragement for

drug developers.

2.3 Regulatory Decisions: When and Impact

In Europe, regulatory assessors may encounter M&S documentation at several time

points during drug development. For example, a decision or view based on this type

of documentation can be made early during drug development in the assessment

of Pediatric Investigation Plans and Clinical Trial Applications or when giving

Scientific Advice. Hence, regulators may influence the choices made and

approaches taken during the drug development path. However, so far, the main

focus of the regulatory assessment has been during the approval phase of the
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marketing authorization application of new medicinal products. Here, M&S reports

are a basis for efficient utilization and interpretation of the collected data and

eventually the knowledge/information may be translated into dosing recommenda-

tions. Some insights into the type of recommendations given are outlined below.

2.3.1 Pediatric Investigation Plan

The Pediatric Investigation Plan is a newly required document based on the recently

enacted European Pediatric Regulation 1901/2006 (EU Legislation – Eudralex

2006). According to this regulation, a Pediatric Investigation Plan must be gener-

ated for new drugs under development. This plan should describe in detail how and

when the new medicinal product will be developed for use in the pediatric popula-

tion. The Pediatric Investigation Plan is reviewed and adopted by the Pediatric

Committee (PDCO), one of the Scientific Committees at the European Medicines

Agency, and drug developers need to justify any deviations from the approved plan.

For new active substances, the Pediatric Investigation Plan should be submitted

for regulatory review during early drug development, i.e., at the initiation of Phase 2,
but may be updated whenmore knowledge is gained. The proposed selection of dose

or approach to establish the dose to be investigated in pediatric patients is commonly

based on modeling principles and the regulatory assessor has the opportunity to

provide a regulatory view on this issue at an early stage. Because limited data are

available at this time, the Pediatric Investigation Plan should preferably include a

general description of the future modeling strategy and any regulatory comments

given should not pose a hindrance to the further development. Thus, the regulatory

assessment is, and should be, broad and provides a general opinion concerning

concepts and suitability of using M&S in pediatric drug development. Regulatory

experience in this area is growing, and general recommendations on how to use prior

information concerning the relation between ontogeny and pharmacokinetic char-

acteristics are often provided. Furthermore, the drug developer is usually advised to

carefully consider the similarity of pharmacodynamics in children compared with

adults, i.e., whether it is scientifically justified to aim for similar systemic exposure

as in adults, and that exposure-response relationships in the pediatric population

should be elucidated as much as possible. Because of the typical nature of pediatric

data, i.e., sparse sampling, the general advice is to employ a population modeling

approach. Even deterministic simulations, in combination with known distributions

of body size for given ages, are considered valuable tools to predict the average

systemic exposure in children.

2.3.2 Clinical Trial Application

M&S documentation is regularly available as part of the background documenta-

tion in clinical trial applications. In early clinical trials, predictions of exposure
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levels for the doses proposed to be studied can be made on the basis of modeling

using previous preclinical or clinical data. This is helpful information in the

regulatory assessment of safety for the planned study. At later clinical stages,

e.g., dose-response studies, the choice of dose level may be justified by clinical

trial simulations originated from exposure-response models. This type of M&S

approach is highly encouraged, because such exploration offers an efficient use of

already collected data resulting in well-founded decisions for the drug developer.

This also facilitates the regulatory understanding of the dose selection from both

efficacy and safety perspectives. By the use of simulations, the drug developer also

has the opportunity to evaluate alternative study designs. Eventually this may lead

to fewer failed studies.

2.3.3 Scientific Advice

The drug developers can at any stage of drug development request scientific advice

from the regulatory agencies. The companies have the option to seek scientific

advice: (1) at the national level through each national agency or (2) at the commu-

nity level via the European Medicines Agency. The national advice is often

provided in an informal discussion setting, in comparison to the more formal

community advice, which is mainly provided in written format. Drug developers

often choose a combination of the two types of scientific advice.

The ultimate goal of scientific advice is to ensure that appropriate investigations

are performed, so that no major objections regarding the used methodology are

likely to be raised during evaluation of the marketing authorization application.

Thus, scientific advice is prospective in nature and focuses on development strate-

gies rather than pre-evaluation of data to support a marketing authorization appli-

cation. The responsibility of the agencies is to provide the advice by answering the

prespecified questions posed by the company on the basis of the provided docu-

mentation and considering the current regulatory framework and scientific knowl-

edge. Thus, the role of the regulators is not to substitute the industry’s responsibility
for the development of their products.

A scientific advice may be particularly useful when there appears to be no or

insufficient applicable regulatory guidance available or where the company chooses

to deviate from the available guidance in its development plan. For example,

answers to many questions pertaining to what is and what is not regarded adequate

in M&S activities cannot be found in a guideline at present, and the number of such

questions is steadily increasing. Questions related to the suitability of using popu-

lation modeling for identification of important covariates or for the estimation of

drug interactions are often posed. Furthermore, M&S of exposure-response data is

frequently used as a basis for justifying the choice of dose for use in Phase 3. Then,

developers usually wish to obtain the regulators’ view on the strategy used for dose

selection. As for Pediatric Investigational Plans, the advice is usually a general

recommendation concerning M&S concepts and suitability of these methods.
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In some cases, the advice may be quite detailed and, although not legally binding

for either party, the applicant is recommended to justify deviations from the advice

in a future application.

2.3.4 Approval for Marketing Authorization

The main review of the M&S documentation takes place during the drug approval

procedure. Nowadays, M&S analyses are increasingly performed as an integrated

part of the drug development by many companies and accordingly, applications for

new medicinal products typically contain at least one modeling report. The reports

usually concern pharmacokinetic data but there is a trend of an increasing number

of exposure-response analyses of both clinical endpoints and adverse effects in

recent applications. Exposure-response analyses put systemic exposure into a

clinical utility perspective and help answer the following key questions:

1. Within which range of exposure will the drug treatment result in sufficient

efficacy and with tolerable side effects?

2. What deviations in exposure can be allowed but still result in a positive benefit/

risk balance for the drug treatment?

Currently, the regulatory assessors in Europe do not redevelop models or build new

models based on raw data but rather evaluate and interpret the analyses submitted in

the application. Based on the assessment of the models and the “whole picture” of

the drug under evaluation, an overall judgment of the relevance of the information

gained by the modeling is made. If the M&S documentation is critical for drawing

conclusions on dosing recommendations or the overall benefit/risk assessment, then

this material is very thoroughly assessed and the applicant is frequently requested to

provide supplementary information. On the other hand, if the model is considered

of little value as basis for dosing recommendations or for labeling purposes, then

the analyses (which may be of poor quality) are not given any weight in the overall

assessment. The requests to the applicant may vary in detail as exemplified below:

– Clarification on howmodels were developed, e.g., procedures for model building

– Supplementary analyses, e.g., additional evaluation of alternative structural

models

– Additional information on the model’s capability to describe and predict the

observed data, e.g., additional goodness-of-fit plots or predictive checks
– Model predictions of studied and nonstudied situations, e.g.,

l Drug–drug interactions
l Subpopulations
l Effect of concomitant food intake
l Worst-case scenarios

At present, the models are rarely used as a main basis for assessment of overall

benefit–risk from a regulatory perspective but rather for the following:
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(a) As a general description of pharmacokinetic and exposure-response

(pharmacokinetic–pharmacodynamic relationship) in the target population

(b) As an aid in judging the clinical relevance of changes in pharmacokinetics

and for evaluation of

– Dose recommendations in special populations

– Dose adjustments with concomitant medications

2.4 Examples of Contribution of M&S Documentation

in the Regulatory Review

In the following sections, a few examples are given on how modeling documenta-

tion was accepted and used during the approval phase. The product-related infor-

mation is publicly available in European Public Assessment Reports (EPAR) for

these products (European Medicines Agency 2007, 2008, 2009). Other examples

where M&S and/or PKPD information has been considered useful can be found in

EPARs of Baraclude, Inovelon, Invega, Ivemend and in the assessment of compas-

sionate use of IV zanamivir (European Medicines Agency).

2.4.1 Keppra (levetiracetam)

Keppra contains the antiepileptic agent levetiracetam. Levetiracetam has been

shown to have uncomplicated pharmacokinetic features: rapid and almost complete

absorption after oral administration, formulations studied demonstrated to be bio-

equivalent, no relevant food interaction, eliminated mainly by renal excretion (2/3),

and dose proportional pharmacokinetic properties.

In 2008, the marketing authorization holder (MAH) for Keppra applied to extend

the indication to include children from 1 month to 4 years old in the indication of

adjunctive treatment of partial onset seizures with or without secondary generaliza-

tion. The main concern with this application from a regulatory perspective was the

limited information in very young children. For the age group 1 month to 4 years,

one pivotal efficacy study was performed and longer term open-label follow up data

were also submitted. Overall, 226 children between 1 month and 4 years were

exposed to Keppra, but the actual numbers in the youngest age groups were

relatively small, with only 8 children aged <6 months (the youngest subject being

2.3 months old) and 15 children aged from 6 to 12 months. Short-term efficacy was

convincingly shown in the pivotal study and the open long-term study indicated

maintained effect over time. However, there was limited safety information gathered

for patients <1 year old and a lack of long-term safety data in this new population.

For this application, a population pharmacokinetic model was developed using

data from several clinical studies in 197 children aged from 0.19 to 17 years,

weighing 5.5–93 kg of which 112 and 85 were male and female, respectively.
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The data was described with a one-compartment model with first-order absorption

and first-order elimination and the final model included body weight, concomitant

antiepileptic drugs and age through a maturation factor on oral clearance, and age

on apparent volume of distribution. This model was considered to describe the

observed data sufficiently well and a visual predictive check stratified for body

weight and age demonstrated adequate predictive properties of the model with

respect to both central tendency and variability.

The dose recommendation suggested by the MAH aimed at obtaining similar

systemic exposure in children younger than 4 years as that obtained in a 4-year-old

patient when given a dose of 10 mg/kg.

Suggested dose recommendation by MAH, including dose titration levels

Age range (months) 1–6 Above 6

Recommended starting dose (mg/kg b.i.d.) 7 10

Recommended dose titration level 2 (mg/kg b.i.d.) 14 20

Recommended dose titration level 3 (mg/kg b.i.d.) 21 30

Simulations of systemic exposure in children from 1 month to 4 years, in

combination with actually observed data, were used as a support that this dosing

regimen would result in the expected systemic exposure. The simulations covered

worst-case scenarios, i.e., a 1-month child with a very low body weight and a

6-month child with a high body weight. The calculated fraction of the dose required

to achieve the same exposure as a 4-year-old was 0.58 for a 1-month-old child,

which substantially exceeded the minimum threshold established by the applicant

prior to simulations, i.e., a change of 20%, necessitating a dose adjustment. The

proposed cut-off for dose adjustment, i.e., 6 months, was found reasonable because

the fraction of the reference dose was equal to 0.8 at this age and considering that

the maturation of glomerular filtration is essentially complete by the age of 6–12

months. The 30% reduction of the dose (e.g., 7 vs. 10 mg) in children 1–6 months

was a compromise resulting in systemic exposure similar to or slightly lower

compared to a 4-year-old and was considered reasonable from a safety point of

view. From an efficacy point of view this dose was deemed sufficient because

the dosing involves an up-titration and the dose recommendation in children

1–6 months was also consistent with the dose used in this age group in the pivotal

efficacy study.

In conclusion, although there was limited pharmacokinetic data in infants

below 1 year of age the modeling of the pharmacokinetic data, in conjunction

with a priori information on maturation of renal function and body weight distribu-

tions for children, contributed in making relevant predictions of systemic exposure

of levetiracetam in the youngest children where actual data were missing. These

efforts strengthened the view that the proposed dose titration schedule was adequate

and served as a significant regulatory aid for the assessment of safety and efficacy in

very young children. However, this pharmacokinetic M&S exercise assumed that

the same exposure-response relation was valid for children from 1 month to 4 years

of age as compared to older children and adults. This assumption was not proven
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but because there was sufficient evidence of efficacy this was not further pursued.

Both from an efficacy and safety point of view the limited number of patients

<1 year old was of concern, in particular because of the heterogeneity of epileptic

syndromes in this age group and the limited long-term safety data available.

Therefore, the MAH committed to further assess the long-term efficacy and safety

in this age range postapproval through an observational sentinel site study. The

MAH also committed to submit specific safety reports every 6 months for children

<4 years old. The limitation of data in children from 1 month to 4 years of age was

also reflected in the product information.

2.4.2 Celsentri (Maraviroc)

Celsentri (Maraviroc) is a CCR5 antagonist used in combination with other

antiretroviral agents in treatment of HIV-1. Maraviroc has relatively complex

pharmacokinetic behavior with highly variable absorption, dose-dependent oral

bioavailability and food effect, likely because of saturation of efflux at higher doses

and a combination of more efficient efflux because of slower absorption (less satura-

tion) and to some extent complex formation when administered with food. Moreover,

being a substrate for CYP3A4 and P-gp, the interaction potential with other antiretro-

viral drugs is high. Although the contribution of renal elimination is low when

maraviroc is administered as a single drug, the importance of this elimination pathway

increases significantly when administered together with CYP3A4 enzyme inhibitors.

Sophisticated pharmacokinetic-pharmacodynamic models have been applied dur-

ing the development of maraviroc (Rosario et al. 2005, 2006, 2008; Jacqmin et al.
2008). Both pharmacokinetic and pharmacokinetic/pharmacodynamic models were

presented in the submitted application for marketing authorization. For example, the

probability of failure, where failure was defined as a patient having HIV-1 RNA (>50

copies/ml), in the Phase 2b/3 studies has been related to average exposure.

Because of its relatively complex pharmacokinetic behavior and interactions

with other antiretrovirals, it was not reasonable to clinically study all possible

scenarios. Simulations of the systemic exposure of maraviroc have therefore been

used in the assessment and these were evaluated in combination with the suggested

exposure-response relationship to answer questions such as:

1. What happens with the exposure if maraviroc is administered with inhibitors of

various potency in combination with food?

2. What is the effect of impaired renal function when maraviroc is administered in

combination with potent inhibitors of CYP3A4/P-gp?

M&Ss together with observed data from Phase 2b/3, where maraviroc had been

administered with or without food in combination with various antiretroviral agents,

resulted in dose recommendations that were expected to yield sufficient exposure

regardlessoffoodintake.Becauseofsomeuncertainties in themodel,a study insubjects

with renal impairmentwas requestedas a follow-upmeasure.Basedon the result of this

study and further simulations the dose recommendations have been amended.
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2.4.3 Bridion (sugammadex)

Bridion contains sugammadex, which reverses neuromuscular block induced

by the nondepolarizing neuromuscular blockers rocuronium and vecuronium by

forming complexes with these drugs. The assessment of safety issues related to

drug–drug interactions because of the mode of action was greatly enhanced by the

use of populationmodel predictions as follows: the mechanism of interactions may be

due to the possibility of (1) sugammadex’s binding to other molecules, reducing their

effect or (2) displacement of the neuromuscular blocking agent from sugammadex,

resulting in reduced reversal of the neuromuscular blockade or reoccurrence of

neuromuscular blockade. Because investigating all interactions in vivo is not feasible,
the applicant developed a strategy to screen for the interaction potential. In this

strategy the knowledge from two major data sources was combined:

1. Binding affinity to sugammadex for several drugs estimated as the association

constant determined by isothermal titration calorimetry

2. Predictions of systemic exposure and pharmacodynamic effects using a popula-

tion pharmacokinetic-pharmacodynamic interaction model, including pharma-

cokinetics of rocuronium and sugammadex, the complex binding interaction and

pharmacodynamic effects of rocuronium (with and without sugammadex).

Although several assumptions were made in the model predictions, the approach

was considered acceptable from a regulatory perspective. One important reason for

this opinion was that the model, which was developed using data from healthy

volunteers and patients, exhibited adequate predictive properties as demonstrated

by external validation, independent of the data used to build the model. Further-

more, model predictions for worst case scenarios were performed, and drugs that

were identified with a risk for interaction were included in the product information.

Model predictions of pharmacodynamic outcome also supported clinical recom-

mendations concerning duration of surveillance for re-occurrence of blockade

because of concomitant administration of a drug potentially being able to displace

rocuronium from sugammadex. In addition, model predictions of pharmacody-

namic outcome, such as time to recovery from neuromuscular blockade, supported

the use in patients with renal impairment, which at the time for approval of

marketing authorization was based on limited clinical data.

2.5 Future Perspectives and Summary

Obtaining a complete description of the population intended for treatment within

the clinical development program is usually not feasible. Hence, the collected

clinical trial data do not represent the entire target population and there is a need

for better approaches to extrapolate efficacy and safety data to various subpopula-

tions. M&S of pharmacokinetic, pharmacodynamic and clinical endpoints offer

such a tool and the contribution in regulatory decision making by this type of
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documentation is predicted to increase. It is anticipated that the use of M&S will

increase in pharmaceutical development. Accordingly, the regulatory agencies

will need to increase their capability to assess and utilize this type of information.

Moreover, discussion and cooperation among regulatory agencies is necessary to

provide more unified guidance to drug developers. The demand for collaboration is

not limited to a European level, but should also be placed in a global perspective.

Thus, an increased awareness of the utilities of M&S at the European agencies is

essential. To move forward, it is crucial to spread knowledge within regulatory

authorities about the use and possible gains of M&S. Moreover, there is a need for

more regulatory pharmacometricians, i.e., assessors of M&S documentation. These

assessors should, in addition to technical skills (Holford and Karlsson 2007), have

the knowledge to determine the importance of model deficiencies, to recognize

when M&S may be useful and to judge the appropriateness of endpoints used. The

latter points toward the multidisciplinary aspects of pharmacometrics (Barrett et al.
2008), which demand frequent communication between clinical and pharmaco-

metric assessors.

From a short-term perspective, it is likely that the type of regulatory requests

forwarded to applicants today will continue and that results from model-based

analyses will constitute a larger part of the critical knowledge prior to marketing

approval compared with the present situation. Moreover, physiology-based models

and software are readily available tools for predicting (1) the effect of varying renal

function or (2) drug interaction potential based on in vitro data, etc. It is envisaged

that the usage will increase (Rowland et al. 2010). For example, it is of particular

interest to forecast systemic exposure in the paediatric population. For simple cases,

such as intravenous administration of drugs that are purely eliminated by glomeru-

lar filtration, limited pharmacokinetic data would be sufficient when combined with

model predictions.

From a long-term perspective, it would be of great value to have a European

regulatory forum or discussion group, e.g., a pharmacometric network for assessors,

where continuous dialogue on the use of M&S in drug applications can take place to

form consensus among the member states. Organizing a formal network will permit

better priority ranking of issues and the creation of an agenda. The network should

preferably include regulatory statisticians and should have good communication

with relevant Working Parties that develop guidelines in the clinical area.

In summary, drug development needs appropriate tools for more efficient inter-

pretation of collected data and for extrapolation of knowledge to the entire target

population. M&S is considered to be useful in this respect and European regulatory

agencies will promote and encourage the increased use of these methodologies.

The contribution in regulatory decision making by this type of documentation may

gradually increase. To assist drug developers and provide more unified guidance, an

interactive process among regulatory agencies is needed on a global level.
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Chapter 3

Contribution of Modeling and Simulation

in the Regulatory Review and Decision-Making:

U.S. FDA Perspective

Christine E. Garnett, Joo Yeon Lee, and Jogarao V.S. Gobburu

Abstract The Division of Pharmacometrics at the U.S. FDA engages in regulatory

reviews, research and policy development. During 2000–2008, over 50% of phar-

macometric reviews of 198 NDA and BLA applications influenced approval and

safety decisions. During this time, pharmacometric analyses were used in pediatric

dose selection, and approval of doses not directly studied in effectiveness trials.

Additionally, pharmacometrics has been used in FDA advice on protocol design to

optimize dosing regimens based on benefit-risk for clinical testing, and to provide

confirmatory evidence of effectiveness. Current research projects aim to solve

drug development challenges and develop policies grounded in pharmacometric

principles and methodologies.

3.1 History of Pharmacometrics at FDA

On the backdrop of population pharmacokinetic and pharmacodynamic concepts

evolving in academia, pharmacometric work at the Food and Drug Administration

(FDA) began in 1991 when Carl Peck, MD, as Director of the Center for Drug

Evaluation and Research (CDER), appointed Thomas Ludden, PhD, to lead the

Biopharmaceutics Division and organize the first pharmacometrics group. This

team influenced the focus in drug development by changing emphasis from inter-

preting dose–response information to analyzing exposure–response data (Peck

et al. 1992). The FDA issued a number of Guidances for Industry to clarify to

sponsors how to implement the exposure–response paradigm. The 1999 Guidance

for Industry on Population Pharmacokinetics discusses how to design and execute

The opinions and information in this review article are those of the authors, and do not represent

the views and/or policies of the U.S. Food and Drug Administration.

C.E. Garnett (*)

Center for Drug Evaluation and Research, Food and Drug Administration,

Silver Spring, MD, USA

e-mail: Christine.Garnett@fda.gov

H.H.C. Kimko and C.C. Peck (eds.), Clinical Trial Simulations, AAPS Advances

in the Pharmaceutical Sciences Series 1, DOI 10.1007/978-1-4419-7415-0_3,
# American Association of Pharmaceutical Scientists 2011

37



collection of sparse pharmacokinetic (PK) data from late-phase clinical trials, as

well as how to analyze population pharmacokinetic data using modeling applica-

tions (Food and Drug Administration 1999). The value of understanding the

exposure–response relationship has been acknowledged in several regulatory docu-

ments, such as the ICH E4: Dose Response Information to Support Drug Registra-

tion (ICH 1994), and the Guidance on Clinical Evidence of Effectiveness (Food and

Drug Administration 1998). However, it was not until 2003 that the FDA stressed

the importance of exposure–response trials in regulatory decision-making by

issuing the Guidance for Industry on Exposure–Response Relationships (Food

and Drug Administration 2003). Moreover, in a landmark report describing chal-

lenges and opportunities on the critical path to new medical products (the Critical

Path Initiative), the FDA recognized the importance of model-based drug

development as a way to improve decision-making for effectiveness and safety

(Food and Drug Administration 2004). In 2005, Lawrence Lesko, PhD, as

Director of the Office of Clinical Pharmacology (OCP) appointed J. Robert Powell,

PharmD, to lead a centralized Pharmacometrics Group that reviewed regulatory

submissions across all therapeutic areas. In 2009, this group was elevated to its own

formal Division of Pharmacometrics, led by Jogarao Gobburu, PhD.

3.2 Division of Pharmacometrics

3.2.1 Vision and Strategic Goals

FDA pharmacometricians serve three primary functions: regulatory review, research,

and policy development. As reviewers, they support drug approval, labeling, and trial

design decisions. Dose selection based on quantitative benefit-risk assessments is

another major area of focus. This requires quantitative methods to determine dosing

adjustments based on age, liver or renal function, changes in bioavailability, concom-

itant administration of other drugs, and so forth. Pharmacometricians advise sponsors

on trial designs to maximize the possibility of successful outcomes with optimal

dosing regimens. As researchers, FDA pharmacometricians create or confirm quanti-

tative disease, drug, and trial models. Such models help determine the value of

biomarkers across clinical trials for given diseases or drug classes to reflect changes

in primary disease endpoints. An important byproduct of this research is the training of

postdoctoral fellows and graduate students as future pharmacometricians. An impor-

tant consequence of pharmacometric research is the development of regulatory policy

on matters related to effectiveness, safety, and bioequivalence.

3.2.2 Pharmacometric Reviews

Pharmacometric reviews are quantitative analyses of exposure, response, and

disease data. The four primary types of pharmacometric reviews are NDA/BLA
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submissions, QT studies, and protocol designs for late-phase clinical trials,

including pediatric trials, and End-of-Phase 2a (EOP2a) meetings (Table 3.1).

3.2.2.1 NDA and BLA Submissions

The twenty-first Century Review is a CDER initiative to integrate and organize

the review process for new drugs by identifying key scientific and regulatory issues

early in the review and ensuring that differing opinions from decision-makers

are addressed (www.fda.gov/AboutFDA/CentersOffices/CDER/WhatWeDo/Initia-

tives/).Emphasis isplacedonquantitativemethodsunder this initiative.OCPischarged

with evaluating the exposure–response analyses to support effectiveness and appropri-

atenessof thedosingregimen, inadditiontoevaluatingotherkeyclinicalpharmacology

issues. The Division of Pharmacometrics is notified when OCP receives a submission

for a newmolecular entity or for a pediatric indication. The submission is evaluated for

the need for a pharmacometric review based on availability of appropriate data and

whether the pharmacometric analysis can potentially influence dose, approval, or

labeling.Key reviewquestions are identified at an interdisciplinary “ScopingMeeting”

heldduring thefirst2monthsafter thefilingof theNDA/BLA.Thepharmacometric and

clinical pharmacology reviewers write a collaborative assessment of the NDA/BLA

with final recommendations on the key questions presented to the OCP senior leader-

ship team for scientific and regulatory consensus.

The impact of pharmacometric reviews of NDA/BLA submissions from 2000 to

2006 has been previously published with 13 regulatory case studies (Bhattaram

et al. 2005, 2007). These, as well as additional examples from 2007 to 2008, are

extensively discussed in Sect. 3.3.

3.2.2.2 QT Study Design and Analysis

In 2006, a centralized interdisciplinary review team within CDER was formed

following the FDA’s implementation of ICH E14 guidelines (ICH 2005). The

team includes pharmacometric, statistical, clinical, and pharmacologic reviewers

Table 3.1 Types of pharmacometric reviews

NDA or BLA

Submissions

Optimize dosing regimen based on exposure�response analysis of

effectiveness and safety endpoints

Use exposure�response relationship as evidence of effectiveness

QT Studies Characterize concentration�QT relationship for dose selection, risk

assessment in specific populations with high exposure, and ECG

monitoring in late-stage trials

Pediatric Studies Design trial to obtain precise estimates of PK and PD parameters in

different age groups

Justify trial design using exposure�response data from adults and prior

observations in pediatric population

Exposure�response is standard analysis

EOP2a Meetings Exposure�response modeling and clinical trial simulation are used for

dose selection and design of late-stage trials
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who collaboratively provide expert advice both to the FDA’s review divisions and

to the sponsors on the design, analysis, and interpretation of thorough QT (TQT)

studies. Moreover, this QT team strives to develop the science of evaluating drug

effects on cardiac repolarization by refining the methods recommended in ICH E14.

Contributions have included (1) using concentration–QT modeling to evaluate the

proarrhythmic potential of new drugs (Garnett et al. 2008; Wang and Garnett

2010); (2) assessing the proarrhythmic potential of drugs when TQT studies are

not feasible (Rock et al. 2009); (3) evaluating TQT study design features on

moxifloxacin response (Florian et al. 2010; Yan et al. 2010); and (4) developing

a QT knowledge management system to increase efficiency of QT reviews and

leveraging knowledge from previous experiences (Tornoe et al. 2010).
The criterion for assessing whether a drug prolongs QT interval as described

in ICH E14 does not explicitly account for individual drug concentrations. Experience

with reviewing QT studies indicates that understanding the relationship, if

any, between individual drug concentration and QT change provides important

additional information to support regulatory decision making (Garnett et al. 2008).
Therefore, regulatory reviews of TQT studies routinely include evaluation of the

concentration–QT relationship. Published examples illustrate how exposure–response

modeling has been used to (1) project QT prolongation at doses not directly studied in

the TQT study; (2) support lack of QT prolongation when the TQT study was positive

based on primary statistical criteria; and (3) confirm assay sensitivity with reduced

moxifloxacin exposure. There is a recently described multivariate concentration–QT

model to assess the pharmacokinetic and potential pharmacodynamic interaction

between an investigational drug and its metabolic inhibitor (Zhu et al. 2010).

3.2.2.3 Protocol Design

The FDA encourages sponsors to use quantitative approaches in planning clinical

trials for dose selection, sample size justification, and endpoint evaluation. Improv-

ing early dose selection and trial design increases the likelihood of successful trials.

Such quantitative approaches are used in the design of pediatric trials and EOP2a

meetings.

Pediatric Trials

About 50% of pediatric trials for drugs used in adults fail to provide evidence of

effectiveness (Benjamin et al. 2008). Clinical studies in children are challenging in
drug development programs because of the complexities of disease and drug effects

(Jadhav et al. 2010b). There is urgent need to improve the design of pediatric clinical

trials to improve the usefulness of labeled drug dosing information to the benefit of

the pediatric population. Current practices for deciding critical trial design elements,

such as dose range and sample size, are inconsistent and unclear. Therefore, phar-

macometric reviews of pediatric submissions focus on three elements.
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l Number of trial subjects. There is need for sufficient numbers of patients

enrolled in each age group to obtain meaningful PK and response data. A quality

metric has been proposed to increase the value of data collected: the 95%

confidence interval of the geometric mean estimate of the PK or PD parameter

(e.g., CL or EC50) is between 60 and 140% (Jadhav et al. 2010a). The sample

size within each age group should be computed to meet this criterion. Accord-

ingly, traditional statistical and clinical trial simulation procedures can be used

to identify appropriate sample sizes.
l Informed clinical trial design. The design of these trials should be based on

prior knowledge of the exposure–response in adult or pediatric patients. For

example, sample size and dose range for a pediatric trial of a confidential

antihypertensive were justified by clinical trial simulations. These simulations

employed exposure–response and drop-out data for placebo, and a related

antihypertensive agent for which this information was already available, in

order to evaluate various design features and statistical analysis of the primary

endpoint for the confidential drug (Jadhav et al. 2009).
l Exposure–response orientation. Data from pediatric trials are routinely analyzed

using exposure–response approaches due to the extreme variation in body size,

maturation of eliminating organs, and sensitivity of target tissues.

End-of-Phase 2a Meetings

The EOP2a meeting provides a powerful opportunity to sponsors to engage with

FDA on the design of key late-phase clinical trials. The Division of Pharmaco-

metrics has been active in this new regulatory initiative (Wang et al. 2008). Under a
pilot program starting in 2004, the FDA conducted 11 EOP2a meetings focusing

on using exposure–response modeling and clinical trial simulation for dose selec-

tion and trial design decisions. The FDA often performed the modeling analyses for

the pilot program, but it is now expected that sponsors will perform these analyses

and include them in the meeting information package. In addition, the FDAmay use

in-house modeling to address particular problems or independently assess the

sponsor’s model.

3.2.2.4 Knowledge Management

Although the application of modeling and simulation continues to significantly

impact regulatory decisions, the efficiency of such quantitative analyses during

the review process needs improvement. The time-limiting steps in these analyses

are the tedious but necessary tasks of formatting clinical trial data, creating disease

databases, programming modeling code, and generating analysis reports.

To increase efficiency, the Division of Pharmacometrics has developed a knowl-

edge management system to streamline pharmacometric analysis. The goals of

knowledge management are to archive input data, models, and output data in a
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manner that allows pharmacometricians to readily access data and rapidly execute

standard analyses as new data become available. This strategy intends to alleviate

the bottleneck of accessing and formatting prior trial data, allowing more time to

explore innovative trial designs and analyses.

Data from late-phase clinical trials for diseases with active drug development

programs are being used to create the databases. Templates and tools for data

formatting, analyses, and reporting of routine functions are also under develop-

ment. Automatic tools for population analysis and TQT studies are routinely used

for regulatory reviews. Results from the standardized processes may then lead to

learning more about disease progression and drug responses. The division has thus

far initiated disease databases for Parkinson’s disease, nonsmall cell lung cancer,

pulmonary arterial hypertension, drug-induced QT prolongation, and hepatitis

C infection.

3.2.3 Research and Policy Development

The Division of Pharmacometrics has an active research program. The primary

goals of these projects are to contribute to the solution of drug development

challenges and develop policies rooted in pharmacometric methodologies. The

group has been working on projects related to the application of concentration–QT

modeling to regulatory decision making (see Sect. 3.2.2.2), building quantitative

disease–drug–trial models as a drug development aid to the industry (Gobburu and

Lesko 2009), and establishing bioequivalence criteria for novel dosage forms.

The building of disease–drug–trial models is a goal consistent with the FDA’s

Critical Path Initiative. Pharmacometric reviews of regulatory submissions are the

primary source of identifying drug development challenges. Lessons learned from

previous trials in a disease area can guide future development and regulatory

decisions. Parkinson’s disease and nonsmall lung cancer (NSCLC) disease models

are examples of this effort.

l Parkinson’s disease: Pharmaceutical companies are attempting to develop drugs

to slow the progression of Parkinson’s disease, referred to as disease modifica-

tion. There is currently no FDA-approved drug that has a claim for Parkinson’s

disease modification. The Division of Pharmacometrics has developed

disease–drug–trial models to separate competing trial endpoints and discern

between symptomatic relief versus an actual disease-modifying effect using a

delayed-start study design (Bhattaram et al. 2009). The main goal of this clinical

trial simulation was to explore appropriate analysis methods and endpoints to

demonstrate disease modification.
l NSCLC: Over the last decade, lung cancer has exhibited the highest cancer-

related death rate, exceeding that from colon, breast, and prostate cancers

combined. Despite the significant unmet medical need for more effective new

cancer treatments, oncology drugs have one of the lowest rates of successful

drug development (Kola and Landis 2004). The purpose of the NSCLC model
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was to leverage prior quantitative knowledge to facilitate future drug development

of other NSCLC regimens. A tumor size (biomarker) – survival (clinical outcome)

model across NSCLC trials was developed (Wang et al. 2009). The model may

facilitate clinical screening of novel compounds and provides a tool to perform

clinical trial simulations to improve the design of future trials.

Other disease–drug–trial model projects underway include human immunodefi-

ciency virus, hepatitis C, Alzheimer’s disease, pulmonary arterial hypertension,

and cardiovascular safety. These projects provide training grounds for pharmaco-

metricians.

3.3 Impact of Pharmacometric Analyses on Regulatory

Decisions from 2000 to 2008

3.3.1 Summary of Regulatory Impact

From January 2000 to December 2008, the FDA performed pharmacometric

reviews for 198 NDA/BLA submissions. The majority of these reviews were of

population pharmacokinetic analyses (57%), followed by exposure–response

analyses (50%), and of pediatric submissions (26%). Therapeutic areas were pri-

marily neurology (16%), cardiovascular–renal (15%), and oncology (13%). Phar-

macometric reviews in other therapeutic areas were each less than 10%, but the

numbers have been increasing after the centralization of pharmacometrics in 2005.

Each pharmacometrician was asked to complete a standardized questionnaire to

determine the impact of the pharmacometric analysis in regulatory decisions. Other

disciplines were not queried for this questionnaire because in previous surveys there

was a good correlation in responses between pharmacometric, clinical pharmacology,

and clinical reviewers (Bhattaram et al. 2005, 2007). An analysis was considered to

have influenced approval if the results supported effectiveness and safety, orwere used

to derive the dosing regimen. For labeling, a pharmacometric analysis was considered

influential if the results supported the clinical pharmacology, dosing and administra-

tion, or safety sections (e.g., Warnings and Precautions, or Contraindications).

Of the 198 reviews, pharmacometrics influenced approval decisions in 64% and

contributed to labeling in 67%. Figure 3.1 shows that the proportion of pharmaco-

metric-based reviews affecting regulatory decisions increased during 2000–2008.

The percentage affecting approval decisions increased from 40% during 2000–2004

to 75% during 2007–2008. A similar trend was observed for labeling decisions,

with 56% of analyses during 2000–2004 influencing labeling, compared to 79%

during 2007–2008.

Figure 3.2 illustrates the types of approval (a) and labeling (b) decisions

influenced by pharmacometric analyses. One hundred twenty-six pharmacometric

reviews influenced drug approval decisions, the analyses in which provided insight

into the product’s effectiveness or dosing regimen in over 50%. Impact on safety
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assessment was exerted in 43% of the analyses. Of the 133 reviews in which

pharmacometrics affected labeling decisions, 41% of analyses contributed to state-

ments in the Dosage and Administration section, 11% in the safety sections, and

80% in the Clinical Pharmacology section. The role of pharmacometric analyses

has increased over time within all decision types, especially in approving dosing

regimens. The impact of these analyses on labeling decisions has also noticeably

increased across all sections of the drug label.

3.3.2 Scope of Pharmacometric Reviews

3.3.2.1 Published Case Examples

Table 3.2 summarizes key review questions and the impact of pharmacometric

analyses on specific regulatory decisions in 13 published cases (Bhattaram et al.
2005, 2007). Overall, the examples illustrate that exposure–response analyses

usually influence the following approval or labeling decisions:

Fig. 3.1 Percentage of pharmacometric reviews influencing approval or labeling decisions during

2000–2008 as reported by the pharmacometric reviewer
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l Optimizing dosing regimen for labeling (cases 2, 3, 4, 5, 10, 11)
l Selecting doses for further clinical testing (cases 1, 6, 9, 12)
l Improving trial design (case 13)
l Providing evidence of effectiveness (cases 7, 8)

Fig. 3.2 Type of approval decisions (a) and labeling sections (b) influenced by pharmacometric

reviews during 2000–2008. Percentage of reviews is computed from the subset of pharmacometric

reviews influencing approval (n ¼ 126) and labeling (n ¼ 133) decisions. Each review could

contribute to more than one decision category
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Table 3.2 Previously published cases showing regulatory impact of pharmacometric analyses

FDA case example Regulatory question

Effect of pharmacometric analysis

on regulatory decision

Case 1 Natrecor®

(Nesiritide) for

decompensated

heart failure

What is the optimal dosing

regimen of nesiritide to

optimize benefit�risk

profile?

Alternative dosing regimens were

explored using the

exposure�response

relationship for blood pressure

effects. A new dosing regimen

was selected based on

pharmacometric analyses and

evaluated in an additional

clinical trial. Nesiritide was

approved by FDA in 2001

Case 2 Apokyn™

(Apomorphine HCl)

for Parkinson’s

disease

Is the proposed dosing regimen

appropriate for Parkinson’s

patients with normal and

impaired renal function?

Exposure�response modeling for

UPDRS and blood pressure was

performed to assess proposed

dosing regimen. Results

showed no additional benefit at

doses >6 mg and titration to

higher dose should not be

sooner than 90 min. For

patients with mild-moderate

renal impairment, the starting

dose should be reduced to 1 mg

Case 3 Zometa®

(zoledronic acid) for

hypercalcemia and

osteolytic metastases

Is there a need to adjust dose

in renal impaired patients?

The risk of renal deterioration

based on increased drug

exposure formed basis for dose

adjustments in patients with

reduced renal function.

Recommended Zometa doses

for patients with mild-moderate

renal impairment were

calculated to achieve the same

AUC as in patients with

creatinine clearance of

75 mL/min

Case 4 Busulfex®

(busulfan) Injection for

chronic myelogenous

leukemia

What is the appropriate dosing

strategy in pediatric

patients?

Based on population PK modeling

and simulation, a 2-step dosing

regimen was included in label

with instructions on drug

monitoring. (Booth et al. 2007)
This dosing strategy was never

directly tested in a clinical trial

Case 5 Betapace®

(sotalol) for

arrhythmias

Is the proposed pediatric dosing

regimen acceptable?

Dosing recommendations based on

FDA’s modified

exposure�response analysis for

QT and heart rate were included

in label. Label also included

specific dosing instructions for

patients <2 years, which were

never directly studied in a

clinical trial

(continued)
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Table 3.2 (continued)

FDA case example Regulatory question

Effect of pharmacometric analysis

on regulatory decision

Case 6 Confidential drug Is the dose and biomarker

predictive of clinical

outcome?

Model for dose�biomarker�
outcome relationship was

developed. Simulations

estimated reduction in

biomarker needed to achieve

clinical benefit. Doses based on

simulation were selected for

future clinical studies

Case 7 Trileptal®

(oxcarbazepine) for

epilepsy

Is there adequate evidence to

approve oxcarbazepine in

pediatric patients without a

need for additional clinical

trials?

Approval of oxcarbazepine

monotherapy in pediatrics was

based on demonstrating similar

exposure�response

relationship for seizure

frequency in pediatrics and

adults using data from

adjunctive therapy trials. Drug

effect in pediatrics was 85% the

effect in adults

Case 8 Xenazine®

(tetrabenazine) for

Huntington’s chorea

Is there adequate evidence of

effectiveness in current

clinical trial database?

A significant dose�response

relationship for Total Chorea

Score provided confirmatory

evidence of effectiveness to

support a single successful

controlled clinical trial. (Drug

Approval Package 2008c)

Case 9 Afinitor®

(everolimus) for heart

and renal transplant

rejection

What is the optimal dosing

regimen of everolimus

to optimize benefit�risk

profile?

Exposure�response relationships

for organ rejection

(effectiveness) and creatinine

clearance (safety) were

developed. Simulations

explored alternative dosing

regimens to optimize

benefit–risk profile.

Pharmacometric analyses were

presented to Cardio-Renal

Advisory Committee in 2005

with recommendations to

conduct another clinical study

using an optimized dosing

regimen

Case 10 Mycamine®

(micafungin) for

esophageal candidiasis

What is the optimal dosing

regimen of micafungin

to optimize benefit�risk

profile?

Dose–response relationships for

endoscopic response

(effectiveness) and alkaline

phosphatase (safety) were

developed. Analysis supported

the 150-mg micafungin dose,

with label including statement

indicating greater potential for

liver toxicity at higher doses

(continued)
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Additional cases are presented in the following sections to show how pharmaco-

metrics has been used to select pediatric dosing regimens, approve dosing regimens

not directly studied in clinical trials, and provide evidence of effectiveness as a

primary endpoint or to support a single successful effectiveness trial.

3.3.2.2 Pediatric Dosing Regimen

From 2000 to 2008 FDA pharmacometricians reviewed 52 submissions for pediatric

indications. Thirty-eight resulted in labeling with pediatric dosing information.

Figure 3.3 shows that these dosing recommendations were primarily driven by an

effectiveness study in children (41%), by matching drug exposures in children to

adults (37%), or by a combination of both (11%). Fewer cases were based on

pharmacodynamic endpoints (e.g., QT prolongation or aPTT) or a combination

of all data types. Pharmacometric reviews of pediatric indications evaluate the

appropriateness of a dosing regimen in all age groups using exposure–response

modeling approaches. Examples of pediatric dosing regimens based solely on

pharmacometric analyses are presented in Table 3.3.

When disease progression and exposure–response relationships in pediatrics are

similar to adults, then PK data alone can support approval and labeling for pediatric

Table 3.2 (continued)

FDA case example Regulatory question

Effect of pharmacometric analysis

on regulatory decision

Case 11 Chantix®

(varenicline) for

smoking cessation

What is the optimal dosing

regimen of varenicline to

optimize benefit�risk

profile?

Exposure�response analyses for

both efficacy and safety were

basis for dose selection. Lower

dose for patients who cannot

tolerate adverse effects was

included in label

Case 12 Confidential drug What is the optimal dosing

strategy to avoid the

majority of clinical failures?

Based on exposure�response

analysis, the sponsor

committed to conduct a phase

IV study evaluating therapeutic

advantages of monitoring

plasma concentrations and

adjusting dose accordingly

Case 13 Confidential drug What is the reason for

inconsistent results across

three registration trials?

Pharmacometric dose�response

analysis identified the

proportion of mildly diseased

nonresponders was the primary

cause of equivocal evidence.

FDA’s approvable letter

suggested that sponsor conduct

a future study including

patients with moderate and

severe disease

Cases 1–7 are from (Bhattaram et al. 2005) and Cases 8–13 are from (Bhattaram et al. 2007)
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indications. The objective of dose selection is to match drug exposures in pediatrics

with those in adults. PK modeling was used to select optimal dosing regimens of

Zosyn® (piperacillin/tazobactam) in pediatrics (Tornoe et al. 2007). The pharma-

cokinetic analysis was based on data collected from 53 hospitalized pediatric

patients (age 2 months to 17 years) with intra-abdominal infections in two clinical

trials. The analysis showed that dosing in children under 2 years needed to be

reduced by an age-related factor due to reduced renal clearance. This finding was

consistent with what is known about maturation of renal function in children.

Optimal dosing based on the modeling and simulation approach was 100 mg

Fig. 3.3 Approaches used to optimize pediatric dosing regimens in 38 submissions with dosing

information in label

Table 3.3 Pediatric dosing regimens based on modeling and simulation

Approaches for dosing regimen Examples of specific drugsa

Matching drug exposure in children to

adult exposure at labeled-dose

Busulfex® (busulfan) Injection, Zosyn® (piperacillin/

tazobactam), Lovaquin® (levofloxacin), Videx®

(didanosine), Xyzal® (levocetirizine

dihydrochloride), and Digoxin Elixar

Exposure–response of biomarker or

clinical endpoint data

Trileptal® (oxcarbazepine), Betapace® (sotalol) and

Argatroban Injection® (argatroban)

Effectiveness study plus matching drug

exposures

Celebrex® (celecoxib), Humira® (adalimumab), Ilaris®

(canakinumab), and Corlopam® (fenoldopam)
aRefer to drug approval package (Drugs@FDA) and product label for specific details
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piperacillin/12.5 mg tazobactam q8h for children �9 months and 80 mg piperacil-

lin/10 mg tazobactam q8h for children 2–9 months. A similar pediatric dose

selection strategy was implemented for the labeling of levofloxacin for anthrax

following inhalational exposure (Li et al. 2010).
When disease progression is considered to be similar between pediatrics and adults,

appropriate pediatric doses may be derived by comparing the exposure–response

relationships in the two populations. For this approach, both clinical endpoints and

qualified biomarkers have been used to define the exposure–response relationship.

The approval of Trileptal® (oxcarbazepine) monotherapy stemmed from demonstrat-

ing similar exposure–response for seizure frequency, a clinical endpoint, in pediatrics

and adults using data from adjunctive-therapy trials. The analysis showed that the

same trough concentrations in pediatrics have 85% of the effect in adults. The

pediatric dose was selected by matching target concentrations in adults that were

shown to be effective in the exposure–response model.

Pediatric dosing information for Argatroban Injection® (argatroban) was based on

exposure–analysis of a biomarker, activated partial thromboplastin times (aPTT),

obtained from 15 patients (birth to 16 years) in an open-label study (Madabushi et al.
2010). There was a concentration-dependent increase in aPTT, which was similar in

pediatric patients and healthy adults. Simulations using the exposure–response rela-

tionship indicated that 0.75 mg/kg/min was a reasonable starting dose in pediatrics

and gave comparable aPPT levels as the approved 2.0-mg/kg/min dose in adults.

Furthermore, a dose increment step size of 0.25 mg/kg/min was suitable for titration.

If the disease process is unique to pediatrics, an effectiveness and safety trial is

conducted. Dose selection for clinical trials or product labels is often based on PK

and exposure–response data. For example, approval of Celebrex® (celecoxib) for

juvenile rheumatoid arthritis was based on an effectiveness study in pediatrics

patients (age 2 to <17 years) who received an oral suspension of celecoxib at

doses of 3 and 6 mg/kg BID (Advisory Committee Meeting 2006). Population PK

modeling and simulation bridged the investigational suspension formulation to the

marketed oral capsules by integrating pediatric and historical adult data. Doses

were selected to obtain celecoxib peak concentrations that did not exceed those

observed in the effectiveness study, whereas achieving a similar overall exposure

that was shown to be effective. From the results of the modeling approach, dosing

recommendations were based on body weight cut-off values: 50 mg BID for

children 10–25 kg and 100 mg BID for children >25 kg.

3.3.2.3 Drugs with Approved Doses Not Directly Evaluated

in Phase 3 Trials

In 21 (11%) of the 198 NDA/BLA submissions reviewed by FDA pharmacome-

tricians, the labeled dose was based on pharmacometric analyses, rather than being

evaluated in effectiveness trials. Of the 21 submissions, 13 were for pediatric

indications listed in Table 3.3. For adult indications, Table 3.4 summarizes the

dosing rationale derived from pharmacometric analyses.
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Table 3.4 Approved adult doses not directly evaluated in phase 3 trials

Druga
Dose recommendation based on

pharmacometric analysis

Zometa® Injection (zoledronic acid), for

hypercalcemia and osteolytic metastases

Risk of further renal deterioration due to

increased drug exposure in renal impairment

formed basis for dose-adjustment in patients

with reduced renal function. Recommended

Zometa doses for patients with mild-

moderate renal impairment were calculated

to achieve the same AUC as that achieved in

patients with creatinine clearance of 75 mL/

min (Bhattaram et al. 2005)

Zemplar® Capsules (paricalcitol); for

hyperparathyroid hormone excess in

chronic kidney disease

In stage 5 chronic kidney disease, the Zemplar

dose in the phase 3 study was based on

baseline iPTH/60. Subsequent dose

adjustments were based on iPTH/60 and

serum chemistries. Trial simulations showed

the incidence of hypercalcemia with

Zemplar is reduced with a lower dose based

on the iPTH/80 formula. Simulations

showed increased efficacy in patients with

baseline serum calcium �9.5 mg/dL (Drug

Approval Package 2005)

Xenazine® Tablets (tetrabenazine) for

Huntington’s chorea

Dose-reductions for patients who are CYP2D6

poor metabolizers or patients taking strong

CYP2D6 inhibitors were based on

pharmacokinetic simulations. (Drug

Approval Package 2008c)

Chantix® (varenicline tartrate) for smoking

cessation

Exposure–response analyses for both efficacy

and safety were basis for dose selection.

Lower dose for patients who cannot tolerate

adverse effects was included in label.

(Bhattaram et al. 2007)

Cleviprex® (clevidipine) for hypertensive

emergencies

Cleviprex dosing regimen used in clinical trials

resulted in overshooting and oscillations

around the target blood pressure.

Simulations of the exposure–response

relationship were used to optimize the

dosing regimen to quickly achieve and

maintain target blood pressure. (Drug

Approval Package 2008b)

Sotalol HCl Injection for arrhythmias Bioavailability of oral sotalol is 90–100%. PK

modeling was used to select an IV dosing

regimen that gave comparable Cmax values

to oral 80-mg dose. Conversion from 80-mg

oral sotalol to 75-mg intravenous sotalol

over 5 h gave comparable Cmax values.

(Sotalol Label 2009)

Cimzia® (certolizumab pegol) for

rheumatoid arthritis

The Cimzia dosing regimen used in the

monotherapy clinical trial (RA-IV) did not

include loading dose. Based on

exposure–response relationship for ACR-20,

a 400-mg loading dose initially, and at

(continued)
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3.3.2.4 Pharmacometric Analysis Used as Evidence of Effectiveness

Provide Confirmatory Evidence

The FDA generally, but not always, requires two trials to replicate evidence of

effectiveness in the drug approval process. A single registration trial can provide

substantial evidence of effectiveness for additional indications, new populations,

different dosing regimens, or changes in formulation. Pharmacometric analyses

have been instrumental in providing confirmatory evidence typically when two

positive registration trials are required but by themselves did not provide convincing

data. Such analyses help investigate internal consistency of the results which forms a

component of supportive evidence. Nine submissions of 198 (4.5%) used pharmaco-

metric analyses of exposure–response data as confirmatory evidence for product

registration (Table 3.5).

Model-Based Primary Endpoint for Phase 3 Trials

The primary clinical trial endpoint plays an important role in drug development.

There is an increasing trend to use model-based primary endpoints in pivotal trials

such as the slope in a dose–response model. There were five NDAs out of 198

submissions reviewed by pharmacometrics that used model-based endpoints. Inter-

estingly, all were for pediatric submissions. Three drugs (candesartan, valsartan,

and metoprolol succinate) were to treat pediatric hypertension, and the slope of the

dose–response for reduction in systolic blood pressure was used as the primary

endpoint. The other two submissions (oxcarbazepine and a confidential drug) were

Table 3.4 (continued)

Druga
Dose recommendation based on

pharmacometric analysis

weeks 2 and 4 increased ACR-20 response

rates at 12 weeks. Furthermore, the

probability of developing antibodies to the

drug was found to decrease with increasing

Cimzia concentrations. (Drug Approval

Package 2008a)

Humira® (adalimumab) for Crohn’s disease Recommended Humira dose for adults is

160 mg initially, followed by 80 mg at

2 weeks. Induction dose may be given as

40 mg SC q6 h for 1 day, or 40 mg SC BID

for 2 days. Predicted exposure at week 1

when splitting the induction dose over

2 days is superimposable to the exposure

when the full dose is given on the first day.

(Humira® Label 2007)
aRefer to drug approval package (Drugs@FDA) and product label for specific details
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Table 3.5 Examples of drugs where pharmacometric analyses were used as confirmatory evidence

of effectiveness

Druga Indication Confirmatory evidence

Toprol-XL® (metoprolol

succinate)

Hypertension Significant dose–response and

exposure–response in blood pressure

reduction in pediatrics

Internal consistency across different blood

pressure parameters (e.g., systolic,
diastolic)

Heparin sodium Acute myocardial

infarction

On- and off-heparin treatment

significantly delays the time to

secondary myocardial infarction

Heparin’s mechanism of action and prior

experience

Seroquel® XR (quetiapine

fumarate)

Schizophrenia and

bipolar affective

disorder

Significant dose–response (PANSS score

change from baseline) relationship in

schizophrenia patients

Similar treatment pattern observed

following the treatment of Seroquel XR

and immediate-release formulation

Trileptal® (oxcarbazepine) Epilepsy Significant exposure–response

relationship in pediatrics from adjunct

therapy trials

Consistency with that in adults

Xenazine® Tablets

(tetrabenazine)

Huntington’s chorea Significant dose–response (chorea score)

relationship

Internal consistency of results across one

positive, one negative trial and their

extensions (Bhattaram et al. 2005;
Drug Approval Package 2008c)

Revatio® (sildenafil) tablets Pulmonary arterial

hypertension

20 mg TID and higher doses do not

provide additional benefit with respect

to delay in clinical worsening, exercise

capacity and vascular hemodynamics

Internal consistency between two trials for

exercise capacity and vascular

hemodynamics

Lamictal® XR (lamotrigine)

Extended-Release

Tablets

Epilepsy Significant dose–response alleviated

concern for lack of effectiveness in the

US population (center-effect) along

with prior data from immediate-

release formulation

Ranexa® (ranolazine)

extended-release tablets

Angina Significant exposure–response relationship

in exercise tolerance testing

Atacand® (candesartan

cilexetil) tablets

Hypertension Significant dose– and exposure–response

relationship for blood pressure in

younger and older pediatric patients, in

spite of negative result for the older

pediatrics
aRefer to drug approval package (Drugs@FDA) and product label for specific details
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for pediatric epilepsy (monotherapy or adjunctive therapy). The primary endpoints

in these two submissions were slopes of dose–response and exposure–response in

reduction of seizure frequency.

3.4 Future Perspectives

The focus of Pharmacometrics as a scientific discipline has evolved over the

decades. The development of pharmacometric concepts and tools, largely in acade-

mia occurred during the period from 1970 to 1990. This phase can be called the

“scientific discovery period” of pharmacometrics. Initially, clinical pharmacolo-

gists quantified the relationship between dose or exposure and response at fixed

times due to insufficiency of methods to analyze the time-course of drug action.

An important advancement was the introduction of the effect compartment model

(Sheiner et al. 1979), and later, indirect response models (Jusko and Ko 1994;

Krzyzanski and Jusko 1997). These allow for quantitative descriptions of time

delays between drug concentrations and observed responses. Many tools using

regression and maximum-likelihood algorithms were introduced during this period.

In terms of application, modeling was rarely employed in drug development, and

then mainly early in drug development. The introduction of tools that model sparse

data created opportunities for scientists to engage with the late phase trials.

Over the past two decades, pharmacometrics has evolved most notably as an

important decision-making tool during drug development (Peck 1992a, b, 1997;

Reigner et al. 1997; Olson et al. 2000; Miller et al. 2005; Zhang et al. 2006;
Lalonde et al. 2007) and regulatory review, as illustrated by the many examples

provided above. The concept of clinical trial simulations started to evolve during

1990s (Taylor and Bosch 1990; Gieschke et al. 1997; Hale et al. 1998; Krall et al.
1998). Gradually, pharmacometricians have been sought after to aid in higher-level

go/no-go decisions, dose selection, trial design, endpoint selection, safety evalua-

tion, evidence of effectiveness, approval, and labeling. The past 2 decades can be

referred to as the “entrepreneurial period” of pharmacometrics.

What follows should be the “industrialization period.” Pharmacometrics

managed prudently is already emerging as a major player in key drug development

and regulatory decisions. In some areas, it has essentially revolutionized inadequate

paradigms of dose optimization. An example would be in pediatric drug develop-

ment, in which the ineffective practice of body-size scale-down from adult dosages

has been replaced by the exposure-response guided approach. Currently, the two

most important areas for investment are the development of standards for different

diseases and training future pharmacometricans. The pharmacometric approaches

during the “entrepreneurial period” have been, by and large, customized for each

problem. In order for the discipline to expand its influence on the quality of drug

development decisions, unifying standards for each disease need to be developed.

Their purpose is to streamline data collection, analysis, reporting, and archiving,

and to provide a common framework for interpretation of pharmacometric
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analyses. Such a step fosters consistency, speed, quality, not only within, but also

across organizations. Standardization will also enhance our ability to interact with

other disciplines (e.g., statistics, medical). Among the 2020 goals for the Division

of Pharmacometrics are the development of such standards (www.fda.gov/

AboutFDA/CentersOffices/CDER/ucm167032.htm#FDAPharmacometrics2020-

StrategicGoals).
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Chapter 4

Decision-Making in Drug Development:

Application of a Model Based Framework

for Assessing Trial Performance

Mike K. Smith, Jonathan L. French, Kenneth G. Kowalski,

Matthew M. Hutmacher, and Wayne Ewy

Abstract This chapter proposes a general framework for the formal integration of

model-based predictions and their uncertainty in the planning of prospective trials

and in quantitative decision-making. Standard operating characteristics such as

statistical power, which are conditional on a chosen effect size, quantify the

performance of the design. Optimising trials based solely on power does not fully

address the needs of drug development teams interested in understanding the

performance of the compound as well as the performance of the proposed study

design. Many Phase 3 trials fail due to lack of significant efficacy despite being

adequately powered. Power does not take into consideration the likelihood of

achieving the assumed treatment effect. Metrics such as probability of a correct

decision, probability of a Go decision, and probability of reaching a target value are

proposed to evaluate the performance of the compound and trial. A conceptual

clinical trial simulation (CTS) approach is outlined for calculating these trial

performance metrics and to evaluate the ‘false positive’ and ‘false negative’ error

rates for the proposed metrics. An example is presented to illustrate the CTS

procedure and show how different choices of trial design, analytic technique and

trial metric influence the probability of making correct decisions.

4.1 Introduction

Drug development proceeds via a series of many interlocking cycles of questions,

answers and decisions. We ask questions about what the drug candidate does and

how best to use it, guided by medical needs, commercial reality and regulatory

requirements. We get answers from clinical trials, literature and laboratory experi-

ments. We make decisions based on these answers, often using formal decision

criteria to generate decision recommendations, which are evaluated within the
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wider development context (i.e., considering all the answers to many relevant

questions) to make the actual decisions.

In his landmark paper, Sheiner (1997) discussed how the alternating steps of

induction and deduction of Box (1966) could apply to drug development and

remarked how the emphasis on regulatory approval drove the intellectual focus

on demonstrating (confirming) efficacy. There is a commonly held view that

“learning” and “confirming” apply to individual trials or even phases of drug

development, however we maintain that it is possible to learn and confirm within

the same trial – a single trial can address some confirmatory questions while

providing valuable information to help formulate new questions or learn about

the action of the drug in other areas. The primary goal in addressing confirmatory

questions is to demonstrate statistically whether the drug has the desired effect. In

these cases the hypothesis being tested, the study design, test statistic and operating

characteristics can be well defined and in general these attributes have been well

discussed and are well understood across the statistical literature. However, the

corresponding designs, statistics, operating characteristics and decision criteria to

address “learning” questions are less well understood and may be driven to some

extent by context of the disease area, drug characteristics, precedent, prior informa-

tion, and decision making processes within the individual drug company. It should

be pointed out that a design optimised for “confirmatory” questions is often less

than optimal for addressing “learning” questions. As drug development proceeds,

various studies carry different emphases for learning and confirming – some are

purely “learning” studies while some are purely “confirming” studies.

In this chapter, we discuss some of the issues for addressing “learning” questions –

decision making in clinical trials where the principle aim is to evaluate whether the

drug works well enough, in selecting doses that give sufficient efficacy for further

development, or in evaluatingwhether a study designed to estimate dose-responsewill

provide sufficient information for a decision to progress to the next stage of develop-

ment. The methods discussed can also be extended to addressing “confirming” ques-

tions where the decision is based not just on statistical significance, but where the

magnitude of treatment effect is a key metric in the decision making process –

especially when comparing a novel treatment to a reference treatment or competitor.

Decision criteria can be viewed in the same way as diagnostic tests – we are

interested in the sensitivity and specificity of the criteria (Chuang-Stein et al. 2010).
In diagnostic tests, the criteria are driven by choosing values such that false positive

and false negative results are reduced, but the predictive value of the criteria are

also influenced by the underlying prevalence of the disease, or the underlying rates

of positive or negative outcomes. In the same way, the probability of making the

correct decision in a clinical trial is a function of the chosen decision criteria, but

also the underlying probability of a positive outcome for the drug itself. This

probability is in part intrinsic to the drug and is influenced by the disease and its

stage and choice of clinical endpoint, but also includes uncertainty in the effective-

ness of the treatment expressed through models of disease and drug action. For

example, a given drug may have a low probability of success in a given indication

so we may wish to ensure that we employ a decision criteria to stop the next trial as
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soon as possible if the drug indeed fails to show sufficient efficacy. Note that we

do not limit ourselves to thinking in terms of statistically significant efficacy; if

we have a low probability of achieving the clinical and commercial profile for the

drug, we may (and probably should) stop development early regardless of statistical

significance.

Lalonde et al. (2007) described the framework for model-based drug develop-

ment and identified six key components: PK-PD and disease models; competitor

information and meta-analysis; design and trial execution models; data analytic

models; quantitative decision criteria; and trial performance metrics. In this chapter

we describe how these components integrate together to provide quantitative

assessment of drug and trial performance metrics. In Sect. 4.2 we introduce

terminology and notation to describe the quantities of interest, define decision

criteria and calculate the trial performance metrics. Section 4.3 illustrates how

decision criteria choice can influence trial performance metrics, through probabi-

listic results from a very simple bivariate normal distribution. We then describe in

Sect. 4.4 a real-world example where information from meta-analysis and informa-

tion about trial design, execution and imputation were used to simulate trial

performance metrics. In Sect. 4.5 we discuss some practicalities of performing

model-based drug development and simulation within this context. Finally,

Sect. 4.6 provides a discussion of how this new paradigm of drug develop-

ment requires close collaboration within drug development teams, especially

between the quantitative disciplines – clinical pharmacologists, statisticians and

pharmacometricians.

4.2 Notation and Terminology

In order to formally describe the quantitative decision criteria and operating

characteristics we first introduce some notation. Let D be the true, unknown and

unobservable value of some measure of treatment effect. For example, this could be

the difference relative to a comparator compound for a specific treatment, a model-

based estimate of the effect at a given dose of the investigational drug or, as in the

example of Sect. 4.4, the relative potency of two compounds from the same drug

class. In the context of trial design for “confirming” questions, D is usually assumed

to have a fixed value, usually the minimally important clinical difference and is

reflected in the choice of alternative hypothesis. Alternatively, we can view D as

having a distribution describing our prior belief about the likelihood of given values

for D. At a given stage of drug development, we should account for the fact that our

knowledge of D is incomplete. What is known about Dmay be based on analysis of

prior information through PK-PD exposure-response models, disease progression

models, meta-analysis of prior data, etc. If D is defined in this way we can express

our current knowledge about D through model parameters y for fixed effect

relationships, O for between subject variability parameters and S for within subject
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or residual error. Thus, for a given set of model assumptions and this prior

information we will have an estimate of D:

D̂ ¼ f ðy;O;SÞ (4.1)

When we estimate values for y, O and S we generally also calculate the uncertainty

around these values. As a consequence we can view y, O and S as having

probability distributions and so D̂ will also have a probability distribution through

a combination of these parameters using the functional forms in f(. . .). Note that if
the model includes random effects in the non-linear parts of the model or a non-

additive residual error model, then the expected difference from placebo would also

be functions of the between-subject variances and/or the residual variance. Note

that the estimate D̂ is dependent on all currently available information and, as new

information emerges, we should update our models and parameter estimates to

reflect this. Thus, the distribution for D̂ becomes a “snapshot” of our knowledge

about D at a given moment.

We also need to define a target value TV, which is a reference value for the effect

D such that if we knew that D>TV then we would make a decision to continue drug

development with the investigational drug. The target value TV is usually based on

a synthesis of clinical and commercial opinion of what constitutes a meaningful

difference relative to a reference treatment. It may also take into consideration

trade-offs between efficacy and safety and, increasingly recently, differentiation

over current therapies for the disease under study. We may impose a further

stricture on D such that we would recommend further development only if we

have sufficient confidence that D̂>TV. Note that we do not know the “true” D, and
we only have our “best guess” at it through D̂. As a consequence, when we make

strategic and operational decisions based on this we will want to have reasonable

confidence that D̂>TV so that in turn D is also likely to be >TV. Note that D and D̂
do not depend on any particular sample size or trial design. They may however

depend on when the treatment effect is measured if the endpoint of interest is

measured longitudinally. In such cases, we would include time as a covariate in the

function (4.1) above. Similarly, other covariate influences on D can be incorporated.

From here on, we will treat D and D̂ as synonymous in the context of making

decisions at a given stage in drug development. D̂ changes as new data becomes

available. This data can be specific to the drug in question or influenced by

externally available information on disease, dropout models, relationships between

early and late outcomes, data on comparator compounds, etc.

We define the trial level estimate of the treatment effect, T. That is, T is our

estimate of D for given trial data and is the result of an applied analytical technique

to the trial data. T may be a point estimate or an interval estimate based metric

such as the lower or upper confidence limit. For the trial results, we construct a

decision criteria that compares the trial test statistic T to the target value TV. If we

have sufficient confidence that T � TV then we make the decision to continue

development with the investigational drug based on the data from the current trial.
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If there is sufficient evidence to show that T < TV or alternatively, or if our

confidence that T � TV is low, then we stop development. In most cases we will

compare D and T against the same value of TV, particularly in the case where both

D and T are based on point estimates of treatment effect. If T is based on a

confidence limit then since D does not have an analogous equivalent (recall that

D does not depend on sample size or design) then we may need to select different

values of TV for T and D. An example of this is given in Sect. 4.4.

The traditional approach to trial design and decision criteria for answering

“confirming” questions is to assume D ¼ d 6¼ 0 is fixed and known, where d is

assumed effect size. However, in this case there is typically little formal evaluation

of the probability of achieving the assumed effect size d. In addressing learning

questions we wish to be confident that our inference about T agrees closely with

inference about D. For example, if we see T � TV in a given trial, then we want to

be sure that the true state is that D is also greater than TV. If our design, analysis and

application of decision criteria to the results lead to high probability of inference

about T and D agreeing, then we can be more confident that we are able to make

correct and consistent decisions. In the case where D is a nonlinear function of

model parameters as described in (4.1) we must turn to clinical trial simulation

(CTS) to calculate T and assess these probabilities since analytical solutions for

these types of trials are seldom available.

For a given trial simulation replicate, we draw values of y, O, S and covariate

values, calculate D and then for the same set of model inputs calculate T for a given

design. It is a key step here to compare decisions for identical inputs (i.e., for the
same set of y, O, S) so that we can compare the “truth” vs. “trial” outcomes within

each simulation replicate. Based on simulating D and T for the “truth” and “trial”

outcomes respectively, we can construct a 2 � 2 contingency table by counting the

number of replicate outcomes that fall into each of the 4 cells (Table 4.1).

We define P(Correct) as the sum of the diagonal elements P(T � TV & D �
TV) + P(T < TV & D < TV), and P(Incorrect) as the sum of off-diagonal

elements. Which incorrect decision is most critical depends on the stage of devel-

opment – in early phase development we may consider a “continue” decision on a

drug with D < TV less critical than a decision to halt development on a compound

where D � TV. However, later in development the converse will certainly hold.

Through the CTS procedure then, we can calculate and quantify the probability of

achieving the target value (PTV) ¼ P(D � TV), P(Correct decision), and P(Incor-
rect decision).

It is the sponsor’s decision which limits for PTV and P(Correct) are acceptable
at each stage of drug development and for each disease area. A therapy with high

Table 4.1 Contigency table of “truth” vs. “trial”

Truth vs. trial T < TV T � TV Total

D < TV P(T < TV & D < TV) P(T � TV & D < TV) P(D < TV)

D � TV P(T < TV & D � TV) P(T � TV & D � TV) P(D � TV)

Total P(T < TV) P(T � TV) 1.0
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unmet medical need may be progressed in early development even when PTV is

low if, and only if, we can be assured that P(Correct) is high. In other indications

where the investigational drug needs to be strongly differentiated over competitor

compounds, we may decide to halt development if PTV is low without even

conducting a trial. We also need to acknowledge that the choice of acceptable

PTV is a portfolio decision since resources are finite and that resources are

generally only assigned to compounds that have a reasonable probability of success.

Although we are concentrating within this chapter on making decisions about

design, analytic methods and decision criteria at the trial level, we must bear in

mind that good decisions at the portfolio level are also vital. For this reason,

quantification of PTV is important throughout a compound’s development and

should be assessed and updated whenever new information becomes available.

In the absence of prior information for D, for example if this is an unprecedented

disease area or a novel endpoint, we may choose to use discrete values for D,
examining trial outcomes for a variety of values for D and comparing T � TV at the

trial level when we know whether D � TV. We may also wish to incorporate a

discrete probability distribution for the chosen values for D – this will allow us to

establish the likelihood of achieving D � TV as well as T � TV. In this latter case

we move close to what could be considered Bayesian subjective prior concerning

P(D � TV).

4.3 Illustrative Example Using Bivariate Normal Distributions

4.3.1 Introduction to the Example

We illustrate the concepts above using a simple example where the operating

characteristics of the “trials” can be calculated theoretically using bivariate normal

distributions. The results of these theoretical calculations can be compared to those

obtained using CTS of individual trials. First, let us imagine that analysis of prior

data has estimated a treatment effect, D to have mean ¼ 3.27 with associated

standard error ðsDÞ ¼ 0:6 and standard deviation of the endpoint of interest

measured for an individual is ðsYjDÞ ¼ 7. For simplicity here we will not take

into consideration uncertainty on this standard deviation. Theoretically, we should

take into account uncertainty in all quantities in our simulations – the example in

Sect. 4.4 illustrates this. In some cases, though, we have good information about the

variability in the measurement of interest, usually from prior data or experience,

even when the effect of the novel treatment on the endpoint (i.e., D) is not well
known.

To simulate N replicated trials with n subjects per treatment group within each

trial we use the following method:

1. The uncertainty in D is assumed to be follow a normal distribution having a

mean D of 3.27 and standard deviation, sD of 0.6, the prior estimate of the
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standard error of D. Let Di denote the realisation of D for the ith trial. The

measurement model, where Yij denotes the observation for the jth subject in

the ith trial, also has a normal distribution with mean set to Di and standard

deviation sYjD set to 7, the prior estimate of the measurement standard deviation.

This simple mean model can be used to simulate clinical trial data with one

observation per subject for n subjects for each of N simulated trials. Using the

notation introduced above for the simple quantitative decision, the data-analytic

model is simply, T ¼ �Y, the arithmetic mean.

2. Now consider the simple quantitative decision rule where a “True” Go decision

is made if the value of D is greater than or equal to a target value (TV) of 3 and

conversely, a true No Go decision is made if D is less than 3. Similarly, data-

analytic Go and No Go decisions are made if the observed arithmetic mean is

greater than or equal to 3 or less than 3, respectively. Using with the model

assumptions above, it can be shown that the joint distribution of Di and �Y is

bivariate normal. Thus:

Di

Yi

� �
� MVN

D

D

 !
;

s2D s2D
s2D s2D þ 1

ns
2
YjD

 !" #
(4.2)

So, for this example
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�Yi
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3:27
3:27
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0:62 0:62

0:62 0:62 þ 1
n7

2

� �� �

Moreover, the joint probability that both �Yand Di are less than or equal to the target

value of 3 can be calculated using readily available functions such as the SAS/

BASE software PROBBNRM function, pmnorm and rmnorm in the R package

“mnormt” (Azzalini and Genz 2009) and pmvnorm in Tibco Spotfire S+. These

joint probabilities essentially populate the 2 � 2 table from which the decision

criteria operating characteristics can be calculated.

This example is sufficiently simple such that the operating characteristics can be

calculated theoretically. Simulation in this case consists of drawing values of Di for

each trial and then drawing a �Yi conditional on the Di with variability depending on

the size of the trial (through n). Thus, we have a very simple method for simulating

both “truth” and “trial” results under this simplified framework. In Sect. 4.5 we

discuss simulation practicalities for more complex situations.

4.3.2 Operating Characteristics for Decision Criteria
Based on Point Estimates

We introduce below a mathematical notation for frequency-based calculations of

the probability of a data-analytic Go decision or P(Go), probability of a correct
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decision or P(Correct), and the conditional probabilities for false Go and false No

Go decisions. In the notation, the function I denotes an indicator variable which is

assigned the value of 1 when the argument in parentheses is true and is assigned the

value of 0 when the argument in parentheses is false.

PðGoÞ ¼ 1
N

XN
i¼1

Ið �Yi � 3Þ

PðCorrectÞ ¼ 1
N

XN
i¼1

Ið �Yi � 3Þ;Di � 3Þ þ Ið �Yi<3;Di<3Þ

PðFalseGoÞ ¼ PðGojDi<3Þ ¼ PðGo;Di<3Þ
PðDi<3Þ ¼

1
N

PN
i¼1 Ið �Yi � 3;Di<3Þ
1
N

PN
i¼1 IðDi<3Þ

PðFalseNoGoÞ ¼ PðNoGojDi � 3Þ ¼ PðNoGo;Di � 3Þ
PðDi � 3Þ ¼

1
N

PN
i¼1 Ið �Yi<3;Dir3Þ

1
N

PN
i¼1 IðDi � 3Þ

Specifically, P(Go) is obtained by summing the number of simulated trials where �Yi
is greater than or equal to 3 and dividing this sum by N, the total number of

simulated trials. Similarly, P(Correct) is obtained by summing the number of

simulated trials where �Yi and Di are both greater than or equal to 3 or both are

less than 3 and dividing this sum by N. The probability of a false Go decision or P
(False Go) is obtained by summing the number of simulated trials where jointly �Yi
is greater than or equal to 3 and Di is less than 3 and dividing this sum by the total

number of trials where Di is less than 3. Similarly, the probability of a false No Go

decision or P(False No Go) is obtained by summing the number of simulated trials

where jointly �Yi is less than 3 and Di is greater than or equal to 3, and dividing this

sum by the total number of trials where Di is greater than or equal to 3.

Frequency-based calculations such as these were used to generate the complete

2 � 2 table of operating characteristics. For example, Table 4.2 shows the

operating characteristics of a trial of size n ¼ 225, based on 10,000 simulated

trials. The numbers in parentheses are the theoretical probabilities based on the R

function pmnorm

Note that the PTV for this scenario is approximately 67%. Again, this intrinsic

property of the drug is based on predictions from our current models of drug action,

Table 4.2 Operating characteristics for n ¼ 225 using point decision criteria

No Go �Yi<3 Go �Yi � 3 Total

Di < 3 23.71% (24.61%) 7.69% >(8.02%) 31.4% (32.63%)

Di � 3 11.49% (11.51%) 57.11% (55.86%) 68.6% (67.37%)

Total 38.75% (36.12%) 61.25% (63.88%) 10,000 Simulations

100%
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disease mechanisms and competitor information and is not related to the design or

sample size of the study. In Table 4.2, PTV is calculated simply through drawing

values of Di and comparing these values against our target value and so for the

10,000 simulations above is subject to a small amount of sampling error – as the

number of simulations increases we will approach our theoretical result that

PTV ¼ 67.37%. In this example we know the distribution of D and so could state

the probability of achieving the target value of 3 explicitly. In more realistic

situations, we will not know this probability distribution – it may result from a

nonlinear combination of many model parameters. A more detailed discussion of

the practicalities of quantifying this value is discussed in more detail in Sect. 4.5.

The probability of a correct decision or P(correct) is obtained by summing up the

probabilities of the diagonal cells in the 2 � 2 table corresponding to 23.71 and

57.11% for a total of 80.3%. The corresponding exact calculation for P(Correct) is
reported as 80.5%. Whether this is high enough is a decision for the sponsor but in

this case we consider it very reasonable. One additional question is whether the

proportions of false Go and false No Go decisions are acceptable. While, overall,

the design is achieving reasonable P(Correct), we may decide to investigate other

designs if in the sponsor’s view the probability of false No Go is unacceptably high.

In this example, our probability of making a correct decision is deemed reason-

able. This suggests that for a sample size of n ¼ 225, we can make good decisions

based on this rule. The next question of interest may be whether we can continue to

make reasonable decisions with smaller sample sizes and how P(Correct) varies
with sample size. In a general sense, it is worth pointing out that there are several

factors that influence the probabilities shown in this table: the underlying effective-

ness of the drug characterised through the model describing treatment effects and

the associated uncertainty in model parameters, the trial design, and the decision

criteria. When investigating how the probabilities vary it is important to ensure that

the practitioner is comparing like with like – comparing decision criteria within

designs or comparing designs for fixed decision criteria.

If we vary the sample size, we can plot out how P(Correct), P(Go) and P(Go|D)
changewith sample size. Similar simulationswere performed for sample sizes ranging

from 10 to 1,000 subjects per trial. Figure 4.1 below shows selected operating

characteristics as a function of sample size with probability of a Go decision, or

P(Go) shown as the grey dashed line in Fig. 4.1 probability of a correct decision,

or P(Correct), shown as the solid black line and probability of a Go decision given D,
or P(Go|D), shown as the solid grey line. P(Go|D) was computed in the CTSs whereD
is fixed to themean estimate of 3.27 for all trials, that is, the uncertainty in the estimate

of D is not taken into account. Thus, P(Go|D) is somewhat analogous to a power

calculation except that in this example the data-analytic decision rule is not a formal

test of statistical significance.

Note that for this example P(correct) > P(Go|D) for sample sizes less than or

equal to 1,000. Moreover, as the sample size increases, both P(correct) and P(Go|D)
converge to 100% while P(Go) converges to the probability of a true Go decision

corresponding to the probability that Di � 3 which equals 67.36% for this example.

The reason that P(Go) does not converge to 100% is because the marginal variance
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of �Ydepends on both the variability or uncertainty in D denoted as s2D as well as the

measurement variability denoted as s2YjD and only the latter term goes to zero as the

sample size goes to infinity. In other words, the uncertainty in our prediction of �Y
will always have a contribution due to our uncertainty in the prediction of D, which
can only be reduced after the trial is conducted and an updated model prediction ofD
is obtained based on the data from the new trial.

4.3.3 Operating Characteristics for Decision Criteria
Based on Interval Estimates

Now let us extend the discussion to the operating characteristics for the same

“Truth” decision criteria (i.e., Go if Di � 3), but with trial level decision criteria

that are based on confidence limits. In choosing doses or treatments for further

development we may decide to accelerate development of treatments or doses with

good evidence of efficacy and some confidence that they might ultimately meet our

target value efficacy, while dropping or stopping development of doses or treatments

that show low probability of ever meeting our target value. If neither of these criteria

is met, or if there is too much uncertainty in the current estimates, we may decide to

pause and gather more information before making a “Go” or “No Go” decision. This

latter decision may be seen as a “Pause” or “Grey” outcome. Figure 4.2 below shows

how we might construct interval estimates based on trial data and compare these

against two values: a null, zero effect (no difference between treatments) and our

target value ¼ 3.

If the treatment shows statistical significance (testing against 0) and the upper

confidence limit of T is �3 then we would choose to develop that treatment further.

Fig. 4.1 Operating characteristics for point estimate criteria as a function of sample size
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If the lower confidence limit is<0 and the upper confidence limit is<3 then we stop

further development. Where the interval estimate is wide and spans both 0 and

TV ¼ 3, the result is clearly inconclusive and we may decide to refine the study

design with a view to reducing variability in the data analytic estimate. In the other

case, where the lower limit is above zero but the upper limit does not reach our TV,we

may wish to reconsider our choice of TV ¼ 3 (vs. say TV ¼ 2.5) and/or consider

carefully whether the effect shown is sufficient to warrant further development given

the costs, benefit risk of the treatment relative to any safety issues, etc. These cases are

likely to involve a lot of cross-disciplinary discussion and, through our evaluations of

the operating characteristics, we can facilitate discussion of these cases in advance of

the trial itself, allowing refinement of the decision criteria or target value if required

without biasing the actual trial outcome.

The mechanics of simulation for trials using interval estimate decision criteria

are very similar to those described above in Sect. 4.3.1 for the point estimate

decision criteria, and we use the same frequency-based calculations. Suppose, for

example, we choose to make a Go decision if the data analysis shows LCL80 > 0

and UCL80 > 3, where LCL80 and UCL80 are the lower and upper limits of an 80%

confidence interval (CI). Then, the probability of a Go decision, a correct decision

and a Pause decision are given below.

PðGoÞ ¼ 1
N

XN
i¼1

IðLCL80 > 0;UCL80 � 3Þ

PðCorrectÞ ¼ 1
N

XN
i¼1

IðLCL80 > 0;UCL80 � 3;Di � 3Þ þ IðUCL80 < 3;Di < 3Þ

PðPauseÞ ¼ 1
N

XN
i¼1

IðLCL80 � 0;UCL80 � 3Þ

Fig. 4.2 Quantitative decision criteria based on interval estimates
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Note that the Pause decision does not depend on the “truth” and sowe have a 2 � 3

table (Table 4.3) showing the results of 10,000 simulations when n ¼ 20.

In this case, P(Go) ¼ 76.33% while P(Correct) ¼ 61.63%. Again, P(Go)
includes cases where the true effect is less than our target value. With this small

sample size we have some “Pause” decisions made.

If we increase the sample size to n ¼ 225, we get the results as shown in

Table 4.4. Note that having increased the sample size we now have no “Pause” or

Inconclusive results. P(Go) for this decision criteria and design is 87.75% while

P(Correct) ¼ 78.25%. Using the confidence limit based approach we increase our

P(Go) but slightly decrease our P(Correct) from the mean value criteria for the

same design. We have an increased P(False Go) and decreased P(False No Go)

using this criteria since the confidence limit approach is less stringent than the

mean > TV criteria. We only need to have 10% of the probability distribution

above TV rather than 50%. Figure 4.3 below shows the influence of sample size on

the operating characteristics for these decision criteria:

Interestingly, P(Go) is non-monotonic for increasing n, while P(Correct) and
P(Go|D) tend to 100%. The non-monotonicity of P(Go) is due to the boundary

condition when D approaches the target value of 3. For small sample sizes to reach a

“Go” decision the lower confidence limit must be>0 but the interval estimate will be

wide regardless of the true value of D. For larger values of n, the confidence limit

shrinks so that even though the lower confidence limit is >0 the upper limit may be

less than 3 resulting in a “No Go” decision. This non-monotonic property of P(Go)
across sample sizes suggests that it is not a robust metric for trial performance.

Table 4.3 Operating characteristics for a design with n ¼ 20 using confidence limit criteria

No Go

UCL80 < 3

(%)

Go

LCL80 > 0 and

UCL80 � 3

(%)

Pause

LCL80 � 0 and

UCL80 � 3

(%) Total

Di < 3 5.28 19.98 6.9 32.16%

Di � 3 3.70 56.35 7.79 67.84%

Total 8.98 76.33 14.69 10,000

Simulations

100%

Table 4.4 Operating characteristics for a design with n ¼ 225 using confidence limit criteria

No Go

UCL80 < 3 (%)

Go

LCL80 > 0 and

UCL80 � 3 (%) Total

Di < 3 10.95 20.45 31.4%

Di � 3 1.3 67.3 68.6%

Total 12.25 87.75 10,000

Simulations

100%
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Note also that for the confidence limit criteria, P(Correct) < P(Go|D), while for the
point estimate (e.g., mean) criteria P(Correct) > P(Go|D). Requiring the point

estimate from the data analysis to be greater than a target value may be a high hurdle

in early studies with small sample sizes, whereas in later studies, where achieving a

threshold of efficacy is essential for labelling and marketing claims, it may be

particularly relevant. In contrast, interval estimate approaches allow us to say

something about the plausibility of achieving a target level of efficacy without ruling

out effects that are close but less than this value.

4.4 Applying Decision Criteria in a Dose-Response Example

In the previous section we have shown the simulation process and how frequency-

based calculations (counting different outcomes) are used to quantify the operating

characteristics. We have shown how operating characteristics are affected by the

choice of metric (mean value or confidence limit), target value, design (through

sample size). In this section we look at how thesemethods are extended from a simple

case to a more complex case study – where we derive quantitative decision criteria for

dose selection and assess the operating characteristics of candidate trial designs.

4.4.1 Introduction to the Dose-Response Example

Smith andMarshall (2006) describe how informative prior information, based on the

analysis of prior data, can be used in the context of evaluating the dose-response of

a new compound and comparing it to that of a compound in the same drug class.

They show how an Emax model was used to describe the dose-response relationship

in a meta-analysis of an existing compound across five studies, fitting a random

Fig. 4.3 Operating characteristics for interval estimate criteria as a function of sample size
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between-study effect to allow for study to study variability, and how the parameter

estimates from this analysis were used to form an informative prior for the Bayesian

analysis of a proof of concept design for the new compound by estimating the

relative potency (RP) of the new compound relative to the previous compound.

A key feature of the design was that the randomisation could be biased towards the

new compound, using the informative prior to reduce the number of patients on

placebo and the positive control treatment (the existing compound) within the trial.

To compare efficacy of a new treatment against placebo benchmarked against an

existing compound the trial design would ideally consist of placebo, two active

doses of the new compound and the existing drug – as positive control. We would

normally power this type of trial for comparisons vs. placebo based on the perfor-

mance of the existing compound. However, due to the sample size necessary for

this comparison and the overall cost of the trial, this type of design was not

considered feasible. As a result, instead of formal comparisons against placebo,

the primary goal was to show improved selectivity of efficacy over safety in the

novel compound and estimate relative potency between compounds on the primary

efficacy endpoint.

The data generation model for the response Y for subject i with a given baseline

covariate value Basei is shown below:

Yi ¼ E0

Basei

mean Base

� �l

1þ Emax � Dosei
ð1� flagÞED50þ flagðED50=RPÞ þ Dosei

� �
þ ei

E0, Emax, ED50 and l are parameters estimated using the historical data on the

existing compound. ei � Nð0; s2Þ for subject i. flag is set to 1 for the dose of the

new compound, and 0 if the prior compound. This allows us to simulate data for two

different compounds sharing the same E0 and Emax effects.

The main criteria of interest reported in Smith andMarshall was the magnitude of

the relative potency estimate RP. The study was to be considered a success if there

was sufficient posterior probability of RP exceeding 1, i.e., evidence that the ED50
for the new compound was statistically distinguishable from the ED50 of the prior

compound and that the point estimate for the relative potency estimate was greater

than 3, which was considered the minimal acceptable difference. A relative potency

or increased selectivity for efficacy of 3 or greater was considered useful in terms of

separation between efficacy and safety i.e., equivalent efficacy at 3� lower dose than

the prior compound without the associated safety issues. The paper provides

operating characteristics for the analysis of various trial designs and investigates

sensitivity to prior choice and input conditions, specifically different values of RP.

4.4.2 Operating Characteristics for Decisions
Based on Relative Potency Alone

Here we consider the operating characteristics for different choices of decision

criteria and use the “Truth vs. Trial” 2 � 2 table described in Sect. 4.2 above.
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Our chosen design is a 4 treatment study with placebo and the prior compound at its

clinical dose, and two doses of our new compound. Randomisation is weighted

towards the new drug; n ¼ 25/group in placebo and the prior compound arms and

n ¼ 50/group in each of the new drug arms giving a total sample size of N ¼ 150.

In our simulations we use a distribution for RP so that we can examine the trial level

operating characteristics across a range of plausible values for RP – Smith and

Marshall used discrete values for RP in simulations to assess sensitivity. Here we

generate values for RP from a log-normal distribution log(RP) ~ N(log(3), 0.5625)
which gives a distribution for RP centred around 3 with a 95% of potential values

falling in (0.67, 13.45). This distribution for RP was considered a prior to be a

realistic range for the relative potency of the new drug based on information from

two different preclinical tests, one of which suggested an RP close to 3, while

another suggested a larger RP. We weighted the distribution towards the former

since large increases in RP or selectivity based on preclinical tests usually result in

lower values when examining clinical efficacy.

For the “Go” criteria specified in Smith and Marshall (and described above:

P(RP > 1) > 0.9 and posterior median RP > 3), we get the following 2 � 2 table

for Truth versus Trial (Table 4.5).

Note that since the “No Go” criteria here is simply the complement of the “Go”

criteria. The “true” RP in this case is generated from a log-normal distribution

centred around 3 we expect to see at approximately 50% probability of simulated

candidate drugs meeting the target value. P(Correct) for this criteria is 87.2%, so

the combination of design, analysis and criteria together could successfully distin-

guish those cases where the true RP < 3 and those where true RP � 3, with little

mis-classification.

4.4.3 Operating Characteristics for Decisions Based
on Relative Potency and Efficacy at the Top Dose

The above study question and associated criteria only focus on the estimate of

relative potency from the study, i.e., whether the new compound has a higher

relative potency or better selectivity than the prior compound. But, what if the

study also had to determine whether the highest dose was sufficiently efficacious to

Table 4.5 Operating characteristics for decision criteria based on relative potency alone

No Go (%)

Go

P(RP > 1) > 0.9 and

median RP > 3 (%) Total

True RP < 3 45.5 5.2 50.7%

True RP � 3 7.6 41.7 49.3%

Total 53.1 46.9 1,000 Simulations

100%
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warrant further development? That is, we would want any dose taken forward for

further development to have at least a certain magnitude of effect. To examine

the impact of choosing different decision criteria using the same simulated data, we

would now want to show that the estimated RP > 3 and that the difference between
the top dose (150 mg) and placebo achieves a minimum clinically meaningful

difference of <�1. Thus, we take a trial criteria that point estimate RP > 3 and
that the UCL95 < �1 for the difference between the maximum dose and placebo.

This gives the following table (Table 4.6).

For these criteria P(Correct) ¼ 87.7% although the PTV has decreased slightly –

due in part to the additional criterion of requiring at least 1.5 points decrease in mean

score at 150 mg vs. placebo.

One problem in the comparison between “truth” and “trial” here is that the trial

criteria is a composite of a point estimate based criteria (RP > 3) and a confidence

based criteria (UCL of difference at 150 mg <�1). Remember that the “truth”

criteria is not tied to any particular design or analytical technique (assumes “per-

fect” knowledge) and so there is no equivalent to the confidence limit based criteria

because the interval width would be infinitely small. We could say that the point

estimate of the difference at 150 mg for the “truth” should be <�1, but this is not

exactly comparing like with like for “trial” vs. “truth”, since for the trial the point

estimate is always <�1. Therefore, we have constructed an argument that if

the “true” difference at 150 mg is <�1.5 then we would expect the UCL of the

difference at 150 mg <�1 in the trial

We now have two criteria, with which to evaluate the same design and the same

analytic technique. With both of these criteria the P(Correct) is similar, but at this

stage we would normally wish to discuss the operating characteristics of these

criteria with the project team to discuss the fact that we achieve slightly lower

P(False No Go) with the additional product requirement of an adequate effect size

at 150 mg and the fact that this is a trade-off against a slightly higher P(False Go).
Which criteria is more favourable depends on the particular research question of

interest and what the plan is for future development of this compound. If 150 mg is

the maximum dose that may be studied in a future trial, then we may wish to have

Table 4.6 Operating characteristics for decision criteria based on relative potency and effect

at top dose

No Go (%)

Go

median RP > 3 and

UCL of difference at

150 mg <�1 (%) Total

True RP < 3 or

difference at 150 mg ��1.5

47.9 6.3 54.2%

True RP � 3

and difference at

150 mg <�1.5

6.0 39.8 46.1%

Total 53.9 46.1 1,000

Simulations 100%
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some assurance that this dose could achieve a clinically meaningful difference

as well as the new compound having improved relative potency or selectivity over

the existing compound. However, if higher doses are available, we may wish to

simply show improved relative potency from this trial and then use model predic-

tions to select the optimal dose for future trials.

4.4.4 Operating Characteristics for Decisions
Based on the Estimated Effect at Each Dose

A third criteria worthy of investigation captures the ability of the design to pick

the correct dose for future development. Ideally, we would like to take forward the

lowest dose that provides the clinically meaningful effect, i.e., the dose for which
the effect is <�1 difference from placebo. Our design uses two dose levels of the

new compound (75 and 150 mg) and we examine the design performance at each

dose. It may also be possible that neither of these doses can achieve the requisite

difference over placebo. To apply this criterion for a single simulated trial, we

simply compare the estimated effect at each dose, based on the Emax fit to the

observed data for each simulation replicate, and count when each dose is the lowest

dose with an estimated value <�1. For the “truth” we must use the model para-

meters generated from corresponding data and evaluate the function at each dose

level and count when this value is <�1. If neither dose is <�1 then we count this

for the column where no doses show the requisite effect. Using this criteria, we need

to expand our 2 � 2 table to look at the truth and trial level results for each outcome

(Table 4.7).

Table 4.7 Operating characteristics for decisions based on the estimated effect at each dose

Estimated

difference at 75 mg

<�1 (%)

Estimated

difference at 150 mg

<�1 (%)

No doses show

difference <�1

(%) Total

True difference

at 75 mg

<�1

37.7 6.6 0.3 44.6%

True difference

at 150 mg

<�1

6.9 20.6 6.3 33.8%

No doses show

difference

<�1

0 4.4 17.2 21.6%

Total 44.6 31.6 23.8 1,000

Simulations

100%
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P(Correct) here is the sum of the diagonal elements – where the criteria for the

trial level estimated difference over placebo matches the truth based on showing a

difference of at least�1 vs. placebo. Here, P(Correct) ¼ 75.5%. Note that there are

some cases where the trial level “lowest dose” to achieve the criteria is higher than

the truth (6.6%) and similarly some cases where the trial predicts a lower dose than

the truth (6.9%). The impact of these incorrect decisions could potentially have

serious implications for dose selection. If we take too low a dose into Phase 3 then

we may find that our Phase 3 trial is underpowered, since we are overestimating the

true effect at that dose, and fail to achieve significance. Conversely, if we take too

high a dose into Phase 3 then although we will likely show a good effect, we may

leave ourselves open to debate about whether a lower dose would indeed have still

been effective. There should be further examination and consideration of simula-

tion results for cases where we conclude that neither of the doses have sufficient

effect, yet the truth is that one of the doses would indeed have delivered sufficient

efficacy. Fortunately, the proportion of simulations where 75 mg is effective (in

truth) but we conclude no effect is only 0.3%. The reasons for the other incorrect

conclusions needs careful examination but in this instance we surmise that it is

because the simulated Emax and relative potency (RP) work together to make the

efficacy at the top dose borderline, i.e., just above�1 so the trial and truth outcomes

are marginal. In a real trial the decisions for such borderline cases would doubtless

be a trade off between safety, efficacy and other considerations. However, in

simulations we can only apply a hard and fast decision rule.

4.5 Practicalities of Simulation in Model-Based

Drug Development

Running simulations, collating results and conducting discussions of operating

characteristics within project teams is a labour intensive and time consuming

business. Smith and Marshall (2010) describe the need for proper planning of

CTS and caution that poor planning of simulations can lead to poor inference in

simulations just as in clinical trials themselves. Poorly defined objectives and

poorly chosen metrics can lead to inconclusive results and no clear decision.

Agreeing on clear objectives for the simulation exercise, and getting buy-in to a

simulation plan or “protocol” will make it easier to define the necessary simulations

and also make quality control of simulation outputs much easier. It is good practice

to fully describe the simulation inputs – data generation models, parameter inputs,

covariate distributions, design choices, assumptions – as well as analytical techni-

ques and, of course, decision criteria. Due to the multi-disciplinary nature of CTS, it

is also good practice to get buy-in from key stakeholders that the design space for

simulations has been well described and that key scenarios are being addressed.

There is an obvious tension between the desire to “optimise” a clinical trial design

and the practicality of implementing that design. Successful clinical trial design
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relies on good communication between the group conducting the simulations and

operational colleagues.

There are two main methods for simulating the “truth” for each set of model

parameters. In cases where random effects enter the model in nonlinear parameters,

the mean of the individual response profiles is not the same as the typical individual

(i.e., with random effects set equal to zero). Usually we will wish to compare the

mean of the simulated data against observed means from prior studies or literature

in order to compare like with like. In these cases we must simulate for an arbitrarily

large number of individuals, to integrate over the random effects, and then calculate

the mean from the simulated data. If we are interested only in the central tendency

or mean effect, then relatively small numbers of patients will yield accurate results.

However, if we are using this data to categorise the proportion of responders or

proportion of patients in a given category then much larger numbers of patients

(e.g., thousands) may be needed. If we remember that we are trying to simulate

“truth” and trial for the same set of parameters then we can simulate for the “truth”

and then subsample trial level results from this database of subjects.

It is important when interpreting simulation results to bear in mind that the

operating characteristics also depend on the assumptions in the data generation

model and analytic technique. If we only examine scenarios where the assumptions

behind the data generation and data analysis match, our operating characteristics

will be overly optimistic. If the assumptions do not match, our operating character-

istics are likely to become worse. We should examine robustness of our decision

making process to changes in our assumptions, examining operating characteristics

to systematic changes (bias) in the data generation model parameters and popula-

tion covariate distributions. Although these cases may not be very likely, it will

allow us to look at “worst case” scenarios and check the performance of our

decision criteria in these outlying cases. Despite the attempt of controlling inclusion

and exclusion criteria in our trials to make them in some way “similar” to prior trials

or investigations, invariably there are some changes in population that we cannot

control for or anticipate. It is good practice to examine the sensitivity of our

decision making process for these cases, since we wish to ensure that we make

reasonable decisions even when the unexpected happens.

One useful benefit of performing CTS and evaluating operating characteristics in

the early stages of trial design is that it provides an opportunity to evaluate the

statistical methods outlined in the proposed statistical analysis plan (SAP) before

the protocol is finalised. This means that early feedback into the SAP and statistical

methods section of the protocol is possible much earlier than usual. Close collabo-

ration between the statisticians responsible for the protocol statistics section and the

SAP and the individuals responsible for running the CTS is vital to make best use of

all information available in planning the analysis of the study.

Note that in the example above we generated new parameter values for the data

generation model for each trial replicate. In this way we have a distribution of

“true” outcomes across the trial replicates. CTSs are sometimes performed by fixing

model parameters at a single value and then generating many replicates where the

only difference between replicates is the draw of subjects from the residual error
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distribution. This conforms to testing null and alternative hypotheses using simula-

tion as long as the true treatment difference is fixed. While this may be of interest

for hypothesis testing questions, we have found in practice that running a large

number of simulations, drawing the data generation model parameters from a

probability distribution addresses questions of false positive and false negative

decision making for the “learning” type of questions. We may also wish to

additionally evaluate simulations for particular “null” data generation models

with no treatment effect in order to specifically and formally address Type I error

questions for a particular design and analytic method.

How many simulations is “sufficient” is a subjective matter, but there may be

considerations around generating sufficient parameter sets to adequately explore

the parameter space, in order to ensure that the design, analytic technique and

decision criteria are robust to extreme values of the parameter space. If there are

many competing designs or decision criteria then it may be worth doing “pilot”

simulations of a few hundred simulations in order to find any gross differences and

perhaps eliminate certain designs before commencing simulations of thousands of

replicates. Note that with smaller numbers of simulations the possibility of simula-

tion error – differences purely due to the stochastic nature of simulation – may

contribute more to differences between simulation runs.

If the operating characteristics of the decision criteria are not acceptable, we

have a number of possible factors that could be changed to improve the situation.

We may change the design, taking more doses or more subjects per dose. We may

change the analytical method, perhaps employing a different form of analysis or

allowing a flexible class of models to allow for different observed data or we may

employ Bayesian methods with informative priors on certain parameters to quanti-

tatively borrow strength from prior information or subjective opinion, as we have

done in the example in Sect. 4.4. Finally we may change the decision criteria

themselves – although we caution against changing the target value since this has

presumably been agreed at a project wide, or perhaps indication level – or we can

investigate whether criteria based on point estimates or interval estimates increase

P(Correct).

4.6 Discussion

CTS is predicated on having predictive models for the data generation step.

Generating these models is not a trivial task since it often involves the synthesis of

a large amount of previous data into pharmacokinetic, pharmacodynamic, longitu-

dinal disease models, dropout models, meta-analysis and many other possible

sources of information. Kowalski et al. (2008) describe how these various models

came together to predict trial outcomes and assess operating characteristics for a

pain compound. By combining these models these authors were able to simulate

realistic trial data and predict to a change in formulation and account for different

data imputation methods in the event of missing data. When making predictions
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from one formulation to another and across different drugs it is often required to

combine these models in order to get the most predictive data generation model.

A model which is predictive of future data and describes the outcomes necessary

for analysis and evaluation of the decision criteria is all that is required for this

process. One should add complexity to the models only if it improves the ability to

generate realistic trial data or to address specific questions of interest in the

simulation and evaluation of the operating characteristics. Note that a modelling

effort to describe the structural, covariate and stochastic models (population analy-

sis) for a single trial usually attempts to describe and quantify all sources of

variability between and within individuals. For example, if a given covariate is

not a design feature of the future study, i.e., if we are not stratifying by a covariate

value or changing inclusion/exclusion criteria within the new study, then it may be

possible to subsume this covariate effect into the more general between-subject

variability and simplify the model. Again, the only strict criteria is that the resulting

model should still be predictive of a future trial.

However, the general maxim “garbage in – garbage out” certainly applies.

Ensuring that both individual model components (disease model, drug efficacy

model, drug safety model, dropout model, etc.) accurately describe data on which

they are built, as well as the joint model being predictive of clinical trial results is

critical in the success of this whole procedure. This joint model drives the quantifi-

cation of PTV and portfolio decision making, as well as the trial level evaluations.

The model should be built early in the drug development lifecycle and then refined

and updated regularly to ensure that the best available information informs our

decisions. Of course, each time we have clinical trial data from the compound itself

we should update these models to reflect the new information. The scope of impact

of these models is wide: mechanistic models of biologic process informing preclin-

ical work; clinical pharmacology informing dosage regimen; clinical trial results

informing clinical trial programmes and individual trial design; meta-analysis of

comparator data informing trial programmes and also post-licencing reimburse-

ment discussions.

In the example described in Sect. 4.4, we did not use the full complexity of these

models since we were predicting from one compound to another within the same

class and with identical study conduct and inclusion/exclusion criteria to the

previously studied compound. Also, in this case we were primarily interested in

the operating characteristics of the design and analytic technique rather than

making accurate predictions about the likely trial outcomes. As a consequence,

our simple model was sufficient for this stage of simulations.

What values of P(Correct), PTV, P(False GO), P(False NO GO) are acceptable?

This is entirely up to the sponsor. We advocate that, analogous to the concept of

“power”, P(Correct) can be set at an organisational level – perhaps the organisation

would not consider decision criteria with P(Correct) less than 0.8. This seems a

reasonable approach since this metric incorporates both correct NO GO and correct

GO decisions and so in a sense is independent of the ability of the drug to achieve the

target value and is influenced chiefly by the design, analytic method and decision

criteria themselves.
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Acceptable levels of PTV are more problematic to define, and as mentioned

previously, these will change throughout the drug development life cycle as we gain

more information about the drug and competitive landscape. The decision will also

be influenced by whether this is a drug in an area of high unmet medical need

perhaps with unprecedented mechanism. In these cases an organisation may be

prepared to carry a much higher risk since the benefits of a successful drug are much

higher. As a consequence, acceptable PTV is essentially a portfolio decision.

Acceptable levels of P(False GO) and P(False NO GO) are again difficult to define,

since they are context specific to an individual drug, disease area and stage of drug

development. If we fix an acceptable P(Correct) and we know PTV then all that we

can do is to trade off P(False GO) and P(False NO GO). Which of these incorrect

decisions is more critical than the other is again context specific and may be

influenced by the stage of drug development. Having false GO decisions in late

development is to be avoided purely due to the cost of running large clinical trials

and the fact that carrying forward a drug which ultimately does not meet our

predefined criteria will lead to a lack of confidence from stakeholders, internal

and external.

Model-based drug development and quantitative decision making in particular

involves input from many different sources gathering the right data at the right time

to increase our understanding of drug and disease effects, quantified through our

models; building predictive models to allow us to make inferences and predictions

about the likely range of effect of our new drug; defining decision criteria relevant

to clinical practice; performing simulations to quantify the probability of achieving

a successful drug, then comparing our decisions at the high level to the trial level

analytic results (as described in detail in this chapter); and then using those metrics

to underwrite decisions made about our drug in the light of the newly accumulated

data. This cycle of data collection, modelling, prediction and inference underpins

much of the learn and confirm cycling of drug development. Our experience is that

this process has highest impact when it is truly multi-disciplinary. When all parties

bring their particular knowledge and skills to the table, there is great potential to

make better decisions, reduce the number of cycles in the drug development process

and ultimately to get useful medicines to patients more quickly.
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Chapter 5

Decision-Making in Drug Development:

Application of a Clinical Utility IndexSM

Timothy J. Carrothers, F. Lee Hodge, Robert J. Korsan, William B. Poland,

and Kevin H. Dykstra

Abstract The Clinical Utility IndexSM (CUISM) is a practical and useful approach

for informing drug development decisions where multiple aspects of a drug’s

clinical profile must be optimally balanced. In its most common application, a

CUI is a model of population-level preferences across and within the various

efficacy, safety, and tolerability attributes of a product profile for a given indication.

By combining the multiple dimensions of a product profile into a single unit of

utility, the CUI can easily be linked to pharmacometric simulations of clinical

endpoints, thus extending the reach of clinical trial modeling and simulations

further into the decision-making process. Although the use of CUI (and related

multiattribute methods) is relatively new to the field of drug development, its

application is steadily growing as project teams discover the benefits of integrating

“utility” models into the overall pharmacometric toolbox.

5.1 Introduction

It is well understood that any drug has both beneficial and adverse effects, and that

the balance of these, the benefit-risk tradeoff, depends on dosage and regimen.

Other aspects of a particular drug may also make it more or less attractive as a

treatment choice, whether to the patient, prescriber, payer, or drug developer,

including, for example, convenience of the regimen, increased cost of goods for a

higher dose, and perceived benefit of a new mechanism of action. Together, the

safety and efficacy attributes, along with the other drug characteristics, comprise

the product profile for a potential new drug.

Drug development teams face many challenges in understanding how their

compounds perform across these various dimensions (e.g., safety, efficacy,
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tolerability, convenience of regimen, etc.), including both the high degree of

uncertainty in actual performance as well as the ambiguity surrounding the relative

importance of the tradeoffs among them. As an example, the expected drop in mean

arterial pressure due to a candidate antihypertensive can be estimated from clinical

data (or perhaps extrapolated from a relevant preclinical model). However, the

importance of that effect relative to an increased incidence of orthostatic hypoten-

sion is a subjective judgment. In this example, and throughout drug-development

decision-making, there is a need to systematically and transparently weigh these

tradeoffs and to clearly communicate the basis for the tradeoffs to stakeholders

external to the project team.

Within each dimension, there is substantial uncertainty regarding key compound

attributes that will be used to compare the candidate to current and future potential

competing products. This uncertainty arises from the lack of sufficient evidence,

given the stage of development, for efficacy compared to placebo or the standard of

care, the incidence of key adverse effects, etc. For instance, questions such as

“What is the expected placebo-adjusted change from baseline in mean arterial

pressure and its associated uncertainty in the specified patient population for

Drug X under a given dose regimen?” can only be answered based on the scientific

understanding available at that time. The information relevant to assessment of the

effect sizes is often found across a variety of sources (e.g., in vitro, animal, human

healthy subjects, and human patients) that must be integrated to predict how the

candidate compound will perform on specific endpoints (such as mean arterial

pressure) that prescribing physicians and patients can understand.

Other chapters of this book show examples of how the proper application of

pharmacometric modeling and simulation can help project teams answer such

questions by improving the knowledge gathering and assimilation process. In a

broad sense, the practice of modeling and simulation enables decision-makers to

better characterize what they know, what they do not know, and to what extent

additional information-gathering activities can improve their understanding regard-

ing specific drug attributes. At a tactical level, simulations of the developed models

can give a prediction of the likelihood of achieving a specified goal for an attribute

(e.g., a 2-mmHg decrease in mean arterial pressure) in the projected patient

population.

If the decision at hand depends on only one key attribute, then these approaches

can be sufficient. In general, however, project teams face decisions that require

them to confront tradeoffs between the competing attributes of the drug relative to

its potential competitors. In other words, while the typical scope of pharmacometric

modeling and simulation allows the project team to assess their scientific under-

standing of each attribute, this alone will leave decisions ambiguous when attributes

compete with one another (e.g., more efficacy but more adverse effects at higher

doses). Another set of tools is needed to assess the team’s preferences among the

different possible product profiles. For instance, would patients prefer the higher

dose of antihypertensive Drug X that is expected to provide additional efficacy at

the expense of slightly more risk of postural hypotension? If an optimal balance of

efficacy and safety can be found at twice-daily dosing, to what extent would
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patients be willing to trade some efficacy and/or safety for the additional conve-

nience of once-daily dosing? Moving beyond the realm of determining the optimal

dose and regimen, how does Drug X compare in value to patients and market share

to competing established therapies, as well as other potential competitors in devel-

opment, and how can different levels of uncertainty (e.g., between compounds

in development vs. those on market for several years) be incorporated into the

decision?

Project teams in drug development thus face what can be called multiattribute

decisions under uncertainty. For these situations, varieties of approaches have been

used by project teams, not all of which are optimal. In an extreme but not

uncommon example, a dominant team member may impose his/her beliefs regard-

ing the “right” or “acceptable” level of safety. In spite of the fact that the pharma-

cometrics team member may have done an excellent job in modeling and

simulating safety and efficacy attributes, a suboptimal decision may be made that

is not formally informed by the pharmacometrics contribution. Another potentially

suboptimal mode is for team members to focus just on a few best-studied char-

acteristics such as immediate efficacy and tolerability; while net benefits may be

calculated, the true complexity, along with possible key drivers at the margin (e.g.,
“long-term” safety), of the patient prescribing decision are neglected. In many

cases, the project team may feel it is making a good decision when in fact it may

not be. In any case, where the decision involves multiple objectives, attributes not

explicitly considered by the team during the decision process are implicitly treated

as irrelevant to the decision, which may or may not ultimately be the case.

To meet this challenge, over roughly the last 10 years some project teams have

been introduced to a multiattribute utility modeling approach (Keeney and Raiffa

1976; Keeney 1992) known in the drug development field as the “Clinical Utility

IndexSM,” or CUISM (Korsan et al. 2005). Using this approach, preferences regard-

ing the various relevant product attributes (which typically have different units) are

modeled, allowing one to translate each attribute’s predicted performance to a

common metric – “utility.” Once this is done, the attributes can be combined

(i.e., added together), generating a description of the compound’s net utility.

Thus, this utility reduces the multiple attributes to a single number. This concept

is illustrated in Fig. 5.1, which shows two attributes, efficacy and safety, being

combined into a single metric of clinical utility to identify an optimal dose. Note

that the quantities (i.e., efficacy, safety, and clinical utility) being plotted share the

common unit of utility. Also, note how each attribute changes at different doses.

The CUI process incorporates formal techniques for creating this “preference”

model in which the conversion from the original attributes’ units takes place.

(Details of the process, such as the methods by which within-attribute utility

functions and cross-attribute weights are determined, will be shown in detail later

in the chapter.) When the questions being addressed imply that a single metric

exists, e.g., “What is our optimal dose?,” “Are we better than the competition?”

these features of the CUI and its process are well suited to the problem.

CUI is a specific application of principles from the theory of multiattribute utility.

Although somewhat new to the field of drug development, multiattribute
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utility modeling has been successfully applied in a variety of fields since its

development in the field of decision theory many decades ago. Specific examples of

other applications include design of public museums and libraries, siting of an electric

power plant, natural gas exploration, and blood bank operation (Keeney 1992).

The outputs of the certain pharmacometric procedures, in which the likelihoods

of the possiblemultiattribute product profiles can be assessed, provide the estimates of

how the drug will perform and how uncertain the estimates are, given the available

information. Beyond the estimation of the index, use of the CUI allows modelers and

the broader project team to become decision-focused and to align the quality of their

scientific understandings with a comprehensive and systematic decision-making

process (Hammond et al. 1999; Matheson and Matheson 1998). The process of

creating the index provides a framework for communicating the assumptions, trade-

offs and state of knowledge, allowing increased information sharing. Often, partici-

pants of the process report that the process itself enables them to become better aligned

with respect to their overall goals, which contributes to an efficient organization.

In addition, having calculated the index, one can then investigate it to discover key

sensitivities. This allows one not only to understand the value of the decision alter-

natives at hand, but also to assess how to improve those options.
In this chapter, we provide a case study-based introduction to the CUI process in

practice. The first section following the introduction provides an overview of the

CUI process. The next section gives a more detailed example of an anonymized,

real-life case study. We then review the recent literature with respect to other

applications of the CUI and related approaches. Finally, we assess the state of the

current application of CUI in drug development, offering practical tips for its

successful implementation as well as warnings regarding potential pitfalls.

Fig. 5.1 A basic illustration of the utility concept
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5.2 A CUI Overview

5.2.1 Setting the Decision Context Before CUI Creation

A multi-step process is used in the application of a CUI. While the creation of the

CUI (i.e., the multiattribute preference function) is central to the process, it should

be thought of as just a means to the end of making a high-quality decision – one that

meets the needs of relevant stakeholders. As such, the first step should be to

carefully define the decision to be made, the point(s) of view of the decision-

maker(s), and the scope boundaries. This step should also include a discussion of

the overall goals for the compound’s development (Keeney 1992). Although some

of these steps may not be later explicitly incorporated into the CUI function itself,

they each contribute to the overall quality of the process.

Defining the overall questions that the project team needs to answer is essential,

as a variety of questions can be addressed by CUI, and the project team needs to be

“on the same page” amongst themselves for the process to be effective. There is

often a nesting of the questions to be addressed, and a high-quality discussion will

allow the team to drill down to the specific preference “decision” that they wish to

model. For instance, one stream of questions could look like this:

l Should we make a no-go decision before advancing this compound into late-

phase clinical trials? Note: the CUI is better suited for a no-go than a go decision

at this stage, because it may not incorporate development cost, market value, and

risk factors that could make a go decision a poor choice (Poland et al. 2009), but
such factors can certainly be included, if data is available.

l How can this compound be differentiated from its competitors in a crowded

market?
l Will the regulatory agencies approve the compound given the expected product

profile and associated evidentiary database?

In addition to the obvious application to dose optimization, a popular application is

to support go/no-go decisions. In these cases, a CUI can be constructed to model the

prescribing decision as a proxy for overall sales, and thus, commercial viability of

the product. Because utility is a relative metric, scaled from 0 to 100, or, equiva-

lently, 0 to 1, (i.e., the overall units do not have meaning in isolation), the end goal

may be to compare the compound relative to competitors. In the example shown in

Fig. 5.2, utility is displayed on a vertical axis, and the 0–100 interval has been

discretized into categories based on the relative utility of four currently marketed

products, denoted as “Market Leader,” “2nd Place,” “Niche Product,” and

“Generic.” These categories are labeled as “Blockbuster,” “Intermediate,”

“Niche,” and “No File” (i.e., “no-go”), corresponding to the overall outcome

expected for each interval. Possible profiles of the candidate drug, denoted “d1,”

“d2,” “d3,” “d4,” etc., are placed on the scale based on their utility and can then be

mapped to commercial viability based on their place relative to marketed therapies.
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The second step is to clarify the perspective of the decision-maker(s), the person

or group whose preferences are being modeled. In the case of the prescribing

decision, this is defined as a typical physician, incorporating his/her perceptions

of the patient’s preferences as well. In the case of a regulatory decision, it is the

regulatory agency. In the case of a sponsor’s overall “Go/No-Go,” it can be the

preferences of senior management acting in the best interests of the company

shareholders. Once the decision and decision-maker are clarified, it is easier to

define the scope of the decision.

Finally, it is necessary to define whose preferences will be elicited for the CUI

construction, as a proxy for the ultimate decision-maker. Typically, this is the

project team or a group of key opinion leaders.

5.2.2 The Clinical Utility Index: “Nuts and Bolts”

Figure 5.3 shows the integration of construction of the preference model (i.e.,
“Derive the CUI Function”) with standard pharmacometric modeling (i.e., “Predict
Performance”) in order to calculate utility for two competing treatments. The steps

Fig. 5.2 Using utility to link

to commercial viability
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in the derivation of the CUI function are explained in greater detail later in this

section; they can be summarized in broad terms as the interconnected processes of

defining “how to measure the dimensions of performance” (i.e., attributes and their
levels) and defining stakeholders’ strengths of preference among possible outcomes

(i.e., cross-attribute weightings and within-attribute utility functions). The steps in

the pharmacometric process are likely familiar to the reader, with the exception of

the third step, which arranges pharmacometric simulation output into a form

suitable for linking to the product profile-focused CUI function. Since each possible

product profile will have both an overall utility (represented by the CUI “score”) as

well as an associated probability of realization, the net result of integrating the

pharmacometric output with the CUI function is a probabilistic description of the

treatment’s clinical utility. This process can be used to compare competing treat-

ments, as shown in Fig. 5.3, or to identify optimal doses, as shown in Fig. 5.1, or to

benchmark against established therapies, as depicted in Fig. 5.2.

Once pharmacometric simulations are complete, the calculation of CUI typically

requires just simple algebra within a Monte Carlo simulation procedure. Simple

algebra is used to translate drug performance on each attribute (e.g., measured in its

own unit at a particular dose and regimen) into its contribution to CUI (converted

into the unit of utility). Monte Carlo simulation is used to integrate the uncertainty

in this performance, producing predicted CUI and its uncertainty. (The example

calculation in Sect. 5.2.3 is divided into two parts, corresponding to each of these

elements.)

For each treatment (e.g., drug and dose) and for a particular drug performance

outcome (e.g., level of efficacy AND safety AND other attributes’ levels), the

following formula is the basic linear CUI model (5.1). The CUI for a given treatment

is a weighted sum of the individual attributes’ utilities. This is described in decision

Preference Model–Derive the CUI Function Calculate Utility

Here, treatment B is
expected to be superior to A

Pharmacometric Models–Predict Performance

1.     Define the Attributes

1.     Develop Treatment–Response Models

1

0
CUI

P
(C

U
I <

 X
)

B

A
E(CUI)A

E(CUI)B

2.     Simulate for Specified Population of Interest
3.     Determine Probabilities for Each Possible
        Combination of Attribute Levels

Note: The x-axis is utility. E(CUI)A is the expected CUI for treatment A. The y-axis is in units
of probability, where P(CUI < X) is the probability that the CUI of a treatment is less than the 
value X.

2.     Determine Cross-Attribute Weightings
3.     Determine Levels within Each Attribute
4.     Determine Within-Attribute Utility Functions

Fig. 5.3 The Integrated Clinical Utility Index (CUI)-pharmacometric process
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analysis texts (Clemen 1991; Keeney 1992) as linearly additive; there are neither

interactions between the preference models of individual attributes nor inclusion of

decision-maker risk aversion in the utility calculation. (This assumption is important

for providing tractability to the process used to define the CUI function.)

CUI ðx1; x2; :::; xnjtreatmentÞ ¼
Xn
i¼1

wiUi xijtreatmentð Þ (5.1)

where xi is the performance level of the ith attribute of the treatment, wi is the

weight of the ith attribute (characterizing the relative importance between attri-

butes), and Ui( ) ¼ the utility function providing the utility (typically with range of

0–1, or 0–100) of the ith attribute given its performance level. The attribute levels

and their associated weights establish the association between the different perfor-

mance level outcomes and utilities.

The relative strength of preferences is captured by the CUI function’s weights

that pre-multiply the preferences in the utility function. This is known as the

“elicitation” of the CUI function. It consists of two interconnected parts: weighting

of attributes and definition of utility functions within each attribute. The steps need

not be rigidly ordered; in fact, some iteration is often necessary to provide a “reality

check” as to the acceptability of the preference function being created (for related

reading, see the online supplemental material for Poland et al. 2009).
We will now describe one implementation for the elicitation process that we

have utilized in over a dozen applications. The process is implemented in two

sequential procedures: (1) Identify critical attributes, their ranges of relevance, and

their overall preference weights relative to one another, and (2) Identify metrics and

relevant response levels for each attribute, then assign preference values for each

level within an attribute.

In procedure (1), a method known as “swing-weighting” is used (vonWinterfeldt

1986; Clemen 1991). Here, a critical first step is to define the relevant ranges of each

attribute (units used in defining the ranges are determined by the attribute). The least

acceptable level of each attribute (i.e., “bottom” of range in a utility sense, as “more”

or “less” of an attribute can be preferred in different situations, depending on the

attribute) should be preferred to any level at which the drug would automatically be

discontinued – this is a critically important part of the elicitation process; otherwise,

the assumption of a strict zero to one range behind the utility function is violated.

Similarly, the most desirable level (i.e., “top” of range in a utility sense) of each

attribute should be defined by the best value for attribute that can be achieved by any

of the competing therapies under discussion. As a second step, inter-attribute

weights are elicited via a process in which the attributes are all each first set to

their respective lowest levels. Next, it is determined which attribute would provide

the greatest utility if moved to its highest level, keeping all others at their lowest.

This attribute then receives a preliminary weight of 100. Subsequently, each other

attribute’s weight is elicited as a comparison to the utility of moving it from “Lowest

to Highest” relative to doing the same for the reference attribute. For example, the

next attribute may receive a weight of 50, reflecting a feeling that moving it from its
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“Lowest” to its “Highest” is about half as impactful compared to the first attribute.

The process continues (e.g., for five attributes, it could result in preliminary weights

of 100, 50, 30, 30, and 10) until all attributes have received a preliminary weight.

Once this is complete, the preliminary weights are normalized so that they sum to

one (e.g., as 100 + 50 + 30 + 30 + 10 ¼ 220, the final inter-attribute weights

would be 0.454 [100/220], 0.227 [50/220], 0.136 [30/220], 0.136 [30/220], and

0.045 [10/220]).

In procedure (2), utility functions are elicited for each attribute independent of

the other attributes. This measures preferences within each attribute, in contrast to

procedure (1), which measured preferences across attributes. Standard methods (see

“standard gamble” as defined in Keeney and Raiffa 1976) for additive utility

functions are typically used, but simpler methods are also possible (Poland 2009,

online supplemental material). Again, it is critical that this is done only within the

ranges of relevance; otherwise, the preference weights will be inaccurate. Typi-

cally, as part of this procedure, the ranges for continuous attributes can be dis-

cretized into several meaningful levels. The top level for each attribute is given a

utility of one, and the bottom level is given a utility of zero. Intermediate levels are

assigned utilities between these based on relative preference between levels within

that attribute, while considering only that attribute.

5.2.3 Calculating Utility: A Quick Example

Once the utility function for CUI is fully defined, it is used in conjunction with

predicted likelihoods of different attribute levels to calculate an expected CUI. In

the following fictitious and simplified example (Fig. 5.4), a single dose of a new

drug and of a comparator are being compared. Given the performance of each of

these treatments (which for now is assumed to be known with certainty), their

attributes provide the following utilities which, when summed, provide an overall

assessment of the tradeoffs via total CUI. Note that “negative” attributes, such as

adverse event #1 (AE 1), will decrease in utility with greater incidence (or value);

thus, higher levels of utility in AE 1’s row of the table correspond to lower levels of

the adverse event.

In this example, despite having a large advantage on the first attribute (an

efficacy measure we will call “Effect 1”) compared to the comparator, the new

chemical entity (NCE) performs far worse in terms of adverse events (AE 1). Given

this tradeoff, its CUI is lower than the comparator’s.

An attribute, whether having discrete or continuous outcomes, can be translated

into one with discrete probabilities for calculations. For example, Effect 1 in the above

example may be expressed as a continuous metric. Either via statistical analysis,

subjective assessment by clinical subject matter experts, or modeling and simulation,

the effect and its degree of uncertainty can be characterized. The uncertainty can be

computed so that it correctly includes the impact of between-patient and/or – trial

variability as well as underlying parameter uncertainty. As an example, assume the
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true population mean value of Effect 1 for the drug is uncertain. Also, assume this

uncertainty can be characterized by a probability distribution from patient level data

across multiple clinical trials using mixed effects regression and simulation. For

example, when the effect is estimated to be 100, the uncertainty in this value can be

summarized by a standard error of 20 (curve in Fig. 5.5).

Assume the team has provided cutoffs between Effect 1 levels and their asso-

ciated values as follows:

<60: Effect 1 contributes zero to utility of Effect 1

60–90: contributes 0.3

90–120: contributes 0.4

>120: contributes 1.0

The continuous distribution can be used to assess the discrete probabilities that the

Effect 1 value falls into each of these categories (Fig. 5.5).

In a real case, one would use Monte Carlo simulation to incorporate the

uncertainty in the performance of the drug and thus generate predictions that

include uncertainty. The CUI calculation process is as above; however, it is

repeated many times with performance levels randomly sampled each time, and

the overall CUI is captured for each of these samples. The result is a distribution of

CUIs for each treatment. This distribution can be summarized using a mean or

median, along with an uncertainty interval.

The generic process for performing this Monte Carlo simulation is as follows:

l Randomly draw a utility outcome for each attribute, given the possible levels,

their values, and their probabilities
l Multiply the utility for each attribute by that attribute’s weight to derive its

contribution to total CUI

Fig. 5.4 Example of CUI

calculation
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l Sum the contributions across all attributes to derive total CUI
l Record the total CUI (and each attribute’s individual contribution)
l Repeat this process for n iterations

The resulting distribution of recorded CUIs will characterize the uncertainty in

CUI, as well as metrics that represent its expected value and central tendency. The

uncertainty in CUI reflects the uncertainty in the current understanding of how the

product would perform in an infinitely large population.

Continuing the example above (but now assuming there is uncertainty in how the

drug will perform), the results of a Monte Carlo simulation process like that just

described may be as shown above (Fig. 5.6).

Fig. 5.5 Discrete levels for drug efficacy

Fig. 5.6 Integrating CUI predictions using Monte Carlo simulation
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Thus, for this particular treatment (a particular dose of the drug) the mean total

CUI would be 0.377 with a 90% prediction interval of 0.195–0.610.

Here, the “treatment” that was assessed was a specific dose of a specific drug

given under a specific regimen. Note that the CUI for additional treatments (as

represented by different combinations of drug, dose, regimen, etc.) can also be

calculated by repeating the above process for each unique treatment.

5.3 A Detailed Example of CUI

Following is a disguised case study in which the CUI process was applied to help

inform formulation decisions for a drug. Dopahexadine was a mature drug already

on the market, indicated for a chronic neuromuscular condition. A drug company

RePharmaCo was interested in whether a reformulation of this drug could provide

any improved patient benefit, how to tap the available information to inform the

decision, and how to reformulate it to provide the best “blend” of benefit. Implic-

itly, this would also inform the decision as whether to pursue a reformulation at all.

Historical data existed to describe both the efficacy and tolerability of the drug.

Efficacy was closely related to plasma concentrations in humans and was measured

on a standard efficacy scale (SES). Adverse events were also related to drug levels.

Dopahexadine was eliminated from the body quickly, and thus to achieve an

acceptable duration of efficacy, relatively large doses had to be given multiple

times daily. This caused brief exposure to high drug plasma levels, and conse-

quently increased incidence of adverse events. Published studies were available

with data to characterize the efficacy and tolerability, although most examined the

pharmacokinetics or dynamics, but not both.

As the CUI includes a process as well as mathematics, a group of stakeholders

was formed in order to gather inputs to the analysis as well as help ensure decision

quality (i.e., senior management participation and buy-in to the eventual analysis

results). This was important given the strategic, portfolio-level importance of the

decision. The analysis team included representatives from many functions, includ-

ing the vice president of Clinical Development, a representative from Project

Management, Commercial Development, Biostatistics, and Drug Metabolism and

Pharmacokinetics. A consulting pharmacometrician trained in CUI led the overall

process and facilitated the team discussions that established the CUI model.

Eliciting the inputs to translate drug attributes into a preference model consisted

of several steps: determining attributes, defining response levels for each attribute,

quantifying the relative preference levels for levels of responses within each

attribute, and finally assigning weights to attributes, signifying their relative impor-

tance. The products of these discussions included the following (Table 5.1).

Initially, attributes were elicited from the team, and these choices were later

assessed in a small survey of prescribing physicians. Note the rankings changed

somewhat, but overall the attribute weights were similar. The analysis was later

repeated using both alternative sets of weights, illustrating the ability to do
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sensitivity analysis with CUI. Finally, since there were insufficient data to assess

the incidence of liver function test (LFT) value elevation and compliance, the

treatment alternatives were considered to show identical levels of attainment on

each of these attributes.

The meaningful response range for each attribute was assessed, and inputs were

gathered to translate these outcomes into utility “values” (Fig. 5.7). In this case, the

response ranges were discretized, allowing for easier elicitation and communica-

tion. For example, the range of possible efficacy outcomes was divided into three

levels: “Not clinically meaningful,” “Moderately effective,” and “Excellent.” For

each attribute, the best outcome was assigned a utility “value” of one, and the worst

assigned zero. The middle outcome was assigned a value to signify how its value

fell relative to the extremes.

Table 5.1 Dopahexadine CUI attributes

Treatment attribute

Physician survey Team

Rank Weight Rank Weight

Efficacy (maximal change in standard efficacy scale (SES)) 1 0.228 1 0.207

Compliance (%) 2 0.169 5 0.120

Hypotension (change in mmHg, systolic BP) 3 0.139 4 0.140

Drowsiness/somnolence (% incidence) 4 0.135 3 0.154

Duration of effect (h) 5 0.112 7 0.098

Elevated LFTs (incidence over 3� ULN transaminase) 6 0.109 2 0.182

Dyskinesia (% incidence) 6 0.109 6 0.101

Endpoint

Efficacy
(maximal change in SES)

Not clinically meaningful

Worse than competitor X

Effectively the same

Clearly better

Worse than competitor X

Effectively the same

Clearly better

Worse than competitor X

Effectively the same

Clearly better

Severe impact

Moderate impact

Mild impact

Moderately effective

Excellent (super drug)

Hypotension
(maximal change in SBP, mmHg)

Drowsiness/Somnolence
(% incidence)

Duration of effect (h)

Dyskinesia (% incidence)

Range Name Range

Low

−0.3 0 0.00

0.60

1.00

0.20

0.70

1.00

0.20

0.60

1.00

0.00

0.50

1.00

0.15

0.70

1.00

−0.6 −0.3

−30 −15

−15 −5

−5 0

−1.2 −0.6

High

52 78

26 52

0 26

0 2

2 5

5 12

35 40

15 35

0 15

Utility
“Value”

Fig. 5.7 Dopahexadine outcomes translated to utility
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With the inputs to translate attribute performance into utilities available, the

focus was next placed on deriving predictions and uncertainty for how the drug and

its possible reformulation would fare on these attributes. Literature data were used

to create a pharmacokinetic model and clinical models of efficacy and tolerability

were linked to predicted concentration (Fig. 5.8).

Predictive regression models thus characterized the studies’ findings and were

used to project the responses from the drug and potential reformulations. For example,

the SES efficacy and incidence of drowsiness/somnolence side effects were charac-

terized with a sigmoidal Emax model to relate SES change from baseline data to

concentration. This is shown in Fig. 5.9, where decreases in SES are improvements.

Incidences of drowsiness/somnolence were characterized using a simple linear model

vs. maximum concentration, based on the team’s input that spikes in concentration

drove the incident. Reflecting the binary nature of the endpoint (a patient either has

the incident or not), a logistic model was appropriate (Fig. 5.10).

Having both gathered inputs to translate outcomes to utility and created models

to predict various formulations’ performance, the team took the next step to

integrate these to form predictions for alternative formulations. For example, the

company examined the question “what if we slowed the absorption of dopahex-

adine; could we give a higher dose and still have the same level of effect without the

peak in concentration?” The chart on the left illustrates the time course of effect

with the existing formulation of 8 mg of dopahexadine. The solid curved line is the

expected (mean) efficacy, and the shaded bands denote its 95% confidence interval.

PK Model

Clinical Models

SES Model

Predicted
Concentration

Predicted
CUI

Simulations

Hypotension
Model

Drowsiness
Model

Dyskinesia
Model

Note: Figure depicts the steps in an integrated CUI-pharmacometric modeling
project, with detail on the pharmacometric steps. Literature data is used to
guide the construction of the PK and exposure-response models, which are
based on subject-level data where possible. “Simulations” incorporates the
integration of the CUI model with the PM output, as previously depicted in
Figure 5.3  Predicted CUI is the variable of final interest.

Literature Data

Fig. 5.8 Translating literature data into predictions
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The company found by slowing the absorption by 75% (by adjusting the absorption

rate to 0.25 of its former value), it could administer 24 mg and have about the same

effect (Fig. 5.11).

Finally, integrating these findings with the other attributes, RePharmaCo

explored which dose and absorption rate would yield net benefit to patients. For

example, the following illustrate how much better a 24-mg dose with absorption

20% as fast as the current formulation vs. the best dose of the that formulation. The

y-axis illustrates the difference in this alternative’s CUI; thus, values above zero are
improvements (Fig. 5.12).

Fig. 5.9 Predictions and observations for dopahexadine efficacy

Fig. 5.10 Predictions and

observations for dopahexadine

drowsiness
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Therefore, the team was able to reformulate their drug to provide more benefit.

With the analysis informing them of the inherent tradeoffs, they identified specific

and actionable recommendations. Supported by these insights, the project continued

into development.

5.4 Related Publications on CUI

In what was likely the first journal article describing a multiattribute approach to

joint assessment of the risks and benefits of a pharmaceutical, Eriksen and Keller

(1993) described the development of a proposed multiattribute utility function

Fig. 5.11 Predicted efficacy for dopahexadine reformulation

Fig. 5.12 Predicted CUI of reformulated dopahexadine
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through a case study of an anti-glaucoma drug. The authors posed the problem as a

business decision, as opposed to the well-published decision-making scenario of

choosing the optimal course of treatment for an individual (Weinstein et al. 1980;
Sox et al. 1988; Hunink et al. 2001), because the decision was from the point of

view of a company intending to compare the overall relative merit of different doses

for a given drug as well as the different drugs for a given medical need. The authors

described the details of combining information on human efficacy, human toxicity,

and animal toxicity via a multiplicative-form multiattribute utility index. For

efficacy, the authors focused only on the primary attribute of intraocular pressure,

but noted that in other cases multiple efficacy attributes could be modeled if market

knowledge indicated as such. For human toxicity, pulse rate and ocular irritation

were used as attributes. Individual utility functions for human efficacy and toxicity

were each elicited using the standard methods described for multiplicative func-

tions as in Keeney and Raiffa (1976). For animal toxicity, an expert judgment

process was also employed in order to translate the two animal toxicity attributes

(LD50 and SGOT effects) to risk in humans. Further elicitations were performed to

define the scaling factors. Three decision-makers were elicited separately; no group

elicitation was performed. With limited data, the authors concluded that the utility

curve was flat up to doses of 1% L-bunolol, at which point the utility lost due to

increased toxicity outpaced any marginal utility gains on efficacy. The authors’

conclusion was later confirmed with approval of the drug in the dose range

identified by the utility analysis.

This original publication by Eriksen and Keller followed a similar purpose and

overall form to later work in the application of clinical utility functions. In their

discussion, they addressed one of the differences, which was their use of three

separate decision-makers in elicitation, noting that there would be significant merit

to a firm having a single set of utility functions and associated weights. Since they

found that their three subjects differed in their assessments, the authors point to

structured group discussions (Spetzler 1968) as a possible solution. In contrast to

their example, in our implementation of CUI elicitations over the past 10 years, we

have typically used structured group discussions.

Another difference between Eriksen and Keller and more recent work is their use

of the multiplicative form instead of an additive form for the utility function. Use of

the additive form allows for a simpler and more straightforward elicitation process,

especially in a group setting. The swing-weight process described in the prior

section is an example of an additive form. However, use of the additive form

assumes that the decision-maker’s preferences within one attribute are independent

of the levels of another attribute. This distinction should be well understood by

practitioners in the area of CUI. While most CUI’s may utilize the additive form,

preferences are generally not purely additive. Typically, the benefits of an easier

assessment process will outweigh the marginal increases in theoretical accuracy,

but CUI practitioners should not be ignorant as to the underlying assumptions from

decision theory.

The paper by Korsan et al. (2005) may have been the first publication to

explicitly use the term “Clinical Utility Index.” In this publication, the concept of
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the CUI was introduced to the field via two case studies (dose selection and

identifying “no go’s”) and a discussion of how use of CUI can accelerate the

realization of benefits from pharmacometric modeling and simulation.

In Ouellet et al. (2009), a CUI was used to compare two calcium channel

a2d ligands in development for treatment of insomnia. This example is notable

for its link with a form of quantitative market research (i.e., hybrid conjoint

analysis) performed regularly by marketing/commercial groups in drug develop-

ment. Here, the list of attributes as well as the levels and weightings among them

were all taken from the results of the conjoint analysis. When possible, this

approach to the derivation of the utility function should be thought of as the

“gold standard” for the construction of an index. Although a CUI derived with

the interdisciplinary project team can be robust and valuable, a CUI derived from a

structured conjoint analysis of several hundred prescribing physicians is likely to

better model the true preferences in the marketplace. Obviously, many more

resources are required to implement this level of preference modeling, but as

conjoint analyses are ubiquitous within the industry, pharmacometricians can use

the CUI-conjoint interface as a means to better link with the commercial side of

their company.

Recently, two additional overviews of the CUI process and its use in early

clinical development were published (Poland et al. 2009; Khan et al. 2009). Both
of these publications cover the theoretical background and the place of CUI in the

overall move to model-based drug development. The reader is strongly encouraged

to consult both of these publications for additional reading.

5.5 Conclusion: Putting the CUI into Practice

This chapter has presented the reader an introduction to the CUI process. In the move

to model-based drug development, other authors have noted the need for models that

allow for decision rules in the multiattribute setting of a drug’s product profile

(Zhang et al. 2008) and metamodels to incorporate all components of the decision

that are important to stakeholders (Grasela et al. 2005). Like so many other aspects

of the transition to model-based drug development, putting the CUI into practice is

often a joint effort of pharmacometrics staff and other interested groups within the

organization. Although CUI is particularly useful in early clinical development, it

can also be integrated into adaptive trials regardless of phase. With its strong

theoretical grounding in the field of decision theory, the CUI has the potential to

address many needs for the transition to model-based drug development. Because

multiattribute utility theory is typically the realm of decision analysis but not

pharmacology nor statistics, many pharmacometricians will be new to its under-

pinnings as well as its use. With education and application, however, CUI can

become an important and standard part of the overall “pharmacometric” toolkit.
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Appendix: History and Theory

Decision theory traces its roots back to the classic text by John Von Neumann and

Oskar Morgenstern, Games and Economic Behavior (Von Neumann and Morgen-

stern 1944). Although the concept of utility can be traced back to the even earlier

philosophers, this text gave the first axiomatic foundation for the concept of utility.

Many authors elaborated on the work of Von Neumann and Morgenstern, but the

classic text of Keeney and Raiffa (1976) provided one of the most detailed

explorations of this area. Edwards (1961) was an early proponent of Bayesian

methods in psychological research. He and his colleagues investigated additive

utility functions in great detail. In general, they found that this approximation works

extremely well in practice, even though it may be criticized on theoretical grounds

for lack of preferential independence.

Francis Anscombe was one of the first to point out the problems with traditional

Neyman–Pearson statistics in the performance of clinical trials and advocated the

Bayesian sequential approach (Anscombe 1963, 1990). Although he did not specif-

ically identify utility functions, he advocated a “decision function” approach or a

“net profitability” as a result of “economic valuation.” This approach is very similar

to the “west coast school of decision analysis,” which uses a utility function to

reflect the risk aversion of the decision-maker.

This approach lay dormant and essentially ignored by the pharmaceutical indus-

try until recently. A series of papers by Berry and various colleagues has proposed

the use of sequential trials and the use of financial evaluations (Rosner and Berry

1995; Berry 2006).

Notes on Multiplicative Functions

Multiattribute additive utility has been widely used and demonstrated to be robust.

An attribute is “preferentially independent” from all other attributes when changes

in the rank ordering of preferences of other attributes does not change the prefer-

ence order of the attribute. Since the change in utility with respect to any individual

attribute (indicated as a derivative) does not depend upon any other attribute,

multiattribute additive utility is “preferentially independent.” Additive indepen-

dence is slightly stronger than preferential independence. As an example

(Fig. 5.13), consider two attributes: (1) vehicle color and (2) vehicle type. Further,

let us restrict ourselves to two colors: red and black. The vehicle types are: (1)

sports car and (2) SUV. If the decision-maker (DM) is shown the following two

lotteries (note that “lottery” here refers to simple “coin-flip” games of chance), and

if the DM is indifferent between the two lotteries, then color is additively indepen-

dent of car type and the multiattribute additive utility form is appropriate.

If these conditions do not hold, multiplicative forms of the utility function may

be appropriate. There is one last condition, called “utility independence,” which
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implies a specific multiplicative form. Suppose we have two characteristics: (1)

vehicle type (sports car and SUV once again) and (2) vehicle color (red, green and

black in rank order), and suppose a probability p can be found such that the

following two indifference conditions (Fig. 5.14) hold: the DM is indifferent to a

green sports car and a 50–50 lottery for a red or black sports car and the DM is also

indifferent between the same color choices of red or black with SUV replacing

sports car (with the same probability). In this case, the DM is said to be “utility

independent” and the form of the utility function is appropriate (Fig. 5.15).

Once again, it is important to note that simpler forms of the utility function are often

pretty reliable, in terms of choosing the right decision, even though the precise

conditions needed to employ a particular form of the utility function are not fully met.

Fig. 5.14 Illustration of utility independence

Fig. 5.13 Illustration of preferential independence

Fig. 5.15 Mathematical form of a multiplicative utility function
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Basic Elicitation Steps

There are generally five parts to an elicitation of a univariate utility function

(Keeney and Raiffa 1976):

1. Structure and scope relevant outcomes: Frame the decision problem which

includes understanding the most important outcomes and attributes, developing

the appropriate scales for measuring each attribute, exploring and explaining the

assessment process and tools.

2. Identify relevant characteristics: Are certain attributes bounded, continuous,

binary, categorical, monotonic, and preferentially independent? These attributes

provide important information about the form of the utility index to be assessed.

3. Quantify specific values along the decision-makers utility index: Usually a

series of comparisons among gambles is used to provide this insight.

4. Select the functional form of the CUI: The elicitor must make a judgment about

the specific family of mathematical functions that will be used to encode the

information obtained previously. The multiple attributes can be combined in an

additive or multiplicative fashion.

5. Check for consistency: During this phase, certain lotteries not previously

assessed are performed and compared to the preferences implied by the func-

tional form fitted to previous assessments.

These parts are not necessarily performed in sequence. During the course of the

assessment, it may be necessary to revisit previous parts. This serves to refine the

judgments of the decision-maker or decision-making body. Assessments made in a

group tend to be more difficult to perform but more robust in their application and

acceptance. Committees should, if possible, be allowed to share information with

each other and come to a joint belief. If a common view cannot be assessed,

individual assessments can be made. There are mathematical procedures for com-

bining several assessments, although sensitivity analysis is more useful to focus

upon. Basically, if the decisions are identical regardless of the CUI chosen, we do

not care about the differences. If the clinical recommendations would be different

based on differing CUIs, then we may need to revisit this with the relevant decision

makers.

Link to Conjoint Analysis

In a pharmaceutical company, it is typical that there is someone with fiduciary

responsibility for the decision making. However, the decisions need to be made

with two major groups in mind: (1) regulatory agencies and (2) prescribing physi-

cians. This means that the CUI should reflect the judgments of these groups. There

are group assessment methods that can be applied to a sample from either or both

populations. These techniques are generally known as conjoint analysis (Elrod et al.
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1992). Preference measurement comprises three interrelated components: (1) the

problem that the study is ultimately intended to address; (2) the design of the

preference measurement task and the data collection approach; (3) the specification

and estimation of a preference model. Most of the group CUIs made by techniques

such as conjoint analysis are limited in structure and less flexible than those

assessed in the manner described earlier. However, they have one great advantage;

they are direct measurements from a large sample of the population such as

prescribing physicians who are ultimately the means by which prescription phar-

maceuticals reach the target population. Hence, pharmaceutical development deci-

sions can be focused to maximize the match between the preferences of the

prescribing physicians and the target product profile.

Conjoint analysis requires research participants to make a series of tradeoffs.

Analysis of these tradeoffs will reveal the relative importance of component

attributes. The data is collected from survey respondents in a number of different

ways. Traditionally it is administered as a ranking exercise and sometimes as a

rating exercise (where the respondent awards each tradeoff scenario a score indi-

cating appeal). In recent years it has become common practice to present the trade-

offs as a choice exercise (where the respondent simply chooses the most preferred

alternative from a selection of competing alternatives – common when simulating

consumer choices) or as a constant sum allocation exercise (common in pharma-

ceutical market research, where physicians indicate likely shares of prescribing, and

each alternative in the tradeoff is the description of a real or hypothetical therapy).

Analysis is traditionally carried out with some form of multiple regressions, but

recently, the use of hierarchical Bayesian analysis has become widespread,

enabling robust statistical models of individual respondent decision behavior to

be developed.

References

Anscombe FJ (1963) Sequential medical trials. JASA 58:365–383

Anscombe FJ (1990) The summarizing of clinical experiments by significance levels. Stat Med

9:703–708

Berry DA (2006) Bayesian clinical trials. Nat Rev Drug Discov 5:27–36

Clemen RT (1991) Making hard decisions: an introduction to decision analysis. Duxbury,

Belmont, CA

Edwards W (1961) Behavioral decision theory. Annu Rev Psychol 12:473–492

Elrod T, Louviere JJ, Davey KS (1992) An empirical comparison of ratings-based and choice-

based conjoint models. J Mark Res 29:368–377

Eriksen S, Keller LR (1993) A multiattribute-utility-function approach to weighting the risks and

benefits of pharmaceutical agents. Med Decis Making 13:125–188

Grasela TH, Fielder-Kelly J, Walawander CA, Owen JS, Cirincione BB, Reitz KE, Ludwig EA,

Passarell JA, Dement CW (2005) Challenges in the transition to model-based development.

AAPS J 7:E488–E495

Hammond JS, Keeney RL, Raiffa H (1999) Smart choices: a practical guide to making better

decisions. Harvard Business School Press, Boston, MA

106 T.J. Carrothers et al.



Hunink MG, Glasziou PP, Siegel JE, Weeks J, Pliskin J, Elstein AS, Weinstein MC (2001)

Decision making in health and medicine. University Press, Cambridge, UK

Keeney RL (1992) Value-focused thinking. Harvard University Press, Cambridge, MA

Keeney RL, Raiffa H (1976) Decisions with multiple objectives. Wiley, New York

Khan AA, Perlstein I, Kristna R (2009) The use of clinical utility assessments in early clinical

development. AAPS J 11:33–38

Korsan B, Dykstra K, Pullman W (2005) Transparent tradeoffs: a clinical utility index openly

evaluates a product’s attributes and chance of success. Pharmaceutical Executive, March 2005

Matheson D, Matheson J (1998) The smart organization: creating value through strategic R&D.

Harvard Business School Press, Boston, MA

Ouellet D, Werth J, Parekh N, Feltner D, McCarthy B, Lalonde RL (2009) The use of a clinical

utility index to compare insomnia compounds: a quantitative basis for benefit-risk assessment.

Clin Pharmacol Ther 85:277–282

Poland B, Hodge FL, Khan A, Clemen RT, Wagner JA, Dykstra K, Krishna R (2009) The

clinical utility index as a practical multiattribute approach to drug development decisions.

Clin Pharmacol Ther 86:105–108

Rosner GL, Berry DA (1995) A Bayesian group sequential design for a multiple arm randomized

clinical trial. Stat Med 14:381–394

Sox HC, Blatt MA, Higgins MC, Marton KI (1988) Medical decision making. Butterworth-

Heinemann, Boston, MA

Spetzler CS (1968) The development of a corporate risk policy for capital investment decisions.

IEEE Trans Syst Cybern 4:279–300

Von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton

University Press, Princeton, NJ

Von Winterfeldt D, Edwards W (1986) Decision analysis and behavioral research. Cambridge

Univerity Press, Cambridge, UK

Weinstein MC, Fineberg HV, Elstein AS, Frazier HS, Neuhauser D, Neutra RR, McNeil BJ (1980)

Clinical decision analysis. WB Saunders, Philadelphia, PA

Zhang L, Pfister M, Meibohm B (2008) Concepts and challenges in quantitative pharmacology and

model-based drug development. AAPS J 10:552–559

5 Decision-Making in Drug Development: Application of a Clinical Utility IndexSM 107



Chapter 6

Adaptive Trial Designs

José C. Pinheiro, Frank Bretz, and Chyi-Hung Hsu

Abstract Adaptive designs (AD) have received a great deal of attention in recent

years because of the potential they offer to improve the efficiency of clinical drug

development. In an increasingly challenging environment, characterized by esca-

lating costs and decreasing likelihood of regulatory approval, sponsors and regula-

tors alike have a keen interest in strategies to modernize drug development – the use

of AD is a key one among them.

This chapter presents an overview of AD and their use in clinical drug develop-

ment. It starts with some background and definitions, followed by sections on AD in

the Learn and Confirm phases of clinical development. In later sections, the

importance of trial simulations in the context of AD is discussed, followed by

thoughts on the future of AD.

6.1 Background: What are Adaptive Designs

and Why Can They Be Useful?

We start with a general definition of AD, provided by the PhRMA Adaptive

Designs working group (Gallo et al. 2006): “a clinical study that uses accumulating

data to decide how to modify aspects of the study as it continues, without under-

mining the validity and integrity of the trial.” The appeal of being able to make

midcourse changes in design, analysis strategy, and other aspects of a trial is

certainly clear. Indeed, most studies already incorporate various changes during

their conduct, often implemented via protocol amendments – these are usually done

in an unplanned way, intended to address unforeseen problems that only reveal

themselves after the start of the study.
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AD, on the other hand, allow midcourse modifications that are preplanned, often

times discussued in advance with Health Authorities (HA), and prespecified in the

study protocol. This is key to ensure that possible adaptations will not jeopardize

the integrity of the trial and the validity of its results and conclusions, as highlighted

in (Gallo et al. 2006). AD should not be used to salvage a poorly planned trial – in

fact, the higher standards against which this type of designs are held will often

require more careful planning and more detailed protocol specification than tradi-

tionally done in drug development.

The use of preplanned adaptations in clinical trials is certainly not new. In the area

of dose escalation, for example, most designs that have been proposed for use have

an adaptive component. Examples include the traditional 3 + 3 design (Chevret

2006) and the continual reassessment method (CRM) (Garret-Mayer 2006) used in

oncology Phase I trials. Group sequential designs (Jennison and Turnbull 2000)

provide another example of adaptive designs with a well-established history in

clinical development. However, the focus of this chapter is on more novel adaptive

designs approaches, which, to varying degrees, are still being developed, tested in

practice, and discussed with HA.

A key appeal of adaptive trials is the intention to revisit, and possibly modify, the

original design of the study, based on (partial) information accumulated during the

actual trial. This includes revisiting design assumptions (e.g., variability in primary

endpoint, dose-response profile) or making design decisions (e.g., treatment and/or

population selection) for which there was limited or insufficient information at the

planning stage.

These appealing features of AD also come with an intrinsic risk: because

adaptations are decided based on partial, often variable information, they may

lead to incorrect decisions that may cause efficiency losses, instead of gains. This

results in a conflict about the ideal timing of adaptations: reliable decision-making

requires sufficient information, but to have any meaningful impact on the ongoing

trial, the adaptation(s) cannot come too late. Indeed, depending on the patient

accrual and “information accumulation” rates, an adaptive design may not be

advantageous, or even feasible, in a particular trial.

Therefore, it is critical to evaluate, and quantify, beforehand the potential gains

associated with any AD approach under consideration, taking into account the

characteristics of the particular trial (e.g., recruitment rate, primary endpoint avail-

ability), available resources, and project timelines. Such an evaluation should also

include an assessment of operating characteristics (OC) of the AD, such as Type I

error rate and statistical power of hypothesis tests, distribution of trial duration and

sample size, etc. The decision of whether or not to use an AD in a particular context

will, or at least should, depend on the outcome of such evaluations.

The higher complexity of AD (compared to more conventional fixed designs) will

usually require that the evaluation of its OC be done via computer simulations.

Because of the probabilistic nature of the decision making process underlying AD,

as well as the uncertainty surrounding the assumptions made in their planning,

sensitivity analyzes, including multiple alternative scenarios, are necessary in

such simulation studies. For the most part, simulation programs are developed
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on a customized, application-specific basis, often requiring considerable time

and resources. The availability of more general purpose, reliable simulation software

for planningAD is one of the limiting factors for their widespread use and acceptance.

6.2 Adaptive Designs in the Learn Phase of Development

Exploratory investigation is the rule during the learn phase of development. Several

key questions about dose range and dose selection, based on both efficacy and safety,

need to be answered during this stage of clinical development, starting with the

determination of the maximum tolerated dose and ADME in normal volunteers,

followed by the investigation of proof-of-concept (PoC) in its various forms and the

estimation of the dose-response (DR) relationships (safety and efficacy), culminating

with the decision to progress, or not, to Phase III and the selection of dose(s) to use in

the confirmatory trials. AD have a key role to play in these learning trials, as scientific

learning is iterative by nature and can be made most efficient by informed adaptation.

This section discusses the use of AD in learning trials, focusing on adaptive dose-

ranging (ADR) approaches.

The U.S. FDA has recently released a draft guidance on adaptive designs (FDA

2010) in which it indicates its support to adequately planned, conducted, and

analyzed AD. The guidance sheds important light on the regulatory requirements

and expectations with regard to AD, and it is certain to have a significant impact in

the field. The EMEA has issued a reflection paper focusing on the use of AD in

confirmatory trials (EMEA/CHMP 2007) which is in broad agreement with the

FDA guidance.

6.2.1 Objectives: Finding an Adequate Dose and Learning
About Dose-Response

Selection of a dose (or doses) to carry into confirmatory trials is among the most

difficult decisions required during drug development. Although the exact numbers

are unknown, it is believed that the high attrition rate plaguing the pharmaceutical

industry in Phase III studies are due, at least in part, to inadequate dose selection for

confirming safety and efficacy in the intended patient population – doses that are

too low to achieve adequate benefit, as well as doses that are too high and lead to

dose-related safety events. There is also evidence that, even after registration, dose-

adjustments in the label continue to be required with some frequency (Cross et al.
2002; Heerdink et al. 2002).

The basic problem is illustrated in the dose-response relationships depicted in

Fig. 6.1 below. The initially specified study doses (in gray) would provide reason-

able information about the DR profile under the gray curve scenario, but would be

basically useless for that purpose under the other two alternative DR scenarios.
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Of course, in practice there is not much knowledge about the true underlying DR

relationship at the time the study is being designed, so the initial dose specification

is tentative at best. The appeal of ADRmethods is to allow the allocation of patients

to the study doses, and the choice of study doses themselves, to adaptively change

over the course of the trial, taking into account the state of knowledge about the

underlying DR profile.

For example, suppose one starts the dose-finding trial with equal allocation to the

four initial doses (gray dots) depicted in Fig. 6.1 and, after 25% of patients have

their responses observed, an interim analysis (IA) is performed and is interpreted to

show a plateau in response for the three highest doses consistent with the solid black

DR profile. At that point, it would make sense to explore the lower end of the dose

range, possibly dropping the two highest doses and randomizing patients to two

new doses, along with the two lower doses from the original set, indicated by the

black dots in Fig. 6.1.

The process can be repeated in another early learn trial, with the dose allocation

being adaptively modified as more knowledge about the underlying DR profile

became available. Some of the key methodological questions involved in this

approach are:

l What doses to choose for the initial design (e.g., few vs. many doses)?
l How many adaptations, and when (i.e., how much information is needed to

reliably adapt the dose allocation)?

Fig. 6.1 Hypothetical dose-response profiles for given specifications of study doses. Gray dots
represent the initial doses and black dots the doses chosen after the interim analysis (IA) in the

adaptive design
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l What adaptation rule should be used to modify dose allocation (e.g., focus on
target dose, or on entire DR profile)?

l Early stopping rules (e.g., futility, sufficient information about DR)?

Essentially any ADR method is determined by the set of questions above.

6.2.2 Adaptive Dose-Ranging Approaches

The ADR methods discussed here have all been investigated by the PhRMA

Adaptive Dose-Ranging Studies working group (WG) in two extensive simulation

studies aimed at quantifying the benefits of ADR methods over traditional, fixed

design approaches. A brief overview of these studies and their key results are

included in Sect. 6.4 – further details can be found in the white papers from the

WG (Bornkamp et al. 2007; Pinheiro et al. 2010). The ADR methods differ

primarily in the objective function employed in the adaptive allocation algorithm,

and whether or not a parametric model is assumed. Some of the ADR approaches

focus on the estimation of target doses, such as the minimum effective dose (MED)

or the dose corresponding to 95% of the maximum possible effect (ED95). Others

consider the estimation of the full DR profile. Combination approaches are also

featured below.

6.2.2.1 General Adaptive Dose Allocation (GADA)

Bayesian non-parametric dose-response modeling is used to determine the most

informative dose to administer to each new subject (Berry et al. 2002), generalizing
the approach used in the ASTIN trial (Krams et al. 2003). The key elements of

general adaptive dose allocation (GADA) are depicted in Fig. 6.2, which also serves

as an illustration for the general flow of other ADR approaches – with the difference

Fig. 6.2 General adaptive

dose allocation (GADA)

approach
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that, typically, data and randomization of cohorts of patients are utilized, instead

of individual patients.

In the GADA algorithm, each new patient (1) is allocated to either placebo or an

active dose based on the optimal allocation rule (2 – minimum response variance at

target dose). As the trial proceeds, interim and final results from patients are

gathered and sent to the central data management system, (4), being used to update

the estimated DR model (6), using Bayesian methods. Based on the posterior

distribution of the response at the target dose (e.g., ED95 or MED), a decision (7)

is made on whether to stop the trial for futility (8) or sufficient evidence of efficacy

(9), or to continue with the dose finding algorithm (10). The optimal dose for the

next patient is chosen to minimize the response variance at the target dose (optimal

allocation rule).

6.2.2.2 Adaptive Multiple Comparison Procedure-Modeling (aMCP-Mod)

This approach consists of a response-adaptive extension of the MCP-Mod method-

ology introduced in (Bretz et al. 2006a), preserving the original key motivation of

DR testing and estimation under model uncertainty. Like the original MCP-Mod,

adaptive multiple comparison procedure-modeling (aMCP-Mod) utilizes a set of

predefined candidate models to represent the uncertainty about the true underlying

DR relationship. The adaptations aim to maximize the precision of the estimated

MED (extensions to other objective functions are available, too, but not discussed

here). At each IA, the optimal allocation for MED estimation proposed by Dette

et al. (2008) is determined based on the updated information on the candidate

models – their probabilities of being the true model (in a Bayesian framework) and

corresponding parameter estimates. As the knowledge about the candidate models

is updated, so do the optimal allocation ratios. At the end of the study, the observed

data is analyzed using the original MCP-Mod approach.

6.2.2.3 Combined D- and C-Optimality (DcoD)

Two optimal design methods are applied in two successive stages to adaptively

determine dose-allocation ratios. In the first stage, the adaptive dose-allocation is

determined using the D-optimality criterion based on a sigmoid-Emax model, with

parameter estimates updated as data accrues. From a predetermined IA onward, the

adaptation function is switched to C-optimality, focusing on maximizing the preci-

sion of the MED estimate under the assumed sigmoid-Emax DR model. As in the

first stage, adaptation is a result of successively updating the model parameter

estimates, as information accumulates. The time point for switching the criteria is a

design parameter that should be investigated via simulations. The main appeal of

this approach is that it combines a more global criterion focused on the overall

estimation of the DR relationship (D-optimality), with a local criterion targeted at

the estimation of the MED (C-optimality).
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6.2.2.4 Focus on Interesting Region of DR Profile (IntR)

The objective function driving the adaptive updates of the dose allocation ratios for

this method is the (mean) precision of the estimated DR relationship over an “inter-

esting region” of the dose range. For example, this region can be defined as the dose

range for which the corresponding DR is at least 80% of the clinically relevant effect –

the key idea being that one is usually only interested in regions where reasonably good

efficacy has been observed. Similarly, to the DcoD approach, the underlying DR

relationship is assumed to be properly represented by a sigmoid-Emax model. The

underlying optimal design criterion, called IL-criterion, was introduced inMiller et al.
(2007. Similarly, to aMCP-Mod, it utilizes a Bayesian framework to account for

model uncertainty (in this case, uncertainty about the parameters in the sigmoid-

Emax model). The method uses a set of (six or so) pre-determined sigmoid-Emax

models, which were assumed a-priori equally likely, with model probabilities updated

using Bayesian methods, as information accumulates.

6.2.2.5 Multiple Objectives (MULTOB)

Aweighted product of multiple objective functions is used to determine optimal dose

allocations in the adaptive algorithm for this method. Similarly, to DcoD and IntR, a

single flexible functional form is assumed to represent the underlying DR relationship

– in this case, an inverse quadratic model with an intercept. The choice of objective

functions and weights is application-dependent, and can be tailored to focus on

different quantities (e.g., detection of DR signal, estimation of MED, estimation of

ED95, etc). Adaptive allocation is implemented via a Bayesian approach, with a set of

plausible, predetermined DR models, like in aMCP-Mod. Prior model probabilities

are assigned at the start of the trial and updated within a Bayesian framework.

The overall objective function is the weighted product of objective functions for the

individual models (themselves a weighted product of individual component

functions), with weights given by the posterior model probabilities at the time

of adaptation.

6.2.2.6 t-Test Adaptation

This approach focuses on the estimation of the target dose, defined as the dose

producing a predetermined, clinically relevant target effect. This approach places

less importance in the estimation of the DR relationship. Unlike most previous

ADR methods described, it does not assume any parametric model(s) for the DR

relationship, only that it is monotone. The data accumulates in cohorts of patients

adaptively assigned to doses according to the adaptation rule, which is reevaluated

after each cohort has completed the study. Within each cohort, a fixed percentage of

patients are assigned to placebo and the remaining patients are assigned to a single

dose determined by the adaptation rule (this can be either a new dose, or a dose used

in a previous cohort). The adaptation objective function is the t-statistic for testing
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equality to the target effect, based on the difference between the mean responses of

all subjects assigned to the dose selected in the last observed cohort and placebo.

An up-and-down algorithm, based on a threshold for the t-statistic, is then used to

determine the next cohort dose, or whether the trial should stop. When, and if, the

criterion for finding the target dose is met, the DR profile is estimated via isotonic

regression.

6.2.3 Remarks on ADR Methods

Although ADR approaches certainly have an important role to play in improving

dose finding and dose-response understanding in clinical drug development, they

will not, by themselves, be able to address the lack of proper dose selection problem

facing the pharmaceutical industry. Given the current level of resources (e.g.,
sample sizes, drug availability) allocated to Phase II trials, there is a limit on how

much can be improved via better design and analysis methods alone. In particular,

under the current resource constraints, there can be no silver-bullet approach

capable, by itself, of producing the knowledge level needed to adequately address

the dose selection problem. This has been clearly illustrated by the simulations

conducted by the PhRMA ADRSWG (Bornkamp et al. 2007; Pinheiro et al. 2010),
which demonstrated that high quality dose selection can only be achieved with a

combination of increased investment in dose-response learning and an optimized

selection of design/analysis strategies.

An important point when choosing among alternative ADR methods are the

learning goals of the associated trial. For example, if dose selection is the key

goal, methods focused on optimizing target dose (e.g., MED and ED95) estimation,

such as aMCP-Mod and GADA, may be more appropriate. If the focus is on DR

estimation, however, methods like IntR, which optimize quantities based on the full

DR profile, are generally preferable.Methods combiningmultiple objectives (MUL-

TOB), such as DcoD and MULTOB, provide more uniform performance with

respect to target dose and dose-response profile estimation. As no method can be

simultaneously optimal with respect to multiple criteria, one should carefully take

the relative importance of the individual objectives into account when selecting

methods for a specific trial. As discussed in Sect. 6.4, trial simulations are of key

importance for this type of evaluation.

The ADRmethods described in this section are entirely empirical, focusing on the

DR relationship. An alternative class of designs for estimating exposure–response

relationships and determining target exposures, which involves adaptation, is that of

Randomized Concentration-Controlled Trials (RCCT) described in Kraiczi et al.
(2003). In these designs, patients are randomized to target concentration ranges,

with the individual patient dose regimens being adaptively adjusted to meet the

corresponding target concentration range. Additional flexibility is possible by allow-

ing the target concentration ranges allocations to vary as information accrues,

similarly to what is done in the context of ADR studies.
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6.3 Adaptive Designs for Confirmatory Studies

The objectives of adequate and well-controlled confirmatory studies, so-called

pivotal trials, need to be accompanied by statistical hypotheses and prespecified

in the study protocol. Regulatory practice requires that the false positive rate (i.e.,
the Type I error rate) for the associated hypothesis tests be strictly controlled at a

prespecified significance level a. This requirement distinguishes confirmatory trials

from earlier, exploratory studies, where a strict Type I error rate control is not

mandatory. If more than one hypothesis is tested, and simultaneous inference across

the several hypotheses is foreseen, multiplicity becomes an issue. For example,

repeatedly looking at accumulating data with the possibility of early stopping for

efficacy or other design modifications may inflate the overall Type I error rate.

Similarly, if multiple treatments or dose levels are compared with a control, the

significance level for the individual comparisons has to be adjusted. Therefore,

special analysis methods are required to maintain the inferential validity of confir-

matory adaptive clinical trials (Bretz et al. 2009).
This section identifies some of the methods for the design and analysis of

confirmatory adaptive trials. Section 6.3.1 describes group sequential designs, a

class of designs involving adaptive components that has been in use for several

decades. Newer AD, which provides more flexibility to overcome some of the

inherent limitations of group sequential designs, is the topic of Sect. 6.3.2. The

following two sections cover some of the more common types of AD in confirma-

tory trials, including blinded and unblinded sample size reassessment, treatment

selection and enrichment designs. The section concludes with some practical

considerations on the use of AD.

6.3.1 Group Sequential Designs

Traditionally, the sample size in a clinical trial is fixed before the study is carried

out and the data are analyzed. There are clear advantages in using a more flexible

approach, where it is possible to stop a study earlier if the available information is

deemed sufficient for sound decision making. For example, it would be natural, and

ethical, to stop a two-arm clinical trial if interim data clearly indicated that one

treatment was superior to (or dangerously less safe than) the other. One might also

want to stop the same trial, if the goal was to establish superiority, when there were

clear signs that the two treatments were equivalent, or non-inferior to each other.

Potential interim stopping of a trial should be preplanned and, as mentioned, the

Type I error rate could be seriously inflated unless the analysis method accounts for

the sequential nature of the decision making.

Group sequential designs have been in use for clinical trials since the 1970s,

becoming the gold standard for major long-term confirmatory trials nowadays.

Some of the early seminal work in the field can be found in several articles

(Armitage 1975; Pocock 1977; O’Brien and Fleming 1979). In a group sequential
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design, the null hypothesis of no treatment effect is rejected if the associated

p-value is below a predetermined critical value c, chosen such that the overall

probability of a false positive result does not exceed the significance level a.
Clearly, c depends on a and on the number of planned stages. Pocock’s design

(Pocock 1977) uses a constant c for all sequential tests in the trial, while O’Brien

and Fleming (1979) require more conservative bounds for early tests followed by

larger critical values.

Approaches that are more flexible are available, most prominently a-spending
function approaches (Lan and DeMets 1983) in which one only needs to specify the

amount of significance level spent up to an interim analysis, rather than the

full shape of the adjusted critical levels. With this approach, not even the number

of interim analyzes needs to be fixed in advance (although the timing of the

interim looks must be independent from data in the ongoing study). Instead,

a maximum amount of information must be specified which in the simplest case

is the maximum sample size of the trial. The a-spending approach is particularly

attractive if the interim analyzes are planned at specific time points, rather than after

a specific number of observations. Reliable software implementations of group

sequential methods, including different a-spending function approaches, are avail-

able in several commercial packages, such as ADDPLAN and East, as well as in

freely available software, such as the gsDesign package in R (Wassmer and

Vandemeulebroecke 2006). Further details on the theory of group sequential

designs can be found in Jennison and Turnbull (2000).

6.3.2 Adaptive Designs

Even though group sequential methods lead to more efficient trials designs than

traditional ones, they still do not provide the desired level of flexibility needed in

clinical drug development. As discussed in Sect. 6.3.1, group sequential designs are

characterized by a prespecified adaptivity, and trial design modifications based on

the information collected up to an interim analysis are not possible. Standard design

aspects, such as the number of interim analyzes, the group sample sizes and the

decision boundaries, have to be specified in the planning phase and cannot be

changed during the ongoing trial.

Confirmatory AD has been developed with the goal of extending the flexibility

provided by group sequential methods. In particular, they allow for design modifica-

tions of an ongoing clinical trial while maintaining control over the overall Type I

error rate (Bauer and Koehne 1994). This new class of trial designs is characterized by

the potential for unscheduled adaptivity, such asmodifying design parameterswithout

the need to completely prespecify the adaptation rules. Adaptive designs allow one to

learn from the data observed in an ongoing trial, as well as information external to the

trial (e.g., historical data, parallel study results) tomodify, at interim, design aspects of

subsequent stages, and thereby to react quickly to emerging, possibly unexpected

results. In particular, Bayesian interim decision tools can be applied to guide the
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interim decision process without undermining the overall Type I error rate (Bretz et al.
2009). Important examples include unblinded sample size reestimation (SSR)

(Sect. 6.3.3) and dropping of treatment arms in combined Phase II/III trials

(Sect. 6.3.4).

A common hypothesis testing approach in AD is based on the combination test

principle that combines stage wise p-values using a prespecified combination

function (Bauer and Koehne 1994). The key idea is to calculate separate test

statistics from the samples at the different stages (e.g., before and after an interim

analysis) and to combine them in a prespecified way for the final test decisions.

It can then be shown that any design modification which preserves the distributional

properties of the separate stagewise test statistics under a given null hypothesis of

interest does not lead to an inflation of the overall Type I error rate.

Examples of combination function approaches include Fisher’s product combi-

nation test (Bauer and Koehne 1994) and the inverse normal combination method

(Lehmacher and Wassmer 1999; Cui et al. 1999). In fact, the use of the latter

method allows establishing a connection between the adaptive designs considered

here and the group sequential designs from Sect. 6.3.1.

An approach closely related to the combination function principle is based on the

conditional error rate, that is, the Type I error rate for the final analysis (calculated

under the null hypothesis), conditional on the observed interim data (Proschan and

Hunsberger 1995; Mueller and Schaefer 2004). It can be shown that, if the interim

analyzes occur at the preplanned information fractions and the design is not adapted

during the conduct of the trial, the resulting stopping boundaries are the same as in

classical group sequential methods, but not the resulting test statistics. Procedures

based on the conditional error rate are often the most flexible adaptive methods that

still guarantee a tight Type I error rate control. However, in practice, the use of

these methods is often restricted by the need of a tailored application. For example,

if nuisance parameters are present, the conditional error can only be approximated,

and the computation of the conditional error rate in the presence of covariates

remains an open research problem.

6.3.3 Sample Size Re-Estimation

When designing a clinical study, one often has to rely on uncertain assumptions

about the values of key underlying parameters, which typically can only be assessed

at the conclusion of the trial. One may realize at that point that the trial could have

been designed, undertaken or analyzed in a different manner that would have been

more efficient, or would have increased its likelihood of success. A straightforward

illustration of this is provided by the sample size determination using an estimate of

the response variability, often obtained from early-phase trials or historical data.

There is always potential for imprecision, or even bias, in this estimate, as it may

not directly relate to the trial being designed. Some factors affecting the pre-trial

estimated variability may be obvious, but most are quite difficult to quantify, or
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realize, in advance. The potential implications are that a trial that would be

successful may have its outcome jeopardized because of insufficient statistical

power, or substantial resources may have been wasted because the trial was

needlessly large. This motivates the idea of updating the sample size, as interim

observed data seems to contradict pre-trial assumptions.

For example, consider a trial with a normally distributed response that was

designed to have 90% power to detect a treatment difference, and where the

standard deviation was assumed to be one. Under these conditions, a small increase

of 25% in the standard deviation would reduce the power from 90 to 73%, a nearly

threefold increase in the risk of failure.

Themid-trial assessment for possible sample size adjustment is commonly referred

to as SSR. Such methods fall into two general categories: (1) blinded, when the SSR

uses revised estimates of nuisance parameters, without requiring treatment assignment

identification and (2) unblinded, based on revised estimates of treatment.

Statistical methods, such as the combination function approach, can be used to

control the Type I error rate under unblinded SSR. Alternatively, group sequential

designs can also be used for a similar purpose, by initially sizing the trial to detect a

smaller treatment effect than anticipated. If the true effect size is larger than the

postulated one, a stopping boundary would likely be crossed during interim moni-

toring and the trial would terminate early. This could be characterized as a “plan big

and then cut” approach, while the SSR approach would favor “plan small and then

increase.” Budget constraints and logistical considerations may lead sponsors to

prefer the SSR approach over the group sequential alternative.

Wittes and Brittain (1990), who referred to them as internal pilots, first introduced

the concept of blinded SSR. They reported that these methods could be used in large

randomized clinical trials with little, if any, impact on the Type I error rate. When

data remains blinded, concerns related tomaintaining the intended significance level

for the trial are greatly reduced. Methods using blinded data also tend to be more

acceptable to regulatory agencies (EMEA/CHMP 2007; CHMP 1995; ICH 1999).

An additional appeal of blinded SSR is that no Data Monitoring Committee

(DMC) is required for implementation and no independent interim analysis team

needs to be assembled; both would be needed under the unblinded SSR case. For

these reasons, using blinded data is the preferred method for SSR. Unblinding may

be considered, if other design features besides sample size are to be adapted. It can

then be implemented as part of an AD. Care must be taken to avoid “backward

calculations” (adjusted sample size may give hint on treatment effect). SSR is an

active area of research in adaptive designs, with many methods having been

proposed for a variety of trial situations (Proschan 2005; Friede and Kieser 2006).

6.3.4 Applications: Treatment Selection and Enrichment Designs

A particularly appealing application of AD is in the context of combined Phase II/

III studies with treatment selection at interim. Such studies start with several
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treatments and a control, with a subset of treatments being selected in the middle of

the trial based on the available information at interim, including observed data from

the ongoing trial, external information and expert knowledge. Recruitment would

continue, but only for the selected treatment(s) and the control, with possibly

reassessed sample sizes. The final analysis of the selected treatment(s) includes

the patients in both stages and is performed such that the overall Type I error rate is

controlled at a prespecified level, regardless of the adaptation rule used at interim

(Bretz et al. 2006b, 2009; Posch et al. 2005).
To illustrate the use of AD with dose selection at interim, we consider the case

study from Barnes et al. (2010). This trial was one of two pivotal trials to support

registration and label claims in a chronic disease. An AD was chosen to (1) perform

dose selection at interim and (2) confirm the selected doses in the final analysis. The

aim of this two-stage trial was therefore to provide pivotal confirmation of efficacy,

safety, and tolerability of the selected doses, where the dose selection was done

within the ongoing trial, at a prespecified interim analysis time. At Stage 1, patients

were randomized to one of seven treatments arms (four distinct dose levels, placebo

and two active control groups). Based on the observed interim data, two dose levels

were continued into Stage 2, together with placebo and one of the active control

arms. The final analysis consisted of comparing the two selected dose groups with

the two active controls for a prespecified sequence of primary and secondary

endpoints, while combining the evidence from both stages in a rigid statistical

hypothesis framework. A Bonferroni adjustment at level a/4 was used, since the

study started with four dose levels and any two doses could have been included in

the final analysis. More powerful approaches along the lines described in Sect. 6.3.2

could have been applied, but were not pursued because of the complexity of the trial

design. Note that the interim decision rules for dose selection did not need to be

prespecified in the study protocol, as proper statistical methods are used. Dose

selection guidelines for a variety of possible interim scenarios were compiled and

included in the DMC charter. The use of proper statistical methods, however,

allowed the independent DMC, if necessary, to deviate appropriately from these

guidelines, and to select the doses on its own, possibly after consultation with senior

representatives from the sponsor (further details of such practical considerations are

given in Sect. 6.3.5).

A second application area of growing interest for AD comprises sub-group

selection (Brannath et al. 2009), or enrichment designs (Wang et al. 2009). The
increasingly important area of target or personalized medicine is founded upon a

premise that heterogeneity in differential benefit to a therapeutic intervention can

be explained, and thus predicted, by a (possibly composite) measurable difference

between individuals, or groups of individuals. In this context, it is critical to be able

to clearly identify the subpopulation of patients (e.g., using diagnostic tests)

anticipated to benefit from the targeted treatment. The motivation is clear: if

the therapy only benefits patients in a subgroup, the treatment effect assessed

in the overall population will be diluted. Therefore, depending on the prevalence

of the subgroup in the population, the benefit that this targeted therapy can be

provide might be inadvertently missed. Under those circumstances, a conventional
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clinical trial evaluating the (target) therapy in the overall population would be

inefficient (Wang et al. 2007).
If there is a sufficient biological understanding, and a corresponding plausible

body of evidence supporting the hypothesis that the targeted therapy will only

benefit an a priori identifiable subgroup of patients, restricting recruitment to those

patients (referred to as an enrichment design in Wang et al. (2007, 2009)) will
generally suffice. However, the most frequent setting is one in which there is not

enough confidence on the targeted benefit of the drug (or the identification of the

target subgroup) to restrict the patient population upfront. Instead, one would need

to assess the cumulative information and restrict recruitment only after sufficient

confidence could be established (Wang et al. 2007). This type of design has

composite objectives: to assess the benefit in the overall population and in the

target subgroup. AD provide a particularly efficient approach for composite objec-

tive trials, as they allow for learning and confirmation within a unified, inferentially

valid framework.

6.3.5 Practical Considerations

An important aspect to be considered when planning a confirmatory AD is to

expand input on trial design to the project planning level. Before embarking on

a confirmatory AD, one needs to ensure that the totality of information that will

be available at its conclusion is expected to be sufficient to support a submission at

the end of Phase III. For example, a second pivotal trial is typically needed to

replicate the findings of an independent first pivotal trial, so a single AD cannot

replace the full Phase III program. Additionally, adequate information on safety,

regimen, mode of application, endpoint, etc., which is needed for a successful filing,

should be available prior to the start of a combined Phase II/III study. For example,

an AD in a combined Phase II/III study with treatment selection at interim does not

replace a proper dose ranging study.

Most basic considerations for planning and conducting a clinical trial with a

confirmatory AD are the same as in other, more conventional monitoring settings,

such as group sequential trials. This is in particular true for the need to set up

independent DMCs, to restrict access to the (unblinded) interim analysis results in

order to protect the integrity of the trial, and to facilitate quick access and analyzes

of validated data at interim. Other aspects of designing and executing an AD,

however, may be different, both at the trial level, as well as at the level of the

drug development program. This includes implications on manufacturing and drug

supply management, which are often underestimated.

Regulatory considerations play a major role when planning an AD. Their impact,

however, depends to some extent on the type of adaptive design and at which point

in the overall drug development program it is being used. Health Authorities are

typically less concerned about the use of AD in early development, but, in Phase III

trials to confirm the treatment effect, adaptations should be kept to a minimum.
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Health Authorities are generally open to accept AD in late development stages, if

properly conducted and adhering to scientific and statistical rigor, as discussed in

the recent FDA draft guidance (FDA 2010) and the EMEA reflection paper

(EMEA/CHMP 2007) on the topic. AD are also mentioned explicitly in the Critical

Path Opportunities List published by the FDA as an example for creating innovative

and efficient clinical trials (FDA 2004).

6.4 Adaptive Designs and Trial Simulations

As discussed in the previous sections, AD approaches typically involve more

complex designs, conduct and analysis methods than more conventional, fixed

designs. As a result, the evaluation of their operating characteristics (OC), such

as Type I error rate, trial duration, etc., can usually only are determined using trial

simulations. Because the derivation of such OC is key to adequate protocol design,

as well as to determine the potential benefit of alternative AD and fixed approaches,

trial simulations for planning is necessary in this context.

In addition, a number of AD also incorporate simulation-based approaches

during the trial (e.g., determining a change in dose allocation at an interim analysis)

and for the final analysis (e.g., exploring probability of success and net present

value calculations for the program, at the end of Phase II). These types of simula-

tions tend to be more focused and embedded in the particular method being

implemented. This section focuses on the use of trial simulations for planning a

study and deciding among alternative trial design approaches.

6.4.1 Operating Characteristics

The OC of a given design/analysis method are critical to determine the statistical

adequacy of the approach, as well as to allow its comparison to alternative

approaches. Listed below are some of the most common OC used in practice –

not to be taken as an exhaustive list, though. To be most meaningful, trial simula-

tions should include a variety of scenarios, which are feasible to be observed in

practice – in the case of dose-ranging trials, this should include different DR

profiles.

l Type I error rate: the probability of a false positive result, e.g., declaring a

treatment better than a control, when in fact it is not. This OC presupposes the

existence of one, or more, hypotheses being tested in the trial. When multiple

hypotheses are present, a family wise error rate (FWER), that is, the probability of

observing at least one false positive result in the set of hypothesis tests, should also

be reported. An important point to be made is that AD relying on simulation-based

approaches to determine critical value(s)may not control a Type I error rate control

at a prespecified significance level a (Posch et al. 2010). Their use in confirmatory
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studies is therefore limited. Analytical results, such as multiplicity adjusted critical

values, are often needed in the latter case to guarantee a strict FWER control.
l Statistical power: the probability of a true positive result – related to the OC

above, but calculated under scenarios in which an effect of some kind (e.g., a DR
signal) is present. When multiple hypothesis tests are included, should be

calculated for subsets of hypotheses (e.g., true positive in all tests, in at least

one test, etc).
l Stopping rules probabilities: often times AD include early termination rules,

such as futility rules. Their stoppage probabilities under varying scenarios (e.g.,
no effect, clinically irrelevant effect, etc.) should be characterized.

l Trial duration and sample size: in AD with early termination rules and/or

information-driven termination (e.g., stop when adequate precision of MED

estimate has been reached, or maximum sample size is attained); the distribution

of trial duration and total sample size should be investigated as part of the

simulations. Summaries, such as average and standard deviation, and plots,

such as histograms and box plots, are useful for that purpose.
l Distribution of allocated patients/doses: in AD involving adaptation in dose

allocation, the average and standard deviation of the number of patients per dose

provide useful characterizations.
l Precision and bias of point estimates: there will typically be a variety of point

estimates used in any given trial, including differences between treatment arms,

target doses, predicted values for dose response, etc. Measures of precision (e.g.,
median absolute deviation between estimated and true values) as well as of

potential bias (e.g., difference between estimated and true values, divided by the

latter) are of critical importance to evaluate the information value of the trial,

and compare alternative approaches.
l Coverage and length of confidence intervals: to be evaluated when confidence

intervals are to be derived for the quantities investigated by the point estimates

references above.

Whenever feasible, the OC should be displayed using graphical methods to

allow side-by-side comparison of alternative design/analysis methods, under the

different scenarios considered. When evaluating OC in a given trial, one should not

only have in mind the comparison of alternative approaches, but also the adequacy

of any approach to properly address the relevant scientific questions, under the

resource restrictions. It may be that the best method is not good enough for

the intended purposes of the study.

6.4.2 An Illustration: Comparing ADR Approaches

We use a subset of the simulations produced by the PhRMAADRSWG (Bornkamp

et al. 2007) to illustrate the value of trial simulations to derive OC and compare

alternative approaches. This particular simulation study included the last five ADR
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methods described in Sect. 6.2.2 plus a non-adaptive ANOVA approach based on

Dunnett comparisons (Dunnett 1955).

The underlying indication considered was neuropathic pain, with a primary

endpoint of change from baseline in a visual analog pain score. The target clinical

effect was a pain reduction from baseline of 1.3 units over placebo. The total

sample size was fixed at 250 patients, for all methods. Simulation scenarios were

defined by three factors:

l Seven DR models: flat plus six active DR profiles, displayed in Fig. 6.3
l Number of doses: five (0, 2, 4, 6, and 8) or nine (0, 1, 2, . . ., 8)
l Number of equally spaced interim analyses: 0 (no adaptation), 1, 2, 4, and 9

The purposes of the simulation study were to: (1) evaluate and quantify

possible performance gains of ADR approaches over ANOVA and (2) compare

the performances of various ADR approaches. The following key study goals were

considered.

l Detecting dose-response: evidence of a DR signal, i.e., PoC
l Identifying clinical relevance: if PoC is established, determine if a clinically

relevant response can be obtained within the maximal allowed dose range

Fig. 6.3 DR profiles used in simulations. Dotted horizontal line indicates clinically relevant pain

reduction from baseline of 1.3 units and shaded region gives the target response interval of �10%

of the clinically relevant effect. Dots indicate doses 0, 1, 2, . . ., 8
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l Selecting a target dose: when the previous goal is met, select the dose to be

brought into the confirmatory phase, the so-called target dose
l Estimating the dose-response: DR profile within the observed dose range

We focus here just on the last two items, for illustration purposes. The full set of

results and associated discussions are given in Pinheiro et al. (2010).
The dose selection accuracy was evaluated by the probability that the selected

dose was within the target dose interval, i.e., within �10% of the target clinical

response. The corresponding target dose range depends on the shape of the DR

profile as highlighted in Fig. 6.3. Figure 6.4 summarizes the simulation results

for this OC.

The probability of target dose interval selection improves with adaptation for

most of ADR methods (especially aMCP-Mod and IntR), under the majority of

simulation scenarios. No method is a clear winner, with relative performances

depending on the shape of the underlying DR profile and the number of doses.

Note that increasing the number of IA beyond 2 does not lead to further improve-

ment for most ADR methods.

The adequacy of DR estimation was measured by the relative average prediction

error obtained as the average absolute difference between estimated and true DR

values at each of the available doses 0, 1, . . ., 8, divided by the average by the

Fig. 6.4 Probability of selecting dose in correct target interval vs. number of IA corresponding to

the adaptive dose-ranging (ADR) methods under the different DR models and number of doses
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absolute target clinical effect. Figure 6.5 displays the values of this OC for the

various methods under the different scenarios.

For t-test and aMCP-Mod, the prediction error increases with the number of IA

under most of the scenarios. This is likely a consequence of thesemethods focusing on

maximizing the precision of the target dose estimate. Consequently, the resulting

adaptive allocation algorithms placemore patients around the estimated dose, possibly

to the detriment of learning about the full DR. The remaining ADR methods, which

incorporate overall DR estimation criteria in their adaptation rules, have more stable

performance with regard to the number of adaptations. Furthermore, the DR estima-

tion performance of these methods does not change much with the number of adapta-

tions, suggesting that the performance is driven more by the use of optimal design

methods than the adaptations themselves. As before, no method is clearly superior, or

inferior, under all scenarios, including ANOVA.

6.5 Concluding Remarks and Further Thoughts

on Adaptive Designs

Because of their flexibility, adaptive designs can provide substantial gains over

more traditional fixed designs. To maintain the scientific validity and integrity of

Fig. 6.5 Relative average prediction error vs. number of IA for ADR methods under the different

DR models and number of doses
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AD, it is critical that adaptations be prespecified and stated in the study protocol,

and that guidelines and protections are put in place to ensure that information is not

leaked beyond the strictly necessary people involved in the adaptation process (e.g.,
DMCmembers), see FDA (2006) and Gallo et al. (2010) for further guidance on the
topic for exploratory and confirmatory trials.

The added flexibility and higher standards of planning and conduct of AD come

at a price. Typically more upfront planning is needed, and more costly logistics and

operational processes are required (e.g., drug supply management, centralized

randomization). When considering an AD, one should carefully take into consider-

ation the pros and cons involved. In some situations, the potential benefits asso-

ciated with an AD may not justify its higher costs. To that end, clinical trial

simulations play a key role in evaluating and deciding among alternative

approaches, including AD. These should be conducted under varied and realistic

scenarios, taking into account the multitude of aspects involved.

An important point to keep in mind is that no single best approach exists for all

cases of practical interest. For some indications in which accrual occurs relatively

slowly with regard to the availability of the response, ADmay be a more natural and

appealing choice, while in cases that accrual has terminated by the time the

endpoint is available, AD would be of little, or no benefit. The choice of design

and analysis method will also heavily depend on the goals of the study and the

availability of resources.

Therefore, a toolbox strategy may provide the best approach. The toolbox should

encompass a reasonably comprehensive set of design and analysis methods with

demonstrated usefulness for a given type of studies, e.g., dose ranging. These

should include response-adaptive designs, optimal designs, model-based estima-

tion, Bayesian methods, futility rules, etc.

As mentioned earlier, methodological improvements in design and analysis

alone cannot ensure improved success rates and better labeling in drug develop-

ment. Adequate allocation of resources across the different phases of development

is also necessary. Program-level evaluations of alternative strategies, including

resource allocation, should become the norm in drug development. The use of

forward-looking metrics such as probability of program success and distribution of

net present value would help placing the program-level evaluations into a better

quantitative decision-making context.
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Chapter 7

Keys of Collaboration to Enhance Efficiency

and Impact of Modeling and Simulation

Anthe S. Zandvliet, Rik de Greef, Anton F.J. de Haan,

Pieta C. IJzerman-Boon, Maya Z. Marintcheva-Petrova,

Bernadette M.J.L. Mannaerts, and Thomas Kerbusch

Abstract Modeling and Simulation (M&S) can be a key factor in efficient drug

development. It is well recognized that collaboration of multiple disciplines is

critical to the success of M&S in supporting drug development decisions. This

chapter provides guidance on how the main collaborators (biostatistics, clinical

research and clinical PK-PD) can achieve co-ownership of M&S efforts to make

better informed decisions on trial designs. The clinical development program of

corifollitropin alfa is presented as an example of successful model-based drug

development. Throughout a long-lasting collaborative effort, biostatistics and clin-

ical PK-PD scientists have learned to appreciate each other’s methods, all colla-

borators have shared their expertise to integrate physiological and pharmacological

concepts with clinical data and clinical research has started to pro-actively conduct

model-informed trials. Cultural barriers and logistical difficulties were overcome,

resulting in an organizational structure that ensures better informed decisions on

trial designs and more efficient drug development.

7.1 Introduction

Modeling and Simulation (M&S) is a valuable tool to integrate knowledge

throughout the various stages of drug development. Models informed by data

from preclinical pharmacology experiments may be used to guide dose selection

for the first-in-human trial. Models of clinical pharmacokinetic-pharmacodynamic

relationships based on early clinical trials may be used to optimize the design and

informativeness of later trials, contributing to efficiency of late stage development.
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For an optimal interplay between modeling activities and clinical studies, close

collaborations between various scientific disciplines are necessary.

Modeling in the drug development context comprises more than the development

of a model that adequately describes the data. Models are most useful if current and/

or basic knowledge of physiology and pharmacology is incorporated into the

models. Hence, modeling allows integration and quantification of established scien-

tific principles and new experimental data. Input from multiple areas of expertise is

essential to collect and amalgamate all available knowledge in a model framework

that is both scientifically valid and appropriate for the goals of the project.

During the model building process, multiple pharmacostatistical techniques may

be applied, especially when complex model frameworks are involved. Different

types of data (e.g., continuous vs. ordinal; longitudinal vs. end-point) require

different analytical methods, different software tools and different modeling exper-

tise. Interdisciplinary collaboration between the various quantitative sciences, such

as statistics, applied mathematics, systems biology and preclinical/clinical pharma-

cokinetics and pharmacodynamics (PK-PD) can greatly enhance the variety of

modeling components and may broaden the scope of modeling impact.

In our organization, knowledge integration using modeling and simulation has

been initiated through the KD3 paradigm. KD3 is an acronym for Knowledge

Driven Drug Development. The KD3 paradigm provides an organizational structure

for large modeling initiatives in clinical development and fosters close collabora-

tion between the principle disciplinary scientist teams: clinical PK-PD, biostatistics

and global clinical research. Figure 7.1 presents a graphical representation of the

KD3 concept.

Within KD3 teams, the clinical PK-PD group focuses on modeling of longitudinal

PK-PD data using software such as NONMEM (nonlinear mixed effects modeling

software, IconDevelopment Solutions, Elliott City,MD,USA), the biostatistics group

focuses on statistical models using programs like SAS (Statistical Analysis Software,

Fig. 7.1 KD3: important elements in the collaboration between clinical PK-PD, biostatistics and

global clinical research to enhance the efficiency and impact of modeling and simulation
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SAS Institute Inc., Cary, NC, USA) and the global clinical research group fosters

applications of modeling and simulation (M&S) by conducting model-informed

clinical studies to obtain valuable data for M&S and by prospective confirmation of

M&S results. The objectives of KD3 are to make optimal use of all available

information and knowledge (1) to optimize trial design, (2) to optimize development

projects and (3) to assist decision making at critical program milestones.

In this chapter, wewill highlight the keys of collaboration between clinical PK-PD,

biostatistics and global clinical research to ensure successful quantitative drug devel-

opment. We will also evaluate the difficulties and challenges encountered. This

chapter provides guidance regarding effective behavior of the major players to

overcome cultural barriers and logistical hurdles. Our lessons learned on the way to

a successful collaborative organizational structure will be illustrated, using the clinical

development of corifollitropin alfa as an example of a successful M&S project.

The indication of corifollitropin alfa is controlled ovarian stimulation (COS) for

in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). COS requires

treatment with an FSH (follicle-stimulating hormone) agonist for the duration of

approximately 9 days, in order to stimulate the growth of multiple follicles in the

ovaries. Corifollitropin alfa is a new long-acting recombinant gonadotropin with

similar pharmacodynamic properties as conventional recombinant follicle-

stimulating hormone (recFSH), but with differing pharmacokinetic characteristics.

Figure 7.2 is a graphical representation of the recommended COS treatment

regimen with the FSH agonist corifollitropin alfa. In this new treatment regimen,

Fig. 7.2 Schematic representation of the therapeutic interventions in the corifollitropin alfa

treatment regimen
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a single injection of corifollitropin alfa on stimulation day 1 is sufficient to initiate and

sustain an ovarian response for 1 week, because of the extended half-life of corifolli-

tropin alfa as compared to recFSH. In a traditional regimen for COS, daily injections

of recFSH were required for follicular stimulation. From stimulation day 8 onward, if

needed, treatment must be continued with daily injections of recFSH, until the criteria

for triggering final oocyte maturation (3 follicles �17 mm) have been reached.

A gonadotropin-releasing hormone (GnRH) antagonist (e.g., ganirelix) is adminis-

tered daily from stimulation day 5 onward, preventing an endogenous luteinizing

hormone (LH) surge and untimely, uncontrolled ovulation. As soon as three or more

follicles have a diameter of at least 17 mm, a single injection of hCG (human chorion

gonadotopin) is administered to trigger final oocyte maturation. Approximately

34–36 h following hCG administration, a transvaginal ultrasound-guided oocyte

retrieval is performed followed by standard IVF or ICSI to achieve pregnancy.

If treatment is discontinued prior to oocytes retrieval, this is defined as a “cycle

cancelation” and the proportion of subjects with no oocyte retrieval is called

the “cancelation rate” (Pcancelation). Embryo transfer is performed 2–5 days after

oocyte retrieval.

7.2 Corifollitropin Alfa Development Program

The development program of corifollitropin alfa consisted of several well-designed

clinical trials, in concert with M&S efforts. The interplay between clinical trials and

M&S efforts is illustrated in Fig. 7.3. The KD3 initiative for this program was

launched immediately after Phase I development and continued throughout dose-

response trials and pivotal development. The M&S efforts for corifollitropin alfa

were initiated as a pilot project to assess the feasibility of KD3. Apart from clinical

PK-PD and biostatistics, clinical research provided a strong drive to the project,

especially through the therapy area head, who articulated the potential benefits of

making use of the extensive internal database for COS. However, there were also

doubts whether a model for COS could be developed, because treatment outcome

was considered to be influenced by subjective decisions of the fertility specialist

(e.g., adjustments to treatment during ovarian stimulation based on the follicular

response).

The model framework included longitudinal PK-PD models as well as non-

longitudinal statistical models. Hence, model development was conducted in close

collaboration between clinical PK-PD and biostatistics colleagues and was exe-

cuted using NONMEM and SAS. For simulation purposes, all longitudinal models

were converted to statistical models and the final simulations were conducted by

biostatistics.

The design of a Phase II dose-response trial was informed and optimized using

M&S (de Greef et al. 2008; The corifollitropin alfa dose-finding study group 2008).
Prior to the conduct of the Phase II dose-response trial, it was agreed by all KD3

collaborators that the recommended dose for Phase III development would also be
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based on M&S. Therefore, the recommended dose for Phase III development would

possibly be different from the doses tested during Phase II development. The design

of the Phase II dose-response trial was selected based on a maximal probability to

demonstrate a dose-response relationship, wherein the number of oocytes (NOoc)

retrieved (the anticipated registration endpoint) was correlated with the corifolli-

tropin alfa dose. This study was designed to allow optimal selection of doses for

Phase III development, based on the assumption that an optimal dose could be best

established using M&S if the Phase II data supported the characterization of a well-

defined dose-response relationship.

Prior to Phase III development, M&S was used to select the optimal dose of

corifollitropin alfa. In these evaluations, the time profile of the hormone inhibin-B

was identified to play a crucial role as a biomarker of follicular growth (de Greef

et al. 2010). Inhibin-B is an FSH induced hormone, originating from follicles, and

has been shown to be a sensitive marker of follicular development. The recom-

mended dosing regimen based on M&S using inhibin-B as a biomarker was

Fig. 7.3 Clinical development program of corifollitropin alfa: interplay between M&S efforts and

clinical trials
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subsequently evaluated in two large Phase III pivotal trials ENGAGE and

ENSURE, where the primary clinical outcomes were pregnancy rate and the

NOoc (Devroey et al. 2009; The corifollitropin alfa ENSURE study group 2010).

The model framework continues to be used in responses to regulatory questions and

to support the design of future clinical studies. Corifollitropin alfa drug develop-

ment resulted in successful regulatory approval.

7.3 Phase II Development: Design of a Dose-Response Study

The major Phase I trial was a study in healthy female volunteers to evaluate the

pharmacokinetics, pharmacodynamics and safety of a single injection of corifolli-

tropin alfa of 15–120 mg (Duijkers et al. 2002). The first Phase II clinical trial was a
feasibility study, with three corifollitropin alfa dose groups (120, 180 and 240 mg)
and a daily recFSH reference group, and 25 subjects per treatment arm (Devroey

et al. 2004). This study design was not based on M&S, even though that would have

been feasible on the basis of the Phase I study data. At that time, there were doubts

whether the available Phase I data would be predictive for the outcome in Phase II

trials. The feasibility study demonstrated that a single dose of corifollitropin could

initiate and sustain follicular growth for 7 days and that doses up to 240 mg were

well tolerated. However, the data did not demonstrate a dose-response relationship.

The second Phase II clinical trial was a dose-response trial (The corifollitropin alfa

dose-finding study group 2008). The aims of the study were (1) to determine the

optimal dose (i.e., resulting in a similar NOoc as daily injections with recFSH) and

minimal effective dose of corifollitropin alfa and (2) to generate data for model-based

Phase III dose selection. Dose selection for three corifollitropin alfa dose groups was

based on M&S (de Greef et al. 2010). Extensive internal databases were available

from three previous development programs in COS. Data from five clinical trials of

recFSH (1,142 patients) and four clinical trials from ganirelix (1,525 patients) were

used in addition to Phase I and II data from the corifollitropin alfa program (de Greef

et al. 2010) (Fig. 7.3). All three compounds (i.e., recFSH, ganirelix and corifollitropin
alfa) are used for COS. In all three development programs, womenwere treated with a

follicle stimulant (recFSH or corifollitropin alfa) and a GnRH analog to prevent an

endogenous LH surge (pretreatment with a GnRH agonist or coadministration with a

GnRH antagonist (e.g., ganirelix)), resulting in data to populate the COS model

framework (e.g., follicular volume, cancelation rate, NOoc).

The model framework is depicted in Fig. 7.4. Panel A shows that data from the

corifollitropin alfa development program (Phase I trial in healthy volunteers) were

used for PK model building (Model 1, M1) and to model the initial follicular

response (M2). The clinical PK-PD group had the modeling responsibility (see

Panel B) and used nonlinear mixed effects modeling to develop a population PK

model of corifollitropin alfa. Using Bayesian estimates of the area under the

concentration-vs.-time curve (AUC) for the subjects included in the trial, the
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biostatistics group developed a regression model for the relationship between drug

exposure and the total follicular volume (FV) on stimulation day 8 (FV8) (M2).

FV8 was an important determinant for the risk of cycle cancelation (M3) and for

the NOoc in subjects without cycle cancelation (M4). Cycle cancelation was

defined as the retrieval of one or more oocytes. The NOoc was not only dependent

on the follicular growth during stimulation from days 1 to 8, but also on the dose of

recFSH from day 8 onward (FSHdose). Other covariates in models M1–M4 were

age and the type of GnRH analog (GnRH agonist or GnRH antagonist).

Both clinical PK-PD and biostatistics were involved in model building (see

Fig. 7.4b) using NONMEM (M1) as well as SAS (M2–4). However, all simulations

were performed by the biostatistics group to prevent back-and-forth transfer of

simulated data between the two groups and their respective preferred software

tools. In order to consolidate all trial simulations in SAS, the population PK

model M1 (using all serum concentrations at all time points) was replaced by a

regression model describing the relationship between the corifollitropin alfa dose

and drug exposure expressed as the AUC (which is a parameter without a time

component and which was derived from the population PK analysis).

The regression models for M1–4 are listed in Table 7.1. These models were used

to simulate the trial outcome for different Phase II designs. The probability of

Corifollitropin
alfa dose

(day 1 only)
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exposure

Follicular
volume

(on day 8)

Cancelation
rate

Number of
oocytes

recFSH
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(day 8 onward)

Corifollitropin
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(day 1 only)
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(on day 8)
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Data: corifollitropin alfa program
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Group: Clinical PK-PD
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Fig. 7.4 Model framework to support design of phase II dose-response trial (a) data used for the

various model components (b): disciplines in the lead for the various model components
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success was defined as the probability of a significant dose-response relationship

for the NOoc. In statistical terms, the slope of NOoc ~ log (Dose) should be

significantly larger than zero at p < 0.05.

The first design to be simulated was the design of the Phase II feasibility trial,

i.e., three corifollitropin alfa dose groups (120, 180, and 240 mg) with 25 women per

group. For each patient, values for AUC, FV8 and Pcancelation were simulated as

described by De Greef et al. 2010. Next, it was determined if the patient’s cycle was

canceled or not, based on the probability of cycle cancelation and a random

sampling process. If the cycle was canceled, the NOoc was zero by default. If the

cycle was not canceled, the NOoc was simulated.

Simulations showed that the dose-response relationship was relatively flat at

doses of �120 mg (see Fig. 7.5). In hindsight, the probability to find a significant

dose-response relationship in the Phase II feasibility study was about 10% with

three active treatment arms of 120, 180 and 240 mg with 25 subjects per cohort (see
Fig. 7.6). Simulated and observed results for the Phase II feasibility study were in

good agreement, although model uncertainty was large in this stage of develop-

ment, which resulted in wide prediction intervals for the feasibility study (Fig. 7.5).

The results presented in Fig. 7.5 demonstrated that the developed model frame-

work provided post-hoc predictions that were in line with the feasibility trial

outcomes. This was an important impetus for the clinical research scientists to

embrace the M&S project that thus far mainly was driven from clinical PK-PD and

biostatistics. It also constituted a motivation to use M&S to select a model-informed

design for a subsequent Phase II dose-response trial.

Trial simulations were conducted to evaluate various study designs. In addition

to a design using the same dose groups as the Phase II feasibility trial (i.e., 120, 180
and 240 mg), three new designs were evaluated ((1) 50, 100, 200 mg; (2) 60, 120,
180 mg; (3) 90, 135, 180 mg) for various group sizes (10–200 subjects per dose

group). Dose scenarios (1) and (2) were expected to result in the highest

probability of success (see Fig. 7.6). The dose range for design (2) was narrower

and was therefore expected to result in a better safety profile as compared to

design (1), with limited impact on study power. The probability of success for

Table 7.1 Regression models for trial simulations of the phase II dose-response trial

Model Relationship Equation

M1 Dose ~ AUC ln(AUC) ¼ a1 + b1�ln(dose) + Z1

M2 AUC ~ FV8 ln(FV8) ¼ E0 + Emax�AUCn/

(AUC50
n + AUCn) + Z2

M3 FV8 ~ Pcancelation logit1(Pcancelation) ¼ b3a�ln
(FV8) + b3b�GnRH
analog + b3c(age-33) + b3d

M4 FV8 ~ NOoc ln (NOoc) ¼ Emax � FSHdoseh/
(FSHdoseh + ED50

h) + Z3

a and b are fixed effects; Z represents random variability between patients
1logit(Pcancelation) ¼ ln(Pcancelation/(1�Pcancelation))
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design (2) increased with group size and reached a sufficiently high level at the

selected group size of n ¼ 80.

In the Phase II dose-response trial, four cohorts of 80 patients were included,

each treated with 60, 120 or 180 mg corifollitropin alfa (treatment groups), or with

daily recFSH injections (reference group). Based on the simulation results, this trial

was adequately powered to provide a significant dose-response in terms of the

NOoc retrieved as shown in Fig. 7.6 (approximately 95% probability of success).

Figure 7.7 shows the observed mean numbers of oocytes for all dose groups. The

Fig. 7.5 Simulated mean number of oocytes (NOoc) for 25 subjects per dose level and 1,000

cohorts for each dose level. *Observed mean NOoc in the phase II feasibility study. Vertical lines

represent � 2 SD of n ¼ 1,000 simulations

Fig. 7.6 Probability of success for four dose scenarios and various group sizes
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mean NOoc retrieved increased significantly ( p < 0.0001) with the corifollitropin

alfa dose. For the 120 and 180 mg corifollitropin alfa groups, the ovarian response in
terms of the NOoc was statistically significantly higher than in the daily recFSH

reference group. The cancelation rate was highest for the 60 mg corifollitropin alfa

group (43.6%) whereas 120 and 180 mg corifollitropin alfa resulted in cancelation

rates of 9.1 and 11.4%, respectively. The cancelation rate was 18.5% for the recFSH

group. The main reason for cancelation in the 60 mg corifollitropin alfa group was a
too short duration of follicular stimulation, which was reflected by a premature

decline in inhibin-B levels from day 6 onward, well before daily recFSH was to

be initiated on day 8 (see Fig. 7.1). This was the reason to include inhibin-B in the

models (see below).

7.4 Phase III Development: Dose Selection

Based on the results of the Phase II dose-response trial, which showed a clear dose-

response relationship, it was concluded that the recommended dose of corifollitro-

pin alfa for Phase III development was predicted at 120–180 mg. Subsequently, a
sophisticated data analysis was conducted to precisely determine the recommended

dose of corifollitropin alfa for Phase III development. M&S was deployed to further

investigate the impact on treatment outcome of various doses of corifollitropin alfa

and patient characteristics.

The model framework that was used for the Phase II dose-response trial design,

served as a basis for this continued M&S effort. The framework was expanded to

include both corifollitropin alfa PK and inhibin-B, a causal path biomarker of

follicular growth (see Fig. 7.8).

An exploratory analysis demonstrated the clinical relevance of a decrease in

inhibin-B levels. After treatment with 60 mg corifollitropin alfa in the Phase II dose-
response trial, several subjects showed an early inhibin-B decrease, whereas folli-

cles continued to grow for some time. A typical example of insufficient stimulation,

reflected by an inhibin-B gap and a delayed arrest of follicular growth, ultimately

resulting in cycle cancelation, is illustrated in Fig. 7.9. This observation motivated a

Fig. 7.7 Results of phase II

dose-response trial
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more thorough analysis of the time profile of inhibin-B levels in relation to cycle

cancelation. In the 60-mg treatment group, 64 of 77 patients had an inhibin-B gap,

defined as a time interval�1.5 days of decreasing inhibin-B levels (on days 6 and 7,

or even earlier) prior to the first injection of daily recFSH treatment (on day 8). The
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Fig. 7.8 Model framework to support dose selection for phase III pivotal development

1

0

100

200

300

400

500

600

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6

Stimulation day

In
h

ib
in

-B
 (

p
g

/m
L

)

Inhibin B Total follicular volume

T
o

ta
l f

o
lli

cu
la

r 
vo

lu
m

e 
(m

m
3)

Start recFSH

Cycle
canceled

7

‘Inhibin-B gap’

8 9 10 11 12

Fig. 7.9 Inhibin-B gap as an early marker of insufficient follicular stimulation and cycle cancelation

7 Keys of Collaboration to Enhance Efficiency and Impact of Modeling and Simulation 141



cancelation rate in patients with an inhibin-B gap was 42 vs. 8% for patients without

an inhibin-B gap. Inhibin-B was shown to be a relevant biomarker for good

follicular stimulation because it is sensitive and because a decline in inhibin-B

precedes the arrest of follicular growth in time. Inhibin-B profiles are predictive of

an unsustained ovarian response and ultimately treatment failure.

The recommended dose of corifollitropin alfa would need to result in steadily

increasing serum inhibin-B levels, reflecting a sustained ovarian response for 7 days

with a minimal risk of cycle cancelation. A population PK-PDmodel was developed

by the clinical PK-PD group to describe the time profiles of corifollitropin alfa

concentrations and inhibin-B levels (Fig. 7.8). An indirect effect model was used to

link drug exposure to an increased production of inhibin-B (Krzyzanski and Jusko

1998). A modulator-compartment was included to describe a negative feedback

mechanism (Wakelkamp et al. 1996).More details on the PK-PDmodel of inhibin-B

are available in De Greef et al. 2010 (Supplementary data section) (de Greef et al.
2010). This population PK-PD model (describing the inhibin-B profile over time)

was transformed into a non-longitudinal regression model (describing the relation-

ship between the day of the inhibin-B decrease and AUC) to allow simulations in

SAS, run by biostatistics (Table 7.2, M5).

The population PKmodel was updated using new PK data from the Phase II dose-

response trial. A covariate analysis demonstrated that body weight was an important

determinant of the PK profile of corifollitropin alfa. For simulation purposes, this

model (describing the serum concentration of corifollitropin alfa over time) was also

implemented as a regression model, describing the relationship between AUC, body

weight and dose, without a time component (Table 7.2, M1). All regression models

for the model framework (M1–5) are listed in Table 7.2. De Greef et al. 2010 have

previously published the parameter estimates of the final models.

Figure 7.10 represents the impact of body weight on drug exposure and on the

time profile of serum inhibin-B levels. After equal doses, the AUC of corifollitropin

alfa was approximately two-fold higher in a subject with body weight 45 kg

compared with a subject with body weight 90 kg (Fig. 7.10a). The day when the

inhibin-B decrease occurred was also strongly related to body weight (Fig. 7.10b).

Because an inhibin-B gap of�1.5 days was related to an increased cancelation rate,

an inhibin-B decrease should not occur before day 6.5 in order to support follicular

Table 7.2 Regression models for phase III trial simulations

Model Relationship Equation

M1 Dose ~ AUC ln(AUC) ¼ a1 + b1�ln(dose)�g1 body weight + Z1

M2 AUC ~ FV8 ln(FV8) ¼ E0 + Emax�AUCn/(AUC50
n + AUCn) + Z2

M3 FV8 ~ Pcancelation logit1(Pcancelation) ¼ b3a�ln(FV) + b3b�(8-day USS) + b3c�inhibin-B
gap + b3d�GnRH analog + b3e�body weight + b3f (age-33) + b3gi

M4 FV8 ~ NOoc ln(NOoc) ¼ Emax � FSHdoseh/(FSHdoseh + ED50
h) + Z4

M5 AUC ~ InhB ln(day of inhibin-B decrease) ¼ a5 + b5�ln(AUC) + Z5

a and b are fixed effects; Z represents random variability between patients; b3gi represents
differences between trials (i ¼ 1,2,..,11)
1logit(Pcancelation) ¼ ln(Pcancelation/(1�Pcancelation))
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stimulation during 7 days (in a regimen with daily recFSH injections from day

8 onward), which is indicated by the horizontal line in Fig. 7.10b. After a single

dose of 100 mg corifollitropin alfa, the day of inhibin-B decrease was predicted to

be after day 6.5 for more than 90% of the subjects with body weight �60 kg,

whereas subjects with body weight >60 kg required a higher dose of 150 mg to

maintain sufficient follicular stimulation during 7 days.

The optimal dose should be sufficiently high to support COS during 7 days, but

should also be as low as possible to prevent ovarian hyperstimulation. Hence, a

balance was required to select an optimal dose of corifollitropin alfa, taking into

account patient-related characteristics that may affect exposure and/or response.

The lowest dose of corifollitropin alfa resulting in a minimal cancelation rate was to

be selected as the optimal dose for Phase III clinical development.

Figure 7.11a shows the predicted cancelation rate in future trials for various

doses of corifollitropin alfa. For subjects weighing �60 kg, the cancelation rate

decreased up to a dose of 100 mg, but did not show a clinically relevant decrease

between 100 and 200 mg. For subjects weighing >60 kg, the minimal cancelation

rate was reached at a dose of 150 mg. For these subjects, the cancelation rate was

predicted to be approximately two-fold higher after treatment with a single dose of

100 mg compared with 150 mg.
The predicted mean NOoc increased with dose (Fig. 7.11b). For a dose of 100 mg

for women weighing�60 kg and a dose of 150 mg for women weighing>60 kg, the

mean NOoc per started cycle was anticipated to be 12.1 (P5–P95: 9.7–14.8) and

13.2 (P5–P95: 10.5–16.0), respectively.

The selected dosages of 100 and 150 mgwere prospectively evaluated in Phase III

clinical trials. As expected, the recommended dose based on two body weight

categories resulted in similar drug exposure for women with body weight �60 kg

and women with body weight >60 kg (Fig. 7.12a). The observed mean numbers of

Fig. 7.10 (a) Relationship between exposure to corifollitropin alfa, expressed as the AUC, and

body weight. (b) Relationship between the day of inhibin-B decrease and body weight. The

horizontal line indicates an inhibin-B decrease on day 6.5, corresponding to a clinically relevant

inhibin-B gap of 1.5 days. Data were simulated for 1,000 subjects per dose and body weight group.

Box-whisker plots represent P10, P25, P75, P90. This figure is adapted fromClinical Pharmacology

and Therapeutics (de Greef et al. 2010)
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oocytes were also similar in women weighing �60 and >60 kg (i.e., 13.3 and 13.7,
respectively, Fig. 7.12b) and were consistent with the model-based predictions (i.e.,
12.1(P5�P95: 9.7�14.8) and 13.2(P5�P95: 10.5�16.0), respectively).

7.5 Discussion

Collaboration of multiple disciplines is well recognized to be critical to the success

of M&S in supporting drug development decisions (Grasela et al. 2007; Zhang et al.
2008). In many M&S initiatives in pharmaceutical industry, focus has been on

Fig. 7.12 (a) Drug exposure; (b) NOoc. Horizontal white marks represent median values, boxes

represent interquartile ranges, whiskers represent P5-P95. Drug exposure data are from Caucasian

subjects from two phase III trials

Fig. 7.11 (a) Relationship between the cancelation rate and the dose of corifollitropin alfa.

(b) Relationship between the mean NOoc and the dose of corifollitropin alfa. Data were simulated

for 1,000 clinical trials of subjects weighing �60 kg (220 subjects per trial) and for 1,000 clinical

trials of subjects weighing >60 kg (700 subjects per trial). Plotted values are the median values

(P50) of the simulated clinical trial results. Whiskers represent P5-P95. This figure is adapted from

Clinical Pharmacology and Therapeutics (de Greef et al. 2010)
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bringing together the two quantitative disciplines PK-PD and biostatistics and

liaising themwith the experimentalists in clinical research or clinical pharmacology.

This is a logical focus, as an understanding of exposure response relationships

through PK-PD should enable statisticians to better inform clinical trial designs

(De Ridder 2005).

Clearly, a considerable effort is required to achieve the level of connectivity and

understanding that enables a successful partnership between scientists from

different backgrounds. Effective, timely and trustful collaboration between all

parties is essential to guide decision making in the drug development process

based on M&S. Frequent, intensive interactions are required to have a common

understanding of each other’s contributions to the overall M&S deliverables and to

find the opportunities where the synergy between multiple disciplines can bring

most added value. It also requires an open culture, where constructive criticism and

questions from colleague scientists are appreciated. Lastly, sufficient prioritization

across all involved disciplines of M&S activities vs. other activities performed in

support of the setup, conduct and reporting of clinical trials is essential to allow a

timely delivery of required M&S output.

For optimal synergy between the main collaborators in such M&S organization

(i.e., clinical PK-PD, biostatistics and clinical research), all groups need to beware

of their own specific challenges and opportunities as listed in Table 7.3. Explicit

identification of the challenges and the cultural barriers between the groups will

enhance interdisciplinary collaboration. Moreover, the intrinsic motivation and

enthusiasm of all collaborators will be increased when the opportunities and goals

are clearly defined.

The impact of M&S is maximal when data are analyzed retrospectively (learn)

and when modeling results are evaluated prospectively (confirm) (Sheiner 1997).

Data are analyzed retrospectively from one trial to predict prospectively the next

trial, whereas the outcome of the new trial will confirm the model and its assump-

tions. This results in optimal knowledge propagation, throughout the development

program (Lalonde et al. 2007).
In this chapter, corifollitropin alfa was discussed as an example of a successful

model-based drug development program. This project demonstrates how multiple

learn-and-confirm cycles can result in a synergy between M&S and clinical trial

design. This interplay did not exist immediately from the start of the program, but

when the outcome of the Phase II feasibility study proved to be in line with model-

based predictions, M&S was embraced by global clinical research and was utilized

to design a subsequent Phase II dose-response trial. The data from this Phase II trial

were used to refine and expand the model framework, to apply it for Phase III dose

selection (de Greef et al. 2010). The outcome of those pivotal trials matched the

model-based predictions very well, thus closing the loop on the learn-and-confirm

cycle. Overall, these two learn-and-confirm cycles have resulted in efficient trials

and in a minimal risk of selecting a suboptimal dose for pivotal development, and

have therefore maximized the utility of the Phase II dose-response trial and the two

Phase III trials (Burman et al. 2005). In addition, the models provided supportive

evidence in the registration of corifollitropin alfa.
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Over the course of this process, the clinical research team has become highly

involved in theM&S efforts. The clinical research scientists had co-ownership of the

model framework, were actively participating in discussions about the methodology

and were pro-actively requesting additional analyses and/or simulations. This

involvement ensured that the models were in line with clinical practice, reflected

relevant elements of physiology, and allowed for prospective planning of M&S in

complete alignment with the clinical trial program. The intensive collaboration

between the M&S scientists (biostatistics, clinical PK-PD) and their customer

(clinical research) also ensured a shared ownership of the model assumptions,

approaches and ultimately results.

Table 7.3 Challenges and opportunities for optimal synergy between the key players in M&S

projects

Challenges Opportunities

Clinical PK-PD Be explicit and transparent about

assumptions and limitations of PK-PD

and disease models

Provide adequate model validation e.g.,

by comparing data-derived statistics

to model predictions

Appreciate the limitations to the

application of PK-PD models:

confirmatory trials are required at

some point

Share quantitative insights

Peer review; e.g., more

easily detect underlying

assumptions

Access to a broader range

of methods and

resources

Biostatistics Embrace assumption-rich models (e.g.,

nonlinear mixed models, longitudinal

data analyses)

Discriminate between learning (internal

decision-making in early clinical

development) and confirming

(registration)

Appreciate the value of integrating

physiological and pharmacological

concepts with clinical data

Clinical research Appropriately value model based

predictions vs. trial outcomes

Allow sufficient time for analysis,

interpretation and trial simulations

Provide quantitative objectives and

decision criteria

Increase effectiveness of

personal knowledge

through integration

with data from all

relevant sources

Make better informed

decisions on

trial designs

Increase likelihood

of success of clinical

trials
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In the interactions between biostatistics and clinical PK-PD scientists, an early

decision on the model framework was crucial. Longitudinal modeling was only

performed where needed (PK, inhibin-B) and statistical modeling was applied for

the clinical outcome parameters (cancelation rate, NOoc). Prespecified modeling

strategies allowed for a clear and close interaction between biostatistics and clinical

PK-PD. The efficiency of simulations based on this extensive model framework

was greatly enhanced by the decision to replace the (longitudinal) PK and PK-PD

models with (non-longitudinal) regression models, thus allowing simulations to be

performed within a single software platform. It should be noted that these regres-

sion models would not have been possible without the prior longitudinal modeling,

as derived parameters from the PK and PK-PD models (AUC and Day of inhibin B

decrease, respectively) were used as the dependent variable. For the corifollitropin

alfa M&S project, all clinical trial simulations were conducted by the biostatistics

group, which was planned in advance, resulting in the selection of SAS as the

platform to conduct clinical trial simulations. Generally, trial simulations based on

regression models may also be conducted by the clinical PK-PD group and/or using

alternate software.

Clear communication regarding the assumptions and restrictions of the model

components enabled biostatisticians to accept nonlinear mixed effects models, and

enabled clinical PK-PD scientists to have confidence in statistical regression

models (Lalonde et al. 2007). This dual acceptance by both technical experts

subsequently resulted in greater confidence by the clinicians on the development

team in the appropriateness of the modeling and increased the willingness to make

model-based drug development decisions.

The long-lasting collaboration between clinical PK-PD, biostatistics and clinical

research in this project has resulted in an increased understanding of the benefit of

combining forces. Equal involvement of all parties has ensured an optimal balance

between scientific validity and fit-for-purpose approaches in support of decision-

making and has enabled effective model-based responses to regulatory questions.

The collaboration has evolved over time across various drug development programs

and will continue to be valuable for future projects.

The corifollitropin alfa project was originally selected as pilot project for KD3.

It seemed challenging to capture all subtle aspects of fertility treatment in a

mathematical model. Throughout 8 years (2002–2010), the KD3 team has proven

that complex physiological processes can indeed be successfully described by PK-

PD and statistical models in a fit-for-purpose manner. The results of the corifolli-

tropin alfa project have made it a key example of model-based drug development

and have helped to convince our R&D management of the benefit of M&S to

optimally inform decision-making.
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Chapter 8

Leveraging Pharmacometrics in Early Phase

Anti-inflamatory Drug Development

Ene I. Ette and Christopher J. Godfrey

Abstract The application of pharmacometrics to knowledge acquisition adds value

to the drug development process because it enables the translation of information

about drug action and interaction with the disease process into knowledge by

enabling quantitative descriptions of drug actions, and the leveraging of this

knowledge across different stages of drug development. This chapter describes a

pharmacometrics based strategy of evolving a drug candidate from the nonclinical

phase of drug development to the early phase of clinical drug development using an

anti-inflammatory drug candidate as an example. Modeling was used to extract

knowledge from nonclinical data and used to simulate a first time-in-human study.

The results of the simulation study formed the basis for recommending a range of

doses for a single dose escalation study, which were later compared with the results

of the simulation study to determine the usefulness of the approach.

8.1 Introduction

The ultimate goal of drug development is to bring the much desired safe and

efficacious pharmaceutical/biopharmaceutical drug products to the market. It was

estimated in 1999 that there were 5,000 compounds in preclinical (or nonclinical)

development and approximately 2,100 in clinical development (Clemento 1999).

With progress in high throughput screening capabilities the number of compounds

available for entry into preclinical development can only be larger. However, the

advancement in discovery technology has not been coupled with faster clinical

development time. In fact, it has been estimated that the clinical development time

has increased by 33% (DiMasi 2001). Traditionally, the drug development process

has been a lengthy and expensive series of nonclinical and clinical studies followed

by regulatory reviews. Traditional drug development approaches are unlikely to
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achieve high rates of success in the near future, given the rapidly evolving changes

in health care economics and consumer expectations. The quest for a new approach

to drug development is further motivated by the escalating cost of introducing a

new drug into the market. Estimates of the cost of developing a new drug vary

widely, from a low of $802 million in 2003 to nearly $1 billion per drug in 2010

(Dimasi et al. 2003; Adams and Brantner 2010). In addition, it can take 7–12 years

to bring a drug through development to final Food and Drug Administration (FDA)

approval (Peck 1997). Moreover, the complexity of drug development and clinical

testing procedures has increased significantly (Kleinberg and Wanke 1995).

In addition to the complexities of drug development, sophisticated new technol-

ogies and approaches in the discovery and design of new drugs are replacing the

traditional methods of discovery. Availability of supercomputers and advances in

the understanding of molecular interactions that underlie diseases have spurred the

growth of structure-based, or rational drug design, whereby drugs can be designed

by analyzing the structure of the molecular target and its active site. Integration of

X-ray crystallography, computational chemistry, and nuclear magnetic resonance

spectroscopy –all structure-based techniques– and genomics are slowly replacing

more traditional methods such as random screening and structural modification of

existing compounds (Bugg et al. 1993). Drugs can be designed with highly specific
receptor or enzyme interactions (Zial and Beer 1990).

Despite the revolution in the discovery technology, the success rate of new

chemical entities (NCEs) in development has not changed over the years. At the

end of 1999, 20.9% of the NCEs filed as investigational new drug applications

(INDs), from 1981 to 1992, have been approved for marketing in the U.S. (DiMasi

2001). Further, during that period, 80% of all NCEs failed to reach market, of which

37.6% were due to lack of efficacy (activity too weak) and 33.8% were due to

commercial/financial decisions (commercial market too limited, or insufficient

return on investment), 19.6% because of safety concerns (human or animal toxic-

ity), and 9% for non-specific reasons (DiMasi 2001). An approximate 21% success

rate for INDs is an indication of the fact that there is room for improvement in the

drug discovery and development process. The fact is that innovation in drug

development has not kept pace with innovation in drug research. In 2004, the

FDA released a report titled “Innovation or Stagnation: Challenge and Opportunity

on the Critical Path to New Medical Products” (hereafter referred to as “The

Critical Path Report”) (FDA 2004). The report with its sobering statistics regarding

the huge gap between the substantial investment in basic biomedical research and

the disappointing number of submissions of new drugs and biological products

to the FDA and regulatory agencies worldwide served as a wake-up call to all

stakeholders in drug research, development, evaluation and regulation. The Critical

Path Initiative, action taken by the FDA as a sequel to The Critical Path Report, is the

“FDA’s national strategy for transforming the way FDA-regulated products are

developed, evaluated, manufactured, and used.” (FDA 2010) As stated in The Critical

Path Report the aim is, “To get medical advances to patients, product developers

must successfully progress along a multidimensional critical path that leads from

discovery or design concept to commercial marketing.” (FDA 2004) The “Critical
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Path” as identified in the FDA’s Critical Path Report Paper is a process beginning

with the identification of a drug candidate and culminating in marketing approval.

The Critical Path Report recognized the fact that traditional drug development

has been empirical and sequential; from Phase 0 (preclinical (or nonclinical)

development) to Phase 3. In the report, the FDA advocated a shift from empiricism

to a more model based approach based on the Sheiner’s learn – confirm paradigm

(Sheiner 1997). Sheiner proposed a major paradigm shift in drug development away

from an empirical approach to the learn-confirm approach based on Box’s inductive

versus deductive cycles (Box 1979). This process has been re-named the learn-

confirm-learn approach because of their emphasis on the fact that learning con-

tinues throughout the entire drug development process (Williams et al. 2003). The
learn-confirm-learn process contends that drug development ought to consist of

alternate cycles of learning from experience and then confirming what has been

learned, but that one never proposes a protocol where learning ceases.

8.2 The Learn-Confirm-Learn Process

Learning and confirming are actually parts of each drug trial (whether in animals

or humans) although the relative emphasis changes as the drug progresses towards

approval. For instance, a proof of concept study is not only conducted to learn about

the efficacy of the drug in a patient population, but it is also to confirm if the

pharmacokinetics and safety of the drug in patients are similar to that observed in

healthy volunteers. Although learning and confirming can be performed to varying

degrees on the same data set, their goals are quite different. Clinical trial designs

that optimize confirming often inhibit learning, though never completely. Learning

is not completely inhibited because data from confirmatory trials can be subjected

to exposure – response analysis which increases the chances of learning from such

studies. The focus of commercial drug development on confirmation is understand-

able as this immediately precedes and justifies regulatory approval. However, the

focus on confirming has led to a low level of learning which has in turn resulted in

drug development that is most often inefficient and inadequate.

Learning has as its objective answering many questions such as the relationships

between dose, prognostic variables, and outcome. Learning is often model based

and focuses on creating a quantitative model linking pharmacodynamic outcome,

i.e., biomarkers and clinical endpoints, and many variables such as dosing strategy,

exposure, patient type and prognostic variables. The model that is built based on

these variables defines a response surface. This complex multidimensional response

surface can be conceptually collapsed to one occupying a three-dimensional Carte-

sian coordinate system where on one independent variable axis is an input variable

(controllable factor) such as dosage regimen, exposure or concurrent therapies; and

another axis incorporates subject characteristics which summarizes all the impor-

tant ways subjects can differ that affect the benefit to toxicity ratio. The final axis

(dependent variable) represents the benefit to toxicity ratio. The response surface,
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therefore, characterizes the outcome of drug activity in those who were adminis-

tered the drug taking into account the factors discussed above. That is, the response

surface deals with a complex of relationships to answer the question of “what is

the relationship between input profile and dose magnitude to beneficial and harmful

pharmacological effects and how does this relationship vary with individual subject

characteristics and time to explain tolerance or sensitivity?” For rational drug

development and the optimization of individual therapy, this response surface

must be mapped for the target population using pharmacometric (i.e., model-

based) approaches. These models then allow extrapolation beyond the immediate

study subjects to predict the effect of competing dosing strategies, patient type

selection, competing study structures, endpoints; and therefore aid in the design of

future studies. One important feature of model-based learning is that models

increase the signal: noise ratio because they can separate less apparent signals

from the noise. This is important because the information content of a data set is

proportional to the signal: noise ratio. For the learning study, attempt is made to

define the dose-concentration-effect model. Pharmacokinetics (PK) delineates the

dose-concentration component and pharmacodynamics (PD) defines the concentra-

tion-effect component of the model. PD is used here in the broadest sense in that it

includes all of pharmacological action, pathophysiological effects, and therapeutic

responses, both beneficial and adverse, of an active ingredient, therapeutic moiety,

and/or its metabolite(s) on various systems of the body from subcellular effects to

clinical outcomes (Derendorf et al. 2000). PD describes the intensity of a drug

effect in relation to its concentration in the body fluid (Derendorf et al. 2000).
In contrast, the goal of “confirming” is to reject the hypothesis that efficacy is

absent and the only question that it aims to answer is “is the null hypothesis true or

false?” Therefore, factors that increase learning such as administering various dose

levels and enrolling subjects who differ with regard to demographics and disease

state are often eliminated from confirming studies as these actions tend to increase

variability and reduce statistical power. Confirming studies proceed by contrasting

the average outcomes between two study groups.

It is important to note that the whole drug development process from nonclinical to

clinical development is an exercise in the learn-confirm-learn paradigm. In preclinical

development the safety information about an NCE obtained during late discovery and

lead optimization phase is confirmed in good laboratory practice (GLP) safety phar-

macology and toxicology studies, and more is learned about the toxicity of the

compound. The PK characteristics of the NCE are further defined in rodents and

non-rodents and used for extrapolation of the dose-exposure relationship to man, and

PK/PD models are developed that can provide a platform for understanding the

exposure-response relationship of the compound in man. In clinical development

the drug activity that was observed during discovery and nonclinical (preclinical)

development is confirmed, while learning about compound safety and efficacy is done

to define the response surface.

To facilitate the steps along the critical path to innovation, better scientific tools

and processes are being developed to improve the efficiency of preclinical and

clinical research, including new approaches to safety testing, trial design, end-point
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development, and analyses. The intent is for these tools (e.g., biomarkers,

patient-reported outcome measures, modeling and simulation) to bring efficiencies

to the drug development process and thereby increase pharmaceutical industry

productivity. The application of the model-based approach to drug development is

a key component of the critical path.

8.3 The Model-Based Approach to Drug Development

and Pharmacometrics

Model-based drug development is an approach to and a philosophy of drug

development that seeks to employ quantitative, mathematical/statistical methods

in the understanding of relationships between administered doses, systemic and/or

local exposure, target and off-target pharmacologic effect and (un-)favorable clini-

cally relevant outcomes. In quantifying and characterizing these relationships, the

impact of intrinsic and extrinsic factors is examined and assumptions are tested.

MBDD is a core feature of the pharmacometrically-guided drug development

program (PGDD). PGDD builds on the use of models by considering both the

deterministic and stochastic nature of the biologic system and its response to

pharmacologic intervention. It also considers how this nature impacts upon the

(un-)certainty associated with system responses and the decisions that are made

about how to successfully optimize and develop the drug. The use of models,

simulation, and novel analytical methods are hallmarks of the PGDD program.

PGDD approach also incorporates linking and integrating the expanding database

of information obtained from studies conducted during the development process.

Given the rising costs of drug development and the attendant societal implica-

tions of rapidly rising medication costs, MBDD, or more broadly, PGDD has been

advocated to stem this tide. Since drug development costs continue to increase and

the price of computation continues to decrease rapidly, it is imperative that an

increasing fraction of post-discovery drug development resources be allocated to

pharmacometric approaches to enhance knowledge extraction/generation from

drug development studies about a drug candidate’s response surface.

The appeal of PGDD as will be illustrated in the rest of the chapter is the

integration of knowledge across studies and different stages of drug development

based on the learn-confirm-learn paradigm, and pharmacometrics enables the

integration of such knowledge.

8.3.1 Pharmacometric Knowledge Integration

Pharmacometric knowledge integration is the combination and assimilation of

quantitative knowledge (see Sect. 8.4 below) gained from different experiments

performed at any given stage of the development of a drug to inform the next step
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in the drug development process. For instance, knowledge gained from the

modeling of in vitro data, animal disease models, animal PK, can be used as

input models into the simulation of a first time-in-human study.

For further insight into pharmacometric knowledge integration it is important

to examine the information, knowledge, understanding, and wisdom paradigm in

drug development.

8.4 Information, Knowledge, Understanding,

and Wisdom Paradigm

From the time that the drug candidate is selected to marketing approval large

amounts of data (i.e., data from biomarkers, pharmacogenomics, animal disease

models, nonclinical PK, toxicology, and clinical trials data) are generated.

These data we term information because information by itself is insufficient to

support marketing authorization and optimal use of the drug (see Fig. 8.1). For

information to be useful to stakeholders it must be turned into knowledge. Pharma-

cometrics offers one approach to accomplish this through the use of quantitative

models. Models are a type of data reduction that allow one to characterize the

relationship between variables of interest. However, knowledge of a system’s

behavior does not necessarily equate with understanding the system. Understanding

comes to full fruition when the model is now used to examine the future response of

the system by testing assumptions, perturbing the system virtually, performing

sensitivity analyses, and successfully predicting outcomes. Simulation methods

are particularly well suited to gain this level of understanding. In short, use of

modeling and simulation to answer “what if?” questions provides a framework for

our understanding. The ultimate value in a PGDD philosophy is the extent that drug

development and regulatory decisions are made and actions taken that are consis-

tent with the knowledge and understanding gained through this approach. Thus,

implementing the PGDD philosophy in drug development makes wisdom for

improved efficient and rational drug development possible.

8.5 Leveraging Pharmacometrics in Early Phase

Drug Development

Acquisition of drug development knowledge must begin with a thorough under-

standing of the pathophysiology and biochemical pathways of the disease. The

pharmacology of a drug must be understood in terms of where the drug intervenes

in the disease process. The application of pharmacometrics to knowledge acquisi-

tion adds value to the drug development process because it enables the translation

of information about drug action and interaction with the disease process into
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knowledge by enabling quantitative descriptions of drug actions, and the leveraging

of this knowledge across different stages of drug development. The process of the

development of a drug can be no better than the knowledge on which it is based.

Without adequate knowledge it is impossible to have a thorough understanding of

one’s drug. The consequence of lack of knowledge impedes derivation of an

optimal development strategy for a drug candidate. Leveraging pharmacometrics

in drug development through the application of the processes of pharmacometric

knowledge discovery and creation (Ette et al. 2001, 2004) results in understanding

the process that generated the clinical trial data, for instance, and permits acquisi-

tion of knowledge beyond the trial data set. This provides the drug developer the

necessary wisdom to make the right decisions about future trials and the strategic

path for the development of a drug candidate.

Recently, some FDA reviewers in their survey of new drug application (NDA)

reviews commented on the lack of leveraging pharmacometrics in the analysis of

exposure – response data (Bhattaram et al. 2007). The authors stated as follows:

“Usually in our experience, exposure – response data from each study are analyzed

separately and are not well integrated to make more informed decisions during drug

Fig. 8.1 The information,

knowledge, understanding,

and wisdom paradigm
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development. During NDA reviews, we often perform exposure–response analysis

across late-phase clinical trials (so-called phase 2 and 3 trials) looking for consis-

tency across trials in a larger population. Sponsors could routinely provide these

analyses in their NDA submissions. It is traditional to underutilize information from

registration trials to “confirm” pre-specified hypothesis and not attempt to “learn”

how to better utilize the drug. This prescriptive behavior assumes that either one

should know about the drug characteristics fully well before embarking on the trial

or conduct endless prospective trials.” This speaks to the leveraging of pharmaco-

metrics not only in early drug development which is the focus of this chapter but

also across all phases or stages of drug development.

The importance of PGDD in early-phase drug development is illustrated below

with an application example. The intent is to show how pharmacometrics can be

used to integrate knowledge across different stages of drug.

8.5.1 Example of Model-Based Early Development

Early-phase drug development decision making tends to be empirical and deter-

ministic, and does not fully integrate all of the available nonclinical and clinical

data or knowledge, and fails to consider the impact of uncertainty. Employing

pharmacometrics methods based on modeling and simulation to integrate the

available knowledge and gain further insight about a drug candidate at the early

stage of development enables informed decision making. A consequence of this

approach is the optimization of early phase development.

A key component in the design of a first-time-in-human (FTIH) study for an

investigational drug is the selection of a starting dose and dose escalation scheme to

demonstrate the safety and tolerability of the drug at doses expected to produce a

therapeutic effect with minimal toxicity. This selection involves balancing the need

to ensure that the subjects in the study are not exposed to unreasonable risks against

the need to achieve exposures that are sufficiently high with respect to efficacy.

Some of the risks associated with specifying a starting dose and dose escalation

scheme arise from the uncertainty inherent in predicting pharmacokinetic and

pharmacodynamic responses in humans based upon nonclinical data.

The objective of the example described hereafter is to provide a model for

pharmacometrically-guided early clinical development with exposure-response

serving as the unifying basis. The example illustrates how the evaluation of

exposure-response using pharmacometric approaches was applied to drive early-

phase clinical development of an anti-inflammatory drug candidate. The key

objectives of the investigation were: (a) to establish a paradigm for rational dose

selection (and escalation scheme) for FTIH study that maximizes safety for human

subjects, (b) to capture uncertainty associated with extrapolation of animal PK data

to humans, and (c) to study a therapeutically relevant range of doses.
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To address these objectives data were available from a number of nonclinical

sources. Concentration-time data obtained after intravenous bolus administration of

the compound to mice, rats, dogs, and monkeys (see Fig. 8.2), was available as well

as exposures obtained in a GLP toxicology study. Because the compound was

intended to treat a disease involving inflammation, data were available from control

animals and treated animals in the adjuvant-induced arthritis (AIA) disease model

in rats and also from in vitro lipopolysaccharide (LPS) stimulated human whole

blood experiments. LPS was used to cause an inflammatory reaction, which

involves the production of the inflammatory cytokines, tumor necrosis factor

alpha (TNF-a), interleukin 6 (IL-6), and IL-1b, that can be assayed in circulating

whole blood. However, the only inflammatory biomarker that will be discussed in

this example is TNF-a. As a first step to achieving the objectives, nonclinical

information had to be transformed into knowledge.

8.5.1.1 Translation of Nonclinical Information into Knowledge

To transform the available information into knowledge, a nonlinear mixed effects

modeling approach to allometry-based interspecies scaling (Cosson and Fuseau

1997; Martin-Jimenez and Riviere 2002) was used to scale the PK of the compound

from animals to man while an inhibitory Emax model was used to characterize the

Fig. 8.2 Drug concentration vs. time by species
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in vitro TNF-a data. Of the different variables (paw weight, ankle joint swelling,

inflammation score, and bone resorption score) measured in the adjuvant induced

arthritis (AIA) rat, paw weight and ankle joint data are the only ones that will be

discussed in this example. Paw weight and ankle joint data were analyzed using the

Emax model.

Figure 8.2 shows the concentration – time profiles of the compound in the four

species that contributed data for the analysis. A one compartment PK model was

used to characterize the pooled PK data across the species. Figure 8.3 shows the

prediction of clearance from the population model developed. The typical values of

clearance (TVCL) and volume of distribution (TVV) were characterized by the

following equations, parameter estimates and associated standard errors:

TVCL ¼ 0:239ð0:0359Þ �WT 0:603ð0:0419Þ

TVV ¼ 1:17ð0:125Þ �WT 0:961ð0:0609Þ (8.1)

The typical value for EC50 estimates from the paw weight exposure – response

model and the Emax model characterizing the in vitro inhibition of TNF-a produc-

tion from LPS stimulation were 180 and 99 ng/mL, respectively. Thus an integrated

knowledge was gained about the PK of the compound in animals, and its anti-

inflammatory effect in vivo (in an animal model of inflammation) and in vitro (in

the LPS stimulated whole blood assay). The emphasis here is on EC50 since this is

the parameter of a high value in the translation of knowledge from the nonclinical

domain to the human domain.

Population and Individual Clearance vs Body Weight

y = 0.2391x0.6028
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Fig. 8.3 Nonlinear mixed effects allometric model estimated clearance values
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8.5.1.2 Pharmacometric Leveraging of Nonclinical Knowledge to Gain

Insight into a Proposed FTIH Study

To be able to leverage the knowledge extracted from the nonclinical data for

the design of a FTIH study, a simulation of the proposed clinical trial was under-

taken. The objectives were to: (1) implement a simulation model leveraging

nonclinical knowledge to project the outcome a proposed FTIH, including impact

of absorption-related assumptions and uncertainty in PK projections on PK and PD

outcomes; and (2) compare simulated exposure distributions with pharmacody-

namic and toxicology endpoints to select optimal starting dose and dose range for

the proposed FTIH study.

The allometric model, the in vivo and in vitro exposure – response models were

used inputs in the simulation of the proposed trial based on a proposed study design

shown in Fig. 8.4. The design has certain features that are advantageous for a single

dose escalation FTIH study (see also Chu et al. 2007, 2008). It has leading dose to

ensure that all subjects at any given dosing occasion are not exposed to the same

dose, except on the very first dosing occasion. This is to ensure patient safety.

Another important feature is the repetition of the highest dose studied in the first

panel in the second panel to confirm safety of the highest dose from the previous

panel while few subjects are exposed to the next higher dose. Because each subject

is exposed to three doses of the drug, detection of nonlinearity in the PK of the drug

is possible. This is a definite advantage over a parallel dose escalation design.

Because the compound was to be administered orally while the animal PK data

were obtained via intravenous administration, assumptions had to be made about

the absolute bioavailability (F) and absorption rate constant (KA) for the com-

pound. The simulation input model from Eq. (1) was developed using intravenous

PK data from animals. Different values of F (low (0.25), medium (0.5), and high

(1.0)) were tested in the simulation. A range of KA values were also tested.

Fig. 8.4 Proposed first time-in-human single ascending study design P placebo; 1X starting dose,

remainder indicate multiple of starting dose
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Also, since the level of intersubject variability in disposition was unknown, levels

of intersubject variability ranging from 30 to 45% were evaluated. The range takes

into account the fact that variability in healthy subjects often does not exceed 45%.

Residual variability in the PK model was assumed to be twenty percent, while a

value of twenty five percent was assumed for PD (TNF-a) response component of

the simulation model. Uncertainty associated with the estimation of PK and expo-

sure-response models were accounted for in the simulation model. This was done,

in part, to account for the uncertainty in the parameter estimates in moving from

animals to humans. Five hundred replicates of datasets were simulated for each

combination of KA value and intersubject variability level. The simulations were

performed using the Pharsight Trial Simulator (Pharsight Corporation, Mountain

View, California).

Taking into consideration the no adverse effect level (NOAEL) AUC from the

repeat dose toxicology study with the compound in the most sensitive toxicology

species, a distribution of safety factors by dose following the dose escalation

scheme in the proposed study design was determined. In doing this the starting

doses were varied so that an appropriate starting dose could be determined, given

the NOAEL and the dose escalation scheme.

The variables of interest from the simulation study were empirical distribution of

exposure metrics: AUC0�1, average concentration (Caverage), and concentration at

24 h after dosing (C24 h). The empirical distribution here represents both variability

and uncertainty. For the PD response, the probability of median 24-h post-dose

concentration exceeding EC50 for the inhibition of TNF-a production was of

interest. Also of interest was the distribution of the simulated average concentration

by dose relative to EC50s for the reduction of paw weight and ankle joint swelling,

respectively, from the AIA model.

The boxplots in Fig. 8.5 show the distribution of AUC values from simulated

concentration – time curves by dose level for various starting doses and absorption

assumptions. It can be observed from bottom panel in Fig. 8.5 that a starting dose of

1 mg (i.e., 1X) irrespective of the absorption assumptions would result in low

exposures even at the highest dose 32 mg (i.e., 32X). This can be contrasted with

the exposures obtained with a starting dose of 2.5 mg (i.e. 1X, the middle panel) and

ending at a dose of 80 mg (i.e., 32X). A starting dose of 5 mg (i.e., 1X, the top

panel) and ending with a dose of 160 mg (i.e., 32X) would result in much higher

exposures, given the assumptions.

Figure 8.6 shows the predicted probability of the median C24 h values exceeding

the EC50 for TNF-a inhibition at the different doses investigated in the simulation

study. Selection of the ideal starting dose and scheme would show minimal to

negligible pharmacologic effect at the starting dose and high probability of phar-

macologic effect at the top end of the escalation. With a starting dose of 1 mg, the

predicted probability of C24 h exceeding the EC50 for TNF-a inhibition is only 25%

at 8 mg (i.e., 8X, Fig. 8.6 (bottom panel)]. At this dose only two dose escalations

would have been left to achieve a reasonable probability of biomarker inhibition.

Better coverage was predicted with starting doses of 2.5 and 5 mg (see Fig. 8.6

middle and top panels, respectively). The simulation results indicated that a starting
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dose of 1 mg would likely result in a FTIH study that would have a higher

probability of being extended as more dose escalations might be required beyond

32X – highest dose multiple from the starting dose stipulated in the study design.

The insight gained from Fig. 8.6 is important because one of the purposes of the

simulation project was to ensure that therapeutically relevant doses (i.e., a dose

range that would result in low to maximal TNF-a inhibition) would be studied in the

FTIH study.

In addition, the relationship between the Caverage and the EC50s from the AIA

model was also examined. Figure 8.7 shows that the predicted Caverage for the 2.5

and 5 mg dose levels were below the EC50s (180 and 300 mg/mL for paw weight and

ankle joint, respectively) of the AIA model.

The insight gained from the predicted drug exposures, the probability of TNF-a
inhibition over 24 h, and the relationship between Caverage and AIA model EC50s

was coupled with the NOAEL from repeated dose toxicology study to determine

safety factors across the doses investigated in the simulation study with the different

starting doses of 1, 2.5, and 5 mg. Figure 8.8 shows the safety factors across doses

2.5–80 mg. The 1 mg dose is omitted in this figure because of the insight gained

from Figs. 8.5 and 8.6.

Fig. 8.5 Simulated distribution of AUC by dose level for various starting doses and absorption

assumptions A 1X; B 2X; C 4X; D 8X; E 16X; F 32X. Each scenario show a combination of

starting dose (1X), and assumptions about absorption rate and bioavailability
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8.5.1.3 Wisdom for the Performance of FTIH Study

Given the knowledge gained from the output of the simulation study discussed

above, the starting dose was chosen to be 2.5 mg. With a predicted safety factor of

200 at this dose and 10 at the last dose (80 mg) of the escalation subject safety was

given high priority. Also, the proposed escalation dose range would cover thera-

peutically relevant exposures (i.e., exposure ranges for target inhibition) to enable a
go/no go decision to be made with the outcome of the FTIH trial. Also, the choice of

2.5 mg starting would enable the FTIH to last for only 8 weeks.

The FTIH study was conducted with this recommendation. The PK and PD data

collected were analyzed, and the results compared with the outcome from the

clinical trial simulation study.

8.5.1.4 The First-Time in Human Study

Data

The FTIH was conducted based on the study design (Fig. 8.4). PK and PD (inhibi-

tion of cytokines from ex vivo whole blood LPS stimulation) data were obtained at

Fig. 8.6 Probability of median 24-h post-dose concentration exceeding IC50 for TNFa A 1X;

B 2X, C 4X; D 8X; E 16X; F 32X
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Fig. 8.7 Simulated distribution of average concentration by dose relative to EC50s from nonclinical

adjuvant-induced arthritis model. Solid horizontal lines show EC50s for paw weight and ankle

diameter endpoints

Fig. 8.8 Simulated distribution of a NOAEL-based safety factor
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specified time points over 72 h, and were intensively sampled. Time matched PK

and PD data were collected. The biomarker data that is of interest here is TNF-a.
Thus, data were available from 20 subjects for analysis.

Population Pharmacokinetic Analysis

A nonlinear mixed effects modeling approach was used to analyze the PK data. The

NONMEM software (ICON Development, Ellicott City, MD) was used for the

analysis. The one compartment PK model for oral dosing was the best structural

model to describe the data. The rate of absorption was parameterized as a

Michaelis–Menten-type function as follows:

dA1

dt
¼ � Amax

Km þ A1

� �
� A1

where A1 is the amount of drug in the gut, dA1/dt is the rate of change of the amount

of drug in the gut, Amax is the maximum absorption rate, and Km is the amount of

drug in the gut associated with 50% of the maximum absorption rate. The one

compartment model with nonlinear absorption was statistically highly favored over

the first order absorption model. This was also confirmed with diagnostics plots.

The preference for the “nonlinear” model should not be construed as suggesting

that absorption was a nonlinear process or that absorption depended on active

transport. The model is simply an empirical representation of an absorption process

that is more complex than simple first order absorption. For example, if a limiting

solubility was reached at high doses, absorption may appear as a nonlinear process.

Despite the connotation of the nonlinear model, the drug concentrations and

exposures were very predictable and showed modest variability (see Fig. 8.9).

Inter-occasion variability (IOV) was important model additions on oral clearance,

volume of distribution, Km, and lag time (LAG). Fasted state was included as an

important covariate on LAG (p < 0.001) and apparent volume of distribution was

modeled as a linear function of body weight (p < 0.001). Body weight values were

centered on the median body weight of 75.2 kg. A combination of residual and

proportional error model was preferred over proportional or residual error models.

Figure 8.10 shows that the model adequately described the data. The irreducible

final population pharmacokinetic model, given the data, is detailed below:

dA1i;j;k
dt

¼ � Amax i

Km i;j
þ A1i;j;k

 !
� A1i;j;k

dA2i;j;k
dt

¼ � Amax i

Km i;j
þ A1i;j;k

 !
� A1i;j;k � CLi;j

Vi;j

� �
� A2i;j;k
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Fig. 8.9 Observed drug concentration versus time by dose level

Fig. 8.10 Population predicted versus observed drug concentration. Solid line is the line of unity
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Ci;j;k ¼ A2i;j;k
Vi;j

Ci;j;k ¼ Ĉi;j;k þ Ĉi;j;k � e1i;j;k þ e2i;j;k

CLi;j ¼ y1� exp (�1i þ k1i;jÞ

Vi;j ¼ ðy2þ y7� (WTi � 75:2ÞÞ � exp(�2i þ k2i;jÞ

Amaxi ¼ y3� exp(�3iÞ

Km i;j
¼ y4� exp(�4i þ k3i;jÞ

Lagi;j ¼ ðy5� ð1þy6� FASTi;jÞÞ � exp(�5iþk4i;jÞ

�x � N 0;o2
x

� �
; kw � N 0;o2

w

� �
; eu � N 0;s2u

� �

where variable definitions are: subscript i ¼ ith subject, subscript j ¼ jth occasion,
subscript k ¼ kth timepoint, A1is the amount in compartment 1 (gut compartment),

A2 is the amount in compartment 2 (central compartment), t is time, Amax is the

maximum absorption rate, Km is the amount of drug in the gut resulting in 50% of

the maximum absorption rate, CL is the apparent systemic clearance, V is the

apparent volume of distribution, C is the observed concentration, Ĉ is the predicted

concentration, e1 and e2 are random effects that characterize the deviation of the

prediction from the observation, s2 is the variance of the residual error random

effects, y1�7 are the fixed effects (population) estimates, �1�5 are interindividual

random effects with corresponding variances o2, and k1�4 are interoccasion ran-

dom effects with corresponding variances, o2. The parameter estimates from this

model are summarized in Table 8.1.

Table 8.1 Population pharmacokinetic parameter estimates from the first time-in-human study

PK

parameter Description Estimate Units

IIVa

(%)

IOVb

(%)

CL Clearance 3.75 L/h 25.1 9.0%

V Volume at median body weight 72.8 L 15.5 11.4%

Change in volume w.r.t body weight 0.825 L/kg – –

Amax Max absorption rate 38 mg/h 81.7% –

Km Amount of drug in gut resulting in 50% of

max rate

24.9 mg 75.4 75.2%

Lag Oral absorption lag time in fed state 0.454 h 6.2 4.2%

Change in lag time in fasted state �46.9 % – –
a IIV: intersubject variability expressed as approximate coefficient of variation of the pharmacoki-

netic parameter
b IOV: intersubject variability expressed as approximate coefficient of variation
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Exposure: Response Analysis

The exposure – ex vivo LPS-stimulated TNFa production data were modeled using

nonlinear mixed effects modeling as implemented in the nlme 3.3 library in

S-PLUS. The data were hierarchically structured into groups according to subject

and occasion nested within subject. Figure 8.11 is a line plot of the TNFa – time

data by dose level. The data was baseline normalized for ease of presentation. The

untransformed cytokine concentration was modeled as a function of observed drug

concentration according to an inhibitory Emax model, parameterized as follows:

Êi;j;k ¼ E0i;j;k � 1� Emax i
� Conci;j;k

IC50i þ Conci;j;k

� �
(8.2)

where Êi;j;k is the predicted cytokine concentration in the ith subject, on the jth
occasion at the kth time point. E0i,j,k is the baseline LPS-stimulated TNFa concen-

tration, Emax i
is the maximum inhibition expressed as a fraction of the baseline

value, IC50i is the plasma drug concentration resulting in 50% of the maximum

inhibition and Conci,j,k is the observed plasma drug concentration. The data

obtained during periods of placebo administration were modeled together with

data obtained during periods of drug administration. Therefore, E0 is subscripted

with time to permit a time-varying baseline.

Fig. 8.11 Exvivo inhibitionofLPS-stimulated cytokineproduction data –meanbaseline-normalized

TNFa concentration vs. time LPS lipopolysaccharide; error bars represent�1 standard deviation
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A structured approach (Ette et al. 2001) was used for the development of

the exposure – response model. The initial base model included E0 as a mixed

effect, i.e. a fixed and a random effect component, and Emax and IC50 as fixed

effects. The initial model for E0 was expressed as follows:

E0i ¼ b0 þ b0;i

b0 � N 0;o2
b0

� �

where E0i is the subject-specific estimate of E0, b0 is the population estimate, and

b0,i is the ith subject-specific deviation of E0i from the population estimate.

The variable b0,i is a random variable with mean zero and variance o2
b0. The

variance-covariance matrix of random interindividual effects was to be optimized,

i.e., evaluated for appropriateness of inclusion of random effects for Emax and IC50

and off-diagonal covariance terms. Residual variability was assumed to be homo-

scedastic and was to be modeled as:

Ei;j;k ¼ Êi;j;k þ ei;j;k

where Ei,j,k is the observed cytokine concentration in the ith subject, on the jth
occasion at the kth time point, Êi;j;k is the corresponding predicted cytokine con-

centration and ei,j,k is the deviation of the predicted from the observed concentra-

tion. A heteroscedastic error model was also tested.

Monocyte count associated with each blood sample was evaluated as a covariate.

The monocyte count at each time point was centered on the median value calculated

from all observations. Thus, E0 was modeled as a linear function of centered

monocyte count:

E0 ¼ b0 þ b1 � (monocyte count�median(monocyte count))

Inclusion and retention of an additional variance term or covariate was to be

determined by the likelihood ratio test in the case of nested models or the Akaike

Information Criterion (AIC) for non-nested models. The a priori significance level

was set at a ¼ 0.05. Graphical diagnostics played a major role in model develop-

ment, as expected. Figure 8.12 shows that the population exposure – response

model developed adequately described the data. The final irreducible population

model, given the data, is detailed below:

Ei;j;k ¼ Êi;j;k þ ei;j;k

Êi;j;k ¼ E0i;j;k � 1� Emax i
� Conci;j;k

IC50i þ Conci;j;k

� �

CMCi;j;k ¼ (monocyte count�median(monocyte count))
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E0i;j;k ¼ ðb0 þ b0;i þ b0ð1Þ;i;jÞ þ ðb1 þ b1;iÞ � CMCi;j;k

Emax i
¼ b2 þ b2;i

IC50i ¼ b3 þ b3;i

bx � N 0;o2
bx

� �
; b0ð1Þ � N 0;o2

b0ð1Þ
� �

; ei;j;k � N 0; s2jÊi;j;kj2d
� �

where variable definitions are: subscript i ¼ ith subject, subscript j ¼ jth occasion,
subscript k ¼ kth time point, E is the observed effect, Ê is the predicted effect, e is
the deviation of the prediction from the observation which is proportional to the

absolute value of the prediction, s2 is the unscaled variance of the error, d is a

parameter of the variance function estimating the magnitude of the proportionality

between the variance and the magnitude of the prediction, b0, b1, b2, and b3 are the
fixed effects (population) estimates, b0, b1, b2, b3 are interindividual random effects

with corresponding variances o2, and b0(1) is an interoccasion random effect with

corresponding variance o2. The fixed effects parameter estimates for the final

irreducible model, given the data, are summarized in Table 8.2.

Comparison of Performance of the FTIH Study Outcome

with FTIH Clinical Trial Simulation Outcome

To investigate the performance of the clinical trial simulation of the FTIH relative to

the clinical study outcome, a graphical approach was used. The similarity of AUC

from the simulated study and the clinical trial is shown in Fig. 8.13. The results

Fig. 8.12 Population predicted and observed TNFa concentration versus drug concentration
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indicate the usefulness of incorporating uncertainty into the clinical trial simulation

was important. In this case it provided the necessary predictive “cushion” for going

from the nonclinical domain to the clinical domain.

Similarly, the maximal response obtained in the clinical trial was similar to that

predicted from the simulation study (Fig. 8.14). It is important to note that one of the

objectives of the FTIH study simulationwas the recommendation doses to be studied

that would cover therapeutically relevant doses in terms of biomarker inhibition.

Figure 8.13 shows that this objective was achieved with the responses at doses for

20–80 mg from the clinical trial similar to those from the simulation study.

Fig. 8.13 Comparison of simulated AUC to observed AUC in first-time in human study

Table 8.2 Population

pharmacodynamic parameters

from the first time-in-human

study

TNFa

Parameter Units Estimate IIV IOV

IC50 ng/mL 99.3 45.9 –

Emax 0.807 0.047 –

EO intercept pg/mL 1120 283 148

EO w.r.t

Monocyte Count

pg/mL/10�3

cells 2310 919 –
1IIV – intersubject variability expressed as approximate

coefficient of variation of the pharmacodynamics parameter
2IOV – intersubject variability expressed as approximate

coefficient of variation
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8.5.1.5 Wisdom for the Design of Proof of Concept Study

The knowledge gained from the results of the FTIH clinical trial provided the basis for

the design of a proof of concept study for the future development of the drug candidate.

The discussion of that study is beyond the scope of this chapter. However, it is

important to note that doses from 5 to 40mgwere tested in that study. The recommen-

dation, based on leveraging pharmacometric knowledge and understanding, was that

drug activity would reach a maximum at 20 mg, and this is what was observed.

8.6 Summary

Implementing pharmacometrically guided drug development strategies founded on

informative, powerful, and robust clinical trials would greatly improve the drug

development process. Leveraging (pharmacometric) knowledge gained from every

stage of drug development (or drug trial) to gain a better understanding of drug

candidate’s response surface provides for better decision making for the next step in

the process. The result is the application of appropriate wisdom in deploying

resources for each stage of the drug development process. Pharmacometrics enables

the deployment of appropriate methodologies that permit the utmost extraction of

hidden knowledge from study data and the leveraging of same in drug development.

An application example has been used to illustrate how PGDD can be applied in

early phase drug development.

Fig. 8.14 Comparison of simulated TNFa inhibition to observed TNFa inhibition in first-time in

human study
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Chapter 9

The Application of Drug-Disease Models

in the Development of Anti-Hyperglycemic

Agents

Jenny Y. Chien and Vikram P. Sinha

Abstract Diabetes is a chronic disease characterized by hyperglycemia resulting

from defects in the regulation of glucose and insulin homeostasis. Hyperglycemia,

if not well controlled, will progress to more serious complications. Therefore, all

available treatments aim to lower blood glucose by various mechanisms of action.

Glucose and glycosylated hemoglobin (HbA1c) are well established and readily

measurable biomarkers of the disease. The application of model-based approaches

to optimize patient therapy and to gain understanding of the physiology of glucose-

insulin regulation is widely accepted in the area of diabetes research and develop-

ment. In this chapter, we attempt to give a brief overview of the disease and the

types of drug-disease models that may be applied in various stages of drug devel-

opment, including references to key publications of drug-disease models. Through

simulations, these models are the essential tools to aid the optimization of clinical

trials and to learn about the safety and efficacy of new drugs relative to the

standards of care and to face the increasing challenges of drug development for

the treatment of diabetes.

9.1 Diabetes Mellitus

Diabetes mellitus (hereafter, diabetes) is a condition in which a person has higher than

normal blood sugar (glucose) levels either because the body does not produce enough

insulin in response tomeal intake (impaired b cell functions), or because the body does
not properly respond to the insulin that is produced (insulin resistance). Insulin is a

hormone produced by the b cells in the Islets of Langerhans located in the pancreas

that promotes the uptake of glucose by tissues such as muscles and adipose thereby

mediating the clearance of glucose. Therefore, diabetes is a disease that has been
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defined as “a group of metabolic disorders characterized by hyperglycemia resulting

from defects in insulin secretion, insulin action, or both” (American Diabetes Associ-

ation 2007). If there is diminished uptake of glucose by tissues due to resistance to

insulin, then the b cell will compensate by secreting enough insulin to normalize

glucose level (euglycemia). Over time, the acute insulin secretory response to glucose

(first phase insulin secretion) may diminish and glucose may accumulate in the blood,

leading to hyperglycemia and ultimately diabetes mellitus. A persistent state of

hyperglycemia is associated with increased susceptibility to infections, ketoacidosis,

microvascular diseases, such as nephropathy or retinopathy and may lead to early

macrovascular complications, such as heart attack and stroke (Morghissi et al. 2007).
Nearly 6.4% of the global population, including 8% of the population in

the U.S., suffer from diabetes (Center for Disease Control Factsheets 2010).

The number of newly diagnosed cases world-wide continues to grow every year.

By 2030 the number is expected to rise to approximately 400 million (Wild et al.
2004). Diabetes is estimated to be the fifth leading cause of death globally and is

associated with a high risk of cardiovascular disease.

The most common types of diabetes which result from a combination of genetic

and environmental factors that cause b-cell failure are:

l Type 1 diabetes which results from the body’s failure to produce insulin, and

thus requires an exogenous source of insulin. In type 1 diabetes, a T-cell

mediated autoimmune response appears to be the main disease mechanism.

This type of diabetes is highly prevalent in children and adolescents.
l Type 2 diabetes which results from insulin resistance, a condition in which cells

fail to use insulin properly and often is associated with insulin deficiency.

Historically, type 2 diabetes has been a disease exclusively seen in adults.

However, in recent years, there has been a significant emergence of type

2 diabetes in children. Similar to adults, the disease in youth is primarily driven

by lifestyle factors leading to increased body weight and obesity. Type 2 diabetes

is by far the most common type of diabetes, affecting 90–95% of the U.S.

diabetes population.
l Gestational diabetes is when pregnant women, who have never had diabetes

before, develop a high blood glucose level during pregnancy. These women may

proceed to develop full-blown type 2 diabetes.

Other forms of diabetes mellitus include congenital diabetes, which is due to

genetic defects of insulin secretion, cystic fibrosis-related diabetes, steroid diabetes

induced by high doses of glucocorticoids, and several forms of monogenic diabetes.

Treatment for all forms of diabetes became available since the discovery of

insulin as a medicine in 1923 (Bliss 2007; American Diabetes Association Guide-

lines 2010). Type 2 diabetes can be controlled with various treatment modalities;

however, diabetes is a chronic and progressive condition that currently has no

medicinal cure. Inadequate treatment of diabetes can lead to complications: acute

(e.g., susceptibility to infections, hypoglycemia, diabetic ketoacidosis, or nonketotic

hyperosmolar coma) and serious long-term complications (e.g., cardiovascular
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disease, chronic renal failure and retinal damage). Regimented treatment of diabetes

is thus important and, generally, a holistic approach that includes blood glucose and

blood pressure control, and lifestyle changes such as smoking cessation and main-

taining a healthy body weight is recommended (American Diabetes Association

2010). Diabetes is also a progressive disease, thus the choice of treatments depends

on the disease status and often includes more than one medication.

9.1.1 Treatment Option and Drug Class

The treatment of Type 1 diabetes is limited to insulin, which currently must be

injected. Patients with Type 2 diabetes may be able to manage their diabetes on diet

and exercise alone for a few years. However, the disease usually progresses over

time requiring additional medicines to be given in combinations. Numerous drugs

of different mechanisms of action that are effective in the treatment of Type

2 diabetes are available for oral administration. The therapeutic combination for

the treatment of Type 2 diabetes may include insulin, but not necessarily due to

failure of the oral agents, to provide better glycemic control in combination with the

more convenient oral agents. The anti-hyperglycemic medicines that are available

in the market by pharmacologic class include:

l Insulins (meal-time insulins, intermediate mixes of meal-time and long-acting

insulins and long-acting basal insulins)
l Insulin secretagogues (sulfonylureas, glinides)
l Insulin sensitizers (glitazones)
l Biguanides for inhibition of hepatic gluconeogenesis (metformin)
l a-Glucosidase inhibitors for glucose or starch absorption (acarbose)
l Incretin mimetics for glucose-dependent insulin secretion (glucagon-like pep-

tide, or GLP-1, analogs and agonists)
l Dipeptidyl peptidase-4 (DPP-4) inhibitors for sustained endogenous GLP-1

(gliptins)

There are many investigational agents in various stages of drug discovery and

development such as (Levien and Baker 2009):

l GKA (glucokinase activator)
l SGLT2 (sodium-dependent glucose co-transporter)
l 11bHSD (11-b hydroxysteriod dehydrogenase inhibitor)
l GIP (gastric inhibitory polypeptide) analogs
l G-protein coupled receptor agonists
l Anti-CD3 targeted monoclonal antibody

Many newer agents are designed to have pleiotropic effects and have beneficial

attributes beyond glucose lowering reflecting the need to manage multiple facets of

this complex metabolic disorder.
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9.1.2 Biomarkers

There are numerous biomarkers and pharmacodynamic measurements available to

assess glycemic status and pancreatic b cell health as well as evaluate the effects of

pharmacologic interventions. The pancreas releases insulin which is produced in

the pancreatic b cells and glucagon, produced in the a cells. Other substances,

including hormones (somatostatin, growth hormone, cortisol, gastrointestinal hor-

mones, etc), amino and fatty acids influence this complex system. Glucagon is an

antagonist to insulin causing hepatic glucose to rise either by gluconeogenesis or

glycogen breakdown – its effect visible in cases of prolonged hypoglycaemia.

The choice of a pharmacodynamic biomarker is dependent on the new medicinal

entity’s (NME) mechanism of action, the duration of the trial and the objective of

the assessment. In addition, during the translational phase of development, the

choice of animal models of disease is often dependent on the mechanism of action

of the pharmacologic agent and known inter-species differences in the target

expression and biomarker response (Shafrir 2007).

Acute biomarkers are measured in preclinical and early clinical phases of drug

development in trials of short duration (e.g., days to weeks). The standard bio-

marker panel often consists of fasting plasma glucose (FPG) and postprandial

glucose (PPG) or insulin, in addition to representative biomarkers of the drug target

(e.g., glucagon, DPP-4 enzyme activity, GLP-1, GIP). The most common bio-

marker in early trials is FPG which is frequently used to monitor day-to-day

variation in glycemia. In addition, prandial glucose measurements are used to

assess effects in response to meals or glucose administration. Glycosylated hemo-

globin (HbA1c), formed through a non-enzymatic and irreversible reaction between

glucose and hemoglobin, is the well-accepted surrogate of drug effect and used as

an efficacy endpoint in long-term trials (e.g., months to years). Other exploratory

markers may include fructosamine and adiponectin.

Fasting insulin and C-peptide levels are measures of endogenous insulin pro-

duction and are used to assess insulin resistance and b cell function as well as

markers of disease progression.

The increasing awareness in the treatment of diabetes to consider the co-

morbidities of diabetes, namely, obesity and cardiovascular diseases, has led to expan-

sion of biomarker panels to include measures of weight (e.g., body mass index, wait

circumference, body fat composition) and safety biomarkers reflecting hemodynamics

(e.g., blood pressure, pulse rate) and risk of arrhythmias (QT prolongation).

9.1.3 Experimental Techniques

Throughout the drug discovery and development cycle there are many standard

experiments or tests in which biomarkers are assessed in the evaluation of a

pharmacologic agent. In this section, two types of experimental techniques
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designed to study glucose homeostasis are briefly discussed. Many of these tech-

niques can be used in preclinical animal models as well as in clinical testing. Their

application is to gain insight into mechanisms of action and often establish proof of

mechanism or concept (glucose lowering). These tests are typically conducted after

an overnight fast and in many cases employ the use of radiolabeled glucose to

distinguish between endogenously produced glucose and exogenously administered

glucose.

9.1.3.1 Glucose Tolerance Tests

In these tests, a high glucose load is administered and counter-regulatory responses

are assessed over 2–5 h. There are three categories of these tests. Intravenous

glucose tolerance test (IVGTT), oral glucose tolerance test (OGTT) and standar-

dized mixed meal tolerance tests (MMTT). Of these, OGTT and MMTT are more

common in drug development. The description of the techniques, application and

recommended model-based approach to data analysis are summarized in Table 9.1.

9.1.3.2 Clamp Studies

The fundamental principle with a clamp study is to achieve a steady-state condi-

tion by keeping one of the two, either glucose or insulin, constant. There are three

types of clamp experiments: euglycemic-hyperinsulinemic, hyperglycemic and

hyperinsulinemic-hypoglycemic clamp experiments. The description, application

and recommended model-based approach to data analysis are summarized in

Table 9.2. These studies are technically complex, labor intensive and require serial

collection of blood samples at frequent intervals. Typically conducted early in

Table 9.1 Types of glucose tolerance tests

Type Experiment Application

Intravenous

glucose

tolerance test

(IVGTT)

Short glucose infusion (~300 mg/kg

BW) with intensive blood sample

collection; may include glucose

tracer or insulin infusion

Assessment of b cell impairment and

glucose vs. insulin mediated

glucose disposal. Not appropriate

for incretin (gut hormone)

mediated responses; may not be

feasible for large trials

Oral glucose

tolerance test

(OGTT)

Administration of 50–100 g of

glucose as tablet or liquid form.

Periodic sample collection at

30–60 min intervals over 2 (short

OGTT) to 4 or 5 (long OGTT)

hours

Simple diagnostic of diabetes;

commonly used in clinical trials

and feasible for large trials

Mixed meal

tolerance

tests

(MMTT)

Standardized meal of caloric,

carbohydrate, fat and protein

content

Most representative of real-world

response to dietary intake; feasible

for large trials
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drug development with the aim of elucidating mechanisms of action, these experi-

ments have been widely used in the evolution of insulin preparations (DeFronzo

et al. 1979).

9.2 Drug-Disease Models of Diabetes

Diabetes is a disease in which mechanism-based modeling is appropriate since

feedback regulation and control mechanisms play a crucial role in glucose homeo-

stasis. In this section, selected drug-disease models are described. These models

offer the opportunity of measuring clinically relevant parameters that can be used for

gaining information about the disease state of diabetic patients, for understanding

and quantifying the sources of variability and can be ultimately used as tools for

simulation of clinical trials of a novel antihyperglycemic agent as monotherapy or in

combination with other therapies. As such, the application of these models should be

specific to each phase of drug development for the investigational agent. Depending

on the stage-specific drug development questions (Chien et al. 2005), models can be

adapted to predict both acute and long term events (Fig. 9.1).

9.2.1 Mechanistic Models of Glucose-Insulin Regulation

Historically, the best known model of the glucose-insulin system is Bergman’s

“minimal model” for glucose (Bergman et al. 1979; Bergman 2007; Caumo et al.
2000). The model has two main parameters – insulin sensitivity and glucose

effectiveness. Subsequent improvements included the incorporation of a peripheral

compartment for glucose distribution and models that simultaneously analyze both

glucose and insulin data (Cobelli et al. 2007). These models do not take into

account dynamic control mechanisms and were not ideal for predictive purposes.

A more recent model of glucose-insulin regulation was developed using data from

Table 9.2 Types of clamp studies

Type Experiment Application

Euglycemic-

hyperinsulinemic

Assess the amount of glucose

required to maintain normal

glycemia (~90 mg/dL) under

elevated insulin levels (to

suppress hepatic glucose output)

Partial or total amount of glucose

infused is the pharmacodynamic

measurement of response;

commonly used for PK/PD

evaluations of insulin

formulations

Hyperglycemic Infusion of glucose to sustain

hyperglycemia

Gold standard for assessment of b
cell sensitivity and function;

peripheral tissue sensitivity

Hyperinsulinemic-

hypoglycemic

Elevated insulin levels not corrected

with variable glucose infusion

Assessment of hypoglycemia and

counterregulatory response
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both healthy and Type 2 diabetic subjects in glucose provocation experiments

(Silber et al. 2007; Jauslin et al. 2007) (Fig. 9.2).
Briefly, the glucose model is described using a two-compartment model with a

glucose absorption component. The glucose model also includes two effect com-

partments accounting for effects on glucose production and insulin secretion. The

model for insulin incorporates both secretion and distribution. Baseline glucose and

insulin values are represented as population values with inter-subject variability

terms. One application of this model is for evaluation of combination of treatments

with different mechanisms of action. An example of this application is for predicting

the glucose response to investigational insulins or incretin mimetics, when added to

metformin, a drug that affects hepatic glucose production, combined with sulfonyl-

urea, a drug that increases insulin secretion. The pharmacokinetic component of

drug treatment can be introduced into the model by linking to the “site” of action

represented by the arrows in Fig. 9.2. The application of this model to predicting

long-term steady-state biomarker response is limited. For such an application, the

placebo response with respect to inter-occasion glycemic variability and links to

HbA1c response will need to be considered.

9.2.2 Time-Course Models

A typical profile of fasting plasma or blood glucose as a function of time is

presented in Fig. 9.3.

In trials of add-on therapy during which patients continue taking their antihy-

perglycemic medications, without washout, fasting blood glucose levels are stabi-

lized at baseline. In contrast, trials to evaluate a new agent for a monotherapy

indication may include a lead-in phase, during which patients discontinue and

washout their previous antihyperglycemic agents. In these trials, during the lead-

in phase, glucose levels will rise as shown by the placebo response curve in Fig. 9.3.

Upon treatment, fasting blood glucose decreases from baseline to reach a maximum

Fig. 9.1 Biomarker and model progression. The diagram illustrates in chronological order of drug

development the types of models and biomarker responses that are modeled
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possible effect (Emax), or change from placebo. The following model can be used to

describe the rise in glucose in the placebo group and the fall in glucose levels with

drug treatment.

Change in FPG ¼ Placebo effectþ Drug effect (9.1)

Change in FPG ðtÞ ¼Pmax þ OADþ ðEmax � exp (BaseFPG�median)� Cg)/

ðECg
50 þ CgÞ � ð1� exp ð � keff � tÞÞ þ � þ e

(9.2)

where, Pmax is the maximum change in FPG for placebo; Emax is the maximal

drug effect, EC50 is the drug concentration that produces half maximal effect.

Fig. 9.2 Integrated physiologic model of glucose-insulin regulation. Broken arrows indicate

control mechanisms with + and � symbols indicate stimulatory or inhibitory effect; Q, CLG and

CLGI are glucose clearance parameters; BIOG is bioavailability of glucose; SINC is incretin effect;

CLI is insulin clearance parameter; kGE1, kGE2 and kIE are rate constants for the effect compart-

ments. Figure reproduced with permission
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C is the drug concentration (which may be the area-under-curve (AUC)) or average

concentration during a doing interval, or Dose/Day/Clearance; BaseFPG is the

mean baseline FPG; keff is a rate constant of glucose turnover in determining

the time required to achieve the maximum treatment or placebo effect; g is a

concentration–response steepness parameter (Hill coefficient); OAD stands for

oral antihyperglycemic drug which is the excursion between initiation of washout

of antihyperglycemic medications to baseline FPG; � and e are inter-subject and

residual variability.

In some cases, when the time-course of biomarker response may not be critical

(i.e., when the dose–response relationship to be evaluated is at steady-state), a

model describing the changes at a pre-defined endpoint (e.g., at 12 weeks) may be

sufficient. The equation above may be modified as:

FPG¼BaseFPG� expð�Þþ (ChgPCBþOAD�Emax�Cg)/(EC
g
50þCgÞþ e (9.3)

where, BaseFPG is the baseline FPG for the population; ChgPCB is the change in

FBG for placebo; Emax the maximal drug effect; C is the concentration of the drug;

EC50 is the concentration of drug that produces half-maximal effect; � and e are
inter-subject and residual (intra-trial) variability.

9.2.3 Indirect Response Models

For trials with dose titration, dose escalation or de-escalation or crossover designs,

alternatively, an indirect response (IDR) model can be used (de Winter et al. 2006).

Fig. 9.3 Time course of fasting plasma glucose (FPG) model with washout of antihyperglycemic

agents. The solid curves indicate glucose response on placebo and treatment and baseline excursion

following washout of oral antihyperglycemic medications OAD is defined as oral antidiabetic drug
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The added advantage of using an IDR model is the linkage of glucose changes to

those of HbA1c, by simultaneously fitting to both glucose and HbA1c data.

The IDR model is a mechanistic approach to the incorporation of the effects of

drugs with different mechanisms of actions for evaluation of combination therapy.

Therefore, in the IDR model, depending on the putative mechanism of action, a

drug can be assumed to inhibit the input or stimulate the output of glucose response

(Fig. 9.4). The FPG-HbA1c linked model can be expressed as:

dFPG/dt ¼ Kin;fpg � Kout;fpg � ð1þ ðEmax � Cg/(EC
g
50 þ CgÞÞ � FPG (9.4)

dHbA1c=dt ¼ Kin;alc � FPG� Kout;alc � HbAlc (9.5)

where, Kin and Kout represent stimulation of FPG or A1c formation and turnover,

respectively.

9.2.4 Mechanistic Linked Model of FPG-HbA1c

A variation of the IDR model linking fasting glucose and HbA1c is the transit

compartment model (Hamren et al. 2008). In this model, a series of (four) transit

Fig. 9.4 Schematic of a pharmacodynamic model linking insulin, glucose and HbA1c. Circles
represent endogenous biomarkers or surrogate of response; solid and dashed arrows indicate

placement of drug effects either on stimulation of formation or inhibition of turnover; C drug

concentration
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compartments describe red blood cell (RBC) aging with a zero-order release of

RBC’s into the circulation. A first-order rate constant defines the transition of

RBC’s from one stage to the next until the cell dies (Fig. 9.5).

9.2.5 Models Incorporating Disease Progression

Other models that incorporate long-term antihyperglycemic effects based on the

time courses of FPG, fasting plasma insulin (FPI) and HbA1c have been developed

(de Winter et al. 2006; DeGaetano et al. 2008). These models are tools for the

evaluation of disease modifying properties by distinguishing between short-term

symptomatic offset and long-term disease modifying effects. With precedented

drug targets (known mechanisms of action), or novel agents in the later stages of

drug development, the application of such a model in combination with literature

data can be of great value in aiding the design of trials intended to demonstrate

effect on prevention of disease progression or slowing of deterioration of b cell

function (Ploeger and Holford 2009).

9.2.6 Literature Data for Developing Drug-Disease Models

A wealth of information is available in the literature for developing a diabetes

literature database. Developing a model based on literature data has two main

purposes (1) project a product profile (Mandema et al. 2005a; Samtani 2010)

and (2) conduct population simulations that can be used in simulating clinical

trials. An extensive review of published clinical trial data for time-course and

dose–response information for the marketed comparator(s) should be initiated

very early in the development process. Data used in developing these models can

be obtained from various publicly accessible sources and from literature in the

Fig. 9.5 FPG-HbA1c transit model. The model incorporates the turnover of HbA1c pools. Figure

reproduced with permission
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public domain such as Food and Drug Administration’s (FDA) Approval Package

(formerly Summary Basis of Approval or SBA) or the European Medicines

Agency’s Summary of Product Characteristics (SPC). Table 9.3 lists the common

sources of information for literature data curation to support subsequent diabetes

model building. Information about the stage of development and the type of trials

are available from the centralized clinical trial database accessible at www.

ClinicalTrials.gov.

The literature data on marketed antihyperglycemic agents can provide information

for evaluation of dose–response relationships of comparator drugs, trial design (e.g.,
monotherapy with washout vs. add-on to standard of care (SOC)) and baseline

characteristics of patient population on fasting glucose, insulin, HbA1c and b cell

function. For example, models can be developed based on literature data alone to

demonstrate the difference in potency and the onset of action of all available treat-

ments to reduce glucose and HbA1c levels. Trials with meal-time agents such as

insulin or sulfonylureas demonstrated more rapid glucose response than metformin or

pioglitazone, thus allowing the design of trials with shorter dosing duration.

An integrated database of monotherapy, combination and add-on therapy trials

can be used to address questions related to optimization of combination strategy.

Dose–response relationships for FPG and HbA1c are often available from Phase

2 trials. Dose–response relationships developed for FPG in short term trials can be

assumed for prediction of HbA1c for most antihyperglycemic agents (de Winter

et al. 2006; Hamren et al. 2008).
Models developed using data from the literature (Mandema et al. 2005b;

Samtani 2010) are similar to models developed using patient data, with the excep-

tion that the estimates of variability represent trial to trial variability (Normand

1999; Berry et al. 2003; Mandeman et al. 2005). The mean results from each study

need to be adjusted for differences in study design and patient population, such as

the duration of lead-in and treatment, drug class, drug potency and baseline glucose

or HbA1c. The model can be used to simulate the expected dose-response relation-

ships and associated uncertainty for the change in glucose or HbA1c relative

Table 9.3 Resources of Literature Data

Data Source location

Pubmed http://www.ncbi.nlm.nih.gov/pubmed

FDA Drug Database http://www.accessdata.fda.gov/scripts/cder/

drugsatfda/index.cfm

Clinical trial http://clinicaltrials.gov/

NIH clinical alerts http://www.nlm.nih.gov/databases/alerts/

clinical_alerts.html

NHANES http://www.cdc.gov/nchs/about/major/

nhanes/datalink.htm

European Diabetes Association conference posters

and presentation archive

http://www.easd.org/

American Diabetes Association conference posters

and presentation archive

http://professional.diabetes.org/

National Diabetes Information Clearinghouse

(NDIC)

http://diabetes.niddk.nih.gov/statistics/

index.htm
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to placebo after the administration of the drug, alone or in combination, for

different patient populations. The distribution of the dose–response relationships

is simulated by sampling the full set of model parameters from the variance matrix

of the parameter estimates. For each set of the parameters, the dose–response

relationship of the drugs can be simulated for a particular trial scenario. The 5th

and 95th percentile of the predictive distribution represent the 90% uncertainty

interval of the response.

Published literature data from long-term (>1 year) trials of metformin, sulfony-

lureas or pioglitazone in Type 2 diabetic patients or outcome trials of usually greater

than 3 years in duration, such as the United Kingdom Prospective Diabetes Study

(UKPDS), can be used to develop disease progression models. Disease progression

models developed based on literature data and clinical knowledge have been pub-

lished (de Winter et al. 2006; DeGaetano et al. 2008; Ploeger and Holford 2009).

9.2.7 Biologically Based Mathematical Models

Systems biology-based models have gained increasing use in diabetes aiming to

increase confidence in working with biological targets prior to advancing molecules

for testing in humans. This bottom–up modeling (Fitzgerald et al. 2006) in the

translational attempts to simulate the disease features and interaction of various

pathways using algebraic and differential equations are being used to prioritize

hypothesis, evaluate combination therapies and differentiate drug classes based on

outcomes (Waters et al. 2009).

9.3 Applications in Drug Development

The application of drug disease models in development of a new molecular entity

can be categorized under three critical and related areas: (1) identify the optimal

dose regimen; (2) assess drug attributes relative to SOC; (3) optimize clinical trial

design and development plans using clinical trial simulations and associated statis-

tical analysis models. The current trend in the development of anti-hyperglycemic

agents involves not only glucose reduction but also beneficial effects on the cardio-

vascular system (such as lowering triglycerides, low density lipoprotein or blood

pressure) and weight loss benefit, alone or in combination with other interventions,

with the intent of optimizing treatment regimen for a patient population. Thus, in

addition to models that describe glucose lowering, additional drug disease models

will be needed to fully maximize the value of a model-based approach, as integrated

in the learn and confirm cycle (Sheiner 1997). An advantage of working in this

disease state is the availability of readily measurable pharmacodynamic endpoints

such as FPG and HbA1c; both are “causal” path biomarkers of diabetes that are

well accepted by clinicians and regulators world-wide (Lathia et al. 2009). Both
biomarkers are used as pharmacodynamic measures of efficacy. Another
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consideration in the application of drug disease models is whether the NME aims at

an unprecedented target (hence large uncertainty in model-based prediction) vs. a

drug in a class that has some prior information (reduce uncertainty by borrowing

from a literature-based model).

It is extremely challenging within this chapter to cover every possible applica-

tion. Therefore key applications are cited with the aim of illustrating how drug-

disease models can be used in different phases of drug development. Critical drug

development questions have been previously identified for the various phases of

drug development (Chien et al. 2005; Zhang et al. 2006). Table 9.4 summarizes a

Table 9.4 Stage-dependent application of drug-disease models

Phase Objective Question Task

0 Demonstrate

pharmacologic

activity and safety

in preclinical

models

What are the attributes of a

successful candidate?

Guide developmental strategy

with an integrated decision

criteria based on predicted

PK, PD, exposure–response

and margin of safety in

animal models

1 Assess tolerability,

safety, PK and PD

What are the biomarker

responses?

Develop physiologic models of

PK-glucose-insulin

2a Demonstrate response

in representative

patient population

What are the dose- or

concentration-response

relationships?

Estimate dose–concentration-

response in typical patient

population and predict long-

term response from short-

term proof of concept study

How long should be the

duration of the study to

demonstrate proof of

concept?

2b Establish

dose–response for

Phase 3 decision

What are the efficacy and

safety attributes?

Develop drug attribute models

and clinical utility for

multiple endpoints

What trial design will

unequivocally

demonstrate noninferiority

or superiority relative to

comparators or standard of

care (SOC)?

Perform simulations to optimize

trial design

What is the probability of trial

success?

3 Demonstrate safety and

efficacy at target

doses

Do the intended doses

demonstrate the desired

safety and efficacy in the

population?

Predict disease progression and

cardiovascular outcome with

intervention in patient

populations

What are the optimal

combination therapy and

effect on disease

progression?

Are there subpopulations of

responders?

Assess the impact of relevant

covariates on dose

recommendation

188 J.Y. Chien and V.P. Sinha



stage-dependent approach in utilizing drug disease models in discovery and devel-

opment. Based on this summary, these models can be applied in the following areas.

9.3.1 Discovery and Candidate Selection

In the discovery phase, the focus is on understanding target engagement, pharmacologic

effects of target engagement and druggability. A physiological-based approach can be

of great value in answering questions regarding target engagement and gaining insight

into designing a molecule with desired pharmacokinetic properties.

Prior to candidate selection, in vitro activity and in vivo pharmacokinetic and

pharmacodynamic (e.g., glucose lowering or insulin secretion) studies are con-

ducted to understand the mechanism of action and preliminary toxicology profile of

the new drug in preparation for human testing. Simulations can be effectively used

to evaluate whether a drug candidate possesses the necessary balance of efficacy

(e.g., potency) and safety characteristics, to allow determination of margin of safety

and of the appropriate dose range to be explored in early clinical trials.

Prediction of human exposure: Using pharmacokinetic data obtained following

intravenous and oral administration of the NME in animals, the human clearance

and volume of distribution can be projected using allometry or a battery of available

scaling methods (Hu and Hayton 2001). For many of these scaling approaches, the

uncertainty in the parameters of the models can be incorporated in the prediction of

clearance. An estimate of oral bioavailability can be assumed or estimated from

preclinical data.

Estimating human potency: An estimate of the expected human potency (EC50) can

be obtained from preclinical PK/PD studies. Typically, the change in fasting glucose

at the end of a 2-week, repeat-dose, dose-ranging study in an animal model of

pharmacology, such as Zucker diabetic fatty (ZDF) rats or ob/ob mice (Shafrir

2007) allows the prediction of potency (EC50). For a first-in-class agent, this EC50

estimate is assumed scalable to clinical potency. For a precedented target with clinical

data, the inclusion of a comparator in the same drug class with known clinical potency

in the preclinical PK/PD experiment allows assessment of potency with greater

precision. The prediction of potency based on the comparator’s potency, or relative

potency, is expressed as:

EChuman
50;DrugX ¼ EChuman

50;comparator � ECZDF
50;DrugX

ECZDF
50;comparator

(9.6)

A desired target exposure leveraging the comparator information from literature

can be estimated. This target concentration is used to calculate an initial margin of

safety to the nonclinical toxicology exposure, which is critical component of

candidate selection criteria.
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Projecting human doses: Clinical doses of the NME can be projected based on the

projected human clearance and target efficacious exposures:

Target dose (mg) ¼ Target exposure (ECtargetÞ � CL/F

where, ECtarget is the exposure required to achieved a desired percentage (e.g., 90%)

of Emax estimated in the preclinical PK/PD model; CL is the predicted human

clearance following intravenous administration; F is the expected bioavailability in

human based on nonclinical PK data in rat or dog. Dose is a single integrated metric

that allows the team to select candidate with optimal druggable or margin of safety

profile, plan pharmaceutical formulation development and develop an appropriate

dose–escalation scheme in early safety and tolerability study. A consideration for

the candidate selection stage of development is whether the predicted efficacious

dose range is commercially viable, i.e., dose amount is feasible for manufacturing

scale-up. This is of particular importance in the development of biologics.

9.3.2 Proof of Concept and Time-Course of Response

An important milestone for all clinical development programs is to establish proof of

concept early and efficiently. In diabetes, this includes assessing glucose response

(fasting and/or prandial) and related biomarkers. Depending on the duration of the

study some information of changes to HbA1cmay be obtained. Drug-diseasemodels

can be used to define the dose range; select the most efficient or shortest duration of

treatment (typically 2–4 weeks); optimize the size of the study and, if applicable;

define critical success criteria against the appropriate comparator(s). For prece-

dented targets, it may be more informative to confirm efficacy in a longer study.

Clinical trial simulation in this case is a useful tool to assess the value of a small POC

study. The first step is to identify plausible target doses. The application of a

population simulation that incorporates estimates of inter- and intra-subject varia-

bility and important covariates such as baseline glucose in generating a distribution

of possible outcomes is necessary. In addition, the glucose dose–response relation-

ship should account for the uncertainty in parameter estimates, including alternate

estimates of EC50. Simulations including alternate EC50 parameter values are used

to address “what-if” questions. A time course model can be used to simulate the

dose–concentration–glucose relationship; this model should take into account

uncertainty in the placebo response, Emax, EC50 and keff (rate constant governing

the time course of glucose change) should be incorporated. Figure 9.6 illustrates

dose–response curves, where each curve represents the median response from 1,000

virtual patients over the time-course of treatment. These simulations reveal that the

1 mg dose will achieve a desired effect (e.g., 50 mg/dL decrease in glucose) but

requires 12 weeks of treatment while a shorter study (4 weeks) will have a smaller

change from baseline effect at the same dose. The aim of the simulations would be to
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assess whether a small POC study can reliably predict longer term response. In this

example, at 12 weeks, the model predicts a near steady-state of glucose response,

whereas, at 4 weeks, the median glucose response attained is approximately 60% of

the steady-state response.

Based on this time-course model, simulations can be conducted to evaluate

the ability of a 4-week trial to predict the change in glucose at 12 weeks.

A successful trial is one in which the “true” target dose at 12 weeks could be

predicted within an acceptable interval (e.g., 50–200%) of the target dose. Thus,

Fig. 9.6 Model predicted dose–response of change from baseline fasting glucose relative to

placebo under various study duration scenarios. Vertical line indicates the 1 mg dose predicted

to achieve target response at 12 weeks; arrows indicate the predicted responses at 4 and 12 weeks

for the target dose

Table 9.5 Probability of selecting the right dose that meets the target response (within 50%) from

a 4-week proof of concept study of various dose placement and sample size trial simulation

scenarios

Design Dose groups (mg)

Number of patients per trial

24 48 72 96

1 0, 1, 5, 15 0.066 0.095 0.098 0.14

2 0, 0.3, 1, 5, 15 0.13 0.16 0.2 0.17

3 0, 1, 5, 10, 15 0.047 0.073 0.13 0.13

4 0, 0.1, 1, 3, 10 0.32 0.46 0.51 0.52

5 0, 0.3, 1, 5, 10, 15 0.12 0.13 0.18 0.17

6 0, 0.1, 1, 5, 10, 15 0.33 0.42 0.53 0.56

7 0, 0.2, 0.6, 2, 6, 15 0.2 0.26 0.27 0.3
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under a plausible EC50 scenario, the target dose to achieve 50 mg/dL response at 12

weeks was predicted to be 1 mg. A 4-week trial design would be deemed successful

if it predicts the dose to achieve 50 mg/dL effect between 0.5 and 2 mg at 12 weeks

using the time-course model. Different designs (varying dose placement and sample

size per arm) can be simulated and the probability of a study with only 4 weeks of

data to accurately estimate the target dose can be estimated as shown in Table 9.5.

Design number 4 and 7 showed the highest probability of estimating the target

dose; whether these probabilities are acceptable can be weighed in the decision to

proceed with such a study or modify the design. If the fasting blood glucose is the

primary endpoint, then the time-coursemodels, including the IDRmodels, are useful

in predicting long-term or steady-state glucose response from short-term trial data.

9.3.3 Dose Response of Efficacy and Safety Attributes

A Phase 2 trial (typically 12 weeks in duration) aims to confirm efficacy in the

target population and to establish dose–response to aid selection of doses in future

trials. A drug disease model can be used to simulate a Phase 2 study. The objectives

for simulation may be to ensure that (1) all active dose arms demonstrate a

significant glycemic reduction vs. placebo; (2) one of the dose arms will result in

a reduction that will be at least non-inferior to the comparator and finally; (3) and

the trial will identify a statistically significant dose response relationship (i.e., at
least two of the active treatment arms differentiate from each other and from

placebo in the change from baseline HbA1c responses). Thus, the aim is to ensure

that an appropriate dose range is being tested, that dose placement is optimized and

all sources of variability are taken into account.

Time-course and IDR models linking glucose to HbA1c can be used to analyze

data from Phase 2 trials. Either model can be used to simulate longer-term steady-

state effects (at 6 months to 1 year) from short-term (e.g., 12 weeks) trials.

Typically, the uncertainty in drug potency is taken into consideration as well as

the drop-out rates. The variability in compliance rate may also be included in the

simulations. Pharmacokinetic sampling design in Phase 2, which are typically

sparse, should be optimized using tools such as the Population Fisher Information

Matrix (PFIM) using the PFIM/PFIM_OPT program and simulations using the

mixed-effects models (Kowalski and Hutmacher 2001; Duffull et al. 2001; Retout
and Mentre 2003).

An important task of the Phase 2 analysis is comparison with existing SOC.

Typically, most Phase 2 studies include a comparator or SOC. However, virtual

comparison using literature data allows comparison to multiple comparators. In this

case, the effect size is quite dependent on the baseline characteristics of the

population. Therefore, simulations that include the effect of baseline glucose and

HbA1c as a predictor of response are important.
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9.3.4 Dose Selection

The doses selected for the Phase 3 trials are, by intent, the same doses targeted for

final approval. Therefore, justification of these doses is necessary. If the NME has

additional attributes, such as lowering of body weight or lipids, these should be

included in the justification. The meta-analyses that include both literature data

(comparators or SOC) and patient level information are very valuable.

Clinical utility functions can be developed as joint metrics of multiple safety and

efficacy endpoints. A clinical utility index captures the clinical interpretation or

trade-off between benefit and risk in a single metric that can be used as a framework

for decision making (Chap. 5). An example of utilizing model predicted dose–

response for long-term safety and efficacy in conjunction with clinical utility

functions is illustrated in Figs. 9.7 and 9.8. The dose that has the highest total

clinical utility is selected as the Phase 3 dose expected to maximize glycemic

control (HbA1c reduction with weight benefit) while minimize safety risks (e.g.,
QTc prolongation or drug–drug interactions).

Dosing recommendations in sub-populations: Identifying sub-populations that

are at a greater risk for adverse effects or poor responders for efficacy is an integral

Fig. 9.7 Model predicted dose–response relationships for multiple safety and efficacy attributes.

Solid lines are the median and shaded regions are 5th and 95th percentiles of the mean responses

from 250 replicate trials; horizontal lines represent the individual target responses desired for

Phase 3 dose
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part of the development program. Drug-disease models that describe beneficial

effects on glycemia should be integrated as needed with exposure-response analysis

(Holford et al. 1981) or relevant safety endpoints.

For example, patients over the age of 65 with compromised renal or hepatic

function may require a dose reduction to minimize cardiovascular risk while

maintaining acceptable glycemic benefit. As ethical and practical recruitment

issues limited the amount of data available from confirmatory Phase 3 trials, use

of population analyses that integrates pharmacokinetics (e.g., age, body size, renal

function) can be used to form the basis for dose adjustments in these special

populations.

9.4 Regulatory Considerations

The cost of developing drugs has been steadily rising while the number of new

drugs being approved has been falling despite advances in the identification of new

drug targets through proteomics and genomics. This critical situation has resulted in

a white paper published in 2004 (Food and Drug Administration 2004) by the FDA

encouraging the use of novel approaches. The initiative encourages the use of

quantitative approaches using model-based drug development in all phases of

drug development. Since then, model-based approaches in drug development

have been embraced by many scientists in the pharmaceutical industry as well as

regulatory agencies. As discussed in Chaps. 1 and 3, the FDA has initiated an “End

Fig. 9.8 The total and individual clinical utility curves for multiple safety and efficacy endpoints.

The shaded region indicates the plausible dose range of maximum clinical utility
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of Phase 2a” meeting opportunity to encourage early communication between drug

development scientists and regulators (Food and Drug Administration 2009). Early

agreement on the proposed model-based approaches to define the Phase 2/3 pro-

gram, trial design and dose selection strategy can facilitate subsequent discussion at

the end of Phase 2 meeting and at the time of New Drug Application (NDA)

submission.

Recently published regulatory guidances for evaluation of investigation drugs

for treatment of diabetes (Food and Drug Administration 2008; European Medi-

cines Agency 2010) have revealed the potential for greater regulatory challenges

ahead. The FDA requirement to include cardiovascular outcome events in the

clinical trials of new investigational agents has created a higher hurdle for anti-

diabetic drug approval. Therefore, understanding the effects of drug on both

glycemic benefit and cardiovascular risk is important in early phase of drug

development.

9.5 Future Directions

As the need for new medicines to treat diabetes and associated complications

increases, pharmaceutical companies are faced with three key challenges:

(1) identifying targets and developing medicines that differentiate from existing

standards of care in an efficient manner; (2) convincing regulators of the added

benefit of such treatments and (3) providing useful guidance to prescribers and

payers (including patients) on using these medicines effectively.

The traditional pharmacokinetic/pharmacodynamic models are evolving to

include integrated predictive models that can be utilized in quantitative decision

making. These predictive models can be applied in the following areas:

1. Target prioritization: using physiological models to assess effects of target

modulations and test possible combinations. These in silico models in combina-

tion with preclinical testing offer an effective platform to explore mechanisms of

action, tailoring opportunities and design treatments.

2. Clinical trial simulations: using models to simulate the exposure–response

relationships of investigational drugs that form the basis of exploring aspects

of variability using clinical trial simulations.

3. Benefit-risk assessments: using clinical utility functions and codifying the trade-

off between benefit and risk allow more quantitative comparison with standards of

care, between patient subpopulations and between treatment regimens.

4. Assessing clinical outcomes: using outcome models to project from randomized

controlled trial data to long-term clinical outcomes, costs or commercial viabil-

ity of a new investigational drug.

5. Dosing calculators and guidance tools: using models that form the basis for

interactive computer program that, based on a patients’ characteristics and

glucose-insulin metabolism information, predicts the individual patient’s

response and identifies the optimal therapeutic regimen for the patient.
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6. Disease progression: usingmodel to predict long-term improvements to glycemic

control and b-cell function and potential to delay or modify progression of the

disease.
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Chapter 10

Modeling and Simulation in the Development

of Cardiovascular Agents

Diane R. Mould, Bill Frame, and Timothy Taylor

Abstract Cardiovascular pharmacology encompasses a wide range of diseases.

With most agents in this therapeutic area, there are specific therapeutic targets for

biomarkers such as systolic blood pressure or LDL cholesterol levels that need to be

met to ensure adequate clinical response in patients. Overdoses of these agents may

be associated with toxicity. Modeling and simulation have proven to be valuable

tools to target and adjust doses in patients. Because most cardiovascular agents are

adaptively dosed based on individual response, the dose adjustment strategy must be

implemented for model evaluation and simulation. This chapter reviews the cardio-

vascular pharmacology areas of treatment of hypercholesterolemia, stroke and

hypertension, and applications of modeling and simulation in these disease states.

10.1 Hypercholesterolemia

10.1.1 Overview of Hypercholesterolemia

Atherosclerosis is a diffuse, chronic, progressive disease that is characterized

by endothelial dysfunction, atherogenesis and atheromatous plaque progression.

Atherosclerosis often presents as clinical cardiovascular disease (CVD) events

(e.g., heart attack and stroke). Elevated cholesterol is strongly associated with the

development of atherosclerotic diseases. The risk of progression from atheroscle-

rosis to CVD increases with increasing levels of total serum cholesterol or low-

density lipoprotein (LDL) cholesterol. Currently, one of the primary therapeutic

treatments to reduce LDL cholesterol is administration of statins. A schematic of

the progression of atherosclerotic disease and the interactions of statins in this

process is provided in Fig. 10.1.
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Elevated cholesterol levels promote entry and accumulation of LDL into

subendothelial space at lesion-prone arterial sites. Monocyte chemotactic

protein-1 (MCP-1) and oxidized-LDL (Ox-LDL) act as chemoattractants to

direct accumulation of monocytes and their migration to the sub-endothelial

space, where monocytes transform into macrophages. Concurrently, oxygen

free radicals modify LDL that is taken up by nondown-regulating macrophage

receptors to form lipid-rich foam cells. Foam cells develop into fatty streaks, a

precursor of atherosclerotic plaques. Statins are thought to act at numerous sites

through the entire process, slowing the development of plaques and reducing the

probability of development of CVD.

10.1.2 Overview of Pharmacology of Statins

Clinically, the beneficial effects of statins are attributable to their ability to reduce

cholesterol synthesis by reversibly inhibiting HMG-CoA reductase, which converts

HMG-CoA to mevalonate (Hunninghake 1992). Mevalonate is not only a precursor

for cholesterol, but is also important for the synthesis of other nonsteroidal iso-

prenoidic compounds, which suggests that the statins may exert pleiotropic effects

(Stancu and Sima 2001). These effects are broadly divided into two categories: the

first involving the effect of statins on lipids including inhibition of cholesterol

synthesis and reduction of LDLs; the second category involves a mixture of effects

Fig. 10.1 Schematic of atherosclerosis
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including reduction of the accumulation of esterified cholesterol into macrophages,

increase of endothelial NO synthetase, reduction of inflammatory processes, increased

stability of the atherosclerotic plaques, restoration of platelet activity, and normal

coagulation (Bellosta et al. 2000).
In the first category of activity, the liver is the primary therapeutic target of the

statins because it is the major site of cholesterol synthesis, lipoprotein production,

and LDL catabolism (Stancu and Sima 2001; Blum 1994). However, cholesterol

synthesis in other tissues is necessary for normal cell function. The adverse effects

associated with statins may depend in part upon the degree to which they act in

extrahepatic tissues (Lennern€as and Fager 1997). Consequently, pharmacokinetic

factors such as hepatic extraction and systemic exposure may be important when

comparing the clinical utility of various statins.

Statins are generally metabolized by cytochrome P450 (CYP) enzymes depending

in part on their lipophilicity making them susceptible to drug interactions (Williams

and Feely 2002). Statins are metabolized to different degrees, and for some statins

(e.g., atorvastatin (Mason et al. (2006)), active metabolites are formed. The CYP3A

enzymes metabolize lovastatin, simvastatin, and atorvastatin; CYP2C9 is involved in

the metabolism of fluvastatin. Pravastatin and rosuvastatin are not significantly meta-

bolized by CYP enzymes (Williams and Feely 2002; Schachter 2004). Lovastatin,

pravastatin and simvastatin have elimination half-lives of approximately 1–3 h. Ator-

vastatin, fluvastatin, pitavastatin, and rosuvastatin have longer elimination half-lives

ranging from 1 h for fluvastatin to 19 h for rosuvastatin. In addition, statins are

substrates for P-glycoprotein (PgP) with various affinities affecting bioavailability.

10.1.3 Model Based Evaluations of Cholesterol
Lowering Agents

Because of their pleiotropic activity and pharmacokinetic complexities, investiga-

tion of the relationship between statin concentrations, inhibition of HMG-CoA

reductase, and cholesterol levels is not usually characterized using a direct effect

type (Emax) model. For most clinical trials, the primary endpoint is reduction of

plasma LDL-cholesterol, which takes approximately 4–5 weeks to show a reduction

after treatment initiation. Consequently, a dose-effect relationship instead of a

concentration-effect relationship is commonly employed to describe the pharmaco-

dynamics of the statins. Several authors have suggested methods for analyzing

dose-response time data in certain defined situations, where it may be convenient or

necessary to simplify pharmacokinetic behavior (Gabrielsson et al. 2000; Jacqmin

et al. 2001; Pillai et al. 2004). In cases where computational evaluation of the

complete system of equations is time consuming or the system of equations is “stiff”

this simplification is often helpful. For example, Pillai et al. used simplified using a

“kinetics of drug action” or a K-PDmodel (i.e., a dose-response model as opposed to a

dose-concentration-response model) to describe the effect of ibandronate on
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osteoporosis (Pillai et al. 2004). Model performance for this simplified system was

found to be acceptable.

Faltaos et al. (2006) used an indirect effect type model with a precursor pool

to describe the time course of the LDL following administration of statins.

A one compartment forcing function was used to relate statin dose to the measured

response. In their model, the first compartment is a precursor pool describing LDL

synthesis (rate Kin), and the second compartment is circulating LDL (site of

measurement of the response). The LDL time course was affected by statins

that can alter either the production or the elimination of LDL. The differential

equations describing this K-PD model are provided below:

dPrecursor

dt
¼ Kin � ð1� INHÞ � Kout � Precursor

dLDL

dt
¼ Kout � Precursor � ðSTIMÞ � Kout � LDL

STIM ¼ 1þ Dose

ðDoseþ D50Þ

In these equations, Kin is the LDL production rate constant; Kout is the exit rate

from the precursor pool as well as the LDL elimination rate constant; INH and

STIM denote the drug inhibition and stimulation effects of the statins, respec-

tively; D50 denotes the dose that produced a 50% increase in LDL elimination.

The parameters for this model for several statins are proved in Table 10.1.

The results obtained from the model developed by Faltaos et al. are in good

agreement with results reported by Lennern€as and Fager (1997), who found

that fluvastatin, lovastatin, pravastatin, and simvastatin have similar pharmacody-

namic properties, with the ability to reduce LDL-cholesterol by 20–35%, which

was shown to achieve decreases of 30–35% in major cardiovascular outcomes.

Simvastatin has this effect at doses of about half those of the other three statins.

Another model-based approach that is commonly implemented to evaluate

and compare the activity of statins is a “meta-model,” which combines the results

of several studies addressing a set of related research hypotheses and evaluates

Table 10.1 Parameters from statin KPD model

Parameter (unit)

Final model

(CV%)

Bootstrap

median

Bootstrap

2.5th–97.5th

Kin (g/L/day) 0.14 (11%) 0.15 0.10–0.24

INH 0.21 (8.5%) 0.22 0.19–0.28

D50 Atorvastatin (mg) 26 (30%) 27 19–66

D50 Simvastatin (mg) 1.3 (37%) 1.3 1–3.7

D50 Fluvastatin (mg) 15 (35%) 14 9–34

IIV Kin (%) 0.72 (30%) 0.73 0.36–1.21

IIV D50 (%) 1.6 (33%) 1.62 1.0–2.9

Residual variability (%) 0.11 (14%) 0.12 0.10–0.16

Taken from Faltaos et al. (2006)
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a common measure of effect size. The resulting overall average, when appropriately

controlled for study characteristics, can be considered as a meta-effect size, which

is generally a more powerful estimate of the true effect size than that derived from a

single study. Meta analyses are often used in drug development to compare new

agents with marketed agents to define critical Go/No-Go decision points. Simula-

tions based on meta-models provide a range of expected outcomes or dose/response

relationships for published results of other therapeutic intervention, which can be

used to guide both dose selection of new agents in development and to provide

insight on the relative efficacy for new agents (Lalonde et al. 2007).
Implementation of a meta-analysis is generally a straightforward process with

the following steps:

1. Conduct literature search

2. Select reported studies to be included in the meta-database (e.g., based on

prespecified “incorporation criteria”)

(a) Study design quality, e.g., the requirement of randomization and blinding in

a clinical trial or the use of a placebo or active control arm

(b) Well-specified patient type or indication

(c) Decide whether unpublished studies should be included (if feasible, this is a

good way to avoid publication bias which tends to provide only positive

results)

(d) Decide which dependent variables or summary measures are to be evalu-

ated, such as mean response data

3. Model development

With Nonmem®, a random effects meta-regression is generally conducted on

such data.

ŶiðtÞ ¼ f y;Di; tð Þ þ �i þ ei

where Ŷi is the mean effect size in study i; f (y, Di, t) is the function describing

the relationship between dose and time and the mean effect size; ei is the variance of
the effect size in the ith study; and �i is the between study variability.

LaRosa et al. (1999) conducted a meta-analysis of five large randomized

controlled trials following long term treatment (average 5.4 years) with statins.

Both proportional and absolute risk reduction were used to measure the effect of

statin drug treatment on clinical outcomes. The model database was augmented

with data from 12 small studies that were not designed to evaluate clinical outcome

(e.g., prevention of major coronary events) for sensitivity analysis. The authors

reported that statin treatment was associated with a 20% reduction in total choles-

terol, 28% reduction in LDL-C, 13% reduction in triglycerides, and 5% increase in

high-density lipoprotein cholesterol. In addition, treatment with statins was found

to provide a 31 and 21% reduced risk of major coronary events and all-cause

mortality, respectively. The authors reported that risk reduction in major coronary

events was similar for both men and women and was not age dependent.
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Generally, for random-effects meta-analysis, study is used as the grouping factor

for data (rather than ID, which is the usual grouping factor for population, based

modeling). This is appropriate for data with a single observation per subject such as

LaRosa et al. described previously. However, meta-analysis is often conducted

using longitudinal data such as mean LDL per week. For such data, it may be

appropriate to use both study and treatment arm as grouping factors. As suggested

by Ahn and French (2009), there is correlation between observations over time

within a treatment arm because the same subjects are contributing to the means at

each time point. This correlation depends on the ratio of the between-subject

variance to the sum of the between subject and residual variance. When this

additional level of correlation is included in the meta-model, the equation then

becomes:

ŶijðtÞ ¼ f ðy;Dij; tÞ þ �i
Study þ 1ffiffiffiffiffi

nij
p �armij þ 1ffiffiffiffiffi

nij
p eij

where Ŷij is the mean effect size in study i for arm j; f (y, Dij, t) is the function

describing the relationship between dose and time and the mean effect size; ei is the
variance of the effect size in the ith study; �i is the between study variability; and �ij
is the between arm variability.

“Interarm” variability can be implemented using either the usual approach used

for interoccasion variability (Karlsson and Sheiner 1993), or using the L2

(level-two) data item of NONMEM® to group together the data records of the

same realization of the second level of random effects (Beal et al. 2006).

The authors reported that when the hierarchy of random effects was misspecified,

random effect parameter estimates were biased. The standard errors of the parameter

estimates were also affected by the parameterization of random effects, showing the

importance of correctly specifying study and treatment arm level variability for

meta-analysis.

10.2 Antithrombus Therapy

10.2.1 Overview of Pathophysiology of Thrombus Formation

Excessive platelet activation and aggregation are common components in many

vascular diseases, which results in atherothrombosis. For example, unstable angina

and acute myocardial infarction are characterized by persistent platelet hyper-

reactivity and thrombin generation (Merlini et al. 1994). Hypercholesterolemia and

hyper-reactive platelets are synergistic in their pathology. Hypercholesterolemia has

been shown to prime platelets for recruitment to lesion-prone sites before lesions can

be detected (Theilmeier et al. 2002).
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The growth of a thrombus follows a complex pathway, requiring multiple

adhesive receptor-ligand interactions (Jackson et al. 2003). Platelet-vessel wall
interactions at lesion-prone sites contribute to the initiation and maintenance of

the inflammatory process of atherosclerosis. The rupture of an atherosclerotic lesion

exposes the thrombogenic lipid core and subendothelial matrix proteins to

circulating platelets, initiating platelet recruitment to the injured vessel wall similar

to primary hemostasis (Steinhubl and Moliterno 2005). The efficiency with which

platelets adhere and aggregate at sites of vessel wall injury depends on the action

of various adhesive and soluble agonist receptors, with the relative contribution of

each of the individual receptors being dependent on the prevailing blood flow

conditions at the injury site. Adherence and activation of platelets at the site of

ruptured endothelium initiates a cascade of events that ultimately results in throm-

botic occlusion.

In addition to reducing the risk of thrombotic events in patients with athero-

sclerotic disease, anticoagulants are also used to reduce the risk of venous and

arterial thromboembolism during and following surgery, particularly for patients

with specific risk factors (Kearon and Hirsh 1997). Administration of agents such as

unfractionated heparin or low molecular weight heparin is common, and the use of

such agents is dependent on the risk of causing a bleeding event versus the benefit

of preventing embolism.

10.2.2 Pharmacology of Anticoagulant Agents

The platelet-vessel wall interaction and local generation of agonists at the site of

vascular injury provide the stimulus for platelet activation. The main inducers

of platelet activation are collagen, thrombin, adenosine diphosphate (ADP), epi-

nephrine, platelet activating factor, and thromboxane A2 (TXA2). An overview of

the factors involved in platelet aggregation and the sites of common antithrombotic

agents is provided in Fig. 10.2.

Aspirin and the thienopyridines have well established clinical efficacy, which

supports platelet cyclo-oxygenase-1 (COX) and ADP receptors as appropriate clinical

targets for antiplatelet drugs. Aspirin is an irreversible inhibitor of cyclo-oxygenase

(COX), which leads to a substantially (98%) decreased production of platelet throm-

boxane A2. Thromboxane A2 induces platelet aggregation by binding to its receptor on

platelets. This receptor also binds prostanoids, which can promote platelet aggregation

through vasoconstriction. Thienopyridines such as ticlopidine (Clopidogrel) are con-

verted into active metabolites, which in turn irreversibly inhibit P2Y12 (a major ADP

receptor) on the platelet surface. However, the need formetabolic activation results in a

delay to the onset of effect. A new agent, cangrelor, is a direct competitive inhibitor of

P2Y12 that does not require conversion to an active metabolite. Therefore, cangrelor

produces an almost immediate dose-proportional inhibition of ADP-induced platelet

aggregation after IV administration with recovery of platelet function within an hour

after the drug has been cleared.
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GPIIb/IIIa inhibitors prevent fibrinogen binding, which is a prerequisite for

platelet-platelet binding and aggregation. GPIIb/IIIa inhibitors are either

monoclonal antibodies (e.g., Abciximab) or low molecular weight peptides such

as Eptifibatide and Tirofiban. Angiomax, a low molecular weight peptide, is a

reversible inhibitor of thrombin. Thrombin-mediated activation of PAR-1 on endo-

thelial and smooth muscle cells, fibroblasts, and cardiac myocytes may contribute

to the proliferative and proinflammatory effects of thrombin (Seiler and Bernato-

wicz 2003). E5555 is an orally administered PAR-1 inhibitor that is in clinical

development. The anticoagulant effect of low molecular weight heparins (LMWH)

such as enoxaparin can be directly correlated to the ability to inhibit factor Xa in the

clotting cascade, which catalyzes the conversion of prothrombin to thrombin.

The inhibition of this process results in decreased thrombin and ultimately the

prevention of fibrin clot formation.

From the platelet coagulation cascade, numerous additional sites can be identified

to inhibit coagulation. Again, many agents that act on the coagulation cascade are

already available for clinical use, while others are in development. Warfarin and

related coumarins decrease blood coagulation by inhibiting vitamin K epoxide

reductase, an enzyme that recycles oxidized vitamin K to its reduced form after it

has participated in the carboxylation of several blood coagulation proteins, mainly

prothrombin and factor VII. Thrombin, which converts fibrinogen to fibrin, can be

inhibited either directly or indirectly. Direct inhibitors bind to thrombin and block its

interaction with substrates. Indirect inhibitors act by catalyzing heparin cofactor II.

Fig. 10.2 Schematic of factors involved in platelet aggregation
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10.2.3 Modeling and Simulation for Dosing of Anticoagulants

Anticoagulants have associated risks of bleeding and bruising events, so dosing for

these agents is usually individualized and doses are adaptively adjusted to a

particular response. Identifying a starting dose that gives reasonable clinical

response while reducing the likelihood that a patient will experience adverse events

is important; therefore modeling and simulation have been particularly important to

help develop dose regimens. For example, dose regimens for enoxaparin in obese

patients were developed by Green and Duffull (2003) using modeling and simula-

tion. The simulated results suggested that patients over 50 years of age with a total

body weight >90 kg, or under 50 years of age with a total body weight i >120 kg

should experience less bruising if a dose of 100 IU/kg (1-mg/kg) based on lean body

weight rather than total body weight is administered every 8 h.

Depending on both the mechanism of action and the pharmacokinetic behavior

of individual agents, the pharmacodynamic activities of antiplatelet and anticoagu-

lants are commonly described using direct effect (e.g., Emax model), indirect effect

(Dayneka et al. 1993) or transit (Friberg and Karlsson 2003) models. For example,

warfarin indirectly inhibits the synthesis of several vitamin K-dependent coagula-

tion factors (e.g., factors II, VII, IX, X, proteins C, and S). The precursors of these

factors require carboxylation to allow them to bind to phospholipid surfaces. This

step is linked to the oxidation of vitamin K to form vitamin K epoxide, which is then

recycled back to its reduced form by vitamin K epoxide reductase complex

(VKORC). As mentioned previously, warfarin inhibits this enzyme, effectively

reducing available vitamin K stores. Consequently, when the pharmacodynamics

of warfarin is being modeled, there is a need to provide a mechanism allowing for a

delay to onset of effect as well as a prolonged recovery time.

Therapy with warfarin is characterized by pronounced variability in individual

dose requirements (Sconce et al. 2005) and a narrow therapeutic index. Recently,

three single nucleotide polymorphisms (SNPs), two in the CYP2C9 gene (which is

the primary enzyme for warfarin metabolism) and one in the VKORC1 gene, have

been found to play key roles in determining individual exposure and response to

warfarin. On average, patients expressing the CYP2C9*2 and CYP2C9*3 alleles

require a 19% and 33% reduction in dose, respectively, as compared to patients who

have the *1 allele. Carriers of the VKORC1 A allele require, on average, a 28%

reduction per allele in their warfarin dose compared to those who do not carry this

allele (Schwarz et al. 2008). Consequently, patients expressing *2 or *3 alleles of

CYP2C9 experience an approximately two- to threefold increased risk of serious

bleeding events. Similarly, carriers of the VKORC1 A allele are also at a two- to

threefold higher risk of an international normalized ratio (INR) >4.0 during initia-

tion of therapy when standard dosing algorithms are used.

Because of the possibility of undesirable bleeding events together with the need to

ensure adequate anticoagulation, warfarin is generally dosed adaptively depending on

assessment of INR, which is a measure of the functionality of the extrinsic pathway of

coagulation. Because of the well-known need to individualize dose and the
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complexities inherent in the pharmacokinetic and pharmacodynamic behavior of

warfarin, this agent has been frequently investigated throughmodel-based approaches.

Furthermore, the additional dose adjustments required for individuals carrying these

alleles often substantially increases the time required to achieve the target INR.

In 2005, Holford presented several models for the pharmacodynamics of warfarin

(Holford 2005), showing that the indirect effect (turnover) type model was best to

account for the delay between measured warfarin concentration and anticoagulation

response. A somewhat more elegant pharmacodynamic model for warfarin was

developed by Hamberg et al. (2007). In this model, the anticoagulant response to

warfarin was best described by an inhibitory Emax model where the delay between

exposure and response was accounted for by a transit compartment model with two

parallel transit compartment chains (Fig. 10.3).

The equations for this model are shown below.

dAð1Þ
dt

¼ ktr1;i � 1� Emax � Ĉg
s;ij

EC50ig þ Ĉg
s;ij

 !
� ktr1;i � Að1Þ

dAð2Þ
dt

¼ ktr1;i � Að1Þ � ktr1;i � Að2Þ
dAð3Þ
dt

¼ ktr1;i � Að2Þ � ktr1;i � Að3Þ
dAð4Þ
dt

¼ ktr1;i � Að3Þ � ktr1;i � Að4Þ
dAð5Þ
dt

¼ ktr1;i � Að4Þ � ktr1;i � Að5Þ
dAð6Þ
dt

¼ ktr1;i � Að5Þ � ktr1;i � Að6Þ

dAð7Þ
dt

¼ ktr2;i � 1� Emax � Ĉg
s;ij

EC50ig þ Ĉg
s;ij

 !
� ktr2;i � Að7Þ

ktr1;i ¼ 1

MTT1;i

ktr2;i ¼ 1

MTT2;i

LNðINRijÞ ¼ LNðBASEi þ INRMAX � ð1� Að6Þ � Að7ÞÞlÞ þ eINRij

In these equations, A(n) is the amount in the designated compartment with A(1)–A(6)

being the long transit chain and A(7) is the amount in the short transit chain, ktrni
the transit rate constant for the ith individual, which is inversely related to

the individual mean transit time (MTTn,i), Emax is the maximal inhibition of

coagulation, and was fixed to one, EC50i is the concentration of s-warfarin

producing half-maximal inhibition and was modeled as a function of VKORC1

genotype, g is the sigmoidicity factor. For the INR function, BASEi is the individual
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baseline INR, INRMAX is the maximal increase in INR (fixed to 20), l is a scaling

factor and eij is the residual error for the jth observation for the ith individual.
Using this model, the authors reported that CYP2C9 genotype and age were

predictors for S-warfarin clearance, and that the VKORC1 genotype was identified

to be predictor of warfarin sensitivity, which was consistent with earlier evaluations

(Sconce et al. 2005). This model was later employed to investigate various warfarin

dosing strategies (Salinger et al. 2009) using clinical trial simulation. The authors

reported that a pharmacogenomic-guided warfarin dosing may be more useful than

the standard of care in clinical settings with less intensive patient follow-up, and

when adjustments are made for slower therapeutic response in patients with a

CYP2C9 variant. These findings are consistent with the updated labeling for

warfarin proposed by the FDA that people with variations in CYP2C9 and

VKORC1 may require a lower initial dose of the drug (FDA 2007a, b).

10.3 Stroke

10.3.1 Overview of Stroke and Clinical Endpoints

Numeric rating scales such as the National Institutes of Health Stroke Scale (NIHSS),

Canadian Neurological Scale (CNS), and the Scandinavian Stroke Scale (SSS) have

been devised to quantify the neurologic examination after stroke and are routinely

used in clinical trials (Brott et al. 1989; Cote et al. 1986; Scandinavian Stroke Study
Group 1985; Lindenstrom et al. 1991). Severity of deficits as quantified by the NIHSS
and the CNS can predict long-term functional outcome after stroke (Fiorelli et al.
1995; Muir et al. 1996). Rating scales are usually implemented at patient admission

(baseline) and periodically after admission. The typical regulatory approach to the

Fig. 10.3 Schematic of warfarin pharmacodynamic model
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analysis of stroke scores is to compare the baseline score to interim or end-of-study

scores (change from baseline) and then comparing treatment of the investigation drug

to placebo or other treatment (FDA 1998). However, a longitudinal multivariate

analysis of the time course of disease progression makes it possible to assess the

rapidity of the response to drug treatment.

The disease progression approach using the raw stroke scale data or change from

baseline data using linear or asymptotic models based on exponential, Emax,

nonzero asymptotic, and inverse Bateman functions can be applied (Mould 2007),

although more complex approaches can be used, such as the two-part model

developed by Jonsson et al. (2005). This was done using Markovian probabilistic

models to describe the transition from disease to full health (i.e., the improvement

or decline in the total health status relative to the previous disease state) and

occurrences of dropout.

10.3.2 Example Stroke Disease Progression Models

CP-101,606 is a substituted 4-phenylpiperidine that is a glutamatergic NR2B

subunit specific N-methyl-d-aspartate (NMDA) receptor antagonist and has been

evaluated for use in stroke. NMDA receptor antagonists may reduce probability of

death and functional impairment caused by stroke by inhibiting neuron death

caused by glutamate-mediated excitotoxicity (Choi 1988). Large increases in

synaptic glutamate concentrations following a stroke activate glutamate receptors

and have been shown to result in neuronal death (Bullock et al. 1995a, b). Blocking
of the NMDA receptors has shown to prevent neuron death caused by glutamate

in vitro (Rosenberg and Aizenman 1989).

The NMDA receptor is differentially distributed with different subunit

combinations throughout the brain and spinal cord. Receptors with the NR2B

subunit are distributed in specific forebrain regions that are vulnerable to cortical

strokes (Monyer et al. 1992). Therefore, the specificity of CP-101,606 for the NR2B
subunit of the NMDA receptor is thought to increase the specificity to vulnerable

portions of the brain to stroke.

CP-101,606 is a known substrate of the polymorphic cytochrome P450 2D6.

Some 5–10% of the Caucasian population possess inactivating alleles for the gene

(Johnson et al. 2003). Individuals who possess normal activity of the CYP2D6

gene are referred to as extensive metabolizers (EM) and are known to exhibit broad

ranges of metabolism of CYP2D6 substrates. Individuals, who possess no

CYP2D6 activity because of the inactivating alleles, are referred to as poor

metabolizers (PM). These individuals are readily identified by genotypic analysis

of patient DNA samples. Other individuals possess reduced activity caused by

combinations of inactive and reduced activity alleles. These individuals are more

difficult to determine their genotypes because they exhibit broad phenotypic

ranges of drug metabolism and are referred to as intermediate metabolizers (IM).
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CP-101,606 demonstrates two distinct clearance mechanisms in CYP2D6 EMs

and PMs. In EM subjects, the plasma clearance is high at ~16-ml/min/kg resulting

in a short half-life (~4 h). The clearance in these subjects is mediated by primary

hydroxylation followed by conjugation (Johnson et al. 2003). In PM subjects the

plasma clearance is low (~4 ml/min/kg) resulting in a moderate half-life (~16 h).

The clearance in these subjects is mediated by primary hydroxylation (approxi-

mately 27%), primary sulfation (approximately 12%), and renal clearance of

unchanged CP-101,606 (approximately 50%).

The primary objective of this pharmacokinetic–pharmacodynamic (PK/PD)

analysis was to evaluate the exposure-response relationship of CP-101,606 to

the National Institute of Health Stroke Scale (NIHSS). The study was designed

as a placebo controlled, double-blind study, with intrasubject and intergroup

comparisons made to baseline. Patients were randomized in a 1:1 ratio to receive

CP-101,606 or placebo after diffusion magnetic resonance imaging evidence of an

acute cortical ischemic stroke. Either CP-101,606 or placebo was delivered by

intravenous infusion started within 8 h of the onset of neurological symptoms.

For subjects receiving CP-101,606, a loading infusion of 0.75-mg/kg/h for 2 h

followed by a maintenance infusion of 0.37-mg/kg/h for 70 h, for a total of 72 h was

administered. The target plasma concentration was 200 ng/ml. Pharmacokinetic

samples were collected at the end of the loading infusion, and at times throughout

and after the end of the maintenance infusion.

The NIHSS is a 15-item neurologic examination stroke scale used to evaluate the

effect of acute cerebral infarction on the levels of consciousness, language, neglect,

visual-field loss, extra ocular movement, motor strength, ataxia, dysarthria, and

sensory loss (Brott et al. 1989). The minimum score is zero, which signifies a

normal subject and the maximum score is 42, with scores greater than 15–20

considered severe. NIHSS assessments were performed at screening and daily

until discharge, and then at 30 and 90 days after treatment. If the patients’ neuro-

logical status deteriorated, NIHSS was to be performed more frequently.

Whole blood samples were collected to prepare genomic DNA for the purpose of

cytochrome P450 2D6 genotyping. A panel of CYP2D6 alleles was screened for the

determination of CYP2D6 metabolizer status using polymerase chain reaction

(PCR). The alleles included *1, *2, *3, *4, *5 (gene deletion) and *6, *8, *9,

*10, *11, *12, *14, *15, *16 (gene duplication). Subjects that carried two PM

alleles (*3, *4, *5, *6, *8, *11, *12, *14, *15 and *16) were classified as poor

metabolizers. Individuals who possessed the *4/*10, *9/*4, and *9/*10 genotype

have been shown to exhibit reduced substrate activity. For the purpose of this study,

these individuals were considered to be IM.

The final database that was used for model building and evaluation included 53

subjects treated with CP-101,606 and 61 subjects treated with placebo. In general, the

demographic characteristics such as age, sex, weight, and race of the subjects were

similar for each treatment group. There were 399 pharmacokinetic observations

from the 53 subjects administered CP-101,606 and 1,030 NIHSS observations from

the 114 subjects in the study.
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Most patients were EM, three were genotyped as IM and two patients genotyped

as PM accounting for ~13% of the patients administered CP-101,606 in this study.

Nine patients were not genotyped, but based on their CP-101,606 plasma concen-

tration profiles, these patients were not expected to be PM. For all the subjects, the

steady state average concentration was greater than or equal to the target of 200 ng/

ml. The EM subjects had concentrations that were approximately threefold lower

than the PM subjects.

The best model for CP-101,606 pharmacokinetics was a one compartment

linear model with first order elimination. The parameter estimates are shown in

Table 10.2. A mixture model for metabolizer type (slow or fast) was used to

mimic CYP2D6 genotype effect and resulted in a proportion of approximately

27.1% of the subjects being slow metabolizers. Age, weight, BSA, sex, and race

were evaluated as predictors of pharmacokinetic variability. Covariate inclusion

selection was based on a forward addition/backward deletion method using the

likelihood ratio test with a significance of level of p < 0.001 and decreases

interindividual variability. An allometric model of weight was the only predictor

for clearance and volume.

The pharmacodynamic model was modeled as two groups; depending on if they

were improving or worsening, using a mixture model. An asymptotic inhibitory

Emax model was used for subjects that improved after the baseline evaluation in

which a decrease in their NIHSS scores was observed. For subjects that worsened,

as measured by an increase in their NIHSS score, a linear model was used. Sex,

race, age, weight, BSA, infarct volume, baseline NIHSS, and prior statin and ACE

inhibitor treatment were evaluated as predictors of disease progression using the

same method and criteria described previously.

Once the final model was selected the effect of drug treatment as a covariate on

the model parameters was added. Several measures were tested including active

or placebo treatment as a categorical covariate and total CP-101,606 dose or the

CP-101,606 exposure parameters AUC and Css, avg as continuous covariates

estimated from the population pharmacokinetic model. Css, avg was found to be

the most significant predictor of response and was included as a covariate on the

IMAX parameter.

The final parameter estimates are provided in Table 10.3. The model results

showed that the probability a patient would worsen during the study was 0.146.

Higher baseline NIHSS values were associated with poorer recovery (lower inhibi-

tory Emax). Older age and larger lesion volume lengthened recovery time. Higher

Table 10.2 Population pharmacokinetic parameters for CP-101,606

Parameter Formula

Metabolizer

type

Typical

value

Interindividual

variability (%)

Clearance

(ml/min/kg)
CL ¼ CL*(WT/70)

0.75 Extensive 5.42 33.3

Poor 16.0 33.3

Volume (L) V ¼ V*(WT/70) NA 5.04 25.1
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CP-101,606 Css, avg was associated with greater recovery. While the addition of

drug effect significantly decreased the variability of the parameters, based on the

likelihood ratio test, the statistical significance of the drug effect was p < 0.05.

Overall, the dosing regimen administered in this study resulted in stroke patients

achieving or exceeding the targeted minimum Css, avg of 200 ng/ml. The non-

compartmental pharmacokinetic analysis showed that EM patients had 66% lower

exposure than PM patients did. Population pharmacokinetic modeling with the use

of a mixture model for assignment of EM/PM status resulted in a larger proportion

(~27%) of slow metabolizers than observed in the general population (~15%), and

by genotyping (~10%), possibly caused by the large variability of CYP2D6 expres-

sion in the population.

Plots of individual concentration versus time since the start of the infusion from

three subjects are presented in Fig. 10.4a. Subject 15 is a 67-year-old patient that

was a CYP2D6 PM (*4/*4 genotype) and had a baseline NIHSS value of 18.

Subject 18 is a 52-year-old patient that was a CYP2D6 EM (*2/*4 genotype)

with a baseline NIHSS value of seven. Lastly subject 53 is an 80-year-old patient

that was a CYP2D6 EM (*2/*16 genotype) and had a baseline NIHSS value of

seven. These plots show that CYP2D6 genotype had a great influence in the

exposure of CP-101,606. The EM subjects 18 and 53 had an approximately twofold

difference in concentrations, which demonstrates the large variability in exposure

within CYP2D6 genotypes. The PM subject 15 had much higher concentrations

than the other two subjects showing the impact of PM status on exposure.

The individual predicted concentrations (thick line Y) were close to the observed

data (triangles). The thin line (PRED) is the population predicted values.

Similar plots of the NIHSS values over time for these same subjects are in

Fig. 10.4b. This plot shows that for subjects 15 and 18, who both showed improving

signs and symptoms based on the decrease in NIHSS values over time, have an

asymptotic profile versus time. Subject 53 who showed worsening signs and

symptoms over time had a linear increase although there was a spike in the values

between days 2 and 4.

Table 10.3 Population pharmacodynamic parameters for stroke model

Patient

outcome Formula Parameter

Typical

value

Inter-individual

variability (%)

Worsening NIHSS(t) ¼ NIHSSday0 + Slope*Day Slope 1.86/day 94.0

Intercept 12

Improving NIHSS

(t) ¼ NIHSSday0 + IEmax*Day/

(INHC + Day)

INHC ¼ IC50*(1 + LV*LVE)*(60/

Age)AgeE

IMAX

Css, avg

�10.1

0.0002

21.0

Baseline

NIHSS

0.612

IC50 2.16 196

AgeE �2.52

LVE 0.0185

LV lesion volume; AgeE age effect on IC50; LVE lesion volume effect on IC50
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The pharmacodynamic modeling results show that administration of CP-

101,606 to acute stroke patients results in greater recovery and less variability in

time and extent of maximum recovery. The modeling results were consistent with

the statistical analysis for this study, which used a dichotomized NIHSS with

adjustments for age and baseline NIHSS imbalances (Grotta 1997), and indicated

a benefit for CP-101,606-treated stroke patients. Simulation of NIHSS values over

time using this model for three levels of CP-101,606 Css, avg suggests greater

exposure to CP-101,606 results in more complete recovery (Fig. 10.5).

An example control stream and data for NIHSS disease progression model is

provided on the associated FTP site.

10.3.3 Longitudinal Model for Nonmonotonic Stroke Scale Data

Another stroke model was reported by Jonsson et al. (2005). In this two-part analysis,
in addition to the modeling of the disease progress over time, an additional part was

Fig. 10.4 Plots of individual observed, population predicted and individual predicted observations

versus time since the start of the infusion from representative subjects (a) CP-101,606 Concentra-

tion; (b) NIHSS scores
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added that would potentially decrease the random variability in the model. In the

previous example a mixture model was used to assign a subject to either a monotonic

worsening of disease with a linear function or amonotonic improvement in the disease

state as an inhibitory Emax function. Here a nonmonotonic disease progression is

modeled where a subject may have a worsening score after an improving score or

vice versa. The rationale being that with the previous example, once the subject was

assigned to either worsening or improving via the mixture model; all changes in the

score that are different from the overall trend were included in random variability in

the NIHSS values. The Jonnson et al. model allowed for nonmonotonic score changes

as well as patients dropping out from the study.

The authors implemented five submodels that were either continuous or

probabilistic. The probabilistic submodels were set up to determine the probability

that a subject fully recovered, dropped out or had an improvement in disease state from

one occasion where the stroke score was assessed to the next. The continuous sub

models were implemented as linear models that described the relative magnitude of

score change given and observed improvement or worsening of the disease state.

The advantage of this more complex method is that it allows for accurate

simulation of clinical trial data including subject dropout and the use of sparse

sample collection. From these simulations, traditional statistical analyses can be

performed a priori on the simulated data where placebo groups and “last observa-

tion carried forward” imputation schemes can be included.

Whelan et al. (2008) developed a tradeoff model evaluating the efficacy and

toxicity of tPA. The tradeoff function was constructed from several pairs of efficacy/

toxicity probabilities specified by the investigators. The authors used the model for

clinical trial simulation to develop an adaptive dose ranging trial for pediatric stroke

patients. The simulation assigned doses to successive cohorts of patients on the basis

of each dose’s desirability, based on the tradeoff between efficacy and toxicity. Each

cohort dose was selected adaptively based on dose-outcome data from the patients

treated previously to optimize the efficacy–toxicity tradeoff. The authors concluded

that this approach avoids the more time-consuming and expensive conventional

Fig. 10.5 Simulated NIHSS values for selected steady state plasma concentrations of CP-101,606
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approach of conducting a phase I trial based on toxicity alone followed by a phase II

trial based on efficacy alone. This is especially useful in settings with low accrual

rates, such as trials of tPA for pediatric acute ischemic stroke.

10.4 Hypertension

10.4.1 Overview of Hypertension

Essential hypertension has a complex underlying pathology. There are many risk

factors such as sedentary lifestyle and obesity. Insulin resistance, a component of

metabolic syndrome and is also associated with obesity, is also thought to be a

causative factor in the development of hypertension. Other factors include stress

leading to increased sympathetic nervous system activity; dietary factors such as

protracted high sodium intake, inadequate potassium and calcium intake; increased

renin secretion with resulting elevations in angiotensin II and aldosterone; deficien-

cies of vasodilators; alterations in expression of the kallikrein–kinin system; and

abnormalities of resistance vessels. Hypertension is also related to aging. Family

history, including some inherited genetic mutations, has also been shown to

increase the risk of developing hypertension.

Guyton (1991) suggested that renal mechanisms might play a primary role in the

development of essential hypertension. More recently, Johnson et al. (2002)

suggested that renal microvascular disease be a causative component. They suggest

that the kidney undergoes subclinical injury over time, resulting in selective

afferent arteriolopathy and tubulointerstitial disease. This theory has only been

tested in animal models.

10.4.2 Pharmacology of Antihypertensive Agents

There are several classes of antihypertensive agents. Commonly used

antihypertensive agents fall into one of the four groups listed below:

1. Angiotensin converting enzyme (ACE) inhibitors such as captopril, enalapril,

fosinopril, and lisinopril

2. Angiotensin II receptor antagonists such as telmisartan, irbesartan, losartan, and

valsartan

3. Diuretics such as bendroflumethiazide, chlortalidone, and hydrochlorothiazide

4. Calciumchannel blockers such as nifedipine, amlodipine, diltiazem, and verapamil

5. Beta blockers such as propranolol, atenolol, labetalol, carvedilol, and metoprolol

A schematic diagram of the renin-angiotensin-aldosterone system and sites of

drug action for several classes of antihypertensives is shown in Fig. 10.6. Angio-

tensin II increases blood pressure by various mechanisms. In addition, angiotensin

II promotes cardiac and vascular cell hypertrophy and hyperplasia by activating
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the angiotensin II type 1 receptor and acts indirectly by stimulating release of

several growth factors and cytokines (McConnaughey et al. 1999). The angiotensin
II type 2 receptor has the opposite effects. Following administration of an angio-

tensin II receptor antagonist, renin is released from the kidney because of removal

of feedback inhibition by angiotensin II. The release of rennin then increases

angiotensin II levels, which in turn binds to the AT2 receptor, providing blood

pressure reduction and other consequent cardiovascular benefits.

In addition to reducing circulating angiotensin II by blocking its formation, ACE

inhibitors act to decrease the stiffness of peripheral arteries as well as reducing

pulse pressure and pulse wave velocity, independent of a corresponding reduction

in systolic blood pressure in the periphery (Stergiou 2004).

Calcium-channel blockers and diuretics exert a similar action on arterial stiffness

(Laurent et al. 2002). These agents work by blocking voltage-gated calcium channels

in cardiac muscle and blood vessels, decreasing intracellular calcium, which results in

reduced in muscle contraction. Decreased calcium causes decreased cardiac

contractility in the heart and less contraction of the vascular smooth muscle in blood

vessels with a resulting increase in arterial diameter. Vasodilation decreases total

peripheral resistance, while a decrease in cardiac contractility decreases cardiac output

ultimately reducing blood pressure.

There are three types of b receptors, with b1 receptors being primarily in the

heart and kidneys. Consequently, stimulation of b1 receptors by epinephrine

induces a positive chronotropic and inotropic effect on the heart and increases

Fig. 10.6 Schematic of the renin-angiotensin-aldosterone system
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cardiac conduction velocity and automaticity. In the kidney, stimulation of b1
receptors enhances the release of renin. Beta-blockers inhibit normal epinephrine-

mediated sympathetic actions, reducing the effect of physical exertion on heart rate

and contractile force, and dilating of blood vessels with minimal effect on resting

subjects. The antihypertensive mechanism of b-blockers is attributable to reduction
in cardiac output (because of their negative chronotropic and inotropic effects),

reduction in renin release from the kidneys, and in some cases, effects on the central

nervous system to reduce sympathetic activity.

10.4.3 Modeling and Simulation for Antihypertensive Agents

As was seen with anticoagulants, structural models for blood pressure are

frequently described using direct or indirect effect type models. However, with

antihypertensive agents, there is a tendency with some agents for rebound

hypertension to occur on abrupt cessation of treatment. For example, clonidine

is well known to exhibit rebound hypertension and increase in heart rate when

dosing is abruptly stopped (Geyskes et al. 1979). Clonidine is an a2 agonist that

suppresses the sympathetic nervous system, decreasing cardiac output and periph-

eral vascular resistance. Clonidine also has some inhibitory activity against plasma

Fig. 10.7 Plot of concentration and response showing hysteresis. Cp is the plasma concentration

of a drug, Ce is the effect site concentration, E(t) is the effect at time “t”, Emax is the maximum

response elicited by a drug, and EC50 is the concentration in the effect compartment that can elicit

50% of the maximal response
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renin activity, further reducing blood pressure. The rebound phenomenon is

attributed to its a2 agonist activity and necessitates careful withdrawal of this drug.
Porchet et al. (1992) developed a pharmacodynamic model that used an effect

compartment (Verotta et al. 1989; Unadkat et al. 1986) as proposed by Sheiner to

describe the delay between concentration and response that leads to hysteresis when

concentration is plotted versus effect as shown in Fig. 10.7.

However, the effect compartment type model does not describe a rebound

response well. A precursor pool model as described by Sharma et al. (1998) allows
both for the lag time to onset of effect and characterizes the rebound component of

response as well. A schematic of this model is shown in Fig. 10.8 along with a plot

of response versus time showing a modest rebound.

The equations describing this model are shown below:

dPrecursor Pool

dt
¼ K0� Kin � Precursor Pool�Ks � Precursor Pool

dResponse

dt
¼ Kin � Precursor Pool� Kout � Response

In these equations, K0 is the zero order formation rate of the precursor, Ks is

the rebound rate constant, Kin is the first order transfer rate constant between the

precursor pool and the response and Kout is the first order rate constant of loss of

Fig. 10.8 Schematic for a precursor pool model. In this figure, S(t) is the drug effect model and

Ks is a rebound rate constant
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response. The magnitude of Ks describes the magnitude of the rebound response.

Such a model is a valuable tool for investigating whether or not cessation of

treatment with a hypertensive agent shows rebound.

Not all antihypertensive agents exhibit rebound, however. Fenoldopam is a

rapid-acting vasodilator used to manage hypertension in adults. It is a selective

dopamine1-receptor agonist that increases renal blood flow, creatinine clearance,

urinary flow, and sodium excretion, thus lowering blood pressure. Hammer et al.
(2008) investigated the pharmacodynamics of fenoldopam in pediatric patients and

was able to use a simple direct effect Emax model to describe the change in mean

arterial pressure following administration. Similarly, the pharmacodynamics of

clevidipine were investigated by Bailey et al. (2002) and were found to be well

described using a direct effect Emax type model.

Chabaud et al. (2002) developed a semimechanistic pharmacokinetic–pharma-

codynamic model for ivabradine. The clinical outcome, chest pain, was described

using a physiologic model in which the coronary reserve was derived from the heart

rate. Safety was defined as being heart rate dependent. This model was used to

evaluate the drug regimen (2.5, 5, 10, 20, and 40 mg administered once or twice

daily), and number of patients for a pediatric trial using Monte Carlo simulation.

The authors found that 25% of the simulated trials showed a significant clinical

effect with doses up to 10 mg once daily; 48 and 55% of the trials with doses of

10 mg twice daily and 20 mg once daily, respectively, and more than 80% of

the trials with a 40-mg daily dose. Approximately 4% of untreated patients had at

least one adverse event and 5–13% patients in the treated groups for the lowest to

the highest dose, respectively. The authors estimated that the number of subjects

needed to obtain a 15% decrease in chest pain under the assumption of a 68% base

risk was 239 subjects per treatment arm with 10 mg twice daily or 196 with 20 mg

given once daily. Given the practical difficulty in conducting pediatric trials, the

use of modeling and simulation to identify potentially useful doses and to develop

a study design that will provide robust determination of efficacy was an important

component in the clinical development of this agent in pediatric patients.

10.5 Adaptive Dosing Simulation Techniques:

Focus on Cardiovascular Medicines

For drugs in the cardiovascular therapeutic area, many late phase clinical trials use

dose titration algorithms to ensure patient safety and allow the treating physician

adjust individual patient doses based on measured responses to achieve a response

that is within a recommended or target range. For example, in late phase clinical

trials of an antihypertensive agent, a basic starting dose will be recommended but

doses will be adjusted until a patient’s blood pressure is near 130/80 mmHg.

Consequently, during the conduct of the study, individual patient doses may stay

the same, increase, or decrease over time; or a patient may be put on hold until the
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response of interest returns to some satisfactory range. Dose adjustments may be

based on recent measurements; time averaged measurements or may take into

account multiple types of responses.

Developing a pharmacokinetic/pharmacodynamic model with such data is

usually straightforward involving the techniques described previously. However,

simulation, particularly of pharmacodynamic data, when adaptive dosing is used

can be challenging. In this case, the doses become random because they are

determined by the subject’s response(s). Simulations using the original data

(index database) are usually inappropriate in this setting because the simulation

scenarios often contain much higher and lower responses than those observed with

the index data. This is because the simulated subject’s response to the drug usually

does not reflect the original (index) patient’s sensitivity so the dose adjustment for

the index patient is not appropriate for the simulated subject.

For example, consider a subject in the index data who was unresponsive to the

drug, and therefore was dose escalated several times. Random effects (between

subject variability) drawn during simulation could result in a simulated subject who

is very sensitive to drug effect. Unless care is taken, the simulated subject will use

the dose records associated with the index subject who was insensitive to the drug.

Fig. 10.9 Diagnostic plots for dose adjustments for simulations conducted using index

dosing. Panel a – Number of subjects never in the therapeutic range; Panel b – Number of

subjects put on hold for no reason; Panel c – Number of subjects with dose increase for no

reason; Panel d – Number of subjects with dose decrease for no reason; Panel e – Number of

subjects with response below 10 for more than one month
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For the simulated subject then, very high responses would be simulated using the

index dosing records. The resulting simulated data are not realistic because in a

clinical setting, the clinician would never increase the dose. To illustrate what can

go wrong when simulations are done with the index data, four check statistics

should be considered when simulating data arising from a study that implements

adaptive dosing:

1. Number of subjects never in the therapeutic range.

2. Number of subjects that were put on hold for no reason.

3. Number of subjects that ever received an inappropriate dose increase.

4. Number of subjects that ever received an inappropriate dose decrease.

Fig. 10.10 Comparison of visual predictive check using index data dosing and adaptive dosing.

(a) Visual predictive check conducted using index dosing; (b) Visual predictive check conducted

using adaptive dosing implemented in the simulation
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Because of between subject variability in the pharmacokinetic and pharmaco

dynamic parameters, simulations done with the dose records in the index dataset as

well as from a simulation that incorporates the adaptive dosing design will generate

some subjects that are never observed to be in the therapeutic range. On the other

hand, for the last three check statistics listed above, when the simulation incorporates

the same adaptive dosing used in the clinical trial, such subjects cannot be simulated.

Using the index data as a basis for simulation can easily generate subjects that receive

dosing errors. Figure 10.9a–e depict this situation.

Figure 10.9a–e demonstrates the limitation of using dosing information from an

index dataset when, in reality, a clinical investigator would try to adapt dosing to

achieve a target. It would be inappropriate to make versions of Fig. 10.9b–d for

adaptive dosing as the events in question cannot happen.

In addition, when doses were adjusted during a clinical study, using the index

dataset for model evaluation such as a visual predictive check (VPC) can result in

inflated prediction intervals or can result in biased prediction intervals.

Implementation of adaptive dosing during simulation provides a more realistic

assessment of model performance. Figure 10.10a,b show VPCs conducted when

the index data dosing information were used during the simulation (a) and when the

doses were adaptively adjusted during the simulation following the dose adjustment

rules in the clinical trial (b). The 80% prediction intervals in Fig. 10.10a are clearly

inflated, with the majority of observations being inside the prediction intervals, and

the prediction intervals also appear to have some bias, with more observed data

being outside the intervals at the lowest response values, whereas the 80% intervals

in Fig. 10.10b are much narrower (e.g., they are not inflated), and cover approxi-

mately 80% of the observed data with equal numbers of observations being higher

and lower than the intervals.

Adaptive dosing during simulations can be implemented in a variety of software

packages. Additional text on the implementation of this approach in Nonmem 6,

as well as example data and control streams are provided on the FTP site.
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Chapter 11

Viral Dynamic Modeling and Simulations

in HIV and Hepatitis C

Philippe Jacqmin and Eric Snoeck

Abstract Viral dynamic modeling and simulations have dramatically improved

our understanding of the life cycle of chronic viral infections such as HIV and

hepatitis C virus (HCV). These viral dynamic models account for the interaction

between virus and host, and how antiviral agents interfere with this system thereby

reducing the measured viral load and clearing the virus. In this chapter, the basic

viral dynamic modeling concepts such as the predator–prey interaction introduced

by Lotka–Volterra, the basic reproductive ratio (R0), the reproductive minimal

inhibitory concentration (RMIC) and the physiologically based viral eradication

boundary are explained and illustrated by viral dynamic models developed for HIV

and HCV. Examples are presented showing how simulations based on these models

can be used to better understand the virus–host system and the mechanism of action

of antiviral drugs, and to optimize treatment.

11.1 Introduction

During the past 15 years, mathematical principles have been used to understand the

life cycle of the three prevalent chronic viral infections; i.e., HIV, hepatitis C virus

(HCV) and hepatitis B virus (HBV). The use of mathematical models has provided

noninuitive insights into the dynamics of viral diseases and how antiviral agents act to

reduce viral levels and clear virus. Evaluation of a patient with a chronic viral illness

includes the determination of serum viral load, as reflected in measurement of serum

RNA copies. The viral load in HIV or HCV is frequently observed to reach a constant

or set point level and then remains approximately at that level for years (Layden et al.
2003). To maintain this constant level, the virus must be produced and cleared

at the same rate. If this was not the case and more virus was produced than was

cleared, then the viral load would slowly increase. Once this steady-state level is
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established, measuring viral load thus does not provide any information regarding the

production and elimination rate of the virus and the turnover rate of the infected cells.

To gain this information, one thus has to perturb the system, e.g., with antiviral

therapy. For example, if virion production is blocked, viral load falls and the rate at

which it falls provides important information about the aforementioned rates. Fitting

mathematicalmodels to viral decay data can therefore elucidate the kinetic parameters

governing viral infection, infected cell death and the efficacy of antiviral therapy.

Mathematical modeling of viral dynamics was first applied in HIV. Modeling of

HIV infection has allowed estimation of (1) the number of virus particles that are

produced and eliminated daily, (2) the lifespan of productively infected CD4+ T

cells and (3) the expected time to elimination of various virus-producing cell

populations, assuming a 100% effective antiviral therapy (Ho et al. 1995; Perelson
et al. 1996, 1997). As the multidimensional interactions between HCV virus, host

and drug are nonlinear and equilibrium outcomes quickly become counter-intuitive

(Bernardin et al. 2008), HCV RNA viral load data have also been modeled. The

methods that were used to analyze HIV dynamics in vivo can also be modified to

give insights into HCV dynamics and the effects of antiviral therapy in chronic

hepatitis C (CHC) patients. In this chapter, we will be primarily focusing on the

viral dynamic modeling of chronic HIV and HCV. However, the general viral

dynamic modeling principles that are described may also be applied to other viral

infections such as HBV (Nowak et al. 2000).

11.2 Basic Viral Dynamic Model

The basic viral dynamic model consists of three quantitative elements, i.e. the
population sizes of uninfected cells or target cells (T), infected cells (I), and
free virions (V). A system of three differential equations can describe how these

three elements are changing as a function of time. These quantities can denote

either the total abundance in a host or the abundance in a given volume of blood,

plasma, or tissue. The three differential equations of the basic viral dynamic model

are based on the Lotka–Volterra predator–prey models that were first developed in

the field of epidemiology to describe the dynamics of biological systems in which

two species interact, i.e. one as a predator and one as its prey (Nowak and May

2000). This traditional epidemiology approach describes the spread of an infection

within populations of individuals. However, similar mathematical models can be

used to describe what happens within the body of a virus-infected individual.

The basic Lotka–Volterra equations are a pair of first-order, nonlinear differential

equations. It is interesting to note that Vito Volterra was an Italian mathematician

whose son-in-law, Huberto D’Ancona, was a biologist who completed a statistical

study of fish populations in the Adriatic Sea in 1926. D’Ancona asked Volterra

whether he could devise a mathematical description for the increase in predator fish

and decrease in prey fish that he observed during the World War I period. Within

a couple of months, Volterra produced a series of models for the interaction of

228 P. Jacqmin and E. Snoeck



two or more species. Alfred J. Lotka was an American biologist and actuary who

independently developed similar models (Fig. 11.1).

The basic viral dynamic model is depicted in Fig. 11.1 and can be described

mathematically by (11.1–11.3) (Nowak et al. 1996; Nowak and May 2000). Unin-

fected cells (T) are assumed to be produced at a rate constant s, and die at a rate, dT.
The average life span of a healthy target cell is therefore 1/d. In the absence of an

infection, the change of the abundance of target cells is in a steady state and equals

zero so that the number of target cells (i.e. abundance) is equal to s/d.

dT

dt
¼ s� d � t� b � V � T (11.1)

dI

dt
¼ b � V � T � d � I (11.2)

dV

dt
¼ p � I � c � V (11.3)

Free virions (V) are assumed to infect uninfected cells at a rate proportional to

the product of the abundance of the free virus particles and the uninfected cells

(bVT). The second order rate constant b describes the efficiency of this infection

process that includes the rate at which the virions “find” uninfected cells, the rate of

virus entry into cells and the rate and probability of a successful infection. Infected

cells are thus produced at a rate bVT and die at a rate dI. Infected cells produce new
free virions at a rate proportional to their abundance (pI), and free virions are

removed from the body at a rate cV. The average life span of an infected cell is thus
1/d, whereas the average life span of a free virion is 1/c.

Initially, the system is at an uninfected state and uninfected cells are at an

equilibrium value of s/d. After a number of virions have managed to enter the

Fig. 11.1 Basic model used to study the viral dynamics of HIV, HCV and hepatitis B virus

(HBV). Reprinted from Layden et al. (2003)
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system, they will infect a number of cells, which will produce new virions, which

will infect new cells. A chain reaction has thus started. This chain reaction can go

two ways: either it dies out or it leads to a massive explosion of free virions and

infected cells. Whether or not the chain reaction will take off and establish an

infection depends on a condition very similar to the epidemiological spread of an

infectious disease in a population of individuals. The crucial quantity here is the

basic reproductive ratio R0 of an infection. R0 is defined as the average number of

newly infected cells that arise from one infected cell when almost all infected cells

are uninfected (i.e. in the beginning of the infection). The theoretical concept of the
R0 was first described in epidemiology (Anderson and May 1997a, b; Heffernan

et al. 2005). The rate at which one infected cell gives rise to new infected cells is

given by bpT=c (Fig. 11.1). If all cells are uninfected, then T ¼ s=d. Because
the life span of an infected cell is 1/d, the basic reproductive ratio is equal to

(Nowak et al. 1996):

R0 ¼ b � s � p
d � d � c (11.4)

If every infected cell produces on average less than one newly infected cell

(R0<1), the virus population will die out. If on the other hand R0>1, the infection

will enlarge. Finally, if R0 ¼ 1 the virus population will not spread but will

also not die out. An antiviral drug therapy will thus be successful in case every

infected cell produces on average less than one newly infected cell because

of drug therapy, or in other words, the reproductive ratio during drug therapy

(R0INH) is less than 1 (Callaway and Perelson 2002; Huang et al. 2003; Jacqmin

et al. 2010).

11.3 Viral Dynamic Modeling and Simulations in HIV

The basic model defined above has been further developed over the past 15 years to

describe the HIV infection (Nowak and May 2000; Perelson 2002).

Generally, HIV viral dynamic models include five different types of cells

(Fig. 11.2) (Nowak et al. 1997; Bonhoeffer et al. 1997; Bonhoeffer 1998; Funk
et al. 2001): (1) HIV-targeted CD4 cells (T), (2) actively or productively infected

cells (A), (3) latently infected cells (L) which eventually can be reactivated to

actively infected cells, (4) persistently infected cells (P) with a very long half-life

(�1,000-days), and (5) defectively infected cells (D), as well as the free infectious
virus particles (VI). However, in most modeling work, in which the viral load (and

the CD4+ count) time profiles are analyzed, the persistently and defectively

infected cells have been removed from the model because they do not significantly

contribute to the viral load at equilibrium or at initiation of antiviral treatment.

However, these entities may be a basis for postulating why cure may not be

achieved in HIV infected patients.

230 P. Jacqmin and E. Snoeck



As above, the interaction between the target cells and the virus can be described

by differential equations (11.5–11.9). In these equations, anti-HIV drug effects are

usually expressed by inhibitory Emax models (11.10), decreasing the infection rate

constant (i) for drugs that act before DNA replication (e.g., cell entry inhibitors,

reverse transcriptase inhibitors), or decreasing the production rate constant (p) of
infectious viruses (VI) for drug acting after replication (e.g., protease inhibitors).

In the case of a protease inhibitor, an additional cell type is needed to describe the

formation of noninfectious viruses (VNI), and the measured total viral load,

expressed as RNA copies mL�1, being representative of the sum of infectious

and noninfectious viruses.

Target cell (activated cells):

dT

dt
¼ b� d1 � T � ð1� INHAÞ � i � VI � T (11.5)

Actively infected cells (short-lived):

dA

dt
¼ f1 � ð1� INHAÞ � i � VI � T � d2 � Aþ a � L (11.6)

Latently infected resting cells (long-lived):

dL

dt
¼ f2 � ð1� INHAÞ � i � VI � T � d3 � L� a � L (11.7)

Fig. 11.2 The viral dynamic model for HIV adapted from Funk et al. (2001). INH indicates the

site of drug action. Parameter definitions can be found in the text
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Infectious virus (copies HIV-1 RNA):

dVI

dt
¼ ð1� INHBÞ � p � A� c � VI (11.8)

Noninfectious virus (copies HIV-1 RNA):

dVNI

dt
¼ INHB � p � A� c � VNI (11.9)

where:

b is the activation rate constant of healthy target cells (T).
d1 is the death rate constant of T cells.

i is the infection rate constant of T cells.

VI is the number of infectious free viruses.

VNI is the number of noninfectious free viruses.

f1 is the fraction of healthy T cells that become actively infected T cells (A).
d2 is the death rate constant of actively infected T cells.

f2 (¼1�f1) is the fraction of healthy T cells becoming latently infected T cells (L).
d3 is the death rate constant of latently infected resting cells.

a is the reactivation rate constant of latently infected resting cells.

p is the viral production rate constant of actively infected T cells.

c is the death rate constant of virus.

INH is the inhibition of the infection rate constant (i) for drugs acting before DNA

replication (INHA) or of the viral production rate constant (p) for drugs acting after

DNA replication (INHB).

INH ¼ IC

ðIC50 þ ICÞ (11.10)

where INH is the inhibition ranging from 0 to 1, IC is the plasma concentration of

the inhibitor and IC50 is the plasma concentration of inhibitor that results in 50%

inhibition.

This more complex system is also characterized by a R0 (11.11) (Rosario et al.
2006). Here the R0 can be defined as the average number of secondary viruses

generated by viruses introduced into an uninfected environment.

R0 ¼ b

d1
� i � p

c
� f1

d2
þ f2 � a
d2 � ðd3 þ aÞ

� �
(11.11)

where b d1= is the number of activated target cells in the absence of virus, i is the
infection rate, p c= is the amount of circulating virus per infected cell at steady state,

and f1 d2= þ ðf2 � a d2 � ðd3 þ aÞÞ= is the factor for living, actively infected cells.

As mentioned for the basic model and illustrated in Fig. 11.3 for the HIV model,

if R0 is less than one the virus is unable to maintain the infection and will become
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extinct; if R0 >1 the virus can establish an infection that will lead to an equilibrium

between infected and uninfected cells.

The role of anti-HIV inhibitors is to bring the reproductive ratio during treatment

to a value less than 1 (and optimally as low as possible). In the model described

above it can be shown that the reproductive ratio in the presence of inhibitor (R0INH)

is given by (11.12):

R0INH ¼ b

d1
� ð1� INHÞ � i � p

c
� f1

d2
þ f2 � a
d2 � ðd3 þ aÞ

� �
¼ ð1� INHÞ � R0 (11.12)

The concentration of inhibitor that brings R0INH to 1 is called the reproductive

minimal inhibitory concentration (RMIC) (Jacqmin et al. 2010). It has been

demonstrated that in the system developed above, the critical concentration at

which the system switches from growth to extinction depends on two model

parameters:

RMIC ¼ ðR0 � 1Þ � IC50 (11.13)

where the basic reproductive ratio (R0) represents the capacity of the system to

replicate and the IC50 represents the potency of the drug to inhibit the replication of

the system (Jacqmin et al. 2010). The RMIC is constant for a given system and a

given drug and represents the concentration that needs to be achieved for stopping

the system to grow. As illustrated in Fig. 11.3, when the inhibitor concentration (IC)

is higher than the RMIC (40 ng mL�1), success (i.e., sustained viral load below the

detection limit) can be expected in the long term.

Fig. 11.3 Simulated viral load-time profiles for different levels of constant inhibition based on

(11.5–11.10) and parameters values from Jacqmin et al. (2010) (e.g., R0 ¼ 5, IC50 ¼ 10 ng mL�1

and RMIC ¼ 40 ng mL�1). IC is the constant concentration of inhibitor to which the system is

exposed continuously. INHA is calculated with (11.10) and R0INH is calculated using (11.12). The

four graphs on the left hand side are linear plots of the viral load. The four graphs on the right hand
side are logarithmic plots of the same viral load. Note that viral load rebounds during treatment

when R0INH is higher than 1 or IC is lower than RMIC. The rebound occurs sooner when the IC/

RMIC ratio is lower. Adapted from Jacqmin et al. (2010)
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11.3.1 Basic PK-PD Principles of R0 and RMIC

Understanding the attributes of R0 and RMIC is essential in predicting the binary

outcomes of therapeutic success or failure. These attributes have been recently

reviewed in detail (Jacqmin et al. 2010). Briefly:

11.3.1.1 For R0 and RMIC

1. When the inhibitory concentration equals the RMIC, the system is in dynamic

equilibrium; the infecting species neither increase nor decrease in number.

2. Depending on the value of R0, system survival (i.e., R0INH ¼ 1) can occur at

different levels of inhibition:

For R0 ¼ 2, RMIC ¼ IC50

For R0 ¼ 10, RMIC ¼ 9�IC50 ¼ IC90

3. In case in vitro and in vivo R0 are different, which can be expected, in vitro and

in vivo RMIC will also be different.

4. From (11.13), it can be seen that the RMIC is a joint distribution of R0 and IC50

in the population.

11.3.1.2 For Binary Outcomes Analysis

In HIV, the treatment is regarded as a success if viral load is decreased and

maintained below the limit of quantification. Consequently,

1. Inhibition of the system leads to the binary outcomes listed below, and logistic

analysis used to analyze the outcomes can be interpreted from a modeling

perspective as follows:

l IC greater than RMIC leads to success (i.e., viral load is decreased and

maintained below the limit of quantification) (Fig. 11.3).
l IC less than RMIC leads to failure (i.e., viral load is not decreased or

maintained below the limit of quantification) (Fig. 11.3).

2. The time of failure is a function of the IC/RMIC ratio; for failure (when the ratio

is below 1), the smaller the ratio, the sooner the failure will occur (Fig. 11.3).

3. Mechanistically, logistic regression of binary outcomes such as failure/success

rates in function of inhibitor exposure (IC) allows estimation of the RMIC

distribution across the population.

11.3.2 Dose and Dosing Schedule

One of the goals of modeling and simulations is to help defining the dose and dosing

schedule of the drug. As shown above, viral dynamic models are complex.
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The interaction with PK adds more complexity to the system. The choice of a

successful dose and dosing schedule is therefore not easy. Indeed, the time course of

inhibition of virus proliferation depends on the time course of drug concentrations,

and with the complex viral dynamic system, it becomes challenging to predict the

clinical outcome for a given drug treatment. In this context, it is always a discussion

point to know whether the clinical outcome depends on Cmax, AUCt or Ctrough. The

combination of viral dynamic systems with PK/PD has been discussed by several

authors in the context of effective dose, treatment adherence/compliance and

resistance/mutation (Wahl and Nowak 2000; Huang et al. 2006; Ferguson et al.
2005; Wu et al. 2006). It has been mathematically demonstrated that it is the

average R0INH that drives the success of the therapy, if resistance/mutation does

not happen (Wahl and Nowak 2000; Jacqmin et al. 2010).
Knowing the R0 of the system, the IC50 and the PK of the inhibitory drug and

using (equation 11.12), it is possible to predict the R0INH-time profile after drug

administration and to calculate the corresponding AUC and average R0INH for a

dose interval (Fig. 11.4). It can be demonstrated that if the average R0INH is higher

than one the system will survive, whereas if it is lower than one the system will go

to extinction (Fig. 11.5) (Heffernan et al. 2005; Jacqmin et al. 2010).
In addition to the concept of R0INH, it has also been demonstrated that time

varying inhibition of viral dynamic systems can be predicted by calculating

the equivalent effective constant concentration (ECC) (Rosario et al. 2006) – the

constant plasma concentration that would give rise to the average inhibition at

steady state:

Time varying inhibition INHss ¼ CssðTADÞ
IC50 þ CssðTADÞ (11.14)

INHavgss ¼
AUC0�x under INH curve

t
(11.15)

INHavgss ¼
ECC

IC50 þ ECC
(11.16)

ECCss ¼
IC50 � INHavgss

1� INHavgss
(11.17)

where Css (TAD) is the concentration at time after dose (TAD) administration at

steady state. The ECCss is the calculated concentration that gives rise to INHavgss

across the dosing interval.

When ECCss is higher than the RMIC, eradication of the system can be expected

(Fig. 11.5). In addition, it is shown that scenarios with the same ECCss regardless of

the dose, dosing schedule or PK parameters also have the same average R0INH and

therefore lead to the same outcome. For example, as illustrated in Fig. 11.5, when

the ECCss is just lower than the RMIC for both QD and BID dosage regimens, the

viral load rebounds after an initial drop, whereas when it is just higher than the
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RMIC, the viral load continuously decreases. Interestingly, the total daily doses

(and consequently AUCt, Cmax and Ctrough) that are necessary to reach the same

ECCss can be significantly different between QD and BID dosage regimens

(Fig. 11.5) and are driven by the half life of the drug in question (Jacqmin et al.
2010). Accordingly, how the patient adheres to the dosing schedule – missing a

single dose at several days or missing the same number of doses consecutively –

will have a direct but different impact on treatment outcome, depending on the

frequency of daily dosing (Wahl and Nowak 2000; Paterson et al. 2000; Ferguson
et al. 2005; Wu et al. 2006). The ECCss concept allows predicting equivalent active

doses and dosing schedules in viral dynamic systems when the IC50 and pharmaco-

kinetic characteristics of the drugs are known. Therefore, for a given system

(defined by its RMIC), it can be shown that in HIV treatments, success depends

mainly on the pharmacokinetic characteristics of the drug, the dosing schedule and

the adherence pattern to the treatment. This approach does not take into account the

resistance/mutation aspects. These aspects have been widely discussed by several

authors using “simplified” two-strain models (Wahl and Nowak 2000; Phillips et al.
2001; Ferguson et al. 2005; Wu et al. 2006; Huang et al. 2006; Rong et al. 2007).

Fig. 11.4 Simulated time profiles of inhibitor concentration (top left), inhibition (INH, top right)
and R0INH (bottom left) at steady state. Simulations are based on a one-compartment PK model.

The drug is given twice daily at 8-mg. Absorption rate constant (Ka) ¼ 1 h�1, Elimination rate

constant (Ke) ¼ 0.15 h�1, V ¼ 70 L, R0 ¼ 5 and IC50 ¼ 10 ng mL�1. Inhibition is calculated

with (11.14) and R0INH is calculated using (11.12). AUCs are calculated by the trapezoidal rule

assuming rich sampling. Formulas for derived parameters such as average R0INH and effective

constant concentration (ECC) at steady state are given at the bottom right hand side of the figure
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11.3.3 Estimation of Model Parameters

In clinical drug development, the potency of an antiretroviral agent is usually

evaluated in short-term monotherapy studies by assessing the early viral response

such as viral decay rate or change in viral load (number of copies of HIV RNA) in

the plasma.

As shown in Fig. 11.6, just after initiation of a mono-therapy (e.g., 10 days), the

drop in viral load is expected to be driven by the exposure to the drug (IC or ECC).

However, it is difficult from short-term viral load-time profiles to empirically derive

the minimal dose that will lead to long-term success (i.e., at equilibrium). Modeling

of the data can provide an answer to this question. Linear, parametric nonlinear and

semi parametric nonlinear mixed-effects models have been used to estimate viral

decay rates in viral dynamic models. Wu et al. (2004) have applied these models to

data from an AIDS clinical trial of potent antiviral treatments and found significant

incongruity in the estimated rates of reduction in viral load. Simulation studies

Fig. 11.5 Simulated viral load-time profiles based on (11.5–11.14) and parameters values from

Jacqmin et al. (2010) (e.g., R0 ¼ 5, IC50 ¼ 10 ng mL�1 and RMIC ¼ 40 ng mL�1) and Fig. 11.4.

Equivalent once (top plots) and twice (bottom plots) daily doses leading to average R0INH just

above 1 or ECCss just below the RMIC (left plots) and to average R0INH just below 1 or ECCss just

above the RMIC (right plots) have been selected. Average R0INH and ECCss are calculated as

indicated in Fig. 11.4. Note that viral load rebound occurs during treatment when average R0INH is

higher than 1 and ECCss is lower than RMIC. Adapted from Jacqmin et al. (2010)
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indicated that reliable estimates of viral decay rate were obtained by using the

parametric and semiparametric nonlinear mixed-effects models. Their analysis also

indicated that the decay rates estimated by using linear mixed-effects models

should be interpreted differently from those estimated by using nonlinear mixed-

effects models. The semiparametric nonlinear mixed-effects model was preferred to

other models because arbitrary data truncation was not needed.

From the RMIC concept presented above, it can be deduced that, for dosing

recommendation, the main parameters to be estimated are the R0 and the IC50.

Indeed knowing these two parameters, the RMIC can be calculated and the mini-

mum target ECCss can be derived. Accurate estimation of both R0 and IC50

parameters can be achieved only if the study design contains information on the

onset and offset of drug effect. The onset (i.e., drop in viral load) observed at

different doses provides information on the IC50 of the drug and the offset

(i.e., increase in viral load after treatment discontinuation) mainly provides infor-

mation on the capacity of the virus to (re-)grow in the given system (i.e., R0). This

has been illustrated by Chan et al. (2009, 2010), who have analyzed 10-day mono-

therapy studies of maraviroc, a CCR5 inhibitor (Wood and Armour 2005). The data

consisted of individual maraviroc concentration- and viral load-time profiles during

(10 days) and after (30 days) maraviroc QD or BID treatments at different doses in

asymptomatic CCR5-tropic HIV-1 infected subjects (F€atkenheuer et al. 2005). The
analysis was performed using similar equations than those described above but

Fig. 11.6 Simulated viral load-time profiles in a typical subject for the first 10 days and at

equilibrium of constant exposure to various inhibitory concentrations (IC or ECC). Simulations

are performed using (11.5–11.14) and parameters values from Jacqmin et al. (2010) (e.g., R0 ¼ 5,

IC50 ¼ 10 ng mL�1, RMIC ¼ 40 ng mL�1). Note that, despite a significant drop in viral load

during the first 10 days at all simulated IC or ECC concentrations, only the viral load profile with

IC or ECC higher than RMIC leads to a success in the long term (i.e., at equilibrium of system

dynamics). Reprinted from Jacqmin et al. (2010)
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reparameterized to estimate R0 and IC50 as primary parameters. The NONMEM

software system, version VI level 1.2 (Beal and Sheiner 1998) and the SAEM

algorithm implemented in MONOLIX (http://www.monolix.org/; Kuhn and

Lavielle 2005) were used. Population PK-PD analysis with MONOLIX allowed

the estimation of R0 and IC50, which were equal to 4.96- and 8.57-ng mL�1,

respectively, leading to a RMIC of 33.9-ng mL�1. From this information and

based on the theory described above, it is predicted that an ECCss higher than 34-

ng mL�1 would lead to a long-term success in a typical (median) subject. With

regard to the technical aspects, the authors indicated that SAEM algorithm in

MONOLIX was a useful tool for fitting complex mechanistic models requiring

multiple differential equations. The implemented SAEM algorithm allowed simul-

taneous estimation of PK/PD and viral dynamics parameters, as well as investiga-

tion of different model subcomponents during the model building process which

was not possible with NONMEM (version VI or below).

11.4 Viral Dynamic Modeling and Simulations in Hepatitis C

An estimated 170 million people or 2.1% of the world population are currently

infected with HCV, which is more than four times the number of people living with

HIV (http://www.who.int/mediacentre/factsheets/fs164/en/). The current standard

of care for CHC patients is the combination of pegylated interferon-a with ribavirin

(NIH 2002; Strader et al. 2004). Successful HCV treatment outcome (i.e., sustained
virologic response (SVR)) is when a patient’s viral load is below the HCV RNA

detection limit at a follow-up evaluation that is 24 weeks after treatment comple-

tion. Patients infected with the HCV genotype 1 (G1), which represent about 70%

of CHC patients in the United States (Zein et al. 1996), are less likely to achieve an
SVR than genotype non-1 (Gn1) infected patients. Approximately 50% of HCV G1

infected patients achieved an SVR when treated with peginterferon a-2a plus

ribavirin, whereas approximately 80% of HCV Gn1-infected patients achieved an

SVR (Fried et al. 2002; Hadziyannis et al. 2004). Thus, HCV patients represent a

population with continued unmet medical need, having the potential to achieve a

higher SVR rate through optimized treatment approaches.

Typical therapy outcome begins with a rapid viral decline followed by a second

slower decline until HCV RNA becomes undetectable (Zeuzem 2001; Colombatto

et al. 2003). However, after long-term treatment with the current standard of care, the

virus is not eradicated in all CHC patients (Fried et al. 2002; Hadziyannis et al. 2004).
In the patients who do not achieve an SVR (i.e., the virus is not eradicated), viral load
either rebounds to pretreatment levels during therapy (i.e., breakthrough), or returns to
pretreatment levels on cessation of therapy (i.e., relapse) (Zeuzem 2001; Zeuzem and

Herrmann 2002). The possible different viral load profiles after long-term therapy are

depicted in Fig. 11.7.

A model of HCV infection was originally proposed by Neumann et al. (1998)
who adapted a model of HIV infection (Wei et al. 1995; Perelson et al. 1996).
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This model adequately describes the typical short-term therapy outcome. However,

this model is unable to explain all of the observed HCV RNA profiles during and

after long-term treatment; observed phenomena such as a null response, a partial

response exhibiting a flat second phase, a triphasic viral decay, a breakthrough

during therapy, a relapse after therapy, and crucially, an SVR cannot be described

by this model (Zeuzem 2001). In addition, the original HCV model including three

ordinary differential equations (ODEs) representing the population of target cells,

infected hepatocytes and virus was simplified by assuming a constant population of

hepatocytes, which is known to be only valid for a short duration (Neumann et al.
1998). Despite these shortcomings, this original model has been frequently used to

describe the initial decreases of HCV RNA after treatment (Layden and Layden

2002; Layden-Almer et al. 2006), and to compare different treatment regimens and

outcomes in different patient populations (Perelson et al. 2005). Most of these

analyses have used a naı̈ve method of handling the HCV RNAmeasurements below

the lower limit of quantification (LLOQ) by simply omitting all these measure-

ments even though these values contain critical information regarding long-term

treatment outcome (i.e., SVR).
A first important contribution to improving the initial HCV viral dynamic model

was made by Colombatto et al. (2003). Known information of the physiology of

the liver was used, allowing to introduce some constant variables into their model.

The total number of hepatocytes present in a healthy individual liver was assumed

to be 2.50 � 1011 hepatocytes (Sherlock and Dooley 1998). Because HCV RNA is

known to be distributed in plasma and extracellular fluids (Liou et al. 1992), the
computed values of both target cells (T) and infected cells (I) were referred to this

volume of approximately 13.5 � 103 mL. Assuming a hepatocyte turnover in a

healthy liver of 300 days (Mc Sween et al. 1987), the death rate of target cells

Fig. 11.7 Possible viral load profiles after long-term antiviral therapy. HCV RNAmay or may not

decline during the first 1–2 days (first phase responder/nonresponder) which can be followed by a

slower second phase decline (second phase responder/nonresponder). The HCV RNA decay

during the second phase is highly variable. Some patients with an initial virological response

may experience a breakthrough during therapy and some virological end-of-treatment responders

may have a relapse after discontinuation of therapy. NR nonresponse; SR sustained virological

response. Reprinted from Zeuzem (2001) and Zeuzem and Herrmann (2002)
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(d) was set to 1/300 day�1, wherefrom the production of new hepatocytes in the

absence of liver disease (s) could be assumed to be 61.7 � 103 cells mL�1 days�1

(Colombatto et al. 2003).
A second major contribution was made by Dixit et al. (2004). In addition to the

effect of pegylated interferon, Dixit et al. also incorporated an effect of ribavirin

into the HCV viral dynamic model so that observed patterns of HCV RNA decline

after short-term standard of care treatment could be described. Interferon inhibits

the production of new virions and therefore it has been assumed that interferon is

lowering the virion production p by a factor (1�e), where e is the effectiveness of
pegylated interferon (Neumann et al. 1998; Layden-Almer et al. 2003). However,
the mechanism(s) of ribavirin action against HCV are poorly understood (Lau et al.
1996). Ribavirin alone causes either a limited and transient decrease in viral load or

no effect at all (Zoulim et al. 1998; Pawlotsky et al. 2004), but in combination with

pegylated interferon, it significantly improves SVR rates (Fried et al. 2002;

Hadziyannis et al. 2004; Manns et al. 2001). Ribavirin is phosphorylated within

cells and incorporated into the RNA of replicating virions, thereby increasing the

mutation frequency and reducing the specific infectivity of new virions (Crotty

et al. 2001). It was therefore assumed by Dixit et al. (2004) that ribavirin renders a

fraction r of newly produced virions noninfectious. Simulated viral load decay

profiles based on their model nicely reconciled the seemingly conflicting observa-

tions that the addition of ribavirin enhances viral load decline in some cases but not

in others (Fig. 11.8).

A third important contribution was made by Dahari et al. (2007), who

incorporated a density-dependent liver proliferation term into the model describing

the liver regeneration. The liver is a unique organ as it self-heals by regeneration as

Fig. 11.8 Theoretical viral load decay profiles for an interferon effectiveness e ¼ 0.95 (a) and

e ¼ 0.50 (b), and ribavirin effectiveness r ¼ 1 (red lines), 0.5 (blue lines) and 0 (green lines), a
virion clearance rate c ¼ 6.2-day�1, an initial viral load of 107 copies mL�1 and different values

of the infected cell death rate d. The number of target cells was assumed to remain constant at the

pretreatment value d·c/p·b (Neumann et al. 1998). Interestingly, when the interferon effectiveness
e is high, ribavirn has negligible influence on viral load decay (a). However, when e is low,

ribavirin has a noticeable effect on viral load decay (b). Reprinted from Dixit et al. (2004)
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opposed to repair. However, the exact cellular and molecular mechanisms of liver

regeneration are not yet fully understood (Michalopoulos and DeFrances 1997;

Khan and Mudan 2007). In addition, Dahari et al. (2007) also defined and char-

acterized a critical drug efficacy value, above which the virus should ultimately be

cleared. This matches with the concept of R0INH <1 described earlier.

Recently, a novel approach of modeling the viral dynamics in hepatitis C

was proposed (Snoeck et al. 2010). Firstly, a nonlinear mixed effects model

was developed using the MONOLIX software (Delyon et al. 1999; Kuhn and

Lavielle 2005; http://www.monolix.org/), allowing simultaneous description of

the individual long-term HCV RNA viral load profiles of 2,100 CHC patients

treated with peginterferon a-2a alone or in combination with ribavirin. Secondly,

all available 21,284 HCV RNA measurements, of which 59% were below the

LLOQ, were modeled by accounting for the left-censoring (Samson et al. 2007).
Thirdly, cure or complete virion eradication was included in the model by the

implementation of a physiologically based viral eradication boundary, representing

a milestone contribution in enabling linking the complexity and diversity of clini-

cally observed Hepatitis C viral dynamics to SVR. The cure boundary was based on

the assumption that virion production (p) should cease when all infected cells are

cleared, i.e., when there is less than one infected cell present.

The model structure of the recent HCV viral dynamic model (Fig. 11.9), including

a density dependent proliferation of hepatocytes (Dahari et al. 2007), is described by
the following mass balance equations:

Fig. 11.9 Representation of the extended hepatitis C virus (HCV) viral dynamic model. Infectious

HCV virions (VI) infect target cells (T), creating productively infected hepatocytes (I). Uninfected
hepatocytes (T) are produced at rate s and die at rate d. Infected hepatocytes die at rate d. A density

dependent proliferation of hepatocytes (r) is assumed. Infectious (VI) and noninfectious (VNI)

virions are produced at rate p and cleared at rate c. Peginterferon a-2a dose-dependently inhibits

the production of new virions (e), and ribavirin dose-dependently renders a fraction of newly

produced virions noninfectious (r). SVR is the primary clinical endpoint desired to be predicted in

the treatment of hepatitis C. Reprinted from Snoeck et al. (2010)
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dT

dt
¼ sþ r � T 1� T þ I

Tmax

� �
� d � T � b � VI � T (11.18)

dI

dt
¼ b � VI � T þ r � T � 1� T þ I

Tmax

� �
� d � I (11.19)

dVI

dt
¼ ð1� rÞ � ð1� eÞ � p � I � c � VI (11.20)

dVNI

dt
¼ r � 1� eð Þ � p � I � c � VNI (11.21)

Infectious HCV virions (VI) infect target cells (T), creating productively infected
cells (I) at a rate b·VI·T. Uninfected hepatocytes are produced at rate constant s and
die at rate d. Infected hepatocytes die at rate d. Similar to Dixit et al. (2004), it is
assumed that infectious and noninfectious (VNI) virions are produced at rate p and

cleared at rate c. The measured viral load (V) represents the sum of infectious and

noninfectious virions (VI + VNI). Finally, Emax dose–response relationships were

assumed describing the effects of peginterferon a-2a and ribavirin:

e ¼ DosePEG
ED50PEG þ DosePEG

(11.22)

r ¼ DoseRBV
ED50RBV þ DoseRBV

(11.23)

The daily dose of ribavirin and ED50RBVwas expressed as mg kg�1, as ribavirin

in mg kg�1 has been previously found to be one of the prognostic factors for SVR

(Snoeck et al. 2006). The maximum number of hepatocytes present in an individual

liver (Tmax), the death rate of target cells (d), and the daily production of new

hepatocytes in the absence of liver disease (s) were fixed to the biologically

justifiable values as proposed by Colombatto et al. (2003). As the basic reproduc-
tive ratio (R0) is an important predictor for a successful drug therapy (Jacqmin et al.
2010), the model was parameterized in terms of R0, using (11.4).

Individual viral load profiles showed that the HCV viral dynamic model was

able to describe the typical phenomena observed after long-term therapy such as

null response, partial virologic response, breakthrough during therapy, relapse after

therapy, as well as SVR (Fig. 11.10). Simulated liver regeneration based on the

estimated maximum hepatocyte proliferation rate rmatched well with the measured

increase in liver volume of donors having provided right-lobe liver grafts (Pomfret

et al. 2003). The infected cell death rate (d) appeared to be dependent on HCV

genotype, and was in line with previously reported values of d (Neumann et al.
2000). R0 and ED50PEG were found to be generally lower in patients with an SVR.

A relatively low R0 before treatment combined with a relatively high peginterferon
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effectiveness e was expected to increase the likelihood of R0INH <1, hence increase

in the likelihood of SVR.

In patients experiencing a breakthrough during therapy, it was confirmed that

drug therapy failed to decrease the reproduction number (R0INH) below 1 (Callaway

and Perelson 2002; Dahari et al. 2007). A treatment with either higher doses or an

alternative drug treatment could be an option in these patients in order to achieve

R0INH<1. Relapsing patients could have had a R0INH<1 during treatment, but were

not treated long enough so that the viral load quickly returned to baseline at the end

of therapy. Alternatively, drug therapy could have failed to decrease the R0INH

below 1 in relapsing patients. Similar but prolonged treatment in relapsing patients

could therefore be an option in the former situation but not in the latter. Based on

these hypotheses, treatment may thus be optimized in individual CHC patients in

case the R0 and antiviral effectiveness would be known.

The model was successfully qualified for simulations based on an external model

evaluation procedure using the data of a large clinical trial not included in the model

building dataset (Snoeck et al. 2010).
Subsequently, mechanistic simulations were undertaken with the aim to better

understand current treatment success and failure and to predict and evaluate

Fig. 11.10 Observed and model-predicted long-term viral load profiles in 12 representative

chronic hepatitis C (CHC) patients. Solid lines are the fits of the model to the individual viral

load data that either are detectable (closed circles) or below the lower limit of quantification

(LLOQ) (closed triangles). Dotted horizontal lines show the LLOQ of the assay. Dotted vertical
lines indicate the end of treatment. Reprinted from Snoeck et al. (2010)
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the outcome of alternative treatment options (e.g., alternative doses, treatment

durations and new drug combinations). An example of such a mechanistic simula-

tion is depicted in Fig. 11.11 (Snoeck et al. 2008). The viral load profile of an

individual patient receiving a 48-week monotherapy of weekly 180-mg peginter-

feron a-2a was fitted to the observed data of that patient using the HCV viral

dynamic model. On the basis of the estimated viral dynamic parameters of that

specific patient, the time profile of the infected cells was simulated. Although this

patient showed a relapse after cessation of treatment, the simulated time profile of

the infected cells revealed that the number of infected cells was already increasing

again from approximately treatment week 32 onward (Fig. 11.11). It is thus pre-

dicted that this specific patient would not benefit from a longer than 48-week

treatment with weekly 180-mg peginterferon a-2a, and an alternative treatment

Fig. 11.11 Observed and predicted viral load profile of a CHC patient receiving weekly 180 mg
peginterferon a-2a for 48 weeks (b: left panel). Based on the estimated R0 = 5, c = 4.1 day�1, d =

0.156 day�1 and ED50PEG = 71 mg/week, the time-profile of the infected cells was simulated for the

same treatment (b: right panel). Based on the estimated parameters, the viral load profile (a: left
panel) and the time-profile of the infected cells (a: right panel) was also predicted in case this

patient would have received weekly 180 mg peginterferon a-2a for 48 weeks combined with daily

1200 mg ribavirin. Reprinted from Snoeck et al. (2008)
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would be appropriate. However, in the case that the number of infected cells would

still be decreasing at week 48, longer treatment duration with the same treatment

might have been an option. Only a clinical evaluation based on the viral load profile

of this specific patient would not have been able to distinguish between both

treatment options as the time course of the infected cells would be unknown. This

example thus illustrates the power of a HCV viral dynamic model-based analysis.

If this specific CHC patient received a 48-week combination treatment of weekly

180-mg peginterferon a-2a combined with daily 1,200-mg ribavirin, it is predicted

that this specific patient would have been cured as the HCV virus would have been

eradicated as no infected cells were left after treatment (Fig. 11.11). This example

nicely shows the importance of knowing the viral dynamic parameters of an

individual patient, allowing evaluation of alternative CHC treatment options to

ultimately develop and test hypotheses for personalizing treatments in this disease.

11.5 Conclusions

In clinical drug development, modeling is used to explain and quantify in an

integratedway observationsmade in clinical studies. The increasing use ofmodeling

has allowed a better understanding of the kinetic and dynamic mechanisms

underlying these observations. Based on parameter estimates, simulations are

performed to interpolate or extrapolate to situations that have not yet been tested

(e.g. new doses, dosage schedules, or new drug combinations).

In the past 15 years, viral dynamic modeling has dramatically altered our

understanding of the life cycles of three prevalent chronic viral infections. It has

provided us with information on how antiviral agents act to reduce viral load and

clear virus. In addition, viral dynamic modeling has provided predictive informa-

tion whether a patient is likely to clear the virus. The basic reproductive ratio R0

represents the corner stone of the viral dynamic models and is a derived model

parameter that summarizes the host and virus interaction. The RMIC is also a

derived model parameter that integrates the interaction with a third player, the

antiviral agent. These parameters can be used to define doses and dosing schedules

that can be successful in the long-term. Semimechanistic models also allow getting

insight in nonobservable parts of a system. This is particularly true in HIV and HCV

for which the left censoring of the observations, because of the LLOQ of the virus in

plasma, limits the empirical interpretation of the data. The viral dynamic models

presented in this chapter have been widely used to derive nondirectly observable or

nonobservable parts of the systems. For example, in HCV, a viral dynamic model

can provide information on infected cell (i.e., hepatocytes) dynamics during treat-

ment. This information is not easily assessable but is essential for therapeutic

decisions regarding the dose, dosing schedule, and treatment duration.

Substantial progresses have been made in clinical virology, thanks to modeling

of the viral dynamics and its interaction with antiviral drugs. However, from a

PK-PD modeling perspective, some major challenges still need to be resolved such

246 P. Jacqmin and E. Snoeck



as the optimal combination of drugs with different mechanisms of action and the

individualization of therapeutic decisions based on short-term (or long-term) obser-

vations.
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Chapter 12

A Model-Based PK/PD Antimicrobial

Chemotherapy Drug Development Platform

to Simultaneously Combat Infectious Diseases

and Drug Resistance

N. L’ntshotsholé “Shasha” Jumbe and George L. Drusano

Abstract The impact of antibiotics on health care likely exceeds that of any other

class of drugs by greatly reducing the likelihood of debilitating disease and/or death

prevalent in the preantibiotic era. However, the coincidence of (1) medicinal

chemists’ continuing struggle to produce druggable antibiotics with novel targets

that overcome emergence of drug resistance altogether, (2) the general decline of

active development of new antimicrobial agents, (3) the prevalence (and growth

because of increased use) of antimicrobial resistance to legacy molecules, and

(4) the ever-present threat of bioterrorism, mean that antibiotic drug development

must necessarily focus on resistance counter-measures throughout the discovery

and development process. Thus, in essence, antiinfective discovery and develop-

ment programs are (or should be) intrinsically charged with the combined respon-

sibility of minimization of resistance selection and targeting drug resistant

infections from the outset.

12.1 Introduction

The central thesis of this chapter is that drug resistance counter-measures

are indivisible from traditional antimicrobial chemotherapy pharmacokinetics/phar-

macodynamics (PK/PD) to clinical trial simulation (CTS). This defensive approach

necessarily provides the only direct offensive toward control of antibiotic resistance

and facilitates overall effective and responsible antimicrobial drug development.

This chapter on modeling and simulation strategies in “defensive” antimicro-

bial chemotherapy drug-development is organized as follows: the threat of drug

resistance is elaborated with immediate extension to a logical value proposi-

tion of PD principles that determine the proposed quantitative platform from a
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resistance prevention/avoidance standpoint. Self-contained monographs are

presented to enable the reader to conceptualize and apply ideas presented.

12.2 Why Develop a Platform to Simultaneously Combat

Infectious Diseases and Drug Resistance?

The rapid development antimicrobial resistance, first observed by Davis and Maas

(1952) and subsequently explained and characterized by the venerated Eagle

(1954, 1955) (who will be mentioned several times during this chapter) has become

an increasingly serious public health problem in a wide range of infectious diseases

(Alonso et al. 1999; Barclay and Begg 2001; Boshoff et al. 2003; Bull et al. 2002;
Centers for Disease Control and Prevention 2006; Cirz et al. 2005; Coates et al.
2002; Drusano 1998a; Drusano et al. 2006; Jacobs 2004; Lipsitch and Samore

2002; Neu 1992). Conventionally, it was thought that mutations were the inevitable

consequence of imperfect DNA replication and repair. However, mounting evi-

dence suggests that bacteria may play a more active role in the mutation of their

own genomes by inducing proteins that actually promote error-prone replication

(Cirz et al. 2005; Cirz and Romesberg 2006; Drlica and Zhao 1997; McKenzie et al.
2000; Miller et al. 2004; Srivastava et al. 2010). The deluge of antibiotics that have
varying effectiveness in inhibiting processes that are essential for bacterial growth

have introduced extreme selection pressure for resistant bacteria since the use of

penicillin in 1942 (Davis and Maas 1952; Eagle 1954, 1955; Eagle et al. 1953b).
This has resulted in an unprecedented acceleration of bacterial evolution that has

culminated in the emergence of resistance to every approved antibiotic, and in some

cases, multidrug-resistant bacteria that are increasingly difficult to treat (Alonso

et al. 1999; Boshoff et al. 2003; Centers for Disease Control and Prevention 2006;

Chen et al. 2004; Gumbo et al. 2005; Mwangi et al. 2007).
As a design strategy to prevent or delay the emergence of antimicrobial-resistant

pathogens, we consider four major axes of interaction that have impact on micro-

biological and/or clinical outcome – the infective organism, microbiota (local

environment), host, and antiinfective agent.

(a) Infective organism

Difficulties in targeting essential proteins support the importance of pre-

existing microorganism diversity in the form of subpopulations or quasi-

species variants that are spontaneously resistant to inhibition even in the

absence of selection pressure (LeClerc et al. 1996; Weigel et al. 2003). The
clinical failure in targeting MetRS (Drlica and Zhao 1997; Miller et al. 2004),
determined to be essential in laboratory reference strains of Streptococcus
pneumoniae, because of the presence of a resistant variant of MetRS, highlights

the impact of pre-existing drug-resistant mutants and rapidly evolving diversity

on microbiological outcome.
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(b) Microbiota

The infective organism usually competes with normal host microflora to

produce an infection. Therefore, a temporal displacement of commensal bacte-

ria may be essential for successful infection (Srivastava et al. 2010). Antibiotic
treatment also displaces normal host microflora, thereby permitting recoloniza-

tion by exogenous antibiotic-resistant (often slower growing) bacteria as well

as by antibiotic-resistant mutants belonging to commensal microflora. Thus, the

microbiota axis is influenced and influences the infective organism, host, and

exposure to antibiotics.

(c) Host

It is postulated that the ability of bacteria to infect mammalian tissues has most

probably had an effect on human evolution (Chen et al. 2004). The necessary

evolution of an extremely complex immunological response system and a body

temperature (37�C,which is higher than themean environmental temperature) are

provided as evidence of mammalian evolutionary traits driven by virulent micro-

organisms, as postulated byHaldane more than 50 years ago (Gumbo et al. 2005).
Furthermore, the coincident prevalence of sickle cell anemia in regions with a

high rate of malaria infections, because sickle-shaped hemoglobin is protective

against malaria, is given as evidence of specific infectious microorganisms

in different geographic allocations as a driving force in human evolution

(LeClerc et al. 1996; Mwangi et al. 2007).

(d) Antiinfective therapies

One of the most important factors contributing to the evolution of resistance is

the acquisition of mutations during therapy (Gniadkowski 2008). For many

antibiotics, including the fluoroquinolones (Chung et al. 2006; Drusano et al.
2009; Fish et al. 1995; Hooper 2000), cephalosporins (Drusano 1998b; Palmer

et al. 1995), and rifamycins (Cirz et al. 2005; Gumbo et al. 2007), resistance
typically results from the acquisition of point mutations in genes that encode

the drug’s molecular targets or proteins involved in drug inactivation (Davies

1994) or drug efflux (Dean et al. 2003; Hirata et al. 2004; Jumbe et al. 2006;
Williams 1996). Mutation and inducible efflux pumps appear to be the primary

mechanisms to acquire resistance in Mycobacterium tuberculosis (Boshoff

et al. 2003; Zhang and Young 1994) and some Pseudomonas aeruginosa
infections (Alonso et al. 1999; Jumbe et al. 2003; Livermore 2002). Although

mutation and horizontal gene transfer have long been appreciated as important

forces in evolution, it has recently become apparent that in some cases they

may be accelerated by the use of antibiotics to the point where they could

contribute to therapy failure on the timescale of an infection. In addition to

“true” resistance, under certain conditions, bacteria (mostly slow growing)

have a remarkable ability to tolerate antibiotic therapy; some manage to survive

apparently lethal conditions until therapy ceases or “true” resistance is acquired

by mutation and/or horizontal transfer (Beaber et al. 2004; Krylov 2003;

Lipsitch and Samore 2002). These organisms have been referred to as “non-

replicating persisters.”
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12.2.1 Classical Empirical Antibiotics vs. Synthetic
Antibacterials

Two platforms have been leveraged, either separately or in combination, for the

discovery of novel antibiotics. The classical empirical age of early antibiotics and

synthetic antibacterials (1940–1960s) predominantly involved search for novel

inhibitors of lethal bacterial targets either by using natural sources or by screening

of synthetic compounds, without preselection of targets (Bull et al. 2002; Chopra
and Roberts 2001; Hopwood 1985; Kucers and Bennett 1989). The more recent

novel-target-first paradigm strategies also include the search for inhibitors of

resistance systems, with the aim of recovering a susceptible phenotype in a previ-

ously resistant population (Coates et al. 2002; Gross et al. 2003; Hawser 2006).
However, the discovery and/or development of antibiotics targeting either

historically validated or newly proposed essential bacterial targets continue to be

disproportionately difficult to identify as no antibacterial agent derived from the

novel-target-first paradigm has yet to reach the market. Therefore, an important

element in meeting the challenge of antibiotic resistance requires the abandonment

of traditional back-loaded (Phase II and Phase III weighted) antiinfective agents

development paradigm, and requires efficient (and early) integration of knowledge

and data gained from historical data, competitive/comparative intelligence, in vitro
and in vivo nonclinical data and volunteer studies (Phase I) to rapidly arrive at

efficacious/drug-resistance suppressing dosing regimens.

The remainder of this chapter will discuss information integration strategies

leveraging early nonclinical data for impactful CTS strategies early in antiinfective

program lifecycles. To inform and increase the likelihood of success of Phase II/III

studies, it is crucial that these studies be designed properly so that the resulting data

are robust, are interpretable for dose and schedule recommendations, and reliably

predict the success or failure of the proposed treatment regimens in target patients.

12.3 PK/PD-Driven Clinical Trial Design

for Chemotherapeutic Antimicrobial

Dose-Regimen Rationalization

Failure to determine a safe and effective dosage regimen for use in pivotal clinical

trials is acknowledged as a frequently encountered flaw during the development of

many drugs (Andes and Craig 1999; Craig 1998b; Dagan 2003; Drusano et al. 1996,
2000; Peck and Cross 2007). PK/PD models integrate the relationship between dose

and concentration-vs.-time (PK), and the relationship between concentration and

effect-vs.-time (PD). Paramount antibiotic drug development questions “Have we

selected the RIGHT drug?,” “Have we established the RIGHT dosage regimen?” and

“Have we established the RIGHT exposure variable necessary to suppress emergence

of resistance?” are best addressed directly using an integrated PK/PD approach.When

a PK/PD model is employed as the platform to guide learning and integrate
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knowledge, both the time course and variability in the effect-vs.-time relationship can

be ascertained and subsequently used to interpolate (and extrapolate, if valid) to

different dosage-regimen scenarios to inform confirmatory clinical testing.

The realm of antimicrobial PK/PD is special because of the particular advantage

of access to direct measurement of the active-concentration of drug against the

intended target pathogen at or near the site of drug action. Therefore, most chemo-

therapeutic antimicrobials can leverage nonclinical (in vitro and in vivo) PK/PD data

extensively. With this advantage in hand, fundamental PK/PD knowledge genera-

tion for antiinfectives from nonclinical and early clinical studies can be efficiently

employed according to four primary pharmaco-microbiological principles (see

Monograph 1): (1) the microbiological effect concentration (the in vitro or in vivo

Monograph 1 Primary pharmicrobiological PK/PD principles

Microbiological effect concentration
A primary advantage of antimicrobial

therapy PK/PD is primarily driven by the

ability to directly measure requisite

concentrations of the anti-infective agent

required in order to illicit the effects for

which it was designed. Taking into account

inherent PK variability, there is almost

always a better relationship between the

action of a given drug and its concentration

in the blood or at its site(s) of effect than

between the dose of the drug given and the

effect. Antimicrobial potency towards

pathogens is indicated by the minimal

inhibitory concentration (MIC) and the

minimal bactericidal concentration (MBC).

4MIC

2MIC

MIC

MIC/2

MIC/4
Drug‐input forcing function (shape of the
concentration‐vs.‐time curve)
Over the last years, the impact of the shape

of the concentration‐vs.‐time curve on

antibacterial efficacy has been validated

both in experimental animals and in man (),

based on the correlation between dynamic

PK/PD variables and microbiological

outcome. It has been clearly shown that

antibiotic serum concentration (and, as a

result, infected tissue antibiotic

concentration) influences intensity and

duration of the antimicrobial effect.

Antibiotics are frequently divided across the

essential continuum spanning from those

that exhibit concentration‐dependent killing
(time-independent with prolonged

persistent effects) through to those

exhibiting time-dependent (concentration-

independent with minimally persistent

effects) killing, see Monograph 2.
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microbiologically active concentration), (2) the shape of the drug-input microbio-

logical-effect forcing function (shape of the concentration-vs.-time curve), (3) the

microbiological efficacy window, describing the “window-of-opportunity” of the

molecule, engendered by the therapeutic index of the drug, and (4) integration of

between- (and within-) patient PK and PD (exposure AND effect) variability

(Bradley et al. 2003; Drusano 2004; Drusano et al. 2000, 2002, 2006; Preston
et al. 1998).

Monograph 1 (continued)

Microbiological efficacy window
Drug development success is driven by

attainment of maximum clinical efficacy

while minimizing the risk of toxicity, which

provides a miniscule target for success

surrounded by a large opportunity of

potential failure. Therefore, it is important

to understand that the higher the drug

concentrations required for a drug to elicit

desired effect (for example, a higher MIC or

EC90), the smaller the opportunity window

for successful development for a potential

drug candidate. Furthermore, with the

insistence of consideration of resistance

endpoints at the outset as the thesis of this

chapter, higher microbiological

concentration targets directly correlate with

narrow margins of expected microbiological

effect.

Pharmacokinetic/pharmacodynamic
(exposure/effect) integration and variability
Population PK/PD models are a vital aid to

the drug development process by providing

reliable predictions of the individualized

dose�exposure‐vs.‐effect (efficacy and

toxicity) relationship, which is key to

therapy individualization. The purpose of

population modeling is to describe the

statistical distribution of exposure/effect

parameter estimates and identify potential

sources (demographic and/or

pathophysiological) of intra- and inter‐
individual variability among patients.

Informed dosing-regimen selection

integrates the knowledge structure and

associated characterization of all sources of

variability.
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12.3.1 Knowledge Generation for Design and Simulation
of Antiinfective Clinical Trials

12.3.1.1 Microbiological Effect Concentration

The minimum inhibitory concentration (MIC) is a well-established laboratory

parameter routinely determined in microbiology. The standard definition of MIC

is the minimum concentration that inhibits visible growth of the organism as

detected by the unaided eye following 18- to 24-h incubation. In this context, the

importance of the MIC in antimicrobial chemotherapy cannot be underestimated.

Frequently the MIC is regarded as the primary PD biomarker parameter of interest,

even though antibiotics with the same MIC may exhibit very distinct PK/PD

relationships. It is currently by far the most commonly used PD parameter for the

evaluation of efficacy of antiinfective agents. Drug trough concentrations in the

target population are also often compared to the MIC to make dosing decisions.

Two important factors are often overlooked with respect to the importance of the

MIC. From a PK point of view protein binding and tissue distribution must be taken

into consideration. Protein binding is relevant because only unbound drug is

available to exert a pharmacological effect. Tissue distribution also needs to be

taken into account, given that most of infections do not occur in plasma, but in

tissue interstitial space.

From a PD point of view, the MIC is a static measurement, which does not

provide information on the kinetics of the drug action. Furthermore, the MIC

determination depends on the inoculum-density and outcome is determined at a

single time point following incubation. Therefore, different combinations of growth

and kill rates can result in the same MIC. Semidynamic information can be derived

from standard MIC determinations as shown in Fig. 12.1. Following MIC determi-

nation, using the standard twofold dilution method, subsequent experiment(s) with

log dilutions above and below the established MIC are performed to generate a

log–log plot of change in bacterial density-vs.-MIC dilution. In this way, the MIC

can be extended beyond the all-or-nothing threshold concentration-effect relation-

ship, permitting quantitative distinction of concentrations around the MIC via curve

fitting of observed data, i.e., the change in bacterial density with antibiotic concen-

tration is determined from

D½a� ¼ Dmax � g½a� (12.1)

where [a], the antibiotic concentration, is some multiple of the “qualitative” MIC;

Dmax is the maximum observed bacterial density change from MIC, and g[a],
nonsaturable concentration dependent bacterial growth suppression over the incu-

bation period. In the instance where antibiotic concentration effect is saturable and

assuming symmetry around the MIC, the Hill function can be imposed on (12.1) to

yield (Zhi et al. 1986):
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g½a� ¼ gmax

ð½a�=g50Þ
1þ ð½a�=g50Þ

(12.2)

where gmax designates maximum growth inhibition, ½a�=g50 is the antibiotic quanti-
tative MIC.

Of note, classical MIC determination is performed at microrganism-inocula

usually 100- to 1,000-fold below the inverse of the mutational frequency to

resistance for most pathogens, leading to absurdities like an E. cloacae that appears
ampicillin susceptible. The quantitative MIC method described above possibly

provides a means to quantify and get around the issues with regard to higher inocula

for resistance suppression/minimization.

12.3.1.2 Time-Kill Study Evaluation

Because the static MIC does not reflect the in vivo scenario, where bacteria are

exposed to constantly changing antibiotic concentrations, various alternative types

Fig. 12.1 Semi-dynamic determination of MIC. Following classical twofold dilution a qualitative

MIC is determined, with subsequent experiment(s) with log dilutions above and below the

established MIC performed in order to generate a log–log plot of change in bacterial density-

vs.-MIC dilution
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of in vitromodels with variable antibiotic concentrations (known generally as time-

kill studies) have been devised (Blaser et al. 1985; Craig and Ebert 1990; Firsov

et al. 1998, 1999; Frimodt-Moller 2002; Guerillot et al. 1993; Tam et al. 2005).
Primary classes include those with constant antibiotic concentrations, which study

the effects of a constant concentration of drug against bacteria as a function of time;

and those, in which the antibiotic concentrations fluctuate by dilution or diffusion

(Craig and Ebert 1990; Frimodt-Moller 2002; Keil and Wiedemann 1995; MacGo-

wan et al. 1996). Time-kill curves generated from these studies can follow micro-

bial killing and growth as a function of both time and antibiotic concentration,

Fig. 12.2. The resulting kill curves are subsequently analyzed with appropriate PK/

PD models to design nonclinical in vivo studies and/or confirmatory clinical studies

to optimize dosage regimens based on a rational and quantitative platform.

Similar to the dynamic MIC approach described above, PK/PD analysis of time-

kill data considers changes in bacterial density relative to antibiotic concentration.

Importantly, the rate of change in bacterial density, B, is accessible in these studies
and is determined as:

d

dt
BðtÞ ¼ zG � BðtÞ �CK � BðtÞ (12.3)

Fig. 12.2 Constant and variable antibiotic concentration experimental platforms. Constant

concentration studies follow change of microorganism density as a function of time when exposed

to fixed-drug concentration. Latter studies, consider both fluctuating antibiotic concentrations and

microorganism density via dilution or diffusion
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where zG andCK are first-order rate constants describing natural growth/replication

and death of microorganisms in the absence of drug. Letting zN ¼ zG �CK and

including the drug effect (using Hill equation), (12.3) becomes

d

dt
BðtÞ ¼ zN � Kmax � ½a�

K50 þ ½a�
� �

� BðtÞ (12.4)

where B(t) (CFU/mL) is the bacterial density at any time t, zN, the net bacterial

growth rate in the absence of drug, Kmax;K50, maximal bacterial kill rate (time�1)

and concentration that provides half of the maximal kill rate (mg/L), respectively.

This relationship has a closed form solution for B and is pharmacodynamically

similar to the dissipation rate constant stimulation indirect response model

(Mager et al. 2003). Capacity-limited growth of the microorganism is introduced

linearly using the logistic function zN ¼ z0 � ð1� ðBðtÞ=BmaxÞÞ or nonlinearly as

zN ¼ Bmax=B50 þ BðtÞ where Bmax is the maximal velocity of bacterial replication,

and B50 the number of microorganisms at which the replication rate is half maximal.

From a mechanistic point of view, capacity-limited expansion of the microorganism

should be on the replication rate (zG) rather than the growth of themicroorganism (zN),
which implicitly suggests a decrease in the natural death rate of the microorganism,

which may or may not always be true.

An additional implicit, therefore often overlooked, assumption in the description

of (12.2)–(12.5) is the employment of the Hill equation. Application of the Hill

equation assumes that the antibiotic antibacterial effect (E)-vs.-concentration [a]
curve is symmetrical and that the point of inflection occurs at the antibiotic

concentration that produces 50% of the maximum response. This assumption,

however, is rarely tested, and full evaluation of E/[a] curve symmetry is not

performed routinely (Black et al. 1985; Van Der Graaf and Danhof 1997; Van

der Graaf and Schoemaker 1999).

12.3.1.3 Evaluating Effect (E)-vs.-Concentration [a] Curve
Symmetry/Asymmetry

The four parameter Richards model attempts (12.5) to quantify symmetry/asymmetry

of concentration-vs.-effect curves including an asymmetry factor, d (Van Der Graaf

and Danhof 1997; Van der Graaf and Schoemaker 1999), as shown in Fig. 12.3

E ¼ a

ð1þ d � e� ln � ð10Þ p � ½log½a��logKiÞÞ1=d
(12.5)

The Hill (Goutelle et al. 2008) and Gompertz (Dalla Costa et al. 1997) models are

nested, i.e., are special cases of the four-parameter Richards model and can be

formulated by setting one or more of the parameters to fixed values, e.g.,
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E ¼ a
1þ e� lnð10Þp½log½a��logKiÞ where d ! 1 (12.6)

is the logistic model equivalent to the Hill equation, and the Gompertz model can be

derived where d ! 0

E ¼ a
ee� ln ð10Þ � p � ½log½a��logKiÞ (12.7)

where a is the upper asymptote, pai(�log10 Eai) is the inflection point, and p the

slope parameter.

Simultaneous analysis of all available data, implementing the full E/[a] curve
without the symmetry assumption, is best performed using nonlinear mixed effects

methods to allow for correct selection of the appropriate model and adequate

estimation of ill-defined parameters.

12.3.1.4 Relating the Hill Model to MICs

Coming back full circle, time-kill curve PK/PD relationship determinations can be

related to stationary MICs via model-based identification of the antibiotic

Fig. 12.3 The commonly used Hill effect equation assumes that the antibiotic antibacterial effect

(E)-vs.-concentration [a] curve is symmetrical and that the point of inflection occurs at the

antibiotic concentration that produces 50% of the maximum response. The four parameter

Richards model attempts to quantify symmetry/asymmetry of concentration-vs.-effect curves

including an asymmetry factor, d
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concentration that results in instantaneous equilibration of microorganism growth

and kill rates, i.e., where net change in bacterial density is zero. Falling back to the

E/[a] symmetry assumption, and setting net change in bacterial density to zero

d

dt
BðtÞ ¼ zN � Kmax � ½a�

K50 þ ½a�
� �

� BðtÞ (12.8)

is rearranged to

d

db
BðtÞ ¼ zN � Kmax � ½a�

K50 þ ½a�
� �

� dt (12.9)

which can be integrated on both sides

Z Bt

B0

1

B
� dB ¼

Z t

0

zN � Kmax � ½a�
K50 þ ½a�

� �
� dt (12.10)

When drug concentrations result in no net change in bacterial density this

simplifies to

0 ¼ zN � Kmax � ½a�SC
K50 þ ½a�SC

� �
(12.11)

zN ¼ Kmax � ½a�SC
K50 þ ½a�SC

(12.12)

½a�SC ¼ zN � K50

Kmax � zN
� ½IBS� � MICin vivo (12.13)

where [a]SC is the antibiotic concentration (stasis concentration [SC]) that results in

instantaneous bacterial stasis (IBS) which is equivocal to the in vivo MIC.

12.3.1.5 Antimicrobial Drug Combinations

Before leaving in vitro studies entirely it is important to consider antibiotic drug

combinations. In some cases, it might be desirable to combine a potent pair of

drugs, with each drug targeting a different (serial or parallel) molecular target in the

same pathogen, to increase patient compliance by improving dose-administration

schedule, sparing toxicity/side-effects, and/or reducing pill burden (Chen et al.
2004; Dalla Costa et al. 1997; Drusano 1990; Drusano et al. 1996, 2000; Giamar-

ellou 1986). Most importantly, it is possible that combination chemotherapy can

suppress the emergence of resistance of the microorganism to either or both of the
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drugs in the combination (Cappelletty and Rybak 1996; Drusano 1990; Jacobs

2004; King et al. 1981; Wainberg and Friedland 1998).

Determination of drug interaction using statistical criteria has been illustrated to

be a challenging problem by Greco et al. (1990). However, it appears that there is
passive agreement that evaluation of differentiating drug interactions should be

based on formal declaration of additivity. There from, the definitions of synergy and

antagonism are based on statistical comparison of observed effect to the defined

“additive null reference,” whereby the nature of drug combination interaction can

be deduced based on anti-bacterial effectiveness, where 1+1� 2 or 1+1	 1 is

synergy and antagonism, respectively. Bliss Independence and Loewe Additivity

(discussed below) constitute the primary additivity null reference models currently

used for the evaluation of antimicrobial combination therapies (Boik et al. 2008;
Boucher and Tam 2006; Fidler and Kern 2006; Lee and Kong 2009; Lee et al. 2007;
Whitehead et al. 2008).

Bliss Independence assumes a multiplicative interaction of drugs, i.e.,

E ¼ gmax

E0 � ð½a1�=IC50;1Þs1 � ð½a2�=IC50;2Þs2
½1þ ð½a1�=IC50;1Þ�s1 � ½1þ ð½a2�=IC50;2Þ�s2 (12.14)

where [a1], [a2] and IC50,1, IC50,2 are drug concentrations and drug concentrations

resulting in 50% inhibition for antibiotic 1 and antibiotic 2, respectively, E0 is

the control inhibitory effect measured output in the absence of either drug, E is the

observed (measured) effect, and s1 and s2 are the antibiotic-effect slope parameters

for antibiotic 1 and 2, respectively.

The MacSynergy II program of Prichard et al. (1993) is currently the mainstay

“plug-and-play” utility tool for Bliss Independence additivity analysis. In this

analysis, standard deviations of the observed effect are used to determine statistical

difference from the Bliss Independence null reference model.

Loewe additivity is simply defined as the effect seen on addition of the second,

third, etc., as compared to simple addition of the first antibiotic when it is added

to itself. Greco et al. have proposed the following sigmoid Emax interaction model

to describe Loewe additivity.

1 ¼ ½a1�
IC50;1 � ½E=E0 � E�1=m1

þ ½a2�
IC50;2 � ½E=E0 � E�1=m2

þ o½a1� ½a2�
IC50;1 � IC50;2 � ½E=E0 � E�ð1=2m1þ1=2m2Þ (12.15)

The sum of the first two terms defines the additive effect whereas the third term is the

drug interaction term, where o is the synergism-antagonism interaction parameter.

Wheno is exactly zero, then (12.15) collapses to the simple Loewe Additivity model.

If the 95% confidence interval of o overlaps zero, the combination is additive,

o � 0 the interaction is synergistic, and o 	 0 the interaction is antagonistic.
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In summary, use of drugs in combination may be advantageous, particularly

as a means to suppress the emergence of antibiotic resistance, however, the

determination and design of optimal regimens to achieve this major advantage

poses inherent experimental and operational difficulties. Part of the difficulty in

selecting a regimen involves the potential high dimensionality resulting from the

combinatorial nature of the problem. For instance, a modest three dose-by-three

dose evaluation, often necessary to learn about the drug interaction, requires

at least nine different combination regimens (without individual-agent concurrent

controls). Alternatively, learning and generating knowledge on drug combination

interaction in nonclinical (in vitro and in vivo) studies prior to modest

confirmatory clinical studies reduces costs and operational complexity inherent

in Phase I/II studies.

12.3.1.6 In Vivo Thigh Model

The mouse-thigh infection model (and derivatives thereof) pioneered by Eagle

and coworkers (Eagle 1948, 1949, 1952; Eagle et al. 1953a, b) and rediscovered

and expanded on by Craig (1998a, b) and Craig et al. (1991) provides a very useful
and validated experimental disease system for expanding, testing and corroborating

nonclinical in vitro PK/PD knowledge. Furthermore, impact of drug pressure on the

amplification of the drug-resistant subpopulation can be quantitatively enumerated,

effects of the host defense (cytotoxic and humoral immunity) on microorganisms

can be ascertained, and correlations between the shape of the concentration-

vs.-time curve and microbiological and clinical outcomes can be delineated.

Antimicrobial chemotherapy decreases the natural rate of bacterial replication

(zG) or increases the natural rate of bacterial death (CK), for some agents, this is

NOT either/or but both, and is described mathematically as,

d

dt
B ¼ zG � ER½aðtÞ� � BðtÞ �CK � ED½aðtÞ� � BðtÞ (12.16)

where drug effect (ER[a(t)] and ED[a(t)]) relate to the microorganism replication

and death antimicrobial concentration-dependent effect. The decrease of micro-

organism replication and/or increase of microorganism death because of drug

effect is related to antibiotic concentration preferably using the Richards full

model from (12.5) instead of making the à priori assumption that the concentra-

tion-vs.-effect relationship is symmetrical (without any additional burden in

number of parameters to be fit). Furthermore, simultaneously fitting all available

data using nonlinear mixed effects enables combining information of each indi-

vidual animal in individual experiments to allow adequate estimation of the mean

parameters and associated interindividual variabilities of the three or four esti-

mates that may be ill-defined when considered on an individual animal or

individual experiment basis.
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12.3.1.7 Emergence of Resistance Submodel

The probability that a resistant subpopulation exists within a predominantly drug-

susceptible wild-type population is dependent on the number of organisms at the

infection site (total population burden) and the mutational frequency to resistance to

the antibiotic prescribed. In addition, amplification of a resistant subpopulation is

also dependent on the fitness of the selected mutants, and the selection pressure

exerted by the drug concentrations experienced by the microorganisms, thus trans-

forming (12.16) to

d

dt
Bs ¼ zG;s � ER;s½aðtÞ� � ð1� PÞBsðtÞ þ zG;r � ER;r½aðtÞ� � P � G � BrðtÞ

�CK;s � ED;s½aðtÞ� � BsðtÞ (12.17)

d

dt
Br ¼ zG;r � ER;r½aðtÞ� � ð1� PÞ � G � BrðtÞ þ zG;s � ER;s½aðtÞ� � P � BsðtÞ

�CK;r � ED;r½aðtÞ� � BrðtÞ (12.18)

d

dt
B ¼ BsðtÞ þ BrðtÞ (12.19)

where (12.17) and (12.18) describe the rates of change of the sensitive (s) and
resistant (r) subpopulation densities, respectively, over time. P is the probability of

mutation and G the relative fitness of the sensitive/drug resistant microorganism.

Although these models are complex they still do not fully characterize the system

under study. Even when fully stochastic, they do not appreciate the role played by

rapid up-regulation of resistance mechanisms, e.g., efflux-pumps and inducible

beta-lactamases.

12.3.1.8 Host Defense Submodel

The importance of immune (innate and adaptive) response to infection can vary

widely depending on the infective microorganism and can be quantified in the

nonneutropenic infection model as compared to the neutropenic model (Andes et al.
2001; Ariano et al. 2005; Drusano et al. 1993; Ernst et al. 2002; Louie et al. 2001;
Zinner and Blaser 1986). Innate and adaptive responses are dynamic and also

interact. Recruitment of immune responses to the site of infection is microorganism

density-dependent and when the combined effects of these mechanisms exceed the

microorganism natural growth rate,CK � zG, the host defense alone can eliminate

the infection in the absence of drug. The general form of an antiinfective model

incorporating host defenses is

d

dt
BðtÞ¼ zG �ER½aðtÞ� �BðtÞ�CK � ðED½aðtÞ�þEPþEP �EIþEIÞ �BðtÞ (12.20)
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where EP and EI relates antimicrobial effects of humoral and cellular immunity

recruitment at the site of infection, respectively, and EP � EI is the innate-adaptive

immunity interaction. The cellular response limits bacterial density by cell-

mediated lysis. Similarly, the humoral response reduces bacterial density by anti-

body mediated neutralization (Bermejo Martin et al. 2003; Khangarot et al. 1999;
Liehl et al. 2007). Both the cellular and humoral responses are generated by clonal

expansion proportional to the bacterial density with determinable responsiveness

(r)/persistence (p) and natural dissipation (d) of immune response, EP;I:

d

dt
EP;I ¼ rpEP;I � dEP;I (12.21)

12.4 Antimicrobial Chemotherapy Knowledge Integration,

from Bench-to-Bedside

A primary advantage in antimicrobial therapy drug development is the ability to

quantitatively determine requisite concentrations of the antiinfective agent required

to illicit the effects for which it was designed. Nonclinical (in vitro and in vivo) data
plays a fundamental in the delineation of PK/PD characteristics, including antimi-

crobial activity spectrum, type of bactericidal activity, and antibacterial potency for

rational dose regimen selection.

The bench-to-bedside piece-wise knowledge integration PK/PD platform out-

lined in Fig. 12.4 replaces the outdated and debatable maximum tolerated dose and

empirical paradigms for optimizing efficacy and minimizing toxicity. Furthermore,

the PK/PD platform offers a powerful general framework for extrapolation of data

across single- or multistep cycles. The generated data from in vitro assessment of

the MICs for the wild-type strain, clinical isolates and laboratory drug-resistant

mutants are subsequently used to design in vitro time-kill studies and tested in

nonclinical in vivo infection experiments.

Extrapolation from in vitro to in vivo is another fruitful application of the PK/PD
paradigm. If an efficacious concentration (EC for stimulation, IC for inhibition) is

obtained on the basis of an in vitro or ex vivo assay, then a dose can be proposed by
incorporating the in vitro EC directly into (12.5). The design of in vivo nonclinical

studies can be optimized by using time-kill data to determine the dose range using

the relationship:

ED50 ¼ CLt � EC50

F
(12.22)

where ED50 is a hybrid PK/PD variable denoting the drug-dose resulting in 50%

maximal efficacy, CLt is the total plasma clearance, F is bioavailability, and EC50 is

the concentration need to reach 50% of some maximum effect (a true PD parameter

not influenced by PK parameters) in the nonclinical disease model of choice.
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In turn, once a dose-vs.-response relationship has been established in one species,

that knowledge can be extrapolated from one species to the next (including humans)

by assuming that drug potency is species independent – that is, the same overall

body exposure (AUC for plasma concentration) will produce the same effect in both

species. This assumption, however, does not always hold up, especially where the

rate and extent of drug distribution and/or penetration differs considerably across

species. An alternative approach suggested by Rodvold et al. (2009) proposes

setting exposure targets at the primary infection site from nonclinical studies and

subsequently obtaining penetration estimates in man in order to support develop-

ment decisions with greater certainty.

Of note, within a given nonclinical species, the intraindividual and interindividual

PK variability is commonly low (because of this, median group weights are often used

to determine mg/kg doses). However, the variability of PD parameters is often higher

than that associated with the PK parameter estimates. On the other hand, the primary

source of between-species variability is often attributable to PK variability. More

precisely, whereas the (free) drug plasma concentration required to elicit a given

response is similar between species, the corresponding dose for eliciting the same

effect can differ widely (Allen et al. 1998; Chambers and Kennedy 1990; Hollenstein

et al. 2000; Lister et al. 1997; Peterson et al. 1989). In this regard, the PK/PD approach

offers a powerful general framework for interspecies extrapolation, based on AUC-

exposure for example:

Fig. 12.4 The bench-to-bedside piece-wise knowledge integration PK/PD platform offers a

powerful general framework for extrapolation of data across single- or multi-step cycles to support

decision-making over the entire life-cycle of an antimicrobial agent
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Dosespecies 1

CLt species 1

¼ AUCspecies 1¼Dosespecies 2

CLt species 2

¼ AUCspecies 2 (12.23)

Because it is only the free concentration that is responsible for the ultimate effect,

(12.23) is refined to include bioavailability, F, for extravascular administration, and

correction for plasma protein binding, for free fraction, fu:

Dosespecies 2¼
Fspecies 1Dosespecies � f u1 � CLt species 2

f u2 � CLt species 1

(12.24)

Thus the PK/PD approach of dose selection avoids disproportionately high doses

in laboratory animals based on the surface law (i.e., dosage regimen adjustments on

the basis of a power function to the measured body weight, which is taken to

represent skin surface area).

12.5 Clinical Application

What is not apparent from Fig. 12.4 is that broad and successful application of

the proposed PK/PD platform relies on quantitative establishment of target drug-

effect and/or outcome measurement in each drug development minicycle. Thus far,

this chapter has focused on microbiological drug-effects (i.e., change in bacterial

load over time), however it is also possible to model (and there may be justifiable

preference for) dichotomous clinical outcomes (duration of febrile infection or

time to fever reduction) and/or other endpoints including safety, etc. Therefore,

the effect of ultimate interest in a PK/PD trial may be replaced by a surrogate

endpoint. This could be a biomarker (physical, chemical or physiological measure-

ment, etc.) that is objectively measured and validated as an indicator pharmacolog-

ical response to intervention. In such a case, the surrogate endpoint could plausibly

substitute for a clinical endpoint (Biomarkers Definitions Working Group 2001;

Colburn 2000; Frimodt-Moller 2002). The clinical validity (relevance) of a surro-

gate is determined by its statistical association and mechanistic links with a

clinical outcome. In addition, the surrogate should have desirable metrological

properties, i.e., reproducibility of measurement, objectivity, and high specificity

and sensitivity (Biomarkers Definitions Working Group 2001; Hyatt et al. 1995).
Proposed outcome surrogates that are clearly becoming widely accepted and

commonly used in antimicrobial chemotherapy include PK/PD indices such as

exposure variable/MIC ratios (e.g., AUC/MIC, Cmax/MIC, and time above MIC

(T > MIC)). These PK/PD indices have been demonstrated in prospective and

retrospective trials to predict clinical success, bacteriological cure and/or preven-

tion of resistance (Frimodt-Moller 2002). See Monograph 2, which discusses the

basis of PK drivers of response and their implications on dose regimen selection.

Probably the most successful surrogate markers of all time have been plasma viral

load for HIV and Hepatitis C.
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Monograph 2 PK/PD drivers of microbiological response
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Kill rate is largely independent of drug

concentrationwhere drug concentrations exceed

MIC. Kill/inhibition rates of concentration-

independent agents become saturated at low

multiples of the drug concentrations leading to

minimum drug activity [typically >4 times the

instantaneous bacterial stasis concentration

(BSC- concentration of a molecule at which

there is no net microorganism-growth or

microorganism -kill)] with higher

concentrations not providing faster or more

extensive antibacterial activity (time driven

anti-infective activity).

The goal of the dosing regimen of agents in this

group is to optimize the duration of exposure by

frequent dosing
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Kill rate is engendered by drug concentration

and time. Time- and concentration-dependent

agents have greater kill rates in proportion with

the duration and extent that drug concentrations

exceed the MIC. Since the integral of the

concentration-vs.-time curve itself is the area

under the plasma concentration-vs.-time curve

(AUC), the AUC/MIC is the most closely PK/

PD Index linked to measured microbiological

outcome for these agents- AUC driven

antiinfective activity).

Agents in this group can be dosed frequently or

infrequently without substantive differences in

microbiological outcome.
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Kill rate is engendered by drug concentration.

Concentration-dependent agents elicit

antibacterial activity when their concentrations

are well above the MIC- (concentration driven

anti-tumor activity). The maximum serum

concentration (Cmax) of the anti-microbial

agent is the pharmacodynamic predictor of

microbiological outcome for concentration-

dependent killing agents. The extent of killing is

determinedprimarilyby themaximumachieved

serum drug concentration, and subsequent

lower levels of drug do not contribute

substantially to total kill rate. This phenomenon

is associated with persistent effects following

drug exposure and is strongly linked to the

mechanism of action of the molecule.

The goal of the dosing regimen of agents in this

group is to provide themaximum tolerable dose.

(continued)
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When categorical (cured or not cured, febrile or nonfebrile, toxic or nontoxic)

endpoints are considered as the selected endpoint of interest, the exposure-vs.-

effect curve relates a proportion (cumulative frequency distribution of individuals

achieving the target effect) to a continuous variable (PK and/or bacterial density).

Logistic regression relates the proportions, p of a dependent variable (observed

outcome) to an independent measure of drug input variable X according to the

following model:

p̂ ¼ eaþbX

1þ eaþbX
(12.25)

where p̂ is the probability outcome of an event for a given X (concentration, AUC,

dose, etc.), where a is a location parameter, and b is a scale (slope) parameter.

To see what this function will look like for the logit transform of p̂, we first evaluate
the probability of no event:

1� p̂ ¼ 1þ eaþbX � eaþbX

1þ eaþbX
¼ 1

1þ eaþbX
(12.26)

in order to determine the odds (likelihood) ratio describing the relative risk of

response:

p̂

1� p̂
¼ eaþbX=ð1þ eaþbXÞ

1=ð1þ eaþbXÞ ¼ eaþbX (12.27)

Consequently the natural logarithm of the odds ratio gives the logit(L) of p̂:

ln
p̂

1� p̂

� �
¼ aþ bX (12.28)

where the logitðp̂Þ ¼ ln[p̂=ð1� p̂Þ� is related to X by simple linear regression. Thus

the logit is linear in its parameters (and may be continuous), and it ranges from�1
to +1, rather than from 0 to 1. Moreover, the error around the line is distributed

binomially rather than normally. Therefore, the maximum-likelihood method is

Monograph 2 (continued)

Current state of the art exploration of antimicrobial PK/PD relates treatment (microbiological)

outcome to a PK/PD index such as the time above MIC (T>MIC, for time-dependent,

concentration independent antibiotics), or area under the concentration curve divided by MIC

(AUC/MIC), or the maximum concentration divided by MIC (Cmax/MIC, for concentration

dependent, time independent antibiotics). Because of high colinearity between T>MIC, AUC,

and Cmax at increasing doses, full factorial experimental design schemes must be explored in

order to empirically distinguish the dynamic index that is most correlated with microbiological

outcome
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used to fit a regression line to the logit-transform data rather than the least-squares

method. A typical logistic regression analysis is complex and in practice can be

carried out iteratively only by computer to yield estimates for a and b, as well as
their standard errors that make the observed values most probable. Furthermore, the

logit can be written as a more general linear function, allowing expansion of the

model into a more advanced logistic model that includes several continuous or

categorical independent variables (e.g., sex-b1, age-b2, metabolic status-bn) and

their interactions:

ln
p̂

1� p̂

� �
¼ aþ b1X1 þ b2X2 þ � � � þ bnXn (12.29)

Significance of the results is determined from the ratio of the estimated coefficients

over the standard errors of the estimates, or alternatively the ratios are evaluated as

normal deviates.

Once the treatment target response has been defined and a modeling framework

established, simulation should be performed to support decision-making, challenge

and explore explicit and implicit assumptions. The requisite level of complexity in

the simulation activity is driven by the question(s) being addressed. Following

nonlinear mixed effects modeling of available data, stochastic (Monte Carlo)

simulation is almost always preferable over deterministic simulation for clinical

team decision-support. Variability is introduced into the underlying model from

random draws driven by the statistical (random and residual effects) model

½X 
 ðm; s2Þ�, where X is a random parameter draw from a log-normal distribution

with mean m and variance s2. An additional level of uncertainty around the

estimated may be included into simulation in order to increase confidence in

simulation output. In this case, simulations are performed by first drawing m,
from m 
 mm; s

2
m , i.e., the fixed effect parameter hyperparameter is drawn from a

normal distribution with mean mm and variance s2m according to central limit theory.

Thus, a simulated trial population could be generated following a fixed dose

regimen, in order to determine the proportion of simulated subjects that exceed

an exposure/MIC ratio target (AUC/MIC ratio value, for example). If a small

proportion of patients exceed the target PK/PD index then a dose-increase may be

warranted (Fig. 12.5).

Monte Carlo simulation allows the incorporation of all sources of potential

variability of drug exposure and drug effect encountered when an agent is adminis-

tered to a large population. Monte Carlo simulation methods have been widely used

to integrate knowledge in antimicrobial chemotherapy (Bradley et al. 2003;

Deshpande et al. 2010; Drusano et al. 2000, 2006; Dudley and Ambrose 2002;

Jumbe et al. 2003; Zelenitsky et al. 2005). Of note, Monte Carlo simulations are

relatively easy to perform across a wide platform on integrated data sources and

submodels across a platform, provided the underlying models are well defined.

However, even when multiple knowledge-sources or submodels are correlated,

covariances of off-diagonal coefficients are often ignored and carryover
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assumptions are inadvertently made on the cumulative effect of known sources of

variability. Therefore, a common assumption in Monte Carlo simulations, espe-

cially across a knowledge-integration platform such as presented here, is that all

parameter estimates follow normal/log-normal distributions, with correlation/

covariance coefficients of zero, neither of which are typical in any interaction. It

is therefore important for data analysts and teams to realize that these underlying

assumptions can lead to problems with analyses and interpretation.

Fig. 12.5 Most chemotherapeutic antimicrobials can leverage nonclinical (in vitro and in vivo)
data extensively. Information regarding the microbiological effect concentration, the shape of the

drug-input microbiological-effect forcing function, the microbiological efficacy/toxicity window,

and learned between- (and within-) patient PK and PD (exposure AND effect) variability is

integrated to determine the proportion of patients that can be adequately treated by a drug to

make informed dose-regimen recommendations. Dose recommendation decisions are supported

by determination of the inflection points (a and b) integrating clinical surveillance data and the

target drug exposure
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Once the knowledge-base has been integrated through simulation, statistical

tools such as Classification and regression tree (CART) analysis are powerful

methods to examine how different factors interact and can influence outcome across

entire simulated databases. In the area of antiinfective CTS, CART is particularly

useful for determining factors that will lead to potential failure (breakpoint) of an

antiinfective agent (Ambrose et al. 2007; Dalla Costa and Derendorf 1996; Drusano
2001; Drusano et al. 2004; Dudley and Ambrose 2002; Jacobs 2003; Meagher et al.
2007; Zelenitsky et al. 2005). It would be particularly interesting to see a retro-

spective study performed in which simultaneous PK/PD/clinical outcome analysis

is performed in order to confirm simulation-based breakpoint determinations,

performed prospectively by others, such as in studies of levofloxacin in

both community-acquired infections and nosocomial pneumonia and fluoroquino-

lone therapy of pneumococcal respiratory tract infections (Ambrose et al. 2001;
Drusano et al. 2004; Dudley and Ambrose 2002; Madaras-Kelly et al. 1996;
Montgomery et al. 2001; Paterson and Bonomo 2005).

12.6 Summary

Antimicrobial pharmactuarial science is an evolving discipline that integrates

pharmacometrics, microbiology and pharmacology, benefit-vs.-risk analysis,

which is currently seeing tremendous growth. This domain benefits directly from

the advantage of being able to directly measure the effective concentration and/or

potency of the antimicrobial agent for the target pathogen. Following delineation of

the effect-vs.-exposure relationship using data from nonclinical studies and mea-

sures of PK/PD variability from early clinical trials in normal volunteers and

patients, it is possible to determine drug dosing regimens that have a high likelihood

of achieving the desired goals of therapy, while also having an acceptably low

probability of concentration-related toxicity and emergence of resistance. In this

way the benefit-vs.-risk for the treated patient is maximized.
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Chapter 13

PKPD and Disease Modeling: Concepts

and Applications to Oncology

Oscar E. Della Pasqua

Abstract Despite the transition from chemotherapy with cytotoxic and cytostatic

drugs to targeted therapy with monoclonal antibodies, clinical decisions regarding

the benefit of pharmacological interventions still rely on the concept of a maximum

tolerated dose (MTD). In this chapter, it is shown that a model-based approach

can be used in oncology to optimize dose selection and characterize drug effect on

tumor growth, overall survival and safety. Furthermore, modeling and simulation

also provides insight into the underlying mechanisms of action, enabling transla-

tion of the differences in pharmacology, safety and disease processes from preclin-

ical experiments to clinical trials. A paradigm shift is proposed to bring the benefits

of model-based drug development to cancer patients, in which biomarkers of safety

and prognostic markers of overall survival are assessed to predict treatment out-

come and disease progression.

13.1 General Concepts and History of Model-Based

Research in Oncology

Models aim to represent and simplify complex systems. The accurate representa-

tion and simplification of the complexity and heterogeneity of biological systems

have characterized oncology modeling efforts in clinical pharmacology and trans-

lational medicine research (Rew 2000a; Quaranta et al. 2005). Although clinical

oncologists can appreciate the value and potential implications of experimental

models, the justification for the use of mathematical models remains unclear to

most of them. Mathematical modeling can be a powerful tool for analyzing
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biological problems, allowing one to develop and test hypotheses which can lead to

a better understanding of the biological process itself. Most importantly, it can

provide quantitative measures of biological functions that can be used for the

purposes of prediction and prognosis. It is essential to understand that the mathe-

matics is dictated by the biology and not vice-versa.

Cancer research has been a fertile ground for mathematical modeling (Swanson

et al. 2003). Models were initially used to conceptualize the simple exponential

growth of solid tumors, which show cell accretion at a constant rate: 1 cell, 2 cells,

4 cells, 8 cells, etc. This concept was advanced by Collins et al. (1956) who used it

to describe malignant tumors, specifically metastases studied by serial X-rays. The

survival time following resection of breast cancers was then correlated with the

exponential tumor growth rate (Kusama et al. 1972). Subsequently, the introduction
of the logistic growth model allowed for the description of reduced growth in the

later stages as the tumor cells outgrew their blood supply, producing central

necrosis. Despite the inherent complexity of the processes associated with growth,

the ultimate simplification of this concept is illustrated by a particular rat sarcoma,

in which linear growth is observed with viable tumor cells surrounding the necrotic

core growing essentially in only two dimensions (Mayneord 1932).

With the recognition that tumor cells can spread, invade local tissue and/or

metastasize to distant organs, and that not all tumor cells are immortal, the mathe-

matical concepts necessarily became more complicated than what had been devel-

oped to describe the dynamics of solid tumors (Deisboeck 2001). Experimental

studies and theoretical analyses began to employ cellular kinetics, in which the

growth fraction and cell cycle kinetics figured extensively. However, the pioneering

work of Steel (Steel 1977) revealed that there was an order of magnitude difference

between the times involved in cellular and gross tumor growth kinetics: hours to a

few days for individual cells, many days and even months for gross tumors.

Subsequently, most of these concepts were formulated in terms of equations

involving potential and actual volume doubling times, cell cycle and DNA-

synthesizing times, mitotic and labeling indices, and cell loss and growth fraction.

It is important to realize that all models have limitations and those in oncology in

particular. Simple models may produce elegant insights and describe existing data,

but they also risk oversimplification and the oversight of critical variables. The

recognition of apoptosis illustrates this conundrum, wherein a process fundamental

to tissue growth and modeling was completely overlooked until the latter part of the

twentieth century (Rew 2000a). Furthermore, most of the aforementioned efforts in

modeling have not explored the impact of treatment effects. The focus and use of

these models was primarily to describe tumor growth and understand the underlying

mechanisms so that therapeutic strategies could be developed and justified

(Table 13.1). Model parameterization did not account therefore for drug-specific

parameters, which could be used in drug development.

The objective of this chapter is to provide a comprehensive overview of

the modeling concepts employed in the evaluation of antitumor drug response

in oncology. First, an overview of types of models used to characterize cellular
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tumor growth will be presented, beginning with descriptive models. Second,

the implications of biomarkers and surrogate endpoints for the evaluation

of the predictive performance will be considered qualitatively as well as quantita-

tively for each approach and illustrated with clinically relevant examples. Finally,

some of the challenges for the implementation of clinical trial simulations will be

highlighted and approaches of how these challenges can be met will be presented.

Table 13.1 Anticancer therapeutic intervention strategy and treatment options, including areas

for further research to improve adjuvant therapies. Initial mathematical modeling efforts in clinical

oncology were aimed to characterizing growth processes rather than drug effects. In contrast to

these initial views, modeling can also be used as basis for dose selection, study design optimization

and for prognostic purposes (adapted from Rew 2000b)

General strategy Options

Tumor eradication Radical surgery: infrequently radiotherapy

and chemotherapy

Tumor mass reduction and

partial response

Palliative surgery: often radioptherapy,

chemotherapy

Long-term tumor growth modulation

without eradication (cf. use of tamoxifen/

analogues)

Increase cell loss factor

Identify/substitute for gene defects and

abnormal pathways

Change microenvironment

Inhibit growth of metastases

Alter angiogenesis

Chemotherapy strategy Technical challenges

Make better use of existing

agents and combination therapies

and reduce empiricism

Tumour specific drug targeting assays (now

feasible in vivo, e.g. using intrinsic

fluorescence) in some classes of

cytotoxic drug

Improve effective dose scheduling Better understanding of tumour growth/cell

loss kinetics

Reduction in drug toxicity Increase effective concentration in target

tissue at lower doses

Increase therapeutic index Regional perfusion strategies

Inhibit drug resistance mechanisms

Radiotherapy strategy Technical challenges

Optimize dosage, fields, modality

of radiation

Technical design, computer modelling,

clinical trials

Optimize scheduling Better knowledge of kinetics and cell

repopulation dynamics, e.g.
hyperfractionation (CHART)

Access new schedules

Maximize effectiveness on

target tissue

Improve therapeutic ratio, e.g.
radiosensitisers, combined drug and

r/t schedules

Novel therapies strategy Technical challenges

Identify tumour specific

molecular defects

Develop effective delivery vectors

13 PKPD and Disease Modeling: Concepts and Applications to Oncology 283



13.2 Modeling Tumor Growth and Disease Progression

In contrast to therapeutic areas such as psychiatry, in which descriptive, empirical

approaches predominate due to the lack of a direct link between etiology, patho-

physiology and clinical outcome (Della Pasqua et al. 2010), modeling in oncology

encompasses a wide spectrum of methodologies and approaches, which vary from

highly mechanistic models of signal transduction (e.g., target-receptor interaction
models for biologicals) to empirical probabilistic or stochastic models which

describe the probability of overall survival or relapse (Tan and Chen 1998; Gilbert

et al. 2006; McDougall et al. 2006; You et al. 2008a). In fact, a diagram of

biological dynamic systems domains can be used to better understand the different

types of mechanism-based models and their application in oncology (Fig. 13.1).

Although not meant to be exhaustive, Fig. 13.1 depicts the areas to which modeling

approaches have been applied, in which signaling networks are central and which

aspects of cell physiology are involved in the parameterization of these models.

The main difficulties one faces when applying a model-based approach to drug

development are the lack of suitable parameterization that allows for extrapolation

or inferences about long-term treatment effects and the poor performance of models

when treatment comparison is required for drugs which act by very different

mechanisms or pathways (e.g., cytotoxic vs. target-mediated response) (Wang

et al. 2009; Buyse et al. 2010). For the sake of completeness, different types of

Fig. 13.1 A view of biological dynamic systems domains (a, b), to which modeling approaches

have been applied. This diagram of can be used to classify the different types of mechanism-based

models, in which each of the three cellular functions (c) are parameterized. The lowest branch (d)

illustrates concrete biological applications (d) (from Gilbert et al. 2006)
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models developed in cancer research will be listed, most of which can be used for

practical purposes such as prediction of tumor growth and progression of disease,

pharmacokinetic-pharmacodynamic relationships or prognosis. To enable further

discussions on the implementation of different approaches in drug development, the

classification used in the original publications has been maintained in this chapter

wherever possible (Rew 2000a; Rew and Wilson 2000a). It is important to realize,

however, that the distinction between descriptive or empirical models vs. mecha-

nism-based is not always simple. Truly empirical models or semi-mechanistic

models are mostly used to characterize long term clinical outcome of symptoms

associated with adverse events following chemotherapy or another type of interven-

tion (Mukherjee and Majumder 2008; Fleischer et al. 2009).

(a) Static and graphical models. One example is the cell cycle model, which

reveals in a rather qualitative manner the proliferative behavior of cells. Similar

concepts have also been used to describe organ and tumor architecture. These

graphical representations have been useful because of its dimensionality,

allowing understanding of mechanisms at molecular and physiological level,

including the identification of targets (Fig. 13.2). This type of modeling has

been the basis in computational biology research for analyzing interaction

networks and simulating the behavior of each cellular component over time.

(Bruggeman and Westerhoff 2006; Goel et al. 2006; Hornberg et al. 2006;
Alfieri et al. 2007).

(b) Dynamic, stable and unstable system models. Dynamic models describe the

functional properties of a biological system. For instance, normal tissue func-

tionality, such as bone marrow, is stable at steady-state conditions, despite

being highly proliferative. This is due to a balance between cell synthesis and

cell loss. In fact, thanks to such stationary conditions, mathematical models

with high predictive performance have been developed in different areas of

drug discovery and development. In contrast, tumors are unstable systems:

more complex mathematical and statistical concepts are an essential tool to

address these properties (Tan and Chen 1998; Goel et al. 2006; McDougall

et al. 2006). It is the temporal instability (volume increase, invasion, diffusion

or metastasis) rather than the existence of the tumor that characterizes its

lethality. Tumor biology imposes therefore an additional dimension in predict-

ing changes in (and modeling of ) architecture, physiology and response. This

type of modeling has been widely applied in the characterization of angiogene-

sis and tumor growth (Fig. 13.3). It has also supported the understanding of

tissue invasion and metastatic processes (Swanson et al. 2003; Harpold et al.
2007; Chen et al. 2009).

Unfortunately, the approaches described above in (a) and (b) above do not

address one of the primary interests in oncology and in clinical drug development,

i.e., modeling the future or prediction of treatment outcome and risk analysis, both

of which are often handled by empirical methods as time to event analysis.

Molecular or cellular function modeling has yielded valuable results in cell biology

over the last decade, but such models have fallen short when extrapolating model
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findings to the whole population over wider time spans, when competing risks are

involved and disease progression (e.g., death) and treatment outcome (e.g., disease-
free survival) depend on other factors that cannot be represented in a mechanistic

manner or are not even parameterized by the model, e.g., unobserved covariates.

Thefirst issue tobeovercomein thedevelopmentofmodelsofdiseaseprogression in

tumor biology is the parameterization of time. Modeling time in biological systems

requires more than statistical concepts such as time to event, which is often used in

clinical research to describe survival (Cameron et al. 1996; Fleischer et al. 2009).
A single abnormal cell can grow into a lethal tumor. This phenomenon has been

modeled as a staged progression of genetic and functional changes, which can be

accelerated by intrinsic and extrinsic factors, such as hereditary genetic features or

environment.On the other hand, time is also linked to the resulting imbalancesbetween

cell growth and decay. These models are also referred to as proliferative or circular

models (Steel 1977; Jacqmin et al. 2010). In the “bathtub” analogy, water running in
and out represents cell accretion and loss. The water level (or tumor volume) is

determined by the ratio between inflow and outflow. However, these proposed

Fig. 13.2 The cell-cycle model describes the sequential phases of the cell-cycle from the diploid,

G0/G1 resting phase, though DNA synthesis (the S phase) to the tetraploid, unstable G2 phase

which precedes mitosis (from Howard and Pelc 1951). The model provides a simple framework for

describing the expression of various cell-cycle regulatory proteins, such as the cyclin family;

S phase specific markers, such as bromodeoxyuridine (BrdU); and the points of action of the

various regulatory signals, such as the switch to S phase (Rew and Wilson 2000a)
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approaches neglect the spatial dimensionality of tumor growth, i.e., the dynamic

behavior of a tumor implies continuous changes in time and space. The existence of

these two dimensionalities in disease progression means that over longer intervals of

days to weeks, the physical and functional characteristics of a tumor can change

significantly.

From a mechanistic point-of-view, these features require time to be defined in

terms of biological processes (Tannock 1986). Not many models have attempted to

describe the passage of time as a molecular clock, which represents the cell-cycle,

including replication phases and passage of cell generations rather than the clock time.

In fact, on much longer time scales, tumor mutation and resistance itself could also be

modeled as a molecular clock, using gene mutation maps to define the rate of changes

or speciation. Based on the aforementioned considerations, cell proliferation and

Fig. 13.3 Tumor area measured at anatomically different levels of the brain from eight CT scans

taken during the 12 months before the patient’s death. The dashed bars represent chemotherapy

cycles, as well as neutron beam irradiation during the last 3 weeks of the patient’s life. Simulation of

the temporal evolution of the tumor area at each of the brain levels is considered. Conceptually, the

rate of change over time in total cell population is described as a function of diffusion, motility,

proliferation, and loss of tumor cells. The predicted effect of chemotherapy on each anatomical

level calculated by the model is also shown (solid line). Despite the prediction of tumor growth, this

model does not allow assessment of drug-specific properties (reprinted from Tracqui et al. 1995)
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tumor cell population (viable and unviable) can be described by cell-cycle models, in

which each cell phase is clearly represented with specific durations (Hartwell and

Kastan 1994; Mathon and Lloyd 2001). Despite the characterization of apoptotic

pathways and signal transduction rates in vivo, most pharmacological models have

been based so far on hybrid rate constants reflecting overall tumor growth (Hornberg

et al. 2006). This simplification of the tumor biology is partly due to the lack of

distinction between the various processes underlying tumor cell accretion and loss

(Fidler 2002; Coates et al. 2009).
Model complexity increases if one is interested in describing and predicting

tumor behavior as opposed to tumor growth over time. Solid tumors are character-

ized by biological aggressiveness, with deregulated growth and angiogenesis, local

tissue invasion and metastasis. Metastasis is what determines the aggressiveness of

the tumor and the clinical outcome (Quaranta et al. 2005; Chen et al. 2009). It is
thus an important subject for modeling. Metastasis encompasses a number of

processes, including detachment of viable cells from the primary tumor, survival,

migration and adhesion to a new metastatic site, with subsequent proliferation and

angiogenesis. Most importantly, it is not necessarily a random process. Many

tumors have an ordered pattern of metastasis. A mechanistic model to describe

drug effect on metastasis has not been published to date, but examples exist of

stochastic models for carcinogenesis: the one proposed by Tan and Chen (1998) can

be used to predict tumor behavior and metastasis. The authors show how Markov

processes have been used to model carcinogenesis, but highlight that this approach

has some serious drawbacks. To get around these difficulties, they propose an

alternative state-space model and multievent models (Fig. 13.4).

birth b0(t)

I1 Ik-1

d1(t)
α0(t)

α 1(t)

b1(t)

Dk-1(t)

α k-1(t)

b k-1(t)

N M

T

death

deathdeath

d0(t)

birth birth

Fig. 13.4 Schematic representation of a k-stage multilevel Markov model of carcinogenesis.

Despite the stochastic nature of the model, Markov processes allow for the characterization of

complex tumor behavior, including dormancy and aggressiveness (metastasis). N = normal stem

cell; Ii = the ith stage initiated cell; i = 1, 2,.....,k�1; Ik ¼ M = proliferating cancer tumor cell;

t =malignant tumor (from Tan and Chen 1998)
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Recent advances in the understanding of angiogenesis and apoptosis have also

revealed important aspects of tumor growth and decay, which demand a higher degree

of complexity in terms of the mathematical representation of these biological

phenomena, which cannot be described by the modeling concepts discussed so far,

such as the use of hybrid turnover rates. In fact, there is discrepancy between cell

production and tumor growth rates measured in vivo, which suggests that up to 95% of

tumor cells may be lost at certain phases in tumor growth (Wilson 1991). In reality, a

tumor consists of a complex mixture of proliferating, quiescent, noncycling and

apoptotic cells, which defy simple models when all factors are present. For instance,

the duration of apoptosis is known to be of approximately 3 h in many cell types.

However, small modulations or a small percentage change in the rate or fraction of

apoptosing cells can have profound consequences for the balance between cell gain

and cell loss, or growth and shrinkage in a tumor. Cell proliferation measurements

alone, thus, are insufficient to describe growth (Rew and Wilson 2000b). Unfortu-

nately, there has been no methodology reported as yet to measure the apoptotic

fraction of cells in human tumors. Mathematical models, however, can be used to

explore a range of scenarios that show what percentage of cells must be induced into

apoptosis to reverse tumor growth. For example, a small rapidly growing primary or

metastatic tumor may have normal cell proliferation rate but minimal cell loss.

13.3 Modeling Tumor Growth and Decay

Under Treatment

Over the last decade modeling efforts appeared to evolve toward differentiation of

drug effects from the underlying disease processes associated with angiogenesis,

tumor growth, tumor shrinkage, apoptosis and cell death (Steimer et al. 2010).
Nevertheless, empirical mathematical models are still frequently used to describe

the tumor growth curve (e.g., sigmoid functions, such as logistic, Verhulst, Gom-

pertz, and von Bertalanffy (Bajzer et al. 1996)), without an in-depth mechanistic

description of the underlying physiological processes. In this context, the effect of a

drug can be evaluated only in terms of changes of the parameter values describing

the tumor growth. Such changes depend on the dose level and the administration

schedule, so that these approaches can only be used retrospectively (Simeoni et al.
2004). Levasseur et al. (1998) illustrate this concept by applying an exponential kill
(EK) model to predict the shape of dose-response curves based on the cell cycle

phase specificity of a drug, the cell cycle time, the duration and concentration of

drug exposure at the site of action, and a scaling factor for the level of drug

resistance. Their work, albeit neither mechanistic nor predictive for understanding

how drug and tumor cell characteristics affect the shape of the dose-response curve,

highlights the importance of models that capture the time dependency of dose-

response curves in vivo, as compared to the static measures obtained under station-

ary experimental conditions (Gardner 2000).
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On the other hand, functional models rely on mechanistic, physiology-based

hypotheses for the description of drug effects. In fact, the six essential alterations in

cell physiology in malignancy may need to be considered: evasion of apoptosis; self-

sufficiency in growth signals; insensitivity to antigrowth signals; sustained angiogen-

esis; limitless replicative potential and capacity for tissue invasion and metastasis.

Suchmodels require a set of assumptions about the tumor growth, involving cell-cycle

kinetics (proliferating vs. quiescent cells) and biochemical processes, such as those

related to antiangiogenetic and/or immunological responses (Gasparini et al. 2001;
Steimer et al. 2010). More complex models describe the cell population based on

specific phases of the cell cycle. These models have a much larger number of

parameters compared with the empirical ones. Their development is time consuming

and a sufficient number of quantitative observations are required to avoid the iden-

tifiability problems due to the overparameterization (Simeoni et al. 2004). The situa-
tion becomes even more complex when the effect of the treatment with an anticancer

drug is considered, because of the incomplete knowledge of themode of action in vivo.
In summary, despite the existence of several tumor growthmodels, a practical tool that

supports oncology drug development in a prospective manner is still missing.

In addition to the lack of a mechanistic description of tumor growth under

treatment conditions, historical choices in model parameterization have also cre-

ated a gap between pathophysiology and clinical measures. More recently, it has

become clear that clinical endpoints need to be taken into account from the very

early stages of drug discovery. One of the first examples of translational modeling

was the development of a pharmacodynamic model for gemcitabine that directly

describes tumor shrinkage effects on the primary lesion(s) of patients with nonsmall

cell lung cancer (Tham et al. 2008) (Fig. 13.5). This approach prevents some of

shortcomings of the Response Evaluation Criteria in Solid Tumors Group

(RECIST) and may have practical potential as a mid-term endpoint for decision

making about effective doses and treatment duration (Ratain and Eckhardt 2004). In

contrast to RECIST, which classifies the response of target and nontarget lesions

into four categories (i.e., complete response, partial response, progressive disease,

and stable disease), the authors apply a continuous scale to describe the time course

of tumor response in relation to drug exposure. Despite the requirements for

accurate measurements in deep-seated tumors, continuous measures offer many

advantages as compared to the discrete categorization by RECIST. The evolution of

this concept can be compared with the successful use of changes in hematological

variables on a continuous scale that have been used as pharmacodynamic targets in

early-phase clinical trials (Friberg et al. 2002; Friberg and Karlsson 2003).

13.4 Modeling Biomarkers vs. Surrogate Endpoints

From a drug development perspective, the ability to link antitumor activity in early

phase studies to survival is critical for the progression of a compound. Even though

advances in areas such as angiogenesis and apoptosis have enhanced our ability to
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identify novel targets and evaluate the potential of new therapies, the identification

of sensitive, relevant measures of efficacy, other than survival itself remains a

challenge. In fact, the topic of surrogate endpoints for efficacy in oncology is one

of the most hotly debated issues in the cancer clinical trials arena (Sherrill et al.
2008; Wang et al. 2009; Saad et al. 2010). Yet, much of the focus of the discussion

has been on the requirements for regulatory approval rather than on the understand-

ing of the physiological mechanisms linking tumor activity to disease progression

and clinical outcome.

Because of the high cost of therapeutic interventions, it has been argued that the

only acceptable study endpoint is an equivocally documented improvement in

overall survival (FDA 2007). Nevertheless, the role of alternative biomarkers as

Fig. 13.5 Upper panel shows a schematic representation of final turnover model on tumor size.

This Gompertz-like tumor growth model depends on current tumor size and is expected to

approach an asymptote. Because a delay exists between drug administration and tumor response,

the time course of exposure to drug at the tumor effect site was described by a tumor effect

compartment half-life (t1/2,eq). k1 is the first-order rate constant for effect equilibration; k2 is the

second-order rate constant for tumor loss; Amt50 represents the gemcitabine dose required to

produce 50% of maximum inhibition in tumor growth; Emax, maximum gemcitabine effect on

tumor is fixed to 1. Ae represents the effective exposure in the effect compartment. Lower panel
shows a comparison of drug dose (thick solid vertical lines), effective exposure (thin solid line),
and tumor size measurements ( perforated line) on the same time scale measure in weeks (adapted

from Tham et al. 2008)
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early predictors of overall survival in oncology trials is subject of intensive research

and the potential use of such predictors as independent indicators of patient-related

clinical benefit remain highly desirable. Therefore, from a modeling standpoint, the

first issue to be addressed is the definition of the term “surrogate endpoint” in cancer

clinical trials. In much of the regulatory discussion regarding such trial endpoints, it

has been questioned whether a positive result is an early indication that longer

follow-up will detect a statistically significant improvement in overall survival

(Johnson et al. 2003; EMA 2006). There are various examples that demonstrate

the correlation between progression-free survival (PFS) with efficacy, defined as a

documented improvement in overall survival. However, the strong correlation

between PFS and overall survival is not universal across tumor types and will be

likely less frequently observed in the future as more biologically and clinically

active “second-line” treatment strategies are employed to augment initial disease

progression (Burzykowski et al. 2008; Fleischer et al. 2009).
Regardless of the need to identify and validate surrogate endpoints in oncology,

it is useful to consider the use of a mechanism-based classification of biomarkers

(Danhof et al. 2005) for the purposes of modeling and simulation and subsequently

distinguish them into either prognostic or predictive biomarkers. Prognostic bio-

markers correlate with outcome independent of treatment or mechanism of action,

whereas predictive biomarkers correlate with the impact of specific treatment on

outcome. This concept has been recently illustrated by the Food and Drug Admin-

istration for the relationship between early tumor size reduction and patient survival

in nonsmall-cell lung cancer (NSCLC) (Wang et al. 2009; Bruno and Claret 2009).
The importance of models combining biomarkers and overall survival is further

illustrated by the longitudinal exposure-response tumor growth inhibition (TGI)

model with a survival model based on tumor size together with other prognostic

factors as the main predictors for survival (Claret et al. 2009) (Fig. 13.6). The use of
drug specific and disease/patient-specific parameters allowed scaling of drug effect

across patient populations and drug development phases. In contrast to previous

publications, the authors conceptualize the progressive development of resistance

in terms of a drug-constant cell kill rate that decreases exponentially with time. The

approach is used to predict survival outcome of a phase III study of capecitabine vs.

fluorouracil in metastatic colorectal cancer (mCRC). In this example, dose was used

as a measure of exposure, instead of drug concentrations or pharmacokinetic

parameters (Claret et al. 2009).
As illustrated by the example in Fig. 13.7, part of the problem in identifying a

link between biomarkers and survival is the absence of evidence of the underlying

PKPD relationship from oncology trials. The use of a nomogram for prediction of

2-year survival takes into account covariates such as World Health Organization

performance status (WHO-PS), forced expiratory volume in 1 s (FEV1), positive

lymph node station (PLNS) and gross tumor volume (GTV), but ignores drug-

related factors, i.e., pharmacokinetics and pharmacodynamics. This situation may

be explained by the empiricism in the selection of the effective dose range during

the development of oncology drugs. In addition, growth models have evolved

without further consideration of the variable manifestations of disease in cancer
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patients. Thus, multivariate logistic models are often applied to describe survival,

correlating it to patient/disease specific prognostic factors, without linking it to

mechanism of action, drug exposure or other pathophysiological processes. The

main implication of such a disconnection is the poor predictive or prognostic value

of modeling and the potential bias due to confounders. Often mere statistical

correlations are found without necessarily establishing a causal link among the

variables or parameters under evaluation (Klein 2006). This is particularly relevant

in oncology where the full effect of first-line therapy on overall survival may be

confounded by the effects of subsequent treatments as well as by metastasis

(Brekelmans et al. 2006; Brekelmans et al. 2007; Diva et al. 2007; Buyse 2009).
In contrast to the previous examples, You et al. have shown how pharmacokinetics

can account for differences in response to treatment (You et al. 2008a, 2009).

Fig. 13.6 Left panel: Distribution of predicted tumor size reduction (relative to baseline)

compared with observations (vertical lines) for capecitabine in the phase III study. Simulations

were performed by using the tumor-growth inhibition model, capecitabine-specific parameters,

disease-specific growth rate, and baseline tumor sizes. The equation describes how drug exposure

relates to tumor size. y(t) is the tumor size at time t, y0 is the baseline tumor size, KL is the tumor

growth rate, KD(t) is the drug-constant cell kill rate that decreases exponentially with time

(according to l) from an initial value of KD,0 to account for the progressive development of

resistance. Exposure (t) is the drug exposure at time t. Right panel: The 90% prediction interval

(shaded area) and observed (line) survival curve for capecitabine in the phase III study. Simulations

were performed by using the drug-independent survival model. The week 7 tumor size reduction

was predicted by the tumor-growth inhibition model, and baseline tumor sizes (Claret et al. 2009)
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The authors have demonstrated the strong influence of pharmacokinetic parameters on

outcome following administration of etoposide to small cell lung cancer patients.

Modeling findings suggest that etoposide dose should be individualized according to a

target systemic exposure instead of being based on body surface area (You et al.
2008b). In another example, these authors use a kinetic population approach in which

the decline in human chorionic gonadotropin (hCG) is incorporated as basis for the

prediction of methotrexate resistance and consequently survival rates (You et al.
2010). Similar efforts for other types of tumors are urgently needed. Differences in

drug exposure as well as in the underlying PKPD relationships must be accounted for

accordingly when predicting treatment response and overall survival.

13.5 Translational Models

In addition to the lack of models combining biomarkers to clinical endpoints,

another important gap in drug discovery and development is the shortage of tools

to extrapolate and scale tumor activity, disease progression and treatment effects

across species. The majority of mathematical models describing the effect of

anticancer treatments on tumor growth in animals are of limited use within the

drug industry (Bajzer et al. 1996; Gardner 2000; Sidorov et al. 2003; Luo et al.
2005). Unfortunately, these limitations highlight lack of collection of relevant

quantitative information during preclinical development of oncology drugs. One

of the first quantitative preclinical models of efficacy was proposed by Simeoni et al.
(2004). Their model is based on a system of ordinary differential equations that link
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Fig. 13.7 (Left) Nomogram for prediction of 2-year survival. Patients in low-risk group have the

greatest predicted probability of being alive at 2 years. Points, TNM staging score (T describes the

size of the tumor and whether it has invaded nearby tissue; N describes regional lymph nodes that

are involved; and M describes distant metastasis); WHO-PS World Health Organization perfor-

mance status; FEV1 forced expiratory volume in 1 s; PLNS positive lymph node station;GTV gross

tumor volume. (Right) Kaplan–Meier curves stratified by low- (top line), medium- (middle line),
and high- (bottom line) risk score. No explicit pharmacokinetic-pharmacodynamic factors have

been included in the nomogram. Disease progression is inferred from risk scores in a qualitative,

rather than quantitative manner (modified from Dehing-Oberije et al. 2009)
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the dosing regimen of a compound to the tumor growth in animals, with tumor

growth in untreated animals being described by an exponential and linear growth

phases. In treated animals, tumor growth rate decreases proportionally to both drug

concentration and number of proliferating tumor cells. Furthermore, a transit com-

partmental system is used to model the process of cell death, which occurs at later

times (Fig. 13.8). The authors elegantly distinguish parameters that are related to the

growth characteristics of the tumor, to drug activity, and to the kinetics of the tumor

cell death. Therefore, such parameters can be used for ranking compounds based on

Fig. 13.8 Scheme and equations of the PKPD tumor growth inhibition model by Simeoni et al.
(2004). The tumor growth in nontreated animals is described by an exponential phase followed by

a linear growth phase. To facilitate the fitting procedure and reduce the complexity of the system, a

single differential equation was used for modeling the derivative of the tumor weight (w(t)) (left
panel). In this equation, w0 represents the tumor weight at the inoculation time (t ¼ 0), and l0 and
k1 are parameters characterizing the rate of exponential and linear growth, respectively. W is a

constant modulating the transition from the exponential to the linear growth model. In the treated

animals it is assumed that the anticancer treatment makes some cells nonproliferating eventually

bringing them to death through a mortality chain (right panel). The system of differential

equations is reported: for a given time t, �1(t) indicates the portion of proliferating cells within

the total tumor weight w(t) and c(t) indicates the plasma concentrations of the anticancer agent.

In these equations, w(t) is the total tumor weight, represented by the sum of the weights of the cells

in the various states 1, 2, 3 and 4, and w0, l0 and k1 are the parameters describing the growth of

the proliferating cells in the control animals. The action of the drug on the tumor growth is

determined uniquely by the two parameters k1 (the micro-rate constant describing the kinetics of

cell death) and k2 (the proportionality factor linking the plasma concentration to the effect). In this

context, k2 is the parameter describing the antitumor potency of the compound. Based on the

annihilation of the differential equations, a threshold concentration CT ¼ l0/k2 can be derived,

such that, if animals are exposed to a steady state drug concentration Css > CT, the model

eventually predicts the tumor eradication (Rocchetti et al. 2007)
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their potency and for evaluating potential differences in the tumor cell death

process. The model was extensively tested on discovery candidates and known

anticancer drugs (Fig. 13.9). On the basis of the parameters estimated in the first

experiment, the model successfully predicted the response of tumors exposed to

drugs given at different dose levels and/or schedules, which suggests its utility also

for the optimization of the design of new experiments (Magni et al. 2006).
The parameterization proposed by Simeoni et al. represents an effective compro-

mise between empirical and mechanism-based approaches. It relies on a few identifi-

able and biologically relevant parameters, the estimation of which requires only the

data typically available in the preclinical setting: the pharmacokinetics of the antican-

cer agents and the tumor growth curves in vivo. Given that drug-related parameters are

not specific to a givenmechanism of action, but rather relate the degree of cell damage

and cell death with the plasma concentrations of the drugs, it allows the assessment of

treatment effect for compounds with novel mechanisms of action. Furthermore, it is

possible to compute a time efficacy index (TEI: equal to the asymptotic delay between

the growth curves in treated and control animals) which is used to estimate the

effective threshold in prospective drug screening and can be linked to toxicity para-

meters to rank competing antitumor candidates (Magni et al. 2006).
Although the aforementioned approach offers various advantages with its gen-

eralizability and clear description of processes associated with tumor growth, its

value for the evaluation of mechanism-specific and drug-specific biomarkers

remains to be determined. Therefore, it is important to understand that the more

mechanistic a model becomes, the less generalizable is its use across compounds or

tumor type. This limitation is exemplified by the relationship between cMet phos-

phorylation and HGF receptor (autocrine loop) expression to antitumor activity

(pharmacological response) in athymic mice implanted with human tumor

Fig. 13.9 (Right panel ) Relationship between the systemic exposure obtained at the midpoint of

the dose range used in the clinics (cumulative doses given in 3-week cycles) and k2 (potency

parameter) estimated in animals. Regression performed on log-log scale: intercept = 0.0835;
slope= �1.03; r =�0.927. (Left panel ) Relationship between clinical doses (cumulative doses

given in 3-week cycles) and CT · CLh. Regression (based on the midpoint of the dose range)

performed on log-log scale: intercept 2.01; slope = 1.14, r = 0.939. Vertical error bars represent
the dose range reported in the literature. Horizontal error bars based on � standard deviation of

CLh (Rocchetti et al. 2007)
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xenografts (Yamazaki et al. 2008). Such a model may be specific for prospective

evaluation of targets for cMet and HGF receptors, both of which have been

implicated in the development and progression of multiple human cancers

(Fig. 13.10). Using the proposed PKPD model together with in vitro and in vivo
data, effective clinical doses could be projected for an investigational drug. In fact,

their findings suggest that drug distribution from plasma to the effect site is the main

reason for the observed hysteresis, whereas the factors controlling cMet phosphor-

ylation might be of no importance to the phenomenon. However, in prospective

evaluation of new compounds time-dependencies in response may occur for other

reasons, particularly because of indirect mechanisms of action, such as stimulation

or inhibition of formation (kin) or loss (kout) of the substrates underlying the

antitumor activity (Mager and Jusko 2002; Ternant and Paintaud 2005; Peletier

and Gabrielsson 2009; Mager et al. 2009; Mould and Green 2010). The parameteri-

zation used by Yamazaki would not allow for accurate prediction of the time course

of response induced by the latter mechanisms.

Similarly, another mechanism-specific, but laborious approach has been pro-

posed to assess the influence of biomarkers, tumor burden and survival on the dose-

concentration-response relationships of rituximab in a murine lymphoma model.

Rituximab concentrations were inversely correlated with tumor burden; mice with

low tumor burden had high rituximab concentrations. Furthermore, rituximab

exposure influenced response and survival. It is unfortunate that the authors did

not consider the use of nonlinear mixed-effects modeling, despite the clear implica-

tions of between-subject variability (Daydé et al. 2009) (Fig. 13.11).
Although the aforementioned preclinical efforts have contributed to the integration

of biomarkers of pharmacological activity into the assessment tumor growth, an

important challenge that needs to be overcome by translational models is their ability

to incorporate in vivo processes which occur in parallel to tumor formation, invasion,

and metastasis (Williamson et al. 2009). One of most clear examples of such

an interaction is the assessment of treatment-related injury and consequently, the

prediction and prevention of adverse events, in particular of hematological toxicity.

Also the role of the immune system during tumor growth needs to be considered.

Fig. 13.10 The use of a link (effect) model to describe a time delay (hysteresis) between pharmaco-

kinetics in plasma, cMet phosphorylation inhibition and antitumor efficacy by PF02341066 in a human

tumor xenograft model is based on the theoretical hypothesis that there are circumstances in which the

indirect response model could mimic a direct pharmacological response (Yamazaki et al. 2008)
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Mechanisms of immune evasion of cancer may occur as result of its ability to down

regulate the immune recognition. Those mechanisms are not taken into account by the

majority of the models describing tumor growth and may be critical for the evaluation

of biologicals and targeted therapy where immune cells may take part in the overall

antitumor activity (Cappuccio et al. 2007).

13.6 Modeling and Prediction of Adverse Events

Although understanding of the relationship between tumor growth, biomarkers of

drug activity and response remains at the core of modeling efforts in preclinical

research, it is the prediction and prevention of safety and adverse events that has
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Fig. 13.11 (Upper panel) Variability of response to rituximab on pre-established lymphoma tumors.

Bioluminescent imaging (BLI) pictures for a group of 37 mice was administered 20 mg/kg rituximab

on day 13. 23% of complete response (CR) ( filled circle), 59% of partial response (PR) ( filled
square), and 18% of progressive disease (PD) ( filled inverted triangle) were observed. A relationship

could be established between tumor burden and kdrug, a zero-order constant corresponding tomaximal

rituximab induced tumor lysis. (Lower panel) Rituximab exposure is influenced by tumor burden and

influences response to treatment and survival. (a) Mice without tumor had significantly higher

rituximab concentrations than mice with tumor ( filled inverted triangle). Mice with low tumor

burden (<0.15 � 106 AU) (open square) had significantly higher rituximab concentrations than

those with intermediate (from 0.15 � 106 to 3 � 106AU) (open triangle) or high (>3 � 106 AU)

tumor burden ( filled circle). (b) Mice in CR (open circle) had significantly higher rituximab

concentrations compared with mice in PR ( filled square) or in PD (open triangle). (c) Survival was
significantly increased in mice in CR ( filled circle) compared with those in PR ( filled square), PD
( filled inverted triangle), or control group receiving PBS (open triangle) on day 13. *P < 0.05,

**P < 0.01, ***P < 0.001 (adapted from Daydé et al. 2009)
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dominated the clinical arena in this field. Disappointingly, these efforts reflect the

historical evolution of decision-making in oncology, which still relies on maximum

tolerated doses, irrespective of the introduction of targeted therapies. An extensive

discussion of adverse-event modeling is beyond the scope of this chapter. However,

several approaches have been proposed for the prediction hematological toxicity.

Various models have been published for anemia, neutropenia, thrombocytopenia,

and leucopenia, all of which attempt to characterize the onset, duration and severity

of the events based on the underlying physiological processes. In many cases,

modeling accounts for the effect of adjunctive therapy, which is aimed at rescue

or recovery of baseline, physiological function.

A relevant example of this type of modeling effort is anemia, which is frequently

observed in patients undergoing chemotherapy. Most erythropoiesis models are

mechanism-based, taking into account hemoglobin dynamics (Fig. 13.12). Usually,

turnover (indirect response) models are considered, wherein a zero-order production

rate of hemoglobin is affected by adjunctive therapeutic intervention. Given that

in vivo stimulation of hemoglobin production occurs through prevention of

Depot
compartment

Peripheral
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Ka
Q/V2

Q/V1

K=CL/V1

Lifespan compartments

+

Progenitor
compartment
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LS1 LS2 LS3 LS4
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CPT 2 CPT 3 CPT 4 CPT 5CPT 1
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b

Fig. 13.12 Schematic diagram showing the link between the 2-compartment PK model and the

indirect effect PD model of darbepoetin alpha in patients with nonmyeloid malignancies under-

going multicycle chemotherapy. Increases in mean hemoglobin concentration reduce risk of red

blood cell transfusions and improves patient-reported outcomes. A modified indirect response

model, wherein serum concentrations stimulated the production of hemoglobin through an Emax

equation, described the hemoglobin levels after SC doses of 0.5 mg/kg every week to 15 mg/kg

every 3 weeks in chemotherapy-induced anemia patients. In this model, the effect of endogenous

EPO level fluctuation on the stimulation of hemoglobin production rate was ignored (adapted from

Agoram et al. 2006)
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apoptosis of erythroid progenitors in bone marrow, there is a delay before these

progenitors mature into hemoglobin-carrying red blood cells (RBC) (Dormer et al.
1980; Agoram et al. 2006). In fact, transit compartments can be used as a general

approach for the characterization of delays in response due to maturation processes.

Furthermore, the assumption of physiological rates for maturation allows for param-

eterization of drug and system-specific terms, which facilitates the comparison of

treatment effects across compounds (Dayneka et al. 1993; Friberg et al. 2000;
Krzyzanski et al. 2008).

Similar modeling efforts to describe adverse events have become rather common

in the published literature (Gieschke et al. 2003; Fetterly et al. 2008; Bulitta et al.
2009; Mould et al. 2009). However, none of them have attempted to integrate both

efficacy and safety models as basis for the assessment of the risk-benefit ratio.

The proposed optimization of the dose and dosing regimen of antitumor drugs in

those investigations is driven by tolerability criteria only. To date, only a single

publication is available, where multiple adverse events are evaluated in parallel, in

an integrated manner. Joerger et al. have developed a population pharmacokinetics

and pharmacodynamics for the prediction of neutropenia and thrombocytopenia

induced by paclitaxel and carboplatin. They have shown that in this group of

patients, paclitaxel concentrations greater than 0.05 mmol/L is a good predictive

marker for severe neutropenia and clinical outcome, whereas carboplatin exposure

is a good predictive marker for thrombocytopenia (Joerger et al. 2007a).
One obvious flaw in the evaluation of antitumor activity in the absence of an

integrated model for predicting adverse events may be explained by technical rather

than scientific considerations. Barriers for the advancement of integrated models of

efficacy and safety in oncology are the different types of variables used for the

evaluation of adverse events. Although continuous variables are often applied for

tumor growth and drug-induced activity, categorical variables are used in clinical

safety, few of which can be converted into validated continuous measures. Hence,

integrated modeling of disease progression and drug effect imposes computation

and algorithm requirements, i.e., the ability to handle both continuous and categori-
cal variables at the same time. Moreover, past efforts have been heavily focused on

parameter estimation, rather than on the predictive value of the models for clinical

purposes. In fact, the use of simulations as a tool for the assessment of clinically

relevant scenarios is often missing or disregarded in the aforementioned publica-

tions. Clinical trial simulations in which drop-out models are included are even less

common.

A hint of the complexity in handling categorical variables and subsequent

evaluation of safety by simulations can be found in the work by Hénin et al.
(2006) who show how an empirical model can be used to predict hand and foot

syndrome in colorectal cancer patients treated with capecitabine. In their work,

drug exposure is linked to a transitional (logit) model to describe the changes in

severity scores. Despite some difficulties, attempts have been made to describe such

events using a mechanism-based approach. For instance, Hing et al. (2008) have
applied pharmacokinetic-pharmacodynamic modeling to describe and predict grade

3 and grade 4 neutropenia trabectedin-induced neutropenia (Fig. 13.13). Depth and
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duration of neutropenia were found to be dependent on trabectedin dose level and

AUC, and infrequent dosing regimens with higher doses led to more severe

neutropenia. In addition, model-based simulations demonstrated the absence of

cumulative neutropenia toxicity with trabectedin in patients who received three or

more cycles of therapy and revealed that patient’s covariates did not have any

clinically relevant effects on model parameters.

The complexity in modeling categorical variables increases if one considers

combination therapies, which may be used because of pharmacokinetic and/or

pharmacodynamic drug–drug interactions. This is illustrated by the interaction

model for hematological toxicity associated with indisulam and carboplatin

(Zandvliet et al. 2008). Hematological toxicity (i.e., the myelosuppressive effect

of the combination) is described by a transit compartment approach. As in the

previous examples, the main shortcoming of these analyses is that the selection of

dosing regimens for prospective clinical trials or patient groups is made without

considering an efficacy model or utility function to guide treatment optimization.

13.7 Clinical Trial Simulations

An assessment of the impact of a model-based approach in drug development and

therapeutic interventions in oncology requires not only a comprehensive assess-

ment of the predictive value of a drug-disease model, but also an evaluation of its

performance in a clinical trial context, i.e., including elements of optimization of

the study design. Relying solely on PKPD model parameter estimates for decisions

such as dose selection or population size may lead to wrong conclusions about

Fig. 13.13 Transit compartment model for the characterization of trabectedin-induced neutrope-

nia. On the right, simulations depict the effect of different dose levels (upper panel) and frequency
(lower panel) on the typical time course of ANC following a 24 h iv infusion of trabectedin (Hing

et al. 2008)
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treatment efficacy and safety (Rabinowitz and Davidov 2008; Friberg et al. 2009;
Santen et al. 2009). It is clear that to demonstrate clinically significant benefits over

a control group demands more than just an empirical calculation of the statistical

power of the trial, under the assumption of random variance and a predefined effect

size. This is particularly important if one takes into account the adaptive nature of

protocol designs for new investigational drugs. Variability depends on a variety of

factors, including trial design features such as doses, in-/exclusion criteria, drop-ins

and dropouts, trial duration etc. Effect-size will depend on disease status and

progression as well as drug effect, all of which may also be influenced by trial

duration, dose selection and in-/exclusion criteria. Clinical trial simulation (CTS)

offers an opportunity to formally evaluate the implications for trial outcome of the

role of each factor separately or in combination with each other.

In physics, the influence that the experimental setting may have on experimental

results has since long been accepted. In oncology such acceptance has yet to come.

The meticulous evaluation of design-related factors is critical in explaining failure

and attrition rate in the development of antineoplastic agents. Before designing

clinical trials, a few important questions need to be answered, in particular, whether

the selected doses are indeed active in the targeted patient population and suffi-

ciently safe. Given that disease progression ultimately leads to a fatal outcome in

oncology, therapeutic choices have tolerated a somewhat reduced risk-benefit

balance. Traditionally, decisions are based on a qualitative, overall interpretation

of experimental results (e.g., see Frame 2007), which do not always allow a

straightforward answer to the aforementioned question. For accurate interpretation

of study results, one should consider that differences may exist in dose range,

patient baseline characteristics (e.g., disease status and severity, medical history)

and the definition of response. Simulations can potentially provide insight toward

addressing these differences and enable extrapolation of findings to prospective

patients or patient groups (Goggin et al. 2004; Bellmunt et al. 2009). Most

importantly, one can assess the impact of uncertainty on model predictions and

thus provide appropriate recommendations for trial design and/or label recommen-

dations during drug therapy (Santen et al. 2009).
Even though the benefits and impact of clinical trial simulations in oncology

have been highlighted in various publications (see Table 13.2) and recent regulatory

guidance documents endorse its use for the design and optimization of Phase II and

III trials, there are very few examples of clinical protocols defined according to a

model-based analysis. Veyrat-Follet et al. (2000) simulated a Phase III oncology

trial with an alternative dose intensification scheme that was used in a phase II study

with patients with nonsmall-cell lung cancer receiving docetaxel. Taking into

account modeling results, it was found that the cumulative docetaxel dose is a

predictor of both time to progression and survival. Moreover, the analysis showed

that baseline a1-acid glycoprotein (AAG) was a significant prognostic factor: the

higher the AAG, the less the clinical response both in terms of toxicity and efficacy.

Patients with high AAG also had shorter survival. On the basis of these findings, the

authors explored the benefit of dose increases in this subgroup of the population. In

fact, this work is the only available publication in clinical oncology, in which the
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authors contemplate toxicity (to drive dosage reduction), time to progression,

overall survival and drop-out in an integrated manner (Fig. 13.14).

The few examples of CTS to oncology protocols reveal how far the field is from

what should be considered a state of the art instrument. CTS is a powerful tool for

the integration and quantification of the impact of multiple trial design factors. It is

imperative that physicians realize that clear-cut assessment of such factors cannot

be obtained by traditional meta-analysis, as confounding factors cannot be dis-

sected independently. Consider the impact of differential diagnostic tools following

the advancements in imaging and laboratory technologies in the past century;

analogously, one must become aware that CTS is the instrument for differential

diagnosis in clinical drug development. Differential diagnosis of clinical trials is the

only alternative to trial and error in cancer research.

Table 13.2 Implementation of a model-based approach to the development of drugs in oncology

(adapted from van Kesteren et al. 2003)

Objectives

PKPD modeling

in this phase

Benefits of PKPD modeling

in previous phase

Preclinical Assessment of antitumor

activity

Dose–effect relationships

Determination of

effective

concentrations

Schedule dependency

for activity/toxicity

Mode of action

Metabolism

Phase I Determine most optimal

dose and schedule

PK model (linearity,

schedule dependency)

Definition of a useful target

for phase I study

Assess toxicity profile PKPD relationships

(schedule dependency)

Selection of safe starting

dose

Study the PK and

relations with toxicity

and dose

Preliminary identification

of patient

characteristics

influencing variability

in PK and PD

Selection of treatment

schedules

Phase II Establish activity in

specific tumor types

Further assessment of PK

and PKPD relationships

and variability

Selection of dose or

concentration/exposure

measure

Study PK and PD in large

patient population

Limited sampling schedule

is available

Phase III Confirmation of activity

in large randomized

trials and comparison

with standard

treatment

Learning about PK and PD

(toxicity and efficacy)

and PKPD relationships

with variability in a

large and diverse

patient population

Target dose or measure of

exposure is defined,

taking into account

efficacy and safety;

limited sampling

schedule is available;

preliminary knowledge

about sources of

interpatient variability

in PK and PD
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13.8 Concluding Remarks

Cancer research has undergone radical changes in the past few years. Exploring

tumor dynamics and disease processes both at the basic and clinical levels is

becoming routine. However, how to handle this information and integrate different

dimensions of disease has become the major obstacle to further advancement of

therapeutics in oncology. Intuitive, empirical approaches based on past experience

or maximum tolerated dose are no longer acceptable. The use of mathematical

modeling approaches is essential to integrate the enormous amount of data being

produced and extract useful answers (i.e., a top-down approach to biology and

medicine) and quantitatively assess the properties of novel molecules in vivo,

Fig. 13.14 (Upper panel) Schematic representation of the simulation procedure for the evaluation

of clinical endpoints using hazard models. (Lower panel) Graphs indicate the ability of the

simulations to predict time to progression and survival in phase II patients. Solid line represents

the Kaplan–Meier estimate of the cumulative probability of survival in the phase II patients

(n ¼ 151). Dotted lines are the median, 5th (P5), and 95th (P95) percentiles of 100 Kaplan–Meier

survival curves obtained from simulations of the phase II patients (adapted from Veyrat-Follet

et al. 2000)
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including impact on disease progression. Ultimately, models are required not only

to translate pharmacological effects into treatment response, but also to establish

the overall risk-benefit ratio for patients under clinically relevant situations.

Researchers and physicians have a unique opportunity to integrate knowledge to

address clinical questions and improve decision making in areas such as candidate

selection, dosing rationale and clinical trial design. Despite the potential implica-

tions of modeling and simulation concepts for drug development in oncology,

considerable resistance still exists in terms of the changes they represent to preclin-

ical protocols and to clinical research practice. The amount of evidence gathered so

far has not been sufficient to trigger a permanent shift in the way stakeholders

across industry, academia and regulators deal with the planning, design and execu-

tion of oncology protocols and subsequently analyze and interpret experimental

results. This is further complicated by the lack of mathematical skills and often of

clinical insight of researchers in this field. It is worth emphasizing that the debate

about the suitability and predictive value of biomarkers and surrogate endpoints to

replace survival and overall survival as measure of clinical benefit is unlikely to be

conclusive unless concrete changes are introduced to experimental protocols.

Actions are needed that ensure the assessment of pharmacokinetic–pharmacody-

namic relationships for both efficacy and safety endpoint in an integrated manner.

The limitations to the implementation of such an approach are not technical in

nature; they are hampered by current beliefs.
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Chapter 14

Application of Pharmacokinetic–

Pharmacodynamic Modeling and Simulation

for Erythropoietic Stimulating Agents

Juan José Pérez-Ruixo, Sameer Doshi, and Andrew Chow

Abstract Rigorous management of the knowledge generated with the modeling

techniques requires the exploration of different scenarios of interest via simula-

tions, which can be used to inform many key decisions during drug development.

This process, termed model-based drug development, is illustrated in three exam-

ples at different stages of drug development of erythropoiesis stimulating agents

(ESA). Each of these examples reflects an actual situation with key decisions made

based on the knowledge obtained from these models. One of the beneficial out-

comes of the modeling and simulation approach is to elicit discussion in the

development team on the unverifiable assumptions at each stage and to guide risk

calculations in decision making. This approach can facilitate the development of

better dosing regimens of new medicines, which may lead to enhanced benefit

of the drug therapy and improvements in the quality of life of the patients.

14.1 Introduction

The concept of model-based drug development has evolved as a way to improve

drug development knowledge management and decision making processes through

the use modeling and simulation techniques (Miller et al. 2005). This approach has
been recognized by the pharmaceutical industry as one of the emerging technolo-

gies that can contribute to improve the business model for developing new thera-

peutically and commercially successful drugs, which ultimately will benefit the

patients. In recent years, the field of pharmacokinetic and pharmacodynamic (PK/

PD) modeling has advanced from using empirical functions to describe and sum-

marize the data to the use of mechanism-based models. Mechanism-based PK/PD

modeling is expected to provide meaningful model parameter estimates and

improved predictions of the drug disposition and drug effects, as it incorporates
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underlying principles of pharmacology, physiology, and pathology (Sheiner and

Wakefield 1999). We illustrate this approach here as applied to therapy with

erythropoiesis stimulating agents (ESA), in which several mechanism-based PK/

PD models have been developed to describe the dynamics of red blood cell

turnover, and applied to enhance key decisions in the ESA development process.

In general, the quantity blood cells in the body is determined by two processes:

cell production and cell loss. Under homeostatic conditions, constant proliferation,

differentiation, and maturation of stem cells yield a steady-state level of functional

cells, which remain in the circulation for a period of time, which is determined by

tissue uptake, random destruction, or cell senescence. In addition, several diseases

and pharmacological agents can inhibit or stimulate a biological mechanism that

controls the production or elimination of selected blood cells. As the net balance of

cell production and elimination processes is altered, the steady-state cell counts

may increase or decrease and fall out of the normality range. However, the long

time delays in drug responses observed in the erythropoietic system are mainly due

to the long lifespan of red blood cells (RBC), which is an additional complexity to

take into account in developing mechanism-based PKPD models to quantify the

dynamics of RBC.

Semi-mechanistic PK/PD models, based on the lifespan concept, have been

extensively used to characterize the erythropoiesis and the pharmacological

response to ESA in different populations. Since these models have been applied

during the drug development process, the main objective of this chapter is to provide

real life examples in which modeling and simulation techniques have been effi-

ciently used in different stages of ESA development. The three examples presented

encompass the full course of clinical development from Phase I to Phase III, and

include (1) the application of modeling and simulation techniques to integrate the

information obtained from preclinical stages of drug development and to predict the

outcome of first time in man (FTIM) studies, (2) the selection of an optimal dosing

regimen for a clinical study intended to provide a confirmatory evidence for a drug

label extension, and (3) use of adult PK/PD information to optimize the design and

analysis of pediatric clinical studies.

14.2 Extrapolating PK/PD from Preclinical to Clinical

In this first case study, a simulation strategy based on a mechanistic PK/PD model

was developed to predict the outcome of the FTIM and proof of concept (POC)

study of a ESA. Description of the erythropoiesis model, along with the procedures

to scale the pharmacokinetics and pharmacodynamics based on preclinical in vivo
and in vitro information are presented. The Phase I study design is described, and

the model-based predictions are also shown and discussed (Pérez-Ruixo 2006).

A mechanism-based PK/PD model for recombinant human erythropoietin rHu-

EPO was used to describe the physiological basis of the biological system. An open,

two-compartment disposition model with parallel linear and nonlinear clearance,
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and endogenous EPO at baseline, was used to describe rHu-EPO disposition after

intravenous administration (Olsson 2007). The pharmacodynamic effect of rHu-

EPO on hemoglobin was characterized using a previously developed model, based

on the precursor-dependent indirect pharmacodynamic response and cell life-span

concepts (Krzyzanski et al. 2005). This model has been also recently used to

analyze the pharmacokinetics and pharmacodynamics of the erythropoietin mimeti-

body™ construct, CNTO 528, in healthy subjects (Pérez-Ruixo et al. 2009).
Figure 14.1 displays the scheme of the PK/PD model. Briefly, it is assumed that

the progenitor cells BFU-E are generated at a constant rate of R0 and the differenti-

ation of BFU-E cells into CFU-E is controlled by processes with a first order rate of

kp, which is stimulated by rHu-EPO serum concentration according to a sigmoid

function, characterized by the maximum stimulation of BFU-E to differentiate to

CFU-E (Smax), and rHu-EPO serum concentration eliciting 50% of Smax (SC50). On

average, the BFU-E cells proliferate MCFU times and the factor 2MCFU is included to

reflect that one BFU-E cell gives rise to 2MCFU CFU-E cells. Similarly, CFU-E cells

proliferate, on average,MNOR times and are transformed toNORaccording to the first-

order rate constant kc. It is further assumed that normoblasts are transformed to

reticulocytes (RET) after a maturation time TNOR. The rate of NOR elimination to

the RET pool becomes the NOR production rate delayed by the time TNOR. An
analogous mechanism controls the transformation of RET to mature RBC after their

lifespan TRET expires. The RBC production equals the RET transition rate and RBC

are removed from the circulation because of senescence after their life span TRBC.
Hemoglobin concentration in blood (g/dL) is proportional to the absolute amount of

RET and RBC (cells/L), and the proportionality constant is the mean corpuscular

hemoglobin (MCH) (pg/cell). The PK/PD model described was developed in NON-

MEM® software and the delay differential equations dealingwith the lifespan ofNOR,

RETS, and RBC were implemented following the method as previously described

(Pérez-Ruixo et al. 2005).
Population-based interspecies allometric scaling was used to predict the

expected pharmacokinetic profile of an ESA candidate in normal healthy subjects

according to the methodology previously described (Jolling et al. 2005). Data
collected in rat, rabbit, dog, and monkey were used to extrapolate the model

parameters of an open, two-compartment disposition model with linear elimination

to humans, using body weight and maximum life time potential as scaling factors.

Hgb

CFUE NOR RET MRBCBFUE
R0 Kp KC TNOR TRET TRBC

2M
CFU 2M

NOR

Smax, SC50

Fig. 14.1 Pharmacokinetic and pharmacodynamic model for rHu-EPO in healthy subjects
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With this approach, the coefficients and exponents of the allometric scaling equa-

tions were estimated directly from the raw plasma concentration vs. time data, thus

avoiding the inherent bias arising from the classical allometric scaling procedure

that uses the mean pharmacokinetic parameters for each species and does not

consider the different number of animals in each species and the within-species

variability. Based on in vitro UT-7 cells proliferation assays (Erickson-Miller et al.
2000), the same intrinsic activity and a 45-fold lower potency of the ESA relative to

rHu-EPO was assumed. This ratio was used to scale the potency of the ESA

candidate in humans, given the rHu-EPO potency in healthy subjects obtained

previously (Krzyzanski et al. 2005). In addition, a competitive agonist model was

implemented via Gaddum’s equation to quantify the pharmacodynamic interaction

between the concentration of the ESA candidate and endogenous EPO (Lazareno

and Birdsall 1993).

The Phase I study was designed as a randomized, double blind, placebo con-

trolled, single ascending dose study to evaluate the pharmacokinetics and pharma-

codynamics of an ESA candidate (Pérez-Ruixo et al. 2008). Cohorts of nine

subjects with baseline hemoglobin levels less than 14.5 g/dL were randomized to

receive ESA treatment (N ¼ 6) at each dose level or matched placebo (N ¼ 3). The

various dose levels considered in this study were 1�, 3�, 10�, and 30�. The

objective of the study was to identify the pharmacological effective dose (PED),

defined as the dose level where four or more treated subjects achieve an increase in

hemoglobin from baseline of more than 1 g/dL within 28 day.

Simulations were performed to evaluate the probability of identifying the PED

with the current study design of an ESA candidate (Pérez-Ruixo et al. 2008a). One
hundred cohorts of six subjects receiving ESA treatment were simulated per dose

level according to the Phase I study design and the mechanistic PK/PD model

described above. Body weight and endogenous EPO at baseline were obtained by

resampling from a population of healthy subjects that were included in rHu-EPO

Phase I studies (Olsson-Gislekog et al. 2007). Figure 14.2 displays the observed and
the model-based predicted time course of the change in hemoglobin from baseline

at various doses.
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From the simulated data, the number of subjects per cohort that achieved an

increase in hemoglobin of greater than 1 g/dL within 28 days was calculated and the

probability of achieving the PED was derived (Table 14.1). The dose range where

more than 95% of the replicate cohorts will have four or more subjects with hemoglo-

bin increases ofmore than 1 g/dLwithin 4 weekwas estimated to be between 20� and

70� mg/kg. Notably, the observed PED, 30� mg/kg, falls within the predicted dose

range. A similar approach has been recently used to retrospectively analyze the

preclinical data for rHu-EPO and has been proven to effective in predicting the

human time course of hemoglobin using preclinical data (Mager 2009).

This example has shown that (1) the mechanistic PK/PD model of rHu-EPO

previously published and preclinical information for an ESA candidate is suitable to

provide a better quantification and prediction of the drug disposition and the time

course of hemoglobin in adult healthy subjects and (2) this model was used to

optimize the design of the Phase I studies of ESA candidates, with respect to key

design features (e.g., the number and selection of dose levels, the number of

subjects per dose level, and the PK/PD sampling times). In this way, a quantitative

risk-benefit assessment is obtained by determining the probability of success of a

Phase I study with an ESA candidate, conditional on certain experimental design

considerations, in vitro potency, and preclinical PKPD information.

14.3 Predicting the Outcome of an Extended Dosing

Interval Regimen

In this second example, a simulation strategy based on a mechanistic PK/PD model

(Doshi et al. 2010) was developed to retrospectively predict the outcome of a

previously completed clinical study designed to evaluate monthly dosing of darbe-

poetin alfa (Aranesp®), a hyperglycosylated rHu-EPO analog. Darbepoetin alfa

possesses five amino acid changes and two additional N-linked carbohydrate chains

compared to rHu-EPO, but has the same mechanism of action. However, darbe-

poetin alfa has a threefold increased serum half-life, and increased in vivo potency,

allowing for more convenient dosing regimens for the treatment of anemia asso-

ciated with chronic renal failure (CRF), including extended dosing intervals such as

biweekly dosing for patients who are either receiving or not receiving dialysis

(Doshi et al. 2009). Description of the erythropoiesis model, along with the clinical

Table 14.1 Probability

(95%CI) of achieving the

pharmacological effective

dose (PED) as a function

of dose

Dose level (mg/kg) Probability of PED (95%CI)

1� 0.24 (0.08–0.73)

3� 0.75 (0.64–0.89)

10� 0.97 (0.95–0.99)

30� 0.99 (0.98–1.00)
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study design is presented and the model-based predictions are shown and discussed

relative to the observed results of the clinical study. The dose adaptation algorithm

based on the pharmacodynamic response is described in detail because it influences

the clinical endpoint results, and is a key feature of this simulation exercise.

Therefore, the clinical trial simulations should simultaneously consider both the

dosing regimen conditioned by the pharmacodynamic response and the pharmaco-

dynamic response given by a certain dosing regimen.

Darbepoetin alfa pharmacokinetics following s.c. administration was described

by an open two-compartment disposition model with a linear elimination from the

central compartment and a sequential zero-order input into the depot compartment,

followed by a first-order absorption from the depot compartment into the central

compartment.

Similar to rHu-EPO in the previous example, darbepoetin alfa is assumed to

stimulate the production of progenitor cells in bone marrow, according to a precur-

sor-dependent indirect pharmacodynamic response model (Sharma et al. 1998) as
shown in the equation:

dPRC

dt
¼ kin 1þ Emax � Cg

EC
g
50 þ Cg

� �
� kPRC � PRC

where C denotes the sum of endogenous erythropoietin and exogenous darbepoetin

alfa, kin represents the endogenous production rate of progenitor cells, Emax repre-

sents the maximal stimulatory effect of kin, EC50 denotes the darbepoetin alfa serum

concentration necessary to maintain progenitor cell production rate half maximum,

g represents the Hill coefficient of the sigmoid concentration-effect relationship,

PRC represents the amount of precursor cells, and kPRC is the first-order transition

rate from precursor cell to mature RBC.

The dynamic model describing the time course of hemoglobin following admin-

istration of darbepoetin alfa in nondialysis CRF subjects was based on the concept

of maturation-structured cytokinetic model introduced previously (Harker et al.
2000), and further applied later (Roskos et al. 2006; Agoram et al. 2006; Pérez-
Ruixo et al. 2008b; Hamrén et al. 2008). The backbone structure of such a model is

a series of compartments linked in a catenary fashion by first-order cell transfer

rates. Each compartment represents a pool of RBC of the increased mean age by

1/k, where k denotes the first-order rate constant between the aging compartments.

A cascade of four aging compartments (NRBC ¼ 4) with the transfer rate constants

equal to NRBC/TRBC were selected to account for the hemoglobin level in the RBC,

where TRBC is the mean RBC lifespan. The number of compartments was arbitrarily

selected based on previous literature and considered that four compartments would

be sufficiently large to result in a smoothed gamma distribution of the RBC cell

lifespan (Agoram et al. 2006).
The precursor cells in bone marrow are released to blood as the youngest

circulating reticulocytes (RBC1) with a first-order rate, kPRC:
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dRBC1

dt
¼ kPRC � PRC� NRBC

TRBC
� RBC1

These reticulocytes then mature to RBC through a series of aging compartments

as follows:

dRBCj

dt
¼ NRBC

TRBC
� ðRBCj�1 � RBCjÞ; j ¼ 2; . . . ;NRBC

Therefore, the circulating RBC level is the sum of RBC at all ages,

RBC ¼ RBC1 þ � � � þ RBCNRBC

As hemoglobin is directly proportional to the product of RBC and MCH,

assuming MCH remains constant within a subject;

Hb ¼ Hb1 þ � � � þ HbNRBC

Therefore, the RBC lifespan is equivalent to hemoglobin lifespan and, the initial

conditions for PRC and RBCj (or Hbj) can be determined from the baseline

hemoglobin (Hb0) assuming a steady-state condition holds before the drug is

administered. The initial conditions were as follows:

PRC0 ¼ Hb0 � TPRC
TRBC

; i ¼ 1; . . . ;NP

and

Hbj0 ¼ Hb0

NRBC

; j ¼ 1; . . . ;NRBC

In addition, the endogenous progenitor production rate constant at baseline was

calculated as follows:

kin ¼ Hb0

TRBC � 1þ Emax � eEPOg

EC
g
50 þeEPO

g

� �

This model structure has shown to adequately describe the hemoglobin time course

following the administration of different dosing schemes of darbepoetin alfa in

another target population (Agoram et al. 2006) and was used to determine the

model ability to predict the outcome of a single arm clinical study (Agarwal et al.
2006) intended to demonstrate the efficacy of monthly darbepoetin alfa in nondialysis

CRF subjects.
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The objectives of the clinical study were to assess the efficacy and safety of the

darbepoetin alfa monthly dosing for the maintenance treatment of anemia in

subjects with CRF not receiving dialysis. A total of 152 subjects were enrolled in

the study and treated with darbepoetin alfa once monthly (QM), administered

subcutaneously for 32 weeks with 129 of 152 subjects completing the study.

Subjects were eligible if (1) they were in maintenance treatment receiving stable

biweekly darbepoetin alfa doses, with dose stability defined as less than 25%

change in dose over the screening period (6 weeks immediately before enrollment)

and no missed doses in this period, and (2) mean of two hemoglobin values drawn at

least 3 days apart during the screening period was between 11 and 13 g/dL. The

starting unit dose of subcutaneous darbepoetin alfa was determined by calculating a

subject’s total dose in the month preceding enrollment and rounding to the nearest

unit dose (20, 30, 40, 50, 60, 80, 100, 150, 200, or 300 mg in each prefilled syringe).
After starting the subcutaneous treatment with darbepoetin alfa treatment, doses

were adjusted to maintain hemoglobin levels between 11 and 13 g/dL, while

limiting the hemoglobin rate of rise to �1.0 g/dL in the 2-week period after each

dose. Dose adjustments were made as increases or decreases to the next higher or

lower dose level in the prefilled syringes according to the following:

1. Increased to the next prefilled syringe dose if the most recent hemoglobin

measurement was <11.0 g/dL

2. Maintained if the most recent hemoglobin concentration was �11.0 to

�13.0 g/dL

3. Reduced to the next lower prefilled syringe dose if hemoglobin concentration

was >13.0 to �14.0 g/dL or the hemoglobin rate of rise was >1.0 g/dL in the

2-week period following a dose

4. Withheld the dose if the most recent hemoglobin concentration was

>14.0 g/day, and then restarted darbepoetin alfa at the next lower prefilled

syringe dose when the hemoglobin concentration was �13.0 g/dL

If a decrease to the next prefilled syringe dose level was required when receiving

the lowest prefilled syringe (20 mg), placebo was administered until an increase to

the next higher prefilled syringe (20 mg) was needed. Hemoglobin samples were

collected prior to darbepoetin alfa administration, and then every 2 weeks for

32 weeks. Dose adjustments were made following the monthly hemoglobin obser-

vation and prior to the monthly dose. The study was conducted over a 32-week

period, with the final 8 weeks defined as the evaluation phase for obtaining the trial

endpoints. The primary endpoint of the study was the proportion of subjects who

maintained a mean hemoglobin �11 g/dL during the evaluation period. Secondary

endpoints included the time course of hemoglobin and darbepoetin alfa dose over

the 32-week study duration.

The design of the clinical study and the dosing algorithmwere implemented within

the Trial Simulator version 2.2 (Pharsight Corporation, a Certara Company, Saint

Louis, MO) software. Based on the PKPD parameters obtained from a bootstrap

replicate and the design of the clinical study, the time course of hemoglobin and

darbepoetin alfa dosing was simulated for 300 nondialysis CRF subjects receiving
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darbepoetin alfa QM dosing. Individual subject parameters were sampled from the

distribution provided by the fixed and random effects of the PKPD model. As body

weight was related to PK model parameters, body weight was sampled from a

distribution which described the population body weight of CRF subjects not on

dialysis, who would be likely to enroll in the study. This process was repeated 250

times using the PKPD parameters obtained from different bootstrap replicates in order

to account for the statistical uncertainty in model parameters at the clinical trial level.

As the clinical study was conducted in maintenance subjects with CRF not on

dialysis receiving stable doses of darbepoetin alfa every 2 weeks, the clinical trial

simulation required a pool of subjects receiving stable doses Q2W to enroll in the

simulated clinical trial. To create the pool of subjects, nearly twice the number of

subjects evaluated in the study were simulated and dosed with darbepoetin alfa

Q2W with a run-in period of 92 weeks, assuming these subjects were darbepoetin

alfa naı̈ve subjects. The number of subjects simulated and the duration of the run-in

period were chosen to ensure a sufficient number of eligible subjects, from which a

sample of 129 subjects was randomly selected to match the 129 subjects evaluated

in the clinical study. The duration of the run-in period was arbitrarily selected based

on the RBC lifespan and considering that the duration of the study should be longer

than five times the RBC lifespan in order to achieve steady-state hemoglobin levels.

The primary and secondary endpoints for each virtual clinical trial were computed

and then summary statistics across the 250 replicates were used to compare with the

observed endpoints.

The primary endpoint of the clinical study was the proportion of subjects main-

taining hemoglobin�11 g/dL and the model-based simulation suggested it should be

79.1% (95%CI: 70.5–86.8%), which was in line with the point estimate of 85%

obtained in the clinical study. In addition, the mean change of hemoglobin from

baseline over time and its standard deviation for the clinical study is presented in

Fig. 14.3, together with the model-based prediction and 95% confidence interval

(shaded areas). This figure provides clear evidence that the observed time course

of mean change of hemoglobin from baseline and its variability in the clinical study

falls within the 95% confidence interval of the model-based predictions for that

particular trial. Actually, the mean hemoglobin concentrations remained between

11.2 and 12.35 g/dL throughout the study and the simulation subsequently confirmed

that finding. The mean change in hemoglobin concentration between baseline and the

evaluation period was �0.18 g/dL (95%CI: �0.34 to �0.01 g/dL) for the observed

data, whichmatched themodel based prediction�0.20 g/dL (95%CI:�0.34 to 0.06 g/

dL). Furthermore, the mean darbepoetin dose observed during the evaluation period

was 125 mg/month, which is similar to the model-based prediction of 104 mg/month,

and clearly falls within the 95% confidence intervals (66–181 mg/month).

Taken together these results collectively have shown that (1) the mechanistic

PK/PD model for darbepoetin alfa developed based on weekly and biweekly

(Doshi et al. 2010) dosing is suitable to quantify the percentage of subjects within

certain target, time course of hemoglobin and the darbepoetin dose following the

monthly administration for the maintenance treatment in adult subjects with CRF

not on dialysis and (2) this model was used to optimize the design of additional
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randomized studies intended to compare new darbepoetin alfa dosing regimens,

with respect to key design features such as dose and schedule selection, dose

adjustment algorithm, sample size and noninferiority margins. In this way, a

quantitative risk-benefit assessment was obtained by determining the probability

of success of a clinical study with new darbepoetin alfa dosing regimens, condi-

tional on certain experimental design, the darbepoetin alfa initial dose and dose

adjustment, and PKPD characteristics.

14.4 Pediatric Study Design

The rationale for dose selection for pediatric patients is often times based on

empirical extrapolations from the recommended dose in adults. As specified in

the International Conference on Harmonisation (ICH) E11 harmonized guideline,

the extrapolation of drug efficacy is justified if the following requirements have

been met: (1) the drug is to be used for the same indication in children and adults,

(2) the disease process is similar in children and adults, and (3) the outcome of

therapy is likely to be comparable in children and adults (US FDA 2000). These

requirements are clearly met by ESA because the pathophysiological processes

involved in chronic kidney failure in adults do not differ significantly from those

observed in children, the end point for estimation of efficacy in clinical trials is the

same in both populations, as indicated by the transfusion rate and/or the change

Study Week

C
ha

ng
e 

in
 H

em
og

lo
bi

n 
fr

om
 B

as
el

in
e 

(g
/d

L)

1 5 9 13 17 21 25 29 33

–2

–1

0

1

2

Fig. 14.3 Observed (black lines) and 95% confidence interval of model-based prediction (shaded
area) of the mean and standard deviation of the change in hemoglobin from baseline over time

following darbepoetin QM dosing

320 J.J. Pérez-Ruixo et al.



from baseline in hemoglobin, and given the mechanism of action of ESA, the

exposure–effect relationship might be assumed to be independent of age. In this

context, dose selection can be based on the evidence of pharmacokinetic differ-

ences in children relative to a reference adult population. The challenge is to

determine the best use of prior information that is available from adults.

Traditional approaches have used size-related scaling because an implicit

assumption is made that differences in drug exposure because of developmental

growth can be accounted for by correcting for differences in body size (Anderson

and Holford 2008). A logical step further is to determine whether combining

pharmacokinetic prior information from adults and allometric relationships can

be used to further improve pediatric dose prediction. To understand the basis of

the differences in distributions of pharmacokinetic parameters after accounting for

the differences in body size, important methodological aspects needs to be consid-

ered. In this context, modeling and simulation techniques can be optimally used to

apply the current guidelines for pharmacokinetic bridging.

Darbepoetin alfa was selected as a paradigm compound for the evaluation of

different methodologies, after careful consideration of the regulatory guidelines for

the use of pharmacokinetic bridging. Dosing recommendations exist for the use of

darbepoetin alfa in children; however, in this example, the available pediatric data

from a clinical study (Lerner et al. 2002) were treated as if this analysis was a

prospective evaluation for a pediatric indication.

The objectives of the clinical study were to assess the pharmacokinetic profile of a

single intravenous (i.v.) and subcutaneous (s.c.) dose of darbepoetin alfa in pediatric

subjects with CRF receiving or not receiving dialysis, and to investigate the safety

profile of darbepoetin alfa in this setting. Twelve pediatric subjects were treated with a

single i.v. or s.c. injection of 0.5 mg/kg darbepoetin alfa on day 1 followed by a second
0.5 mg/kg injection via the alternate route 2 weeks later. Full pharmacokinetic profiles

were obtained following the first dose (day 1) and after the second dose (day 15).

Serum samples were drawn immediately prior to intravenous administration and at 5,

30, and 60min, and 2, 5, 8, 24, 48, 72, 96, and 168 h postdose. Following subcutaneous

administration, serum samples were drawn immediately prior to dosing and at 10, 24,

34, 48, 58, 72, 96, 120, and 168 h post dose.

Before analyzing the pediatric data, a previously developed population pharma-

cokinetic model (Doshi et al. 2010) for adults was evaluated by using visual

predictive check (VPC) in order to confirm the ability of the model to describe

adult (internal VPC) and pediatric (external VPC) data. A mixed-effect model

based on a two compartment pharmacokinetic model with sequential zero-order

input into depot compartment followed by first-order absorption from depot into

central compartment was suitable to describe the darbepoetin alfa pharmacokinetics

following intravenous and subcutaneous dosing (Fig. 14.4). Notably, both the

clearance and volume of distribution parameters were allometrically scaled on the

basis of body weight with exponents fixed to 0.75 and 1.00, respectively.

To analyze the pediatric data, three methods (A, B, and C) based on the

population pharmacokinetic model developed for adults were evaluated using

NONMEM software. Method A estimated the pediatric pharmacokinetic parameters
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of themodel developed for adults based on the data obtained from the pediatric trial. In

method B, the estimates of the population pharmacokinetic model parameters

obtained from adults were updated by fitting the model to a combined dataset of

adult and pediatric data. Method C employed the population pharmacokinetic para-

meters derived from adults as prior information for a Bayesian estimation of the

pharmacokinetic parameters in children using the data obtained from the pediatric

trial (using the PRIOR subroutine in NONMEMVI) (Olsson-Gisleskog et al. 2002).
The parameter estimates from these three methods are shown in Table 14.2.

Interestingly, the precision of parameter estimates using method A could not be

obtained, probably because the data available were not sufficient to support the

estimation of the parameters in the adult pharmacokinetic model. This reason can

also explain the completely unrealistic estimates of some parameters using method

A. The precision in the estimate of model parameters using method B is similar or

lower than the precision obtained using method C, whereas the residual variability

is higher for method B as compared to method C. Taken together, these results

suggest that the method C provided the most accurate and precise parameter

estimation in children, given the prior information available from adults.

To assess whether adults and children can be consideredwithin the same parameter

distributions, some authors have suggested dichotomizing the data by assuming that

there exist two populations that do not share the same pharmacokinetic parameter

distributions (Cella et al. 2010). After adjusting by relevant patient covariates, the
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results of a random dichotomization implemented by the MIXTURE subroutine in

NONMEM are compared with the results of an arbitrary dichotomization implemen-

ted by stratifying by age (i.e., child<18 years or adult�18 years). However, here we

proposed a parametric bootstrap approach to compare the pharmacokinetic parameter

distribution between adults and children. Briefly, the adult pharmacokinetic model

was used to simulate data for one pediatric study, which then was analyzed using the

adult pharmacokinetic model parameters as a prior information. This process was

repeated 1,000 times using a different set of pharmacokinetic model parameters,

obtained from a nonparametric bootstrap analysis of the adult data. The distribution

of pediatric PK parameters obtained from this parametric bootstrap analysis was then

comparedwith the estimated parameters in children usingmethod C. The fixed effects

parameters estimated using method C were within the 95% confidence interval of the

parametric bootstrap, thus confirming the similarity of the pharmacokinetic parameter

point estimates between adults and children (Table 14.3). However, although the

between-subject variability in the volume of distribution of the central compartment,

the intercomparmental clearance and the first-order absorption rate constant was 40,

17, and 75% larger in children compared to adults, the residual variability in darbe-

poetin alfa concentrations was 21% lower for children. These results demonstrate the

utility of the proposed approach to detect differences in the distribution of pharmaco-

kinetic parameters between adults and children.

The new pediatric European Union (EU) regulation and the need to balance

the demand for pediatric studies with the ethical need for minimizing the burden

of studies in children necessitate optimal techniques in the assessment of safety/

efficacy and use of drugs in children. Modeling and simulation (M&S) is one way to

circumvent some difficulties in developing medicinal products in children. The

example presented illustrates how modeling and simulation techniques can be opti-

mally used to integrate all available prior information, which will be helpful to

optimize pediatric dose selection. As discussed in an exposure–response relationship

guidance for industry from the US Food and Drug Administration (US FDA 2003),

models developed using the PRIOR subroutine in NONMEM that have been properly

evaluated can be used to plan future PK/PD studies for pediatric patients and optimize

key study features such as sample sizes, sampling time points, or study duration. Other

applications ofM&S include selection of the pediatric drug dosing for clinical studies

(especially in newborns, including the very-low-birth-weight premature newborns),

pediatric product formulation, and labeling for pediatric doses and indications from a

clinical pharmacology perspective.
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Chapter 15

Model Based Development of an Agent

for the Treatment of Generalized Anxiety

Disorder

Peter A. Lockwood and Jaap W. Mandema

Abstract PD0332334 (PD334) is a novel beta amino acid analog of pregabalin

(Pgb). Pregabalin has been previously studied in six clinical studies of general

anxiety disorder (GAD). Because these compounds have similar pharmacology,

certain features of their dose response relationships could be similar. Thus, data

from the pregabalin GAD program was used to provide information about the safety

(incidence of somnolence) and efficacy (reduction in Hamilton Anxiety Rating

score) dose–response relationships for PD334 in GAD. This chapter illustrates the

use of prior pregabalin data from other large-scale clinical studies to select the

PD334 dose range to study in Phase 3, and the implementation of models based on

assumptions of common PD334/pregabalin dose–response features that resulted

from consideration of the comparative pharmacology. External validation of the

PD334 dose–response model with Phase 3 data is demonstrated.

15.1 Introduction

The value of integrating pharmacologically based dose–response modeling into the

drug development process is well recognized. This process facilitates important

decision-making related to dose selection, trial design and development strategies.

Lalonde et al. (2007) provide a succinct review of modeling and simulation in clinical

drug development and discuss where assumption rich versus assumption minimal

models are applicable in the development process, and how these elements fit together

to inform development strategy and decision making. The authors emphasize that

effective drug development integrates data across studies. Models are the tools for

enabling this integration, reflecting what is understood and what is assumed, and

which must be continually updated as new information becomes available.
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Mandema et al. (2005b) described how safety and efficacy data obtained from a

number of clinical studies of drugs (statins) that lowered low-density lipoprotein

cholesterol (LDL-C) or inhibited cholesterol absorption (ezetimibe) were integrated

to evaluate the efficacy of gemcabene, a novel lipid-lowering agent that was to be

given in combination with atorvastatin. The modeling demonstrated that gemca-

bene provided an additional LDL-C lowering benefit at low doses of atorvastatin,

but almost no incremental benefit at high doses of atorvastatin. This was different

from ezetimibe, which provided benefit across the entire atorvastatin labeled dose

range. The model-based analysis provided an indirect quantitative comparison of

the LDL lowering effect of atorvastatin/ezetimibe versus atorvastatin/gemcabene,

which led to a decision to terminate gemcabene development.

Mandema and Wang (2003) presented a case study that illustrates how an

integrated drug model derived from literature reports of seven dose-ranging clinical

studies of the 5HT agonists sumatriptan, zolmitriptan, naratriptan, and rizatriptan,

was used to optimize the Phase 2 dose-finding strategy for a new 5HT agonist

indicated for the relief of moderate to severe migraine pain. Subsequent to this, the

dose–response relationship of sumatriptan and eletriptan for patients that achieve

migrane pain relief up to 4 h after treatment was reported based on an integrated

analysis of results from 19 randomized clinical trials (Mandema et al. 2005a).
Noteworthy in these examples is that the models used to support decision-

making were not highly complex, were easy to comprehend by non-modeling

experts and could be derived and applied quickly to influence decisions made by

the development team. In this manuscript we describe how data from a compound

with the same mechanism-of-action (pregabalin) was integrated to derive models

characterizing the dose–response relationship for both efficacy and tolerability of a

novel a2d ligand (PD334) being developed for generalized anxiety disorder (GAD).
The application of these models to select doses for Phase 3 studies is described and

the actual efficacy of the selected doses is compared to predicted outcomes after 6

weeks of treatment in a Phase 3 study.

GAD is a condition characterized by ongoing, excessive anxiety and worry that

the affected individual finds difficult to control. The lifetime prevalence rate in the

general population in the United States is approximately 5%, based on the Diag-

nostic and Statistical Manual of Mental Disorders (DSM) criteria for GAD. In the

primary care setting, the prevalence rate is estimated to be approximately 8%,

rendering GAD to be the most frequent anxiety disorder in primary care and the

second most frequent psychiatric disorder after depression (Weisberg 2009;

Wittchen and Hoyer 2001). Individuals with GAD can experience a considerable

degree of impairment and disability, which leads to significant economic costs

resulting from lost productivity and high medical resource use (Rickels and Rynn

2001). Pregabalin, an a2d ligand like PD334, has been shown to be efficacious in

GAD (Pande et al. 2003; Feltner et al. 2003; Rickels et al. 2005; Pohl et al. 2005;
Montgomery et al. 2006).

The a2d site is a subunit of voltage-gated calcium channels located in the central

nervous system (CNS). Four a2d subtypes have been identified, of which types 1

(a2d-1) and 2 (a2d-2) are bound by known a2d ligands. The term “Ca2+ channel
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a2d ligands” has recently been applied to an evolving drug class that includes

gabapentin (Neurontin®) and pregabalin (Lyrica®). Evidence indicates a relation-

ship between a2d subunit binding and the modulation of processes that result in the

release of neurotransmitters. This modulation is characterized by a reduction

of excessive neurotransmitter release that is observed in certain neurological

and psychiatric disorders (Dooley et al. 2007). Ligands for a2d subunits are a

new class of compounds for the treatment of GAD. PD334, a high-affinity

a2d ligand considered to have a similar mechanism of action to pregabalin, shows

approximately sevenfold selectivity for a2d-1 over a2d-2 (based on assays in

membrane preparations from cells expressing recombinant porcine a2d-1 or

human a2d-2 proteins; data on file). Pregabalin on the other hand shows similar

selectivity for the two subunits. The increased selectivity of PD334 could result in

an improved therapeutic window if efficacy and tolerability are mediated through

the different subunits. Although the mechanism of action of PD334 is yet to be fully

elucidated, results from studies in genetically modified mice with a mutation in the

a2d-1 gene, and with compounds that are structurally related to PD334, indicate that

binding to the a2d subunit is necessary for the anxiolytic effect of the drug. PD334

has shown activity in animal models of anxiety, and from preclinical studies,

the projected daily dose effective in humans was expected to be around 500-mg

(data on file).

The PD334 dose–response relationships for efficacy and tolerability were based

on a simultaneous analysis of either the safety or the efficacy data obtained from a

Phase 2 proof-of-concept (POC) study for this compound, and Phase 2 and 3

clinical studies of pregabalin. A simultaneous analysis with pregabalin was thought

to be helpful to provide an indirect comparison of PD334 to pregabalin. Addition-

ally, a simultaneous analysis could reduce the uncertainty in the dose–response

relationship of PD334 because it was plausible that certain parameters, such as the

shape and maximal effect of the dose–response relationship could be similar for the

two compounds because of their similar mechanism of action. Modeling of preclin-

ical data obtained in the Vogel water lick conflict studies (Vogel et al. 1971) in male

Wistar rats (data on file) supported the assumption of a similar Emax for the parent

compounds. The Vogel water-lick conflict test is an animal model predictive of

anxiety. Rats are deprived of water for 24-h, then allowed to drink by licking from a

tube, then deprived of water for a further 24-h. When the rats are allowed to drink

on a second occasion, they receive a 1-s 1-mA shock through the drink tube, after

every ten licks. Thus, a conflict or anxiety-producing situation exists. Rats are

motivated to drink, however they are inhibited by the shock. Anxiety is reflected

by the low amounts of drinking. Standard anxiolytic drugs produce effects that

allow rats to overcome this behavioral inhibition and drink despite the shock.

Compounds that significantly increase the number of shock episodes over concur-

rently run controls are presumed to possess anxiolytic-like properties. Observing a

similar Emax for the clinical efficacy and tolerability of compounds with a similar

mechanism of action is not unprecedented (Mandema et al. 2005a, b). Thus, data
from the pregabalin GAD program could provide some information about the

dose–response relationships for PD334.
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15.2 Materials and Methods

15.2.1 Data

The combined dose–response analysis was undertaken using a database of 24

efficacy and tolerability observations across six pregabalin studies and one

PD334 trial listed in Table 15.1. This database comprised observations from all

Phase 2 and 3 trials of pregabalin in GAD. The endpoints analyzed were the least

squares mean change from baseline HAM-A score at end of study (last observation

carried forward (LOCF)) and incidence of somnolence. Somnolence was noted as

the dominating adverse event in the pregabalin and PD334 clinical studies.

Table 15.1 Summary of studies included in the analysis

Study Description Doses and sample size

1007 A Phase 2, randomized, double-blind,

placebo-controlled, parallel group,

5-week trial to assess the efficacy and

safety of PD334 compared to placebo

and alprazolam extended-release in

patients with generalized anxiety

disorder

PD334 250 mg BID, PD334 100-mg BID,

placebo, alprazolam ER 1 mg BID

021 A placebo controlled study of pregabalin

(Pgb) and lorazepam in patients with

generalized anxiety disorder (Pande

et al. 2003)

600 mg day Pgb, 150 mg day Pgb, placebo,

6 mg day lorezepam; 64 patients/trt,

4-weeks of trt: 1-week titration; TID

regimen, 1-week taper

025 A placebo controlled study of pregabalin

and lorazepam in patients with

generalized anxiety disorder

600 mg day Pgb, 150 mg day Pgb, placebo,

6 mg day lorezepam; 64 patients/trt,

4-weeks of trt: 1-week titration; TID

regimen; 1-week taper

026 A placebo-controlled study of pregabalin

and lorazepam in patients with

generalized anxiety disorder (Feltner

et al. 2003)

600 mg day Pgb, 150 mg day Pgb, placebo,

6 mg day lorezepam; 64 patients/trt,

4-weeks of trt: 1-week titration; TID

regimen; 1-week taper

083 A placebo-controlled study of pregabalin

and alprazolam in patients with

generalized anxiety disorder (Rickels

et al. 2005)

600 mg day Pgb, 450 mg day Pgb, 300 mg

day Pgb, placebo, 1.5 mg day

alprazolam; 97 patients/trt, 4-weeks of

trt: 1 week titration; TID regimen;

1-week taper

085 A placebo-controlled study of pregabalin

dosed BID and TID in patients with

generalized anxiety disorder

(Pohl et al. 2005)

450 mg day Pgb (150 TID), 400 mg day Pgb

(200 BID), 200 mg day (100 BID),

placebo; 97 patients/trt, 6-weeks of trt:

1-week titration; 1-week taper

087 A placebo-controlled study of pregabalin

and venlafaxine in patients with

generalized anxiety disorder

(Montgomery et al. 2006)

600 mg day Pgb (300 BID), 400 mg day Pgb

(200 BID), venlafaxine 75 mg (37.5

BID), placebo, 97 patients/trt, 6-weeks

of trt: 1-week titration; 1-week taper

trt :Treatment
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15.2.2 Dose Response Analysis

When combining results from different trials, the random trial-to-trial differences in

the patient populations must be taken into account. A trial-specific, random-effects

model accounts for such heterogeneity by treating the model parameters as random

variables. Therefore, dose–response models with both fixed and random effects

(mixed effects models) were fit to the efficacy and safety data using maximum

likelihood estimation methods implemented in S-Plus version 6.2.

The base model for the analysis of the efficacy and safety data assumed the

following:

1. The dose–response relationship for both compounds was non-linear

2. The maximum HAM-A change from baseline (Emax) and the maximum proba-

bility of somnolence were the same for pregabalin and PD334

3. The shape of the dose–response relationship for pregabalin and PD334 was

similar for the efficacy and tolerability endpoints

4. The potency of pregabalin and PD334 with respect to efficacy and tolerability

was different, allowing for a different therapeutic index between the two com-

pounds

5. All heterogeneity in response across trials can be explained by variability in the

placebo response

All assumptions were tested as described in the model selection section. If a

certain assumption was rejected by the data, the model was changed accordingly.

15.2.2.1 Efficacy

The basic model, describing the HAM-A change from baseline score versus dose, is

described in (15.1).

HAM-Aij ¼ E0 þ Emax � Doseg
Doseg þ EDPgb

g
50 � P

þ �i þ eij (15.1)

In this equation,HAM-Aij is the estimated least squaresmeanHAM-Achange from

baseline score for the jth arm in the ith trial; E0 is the placebo response; Emax is the

maximal drug effect, reflecting the maximal difference in response between placebo

and active treatment; Dose is the dose in mg/day; EDPgb50 is the pregabalin dose to

achieve 50% ofEmax; P is the relative potency between PD334 and pregabalin (P ¼ 1

for pregabalin administration); g is the Hill coefficient for defining the shape and is

equal to one unless specified otherwise, �i is a trial specific random effect that is

normally distributed with mean 0 and variance o2 that accounts for the trial-to-trial

variability in placebo response. eij is the residual variability with variance s
2/Nij.Nij is

the sample size for the jth arm in the ith trial ands2 is the between subject variance. The
between subject variance was fixed to the computed weighted average that was based

on the standard error and subject number reported for each arm in the seven trials.
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The pregabalin and PD334 studies were of either 4 or 6 weeks duration, therefore

the impact of time on the placebo response and the maximum drug effect was

evaluated. Other models that were evaluated, incorporated sigmoidicity in the drug

effect (g 6¼ 1), a separate maximum drug effect (Emax) for PD334 and pregabalin or

trial specific random variation in Emax to evaluate additional heterogeneity in the

effects between trials.

15.2.2.2 Tolerability

Somnolence was noted as the dominating adverse event in the pregabalin and

PD334 clinical studies. A logistic regression analysis was used to characterize the

dose–response relationship for the probability of somnolence [P(Som)] and the

base model is displayed in (15.2).

logitðPðSomÞijÞ ¼ E0 þ Emax � Dose
Doseþ EDPgb50 � Pþ �i (15.2)

In this equation, P(Som)ij represents the probability of a patient having a

somnolence event in the jth treatment arm of the ith trial; E0 is the placebo response;

Emax is the maximal drug effect, reflecting the maximal difference in response

between placebo and active treatment; Dose is the dose in mg/day; EDPgb50 is the

pregabalin dose to achieve 50% of Emax; P is the relative potency between PD334

and pregabalin and �i is a trial specific random effect that is normally distributed

with mean 0 and varianceo2 that accounts for the trial-to-trial variability in placebo

response. The number of patients with a somnolence event out of the total number

of patients Nij in the jth treatment arm of the ith trial was assumed to follow a

binomial distribution according to the probability predicted by the model above.

Models that incorporated the considerations listed previously (e.g., a separate

maximum drug effect (Emax) for PD334 and pregabalin) were evaluated.

15.2.2.3 Model Selection

Model selection was based on the Log Likelihood criterion. The difference in two

times the Log of the Likelihood for a full and reduced model (likelihood ratio) is

approximately asymptotically w2 distributed, with degrees of freedom equal to the

difference in number of parameters between the two models. Therefore, an addi-

tional parameter in the model would be declared as statistically significant if the

difference was greater than the critical value of 3.841 at the 5% level of significance.

15.2.2.4 Model Uncertainty

A bootstrap analysis was used to characterize the uncertainty in the model parameter

estimates. A total of 1,000 “new” efficacy data sets were generated from the original

data by sampling the mean HAM-A change from baseline from the distribution
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characterized by the observed least squares mean and standard error for each

treatment arm in each trial. Similarly, 1,000 new safety data sets were generated

from the original data by sampling from a binomial distribution characterized by the

observed somnolence incidence and sample size for each treatment arm in the trial.

Model parameters were estimated for each “new” data set. If the final model failed to

converge, an alternative model was selected to ensure that all of the bootstrapped

data sets contributed to the estimation of the uncertainty in the dose response. The

alternative models were as follows:

1. Dose independent response for PD334, Emax dose response model for pregabalin

2. Dose independent response for pregabalin, Emax dose response model for PD334

3. Dose independent response for pregabalin and PD334

4. Linear dose response model for PD334, Emax dose response model for pregabalin

5. Linear dose response model for pregabalin, Emax dose response model for

PD334

6. Linear dose response model for pregabalin and PD334

The model selection was based on a comparison of the log likelihood value. The

preferred alternative model in all non-convergence instances was a linear dose

response model for PD334 and an Emax dose response model for pregabalin.

The HAM-A change from baseline or the probability of somnolence was pre-

dicted with each set of parameters over a dose range of 0 to 800-mg. This yielded a

collection of dose–response curves that characterized the uncertainty about the

pregabalin and PD334 mean dose–response relationship. Plots of the expected

dose–response together with 80% confidence intervals were constructed and

responses at 100, 200, 300, 400, 500, 600, 700, and 800 mg were tabulated.

Confidence intervals were constructed by calculating percentiles of the distribu-

tions of efficacy and safety outcomes at each dose. For example, 80% confidence

intervals were constructed using the 10th and 90th percentiles.

15.2.3 Dose Selection for Phase 3 Studies

Based on the dose–response relationship for the HAM-A change from baseline or the

probability of somnolence, the joint probabilities of achieving a target profile were

derived for different doses of PD334 and a dose range was selected for Phase 3 that

maximized the probability of achieving the target profile. For PD334, the target profile

was an improvement (i.e., reduction in HAM-A score) over placebo in the HAM-A

score of at least two units and a placebo adjusted incidence of somnolence of less than

25%. A two-point change (i.e., reduction) in HAM-A score is considered clinically

significant. The probability of achieving the target profile, i.e., the probability

of technical success, was calculated assuming that one, two or three doses would

be taken forward to Phase 3. The joint probabilities were derived assuming the

efficacy and safety endpoints were independent – i.e., there was no correlation

between HAM-A and somnolence scores. The upper limit of the dose range was

constrained to 600mgbecause of concerns aboutmanufacturing costs for higher doses.
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15.2.4 Model Validation

Three doses that covered the desired dose range for Phase 3 studies, according to

the target profile, were subsequently evaluated in a Phase 3 trial. The Phase 3 study

was a randomized, double blind, placebo-controlled, fixed-dose, parallel group,

multi-site study in 520 outpatients with generalized anxiety disorder. Subjects

(130/treatment arm) were randomized to either a placebo arm or one of three

active treatment groups – 175 mg BID, 225 mg BID or 300 mg BID. The study

consisted of a 7–14 day screening phase; an 8-week double-blind treatment phase;

and a 2-week double-blind dose-tapering follow-up phase. The subjects enrolled

were men and women ages 18–65 who meet DSM-IV criteria for generalized

anxiety disorder with a preponderance of anxious symptoms over depressive symp-

toms. Each of the doses studied was titrated to the desired dose for 1 week. Efficacy

measurements were obtained at weeks 1, 2, 4, 6, and 8. To validate the PD334

efficacy model, a dose–response relationship for the HAM-A change from baseline

endpoint was predicted for this trial on basis of the Phase 2 model. The predictions

included the uncertainty in the estimated dose–response relationship and sample

size based uncertainty. Clinical HAM-A change from baseline outcomes for each of

the doses evaluated in the Phase 3 study were then compared to the model

prediction. Week 6 outcomes of the clinical study were selected for model valida-

tion because the model was derived using data from studies of either 4 or 6 weeks

duration.

15.3 Results

15.3.1 Efficacy

The change in HAM-A was best described by an Emax dose–response relationship

that assumed a similar Emax between pregabalin and PD334. Adding a different

Emax for PD334 did not improve the fit. A sigmoid Emax model did not significantly

improve the fit (p ¼ 0.15) compared to the Emax model. The ED50 (p ¼ 0.78) and

Emax (p = 0.98) were not significantly different after taking the trial duration

differences (i.e., 4 and 6 weeks) into account. There was no significant additional

between trial heterogeneity in Emax. As expected, there was a significant increase in

placebo response at 6 weeks compared to 4 weeks (p ¼ 0.008). Figure 15.1 dis-

plays the goodness of fit of the model to the HAM-A dose–response data for the

individual pregabalin and PD334 (study 1007) clinical studies, and illustrates the

variability in the placebo response. The figure shows that the HAM-A effect is well

predicted for each dose after accounting for the trial-to-trial variability in placebo

response. Parameter estimates and 80% confidence intervals for the fixed and
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random effects are displayed in Table 15.2. The maximum effect mediated by either

drug is a 3.7-point change in the HAM-A score. The ED50 for pregabalin is 100 and

268-mg for PD334.
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Fig. 15.1 Observed vs. predicted HAM-A change from baseline relative to dose for each study.

The symbols and bars represent the observed last observation carried forward (LOCF) mean and

95% confidence interval. The solid line is the model prediction HAM-A change from baseline

Table 15.2 Estimates of fixed and random effects derived from HAM-A dose–response model

Parameter Estimate 80% confidence interval

Emax (HAM-A units) �3.71 �5.07 to �3.07

ED50 pregabalin (mg) 100 36 to 271

ED50 PD33450 (mg) 268 101 to 797

Relative potency 2.68 0.80 to 9.58

E0–4 week (HAM-A units)a �7.92 �8.34 to �7.47

E0–6 week (HAM-A units)b �10.51 �11.0 to �9.93

o� (between study SD in placebo response) 0.78 0.56 to 1.08

s (between subject SD)c 7.21

SD standard deviation (HAM-A units)
aMean placebo effect at 4-weeks
bMean placebo effect at 6-weeks
cThis parameter was fixed to a weighted average observed across all studies
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15.3.2 Tolerability

The somnolence incidence was best described by an Emax dose–response relation-

ship that assumed a similar Emax between pregabalin and PD334. Adding a different

Emax for PD334 did not improve the fit. A sigmoid Emax model did not significantly

improve the fit (p ¼ 0.07) compared to the Emax model. The placebo response

(p ¼ 0.053), ED50 (p ¼ 0.38), and Emax (p ¼ 0.13) were not significantly different

between 4 and 6 weeks follow-up. There was no significant additional between trial

heterogeneity in Emax. Figure 15.2 displays the goodness-of-fit of the model to the

incidence of somnolence data for the individual pregabalin and PD334 clinical

studies. The figure shows that the incidence of somnolence is well predicted for

each dose after accounting for the trial-to-trial variability in the placebo response.

The error bar reflects a 95% confidence interval for the observation. Parameter

estimates and 80% confidence for the fixed and random effects are displayed

in Table 15.3. The placebo effect of somnolence for a typical trial is 11.5%

(10.2–13.7%; 80% CI). The maximal total incidence of somnolence is estimated

to be 44.8% (32.1–75.6) with a maximal absolute difference from placebo of 33.3%

(21.9–56.9%).
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Fig. 15.2 Observed vs. predicted incidence of somnolence vs. dose for each study. The symbols
and bars represent the observed incidence and 95% confidence interval. The solid line is the model

prediction of the incidence of somnolence vs. dose
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15.3.3 Simulation Results

Figure 15.3 displays the placebo adjusted mean HAM-A change from baseline score

versus dose and 80% confidence intervals for pregabalin and PD334. Figure 15.4

displays the incidence of somnolence versus dose and 80% confidence intervals for

pregabalin and PD334. Confidence intervals are narrower for pregabalin in Figs. 15.3

and 15.4 because of the availability of more data for pregabalin compared to PD334.

Figure 15.5 displays the joint probability that the improvement (i.e., reduction)
from placebo in HAM-A score will be more than 2 (characterized as less than �2)

and the somnolence incidence difference from placebo will be less than 25%, as a

function of dose.

Based on the joint probability, doses of 400 to 600 mg have the highest and very

similar (approximately 66%) chance of demonstrating a profile that is consistent

with the desired target profile. Even though doses greater than 600 mg also have a

high likelihood of success, the upper limit of the dose range was constrained to

600 mg because of concerns about manufacturing costs for higher doses. Inspection

of the probability dose–response curve indicates that there is more than a 50%

chance that a 350 mg dose will demonstrate an improvement (reduction) of two

HAM-A units, whereas a 200 mg dose has a small chance (28%) of demonstrating

the desired safety and efficacy properties. The chances of success continue to

increase up to 600 mg after which, there is a decrease in the probability of success

due to the higher likelihood of somnolence. A dose of about 550mg has the highest

probability of 68% of reaching the target profile. If one dose were to be selected for

Phase 3, this dose would maximize the probability of demonstrating a HAM-A

reduction of more than two points and an incidence of somnolence less than 25%

(i.e., technical success). The probability of achieving technical success can be

increased to 76% if two doses (300 and 600 mg) are selected. The 76% chance is

the probability, based on the uncertainty in the dose response relationships, that at

least one of the two doses can achieve technical success. The maximal probability

of technical success at 78% is achieved if three doses (300, 450, and 600 mg) are

Table 15.3 Estimates of fixed and random effects derived from pregabalin and PD334 somno-

lence probability dose–response model

Parameter Estimate 80% confidence interval

Emax 1.83 1.41 to 2.96

ED50 pregabalin (mg) 208 91 to 731

ED50 PD334 (mg) 277 141 to 879

Relative potency 1.34 0.60 to 3.71

E0 �2.04 �2.18 to �1.84

o� (between study SD in placebo response) 0.44 0.36 to 0.55

SD standard deviation

Note that E0 and Emax are reported in the logit domain
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selected. In fact, there is only a 79% chance that the target profile would be met if

the whole dose range was taken forward and evaluated. This suggests that the

chance of Phase 3 success is maximized by taking two or three doses forward.

15.3.4 Comparison of Week 6 Phase 3 Outcome
and Model Prediction

The mean predicted HAM-A change from baseline at week 6, 80% prediction

interval (gray region) and observed responses (black squares) for the PD334

Phase 3 study are displayed in Fig. 15.6. The observed responses at the 350, 450,

and 600-mg daily dose are well within the region of uncertainty.

15.4 Discussion

This chapter describes how efficacy and safety data were integrated using simple

models to generate dose response–probability curves that were a composite of the

safety and efficacy data. This relationship was used to identify the optimal dose

range, i.e., the dose range that had the highest probability of achieving a predefined
target profile and inform dose selection for Phase 3 studies for a compound being

developed for generalized anxiety disorder. Several Phase 3 studies were initiated
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Fig. 15.5 The joint probability that the mean HAM-A improvement (reduction) from placebo

score will be more than 2 and the difference from placebo incidence of somnolence will be less

than 25% with increasing doses of PD334. Negative HAM-A sign reflects a two-point reduction

from baseline score
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that evaluated doses in the range of 150 to 600 mg. The results for one of the Phase

3 trials were available and the outcomes were compared to model predictions.

This exercise highlights the use of prior (pregabalin) data from other large-scale

clinical studies, and the building of assumptions about common features of com-

pounds from the same class, based on considerations of the comparative pharma-

cology. The assumption of a similar Emax relationship between dose and response

for pregabalin and PD334 with the two compounds having a common Emax but

differing ED50 was critical. It provided a realistic sense of the relationship between

dose and response for PD334 and precluded any unrealistic expectations by the

development team about the compound efficacy at doses higher than what was

studied in Phase 2A (500 mg). The common Emax assumption was considered

reasonable because in vitro studies had demonstrated both compounds to bind to

the same sites and in vivo studies demonstrated comparable maximum effect in the

Vogel water-lick model. The alternative development strategy of ignoring the

pregabalin data and studying additional doses and patients would have significantly

contributed to the cost and execution time of the development program that would

have been hard to justify given the similar pharmacology.

The assumption of the Emax relationship and joint modeling improved the

precision of the estimate of the PD334 effect compared to the analysis of just the

PD334 Phase 2 data alone. The standard error reported for the placebo adjusted

HAM-A change from baseline score at the 200 and 500-mg active doses in the

PD334 POC study (1007) was 1.33 based on 53 subjects and 1.37 based on 53

subjects, respectively. The standard error for the difference in the change from
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Fig. 15.6 Predicted mean HAM-A change from baseline (solid line), 80% prediction interval

(gray region) for the Phase 3 study. Observed outcomes shown as solid squares
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baseline effect from placebo for 500 mg PD334 is about 0.83 on basis of the Emax

model from the joint analysis with Pregabalin (Fig. 15.3). Based on the relationship

between standard error and sample size, this means that between 130 and 140

patients per treatment group, i.e., about 80 additional patients per treatment arm,

would have been required in the POC study to obtain a similar precision as that

yielded by the model based analysis. The efficacy model was used to predict the

outcome of one completed Phase 3 study. The observed week 6 data was well

within the region of predicted uncertainty thus suitably validating the efficacy

model with an external data source.

The analysis allowed for the therapeutic index (TI), defined by the ratio of the

ED50 for safety and efficacy, to be different between pregabalin and PD334. This

was carried forward in the simulations, despite the result from a joint analysis of

both of the efficacy and safety endpoints, showing no statistically significant

difference between a model assuming different relative potencies and a model

assuming the same relative potency across endpoints (p ¼ 0.78). This nonsignifi-

cant difference in the two models was not considered consistent with the pharma-

cology that supports the “unique therapeutic index for each compound” concept.

The two compounds had different selectivity for the receptor subtypes and therefore

it was quite possible that differences in affinity and intrinsic efficacy could manifest

different TI’s for either compound. Based on the results of the analysis, the TI of PD

334 was estimated to be smaller than the TI of Pregabalin, which was an unexpected

result given the preclinical hypothesis of superior receptor subtype selectivity.

However, the ratio of the TI of PD334 and Pregabalin was not significantly different

from one, suggesting the two compounds could be therapeutically equivalent.

One of the advantages of this analysis is that it was not complex and could be

easily understood by members of the development team who did not have a

background in modeling and simulation. The analysis used LS mean end of study

HAM-A data based on LOCF imputation, which were the data that were first

officially reported. This facilitated timely modeling and reporting to the develop-

ment team, which in turn led quickly to discussions of the central issues, which

were: (1) what is the target therapeutic profile; (2) what is the dose range that would

meet the target and; (3) how many doses should be considered for the Phase 3

program. These discussions were greatly enhanced by the availability of the

integrated (i.e., safety and efficacy) dose–response curve.
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Chapter 16

Balancing Efficacy and Safety in the Clinical

Development of an Atypical Antipsychotic,

Paliperidone Extended-Release

Filip De Ridder and An Vermeulen

Abstract The clinical outcomes of three pivotal clinical trials with paliperidone ER,

an atypical antipsychotic were prospectively predicted with a model using a limited

amount of paliperidone ER pharmacokinetic data, human in vivo D2-receptor

occupancy data and the generally accepted D2-receptor derived therapeutic window

hypothesis. The latter was further substantiated using historical risperidone safety

data. Model predictions guided the selection of the dose range for clinical trials,

particularly with regards to the extremes of the dose range studied.

16.1 Introduction

Schizophrenia is a severe, chronic mental illness that affects approximately 1% of

the worldwide population. Clinical symptoms are apparent relatively early in life,

generally emerging during adolescence or early adulthood. The symptoms of

schizophrenia include the presence of hallucinations, delusions and disorganized

thoughts, which are absent in healthy subjects and thus are labeled as “positive

symptoms.” Patients also show symptoms such as social withdrawal, diminished

affect, poverty of speech and the inability to experience pleasure, which are labeled

as “negative symptoms.” In addition, schizophrenic patients suffer from mood

symptoms and cognitive deficits, such as impaired attention and memory.

Current pharmacological treatment of schizophrenia is based on the blockade of

cortical dopamine D2-receptors (Pani et al. 2007). Over the past decades, a large

number of D2-antagonists have been developed for the treatment of schizophrenia,

starting with the discovery of chlorpromazine in 1952, followed by the so-called

conventional antipsychotics (e.g., haloperidol). These first-generation antipsychotics

helped relieve the positive symptoms of the disease, but were associated with safety
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and tolerability issues, including extra-pyramidal symptoms (EPS) and cognitive

impairment. In the 1990s, second-generation antipsychotics, called atypicals, were

introduced (e.g., risperidone, olanzapine). Although these antipsychotics represented
a significant improvement, there is still a need for new antipsychotic drugs that target

undertreated aspects of the disorder, such as cognitive impairment and social func-

tioning, and have a better safety profile.

In a recent review, Nucci et al. (2009) discuss the opportunities for model-based

drug development in schizophrenia. Drug development in schizophrenia can gain a

lot from a model-based approach, as there is a large variety of data sources available

to work with, such as preclinical and clinical pharmacokinetics, biomarkers

(imaging) and clinical data of both new as well as marketed compounds.

In this chapter, we will illustrate the use of an integrated PK/PD-modeling

approach during the clinical development of paliperidone ER. Paliperidone ER

was designed to provide a controlled delivery of the active metabolite of risperi-

done over a 24-h period, which was expected to lead to an improved therapeutic

window. Currently, paliperidone ER is approved for the acute and maintenance

treatment of schizophrenia and the acute treatment of schizoaffective disorder as

mono- or adjunctive therapy.

The objective of the modeling and simulation (M&S) project was to inform the

design of the clinical phase 3 program in the treatment of acute schizophrenia. More

specifically, the question was to identify a dose range to be studied that would

provide the best balance between clinical efficacy (symptom and functional

improvement) and safety (e.g., extra-pyramidal side effects). The project was

carried out in 2003 prior to the execution of the clinical trials. In the meantime,

data that was used in the M&S exercise as well the results of the phase 3 studies

have been published and can be compared with the predictions made back in 2003.

16.2 Rationale

Data from imaging studies, which allow quantifying the striatal D2-receptor occu-

pancy in vivo in humans, started to accumulate in the 1990s. In a series of papers,

recently reviewed by Pani et al. (2007), receptor occupancy levels of a range of

antipsychotic drugs at their therapeutic dose levels as used in the clinic, were

reported. These reports led to the hypothesis that the D2-receptor occupancy in the

striatum should lie between 65 and 80% to achieve an acceptable efficacy–safety

balance: the lower threshold is required for clinical efficacy, whereas exceeding the

higher threshold leads to an increased risk of side effects; in particular, EPS. Based

upon this rationale, the following strategywas developed: (1) predict the distribution

of D2-receptor occupancy in a population of patients treated with paliperidone ER

and (2) determine the doses at which D2-receptor occupancy is within the 65 and

80% D2-receptor range in most of the to-be-treated patients.

This approach relies on the generally accepted 65–80% D2-receptor occupancy

“window” hypothesis (Pani et al. 2007). Risperidone was one of the first D2-receptor
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antagonists, for which imaging data were collected, which helped to empirically

derive this hypothesis (Nyberg et al. 1999). As paliperidone is the active metabolite

of risperidone, this hypothesis was expected to be valid for paliperidone ER as well.

However, to further substantiate this relationship, PK/PD-models were attempted,

linking D2-receptor occupancy levels with symptom improvement (measured by the

PANSS) and incidence of EPS using historical risperidone data. Unfortunately, a

workable model for the relationship between plasma concentrations and symptom

improvement for the risperidone data was not achieved.

16.3 Methods and Data

16.3.1 D2-Receptor Occupancy as a Biomarker
for Efficacy and Safety

16.3.1.1 D2-Receptor Occupancy Model

As for most D2-antagonists, the relationship between plasma concentrations of the

antagonist and striatal D2-receptor occupancy can be described by a hyperbola:

RO ¼ ROmax

C

Kd þ C

where RO is the receptor occupancy, C the plasma concentration and Kd, the

apparent equilibrium dissociation constant, which is the plasma concentration at

which 50% D2-receptor occupancy is observed. ROmax is the maximal receptor

occupancy that can be achieved. This model has been shown to apply for most

antipsychotics with ROmax equal to 100% (Nucci et al. 2009).
When ROmax is assumed to be 100%, this model can be parameterized using a

logit transformation of RO:

log
RO

1� RO
¼ � logKd þ logC

The advantage of this parameterization is that it constrains RO expressed as

percentage to 0–100%.

Data of PET-studies are restricted to a few observations per subject, in order to

limit exposure to radiation. Usually only two or three data points per subject are

available. In most applications, these data points are all treated as independent

observations and the receptor occupancy model is a simple regression model. In this

way, all sources of variability are collapsed into the residual error. However,

residual error comprises the sum of inter-individual variability in RO among

subjects given their concentration, and pure measurement error, as well as model
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misspecification. Nyberg et al. (1996) reported a difference in receptor occupancy

of 3.2% between two measurements taken 2.5-h apart in schizophrenic patients

treated with a long-acting injectable (haloperidol decanoate). This suggests that

roughly half of the residual variation reported in PET-studies is due to measurement

error and the other half due to other factors, including inter-individual variation.

However, we assumed in the current project that the estimate of residual variation

entirely reflects interindividual variation.

At the start of the project, D2-receptor occupancy after oral administration of

paliperidone had been investigated in two healthy volunteer studies: (1) a study

with a single dose of 1-mg oral solution (three subjects, one post-dose scan at the

expected Cmax) and (2) a study with 6 mg of the paliperidone ER formulation (four

subjects, two post-dose scans). Kd was estimated to be 6.4 ng/mL in the first study

and 4.45 ng/mL in the second. A pooled analysis of all individual data of both

studies yielded an estimate of 4.9 ng/mL (Karlsson et al. 2005). As there were only
one or two measurements per subject, only a residual error component was esti-

mated. The standard deviation was estimated to be 0.36 on the logit scale, which

corresponds to a standard deviation of about 8% at a mean receptor occupancy level

of 70%. In the following simulation work, it is assumed that the estimate of residual

variation entirely reflects inter-individual variation.

16.3.1.2 Population PK-Model for Paliperidone ER

A population pharmacokinetic model was developed using the data observed in a

four-way crossover trial in 32 healthy subjects, comparing the single dose PK of the

experimental controlled-release formulations with an oral solution. At this stage,

these were the only available data of paliperidone ER pharmacokinetics in humans.

In the study, only one dose of paliperidone ER (4-mg) was employed. In subsequent

simulations, dose-proportionality was assumed.

The pharmacokinetics of paliperidone ER was modeled according to a two-

compartment model with sequential zero-order (with a lag time) and first-order

absorption. Post-estimation model diagnostics were acceptable and interindividual

variability (IIV) was estimated for most parameters. Inter-individual variability of

the bioavailability of the solid dose formulations relative to oral solution was

the most important factor determining IIV in plasma exposure at a given dose

(Cirincione et al. 2007).

16.3.1.3 Prediction of D2-Receptor Occupancy

The population PK model was used to predict plasma concentration–time profiles

during multiple dosing of paliperidone ER in a typical population of patients. The

key assumptions that are made here were dose-proportionality over the dose range

considered and similarity of model parameters (both typical values as well as

the IIV) between patients and healthy subjects.
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For a virtual population of 2,000 subjects, full 24-h interdose plasma

concentration–time profiles (at hourly intervals) at steady state of once daily dosing

regimens of 3, 6, 9, 12, 15, and 18-mg were simulated. Each subject’s simulated

plasma concentration time-profile was converted into a D2-receptor occupancy time

course using the hyperbola equation, where residual error was included to represent

inter-individual variability. From the D2-receptor occupancy-time course of each

virtual patient, the peak (at peak plasma concentrations) as well as the average

D2-occupancy over all 24 predicted values was calculated. For each virtual patient,

the lowest dose, which would result in a trough D2-receptor occupancy above 65%

and a peak D2-receptor occupancy below 85%, was determined. This can be

considered an individually optimized dose. Thus, the key drivers determining this

dose are pharmacokinetic as well as pharmacodynamic variability.

16.3.2 Extrapyramidal Symptoms

16.3.2.1 Pharmacokinetic/Pharmacodynamic (PK/PD)-Model

The safety outcome of interest was the incidence of spontaneously reported EPS-

related adverse events. EPS-related adverse events included side effects mapping to

the following WHOART dictionary terms: hyperkinesia, dystonia, parkinsonism,

bradykinesia, dyskinesia, dyskinesia tardive, dystonia, extrapyramidal disorder,

hyperkinesia, hypertonia, hypokinesia, muscle contractions involuntary, oculogyric

crisis, tongue paralysis, and tremor. The PK/PD-model was developed using data

of a study with long-acting injectable RISPERDAL CONSTA® (Kane et al. 2003).
In this 12-week, multicenter, double blind, randomized study, 400 patients received

intramuscular injections of placebo or long-acting risperidone (25, 50, or 75 mg)

every 2 weeks. In this study, the incidence of spontaneously reported adverse events

attributed to EPS were similar in the placebo (13%) and the 25-mg risperidone

(10%) groups, with higher rates in the 50 (24%) and 75-mg (29%) groups (Kane

et al. 2003). Up to 11 blood samples at several occasions during the 12-week

treatment period were collected for the determination of risperidone active moiety

concentrations (risperidone + paliperidone). These data were used to develop a

population pharmacokinetic model that was subsequently used to obtain average

steady-state plasma concentration (Css) of the active moiety in each patient.

The time from the start of the double-blind treatment phase to the first treatment-

emergent EPS-related event was modeled using hazard models. Hazard models

provide a flexible framework to describe the risk for certain events happening

to subjects in a clinical trial as a function of covariates, which might be either

time-constant or time varying. In a hazard model, the time component is

explicitly present, which can take into account different durations of treatment

between patients (because of dropout) as well as differences in duration between

studies. Cox et al. (1999) have introduced this approach in PK/PD-modeling.
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For a more recent application of this approach to adverse event data, see Ito et al.
(2008). Hazard models can also be used to describe the dropout process

(Lindsey 2000).

The hazard (l), the probability of observing an event at time t, given that it had

not occurred before time t, is modeled as a function of covariates, including time, as

follows:

log l ðt; ciÞ ¼ f ðtÞ þ gðciÞ

where l indicates the hazard for subject i at time t, t indicates the time since trial

start, and ci indicates a covariate.
The hazard function is composed of two parts. The first part, f(t), sometimes

called the disease progression model component, does not depend on treatment and

describes how the hazard changes over time during a clinical trial in a population of

patients assigned to the placebo group. The second part, g(ci), is the drug effect and
is a function of an individual measure of drug exposure. Note that this model is a

proportional hazards model as the drug effect is added to the placebo-time course

hazard on the log scale. Nonproportional hazard models were also explored, but

these did not give a better fit than the simpler model.

Typically, the EPS-related adverse events hazard decreases over time. This can

be caused by a genuine decrease of the risk over time (e.g., tolerance) or because of
the heterogeneity between patients in their individual risk. In the latter case,

patients with a high individual risk will experience the event earlier in the trial as

compared to patients with a low individual risk. Consequently, as time progresses,

only patients with a lower individual risk are still at risk for the event, thus

decreasing the population-averaged hazard. These two cases cannot be separated

when only one event per subject is considered. The functional form of f(t) was
explored graphically using Kaplan–Meier estimates of the cumulative hazard over

time for placebo patients. These revealed that the decrease of the hazard over time

was best described by a linear function:

f ðtÞ ¼ b0 þ b1t

As an individual measure of exposure, the average steady-state plasma concen-

tration (Css) of active moiety (risperidone + paliperidone) over a dosing interval

was used. Patient-specific Css was estimated using the dose, dosing interval, and the

empirical Bayes estimate of CL/F. The latter was obtained from a population

PK-model (unpublished results). For a limited number of patients (8.5%), no

estimate of the individual clearance was available because they had been excluded

from the population PK analysis. Note that this exposure measure is constant over

time. In patients treated with long-acting injectable risperidone, plasma concentra-

tions of the active moiety gradually increase during the first 2–4 weeks after the first

injection (Gefvert et al. 2005). Therefore, the individual Css is an overestimation of

the true exposure during the first few weeks of treatment.

Candidate functional forms of g(ci) were explored graphically by dividing all

risperidone-treated patients into five exposure categories defined by their individual
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Css and then relating the incidence of events within each category to exposure, a

procedure known as evaluating the scale of the covariate (Hosmer et al. 2008).
Based on this, a three-parameter logistic model was selected:

gðciÞ ¼ y1

1þ exp y2�ci
y3

� �

where y1 indicates the maximal effect, y2 is the EC50, and y3 is a scale parameter

(steepness).

In addition, also a threshold model was considered:

gðciÞ ¼ 0 if ciby1
y2 if ci>y1

�

where y1 indicates the threshold and y2 is the log risk increase.

A similar hazard model was developed for drop out. The probability to drop out

decreased with time and was larger in the placebo group than in the risperidone

arms. Patients were censored with respect to the occurrence of EPS if they dropped

out or completed the trial without the occurrence of the event.

Parameter estimates were obtained using maximum likelihood estimation. The

likelihood was explicitly derived from the hazard function, taking censoring into

account (Kalbfleish and Prentice 2002). The likelihood contribution of a subject

experiencing the event at time T is:

L ¼
YT�1

t¼1

ð1� lðtÞÞ
 !

lðTÞ

where l(t) is the hazard at time t.
The likelihood contribution of a subject not experiencing the event during the

trial and thus censored at time T, the last day in the trial, is

L ¼
YT
t¼1

ð1� lðtÞÞ

Maximum likelihood estimates and their standard errors were obtained using

SAS 8.2 (PROC NLMIXED). The reliability of the standard errors on the parameter

estimates reported by NLMIXED was assessed by constructing a likelihood profile

for each of the model parameters.

16.3.2.2 PK/PD-Simulation

EPS-incidence in the planned clinical trials with oral paliperidone ER was predicted

using a simulation model with three different submodels (Fig. 16.1):
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1. Exposure model: subject-specific values for the apparent clearance (CL/F) were

sampled from a lognormal distribution with mean and variance derived from the

population PK model (see Sect. 16.3.1.2). Average steady-state concentration

was then calculated as follows: Css,i ¼ CLi/F * 1,000/dose/24 h.

2. EPS-model: generates the hazard of developing EPS at time t as a function of

the subject specific Css,i. The risk is converted into an event using a binomial

probability model.

3. Dropout model: generates the hazard of discontinuation at time t as a function

of time and treatment. The risk is converted into an event using a binomial

probability model.

For each study, 120 subjects, the planned number of patients per arms, were

simulated for a treatment duration of 6 weeks (1,000 replicates).

The key assumptions of this simulation model are the following:

1. Risperidone active moiety has the same potency (EC50) as paliperidone for

increasing the EPS risk. The PET-data that were available at the time of the

project suggested a lower EC50 value (4.95-ng/mL) (Karlsson et al. 2005) for
paliperidone than for risperidone active moiety (9.9-ng/mL) (Gefvert et al.
2005). Therefore, two scenarios were considered: one with the EC50 estimated

from the risperidone data and one with an EC50 reduced by 50%.

2. Average concentrations determine the risk for EPS.

3. For the exposure model, the same assumptions as before were applied, namely

dose proportionality and similarity of parameters in healthy volunteers and

patients.

4. Conditional on time and plasma concentration, EPS and dropout are independent

events.

Population PK model PK/PD-model

Simulation Model

Dropout-model

Cl/Fi
Cssi (λEPS)T

for subject=1,..., N
for t=1,...,d

EPS(t) ~ Bin(1, λ
EPS

)

DROP(t) ~ Bin(1, λ
DROP

)

(λDROP)T

Fig. 16.1 Schematic representation of the clinical trial simulation model
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16.4 Results

16.4.1 Predicting Efficacy and Safety using D2-Receptor
Occupancy as a Biomarker

The predicted distribution of peak and average steady state D2-receptor occupancy

in the virtual patient population is summarized in Fig. 16.2 for doses ranging from 3

to 18-mg. At any given dose, this distribution reflects differences between patients

in D2-receptor occupancy. The degree of variation is determined by interindividual

Fig. 16.2 Predicted distribution of steady-state D2-receptor occupancy in a population of patients

treated with paliperidone ER as a function of dose: (a) Peak D2-occupancy at Cmax, (b) average D2-

occupancy over the dosing interval. Shaded areas indicate the 5th, 95th percentile range (com-

prising 90% of patients) and the 25th, 75th range (50% of patients), (c) percentage of patients

below, within or above the therapeutic D2-occupancy range
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differences in pharmacokinetics as well as IIV in D2-occupancy given plasma

concentrations. Quantitatively, both sources of variability were equally important.

With 3-mg dosing, the predicted average steady state D2-occupancy was less

than 65% in the majority of patients (Fig. 16.2). With increasing doses, the

proportion of patients reaching the efficacy threshold increases, with the largest

increase between 3 and 9-mg. At the same time, the proportion of patients

exceeding the safety threshold gradually increases. On average, doses beyond

12-mg do not offer much gain in terms of the efficacy/safety trade-off. The

proportion of patients within the therapeutic window is highest at 6 mg. The impact

of the uncertainty of Kd was investigated by repeating the simulation with a Kd at its

lower and upper 95% confidence limit, respectively (Fig. 16.3). The prediction that

most patients are within the therapeutic range with 6 mg is not changed. The largest

impact is seen for the 3-mg dose, which is clearly an ineffective dose for the high Kd

and becomes similar to 6 mg for the low Kd.

For most patients, the individually optimized dose, defined as the lowest dose for

which the peak D2-receptor occupancy falls below 85% and the average

D2-occupancy exceeds 65%, was predicted to be 6 mg (Fig. 16.4). In addition, for

the majority of patients (85%) the individually optimal dose would be 3, 6, or 9-mg.

It was concluded that 3 mg could be a noneffective or minimal effective dose,

whereas an optimal efficacy balance might be achieved in the 6–12-mg range.

In three subsequent clinical trials, the dosages in this range (6, 9, and 12-mg) were

Fig. 16.3 Predicted distribution of steady state D2-receptor occupancy in a population of patients

treated with paliperidone ER as a function of dose: percentage of patients below, within or above

the therapeutic D2-occupancy range at the lower respectively upper 95% confidence limit of the

estimate of Kd
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replicated in two trials, and 3 and 15-mg dosages were investigated in one trial:

Study 1: 6, 9 and 12 mg; Study 2: 6 and 12 mg, and Study 3: 3, 9, and 15-mg.

The results of the clinical trials demonstrated that all doses tested showed a

larger symptom improvement compared to placebo (Meltzer et al. 2008). The effect
was smallest for 3 mg and only a modest further increase of symptom improvement

could be observed with 12 and 15 mg doses. At doses of 3 and 6 mg, the profiles of

EPS signs and symptoms were similar to placebo, whereas doses of 9 mg and higher

were associated with elevated rates of EPS. Based on these data, 6 mg was

considered to offer a good balance between safety and efficacy and is the approved

recommended starting dose (Meltzer et al. 2008).

16.4.2 Predicting EPS-Incidence

16.4.2.1 PK/PD Model for EPS-Incidence

In the 12-week study with a long-acting injection of risperidone, the hazard for

EPS-related adverse events was related to average steady-state plasma concentra-

tions (Fig. 16.5). Below 35-ng/mL, the risk to develop EPS is similar to placebo.

Above 35-ng/mL, a steep increase of the hazard is observed. During the first

2 weeks of treatment, there is no clear separation between exposure groups. This

could be because during this period, plasma concentrations are still gradually

increasing (Gefvert et al. 2005). Models with plasma concentration as time-varying

Fig. 16.4 Distribution of the

individually optimized dose

(lowest dose achieving an

average D2-occupancy above

65% and a peak

D2-occupancy below 85%)
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covariate did not provide a better fit, most likely because the total number of events

during this period was too low.

When the three-parameter logistic model was fitted to the data, the scale parameter

(y3) was not estimable. Inspection of the log likelihood profile for y3 indicated that

this was because of the steepness of the relationship as decreasing values of y3
increased the likelihood. The scale parameter was therefore fixed to a value of 1,

which gave a fit similar to the threshold model. The final model was checked by a

posterior predictive check. An external validation was done by fitting the model to

data of another study with long-acting risperidone (Chue et al. 2005), which had not

been used for model building. These data gave very similar estimates for the drug

model parameters, but the intercept of the placebo-submodel was lower in study 2,

indicating an overall lower EPS-incidence in this study. The final model was fitted to

the pooled data of both studies, allowing for a different intercept (Table 16.1).

The exposure–response relationship is illustrated in Fig. 16.6. For average

steady-state plasma concentrations below 30-ng/mL, the ratio of the hazard for

developing EPS over the hazard in the placebo-treated patients is close to 1, indicating

no increased risk. At higher plasma concentrations, there is a steep increase of the risk,

reaching a plateau of about 2.8 (log hazard ratio was estimated to be 1.02) with

plasma concentrations over 40-ng/mL. In the right panel of Fig. 16.6, the exposure–r-

esponse relationship is translated into a D2-receptor occupancy–risk relationship.

Plasma concentrations were converted to D2-receptor occupancy using a Kd of

9.9-ng/mL (Gefvert et al. 2005). The risk for EPS increases when the average steady

state D2-occupancy goes beyond 70% and reaches a plateau from 80% onwards.

Fig. 16.5 Kaplan–Meier estimates of the cumulative hazard function for time to first extra-pyramidal

symptoms (EPS)-related adverse event by exposure groups defined by the average steady-state active

moiety plasma concentrations (N ¼ 35–63 per group, N ¼ 98 for placebo)
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A hazard model for dropout was developed, which included a time component

(drop out risk decreased with time on study) and a treatment-dependent intercept.

Dropout risk was higher for placebo-treated patients, but there was no relationship

with dose or exposure in the risperidone-treated patients.

16.4.2.2 PK/PD Simulation for EPS-Incidence

The predicted dose–response for the EPS-incidence in the planned clinical trials

with paliperidone ER is shown in Fig. 16.7. The shape of the dose–response curve

depends on the assumption about the D2-receptor affinity of paliperidone ER. The

observed incidence for the doses that were replicated in the clinical trials shows a

Fig. 16.6 Final PK/PD-model relating the risk for EPS-related adverse events to risperidone

exposure in clinical trials with a long-acting injection expressed as average steady-state plasma

concentrations (left) and D2-receptor occupancy (right). Shaded area represents 95% uncertainty

band due to model parameter uncertainty

Table 16.1 Parameter estimates of the final PK/PD model

Parameter Estimate Standard error CV (%)

Time dependency

b1 Intercept – Study 1 �5.32 0.21 4

Intercept – Study 2 �6.07 0.26 4

b2 Common slope �0.029 0.005 17

Drug effect

y1 Maximum effect 1.02 0.21 20

y2 EC50 (ng/mL) 32.1 1.17 4

y3 Scale 1 Fixed –
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large variability between trials, in line with the expected variability because of

sampling, variability in the pharmacokinetic characteristics of patients, as well as

the stochastic nature of the EPS occurrence. Either scenario captured the general

pattern of the observed incidence of EPS-related adverse events in the three

paliperidone ER clinical trials, although the low affinity scenario underpredicted

the EPS incidence for 9 and 12 mg, whereas the high affinity scenario overpredicted

the incidence for 6 mg. Interestingly, when the PK/PD-model was retrospectively

fitted to the paliperidone ER data, the EC50 was estimated at 24 ng/mL, an

intermediate value in between both scenarios (unpublished results).

16.5 Discussion

The outcomes of several planned clinical trials with paliperidone ER were prospec-

tively predicted using a simple model relating plasma concentrations to D2-receptor

occupancy levels. This model was based on a limited amount of data on

the pharmacokinetics of paliperidone ER (24 healthy subjects) and human in vivo
D2-receptor occupancy characteristics (seven healthy subjects). It used the generally

Fig. 16.7 Clinical trial simulation of the incidence of EPS-related adverse events for paliperidone

ER for two scenarios of Kd (low affinity: Kd ¼ 9.9 ng/mL, high affinity: Kd ¼ 4.95 ng/mL).

Shaded areas indicate the 5th, 95th and 2.5th, 97.5th percentiles of the distribution of expected

trial outcomes. The dots indicate the observed values in the trials that were subsequently conducted.
Data are represented as placebo-subtracted incidences to account for differences in placebo

incidence between trials
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accepted hypothesis that at least 65% receptor occupancy is required for efficacy and

that, at or above 80% receptor occupancy, the risk of developing side effects

increases. Predictions of the model guided the dose choice for pivotal clinical trials

with paliperidone ER, particularly concerning the extremes of the dose range

studied. The lowest dose (3mg) was included because it was likely to be aminimally

effective dose, whereas the 18-mg dose, which was likely not to give any gain in

terms of the efficacy/safety balance, was discarded.

Population simulations predicted 6 mg to be the dose with the most optimal

balance between efficacy and safety. At the same time, the population simulations

allowed to assess the amount of inter-individual variability in receptor occupancy

levels. These results suggested that most patients would achieve an optimal efficacy/

safety balance with 6mg, which was also the case for a fair proportion of patients at 3

and 9 mg. These predictions agreed well with the results of the three clinical studies

that were subsequently run.

To further substantiate the D2-receptor occupancy theory, attempts were made to

construct PK/PD-models for clinical efficacy and safety using historical risperi-

done data. Unfortunately, a longitudinal PK/PD model for clinical efficacy of

risperidone could not be established. In a recent review, Mauri et al. (2007)
concluded that the relationship between plasma concentrations and efficacy has

not been unequivocally established for many atypical antipsychotics. Usually, one

explores the relationship between a clinical endpoint and concentrations or doses,

using simple regression or correlation models. More elaborate PK/PD models using

the longitudinal nature of symptom scores can potentially have merit as they allow

to deal with some of the inherent complexities of running schizophrenia clinical

trials, notably the placebo response and dropout. This is illustrated in the case

studies of Kimko et al. (2000) and Friberg et al. (2009). The failure to establish an

exposure–response relationship using a longitudinal PK/PD-model for risperidone

was probably because the lowest doses studied already had a substantial therapeutic

effect. Ortega et al. (2010) retrospectively developed a longitudinal dose–response

model using data of the three paliperidone ER clinical trials. They were not able to

establish a dose–response relationship as the effect at the lowest dose (3-mg) was

already substantial.

A PK/PD-model for the hazard of developing EPS-related side effects was

developed using average steady-state plasma concentrations as input. A steep

exposure–response relationship was established, which supported the D2-hypothesis

as the risk was increased when the average steady-state concentration yielded a

D2-occupancy of more than 80%. This agrees well with the analysis presented by

Medori et al. (2006).
The case study presented in this chapter illustrates that with limited data on the

human pharmacokinetics and a biomarker, and some realistic assumptions based on

prior knowledge, model-based predictions of the outcome of clinical trials can be

achieved. It is clear, however, that the validity of the biomarker is a key requirement.

Over the past decades, data supporting the D2-receptor occupancy window hypothesis

have been accumulated for many antipsychotics, including risperidone. It is thus not

unexpected that the receptor occupancy window hypothesis holds for the extended
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release formulation of its active metabolite. Although all current antipsychotics share

D2-antagonism as a key pharmacological characteristic, each drug also possesses its

unique fingerprint related to other receptor interactions or other features of the

D2-receptor interaction (Pani et al. 2007). The approach described here can be easily
extended to other biomarkers, offering unique opportunities for amorewidespread use

of model-based drug development (Nucci et al. 2009).
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Part IV

Expanded Applications of M&S



Chapter 17

Application of Modeling and Simulation

in the Development of Protein Drugs

Lorin K. Roskos, Song Ren, and Gabriel Robbie

17.1 Introduction

As defined by the United States Food and Drug Administration (FDA) (http://www.

fda.gov/AboutFDA/CentersOffices/CBER/ucm133077.htm), “biological products

include a wide range of products such as vaccines, blood and blood components,

allergenics, somatic cells, gene therapy, tissues, and recombinant therapeutic pro-

teins. Biologics can be composed of sugars, proteins, or nucleic acids or complex

combinations of these substances, or may be living entities such as cells and tissues.

Biologics are isolated from a variety of natural sources – human, animal, or

microorganism – and may be produced by biotechnology methods and other

cutting-edge technologies.” The focus of this chapter is on PK-PD modeling and

clinical trial simulation of therapeutic and prophylactic proteins from discovery

through clinical development.

Protein drugs include hormones, growth factors, cytokines, antibodies, and

proteins conjugated to small molecule drugs, toxins, or radionuclides. The proteins

can be endogenous proteins or novel constructs generated bymolecular engineering.

The drugs can function as agonists, antagonists, cytotoxins, coagulation factors,

enzymes, and can also recruit immune effector functions. Although protein drugs

have a wide variety of biological functions and molecular and pharmacokinetic

characteristics, they share several important attributes, differing uniquely frommost

small molecule drugs, that must be considered when conducting PK-PD analyses for

model-based drug discovery and development. These attributes and the implications

for PK-PD modeling are listed in Table 17.1. Protein drugs can exhibit target-

mediated drug disposition (TMDD); likewise, the kinetics of the target are

frequently altered and drug-mediated target disposition is commonly observed.

Special physiological barriers exist to absorption and biodistribution of proteins.
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Protein drugs, particularly monoclonal antibodies, can exhibit high specificity for

the human target, which must be considered when conducting translational PK-PD

modeling of animal data for human dose estimation. PK-PD modeling to predict

human exposure-response relationships can be critical. Dose-limiting toxicities are

frequently not observed, so the selection of an optimal biological dose level, rather

than identification of a maximum tolerated dose (as traditionally determined for

Table 17.1 Unique pharmacokinetic and pharmacodynamic attributes of protein drugs that

should be considered when conducting PK-PD modeling

Attribute Consequence and modeling approach

Target frequently affects the kinetics of

the drug

Dose-dependent PK

Apply TMDD models

Drug frequently affects the kinetics of

the target

Time-dependent PK

Change in target concentration

Change in number and phenotype of targeted

cell populations

Apply PK-PD model to describe change in

target concentration, cell populations, and

effects of target on PK

Physiological barriers exist to rate and

extent of absorption and biodistribution

Model feasibility of extravascular dosing

Apply PBPK modeling techniques for

absorption and biodistribution kinetics

High specificity for human target can

decrease the relevance of animal models

Apply PK-PD modeling to account for

differences in specificity

Evaluate PK-PD collected using surrogate

molecules or transgenic animals

Drug can be used to elicit effects secondary

to target interaction

Model PK-PD properties secondary to ADCC,

CDC, or conjugation to drugs, toxins, or

radionuclides

Dose-limiting toxicities are often not

observed

Optimal biological dose determined by PK-PD

is more often used for dose-selection than

maximum tolerated dose

Apply model-based approach for clinical dose

selection

Drug can sometimes induce mechanism-

related cytokine release

PK-PD modeling can be used to establish a

MABEL starting dose for first-in-human

studies where appropriateHighly potent molecules with long half-

lives can be generated

Protein drugs can be immunogenic Evaluate antidrug antibody (ADA) and titer as

potential covariates in data analyses

Consider exclusion of ADA-positive subjects

from data analyses

Incorporate PD endpoints in studies to evaluate

neutralization of drug by ADA

Kinetics of drug and target are highly

dependent on format of the

bioanalytical method

Choose reagents appropriately

Understand what the assay is measuring before

conducting PK-PD modeling
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small molecule cytotoxic drugs in oncology), might be necessary. Some proteins can

exhibit safety risk factors, such as the potential for severe acute cytokine release,

which could warrant a first-in-human starting dose determined by simulation of a

minimum anticipated biologic effect level (MABEL). Protein drugs can be immu-

nogenic in animals and humans, and the antidrug antibody responses can affect drug

concentration and activity, which has to be considered while evaluating PK-PD

relationships. Finally, the bioanalytical methods used to quantify protein drug levels

and PD biomarkers can be highly dependent on the assay format; therefore, the

PK-PD modeler must have a good understanding of the assay and what is being

measured.

The protein drug targets are not only involved in the pharmacological or toxico-

logical effects, but also can represent an important elimination pathway for the drug.

The elimination of biologics is typically mediated by two major pathways: the

nonspecific protein elimination pathway and the specific target-mediated pathway.

At low dose levels, the target-mediated pathway may be predominant. At high dose

levels, the target-mediated pathway is usually saturated and the nonspecific protein

elimination pathway may predominate. A mechanism-based PK-PD model that

includes target binding and turnover kinetics can accurately describe the PK profile

for protein drugs that are subject to target-mediated disposition.

Throughout this chapter, the implications of these protein attributes on PK-PD

modeling approaches are discussed: first, through a review of the essential PK-PD

properties of proteins; and second, through examples of applied PK-PD modeling at

different stages of drug discovery and development.

17.2 PK-PD Models of Protein Drugs

PK-PD models of protein drugs should incorporate the unique absorption, biodis-

tribution, and clearance characteristics of the protein, and for the relationship of

exposure to target modulation, downstream PD effects, and clinical endpoints. The

pharmacokinetic profile can be profoundly affected by binding of the drug to the

target, binding of the drug to specific binding proteins (nontarget), and target-

mediated clearance. The PK profile can also be affected by the conditions and

procedures of the bioanalytical method, and by whether the assay measures

unbound drug, partially bound drug, or total drug levels. Because the PK can be

influenced by target binding, not only can protein drugs elicit pharmacodynamic

effects, the pharmacodynamic effects can also affect the pharmacokinetics; thus,

the PK and PD properties of protein drugs often are intricately linked.

17.2.1 Absorption and Bioavailability

Most proteins must be administered parenterally, because nonparenteral bio-

availability is usually poor because of mucosal barriers to absorption or because
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of local degradation. Absolute bioavailability by intranasal dosing or inhalation is

usually acceptable only for small peptides. For these reasons, subcutaneous (SC)

administration is the most common extravascular route of protein administration.

Following SC administration, absorption can occur via the lymphatic system or

blood capillaries. Lymphatic absorption has been associated with substantially

slower absorption rates (as observed in systemic circulation sampling) compared

to absorption via blood capillaries (Toon et al. 1996). A positive correlation

between lymphatic absorption and molecular weight has been reported (Super-

saxo et al. 1988, 1990). The cumulative recovery of human recombinant inter-

feron alpha-2a (MW: 19 kDa) via the lymphatic system was 60%. The absolute

bioavailability and absorption rate of protein drugs can also be influenced by dose

and concentration differences, which can additionally complicate absorption

models (Woo and Jusko 2007). Larger proteins, such as monoclonal antibodies,

undergo predominantly lymphatic absorption. Absorption rate after SC dosing

tends to decrease with increasing molecular weight; however, absolute bioavail-

ability is variable between molecules and might be affected more by differences

in susceptibility to local degradation than by differences in molecular weight.

Monoclonal IgG antibodies have an absolute bioavailability of around 60–70%

despite a very slow absorption rate, which has been attributed to protection

(salvaging) of IgG from catabolism by the neonatal Fc receptor, FcRn (Wang

et al. 2008).
The SC absorption kinetics via the vascular and lymphatic pathways can be

modeled by two parallel, first-order absorption processes with different absorption

rates. This method is applicable for protein drugs with very different absorption

rates and absolute bioavailability. The vascular absorption is often modeled as a

first-order absorption process. The lymphatic absorption can be modeled as first-

order absorption with a lag time before absorption. The lag time can be modeled as

an absolute delay (a discontinuous or change point model, in which the lag time for

a subject is assumed to have zero variance) or a variable delay. The variable lag

time is typically modeled by a series of transit compartments that precede the first-

order absorption compartment; methods for implementation of the compartmental

delay and the effect on the resolution or variance of the lag time have been

described (Savic et al. 2007).
Modeling of the SC absorption of filgrastim (MW: 18.8 kDa) and the monoclonal

antibody, CAT-354 (MW: 150 kDa) by a dual absorption model are illustrated in

Fig. 17.1 (Wang et al. 2001; Oh et al. 2010). The models used for the absorption

process for filgrastim and CAT-354 were the same, although the clearance models

were different (nonlinear for filgrastim and linear for CAT-354). Although the Tmax

values were very different (approximately 5 h for filgrastim and 5 days for CAT-354),

the dual absorption models provided good descriptions of the absorption kinetics.

Consistent with observations that a higher molecular weight is associated with

a greater fraction of dose absorbed through the lymphatic system, the fraction of

dose absorbed through the delayed absorption route was 57–67% for filgrastim and

85% for CAT-354.
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17.2.2 Bimolecular Interaction of Drug with Target

The obligatory first step of the PK-PD relationship is interaction of drug with the

target. For protein drugs, modeling of a bimolecular interaction can be essential to

understanding the PK-PD relationship when binding reduces free concentrations of

drug (increases apparent volume of distribution), contributes to total clearance of

drug, or alters the kinetics and total concentrations of the target. As described later in

this chapter, the bimolecular model can be a theoretical basis for establishing

affinity, potency, and pharmacokinetic properties of an engineered protein drug

prior to lead generation and optimization. The same model can be used and refined

during drug development to model and characterize PK-PD relationships in animal

models and humans.

A bimolecular interaction model of drug (C) with receptor (R) is shown in

Fig. 17.2, and its implications for TMDD will be discussed further in

Sect. 17.2.4. While this model structure can be applied to TMDD, we emphasize

that Fig. 17.2 represents a general model of a bimolecular interaction that has

several PK-PD applications for protein drugs:

Fig. 17.1 Modeling the subcutaneous (SC) absorption kinetics of protein drugs: (a) A PK-PD

model of filgrastim after SC dosing; filgrastim is absorbed from the SC site by two parallel

pathways; (b) parallel absorption model in panel A fitted (solid line) to filgrastim PK data from

healthy subjects after a single SC dose (Wang et al. 2001); (c) parallel absorption PK model for

CAT-354 fitted to PK data from healthy subjects following a single SC dose (Oh et al. 2010)
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1. Off-target protein binding: Some protein drugs have specific binding proteins

that can affect disposition and clearance.

2. Enzyme kinetics: The model structure is identical to the Michaelis–Menten

model of enzyme kinetics; if the protein drug is an enzyme, e.g., asparaginase,
the model could be used to describe metabolism of the substrate.

3. TMDD: The model can describe pharmacokinetic effects of the target on the

volume of distribution and clearance of the drug.

4. Drug-mediated target disposition: The model can describe changes in total

target concentrations that occur when the clearance of the drug-target complex

is different than for the free target; this effect is commonly observed with

binding of drug to soluble targets. The model can also incorporate downstream

changes in target concentration, e.g., changes in number and phenotype of cell

populations that express the target.

5. Ligand displacement: If the drug competes with binding of an endogenous

ligand to the target, a competitive binding model can be developed to describe

effects on ligand concentrations and kinetics.

6. Pharmacodynamics: The model can describe changes in free, total, or drug-

target complex concentrations as PD models of target occupancy or suppression.

With a transduction function related to target occupancy or suppression, the

model can describe effects on downstream PD biomarkers or clinical endpoints.

17.2.3 Biodistribution

Protein drugs undergo limited distribution in body water. Most proteins initially

distribute into a central volume of distribution equal to plasma volume (~40mL/kg).

Proteins do not cross cell membranes unless they are internalized by a receptor

or undergo phagocytosis or pinocytosis. In most cases the internalization process

will result in transport of the protein to the lysosomes where the protein will

be catabolized. For these reasons, the steady-state volume of distribution

(Vss) is usually less than or equal to extracellular water (ECW~200 mL/kg).

Fig. 17.2 Model of reversible drug (C) binding to a receptor (R), with subsequent endocytosis of

the drug-receptor complex (ClR). ksyn zero-order synthesis rate of receptor; kdeg first order

degradation rate of receptor; kon association rate constant; koff dissociation rate constant; kint
internalization rate constant of drug-receptor complex
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For example, the steady-state volume of distribution of CAT-354 (MW: 150 kDa),

an IgG4 monoclonal antibody to IL-13, is 64 mL/kg in healthy subjects. Smaller

proteins can distribute more rapidly and extensively than larger proteins; however,

the Vss is usually less than ECW. Anakinra (MW: 17 kDa) has a reported Vss of

10.1 L (~144 mL/kg for a 70 kg subject) (Gueorguieva et al. 2008). The low Vss

relative to ECW does not mean that the protein does not distribute throughout ECW;

the low Vss is caused by limited partitioning to some tissues. In particular, proteins

have little permeability across tight junctions (e.g., blood-brain barrier and placental
barrier) unless they are transported. Partitioning of protein drugs to cerebrospinal

fluid is approximately 0.2% relative to serum (Gueorguieva et al. 2008; Wang et al.
2008). Although the placental barrier is relatively impermeable to many proteins,

IgG antibodies are efficiently transported across the placenta when the neonatal Fc

receptor (FcRn) is expressed during the second and third trimester of pregnancy

(Pentsuk and van der Laan 2009).

Binding of the protein drug to specific binding proteins and soluble receptors can

affect the biodistribution of the drug. If the PK assay measures unbound drug, then

the apparent volume of distribution could exceed ECW if the unbound fraction is

small. In such cases, modeling of the bimolecular interaction with specific binding

proteins can provide insight into the biodistribution and disposition of the drug.

Insulin-like growth factor 1 (IGF-1, MW 7.6 kDa) is an endogenous growth factor

that is highly protein bound by specific binding proteins. Figure 17.3 shows

modeling of free IGF-1 (measured by radioimmunoassay) and bound IGF-1 (calcu-

lated from total IGF-1 measured by radioimmunoassay after acid/ethanol extrac-

tion) using a bimolecular interaction model of IGF-1 with circulating IGF binding

proteins, with incorporation of linear and receptor-mediated (Michalis–Menten)

elimination following administration of IGF-1 to healthy volunteers (Mizuno et al.
2001). Applying the protein-binding model with one-compartment distribution

for the free and bound IGF-1, the volume of distribution was 168 mL/kg for free

IGF-1 and 54.8 mL/kg for bound IGF-1. The lower volume for the bound form

Fig. 17.3 (a) Bimolecular model describing the PK of IGF-1 in healthy subjects, with reversible

binding to IGF binding proteins (IGFBP) in plasma; (b) fitting of model (dashed lines) to free IGF-1
(triangles) and IGFBP-bound IGF-1 (squares) plasma levels following an IV infusion of IGF-1

(Mizuno et al. 2001)
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was attributed to the higher molecular weight of the IGF-1 and binding protein

complexes (~50–150 kDa), which restrict biodistribution.

Physiologically based pharmacokinetic (PBPK, see Chap. 22) models can be

used to model the time-course of drug in tissues. PBPK models for monoclonal

antibodies in mice have described disposition into various healthy tissues and tumor

(Ferl et al. 2005; Davda et al. 2007; Garg and Balthasar 2007; Urva et al. 2010).
The PBPK models can provide useful information on the partitioning and kinetics

of distribution into tissue; however, such models are experimentally challenging

and time-consuming to establish (Poulin and Theil 2000, 2002). A focused analysis

of biodistribution into a particular tissue of interest can be a more practical

approach to PBPK modeling. For example, a relatively simple and practical

model for the distribution of anakinra into the CSF of patients following subarach-

noid hemorrhage has been described (Gueorguieva 2008). Biodistribution of pro-

teins into tumors has been a controversial area of research. Modeling of distribution

into tumor nodules supported the idea that a binding site barrier might restrict drug

penetration into the tumor (Weinstein and van Osdol 1992). A single-dose study of

the penetration of monoclonal antibody scFv fragments in a mouse xenograft model

suggests that a higher affinity of the antibody to the target might limit distribution

into the tumor, consistent with the binding site barrier hypothesis (Adams et al.
2001). Recent modeling of equilibrium distribution kinetics suggests that higher

affinity antibodies are more effective at target binding in tumors and that the major

barriers to antibody penetration are slow diffusion and convective flow, interstitial

pressure, and high target expression and internalization rate that create a local sink

and limit antibody penetration (Ackerman et al. 2008).

17.2.4 Clearance

Protein drugs can be cleared by multiple, parallel elimination pathways. The

elimination pathways include renal clearance, elimination by the reticuloendothelial

system (RES), target-mediated endocytosis, and nonspecific proteolysis and degra-

dation. Formation of protein complexes, such as drug and soluble target complexes

or antidrug antibody complexes, can also contribute to elimination of the drug

presumably through more efficient clearance by the RES. Catabolism by extracel-

lular proteases can contribute, in some cases, to elimination of the molecule.

Renal clearance is an important elimination pathway for proteins that are small

enough to undergo glomerular filtration. The ability of the protein to be filtered

depends on physical factors such as molecular weight, structure, charge, and water

of hydration that contribute to the overall hydrodynamic radius of the molecule.

Proteins greater than 70 kDa are not filtered. Generally some impediments to renal

filtration exist for molecules larger than approximately 7 kDa (Lote 2000).

Clearance by the RES contributes to the elimination of all protein drugs; however,

the importance of this elimination pathway depends on the relative magnitude of the

other clearance processes. RES clearance mechanisms include phagocytosis by
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macrophages and Kupffer cells and also fluid phase pinocytosis by endothelial cells.

RES clearance, which is usually represented by the residual clearance of the protein

when no renal or target-mediated clearance occurs, appears to be a relatively slow

process associatedwith elimination half-lives of hours to weeks depending onwhether

the protein is salvaged from catabolism by FcRn. When IgG antibodies or Fc fusion

proteins undergo pinocytosis or phagocytosis by cells expressing FcRn, the acidic pH

(~6) of the early endosome allows binding of the Fc domain to FcRn (Roopenian and

Akilesh 2007). The protein is then recycled to the cell surface and released in the

extracellular, pH 7.4 environment, which salvages the molecule from lysosomal

catabolism. Salvaging by FcRn is responsible for the 3 week elimination half-life of

wild-type, human IgG antibodies in humans. Mutation of the FcRn binding domain

that increase affinity of IgG antibodies to FcRn at pH 6, but not pH 7.4, have led to the

successful engineering of antibodieswith lower clearance and longer elimination half-

lives than wild-type IgG, which could permit more convenient dosing regimens for

some antibodies and Fc fusion proteins (Dall’Acqua et al. 2002).
Clearance of protein drugs by their target can cause dose-dependent and time-

dependent pharmacokinetics. The PK profile, in some cases, can be dramatically

affected by the PD response, or by disease states and comedications (e.g., cytotoxic
chemotherapy) that alter expression of the target or the number of cells that express

the target. Because of the potential complexity of PK-PD models that describe

TMDD, the approaches to modeling TMDD are reviewed in detail in Sect. 17.2.4.1.

Modeling of protein drug pharmacokinetics allows a quantitative evaluation of

various parallel elimination pathways and implications for human dosing.

In Fig. 17.4, the contribution of different clearance pathways to the elimination of

filgrastim and pegfilgrastim (filgrastim conjugated to polyethylene glycol) was

assessed by modeling the PK in rats receiving a bilateral nephrectomy compared

to sham operated controls (Yang et al. 2004). Filgratim and pegfilgrastim were

dosed at 5 and 100 mg/kg. The contribution of renal clearance was evaluated by

simultaneously modeling the PK collected from the nephrectomized rats and the

sham controls. In Fig. 17.4b, the contribution of renal clearance to filgrastim

(MW: 18.8 kDa) elimination when receptor-mediated elimination is saturated by

the high dose of filgrastim is clearly observed by the lower AUC in sham controls

relative to nephrectomized rats. In Fig. 17.4d, the higher hydrodynamic size of

pegfilgrastim (MW: 38.8 kDa) prevented renal clearance, as indicated by the over-

lapping PK curves for the nephrectomized rats and sham controls following the

high dose. Modeling of the data indicated that in absence of receptor-mediated

clearance (as would occur in patients with chemotherapy-induced neutropenia),

renal clearance accounts for over 75% of filgrastim clearance.

Filgrastim, which is used to treat chemotherapy-induced neutropenia, must be

dosed subcutaneously daily to maintain effective concentrations because of high

renal clearance; by contrast, pegfilgrastim can be dosed once per cycle of chemo-

therapy as a single SC injection. This is an example of rational engineering of a

protein drug: prospective, preclinical modeling and simulation predicted that pegfil-

grastim levels, following a single dose, would be sustained during neutropenia and
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would wash out rapidly after neutrophil recovery (Galluppi et al. 2001). The PK-PD
properties of pegfilgrastim that were predicted by modeling and simulation were

confirmed in a well-designed phase 1 study by a head-to-head comparison of

filgrastim and pegfilgrastim in cancer patients before and after chemotherapy

(Johnston et al. 2000).

17.2.4.1 Target-Mediated Drug Disposition

The importance of TMDD for describing the PK-PD ofmany protein drugs has led to a

number of publications in recent years about the appropriate ways to model TMDD.

Fig. 17.4 Modeling multiple clearance pathways (renal, reticuloendothelial, and receptor-

mediated) of protein drugs. Observed (symbols) and modeled (solid line) drug concentration-

time profiles after intravenous administration of filgrastim or pegfilgrastim in sham-operated

(closed symbols) and bilateral nephrectomized (open symbols) rats following single doses of

(a) 5 mg/kg filgrastim, (b) 100 mg/kg filgrastim, (c) 5 mg/kg pegfilgrastim, or (d) 100 mg/kg
pegfilgrastim (Yang et al. 2004)
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Several different methods have been proposed and used to model the TMDD of

protein drugs. Although the theoretical papers that support these models are rigorous

and insightful, the topic can be confusing to those who are new to PK-PDmodeling of

protein drugs and are not familiar with the various models and terminology. In this

section we attempt to provide some clarification of the various TMDD models and

their differences and applications.

The four major TMDD models are summarized in Table 17.2. In order from the

most complicated to the most simplified, the models are:

1. TMDD model (full model)

2. Quasi-steady-state approximation

3. Rapid-binding or quasi-equilibrium approximation

4. Michaelis–Menten approximation

Models 1–3 can accommodate the condition in which binding of drug to the target,

per se (prior to clearance), can affect the PK time-course of unbound drug. In other

words, binding to the target can affect the apparent volume of distribution of the drug.

Model 4, the Michaelis–Menten approximation, assumes that the effect of target on

the PK is due only to clearance. In this case, the unbound concentration of drug after

target binding is still approximately equal to the total (unbound plus target-bound)

concentration. As shown in Table 17.2, the more complex models have a larger

number of parameters that must be supported by data.

Target-Mediated Drug Disposition Model

The full TMDD model for interaction of drug concentration (C) with a targeted

receptor (R) is illustrated in Fig. 17.2. Although the publications on TMDD

Table 17.2 Pharmacokinetic models of target-mediated drug clearance

Clearance model Simplifications

Target-

mediated

clearance References

Target-mediated

drug disposition

None kon, koff, kint,
kdeg, Rtot(0)

Mager and Jusko (2001)

Quasi-steady-state

approximation

kon*C*R � (koff + kint)
*RC ¼ 0

Kss,
a kint, kdeg,
Rtot(0)

Gibiansky et al. (2008)

Rapid-binding

approximation

kint � koff KD,
b kint, kdeg,
Rtot(0)

Mager (2005) and Marathe

et al. (2009)kon*C*R � koff*RC ¼ 0

Michaelis–Menten

approximation

Cfree ~ Ctotal
c Vmax, kM

d Segel (1993), Gibiansky (2008),

and Yan et al. (2010)kon*C*R�(koff + kint)
*RC ¼ 0

aKss ¼ (koff + kint)/kon
bKD ¼ koff/kon
cRtotKD/(KD + C)2�1
dVmax ¼ kint* Rtot, kM ¼ (koff + kint)/kon
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modeling have been presented using a two-compartment distribution model for

drug, for simplicity the model is presented in this chapter as a one-compartment

PK-model. The system of equations describing this interaction, for an IV bolus of

drug, is as follows:

dC

dt
¼ koffRC� konC � R� CLlinC (17.1)

dRC

dt
¼ konC � R� ðkoff þ kintÞRC (17.2)

dR

dt
¼ ksyn � kdegR� konC � Rþ koffRC (17.3)

The benefits of the full TMDD model are that it allows for: (1) changes in drug

concentration related to rapid or slow binding to target, (2) clearance by the target,

and (3) time-dependent PK related to up-regulation or down-regulation of the target

when the rate constant for internalization of the drug-receptor complex (kint) is
different from the baseline turnover rate constant of the receptor (kdeg). The limita-

tions are that the five TMDD parameters in the model might not be identifiable by

the PK time-course alone. For example, the rates of drug association and dissocia-

tion from the receptor can be much faster than other processes of drug disposition

in vivo. Also, a time-dependent change in receptor expression related to drug

binding might occur in a rapid time frame relative to the drug half-life; therefore,

kdeg and kint might not be identifiable by PK modeling unless direct measurements

of total receptor concentration or drug-receptor complex are possible. Dramatic

changes in receptor expression can also occur on a much longer time-scale because

of downstream effects of target modulation, e.g., by increasing or decreasing the

number of receptor-bearing cells; such a change is not accounted for by the TMDD

model alone.

Experimental values for some parameters can be determined in vitro and fixed

in the model; however, such an approach should be done cautiously. The value of

kon and koff can be determined in vitro, in many cases by surface plasmon

resonance; but for some membrane targets a soluble form is not available and

on-cell affinity must be determined, which yields an equilibrium binding constant

(rather than association and dissociation rate constants) that can be affected by

receptor density and avidity (Roskos et al. 2007). Also other system processes,

such as distribution of drug to the receptor, can be rate limiting, and fixing

association or dissociation constants might not be appropriate. An estimate of kint
can be determined by confocal imaging of the internalization kinetics of the drug-

receptor complex, which can be used to stabilize the model or provide a practical

check for the parameter value determined by model fitting. Also, if receptor or

drug-receptor complex concentrations are not directly measurable, then a
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simplification can be made to make kdeg equal to kint if supported experimentally or

by the PK profile.

Quasi-Steady-State (QSS) and Rapid Binding (RB) Approximations

The QSS and rapid binding (RB) approximations make a simplification that allows

the number of parameters in the full TMDD model to be reduced by one: the free

receptor, free drug levels, and drug-receptor complex are assumed to be in rapid

equilibrium. In this case, the simplified TMDD model can be expressed in terms of

an apparent equilibrium constant (Kss or KD) rather than using the rate constants kon
and koff. Otherwise, the advantages and limitations of the QSS and RB models are

the same as described for the full TMDD model. The primary difference between

the QSS and RB models is that the RB model assumes that the kint is smaller than

the koff; thus, the equilibrium constant in the RB model is described by the ratio of

koff to kon. The QSS model acknowledges that the kint can be greater than or equal to
the koff. From a standpoint of data fitting, the models are identical as the QSS and

RB are both parameterized using an apparent equilibrium binding constant.

For both models, the effect of target binding on unbound drug concentration is

assumed to be instantaneous. This assumption would be manifested as a dose-

dependent central volume of distribution, in which the Vc decreases with increasing

dose. Such an observation could justify use of the QSS or RBmodels; however, other

factors that could influence Vc should be ruled out. For example, soluble receptor, a

specific binding protein, or a pre-existing antidrug antibody could cause this same

effect. In such a case, the structural PK model would be different than described by

the QSS, RB, or full TMDD model. Target binding and associated volume of

distribution changes can also be manifested in the shape of the terminal phase, as

drug concentrations drop to levels that are influenced by target binding; however, the

terminal phase can also be influenced by other factors, including soluble binding

proteins and even matrix interference as the levels approach the limit of quantitation

of the PK assay. Discrimination and selection among QSS, RB, and full TMDD

models, therefore, should usually not be based on goodness of fit criteria alone.

Michaelis–Menten Approximation

The Michaelis–Menten approach is the most commonly used modeling method to

describe TMDD effects on protein drug clearance, and has been used successfully

for many different drugs (Bauer et al. 1994, 1999; Kuwabara et al. 1996; Wang

et al. 2001; Roskos et al. 2006). Unfortunately, a perception seems to exist that the

Michaelis–Menten model is empirical and not mechanistic like the more highly

parameterized TMDD models. As pointed out by Gibiansky et al., the Michaelis–

Menten model is mechanistic; but as with all models, the assumptions of the model

must be valid (Gibiansky et al. 2008). As mentioned above, the major assumption is

that target binding, per se, has a negligible effect on unbound drug concentration
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and volume of distribution, but primarily affects drug clearance. If this assumption

is met, the target-mediated clearance can be expressed as:

CLtarget ¼ kintRtotal

koffþkint
kon

þ C
(17.4)

This equation can be further simplified to:

CLtarget ¼ Vmax

kM þ C
(17.5)

where kM is the Michaelis constant, which is equivalent to Kss in the QSS model.

Importantly, this model reduces to two parameters, as opposed to four parameters in

the QSS and RB models and five parameters in the full TMDDmodel. As described

by Yan et al., the RB model reduces to the Michaelis–Menten approximation when:

Rtotal

koff
kon

� �
koff
kon

þ C

� �2

�
,

1 (17.6)

This describes the situation in which drug is either partially saturating the target

or the ratio of total receptor concentration to the equilibrium affinity constant is

low, i.e., conditions in which target binding is not influencing free drug concentra-

tion. We note also that because the Vmax term is proportional to the total receptor

concentration, time-dependent nonlinearity can be modeled by this equation when

changes in receptor expression or the number of cells expressing the target can be

measured. This approach has been successfully applied to the PK-PD relationship

for pegfilgrastim (Roskos et al. 2006) as described below in the section on cyto-

kinetics, and for PK-PD relationships for MEDI-551 after B-cell depletion and

reconstitution following recruitment of antibody dependent cellular cytotoxicity

(Lau et al. 2010).
The success of the Michaelis–Menten approximation for most cases of TMDD has

probably been caused by limitations of bioanalytical method sensitivity that might be

inadequate to characterize PK at very low concentrations of drug that can be

influenced by target binding, and that during drug development, usually relatively

little data are collected at drug concentrations producing minimal target engagement

(yielding conditions described by equation 17.6). However, the development of more

sensitive bioanalytical methods, highly potent drugs effective at low levels of recep-

tor occupancy, and application of MABEL starting doses (see Sect. 17.3.2) for some

drugs, might create more cases in which the more highly parameterized TMDD

models have a distinct advantage over the Michaelis–Menten approximation.

In summary, the simplest TMDD model should be used that is supported by the

data and meets the purpose of the modeling or simulation exercise. As in all models,

there is elegance in simplicity, and the law of parsimony also applies to TMDD

models.
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17.2.5 Interactions of Drug and Soluble Target

The bimolecular interaction of a drug with a soluble target can be described using

the same equations used for the full TMDD, QSS, or RB models. However, there

are some notable differences from membrane target interactions that should be

considered. Protein drugs that interact with soluble targets present in low concen-

trations generally exhibit linear pharmacokinetics when the total drug concentra-

tions are measured. However, because the soluble target can bind drug in serum and

accumulate after dosing, it is essential to know if the PK assay measures unbound or

total drug levels. If the assay measures free drug levels, then the PK profile can

mimic a TMDD clearance process, even when binding of the drug to the soluble

target does not affect clearance. Depending on the assay format, the drug levels can

be modeled either as the free levels, or the sum of the free and bound drug

concentrations. Also, binding of drug to the soluble target can have a dramatic

effect on the total target concentrations, especially when administering monoclonal

antibodies. Because of the very low clearance of the antibody drug relative to the

clearance of the soluble target, the binding of the antibody to the target can greatly

decrease target clearance, resulting in an increase in total target levels that can be

several logs greater than baseline levels.

Often, assays can be established to measure free drug, free target, total drug, total

target, or drug-target complexes. The significance is that the parameters for the full

TMDD, RB, and QSS models can be more readily estimated. In particular, the

parameters for kdeg of the soluble target at baseline and the kint (usually called

kcomplex in a soluble target model) can be estimated. Sometimes characterization of

the kinetics of the target can be precisely estimated if the target can be administered

in relevant animal models, or if target PK data are available from the literature. The

PK-PD of omalizumab (Hayashi et al. 2007) and an antibody to Dkk-1 (Betts et al.
2010) are excellent examples of modeling antibody and soluble target interactions.

In both cases, the antibody-target complex was cleared faster than the unbound

antibody. These models successfully described effects of drug on free and total

target levels, in addition to nonlinear PK related to clearance of the complex.

Mechanisms of enhanced clearance of an antibody to a soluble target could include

crosslinking of multimeric targets with enhanced elimination by the RES or

impaired binding of target-bound antibody to FcRn.

17.2.6 Cytokinetics

Many protein drugs can affect cell populations by altering the proliferation rate

or lifespan of the population. Hematopoietic growth factors are good examples

of drugs that increase proliferation of blood cell lineages. Monoclonal antibodies

that deplete target cells through antibody dependent cellular cytotoxicity and com-

plement dependent cytotoxicity are good examples of drugs that decrease the
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survival of targeted cell populations. PD models that describe these effects

should incorporate appropriate mathematical representations of cell proliferation

and survival. If the cell population expresses the drug target and the drug is subject to

TMDD, alteration in cell numbers can produce a profound, time-dependent effect of

the PK of the drug. In this case, the model must incorporate feedback regulation of

PK by the PD response. Examples of models for cell lifespan, proliferation, matura-

tion, and feedback regulation of PK are described in the subsequent sections.

17.2.6.1 Cell Lifespan

Unlike drug molecules, most cells are not eliminated randomly. The cells persist

until they die from senescence or apoptosis, or die prematurely from a random or

drug induced event. The lifespan in absence of random destruction is the intrinsic

longevity of the cell. Some cell types, e.g., neutrophils, are eliminated randomly

from circulation and the loss of the cells can be described by a first-order elimina-

tion rate constant and half-life. Cytokinetic models should incorporate the concepts

of intrinsic longevity and random destruction to model the overall lifespan of the

cell. Modeling of cell lifespan is not new: models of cell lifespan were developed

over 50 years ago to describe radioisotopic tracer studies and blood cell transfusions

(Dornhorst 1951; Eadie and Brown 1953). More recently, these same concepts have

been applied to the PD effects of protein drugs on cell populations. Recent manu-

scripts have described various approaches to PK-PD modeling of cell lifespan

(Krzyzanski et al. 1999, 2005).
The first example of modeling the exposure-response relationship for a hemato-

poietic growth factor was conducted for hemodialysis patients receiving erythro-

poietin, and was conducted as a population dose-response analysis (Uehlinger et al.
1992). The modeling included parameterization of the lifespan of the erythrocyte.

Although the model assumed zero variance for intrasubject erythrocyte lifespan (all

erythrocytes entering the circulation at the same time die at the same time), this

simplification is usually valid for the modeling of erythrocyte kinetics. The authors

noted that the time to reach a new steady-state hematocrit after initiation of therapy

was equal to the erythrocyte lifespan. The reason is that when erythrocyte produc-

tion rate steps to a higher value, the erythrocytes continue to accumulate until the

first erythrocytes that entered circulation after start of therapy reach the end of their

lifespan; at that time the death rate of erythrocytes becomes equal to the new

production rate and steady-state is attained.

A generalized model of cell lifespan should incorporate cell longevity, the

variance of longevity, and random destruction. The first application of a generalized

cell lifespan model to the PK-PD of a hematopoietic growth factor described the

effects of PEG-rhuMGDF on platelet kinetics (Roskos et al. 1997; Harker et al.
2000). This model (Fig. 17.5), which was applied to peripheral platelet counts and

the kinetics of autologous platelet tracers following administration of the thrombo-

poietin analog to healthy volunteers, accounted for the concentration-response

relationship for stimulation of precursor cells, delays in the emergence of new
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platelets from marrow, random destruction of platelets (because of endothelial use),

and the intrasubject variability of platelet lifespan (Harker et al. 2000). The design
of this clinical pharmacology study was rigorous, as autologous platelet tracer

kinetics were evaluated at four different time points, because the authors recog-

nized prospectively that the single dose of the protein would produce a time-

dependent change in the mean age of platelets in circulation, which would alter

the cell lifespan estimate derived from the platelet tracer; simultaneous PK-PD

modeling of endogenous platelets and autologous tracer was used to account for this

kinetic complexity. The modeling accurately predicted an approximately 2-day

difference in the mean lifespan of the platelets when the average age of the cells

in circulation was the youngest (between baseline and the peak in platelet counts, in

which the proportion of new platelets in circulation was the highest) compared to

when the mean age was the oldest (between the peak and the return of platelet

counts to baseline, in which the proportion of senescent platelets in circulation was

the highest). Additionally, parameters for platelet intrinsic longevity and random

destruction rate derived from modeling the nonstationary system were consistent

with literature values.

Fig. 17.5 Pharmacokinetic-pharmacodynamic modeling of the thrombopoietic effects of a

thrombopoietin analog (PEG-rHuMGDF) in healthy volunteers following a single SC dose.

(a) Modeled PD effects on platelet counts in blood; (b) simultaneous modeling of the kinetics

of an autologous radiolabeled platelet tracer in blood; and (c) theoretical changes in mean platelet

age in blood calculated by the PK-PD model. (d) The PK-PD model describes the intrinsic

longevity of platelets (L), nonlinear random destruction of platelets (r), and the intra-subject

variability of intrinsic platelet longevity (controlled by n, the number of catenary-linked transit

compartments) are represented by the model. Simultaneous modeling of autologous radiolabeled

platelet tracers allowed analysis of effects of drug on platelet survival (Harker et al. 2000)
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Modeling the cell count as the sum of a series of transit compartments, in which

the cell lifespan is represented by the mean transit time through the compartments,

imparts a gamma distribution to variance of the intrasubject cell lifespan; the

variance can be decreased by increasing the number of transit compartments.

The same model architecture can be applied readily to other cytokinetic models.

The random destruction element is important; as mentioned earlier, a decreased cell

lifespan related to the cytotoxic effects of a drug can readily be incorporated (Lau

et al. 2010).

17.2.6.2 Cell Proliferation, Maturation, and Feedback Regulation of PK

Protein drugs that affect cell populations can affect proliferation rates and matura-

tion of progenitor cells, in addition to effects on mature cells. A change in the total

number of cells expressing the drug target, in turn, can affect the PK of the drug.

PK-PD modeling of the granulopoietic effects of pegfilgrastim demonstrates how

a PK-PD model can account for pluripotent effects of a protein drug on a cell

lineage, and how time-dependent changes in PK can be accommodated by the

model (Roskos et al. 2006). In Fig. 17.6, modeling is illustrated of the dose- and

time-dependent PK of pegfilgrastim and the time-course of effects on blood band

cells and mature neutrophils. The model incorporated effects on progenitor cell

production rate, maturation times of precursor cells in marrow, early release of

band cells and neutrophils from marrow, and margination of blood neutrophils. The

TMDD of pegfilgrastim was modulated by changes in precursor cell and neutrophil

mass in blood and marrow. A modified Michaelis–Menten model was used to

describe the TMDD. Because the Vmax of the Michaelis–Menten model is propor-

tional to total receptor number, the Vmax was assumed to be proportional to the

precursor cell and neutrophil cell mass. This simplified TMDD approach, linked to

a mechanistic PD model, provided a good description of the complex exposure-

response relationship.

17.3 Applied Modeling and Simulation from Discovery

Through Clinical Development

Model-based drug discovery and development have important applications from

the earliest stages of drug discovery through clinical development of the drug.

Figure 17.7 highlights the major PK-PD activities that are conducted at various

stages of discovery and development. In this section, the application of modeling

and simulation to the discovery, preclinical development, and clinical development

of protein drugs are described by example.

382 L.K. Roskos et al.



17.3.1 Drug Discovery: Target Evaluation and Lead Drug
Optimization and Selection

During drug discovery, a major difference between small molecules and protein

drugs is that for small molecules, many rounds of lead drug optimization can be

conducted quickly and inexpensively. Thus, it is relatively easy to compare pharma-

cological, safety, metabolism, and PK properties of small molecule drug candidates.

Proteins are more time consuming and expensive to produce. Also, because of the

costs and difficulties of GMP manufacturing, carrying more than one potential lead

drug into GLP safety studies and phase 1 is usually not feasible. Therefore, the design

and selection of the best lead protein drug must be conducted during early discovery;

Fig. 17.6 PK-PD modeling of the effects of pegfilgrastim on neutrophil counts in the blood of

healthy subjects, with homeostatic regulation of pegfilgrastim clearance by changing neutrophil

and precursor cell mass in blood and marrow. (a) Modeled (lines) and observed (symbols)
pegfilgrastim serum concentrations after single SC doses; (b) modeled (lines) and observed

mean band cell (open symbols) and segmented neutrophil (closed symbols) counts in peripheral

blood; (c) pharmacodynamic model describing the granulopoietic effects of pegfilgrastim. Serum

concentrations of pegfilgrastim stimulate mitosis and mobilization of band cells and segmented

neutrophils in bone marrow, decrease maturation times for postmitotic cells in marrow, and affect

margination of the peripheral blood band cell (Bp) and segmented neutrophil (Sp) populations, the

sum of which is the total absolute neutrophil count (ANC). Changes in neutrophil counts in

peripheral blood provide feedback regulation of pegfilgrastim clearance (Roskos et al. 2006)
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incorrect selection of a lead protein, even if corrected during late discovery or

preclinical development, can set back a project by many years. Therefore, PK-PD

modeling and simulation is often “front-loaded” to help ensure that the best protein

drug candidate is engineered and selected early in the discovery process.

Theoretical PK-PD simulations can be conducted to evaluate the feasibility of

modulating a specific target. For example, simulations can help address whether

targeting a ligand or the receptor could be advantageous, depending on the levels

of ligand and receptor and the theoretical potential for TMDD. If significant

concerns exist regarding the ability to modulate the target, an early PK-PD study

might be conducted in relevant animal models, using a commercially available

surrogate molecule or a potential lead drug. An excellent example of a discovery

PK-PD evaluation was described for an antibody to Dkk-1 (Betts et al. 2010).
In this early evaluation, the authors characterized the PK-PD of the antibody in two

species and the PK of the target (to provide more robust characterization of the

antibody-target interaction). They conducted allometric scaling of antibody and

target PK for human dose estimation. When major concerns about the target do not

exist, this type of rigorous evaluation is generally reserved until after lead selection

and before GLP safety studies. Usually only theoretical evaluations are conducted

before lead optimization.

Modeling and simulation are important when establishing protein engineering

objectives for potency and PK properties. For example, simulations can be con-

ducted to predict the optimum affinity of a protein for the target (Roskos et al.
2007). Examples of these simulations are shown in Fig. 17.8 for an antibody to a

soluble target (Fig 17.8a) and a cell-membrane target (Fig. 17.8b, c). As illustrated

by the simulations, improvements in affinity of an antibody to a soluble target are

Fig. 17.7 Application of PK-PD modeling and simulation at various stages of drug discovery

and development
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expected to improve potency, but with decreasing returns as affinity is increased

further; also level and turnover of the target are important considerations. For a

membrane target, the optimum affinity can be a more complex problem when

TMDD is predicted. Higher affinity can result in more rapid elimination of drug

at subsaturating concentrations; if the effective concentrations are achieved at low

levels of receptor occupancy, then the potential advantage of higher affinity could

be offset by more rapid clearance of the drug. Also, simulations can help determine

if the PK properties should be optimized: for example, by mutation of the Fc

domain of an antibody to decrease clearance and extend half-life.

17.3.2 Preclinical Development

PK-PD modeling and simulation have many applications during preclinical develop-

ment. Modeling and simulation can help design in vitro, PK-PD, pharmacology, and

toxicology studies. Modeling provides important characterization of in vitro and

Fig. 17.8 Theoretical effect of antibody affinity to target (equilibrium dissociation constant, KD)

on potency for soluble and cell membrane targets. (a) Simulation of the maintenance dose of

antibody required to suppress unbound concentrations of a soluble antigen in serum in vivo by 90%
at steady-steady state prior to the next maintenance dose as a function of antibody affinity and

baseline antigen (Ag) concentration. Simulated effect of antibody affinity on (b) antibody phar-

macokinetics and (c) unbound antigen levels for an antibody targeting an internalizing, cell

membrane receptor (Roskos et al. 2007)
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in vivo concentration-activity relationships. Because of the high specificity of many

protein drugs for the human target, sometimes surrogate molecules (homologous

proteins) or transgenic animals must be used to characterize the biology of the target

and the pharmacology of the drug; PK-PD modeling can help account for differences

in potency, PK, and target expression to allow simulation of the expected effects of

the lead drug in humans. Pharmacodynamic biomarkers, which can provide valuable

information during the early development of many drugs, are usually not well-

characterized at the preclinical stage. Preclinical PK-PD modeling can help charac-

terize and select biomarkers for potential application in clinical studies.

One of the most important applications of modeling and simulation for protein

drugs during preclinical development is for human dose estimation, prediction of

safety margins from toxicokinetic and safety data collected from GLP toxicology

studies, and justification of the starting dose in the first-in-human phase 1 study. The

critical importance of this modeling function was highlighted by the tragic phase 1

study of TGN1412, in which the starting dose of 0.1 mg/kg in healthy subjects

produced full receptor occupancy of the CD28 costimulatory molecule, which trig-

gered T-cell activation and life-threatening cytokine release (Suntharalingam et al.
2006). The event led to the recommendation of a MABEL starting dose for high risk

molecules; the application of PK-PDmodeling to starting dose selection for biologics

has been reviewed (Tabrizi and Roskos 2007; Agoram 2009; Lowe et al. 2010).
Allometric scaling of nonclinical PK data to humans is an essential part

of human exposure estimation for a first-in-human trial. A good overview of scaling

principles and their application is provided in the FDA guidance document,

Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for
Therapeutics in Adult Healthy Volunteers (2005). For protein drugs, the linear

clearance pathways are generally expected to scale allometrically; however, there

are exceptions for intact monoclonal antibodies and fusion proteins. Species

differences exist in the binding of the human Fc-domain to animal FcRn, particularly

in rodents (Ober et al. 2001), which result in differences in PK that are not accurately

predicted by allometry. For intact, wild-type monoclonal antibodies, we recommend

using the expected PK of endogenous IgG in humans to predict the linear clearance

and distribution kinetics of an IgG drug; we currently use the PK parameters

determined for CAT-354 for this purpose (Oh et al. 2010). However, Fc-fusion
proteins should be evaluated in animals and potentially scaled, as the protein fused to

the Fc-domain could potentially affect FcRn binding and clearance. The TMDD

component of clearance must also be accounted for when predicting human

exposures. Differences in affinity to target, expression in humans, and turnover

rate must be considered in the translational PK-PD model.

17.3.3 Clinical Development

With the background on protein drugs discussed in previous sections, one can frame

the design and objectives of the clinical studies of these molecules. The objectives
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of phase I trials for protein drugs are similar to small molecules, that is to assess

safety, tolerability, and PK. A special safety objective is to evaluate the immuno-

genic potential of the molecule by assessing the presence of antidrug antibodies.

When feasible, PD or preliminary clinical activity at single or multiple ascending

doses are assessed in a small number of subjects.

In contrast to small molecules, proteins have some special features that need to

be considered. The target receptor for the pharmacological effect also plays a

critical role in the elimination of biologics, especially at low concentration levels.

because of this reason, nonlinear PK is often observed. A wide range of doses

covering nonsaturating and saturating ranges should be tested in a phase I trial to

fully characterize the PK by allowing one to estimate nonlinear PK parameters

reliably. In addition to IV doses, SC doses are often tested in phase I trials to

determine the SC bioavailability. Whenever possible, PD samples should also be

collected to provide valuable information for both the receptor-mediated clearance

and the pharmacological effect. It is also desirable to measure free and total drug

concentrations, as well as free and total target concentrations over time, which is

required to build a mechanism-based PK-PD model.

From a clinical operations perspective, phase I studies of protein drugs are

frequently much longer than those of small molecules because of the long half-

life. Because the presence of high drug concentrations may interfere with the

detection of antidrug antibodies and can lead to false negative results of immuno-

genicity, it is important to follow the decline in serum drug concentrations to very

low levels to accurately assess immunogenicity. This leads to extended PK sam-

pling over long periods of time (several months).

PK and PD data obtained from the wide range of phase I doses can enable

identification and characterization of biological activity of the molecule using

PK-PD modeling and simulation. PK-PD modeling of monoclonal antibodies

after phase I may need to rely on preclinical in vitro and in vivo information

such as binding affinity, target turnover, target-antibody complex internalization

kinetics, animal disease model efficacy results to guide dose selection and study

design in subsequent phase II/III trials.

In many cases, product development teams get their first view of clinical

activity of a molecule in the intended patient population in phase II trials. Phase

II trials usually evaluate multiple dose levels and regimens to explore the dose-

concentration-response relationship for efficacy and safety in the target patient

population. Although patient numbers in these Phase II trials are large, the infor-

mation is generally not sufficient to clearly understand the concentration-clinical

effect relationship and associated variability, making it difficult to to select one

particular dose or dosing regimen for phase III trials. This can happen for various

reasons; primarily, the effect is of a size that will require large numbers to

decisively evaluate a particular dose, which is only possible in a phase III study,

or, because the large sample size is usually split to evaluate different dose levels.

This is done so the results of a phase II clinical trial can provide information across

a dose range allowing one to look for trends in clinical activity, to assess if multiple

dose cohorts show signs of clinical activity or lack thereof. The purpose of this is to
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enable the project team to conclusively establish that there is no clinical activity

and to stop proceeding to a phase III trial rather than identifying a particular dose

level or regimen. Therefore, in many instances the dose-concentration-effect

relationship hypothesized from phase II data can only be evaluated conclusively

for the first time in a phase III trial in a large enough and broad enough setting.

Modeling of phase III data allows for development of a robust PK-PD-clinical

endpoint model and confirmation of dose-concentration-effect relationship with

adequate numbers of patients, evaluation of differential effects in any particular

subgroup, or assessment of the impact of concomitant therapy or disease severity on

clinical activity. Because of this, the regulatory agencies require drug developers to

understand phase III clinical data by modeling to confirm that the optimal dose has

been studied and has been proposed as the therapeutic dose in the product label.

Although all of the above is not unique to biologics but is applicable to small

molecules, this is particularly relevant to protein drugs because of the long clinical

trials and as well long dosing intervals (weeks to months).

17.3.3.1 Utility of PK-PD Models in a Clinical Setting

The utility of developing a PK-PD model can be many, such as:

l Elucidation of mechanism of action
l Prediction of optimal dose regimens
l Analysis of disease progression
l Provision of the rationale for clinical trial observations in phase III trials in

regulatory interactions for approval
l Justification of dose in product label as the optimal dose to regulatory agencies
l Evaluation of particular covariates to understand if any dose modifications are

needed for a subgroup of patients
l Demonstration of similarity of concentration-effect relationship between different

patient populations
l Provision of support for switching to alternate route of administration, dosage

form or dosing regimen
l Evaluation of the effects of organ dysfunction
l Guidance for development of next generation compounds

Examples of PK-PD modeling of protein drugs to support the above applications

are presented below.

17.3.3.2 Selection of Phase II/III Doses

In phase I, safety, PK, and sometimes PD or preliminary clinical activity are

assessed in a small number of healthy subjects or patients. These data, together

with efficacy results from animal disease models if available, can be used to select

phase II/III doses.
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The practical application of PK-PD modeling is illustrated by the example of

HuHMFG1 (AS1402), a humanized monoclonal human milk fat globule-1 antibody

that targets the immunodominant epitope of the MUC1 gene product. It has been

tested in a phase I study of 26 breast cancer patients receiving doses ranging from 1 to

16 mg/kg (Royer et al. 2010). Intensive PK data were analyzed by a linear two-

compartment population PK model using nonlinear mixed effects modeling

(NONMEM®). Covariate analysis of the potential impact of demographics on PK

indicated that body weight did not influence clearance or volume of distribution,

suggesting the use of fixed dose instead of body weight-based dose of HuHMFG1 in

future trials. Fixed dosing is preferred over body weight-based dosing because the

simplified dosing leads to decreased dosing errors and improves dosing convenience.

A limited PK sampling strategywas selected based on themodel, in which one sample

is collected immediately before the start of an infusion and the second is taken at the

end of infusion. This sampling schedule is usually acceptable in phase II/III trials.

The next example shows the application of integrated PK-PD model in clinical

trials to understand clinical activity and to identify target therapeutic concentrations

when PD biomarker data is available. Otelixizumab is an aglycosylated chimeric/

humanized monoclonal antibody directed to human CD3e. A population PK-PD

model was fit to pooled data from three phase I/II studies in subjects with either type

1 diabetes or psoriasis (Wiczling et al. 2010). The PD biomarkers were changes in

CD4+ and CD8+ T-cell counts, and modulation and saturation of CD3/T-cell

receptors (TCR) after IV administration of otelixizumab. Otelixizumab PK was

described by monoexponential decline with Michaelis–Menten elimination. Non-

linearity was manifested at high concentrations (Km ¼ 0.968 mg/mL). Lymphocyte

dynamics were captured by a direct inhibition model. In diabetic subjects, the

otelixizumab serum concentration producing a 50% decrease in peripheral blood

counts was 0.0187 mg/mL for CD4+ T cells and 0.0120 mg/mL for CD8+ T cells.

Corresponding values for psoriatic subjects were much lower: 0.000533 mg/mL for

CD4+ T cells and 0.000269 mg/mL for CD8+ T cells. Total (sum of unbound and

otelixizumab-bound) CD3/TCR was approximately equal to unbound CD3/TCR,

suggesting that there were few otelixizumab-(CD3/TCR) complexes at the T-cell

surface. Down-modulation of CD3/TCR was described by direct inhibition. Otelix-

izumab concentrations producing 50% reduction in free CD3/TCR sites was similar

for diabetes and psoriasis, 0.0144 and 0.0162 mg/mL. This integrated PK/PD model

was successfully applied to describe otelixizumab pharmacokinetics, the time

course of lymphocyte redistribution in blood, and modulation and saturation of

CD3/TCR at the T-cell surface. This model described the PK-PD data reasonably

well and can be used to guide dose selection in future clinical studies.

17.3.3.3 Characterization of the Dose-Concentration-Effect Relationship

In phase II, drugs are tested in the target patient population at a range of doses to

evaluate the initial efficacy and safety and to find the minimum effective dose.

Mathematical tools have been applied to the quantitative analyses of phase II data
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in many aspects. In particular, dose-concentration-effect relationships can be

described by mechanistic PK-PD models with the ultimate goal to project the

optimal dose for phase III studies.

The omalizumab PK-PD model showcases the use of PK-PD modeling and

simulation in drug development (Fig. 17.9). Omalizumab is an anti-IgE antibody

approved for the treatment of allergic asthma. An omalizumab-IgE binding model

has been reported for omalizumab (Hayashi et al. 2007; Lowe et al. 2009). This
model fits total serum omalizumab concentration, free and total serum IgE concen-

tration data well. Because clinical efficacy is associated with serum free IgE levels,

an individualized dosing strategy was developed to maintain serum free IgE below

the target level required for efficacy. This model can be used to simulate serum free

IgE concentrations at different dose regimens for different patient populations to

recommend the optimal dose regimen to be tested in phase III studies.

17.3.3.4 Demonstration of the Similarity of PK-PD Relationship Between

Different Patient Populations

An example of the use of modeling to demonstrate similarity of PK-PD relationship

between different patient populations, Japanese and Caucasians, and pediatric and

Fig. 17.9 Population PK-PD modeling of the effects of omalizumab on free and total IgE levels in

asthma patients (Hayashi et al. 2007)
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adult populations, is illustrated by omalizumab. A mechanism-based binding model

was developed (Hayashi et al. 2007) to characterize omalizumab and IgE concen-

trations in 202 Japanese patients and to compare these values to 531 Caucasian

patients with evaluable trough concentration in two registration trials, Study 008

and 009, of 52-week duration and a short term 8-week study, Study 007. The

population PK model was a one-compartment model with body weight as a

significant covariate on clearance and volume of distribution of omalizumab. The

PK-PD model indicated that both production rate and clearance of free IgE were

positively correlated with baseline IgE values in Japanese patients. For a 61-kg

patient with baseline IgE of 482 ng/ml, estimated clearance of free omalizumab and

free IgE were 7.32 and 71 mL/h, respectively; estimated clearance of omalizumab-

IgE complex was 5.9 mL/h; estimated half-life for omalizumab and IgE were 23

and 2.5–2.7 days, respectively. The PK-PD model developed from Japanese

patients was used to predict omalizumab and IgE values in Caucasian patients

from Studies 007, 008, and 009. Based on the overlap of observed omalizumab, free

IgE and total IgE concentrations in Caucasian patients to predicted values, the PK

and PD of omalizumab and IgE were inferred to be similar between the two

populations.

The mechanism-based PK-PD model developed in adolescents and adults with

minor modifications was used to evaluate omalizumab PK and PD in pediatric

patients between 6 and 12 years of age, to support a pediatric sBLA. Baseline IgE

values in pediatric patients was higher than adults, which was shown to correlate

with clinical outcome of asthma. The model was used to demonstrate similarity of

pediatric PK and PD parameters with adults and was used to develop a dosing table

in pediatric patients (from FOI clinical pharmacology review of omalizumab

pediatric supplement by the FDA).

17.3.3.5 Evaluation of Demographic or Disease Covariates to Determine

the Need of Dose Modifications for Subpopulations

One example in which population PK modeling was used to demonstrate appropri-

ateness of the dose for the entire patient population is presented for motavizumab

(Zhao et al.), a humanized monoclonal antibody that binds to the highly conserved

F-protein of respiratory synctial virus (RSV) and is being tested as prophylaxis in

preterm infants and high-risk full term infants at risk of RSV disease. The phase III

clinical trial studied five monthly intramuscular doses of 15 mg/kg in preterm

infants of different gestational ages (GAs) with and without chronic lung disease

and term infants at risk of RSV disease. Only trough serum concentrations could be

collected in this pediatric population. Motavizumab trough concentrations exhib-

ited modest interindividual variability in these pediatric patients. The patient

population in the phase III study was diverse with respect to GA, chronological

age (CA), body weight, race, and the presence or absence of chronic lung disease.

The appropriateness of body weight-based dosing and contribution of demographic

variables to observed variability in trough serum concentrations was evaluated by
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population PK modeling. In addition to the trough concentration data from the

phase III clinical trial, simultaneous modeling of intensive serum concentration

data from adults and sparse serum concentration data with information on peak

concentrations and terminal phase concentrations from five other pediatric studies

was performed.

Typical of a monoclonal antibody molecule exhibiting linear kinetics, a two-

compartment model fit motavizumab serum concentration data best. The two-

compartment model scaled for body weight from infants to adults using allometry

exponents of 0.75 for CL and 1.0 for volume of distribution (Vd) resulted in under-

estimation of adult CL values and overestimation of adult Vd values because of lower

than “mature” CL in infants and higher than expectedVd values based on bodyweight.

The lower CL in infants was attributable to immature elimination mechanisms.

Elimination mechanisms mature and CL approaches values based on allometric

scaling alone as infants age (Fig. 17.10).

Similarly, the higher Vd value in infants compared to adults has been

documented in the literature (Anderson et al. 2000; Anderson and Holford 2008).

Rapid changes in body water distribution in early life because of neonatal body

composition has been documented (Anderson et al. 2000; Anderson and Holford

2008). This indicated that changes in body weight alone do not adequately explain

the changes in CL and Vd in pediatric patients. Age was an important variable to be

considered in addition to body weight. Two age descriptors GA and CA are

relevant in the motavizumab patient population. To account for the continuum in
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Fig. 17.10 Comparison of post hoc clearance (CL) estimates of motavizumab in healthy adult

subjects and infants with or without chronic lung disease (CLD) as a function of PAGE (chrono-

logical age plus gestational age [GA]). Body weight and simple allometry alone did not adequately

explain differences in clearance between subjects
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maturation of clearance during gestation and post birth, a new variable PAGE,

which is the sum of GA and CA, was considered (Anderson et al. 2000; Anderson
and Holford 2008; Allegaert et al. 2004). Of the two age components in PAGE, the

effect of CA on CL and Vd was much greater than GA. Although, age was an

important covariate for scaling CL and Vd from infants to adults, the results of the

population PK model indicated that serum concentrations are primarily governed

by body weight in the intended population of premature infants and high-risk

pediatric subjects in the first 2 years of life. Because the phase III dose of

motavizumab is based on body weight, simulations were performed using demo-

graphic characteristics of the phase III study to evaluate comparability of serum

concentrations across a range of subpopulations differing in GA and CA. The

results of the simulation demonstrated comparable motavizumab concentrations

following 15 mg/kg dosing across ten different subpopulations differing in GA and

CA. The effect of demographic covariates other than body weight were not found

to be clinically significant and confirmed the adequacy of body weight-based dose

for the entire pediatric patient population receiving motavizumab (Fig. 17.11).

17.3.3.6 Evaluation of Drug–Drug Interactions

Unlike small molecule drugs, few PK-based drug–drug interactions have been

reported for protein drugs. This is because of differences in the mechanisms

involved in absorption, distribution, metabolism, and excretion of the two classes

of molecules. For proteins, the most common route of administration is not oral, it is

usually by intravenous, SC, or intramuscular injections. For small molecules, oral

administration is often the preferred route, especially for chronic indications.

Therefore, interaction of protein drugs on small molecule bioavailability are not

expected. Although proteins are not metabolized by CYP450, in unusual cases

they might inhibit or induce CYP450 and potentially affect the clearance of

small molecules.

Fig. 17.11 Simulated motavizumab concentrations in infants of different chronological and GAs.

The effect of demographic covariates other than body weight were not found to be clinically

significant and the simulations confirmed the adequacy of body weight-based dose for the entire

pediatric patient population receiving motavizumab
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Several PK-based drug-drug interaction examples are discussed below. Cyto-

kines (interleukin-1b, interleukin-4, interleukin-6, tumor necrosis factor-a, and
interferon-g) have been shown to inhibit CYP450 at both the mRNA and protein

levels (Mahmood and Green 2007). Interferon-a decreased the clearance of

cyclophosphamide by 63% in patients. Clearance of basiliximab, an anti-IL-2Ra
antibody, was reduced by 22 and 51% when coadministered with azathioprine and

mycophenolate mofetil, respectively. Serum concentration of trastuzumab, an

anti-HER2 antibody, was increased by 150% when coadministered with pacli-

taxel. The apparent clearance of adalimumab, an anti-TNFa antibody, was

reduced by 29–40% when coadministered with methotrexate. In some cases, the

reduction in antibody drug clearance in combination with small molecules, as

observed with adalimumab in combination with methotrexate, could be due to

immunosuppression and a decrease in the incidence and titer of anti-drug antibody

responses. The exposure of SN38, the active metabolite of irinotecan, was

increased by 33% when coadministered with bevacizumab, an anti-VEGF anti-

body (Zhou and Davis 2009). Recent reports in conference proceedings have

described an effect of tocilizumab, an antibody to the IL-6 receptor, on CYP450

activities in rheumatoid arthritis patients; and these potential effects are described

in the prescribing information. Chronic upregulation of IL-6 in RA patients is

believed to have down-regulated expression of some CYP450 enzymes; after

treatment with tocilizumab, the AUC of CYP3A4 substrates (simvastatin, omep-

razole, and dextrorphan) and a CYP2C19 substrate (omeprazole) were decreased

by up to 57%. Because of this finding, a regulatory expectation might be estab-

lished for conducting formal drug interaction studies in patients receiving cyto-

kines or cytokine-modulating drugs.

The drug-drug interaction potential of proteins can be assessed by population

PK modeling or by formal in vivo drug-drug interaction studies. Of course, the

importance of drug-drug interaction depends on the therapeutic index and the

scheduling of combination therapies. Although a few examples of drug interac-

tions with protein drugs have been described, we emphasize that a clinically-

relevant, PK-based drug-drug interaction with a protein drug has not been

reported.

17.3.3.7 Comparison of Fixed Dosing vs. Body Size-Based Dosing

At the end of phase II, many decisions must be made before phase III studies can be

well designed. One important question is dosing strategy. For biotherapeutics, body

size-based doses are usually tested in phase I and II studies. However, in adult

patient population, fixed dosing is preferred for drugs with wide therapeutic index

mainly because of convenience.

A simulation study published recently compared the performance of fixed

dosing vs. body size-based dosing for 12 monoclonal antibodies in adult patients

(Wang et al. 2009). It was found that the difference in the population distribution
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curves of AUC and Cmax between the two dosing regimens was small and neither

dosing approach showed clear advantage in reducing intersubject variability in

PK exposure.

The potential effect of body size on PK, PD, efficacy and safety should be

evaluated based on phase I and phase II data. If body size is identified as a

significant covariate for PK or PD, then simulations can be performed to calculate

drug exposure or PD response following fixed dose and body size-based dose. Many

times, body size only explains a small proportion of the overall intersubject

variability in PK and PD even though it is a statistically significant covariate for

PK parameters. Body size-based dose should only be recommended if it is war-

ranted such as for drugs with narrow therapeutic index in which the margin between

the therapeutic and toxic concentrations is small, if body-size contributes greatly to

intersubject variability, or when dosing pediatric patients.

17.3.3.8 Provision of Support for Switching to Alternative Route

of Administration, Dosage Form, or Dosing Regimen

PK PDmodeling to support switch to an alternate dosing regimen is illustrated using

trastuzumab. Trastuzumab is a humanized monoclonal antibody against the extra-

cellular domain of human epidermal growth factor receptor 2 (HER-2) and is

indicated for treatment of HER-2 positive metastatic breast cancer. A population

PK approach was used to characterize the PK of trastuzumab by simultaneously

modeling intensive PK data from 16 patients in a phase I study and sparse weekly

peak and trough concentration data from 460 patients in phase II and III studies

(Bruno et al. 2005). The final PK model was a two-compartment model. Significant

covariates that affected trastuzumab clearance and volume of distribution were level

of shed extracellular domain of HER-2 receptor and body weight with a modest

increase in clearance in patients with four or more metastatic sites. The population

PKmodel predicted amean steady state peak concentration of 110 mg/mL and trough

concentration of 66 mg/mL following weekly maintenance dose of 2 mg/kg. An

intensive loading dose schedule followed by administration of maintenance dose

every 3 weeks was anticipated to achieve higher serum concentrations of trastuzu-

mab early and also synergize administration of trastuzumab with standard chemo-

therapy. Simulations were performed using the population PK model to compare

trough concentrations after 6 mg/kg every 3 weeks or after 2 mg/kg every week.

Simulations indicated higher peak and slightly lower mean trough concentration

with 80% of patients achieving target level of 20 mg/mL following 6 mg/kg every 3

weeks dose compared to 90% with the 2 mg/kg every week dose. This alternate

dosing schedule was later evaluated in a phase I/II study in 72 patients (Leyland-

Jones et al. 2010). Trastuzumab was administered at 6 mg/kg weekly for 3 weeks

followed by a maintenance dose of 6 mg/kg every 3 weeks. As predicted by the

model, the observed mean trough concentration 3 weeks after the fourth dose was

similar to that observed with weekly maintenance dose of 2 mg/kg.
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17.3.3.9 Provision of Rationale for Clinical Observations in Phase III

Trials in Regulatory Interactions for Approval

Ustekinumab is a human monoclonal antibody that binds and neutralizes cytokines

IL-12 and IL-23, which have been implicated in psoriasis. Population PK of

ustekinumab was characterized in 1,937 psoriasis patients from two phase III

studies, PHOENIX 1 an 2 (Zhu et al. 2009). Patients received SC administration

of either placebo, 45 or 90 mg ustekinumab on weeks 0 and 4 followed by dosing

active treatment every 12 weeks. A one-compartment model was chosen as the

structural model and various covariates such as demographic, disease characteris-

tics, concomitant medication, smoking status, and alcohol use were evaluated using

data from the PHOENIX 2 trial. Data from PHOENIX 1 trial was used as an external

validation data set. Body weight was found to be a significant covariate impacting

both SC clearance (CL/F) and SC volume of distribution (V/F), with patients

weighing 100 kg or more having an approximately 55% higher CL/F and 37%

higher V/F, resulting in 30% lower steady state trough concentrations. None of the

other demographic covariates were significant except for minor observations of a

5.9% higher CL/F in females and 11% lower V/F in non-Caucasian patients, which

were not considered clinically significant. Interestingly, CL/F and V/F were higher

by 29 and 13%, respectively, in diabetes patients. The final model was used to

simulate the combined effect of body weight and diabetes on expected ustekinumab

steady state exposures, which were predicted to be 40–50% lower in diabetes

patients weighing 100 kg or more. This population PK model was subsequently

used to characterize the exposure-response relationship between ustekinumab expo-

sures to the efficacy endpoint Psoriasis Area and Severity Index (PASI) in the two

PHOENIX trials. The PASI scores were modeled using an indirect response model

with drug concentrations inhibiting formation rate of psoriatic skin lesions followed

by evaluation of covariates. A trend toward higher exposures and lower CL/F was

seen in responders and partial responders compared to nonresponders. More impor-

tantly, the modeling identified a bimodal distribution in IC50, with a 30-fold higher

IC50 value in partial responders compared to responders, indicating different

sensitivity to ustekinumab in psoriasis patients. The PK-PD modeling of ustekinu-

mab helped relate drug exposures to the clinical endpoint and helped identify

interindividual sensitivity to ustekinumab to explain the intersubject differences in

clinical response.

17.4 Conclusions

PK-PD modeling and simulations have many important applications in the devel-

opment of protein drugs. Application of PK-PD modeling can improve the engi-

neering of protein drugs, contribute to the selection of the best lead drug candidate,

and improve the probability of successful development. For modeling of protein

PK-PD, a thorough understanding of the biology of the target and the pharmacology
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of the drug is required. Unlike small molecules, the PK properties of protein drugs

are often intricately linked to the biology of the target. Mechanistic, biologically

based models should be established to describe exposure-response relationships.

Model assumptions should be carefully based on experimental data where feasible.

PK-PD modelers should also be proactive: appropriate PK and PD assays should be

established as early in development as possible; and the modeler should understand

the characteristics of the assays and what the assays are measuring. The effects of

antidrug antibodies, which can affect pharmacokinetics, efficacy, and safety, should

also be considered when conducting PK-PD modeling. Although this chapter has

provided a general overview of PK-PD approaches to modeling and simulation of

protein drugs, successful PK-PD modeling of novel proteins must be founded on

innovation: every case is different.
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Chapter 18

Modeling and Simulation in Pediatric Research

and Development

Jeffrey S. Barrett

Abstract Pediatric research and development is typically poorly funded in both

academic and industrial settings creating greater incentive for optimized trial

designs with high degree of technical success. Likewise, the application of modeling

and simulation approaches is extremely valuable in the evaluation of pediatric trial

design. Beyond bridging adult dose-exposure relationships, pediatric clinical trial

simulation models must accommodate relevant developmental, maturational, and

size relationships on both PK and PD expressions. Design considerations that

address sample size per age strata, the probability of achieving adult exposure-

response targets, and assumptions regarding PD response vs. outcomes are espe-

cially valuable in the support of pediatric drug development and/or dosing guidance.

18.1 Introduction

The typical child is remarkably healthy and the occasion to treat them with

medicine is usually precipitated only by infection, fevers associated with bacterial

or viral infections, and sedation requirements on the unfortunate visit to the ER. Not

surprisingly, antibiotics, acetaminophen, and sedatives such as propofol and mid-

azolam are among the most highly used medicines in children in an in-patient

setting (Barrett et al. 2008a, b). The marketplace attests to the economic reality that

children are not the “target population” for most new molecular entities (NMEs) in

drug development. This reality, in part, motivated the assignment of pediatrics as a

“special population” in the recent past. On face value this is not an apparently

egregious term to associate with the study of children. However, the notion that a

single study design will be sufficient to extend the data generated in adults to

pediatrics is flawed even if the adult and pediatric indications are similar. Although
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opinions differ regarding the upper age boundary for pediatrics, the age window

from birth to 17, 18, or 21 years is wide and represents approximately one-fourth of

the average human life expectancy. Of course there are subcategories (neonates,

infants, children, adolescents, etc.) that further differentiate this general classifica-

tion, but the key notion and the basis for much of the current pediatric study design

requirements, at least from a regulatory perspective, is that pediatrics represents a

developmental continuum over which younger individuals mature into fully devel-

oped adults. Although clinical experience over the entire continuum is sought, the

value of information collected across this continuum is not equal in that earlier age

ranges (younger populations) tend to be more dynamic and require more consider-

ation for dosing requirements. Likewise, pediatric clinical trial designs should

consider variation in both PK and PD behavior, which may vary separately or in

conjunction along nonlinear developmental and/or maturational trajectories.

Unlike the typical child, the critically ill child often manifests additional factors

beyond age, size, and development that need to be considered when prescribing

medicines (Zuppa and Barrett 2008). Assumptions regarding the consistency of

pharmacokinetic behavior and linearity over time, dose, and condition may not be

guaranteed in these children. Both the class and number of pharmaceutical agents

administered are also likely at issue for critically ill children. Cancer, infectious

disease, and neurologic conditions all represent therapeutic areas where polyphar-

macy exists in children and where risk of drug interactions is greater.

There are several key questions addressed in this chapter as we consider the

strategy and implementation of clinical trial simulation (CTS) in the study of

pediatric populations. These include the following:

l Who performs pediatric research and, more specifically, clinical trials in chil-

dren and why?
l What are the objectives of the various studies and how are these objectives

aligned with study designs?
l To what extent does (or can) modeling and simulation facilitate the design of

pediatric trials?
l How specifically is CTS implemented to advance pediatric research in the

various settings where these investigations occur?

To deal with these questions we must also consider one additional matter that

affects all others as well as the underlying assumptions that frame pediatric research

in general. Assuming that CTS performed for pediatric trials is fundamentally the

same as in adults, what are the key differences (between adults and pediatrics) and

how do we address them in the design and implementation of pediatric CTS?

Although there are few published examples of CTS focused in pediatrics, the

occasion to consider CTS has increased dramatically largely motivated by regu-

latory considerations from the European Medical Agency (EMA) and the Food and

Drug Administration (FDA). The most common application is the standard PK/

safety trial employed when adult and pediatric indications are perceived to be

similar and there is information/data to support such assumptions. The primary

goal in this setting is to ensure an adequate sample size and an informative sampling
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scheme that considers the potential shift in PK across age strata or temporal changes

in PD response. More uncommon but perhaps increasing is the interest in pediatric

efficacy trials.

Drug developers and pediatric caregivers have different objectives when it

comes to evaluating the relevant clinical pharmacologic principles that underlie

their query. The drug developer ultimately must contend with the dosing of the

“typical” pediatric patient, keeping in mind that a recipe for dosing within the usual

constraints of an otherwise normal developing child must be provided in the

labeling. The caregiver must address the individual patient, regardless of how the

patient presents. Thus, although the typical patient may represent the normal

scenario (hopefully) for caregivers, the critically ill child, the child on extracorpo-

real membrane oxygenation (ECMO), the hypothermic child, the obese child, and

the child on multiple medications with some degree of interaction potential must all

be treated with the best medical judgment the caregiver can provide. Hence, the

availability of source data in these categories is invaluable to the caregiver. When

data are not available some level of extrapolation occurs (usually empirically).

Although not trial simulation per se, individual patient forecasting (simulation

based on prior knowledge and perhaps some individual patient data) is becoming

a desirable tool for the caregiver.

Differences between children and adults with respect to PK and PD are often

influenced by physiologic factors such as body composition, total body water,

protein binding, cytochrome P450 ontogeny, gastrointestinal motility and pH, and

organ (e.g., renal and hepatic) function, all of which can produce significant

influences on absorption, distribution, metabolism, and elimination throughout

childhood. Likewise, knowledge of pediatric clinical pharmacology is essential to

the design and conduct of informative pediatric trials. More than ever, pharmaceu-

tical sponsors are encouraged to plan for the pediatric investigation as an essential

part of their clinical development plans, especially with the reissuance of the

Product Research and Equity Act (PREA) (Ward and Kauffman 2007). For older

drugs on the market, NIH administrates the appropriation of funds that support

pediatric research for off-patent drugs through the Best Pharmaceuticals for Chil-

dren Act (BPCA) (Ward and Kauffman 2007) with guidance on the research scope

and protocol design from the FDA. In both cases (PREA and BPCA studies), access

to pediatric patients is commonly attained through networks of pediatric centers of

excellence. For clinical pharmacology studies encompassing PK, PD, safety and

efficacy in a limited sense, the Pediatric Pharmacology Research Units (PPRU,

http:/ppru.org) have had a longstanding history for supporting trials resulting

in labeling for children. More recently, the Obstetrics Pharmacology Research

Unit (OPRU, http://opru.rti.org/) has focused on maternal and newborn trials.

Specific indication networks also exist and are essential in the identification and

enrollment of often critically ill patients and patients with chronic and/or life-

threatening disease. Table 18.1 lists many of the available pediatric clinical

research networks along with their website URL (if available) aligned with the

supporting NIH institution.
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Table 18.1 Pediatric clinical research networks sponsored by the National Institute of Health

(NIH)

Funding

institution Specific network (and website if available)

NICHD Obstetric-Fetal Pharmacology Research Units (OPRU) http://www.nichd.nih.

gov/research/supported/opru_network.cfm

NICHD Domestic and International Pediatric and Maternal HIV Studies

Network www.nichd.nih.gov/research/supported/pphsn.cfm

Pediatric Research in Office Settings (PROS) http://www.aap.org/pros/

The National Collaborative Pediatric Critical Care Research Network

(CPCCRN) http://www.cpccrn.org/

Maternal Fetal Medicine Units Network (MFMU) http://www.bsc.gwu.edu/

mfmu/

Stillbirth Collaborative Research Network http://scrn.rti.org/

Diabetes Research in Children Network (DirecNet) http://www.nichd.nih.gov/

research/supported/directnet.cfm

NHLBI Cincinnati Pediatric Research Group (CPRG) http://www.cincinnatichildrens.

org/research/project/cprg/

Pediatric Heart Network (PHN) http://www.pediatricheartnetwork.org/

NHLBI Pediatric Cardiology Network www.pediatricheartnetwork.org

Pediatric Asthma Clinical Research Network

PICU Network (Pediatric Critical Network) http://pedsccm.org/

The NHLBI Acute Respiratory Distress Syndrome Network http://www.

ardsnet.org/

NCI Pediatric Brain Tumor Consortium (PBTC) http://www.pbtc.org/

Cooperative Human Tissue Network (CHTN) Pediatric Division http://www.

chtn.ims.nci.nih.gov/

Childhood Cancer Research Network http://www.cancer.gov/cancertopics/

factsheet/Sites-Types/childhood

New Approaches to Neuroblastoma Therapy Consortium (NANT)

http://www.nant.org/

COG (Children’s Oncology Group) http://www.childrensoncologygroup.org/

NIAID Cooperative Clinical Trials in Pediatric Transplantation (CCTPT)

https://www.cctptstudies.org/

Vaccine and Treatment Evaluation Units (VTEUs) http://www.niaid.nih.gov/

factsheets/vteu.htm

Collaborative Antiviral study group – NIAID/DMIDa http://www.casg.uab.edu/

NCRR Glaser Pediatric Research Network http://www.gprn.org/

CF Foundation Therapeutic Development Network (CF TDN)

http://www.cff.org/

Clinical and Translational Science Awards (CTSA) Consortium http://ctsaweb.

org/upenn.html

NEI Pediatric Eye Disease Investigator Group (PEDIG) http://public.pedig.jaeb.org/

Studies of the Ocular Complications of AIDS (SOCA) network

http://www.jhucct.com/soca/

NIMH Pediatric Practice Research Group (PPRG)

Research Units on Pediatric Psychopharmacology Autism Network (RUPP)

NIDDK Biliary Atresia Research Consortium (BARC) http://www.barcnetwork.org/

The Environmental Determinants of Diabetes in the Young (TEDDY)

http://teddy.epi.usf.edu/

(continued)
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Several academic and industry-based contract research organizations (CROs) offer

services for the conduct of pediatric trials butmost of these are focused on providing trial

management and infrastructure for multicenter trials as well as a data coordinating

center. More recently the NIH has solicited applications for a pediatric trials network in

an effort to further improve the efficiency of contractual arrangements and the conduct

of trials that support the BPCA. Hence, although the recent past was fraught with

difficulty in the conduct of pediatric clinical trials, these obstacles have less to do with

the availability of trial infrastructure and more to do with the availability of the

population and/or the ethics of a particularly study design.

18.2 Methods for Modeling and Simulation Applications

In discussing methodologies to support modeling and simulation applications in

pediatrics, we address the types of study designs that are typically employed and

also pediatric patients as a subpopulation. The actual pharmacometric methodologies

Table 18.1 (continued)

Funding

institution Specific network (and website if available)

NINDS INCLEN TRUST (INCLEN) http://www.inclentrust.org/

American Spinal Muscular Atrophy Randomized Trials Consortium http://www.

smafoundation.org/links.asp

NIAMS Childhood Arthritis & Rheumatology Research Alliance (CARRA)

http://www.arthritis.org/carra.php

Multiple

institutes

Neonatal Research Network (NRN) – NICHD, NHLBI https://neonatal.rti.org/

about/mls_background.cfm

Pediatric AIDS Clinical Trials Group (PACTG)/International Maternal Pediatric

Adolescent AIDS Clinical Trials (IMPAACT) Group – NIAID,a NICHD

http://pactg.s-3.com/

Blood and Marrow Transplant (BMT) Clinical Trials Network (CTN) – NHLBI,

NCI https://web.emmes.com/study/bmt/

Cooperative International Neuromuscular Research Group (CINRG) – NICHD,

NCRR http://www.cinrgresearch.org/

Type 1 Diabetes TrialNet (Trial Net) – NIDDK,a NIAID, NICHD http://www.

diabetestrialnet.org/tnet1.html

Global Network for Women’s and Children’s Health – NICHD,a NCI, NIDCR,

NCCAM http://gn.rti.org/

Southern California Permanente Clinical Trials – NIA, NCI, NEI, NINDS,

NIDDK, NHLBI http://xnet.kp.org/clinicaltrials/

Pediatric HIV/AIDS Cohort Study (PHACS) – NICHD, NIAID, NIMH, NIDA,

NIDCD, NHLBI https://phacs.nichdclinicalstudies.org/overview.asp

Clinical Trials Network of Columbia U, Cornell U, and NY Presbyterian

Hospital (CTN) – NHLBI, NIA, NEI, NIMH, NCI, NIND http://www.

clinicaltrialnetwork.com/
a Primary funding source
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are not different than those employed in adult settings but considerations for how the

pediatric condition is quantitatively identified from the human continuum can vary.

18.2.1 Common Trial Designs for Pediatrics

As discussed previously, pediatric investigation typically ensues only after

substantial data is available in adults. Although the FDA and EMA have provided

some guidance in the planning of pediatric investigations via a decision tree approach

that is based on common dose-exposure and exposure-response expectations, themost

common clinical evaluation involves (a) a confirmation of the PK and safety, (b) some

level of PK/PD correlationwith adults, (c) justification of dose selection, or (d) a Phase

III trial in the event pediatric market exclusivity is sought. Currently, the timing of the

pediatric investigation plan (PIP) required by the EMA is earlier than that the pediatric

written request reply expected by FDA (roughly the end of phase I for the EMA/PIP

vs. the end of phase II for the FDA). Some sponsors feel that the EMAPIP requirement

occurs too early to know if they have a viable drug candidate. On a practical basis, this

difference in timing also implies that the amount and nature of data available to

decisionmakers varies. This has resulted in additional choices in the types ofmodeling

and simulation approaches used to support the PIP as opposed to the FDA interaction.

Principally, it has created an awareness and necessity to consider so-called “bottom-

up” approaches to project pediatric dose-exposure relationships. These are discussed

in detail later in this chapter.

Regarding differences in trial designs between adult and pediatric drug develop-

ment programs, most of the differences reflect the compression in scope in the

pediatric setting. The reality is that a single study often suffices for each phase of

development; often only for phase I (PK/safety) if the pediatric and adult indica-

tions are the same and the PK/PD is similar. The PREA (Ward and Kauffman 2007)

has created some financial incentive for pharmaceutical sponsors to pursue Phase

III trials, but these have not always yielded meaningful results. A recent review of

pediatric antihypertensive trials by FDA and academic scientists found some

glaring trends in the study failures (Benjamin et al. 2008). The paper states, “We

found poor dose selection, lack of acknowledgement of differences between adult

and pediatric populations, and lack of pediatric formulations to be associated with

failures. More importantly, our ability to combine data across trials allowed us to

evaluate and potentially improve trial design.” Many of these were certainly

avoidable and will be addressed in this chapter; it is also clear that the regulators

see the merit in encouraging quality trial designs in order to limit study failures.

This is especially relevant in pediatrics as there is seldom an opportunity to repeat a

trial if the design was perceived as flawed or for some other reason that would

support success from a modified design.

Table 18.2 provides a comparison of some common designs employed in both

adult and pediatric settings. There is concern to minimize pediatric exposures and

limit both noneffective treatments (doses) as well as doses outside the likely
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Table 18.2 Comparison of basic trial designs utilized to support pediatric drug development with

reference to adult counterparts

Design Adult construct Pediatric considerations

Phase I: PK/

safety

Typically separate single and multiple

dose trials with broad dose ranges

supported by animal toxicology data

and the desire to define the MTD

Usually single or multiple dose trial

(typically single dose)

Alternating panel, rising dose design

common (three actives and one

placebo per cohort)

Fewer dose groups bracketed around the

doses likely to achieve adult

exposures

Sample size not based on hypothesis

testing; exploratory PK used as

initial estimates

Safety collected and examined relative

to exposure but not with the intent o

describing MTD (except in

oncology)

Dense sampling for PK (non-

compartmental analysis [NCA])

Sample size based on power to detect a

difference (e.g. 30%) in clearance

between adjacent age strata and

adults

Sparse sampling; sampling designs

altered in lower age/weight strata

Phase II: dose

ranging

PK/PD

Two to four doses with or without

placebo are common

More than two doses is rare; often the

dose range is narrow and difficult to

separate based on exposure profiles

Occasionally powered for efficacy;

consideration as the supportive PK/

PD trial coupled with a traditional

Phase III trial at one of the same

doses studied

Emphasis on confirming dose selection;

sample size usually driven by

available population and

requirement for sample size

minimums within age strata

Duration usually consistent with the

expected standard of care but

shortened if proof-of-concept is

sought

Occasionally extended to accumulate

chronic safety but mostly short

duration

Phase III:

parallel

group

(control)

Parallel-group Parallel-group

Treatment vs. placebo or active

control

Treatment vs. placebo (less common)

or active control

Sample size based on power to detect

a difference with control

Sample size based on power to detect a

difference with control but guided

by available population

Design can vary with claim intention

(equivalence vs. superiority vs. non-

inferiority)

Design seldom focuses on claims;

seeks “positive” outcome

Basis for approval (primary

endpoints) defined a priori by

sponsor and FDA

Often a conflict between adult vs.

pediatric outcomes as well as

regulatory “buy in.”

Effect-

control

(titration)

Titration study Titration study

Achievement of sustained surrogate

thresholds consistent with well-

managed patient vs. active or

placebo

Thresholds often based on adult

targets without challenge to

pediatric PK/PD relationships

Sample size based on power for

comparison

Sample size based on power for

comparison; guided by comparison

across age strata as well

18 Modeling and Simulation in Pediatric Research and Development 407



recommended range for pediatrics. Sampling is also conducted in a sparse manner

and reliant on population model-based approaches for analysis even in the phase I

setting. Although less of an issue in older children, this becomes a necessity in

infants and neonates where the typical investigational review board (IRB) require-

ments limited the total blood collected on study to 3 mL/kg. Safety too is viewed

somewhat differently. There is certainly a special emphasis on understanding the

exposure risks of dosing children, particularly developmental risks. This does not

come at the expense of defining the full dose-response curve in children however.

The target dose range of interest is typically a subset of what has been studied in

adults except of course in pediatric oncology settings where toxicity is still often a

marker for efficacy. Likewise, the emphasis of safety evaluation is based on

assessing whether the nature and severity of safety signals are similar in children

vs. adults at the doses targeted for pediatric use, not necessarily at defining the

therapeutic window exclusively from pediatric investigation.

18.2.2 Converting the Developing Child into the In Silico Child

Historically, dosing in children has been viewed as a scaling exercise with a simple

normalization of body weight (BW) for the intended age (or weight) of a child

(P, pediatric) applied to the adult (A) dose.

DoseP ¼ DoseA � BWP

BWA

In this manner, we need not understand the source of PK difference in the

developing child, trusting only that the linear scaling of BW is a reasonable

means to adjust dose. This approach tends to under-predict dose requirements

across the pediatric continuum though it is not equally bad in all age/weight ranges

(Johnson 2008). Substituting body surface area (BSA) for BW in a similar manner

is used quite extensively in pediatric oncology settings under the assumption that

similar “geometry” can be achieved with this transformation.

DoseP ¼ DoseA � BSAP

BSAA

It has also been reported that this expression under-predicts infant and neonate

dosing requirements (Johnson 2007). Allometric or power models are used in various

biological settings to adjust for size dependencies of growing/developing systems.

The value of the exponent (“b”) in the equation below varies with the type of biologic

variable being scaled. In the PK sense it is common to associate an allometric

exponent of 0.75 for clearance-related variables and 1 for volume of distribution.

There is certainly no consensus on the numeric validity of these generalized constants.
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Y ¼ a� BWb
b ¼ 0:25; time-related variables

b ¼ 0:75; metabolic variables

b ¼ 1; anatomical variables

8<
:

It is relevant however that we recognize that the adjustments are focused on size

and not the more complex biology of a whole living system. If we apply this

approach to dose adjustment for children recognizing the relationship between

clearance, volume of distribution and dose, we arrive at the following expression,

which overpredicts dose requirements in children less than 1 year of age although it

is superior to BSA in this age range (Johnson 2007).

DoseP ¼ DoseA � BWP

BWA

� �0:75

Thus there is no one simple way to generalize dose adjustment in pediatric

populations from an adult dosage. This should really not be surprising given that the

adult continuum over which fixed dosing is often recommended typically excludes

elderly and obese populations treating them as “special” as well. A pharmacoki-

netic model is required to serve as the backbone of such consideration. There are

choices with respect to compartmental vs. physiologic model with respect to the PK

characterization; these are essentially driven by the availability of data from which

these models can be constructed. In either case, expressions for dealing with the

ontogeny of enzyme systems involved with drug metabolism and for describing the

maturation process of organs involved with drug clearance is essential to account

for the systematic deviations described above regardless of the structural model

choice. As it is the most common situation, we will describe these relationships

from the standpoint of a compartmental model structure under the assumption that

we are describing the PK in children with some prior knowledge of adult PK.

Broadly speaking, we can target systemic clearance as a key population param-

eter from which both maturation (MF) and organ function (OF) require consider-

ation when adjusting for pediatric populations. Consider the generalized population

expression for clearance below:

CLP ¼ CLA � BW

70

� �0:75

�MF� OF

Maturation is generally considered a continuous function (MF), which achieves

an asymptote at the adult value (MF¼ 1) at some finite point in development.

Usually, the MF is derived from a time index related to birth. Expressions for MF

based on postconceptual age (PCA), postmenstrual age (PMA), postnatal age

(PNA), and gestational age (GA) have all been considered (Anderson and Holford

2008). Inconsistent use of terminology has limited the accurate interpretation of

data on health outcomes for newborn infants, especially for those born preterm or

conceived using assisted reproductive technology (Engle 2004) so one must be
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careful when trying to derive these relationships from the literature. Figure 18.1

illustrates the relationship between the various age indices. “Gestational age” or

“menstrual age” is the time elapsed between the first day of the last normal

menstrual period and the day of delivery. “Chronological age” or “postnatal” age

is the time elapsed after birth (Fig. 18.1). PMA is the time elapsed between the first

day of the last menstrual period and birth (GA) plus the time elapsed after birth

(chronological age). “Corrected age” (or “adjusted age”) is a term used to describe

children up to 3 years of age who were born preterm (Fig. 18.1). Corrected age is

calculated by subtracting the number of weeks born before 40 weeks of gestation

from the chronological age. Corrected age and chronological age are not synony-

mous in preterm infants. “Conceptional age” is the time elapsed between the day of

conception and the day of delivery.

For the purpose of modeling a key requirement is that the same time index be

used when pooling data and that the accurate transformations of time are ensured.

MF expressions vary from very simple relationships (Tod et al. 2008) as below

MF ¼ PCAs

PCAs
50 þ PCAs

to more complex expressions in which estimate the time to maturation (TM) as a

parameter (Potts et al. 2009) with a cutoff point that designates a different slope on
the MF (Hill_A vs. Hill_B).

MF ¼ 1

1þ PMA/TM50½ �Hill A ; PMAbTM50

MF ¼ 1

1þ PMA/TM50½ �Hill B ; PMA >TM50

8<
:

Fig. 18.1 Age terminology during perinatal period adopted from the American Academy of

Pediatrics policy statement (Engle 2004)
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Based on these expressions it is clear that the most common MFs are empirically

and not physiologically defined. Necessarily, their predictive value is closely linked to

range of the observed data fromwhich they are defined. Asmore of these relationships

are reported for various drug attributes, it may be possible to generalize these empiri-

cal relationships. An important future consideration will be the extent to which these

functions alignwithmore physiologically-based relationships (i.e., so-called “bottom-

up” approaches). The shape of the general MF is shown in Fig. 18.2.

An OF value of 1 is associated with healthy children but can be higher or lower

for critically ill children. These relationships are typically expressed as sigmoidal or

hyperbolic functions employing a biomarker of OF (e.g., serum creatinine or

creatinine clearance for kidney function) but these factors can also be treated as

covariates of clearance as either continuous or dichotomous variables depending on

the target population. Often a more immediate consideration is the necessity of

Fig. 18.2 Influence of slope factor (a) and maturation time (estimated by PCA50 in this example)

(b) on maturation functions ðMF ¼ PCAS=PCAS
50 þ PCASÞ vs. age index (PCA in this example)

used to adjust drug clearance in a developmental PK model
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addressing the age-dependent expression of metabolizing enzyme activity. Much is

now known about the ontogeny of many of the cytochrome P450 family of enzymes

(Kearns et al. 2003; Stevens et al. 2008) and recent efforts have incorporated

ontologic functions into drug clearance expressions (Johnson et al. 2006, 2008).
As complementary data become available for phase II metabolism and transporters,

these too can be employed when relevant. The manner in which ontogeny relation-

ships are accommodated in the clearance expressions is similar to that defining

MFs. Specifically, age-related functions that define the fraction of adult enzyme

expression are factored into the overall clearance expression. Many of these

(ontogeny functions, OF) have been defined for the P450 family (Johnson et al.
2006). A generalized expression would look like the following:

OF ¼ a� Age

TM50 þ Age
þ b

Variations of this generalized expression are used for some enzymes; these

typically involve the addition of a power function (exponent) on Age. It should

be appreciated that even within the P450 family of enzymes there is great variability

in the half-time of adult expression ranging from 3.5 days for hepatic CYP2C9 to

2.4 years for gut CYP3A (Johnson et al. 2006) as well as the functional level at

birth. This is especially relevant when dealing with drugs that have multiple

elimination pathways and/or involve multiple enzymes for drug clearance. Some

functional expressions derived by Johnson et al. (2006) are shown in Fig. 18.3.

The appropriate incorporation of developmental influences is an active area of

research for many engaged in pediatric clinical pharmacology research. As the

experimental data is generated it is likewise important that model-based approaches

evolve to accommodate the new knowledge. Important gaps exist in phase II

metabolic pathways (Blake et al. 2005) and transporter ontogeny considerations

although research in these areas looks promising (Ge et al. 2007; Strolin Benedetti

and Baltes 2003).

Fig. 18.3 Ontogeny-based functions for common CYP P450 enzymes used to adjust estimates of

drug clearance
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An important parallel effort involves the derivation of physiologic relationships

that reflect important developmental processes. Current physiologically based phar-

macokinetic (PBPK) models incorporate age/size dependencies that permit “scaling”

of dose in a manner analogous to compartmental approaches. An important milestone

in this process has been the development of the underlying physiologic parameter

databases that permit such age-dependent projections. The extension of PBPK

models beyond adjusting for size likewise must incorporate developmental and

age-dependent physiologic factors to further improve their generalizability and utility

for individualizing exposure prediction beyond the plasma compartment (Ginsberg

et al. 2004; Yang et al. 2006). Table 18.3 lists several known relationships between

age-dependent physiologic parameters and pharmacokinetic attributes and para-

meters. Additional detail is provided in Sect. 18.5.1.

Although the relationship between developing physiology and pharmacokinetic

attributes is generally at least qualitatively appreciated, far less emphasis has been

placed on the relationships between developmental changes and pharmacologic path-

ways. As these represent the target mechanisms of beneficial action and/or the

off-target affects that lead to toxicity, they are often critical in the assessment of

the pediatric therapeutic window. These relationships likewise have been absent in the

discussion of pediatric development plans and decision trees used to define regulatory

expectations for such plans. Table 18.4 shows several examples of systems known to

exhibit age-dependent physiologic factors that are postulated to account for differences

between pediatric and adult exposure targets or expectations in clinical response.

Table 18.3 Physiologic changes that correlate with the time course of PK attributes (ADME)

Pharmacokinetics Physiologic considerations

Attributes Parameters Time course Relationships

Absorption Ka, Fabs, F,
MRTabs,

Cmax, Tmax

Typically occurs rapidly; gastric

emptying changes with age

Mucosa changes with age

Length/surface area changes

with age

Ontogeny of pre-systemic

enzymes/transporters

Distribution Vd (Vdss,

etc.), fu, BBB,
RBC partition

Changes are rapid during the first

weeks and months of life

Fat, water partition changes

with age/development

Change in protein composition

and concentration with age

Permeability changes with

age/developmental status; lung

capacity; skin penetration

Metabolism CL, CLm,

formation rate

constants

Varied time to near adult

expression ranging from <1

months (CYPs 2C9 and 2C8) to>2

years (gut 3A4) (Johnson et al.
2008)

Ontogeny of systemic and

organ-specific enzymes/

transporters

Excretion CL, CLr Varied time to adult function

(Rodman 1994)

Kidney function maturation

and ontogeny of renal

transporters

BBB blood brain barrier, RBC red blood cell
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18.3 The Pediatric CTS Model

The basic construct for a trial simulation model has been defined in other chapters of

this book. As previously stated, the general framework is the same for pediatric

application, though designs, age/developmental considerations, population character-

istics, and the time course of study evaluation (and likewise disease progression) need

to be defined specifically for the proposed pediatric setting.With these checkpoints in

Table 18.4 Examples of developmental influences on physiologic processes that may affect the

pharmacodynamics of selected drug classes

Pathway or

system

Developmental

considerations

Drug classes potentially

affected PD response

Coagulation Changes in hemostatic

response – number and

nature of platelet

membrane receptors,

clotting factors (Revel-Vilk

and Chan 2003)

Antithrombotics,

antiplatelet agents,

vitamin K antagonists

Antifactor-Xa activity,

IPA (%), bleeding rate and

extent, etc.

Pulmonary

system

Vascular wall composition

of pulmonary and systemic

capacitance vessels and

their intravascular pressure

changes through

development (Belik et al.
2000)

Corticosteroids, calcium

channel blockers,

prostacyclins, endothelin-

1 inhibitors

Collagen, major growth

factors (TGF-beta, IGF-2,

and bFGF), and cytokine

gene expression

Immune

system

Development of the

immune system is a partial

explanation for the increase

in the incidence of

infectious sequelae (Clapp

2006)

Antibiotics, anti-

infectives, antiretrovirals,

etc.

MIC determination, cell-

kill curves, etc.

Cutaneous

system

Newborns have an

immature cellular immune

defense system that leads to

increased susceptibility to

infections (Dorschner et al.
2003)

Topical antibacterials Infection susceptibility

Brain stem Developmental aspects of

phasic sleep parameters,

REM density and body

movement, and the

executive system

(Kohyama and Iwakawa

1990)

Drugs which promote loss

of sleep as side effect or

agents to treat disorders

such as ADHD

Correlation of sleep

parameters with age likely

reflects brain-stem

maturation
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mind, Table 18.5 illustrates the issues that the pediatric clinical pharmacologist and

pharmacometricianmust consider within the framework of a trial simulationmodel as

defined by Holford (2006) for the adult scenario.

Table 18.5 Elements of a CTS model with consideration for differences between adult and

pediatric components and model elements based on nomenclature described by Holford et al.
(2000)

Components and

elements Considerations for pediatrics

I/O model

PK Models must accommodate size, organ maturation and developmental

factors that affect the various underlying PK processes (see

Table 18.2)

PD Models must consider physiologic factors which affect target exposure

requirements, or exposure sensitivities which otherwise imply a

different therapeutic window from adults (see Table 18.3)

Disease progression The time scale over which a disease progresses in children relative to

adults or independent of adults (in the case of pediatric-specific

indications) must be defined relative to the window of clinical

investigation. The impact of state of disease progression on

enrollment criteria may be important for study completion/subject

availability

Placebo response Value of adult priors questionable; pediatric-specific expectations

should be defined; may require input from thought leaders for new

indications

Parameter covariate Plausibility of pediatric-specific covariates needs to be evaluated as

would justification for previously-defined adult covariates which

may not be relevant in pediatric populations

Parameter variability Consideration for potential differences with adult variance estimates or

model-based expressions

Residual Consideration for residual vs. inter-occasion variability and potential

confounding with progression from developmental stage

Pharmacoeconomics Consideration for scenarios with and without pediatric formulation

should be made; should consider off-patent use and distribution in

developing countries (compassionate use)

Covariate distribution model

Demographics Potential for site differences (confounding response) in demographics

may be relevant; subpopulations where genetic linkages are plausible

can be relevant (e.g., sickle cell and SMA)

Distribution and

covariance

Impact of sample size on distributional assumptions (type) and inflation

of covariance

Trial execution model

Nominal design Duration, dose range and observation windows represent key design

parameters; sampling time and density with respect to age strata very

relevant

Deviations from

nominal design

Must address the necessity of certain sample size minimums in order to

enroll subpopulations if they represent a target group; must consider

stopping rules and rescue therapy in certain indications
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The emphasis of many pediatric CTS exercises is the evaluation of drug

performance over the age continuum or at least the FDA-defined age strata with

the primary concern to ensure that adequate numbers of pediatric subjects within

these age strata are enrolled and administered a dose that yields comparable

exposures to adults (unless a pediatric therapeutic exposure has been defined).

Equally important is that a sampling design is proposed to ensure that the primary

PK/PD parameters of interest can be obtained from the proposed trial design. This

outcome is attained usually through a compromise between optimal design and

clinical practicality. Considering the weight range of premature newborns, this can

present a major challenge even if the bioanalytical method has been refined to cope

with small sample volumes. In many situations, it is simply not possible to sample

more than 2–3 occasions because of such constraints. A commonly employed

strategy is to randomize subjects to different (two or more) sampling schemes so

that the pooled dataset contains the information content required to estimate key

parameters. Several of the examples provided at the end of the chapter illustrate

this approach and a more detailed discussion of the analysis stages for the common

PK/safety design is discussed in the Sect. 18.3.2.

Hence, the pediatric CTS objectives are commonly focused on the dose-sample

size-sampling scheme interface. This can become very complex depending on the

PK attributes of the target species as mentioned previously but also based on

biopharmaceutic issues and formulation requirements. For example, as children

under the age of six are typically unable to swallow tablets/capsules effectively,

liquid or granule (sprinkles) formulations are often sought and hence equivalence

becomes a concern. Assumptions regarding the outcome of adult food effect trials

may not be valid in these settings. Moreover, dealing with fixed dose multiples may

present challenges to scaling (both from a manufacturing and clinical perspective).

An important output then for these efforts is to provide the likelihood that the

proposed design yields the desired milestones. This is obviously the impetus behind

using CTS in this setting as it necessitates replication within scenario and under

various assumptions regarding the certainty of parameter estimates – usually

defined by the prior probabilities that such estimates reflect reality.

18.3.1 Priors for Pediatric CTS

Priors are an essential part of modeling and simulation. In the Bayesian context they

help define the expectation from a proposed experimental design as well as its

outcomes. Priors do not have equal value however and the proximity of the prior to

our intended setting will improve the validity of our simulations and predictions.

One of the more challenging aspects of supporting CTS approaches in pediatrics is

the identification of reliable priors from which parameter and covariate distribu-

tions can be considered.

We can obtain priors from many sources based on the availability of data. These

include studies in older children, pediatric populations that differ from the target
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indication, adults, animals, in vitro experiments, and physiochemical properties of

the target agent itself. Of course, it is possible to select priors from multiple sources

as long as one recognizes the uncertainty in applying the prior and the methodolog-

ical approach(s) necessary to connect the data/models together. Figure 18.4 shows

the hierarchy of data potentially available as priors for pediatric CTS along with the

techniques used to connect the various data and model elements. Figure 18.4 also

illustrates the data used in the “top-down” vs. “bottom-up” approaches discussed

later in the chapter.

While the prior may serve as a bridge, one aspect of the trial simulation

will require the projection of dose-exposure, exposure-response and/or response-

outcome relationships onto realistic normal or critically ill pediatric population.

Distributions can certainly be defined to fulfill this requirement, but resampling

from actual pediatric populations will always provide more confidence in these

relationships particularly if they are indexed against potentially plausible covariates

(age, weight, BMI, gender, race, genotype, phenotype, etc.) where covariance can

more easily be established.

The usual starting point is the actual pediatric population of interest. Depending

on the indication, foundations or consortiums may exist that assemble patient

registries where such data can be requested. This is the case for the children’s

oncology group (COG), the spinal muscular atrophy (SMA) foundation and the

Pediatric AIDS Clinical Trials Group (PACTG). Additional online resources are

becoming available as well. Table 18.6 lists some available resources from which

pediatric priors can be obtained. Of interest, the Lexi-Comp online system provides

text-based summaries of many pediatric PK and PK/PD studies from which dosing

guidance is supported. Many of these are not described in the drug monograph. The

Fig. 18.4 Data hierarchy for identification of priors used in various pediatric modeling and

simulation applications with corresponding approaches used to construct the simulation model
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NHANES data is very helpful with respect to demographic data in children,

particularly age, weight, gender, etc. that can be used to sample from as opposed

to creating distributions for each of these covariates. This is particularly helpful

when considering age or weight criteria for dose adjustments across pediatric

subpopulations or consideration for BSA vs. allometric (weight-based) expressions

for adjusting dose or expressing PK parameter-size functionality.

An additional concern for the valuation of priors is the potential problem that

data pooling can create particularly when the design, population, dosing (route

and regimen) and/or formulations vary across studies. Specifically, the diversity

of the underlying data used to define models that generate parameter estimates

(priors) can necessitate a structural and/or covariate model, which is not relevant

to the intended pediatric CTS model. For example, during the development of an

adult drug product, different formulations are likely to have been evaluated in

healthy volunteers or patients. Pooling PK data across formulations with varied

absorption profiles particularly when bioavailability may be correlated with

formulation or when food effects vary by formulation may require a more

complex structural model to describe such formulation-dependent shifts in PK

Table 18.6 Pediatric-specific data repositories

Data source Access Data elements available

National Health and Nutrition

Examination Survey

(NHANES)

Researchers worldwide; survey

data available on the internet

and on CD-ROM (http://www.

cdc.gov/nchs/surveys.htm)

Demographic, socioeconomic,

dietary, and health-related

questions. The examination

component consists of medical,

dental, and physiological

measurements

Pediatric Health Information

System (PHIS) through the

Child Health Corporation of

America (~40 institutions)

Member institutions can

register at www.chca.com and

select PHIS as requested site

for access

Member-specific standardized

data on demographics,

diagnoses, procedures,

interventions, and outcomes for

patients admitted to

participating institutions

Lexi-Comp on-line. Internet-

based drug information

platform for multi-user groups

in a networked system (http://

webstore.lexi.com/ONLINE)

Available to individuals or

institutions via license

agreement. Database tables that

are compatible with Oracle®,

SQL Server®, and MySQL®

Drug interactions, allergies,

therapeutic duplication, dose

range, indications, cross

reactivity, side effects,

pharmacology, pregnancy and

lactation precautions, warnings,

references, flat text dosing,

common prescriptions, drug

disease interactions

National Institute of Child

Health and Development

(NICHD) PeDAR (PPRU)

Under development. Access

granted to participating PPRU

sites; broader access likely in

the future

Data elements derived from

pediatric clinical pharmacology

studies conducted by the PPRU

(PK and some PD)
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attributes. Most importantly, the inclusion of studies describing early formulation

development in adults may be irrelevant to the pediatric setting. In many cases the

most straightforward approach is to eliminate the data that does not extrapolate to

the likely pediatric use. In other situations, one can use a more complex model

with refined expectation about the pediatric formulation (e.g., generalized expres-
sions about drug release relative to age dependency on absorption parameters),

especially if it is not yet developed. In any case, pooling adult data in an effort to

guide expectations about pediatric PK, PK/PD, or PD-outcome relationships

should be based on criteria that at least qualitatively judge the relevance to the

pediatric clinical setting.

18.3.2 Typical Workflow

There is a typical progression of modeling and simulation activities to support the

development and use of a pediatric CTS model. Although the CTS model is inher-

ently based on constructing simulation schemes that test the sensitivity of design,

population, and conduct factors against a well specified model that encompasses the

variability in the target population, PK, PK-PD, and/or PD-outcome relationships,

there is a flow for the creation of objectives and construction that typically represents

a team-based exercise. Figure 18.5 illustrates the general stages of a pediatric CTS

project. Though the details of the stages are necessarily project specific, this sche-

matic depicts the common stages along with the deliverables by stage.

An essential component of the exercise is the effective communication of the

results along with their interpretation. It is growing increasingly common to include

the results of the modeling and simulation exercise into regulatory documents as well

as the transfer of the entire simulation model so that regulatory authorities may also

gain confidence with the recommendations of the sponsor. The regulatory agencies in

the United States and Europe have become increasingly interested in the use of CTS

in pediatrics particularly on the use of adult priors to leverage the design of pediatric

trials (Abernethy and Burckart 2010; Holford 2010; Madabushi et al. 2010).

Fig. 18.5 Schematic representing the typical workflow for a pediatric CTS project
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18.4 Examples

Several examples of modeling and simulation approaches applied in varied pediatric

settings have been provided to illustrate the techniques discussed previously.

Emphasis is placed on showing the connectivity of the objectives to the proposed

workflow as well as the interpretation of results and recommendations for trial

design or dosing considerations.

18.4.1 Safety/PK Trial to Fulfill Regulatory Requirements –
Low Molecular Weight Heparin

The use of low molecular weight heparin (LMWH) in children represents an

example where pediatric use is different from that in adults where the data attesting

to their safety and efficacy resides. In general, LMWHs are used in both prophy-

lactic and treatment deep vein thrombosis (DVT) settings with clinical evaluation

occurring predominantly post hip or knee replacement surgery. This is not the case

in children where the primary clinical evaluation has occurred in children at risk for

thromboembolism (TE) usually because of either congenital or acquired prothrom-

botic disorders. Congenital disorders consist of protein C, protein S, antithrombin,

plasminogen and/or Factor V Leiden, prothrombin gene defect, or dysfibrinogen-

emia. The most predominant acquired prothrombotic risk factor is the presence of a

central venous line. Positive outcomes for pediatric trials are based in part on the

demonstration of successful management of LMWH administration in the target

pediatric patient population. Although multiple disease foci are relevant, LMWH

therapy in these patients is often judged based on the ability to keep a patient’s

anti-Xa activity within a perceived therapeutic window. An important objective of

these trials is the investigation of the PK/PD behavior of the LMWH in question

(dalteparin) with the goal of characterizing dose-exposure and exposure-response

relationships.

For a proposed prospective trial, the basis for the simulations was a population-

based, PK/PD model developed from an open-label, dose-finding trial in children

(>36 weeks GA, 16 years) with objectively confirmed TE. A total of 43 children

were enrolled in the study, 9 patients were incomplete, 4 had a thrombotic event

requiring therapeutic heparin and 5 withdrew voluntarily, 34 received drug, and 31

contributed PK data. The population PK/PDmodel that described the time course of

anti-Xa activity was based on a two-compartment PK model with first-order

absorption with allometrically scaled clearance (CL and Q) and central and periph-
eral compartment volume of distribution with a proportional CV error model and

endogenous anti-Xa activity as a baseline parameter. The first-order conditional

method (FOCE) with Z–e interaction was used for method/estimation of final

parameter estimates. Preliminary analysis suggests that the median maintenance
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dose to achieve the target anti-Xa level was varied and correlated with indices of

body size (age and weight).

The clinical results of the study (Mitchell et al. 2007) and the results of the

population analysis (Barrett et al. 2008a, b) have been previously reported. The

primary assumption relevant to the prospective trial was that the PK/PD response to

dalteparin in children with TE is similar to the planned target population, princi-

pally children with cancer. As the target age range (neonates to 18 years) was

similar, demographic alignment is expected as well. Hence, the final population

model and parameter estimates were used to construct simulation scenarios to

evaluate the impact of sampling scheme (timing of blood sample collection for

anti-Xa activity) and sample size within and across age strata. There were two

primary objectives for the simulation exercise:

l Evaluate sample size: a total N of 10–50 pediatric patients (N¼ 2, 4, 6, 8, 10 per

age strata)
l Evaluate sampling schemes to ensure accurate assessment of key parameters:

single and two-point sample densities and impact of randomization across strata

Single-point designs were analyzed during the pilot coding of the simulation

solution and performed poorly with an unacceptable number of trial evaluations

(based on the simulated sampling) unable to converge in NONMEM upon esti-

mation of the simulated designs regardless of sample size. Two-point designs

with different sampling windows (Design 1¼ 1–3, 5–8 h or Design 2¼ 3–5,

8–12 h) we e proposed by the study steering committee. Each of the 10 scenarios

(5 sample size categories� 2 sampling schemes) was evaluated with 100 trial

simulations per design examined. Each of the ten sampling scheme/sample size

combinations required a unique dataset to be created. Matching population demo-

graphics (age, weight, gender, etc.) were obtained from the original population

dataset from the pediatric TE trial in order to mimic the “to-be-evaluated” target

population.

The basic process involved refitting each of the 100 simulated trials using the

historical population model. Comparison of the population parameter estimates

from the simulated data with the original model parameters used to generate the

source data was made to examine if the scheme and sample size was adequate. The

calculation of bias is based on these deviations was calculated on a percentage

scale. The entire workflow for the simulation analysis is described in Fig. 18.6.

Batch processing of the NONMEM simulation jobs was accomplished via PERL

scripts and the calculation of bias for key parameters (CL, V, and Ka) was

performed in SAS. The precision of the scenario about each parameter is obtained

by examining the distribution of the individual deviations about the expected

value of 0% bias. Box-n-whisker plots of the bias and precision were generated

using SPLUS.

The single-point designs (4, 7, 12, 24 h) had difficulty with respect to run

convergence in NONMEM and yielded unacceptable bias in CL and/or Vd when

convergence was attained as previously discussed. It was also suggestive of

age-specific bias because of shifts in absorption (with age) resultant from the single
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point sample collection within age strata. Box-n-whisker plots showing the preci-

sion and bias about key parameters generated from the simulated datasets for each

of the two-point – sample size designs are shown in Fig. 18.7a–f.

In all cases, when evaluating the 2, 6 and 4, 10 vs. 3, 8 and 5, 12 randomized two-

sample designs, the 3, 8 and 5, 12 design performed more efficiently with respect to

estimation of CL and V. The 2, 6 and 4, 10 design was better for estimation of Ka.

The choice of designs clearly favors the 3, 8 and 5, 12 design reflective of the 3–5,

8–12 h sampling window proposed in the protocol as there is a clear priority for CL

over other parameters. Likewise, the sample size of 50 is well supported by the

analysis as gains in precision even from a sample size increment of 40–50 are

evident. Figure 18.7b shows the bias and precision from the recommended two-

sample design and sample size. The interquartile range (indicated as a box height)

for each of the key parameters evenly brackets the 0% bias designation and is within

20% bias for CL.

The results of the modeling and simulation exercise confirmed the appropriateness

of the proposed sampling density and sample size to permit the assessment of potential

age-dependent changes in dalteparin pharmacodynamics. The resultant population

PK/PD analysis will permit (a) the determination of study-specific PK/PD parameters

in the target population, (b) an examination of exposure-response (clinical endpoints)

by age strata, and (c) dosing guidance andmonitoring recommendations. These results

will also allow re-examination of the pediatric TE Pop-PK/PD analysis (external

validation) and assess the generalizability of the dalteparin dosing guidance across

populations.

Fig. 18.6 Workflow for simulation execution to evaluate sample size and sampling scheme

considerations for the pediatric LMWH trial
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18.4.2 BPCA Trial: Written Request for Actinomycin-D
and Vincristine in Children with Cancer

Although actinomycin-D (AMD) and vincristine (VCR) have been used for the

treatment of childhood rhabdomyosarcoma and Wilms tumor for over 40 years,

there is virtually no PK information from which safe and appropriate age-based

pediatric dosing can be derived. When treated with equivalent body-weight

adjusted doses of AMD and VCR, infants and young children experience higher

Fig. 18.7 Bias and precision of key PK parameters from simulation scenarios (N¼ 100 trials/

scenario) of Dalteparin exposure resultant from different sampling designs and varied within age

strata sample size (N¼ 10–50; 2–10 subjects/5 age strata): Clearance – design 1 (a), Clearance –

design 2 (b), Volume of distribution – design 1 (c), Volume of distribution – design 2 (d), Absorption

rate constant – design 1 (e), Absorption rate constant – design 2 (f).Y-axis represents%deviation from

population estimates
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toxicity rates than older children. For example, children with rhabdomyosarcoma

under the age of 36 months who receive AMD VCR, and cyclophosphamide have a

15% risk of hepatopathy compared with a 4% risk in older children (Arndt et al.
2004). The current dosing paradigm for AMD and VCR administration to children

less than 1 year of age dictates that doses should be reduced by 50% to avoid hepatic

and neurotoxicity. It is not known whether this increased incidence of toxicity is

due to differences in drug disposition or to pharmacological differences.

In an effort to define the AMD and VCR dose-exposure relationships and to

quantify the effects of maturation on drug disposition, a modeling and simulation

approach was undertaken to support a grant awarded to the COG through the

BPCA. The goals of the clinical project were to propose a study design that

would accurately describe disposition of both drugs in pediatric patients, and to

appropriately power the study. This consisted of (1) development of suitable

actinomycin and VCR pediatric population PK models from limited data, (2) pro-

posal of feasible clinical trial designs, (3) employment of the population PK model

to simulate trial results given current knowledge and stated assumptions, (4) evalu-

ation of trial design performance, and (5) selection of a suitable trial design based

on the ability to accurately describe dose-exposure relationships.

A nonlinear mixed-effects model was constructed for actinomycin using phar-

macokinetic data from 33 patients from ages 1.6 to 20.3 years old (Mondick et al.
2008). Demographic data (age, weight, and gender) were examined as covariates

for the ability to explain interindividual variability in AMD pharmacokinetics (PK).

A three-compartment model with first-order elimination was chosen as the struc-

tural model with allometric expressions incorporating BW to describe the effects of

body size on AMD PK. Age and gender had no discernable effects on AMD PK in

the population studied. The VCR population PK model consisted of a two compart-

ment model with linear scaling of parameters to BW, which was constructed from

PK studies that were reported in the literature (Crom et al. 1994; de Graaf et al.
1995; Gidding 1999; Groninger et al. 2002; Sethi and Kimball 1981).

Various limited sampling schemes were evaluated to assess study design perfor-

mance. Based on discussions with the project team, it was decided that patients

could be available for PK sampling up to 6 h following actinomycin administration

on the first study day. Additionally, 25% of patients could return to the clinic for an

additional PK sample 1–4 days after the initial dose. It was also proposed that each

patient could supply three to four PK samples for a given cycle. Based on the

simulation results, a study design was chosen where patients (age range of <1–17

years) were randomized to one of two sampling schemes: Schedule 1: 5, 10 min,

2–3, 24–28, and 48–96 h; Schedule 2: 5 min, 0.75–1.5, 5–6, 24–28, and 48–96 h.

This sampling scheme was found to be robust across the uncertainty in exposure

metrics for both agents.

An analysis was then performed to examine the effect of maturational clearance

changes in infants on exposure. Because there is no information available regarding

the PK of AMD or VCR in this population, a range of effects was assumed,

spanning a range of no difference in children under one to a fourfold decrease in

clearance at an age of 3 months old. The design was then tested for the ability to
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suitably characterize this decrease in clearance. A power analysis was performed to

determine the number of children less than 1 year needed to sufficiently estimate

possible age effects, and the results of the power analysis were then confirmed via

simulation. Our analyses suggest that a sample size of 35 patients in each age group

would be sufficient to capture differences in clearance across age brackets (<1 year,

�1 to <3 years, �3 to <12 years, and �12 to <17 years) (see Fig. 18.8).

A feasible and informative trial design was identified for the simultaneous

evaluation of AMD and VCR pharmacokinetics in pediatric patients with Wilms’

tumor or rhabdomyosarcoma. This design was modified to be robust across the

uncertainty in key exposure metrics and probable maturational changes in young

children. Results of this effort have been incorporated into a prospective trial

protocol to be conducted through the COG Phase I Consortium that is still enrolling

patients at the present time (due to complete enrollment by early 2011).

18.4.3 Exploratory PK/PD Trial: Topirimate Dose Finding
in Post Surgical Neonates

Cerebral white matter (WM) injury has been considered the primary form of brain

injury and the cause of long-term motor, cognitive, and behavioral disabilities in the

preterm infant. Similar WM injury is seen in term infants requiring newborn heart

surgery for serious congenital heart defects (CHD). Approximately 30,000 infants

Fig. 18.8 Power – sample size analysis required to detect a 30% change in clearance in children

under the age of one based on trial simulation model. Individual curves for 70, 80 and 90% power

shown. The x-axis refers to the actual difference in Actinomycin clearance (DCL) between

children less than and greater than or equal to 1 year of age
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with CHD are born in the United States each year, with at least a third needing

surgical intervention in early infancy. Thus, about 11,000 heart operations are

conducted annually. Advances in cardiothoracic surgical and anesthetic techniques,

including cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest

(DHCA), have substantially decreased mortality, expanding the horizon to address

functional neurologic and cardiac outcomes in long-term survivors (Bellinger et al.
1991, 2003; Benson 1989; Ferry 1990; Wernovsky 2006). Basic science research in

rat pups has identified that topirimate (TPM) can prevent WM injury by blocking

developmentally regulated AMPA receptors, responsible for injury to vulnerable

precursors of oligodendroglia (Cha et al. 2002; Follett et al. 2000, 2004).
In an effort to provide guidance to the design and conduct of the proposed oral TPM

studies in newborns undergoing modified ultrafiltration (MUF) and CPB, simulations

were undertaken to examine (a) the expected dose-exposure relationship, (b) the

sampling scheme for the timing of blood collections, and (c) the sample size require-

ments. As this trial is novel in design and population with respect to TPM,much of the

prior knowledge used in this exercise is contained in previous published experience

with oral TPM in older children (Battino et al. 2005; Dahlin andOhman 2004; Glauser

et al. 2005; Mikaeloff et al. 2004), recent preclinical experiments with TPM in the pig

and the previous experience with drug milrinone in children undergoing CPB and

MUF (Zuppa et al. 2006). The primary focus of the proposed study was to verify the

PK behavior of TPM in the newborn undergoing CPB and MUF as part of their

standard of care. Results from this study will be used guide clinical investigation in

anticipation of an IV formulation (under development). An important aspect of this

initial trial is to confirm the pharmacokinetics of TPM during MUF/CPB and post-

procedure during recovery. Investigations to explore design dependencies are reliant

on nonlinear mixed-effect modeling and Monte Carlo simulation.

The underlying structural pharmacokinetic model for toprimate was a two-

compartment disposition model with an additional MUF compartment to reflect

the increased volume of distribution available during this phase. Because both Vd

and CL are changing dynamically owing to the time-dependent application of

vascular circuitry, fluid removal and filtration, and renal impairment as shown in

Fig. 18.9, the simulation model must likewise be informed. Complicating these

known fixed, nonrandom effects, are patient-specific random effects that dictate the

individual differences in patient response. These effects are evident in the time to

regain equilibrium in the pharmacokinetics on MUF/CPB. Based on the design of

the trial, the drug kinetic model is defined by three distinct phases as below

(Table 18.7):

l Phase I (baseline): Patients are dosed with 12.5 mg/kg BID (25 mg/kg/day) for

3 days. Normal drug kinetics applies and there is no additional dosing beyond

this phase of the study. Two samples per day are to be collected. The scheme is

relatively random except that consideration for late night sampling is given.
l Phase II (MUF/CPB): Procedure lasts 30 min. Samples are taken just before,

during and immediately off bypass. It is assumed that the volume of distribution

is doubled during this phase and that drug clearance is negligible.
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Table 18.7 Pharmacokinetic parameter assumptions/priors used in the topirimate CPB/MUF

pediatric (newborn post surgery) simulation model

Parameter Phase Ia Phase II Phase III

CL/F (L/h) 1.8 0.1 1.0

V/F (L) 8.0 16.0 8.0

Q/F (L/h) 0.5 0.5 0.5

Vperiph/F (L/h) 1.0 1.0 1.0

Ka (h�1) 0.18c 0.18c 0.18c

a From V¼CL/K and published parameters (Mikaeloff et al. 2004)
b Inter-subject variance estimates on all parameters assumed at 35% CV; combined additive and

proportional residual error model assumed: additive ¼ 0.37 ng/mL SD with 35% CV proportional

error
c Based on the observed Tmax between 1.4 and 4.3 h in adults

Fig. 18.9 Circuitry schematic illustrating the volume and clearance components to be accounted

for in newborns receiving topirimate post surgery and during MUF/CPB and post procedure during

recovery
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l Phase III (post-surgery): Two-days of postoperative recovery are used to observe

the patient and examine the patient. This phase often discriminates patients

based on renal function as many don’t urinate well during this phase. Two

samples per day for 2 days are obtained to monitor exposure and examine the

recovery of drug clearance. It is assumed that only 60% recovery is obtained on

average during this phase.

Simulations were generated to mimic the exposure of toprimate following the

administration of 12.5 mg/kg BID and the procedures outlined previously. The

population-PK model constructed from the priors and assumptions listed above was

used to generate simulated patients based on the likely sampling windows and at

various sample sizes. The criteria used to judge the adequacy of the proposed sampling

scheme and study sample size is based on the examination of bias and precision around

key parameters generated by refitting the simulated values to the original population

model. The investigation will provide proof-of-concept for the dosing of TPM in

neonates on MUF/CPB at doses which will yield target exposures. The sampling

scheme proposed for the trial and evaluated in the simulations is based on sampling

windows around each dose in Phase I, critical clinical endpoints in Phase II and at set

intervals to examine drug elimination in Phase III. Table 18.8 shows the target sample

allocation to phase with the actual value used in the initial simulation set.

For the purposes of sample size consideration, sample sizes of 10, 25, and 40 were

considered. A sample size of 40 ensured that model parameters will be well-estimated

for each of the targeted clinical phases. As the sampling density varies by phase, it is

essential to obtain samples during phase II as projected to assess the impact of bypass

on the pharmacokinetics. The mean prediction error in target PK parameters based on

the model described above following 100 simulated trials (N¼ 40/trial) outperformed

the sample sizes of 10 and 25 and verified the sample design as defined above.

Table 18.8 Sampling targets relative to phase and actual collection times used in the simulation

exercise

Phase Sampling window Value of sample Simulated time (post study start, h)

I 4–12 h Elimination, dose 1 8

12–24 h Intrasubject var., baseline 14

24–36 h 28

36–48 h 42

48–60 h 54

60–72 h 63

Pre-surgery/bypass Effect of bypass 72

II 84

84.25

Immediately off bypass 84.42

III Off-bypass – 96 h Recovery time course 96

96–108 h 108

108–120 h 120

120–132 h 132 h
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18.5 Other Considerations

18.5.1 The Role for “Bottom-Up” Approaches

The use of a compartmental structural model to describe the pharmacokinetics of

drugs in pediatric populations is somewhat limiting because of the nonphysiologic

parameters that define such models. This is, in part, why nonphysiologic expres-

sions for developmental and maturational effects are more commonly employed on

a backbone of a compartmental-based structural model. “Bottom-up” approaches

have the benefit of more physiologically based relationships to represent their

structural models. Likewise, such model structures can more easily accommodate

more physiologic-based maturational and developmental factors. Even so, we have

not benefited from improved precision from these models largely because we do not

yet have the quantitative understanding of the pathophysiologic factors that best

define these phases in the developing child. Data from which these relationships

could be defined would likely be invasive and otherwise difficult to obtain, though

translational studies are filling in some of these gaps (Gittes 2009; Savidge et al.
2001).

More importantly, as the regulatory request for earlier pediatric development

plans supersedes the generation of complimentary data in adults, these approaches

have become more familiar to regulators and will certainly represent an important

application of modeling and simulation to support pediatric development plans.

Early experience (Gupta et al. 2006) suggests that these not only agree with “top

down” approaches (reliant on adult data) for the typical child, but also that they

allow additional consideration for simulation scenarios that address food and

formulation effects (Kuentz et al. 2006; Parrott et al. 2009; Willmann et al. 2003)
and drug interaction potential (Jamei et al. 2009).

18.5.2 Pediatric Outcomes

With the incentive provided by PREA regarding the extension of patent exclusivity

for sponsors conducting efficacy trials in pediatric populations, the occasion to

consider pediatric outcome trials has grown substantially. Several factors are often

problematic in the design of such trials:

l Pediatric patients are not as easily identified, recruited or enrolled in many

situations; often the available pool of patients for target indications is far less

than the adult counterpart population (if one exists).
l Pediatric outcomes are often undefined in the context of what would represent

the basis for clinical comparison to adults or as a response to be compared to

placebo or active control groups.
l Most importantly, adult outcomes are not the same as pediatric outcomes for

many indications. There is an acceptance of poor assumptions in this regard in
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past pediatric trials and somewhat in current regulatory guidance in an effort to

promote such trials even in the absence of portability of the adult outcome

response to pediatric populations.

Regarding the issue of sample size for such studies, again simulation studies

offer the ability to manage expectations for design and sample size considerations.

It may be reasonable to relax the necessity of inference testing in certain pediatric

populations, however, as in the case of the guidance for geriatrics:

The geriatric subpopulation should be represented sufficiently to permit the comparison of

drug response in them to that of younger patients. For drugs used in diseases not unique to,

but present in, the elderly, a minimum of 100 patients would usually allow detection of

clinically important differences. For drugs to treat relatively uncommon diseases, smaller

numbers of the elderly would be expected – Guideline for Industry.

Studies in Support of Special Populations: Geriatrics [ICH/E7 1994]

18.5.3 Pediatric Disease Progression

Disease progression models seek to define quantitatively the natural history of

disease progression. One benefit to their construction is that the effectiveness of

various treatment modalities can be judged against the patient status at various

stages of disease. The construction of such models implies that the disease biology

! clinical manifestation of disease ! disease progression linkages are well-

established and that longitudinal data within individuals exists to characterize the

patient time course. Again, pediatrics represent a new challenge in this endeavor as

the developmental and maturational factors must be understood if they confound or

mask disease progression. In addition, the time course of pediatric disease relative

to adults must be understood especially if a continuation to adult disease status is

expected. While little has been done in the area of pediatric disease progression

modeling, this is an active area of research for several groups and will likely form

the backbone of pediatric CTS models in the future.
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Chapter 19

Disease Progression Analysis: Towards

Mechanism-Based Models

Stephan Schmidt, Teun M. Post, Massoud A. Boroujerdi, Charlotte van

Kesteren, Bart A. Ploeger, Oscar E. Della Pasqua, and Meindert Danhof

Abstract Sustained disturbances of the biological homeostasis can result in chronic

progressive diseases. The respective disease status as well as the corresponding effect

of drug treatment on disease progression can be characterized at different levels of

complexity, ranging fromdata-driven and descriptive to fullymechanistic approaches.

Most of the currently employed disease progressionmodels are mechanism-based and

represent a mixture of these two extremes. Conceptually, mechanism-based disease

progression models consist of three distinct parts: (1) a pharmacokinetic model

to predict target exposure, (2) a pharmacodynamic model to characterize target

binding, target activation, and transduction (receptor theory; dynamical system analy-

sis), and (3) a disease model to characterize placebo response and disease progression.

Once identified and validated, mechanism-based disease progression models can

help understanding the behavior of the underlying disease system and, subsequently,

support the identification of optimal dosing regimens using optimized clinical

trial designs.

19.1 General Concepts

The objective of pharmacokinetic-pharmacodynamic (PKPD) modeling and simula-

tion is to characterize and predict the effect of drugs in living organisms under

physiological and pathophysiological conditions (Breimer and Danhof 1997; Danhof

et al. 2005). In recent years, PKPDmodeling has evolved from a descriptive, empirical

discipline to a mechanistic science that has been increasingly employed in all phases

of drug development as the theoretical basis for: (1) the selection of drug candidates,

(2) lead optimization, and (3) the optimization of early proof-of-concept clinical trials

(Derendorf et al. 2000; Miller et al. 2005; Danhof et al. 2007; Wang et al. 2008).
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Mechanism-based PKPD models differ substantially from descriptive models as they

contain specific expressions characterizing, in a strictly quantitative manner, pro-

cesses on the causal path between drug administration and effect (Danhof et al.
2005). As a result, mechanism-based models have improved properties for extrapola-

tion and prediction of clinical outcome and have become important tools for a more

effective evaluation of the efficacy and safety of novel candidates during the drug

development/approval process (FDA 2004; Danhof et al. 2005; Zhang et al. 2006;
Lalonde et al. 2007; Bies et al. 2008; Ploeger et al. 2009). Despite these achievements,

further advancement in this model-based strategy is necessary as current approaches

often focus on the pharmacology of drugs rather than on the interaction between the

drug, the biological system, and the disease process. It has become evident that to

develop effective drug treatments, sufficient understanding of drug properties, the

biological system, and the underlying disease processes is required. This concept has

been applied in the area of disease progression modeling by combining models for the

pharmacology of drugs with those for disease. Although substantial progress has been

made in recent years in characterizing the pharmacology of drugs, such as in the areas

of target exposure (PBPK) (Rowland et al. 2004), target binding and activation

(receptor theory) (Danhof et al. 2007; Ploeger et al. 2009), and transduction and

homeostatic feedback (dynamical systems analysis) (Zuideveld et al. 2001; Butcher
et al. 2004; Butcher 2005), diseasemodeling ismuch less evolved. This is partly due to

the fact that the etiology and the pathophysiology of most diseases are not fully

understood. Lack of understanding of the natural course of disease, including under-

lying processes and progression, may result in underestimation of the importance of

disease trajectory on the effect of drugs aswell as of the implication of treatment effect

(s) on the trajectory of a disease. This may lead to a poor rationale for treatment

selection, dose range and, ultimately, limit disease management.

In conventional PKPD analyses the status of the biological system is generally

assumed to be invariable with time and considered constant at baseline (Post et al.
2005; Danhof et al. 2007). This assumption does not hold for progressive, chronic

diseases where biological functions deteriorate over time. Such deterioration usu-

ally manifests itself as clinical signs and symptoms that are characteristic for the

underlying disease. For example, from a clinical perspective, degenerative diseases,

such Alzheimer’s disease, rheumatoid arthritis, and osteoporosis progress in a

somewhat continuous manner, whereas disorders, such as epilepsy, migraine, and

depression show typically periodical patterns.

The predictive value of mechanism-based PKPD and disease progression mod-

eling also relies on the analysis of biomarker response. Within this context,

biomarkers are defined as strictly quantitative measures of processes that are

located on the causal path between drug administration and effect (Danhof et al.
2005). To allow a closer distinction between the different process levels within this

causal chain, a new classification system for biomarkers has been proposed (Danhof

et al. 2005). According to this classification system, biomarkers can be separated

into seven different groups: type 0, genotype/phenotype determining drug response;

type 1, concentration of drug or drug metabolite; type 2, molecular target occu-

pancy; type 3, molecular target activation; type 4, physiological measures; type 5,
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pathophysiological measures; and type 6, clinical rating scales, as shown in

Fig. 19.1 (Danhof et al. 2005). In combination, type 0–6 biomarkers provide

comprehensive information on the interaction between the drug, the biological

system, and the disease. This framework can be used as a qualitative and quantita-

tive input for mechanism-based disease progression models (Lesko and Atkinson

2001; Danhof et al. 2005; Rolan et al. 2007). Once established and validated, these
models allow studying (complex) dynamical systems and can be invaluable for

understanding the differences between new and existing treatments during the

course of a disease as well as for predicting clinical outcome (Danhof et al.
2005). Although the pertinent information on biomarker response vs. clinical

response is either missing or available only at the end of phase 3 clinical trials for

most investigational drugs, obtained data can be used to study the dynamics of the

disease system, for the identification of targets and, subsequently, for the develop-

ment of new drug candidates. Mechanism-based PKPD modeling and simulation

approaches can support this process by serving as the scientific basis for selection,

evaluation and validation of respective biomarkers (Danhof et al. 2005). Yet, the
use of biomarkers, especially those used for regulatory purposes, remains restricted

to drugs with a known mechanism of action and a well-established clinical effect

(Lesko and Atkinson 2001; Danhof et al. 2005).
The presented biomarker classification system can be further expanded at levels

5 and 6 when taking into account the different levels, at which disease and the effect

of drugs intervening with disease processes can be observed (Fig. 19.2) (Post et al.
2005). The most comprehensive description of the disease process can be derived by

evaluating changes of a biological system at the molecular level (level I). Distur-

bances of the complex network between genetic, transcription-mediated and recep-

tor-mediated events will eventually compromise biological functioning at the next

level (level II; cellular level). Imbalances at the cellular level may result in altera-

tions of organ function, which can then cause clinical symptoms or changes in

clinical rating scales (level III). Ultimately, a sustained disturbance of homeostasis

at levels I–III may result in an increased morbidity and mortality. In some cases,

such as infectious diseases, an additional level of complexity is necessary as the

functionality of the human organism is impaired by disease-causing pathogens.

Three main features characterise the changes in biological function observed in each

level, namely, the magnitude of time (rates), reversibility and the dimensionality

of events.

The objective of this chapter is to provide a systematic overview of the concepts

employed in disease progression modeling. First, an outline of the structural

Type-0 Type-1 Type-2 Type-3 Type-4 Type-5 Type-6
Phenotype/
genotype

Drug
concentration

Target 
occupancy

Target
activation

Physiological
response

Patho-
physiological

response

Clinical 
response

Fig. 19.1 Schematic representation of the concept of a cascading PKPD model for prediction of

in vivo drug effects on the basis of intermediary biomarker responses. Figure and legend from

Danhof et al. (2005)
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models used to characterize disease progression at various levels of complexity will

be provided, starting with descriptive models. Second, the qualitative as well as

quantitative impact of therapeutic interventions on disease progression will be

evaluated at each of these levels and will be illustrated with clinically relevant

examples from various therapeutic areas. Finally, some of the challenges that

typically arise during the development and validation process of disease progres-

sion models will be highlighted and approaches of how these challenges can be met

will be presented.

19.2 Overview of Disease Process and Disease

Progression Models

19.2.1 Descriptive Models

In theory, the progression of a disease, as well as the effect of drugs on the disease

process, can be analyzed at each of the previously mentioned levels (Post et al.
2005). The first disease progression models were established based on clinical

endpoints, clinical chemistry biomarkers, or rating scales (Chan and Holford

2001). For instance, changes in glomerular filtration rate in diabetic neuropathy

(Bjorck et al. 1992; Gall et al. 1993; Lewis et al. 1993; Parving et al. 1995; Bakris
et al. 1996; Crepaldi et al. 1998), Alzheimer disease cognitive assessment scale in

Alzheimer’s disease (Holford and Peace 1992), and Brief Psychiatric Rating Scale

in schizophrenia (Kimko et al. 2000) were described using longitudinal linear

Fig. 19.2 Disease processes and pharmacodynamic effects can be observed at different levels of

complexity. Changes of biological functions at themolecular (level I) and/or at the cellular (level II)

can result in disturbances in a biological system’s homeostasis, which is ultimately reflected in

changes in clinical endpoints or rating scales (level III). Information obtained from all of these

levels can be used to evaluate the progression of a disease and to predict clinical outcome. Figure

and legend modified from Post et al. (2005)
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regression models (19.1). In these models, S(t) represents the disease status at time

t, S0 the disease status at baseline, and a the rate of natural disease progression

(Mould et al. 2007).

SðtÞ ¼ S0 þ a � t (19.1)

In (19.1), S0 is a constant but can be modified to represent time-dependent

functions, such as circadian rhythm. For some diseases, such as Parkinson’s dis-

ease, more complex functions have been used to characterize the nonlinear change

of disease status over time (Holford and Sheiner 1982; Chan and Holford 2001;

Holford and Nutt 2008). Although untreated diseases usually progress in character-

istic patterns, therapeutic interventions, including placebo, may have various

effects on the trajectory of a disease.

In general, treatment effects can be classified into two different types: symp-

tomatic and disease modifying. For both types of effect, the disease status is

changed as a function of treatment (f(T)), which is comprised of active drug as

well as placebo effects. Although the altered disease status is the result of a shift in

baseline for symptomatic treatments (19.2), disease modifying interventions (19.3)

affect the rate of disease progression as shown in Fig. 19.3a.

SðtÞ ¼ ðS0 þ f ðTÞÞ þ a � t (19.2)

SðtÞ ¼ S0 þ ðf ðTÞ þ aÞ � t (19.3)

When drug treatment is discontinued, the disease will revert to its natural progres-

sion rate a, regardless of the type of treatment effect. However, the overall effect on

disease status for symptomatic drugs is different from that of disease modifying

drugs. Although the disease status of patients who had received symptomatic

treatment is indistinguishable from that of untreated patients after treatment cessa-

tion, a disease modifying drug will result in a permanent improvement of the

disease status compared to untreated patients (Fig. 19.3a).

Symptomatic treatments are believed to have a fast onset of effect compared to

disease modifying effects, which take typically longer before they become notice-

able. Symptomatic treatment effects can only reduce the severity of clinical signs

and symptoms or change the biomarker response, whereas disease modifying treat-

ments can slow, halt, or even reverse the progression of a disease (Chan and Holford

2001; Post et al. 2005). It should be noted that a combination of both symptomatic

and disease modifying treatment effects also exists (Chan and Holford 2001).

A clear distinction between the two types of effect based on clinical endpoints/

biomarker response is difficult if the dominant effect masks the less pronounced one

(Chan and Holford 2001) or if symptomatic interventions have a very slow onset of

effect (Ploeger and Holford 2009). In the latter case, both symptomatic and disease

modifying treatments seem to change the rate of disease progression and a differen-

tiation between the two is not possible when solely based on visual inspection of the

effect-time course (Fig. 19.3b). Instead, information on the nature of a treatment
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effect can be obtained using a mechanism-based modeling approach (Post et al.
2005) and/or an optimized study design (Ploeger and Holford 2009).

Descriptive disease progression models have been successfully applied in various

therapeutic areas to characterize changes in clinical endpoints and/or biomarkers.

For example, changes in fasting plasma glucose (FPG) levels of patients with type 2

Fig. 19.3 (a) Changes in disease status of linearly progressing diseases following symptomatic,

disease modifying or symptomatic + disease modifying treatment over a period of 60 month

compared to natural disease progression. Treatments start at 0 and stop at 50 month. (b) Changes in

disease status over a period of 60 months following treatment with drugs that have a very slow

symptomatic or disease modifying effect compared to natural disease progression. On a strictly

observational level, it is impossible to separate these two treatment effects during the first

12 months
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diabetes mellitus (T2DM) receiving once daily sustained-release gliclazide were

assessed using a linear disease progression model (Frey et al. 2003).

FPG(tÞ ¼ FPG0 þ a � t� f ðTÞ (19.4)

In this model, glucose-lowering effects were assumed to be symptomatic and

driven by gliclazide plasma exposure. A mixture model was applied to account for

differences between responders and nonresponders (Frey et al. 2003). The final

model was externally qualified and could adequately predict changes in FPG of

patients receiving gliclazide for up to 1 year (Frey et al. 2003). Although the Frey

model provided an adequate description of the data, it should be considered that

T2DM is a multifaceted, multiorgan disease characterized by a progressive loss of

glycemic control as a result of disturbances in the glucose-insulin homeostasis

(LeRoith 2002). These disturbances are caused by a chronic, progressive loss of

insulin sensitivity in liver, muscle, and fat tissues, which are initially compensated

by an increased insulin production in b-cells (LeRoith 2002). Rising insulin con-

centrations enhance glucose uptake into muscle and fat and decrease glucose

production by the liver. Yet, the continuously increasing need for insulin eventually

exhausts the capacity of b-cells resulting in progressive b-cell failure and chroni-

cally elevated plasma glucose levels (LeRoith 2002).

A comprehensive evaluation of the complex, multilevel (disease) processes

involved in T2DM requires a more mechanism-based approach rather than a purely

descriptive disease progression model. This is due to the fact that the deterioration

of a biological system is summarized in a hybrid parameter in this descriptive

model (19.4), the disease progression rate constant a. This hybrid parameter

provides little information about the underlying pathophysiological processes and

its value may change over time as the disease becomes more severe. A more

encompassing analysis of the interaction between drug, biological system, and

underlying disease processes can be obtained by exploring the underlying relation-

ships within the biological system and combining them with the relevant disease

processes in a mechanism-based modeling approach.

19.2.2 Mechanism-Based Models

A key feature of mechanism-based models is that they contain both drug-specific

(e.g., receptor affinity, intrinsic efficacy) and biological system-specific parameters

(Danhof et al. 2007). While drug-specific parameters describe the interaction

between the drug and the biological system, system-specific parameters describe

the functioning of the underlying biological system (Danhof et al. 2007). The
distinction between drug- and system-specific parameters becomes important

when predicting the drug/treatment effect in vivo (Danhof et al. 2007).
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19.2.2.1 Turnover Models

Earlier in this chapter, disease was defined as the disturbance of a biological

system’s homeostasis. In accordance with this definition, the rate of change

of disease status (dS/dt) can be described in a more mechanistic way as the

imbalance between synthesis (kin) and elimination (kout�S) using a turnover model

(19.5) (Dayneka et al. 1993; Post et al. 2005).

dS

dt
¼ kin � kout � S (19.5)

The use of turnover models allows the differentiation of the source of distur-

bance being assigned to synthesis and/or elimination processes. In theory, multiple

scenarios can be distinguished, of which the decrease in synthesis rates and the

decrease in elimination rates are most relevant for disease progression (Post et al.
2005). The change in synthesis (dkin/dt) and elimination rates (dkout/dt) over time

can be characterized according to (19.6),

dðkin; koutÞ
dt

¼ fdpðkin; kout; tÞ (19.6)

where fdp(kin,kout,t) is a time-dependent function characterizing the rate of change in

synthesis and elimination rates (Post et al. 2005). In theory, this function can be

defined in multiple ways, but will be constrained to first-order processes in this

chapter (19.7).

fdpðkin; kout; tÞ ¼ �rdp;kin;out � kin;out (19.7)

As a result, kin and kout decrease exponentially with their respective disease

progression rate constants (rdp).
In case of therapeutic intervention, treatment effects can be classified according

to the qualitative impact of drugs on disease progression (symptomatic vs. disease

modifying effect). Both symptomatic and disease modifying effects can be depen-

dent or independent of the disease (Post et al. 2005). The dependence of the

treatment effect on the disease is determined by the mechanisms and mode of

drug action. For instance, in Parkinson’s disease, a degenerative disorder of the

central nervous system, the signal transduction of dopaminergic neurons in the

substantia nigra is reduced due to cell death resulting in slowed movements

(bradykinesia), tremor, and other central as well as peripheral symptoms (Gallagher

and Schapira 2009). According to the previously introduced classifications, the

effect of dopamine agonists in Parkinson’s disease is, in principle, a symptomatic

and disease-independent therapeutic intervention. This is due to the fact that the

achieved effect is independent of the number of functional dopaminergic neurons.

In comparison, treatment of Parkinson’s disease with drugs stimulating the release

of dopamine from its neurons is a disease-dependent, symptomatic intervention.

On the other hand, drugs stimulating the generation/survival of dopaminergic
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neurons in the substantia nigra are expected to have a disease modifying effect that

is independent of the disease, whereas that of drugs reducing the rate of cell death is

disease-dependent and disease modifying.

A clear distinction between these various treatment effects is not possible and

can even be misleading if solely based on visual inspection of the effect-time

course. For example, when simulating the effect of drugs inhibiting the elimination

of dopamine by blocking its enzymatic breakdown (kout), obtained profiles must be

interpreted with great care (Fig. 19.4). Given that after an initial improvement, the

disease status following treatment declines faster than that of untreated patients,

one may falsely conclude that these inhibitors actually accelerate the progression of

Parkinson’s disease. However, this conclusion is incorrect as it neglects the

Fig. 19.4 Time course of disease status (S) for temporary, symptomatic and disease-independent

treatment (top left) resulting from an exponentially decreasing synthesis (kin, bottom left panel)
together with three different effect levels (small: thin black line, intermediate: thin gray line, and
high: bold black line) on the output parameter (kout, bottom right panel). Top right: Time course of the

disease status (S) without treatment cessation. Figure and legend modified from Post et al. (2005)
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underlying mechanism of Parkinson’s disease. The observed decline in disease

status is primarily caused by continuous deterioration of dopaminergic neurons

resulting in a decreased dopamine production (kin) rather than disease accelerating

treatment effects. The perpetual decrease in kin also serves as an explanation of why
these symptomatic treatment effects seem to wear off as the disease progresses.

As a result, disease system analysis based on mechanism-based modeling and

simulation approaches is superior to descriptive approaches when making infer-

ences about the effect of treatment on disease progression.

19.2.2.2 Cascading Turnover Models

The concepts derived so far for mechanism-based turnover models have been based

on single biomarker/clinical endpoint data. However, underlying pathophysiologi-

cal processes of most diseases are more complex and cannot be sufficiently

described by single endpoint measures. A more appropriate description of the

disease system can be obtained using data on multiple biomarkers or endpoints

on the causal path between drug exposure and effect. Once determined, this

information can be used to evaluate the interdependence of these factors and to

develop comprehensive models that ultimately allow the prediction of long-term

disease progression and of treatment effects. For instance, chronic loss of insulin

sensitivity in liver, muscle, and fat tissues, resulting in a disturbance of the glucose-

insulin homeostasis, is regarded as a primary reason for developing T2DM (LeRoith

2002). The disturbance of this system cannot sufficiently be characterized by

isolated measures of either glucose or insulin. Instead, information on the interaction

between both is needed to characterize the underlying homeostatic feedback

mechanisms and, subsequently, disease progression. Data can be obtained by

challenging the system with either insulin infusions (e.g., hyperinsulinemic eugly-

cemic clamp) or glucose infusions (e.g., frequently sampled intravenous glucose

tolerance test) and measuring subsequent changes in both biomarkers (Monzillo and

Hamdy 2003).

Knowledge of this feedback mechanism further allows evaluating drug effects

on the glucose-insulin homeostasis. For example, glucose production in the liver can

be stimulated by b2-adrenergic receptor agonists, such as terbutaline (Lima et al.
2004). Subsequent changes in FPG and fasting serum insulin (FSI) levels from

baseline (FPG0 and FSI0) and reestablishment of homeostasis can be modeled

using (19.8),

dFPG

dt
¼ kin1 � 1þ S1 � CpÞ � kout1 � ð1þ S3 � ½FSI� FSI0�Þ � FPG

kin1 ¼ kout1 � FPG0

dFSI

dt
¼ kin2 � ð1þ S2 � ½FPG� FPG0�Þ � kout2 � FSI

kin2 ¼ kout2 � FSI0

(

(19.8)
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where kin1 is the glucose production rate, kout1 is the disposition rate constant for

glucose, kin2 is the insulin production rate, kout2 is the disposition rate constant for

insulin, and Cp is the terbutaline concentration in plasma (Lima et al. 2004). In this
homeostatic feedback model, production of FPG is stimulated by S1 (terbutaline

effect on glucose production), production of FSI is stimulated by S2 (glucose effect
on insulin production), and elimination of FPG is stimulated by S3 (insulin-mediated

glucose removal from plasma). Although this model has helped to improve the

understanding of the feedback mechanisms involved in the glucose-insulin homeo-

stasis, this approach has two main limitations. First, the long-term progression of

T2DM may not be sufficiently predicted by biomarkers, such as FPG or FSI, that

quickly respond to drug treatment. Second, loss of insulin-sensitivity and gradual

degradation of b-cell function, as the primary drivers for the progression of T2DM,

have not been included in this model.

An extension of the previously introduced cascading turnover model was pro-

posed by de Winter et al. (2006), where the effect of three drugs with different

mechanisms of action (pioglitazone: insulin-sensitizer; metformin: decrease of

hepatic glucose production, and gliclazide: stimulation of insulin secretion from

b-cells) on the disease progression in T2DM patients was evaluated. In this

extended disease progression model, a link between changes in three markers

(FPG, FSI, glycosylated hemoglobin A1c [HbA1c]) and the progressive loss of

b-cell function, as well as insulin sensitivity (deWinter et al. 2006), was established
using three interrelated turnover models as shown in 19.9 (de Winter et al. 2006).

dFSI

dt
¼ EFB � B � ðFPG� 3:5Þ � kin;FSI � kout;FSI � FSI

dFPG

dt
¼ kin;FPG

EFS � S � FSI� kout;FPG � FPG
dHbA1c

dt
¼ FPG � kin;HbA1c � kout;HbA1c � HbA1c

(

(19.9)

The cascading character of this turnover model is determined by a feedback

relationship between FSI and FPG as well as a feed-forward relationship between

FPG and HbA1c on the corresponding production rates. In this disease progression

model, the production rate of FSI is directly proportional to FPG concentrations,

corrected for an empirically determined FPG-stimulated FSI production threshold

of 3.5 mmol/L (Matthews et al. 1985). On the other hand, the production rate of

FPG is inversely proportional to FSI concentrations.

The effect of disease progression on the FPG-FSI-HbA1c homeostasis was

addressed by linking FSI production to the remaining b-cell function (B) and FPG

production to the remaining insulin sensitivity (S). B and S are system-specific para-

meters that decrease nonlinearly over time as the disease progresses. Their values

range from one (full, normal functionality) to zero (complete loss of functionality)

and can be computed in various ways. In this model, the authors assumed an

asymptotic decline in B and S, which was expressed according to 19.10,
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B ¼ 1

1þ expðb0 þ rB � tÞ

S ¼ 1

1þ expðs0 þ rS � tÞ

(

(19.10)

where rB and rS define the rate of change in B and S (de Winter et al. 2006).
To account for differences in function at baseline, b0 and s0 were introduced into the
system. Large values of b0 and s0 indicate that patients have a longer T2DM history

resulting in an advanced disease state at the start of the study. On the other hand,

EFB and EFS are drug-specific parameters that characterize the effect of sympto-

matic therapeutic interventions on B and S (de Winter et al. 2006). In this context,

EFB values greater than one represent the stimulation of insulin secretion by

gliclazide, whereas EFS values greater than one represent the inhibition of hepatic

glucose production by pioglitazone and metformin (de Winter et al. 2006).
The proposed cascading turnover model was found appropriate to characterize

the time-courses of FPG and HBA1c of 2,048 treatment-naive T2DM patients

(de Winter et al. 2006). When using the model of de Winter (19.8 and 19.9) and

that of Frey 19.4 to simulate changes in FPG over 10 years, similar results were

obtained for both models (Fig. 19.5). However, the mechanism-based model by
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Fig. 19.5 Predicted time-course of fasting plasma glucose (FPG) for 10 years of gliclazide

therapy (black lines, left y-axis) by the mechanism-based model (solid line), the Frey model on

the current data (dashed) and the Frey model as published (dashed-dotted). The gray lines (right
y-axis) show the non-linear time-courses of b-cell function (dashed-dotted) and insulin sensitivity
(short dash) predicted by the mechanism-based model for 10 years of gliclazide therapy. Figure

and legend from de Winter et al. (2006)
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de Winter provides a promising conceptual advance for the study of disease

progression in T2DM as it allows to also evaluating the impact of treatment on

the loss of b-cell function and insulin sensitivity, independent from immediate

antihyperglycemic effects (deWinter et al. 2006). Future modeling approaches may

also take into account that the elimination of both glucose and insulin is concentra-

tion-dependent rather than constant as implemented in the previously introduced

T2DM models (Jones et al. 1984; Boroujerdi et al. 1995).

19.2.3 Systems Pharmacology

Disease progression models discussed so far in this chapter are data-driven, starting

at a clinical observation level, and have become increasingly more complex to better

understand the (patho)physiology of the system and the implications of treatment

interventions. Alternatively, disease processes can also be characterized based on a

complete mechanistic description of the biological system, starting at the molecular/

tissue level (Hunter and Nielsen 2005; Ploeger et al. 2009). Several physiology-
based modeling platforms, such as the IUPS Physiome Project (Hunter and Nielsen

2005) or Archimedes (Eddy and Schlessinger 2003), have been set up aiming to

develop an infrastructure for linking models of biological structure and function

across multiple levels of spatial organization and multiple time scales (Hunter et al.
2005). The span of these models ranges from describing genes to whole organisms

and eventually leads to very complex approaches (Bassingthwaighte 2000; Hunter

and Nielsen 2005; Hunter et al. 2005). At present, the development and validation of

such models is still restricted by the free accessibility of data on the different spatial/

temporal levels, the identifiability of model parameters as well as the availability of

appropriate software tools that allow to run and visualize these models based on

widely accepted modeling standards (Hunter and Nielsen 2005). Furthermore, given

the focus on the anatomical and (patho)physiological properties, a current drawback

in these models is the lack of an appropriate parameterization of the drug effects.

Yet, multiple groups have been intensively working on overcoming these limitations

by making model libraries as well as software tools for running and visualizing these

models freely available on the World Wide Web (Hunter and Nielsen 2005).

In some cases, compromises with respect to model complexity have been made

by combining the principles of systems pharmacology with those of mechanism-

based models resulting in physiology-based approaches. For example, an integrated

system of differential equations has been identified that links current knowledge

on systemic calcium homeostasis with present understanding of bone biology

(Peterson and Riggs 2010). This physiology-based approach combines elements

on hormonal regulation, absorption, and elimination processes in gut and kidneys as

well as bone remodeling processes into a single model as shown in Fig. 19.6

(Peterson and Riggs 2010). Clinical data on patients with varying degrees of renal

insufficiency (Rix et al. 1999), anabolic therapy, and antiresorptive bone therapy
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(McClung et al. 2006; Lewiecki et al. 2007) were used to identify and estimate

parameters sensitive to investigated system interventions (Peterson and Riggs 2010).

The final model was found appropriate to simultaneously describe calcium homeo-

stasis and bone remodeling in the presence of various diseases and/or therapeutic

interventions using a single set of parameters within a single set of mathematical

equations (Peterson and Riggs 2010).

As models become more complex, challenges in identifying system components

may arise, which makes model parameterization rather difficult. Although identifia-

bility determines whether unique drug- and system-specific parameters can be

found, statistical properties, characterizing accuracy and precision, have to be

considered when estimating these system parameters. One way of addressing this

issue is to mathematically reduce these models by combining parameters into

dimensionless variables without oversimplifying the system. The goal of this math-

ematical reduction is to capture the rate-limiting steps within the system (system

behavior) rather than its complexity. This concept has been used in a number of

Fig. 19.6 Schematic of physiological system model to describe calcium homeostasis and bone

remodeling. Effects: (+) stimulatory; (�) inhibitory; (�) bidirectional; ! fluxes; - - - binding

effects; [#] differential equation number; Ca calcium; ECF Ca extracellular fluid calcium; OC
osteoclast; OCpre OC precursor; OB osteoblast; ROB responding OB; OPG osteoprotegerin; PO4

phosphate; PTH parathyroid hormone; RANK receptor of NF-Kappa B; RANKL RANK, ligand;

TGFb transforming growth factor beta; 1-a-OH 1 alpha hydroxylase. Figure and legend from

Peterson and Riggs (2010)
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PKPD models (Zuideveld et al. 2001, 2004) and has also been successfully applied

for modeling the progression of osteoporosis in healthy, postmenopausal women

receiving the selective estrogen receptor modulator tibolone (Post 2009). In the

latter approach, a previously proposed bone homeostasis model (Lemaire et al.
2004) was mathematically reduced and allowed describing the changes in several

different bone formation and resorption markers as well as bone mineral density

measures during the course of tibolone treatment. In this reduced model, two

disease components were identified representing the onset of estrogen defi-

ciency following menopausal transition and the subsequent establishment of a

new homeostasis within the system (shift in the ratio between bone resorption

and bone formation). This approach further allowed characterizing the different

time scales relevant for changes in the different bone turnover markers as well

as bone mineral density. Ultimately, the reduced model could also be used to

distinguish between tibolone effects on both turnover markers and bone mineral

density. Although tibolone had symptomatic effects on bone turnover markers,

disease modifying effects were determined for bone mineral density. This

finding adds a new dimension to the modeling of disease progression as it

shows that different qualitative treatment effects can be observed for different

types of markers within one comprehensive system. Extensions of this model

may be used in the future to link dynamic changes in bone biology to the

corresponding fracture risk.

19.3 Practical Challenges and Implementations

There are a number of factors that have to be considered during the development

and validation of disease progression models for prospective use in drug develop-

ment and therapeutics, of which some of the key aspects are highlighted in the

following section.

One of the main challenges remains the assessment of the predictive value of a

model for novel targets. The identifiability of drug- and disease-specific parameters

depends on the data and current knowledge about the biological system. Given that

mechanism-based modeling provides access not only to experimentally accessible,

but also to hidden or inaccessible components of the biological system, model

performance may be heavily influenced by the experimental conditions upon

which data is generated. In physics, the influence that the observer and experimental

setting may have on experimental results has long since been accepted. In medical

research such acceptance has yet to come. Optimal design concepts are often ignored

in investigational protocols, response data are not available following withdrawal of

treatment and the effect of variable dosing regimens and treatment duration are

usually limited by clinical, ethical, or experimental reasons. The evaluation of

design-related factors in conjunction with model validation represents therefore an

important step in the development of disease progression models. Evidence shows
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that even models validated for parameter accuracy and bias may not necessarily be

sufficient for simulation purposes.

Understanding of the role of experimental design factors is particularly important

for the development of disease models and their subsequent use in clinical trial

simulations. Yet, the majority of publications in which mechanism or physiology-

based disease models are used, exclude the potential impact of experimental factors.

In addition, from a statistical perspective, the exposure-response relationship in a

PKPD analysis is evaluated primarily by testing the null hypothesis in the presence

and absence of drug. This approach often yields biased results as it neglects important

information on the interaction between drug, biological system, and disease processes.

To appropriately consider these factors, advanced analysis techniques as well as

innovative study designs have to be used (Santen et al. 2009a, b). For example, in the

area of antidepressant drug research, chances of identifying a statistically significant

drugeffect, even formarketedcompoundswithknownefficacy, are limited (Khan etal.
2002). This unsatisfactory outcome is caused by a number of factors, which can be

categorized as: drug-, disease-, and trial-related factors (Santen et al. 2009a). Drug-
related factors are pharmacokinetic variability, difficulties in dose selection, and poor

compliance. Disease-related factors include large variability in (placebo) response,

heterogeneity of patient populations, and difficulties of measuring the severity of the

disease in an objective and meaningful manner (Santen et al. 2009a). Trial design-
related factors are inadequate study size, suboptimal inclusion criteria, and the use of

insufficient endpoints and/or statisticalmethods.All of these factors are usually closely

related and should, therefore, be evaluated in a single comprehensive approach.

Although the conventional approach of testing the null hypothesis in the presence

and absence of drug is still considered as the most conservativemethod for confirming

the existence of drug effects, a model-based evaluation allows studying the (causal)

dynamics of the underlying disease system including drug-, disease-, and clinical trial-

related factors.

Missing values and dropout constitute another important factor that may lead to

model misspecification and bias in drug-specific and disease-specific parameter

estimates. For instance, dropout is common in late clinical trials and has been dealt

with using various methods, such as carrying the last observation forward

or classifying this data record as missing (Hu and Sale 2003). However, if subjects

leave a study because of a lack of efficacy, caused by side effects, or because

of worsening of the disease conditions, ignoring this information yields biased

estimates for treatment effects as well as associated variability. To appropriately

address these issues, a distinction between the different types of dropouts has

to be made. In general, dropout processes can be categorized as: completely

random, random, and informative (Hu and Sale 2003). Although completely ran-

dom dropouts may be ignored during the model building process, random dropouts

can be modeled separately, whereas informative dropouts have to be jointly mod-

eled with disease as well as drug-related effects (Hu and Sale 2003; Karlsson and

Holford 2008).
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The nature and magnitude of placebo response in an experimental protocol also

plays an important role in disease progression modeling. For example, it has been

shown for schizophrenia that placebo response can be highly variable and often

declines with time (Welge and Keck 2003; Friberg et al. 2009). One way of

addressing this issue would be to extend the trial duration. However, study

prolongation is in many cases not feasible because: (1) ethical issues arise when

active treatment is retained from patients for an extended period of time and

(2) the probability of patients dropping out of the study increases as the trial

duration increases.

To overcome these limitations, innovative trial designs are needed. In many

cases, a fixed design, such as the placebo-controlled parallel group design, is not

sufficient to enable identification of drug- and/or disease-specific parameters (San-

ten et al. 2009a, b). For example, attempts to distinguish between symptomatic and

disease modifying effects may fail if both effects exist at the same time. Such a

distinction would require a different trial design, including treatment arms with

different durations and availability of data on response after treatment completion.

Furthermore, it has been demonstrated that mathematical modeling and simulation

approaches can be used to optimize trial design and, subsequently, support the

claim of symptomatic and/or disease modifying effects (Ploeger and Holford 2009).

In a recent investigation, the outcome of two different trial designs, wash-out and

delayed start, was simulated using a disease progression model for Parkinson’s

disease with identical drug effects, study population, duration, and sample size

(Ploeger and Holford 2009). In the washout design, active treatment is started right

away and discontinued after 13.6 months allowing for a 3-month washout period

and compared with placebo treatment for the full period. On the other hand, in the

delayed start design active treatment is started after 6 month of placebo treatment

and compared to active treatment for the full period (Fig. 19.7). Simulations also

accounted for the possibilities of higher dropout rates for placebo treated patients as

well as a potential increase in dropout in the washout period. Results from these

simulations indicate that upon termination of the treatment, the washout design was

superior compared to the delayed start design for distinguishing different treatment

effect types as shown in Fig. 19.7 (Ploeger and Holford 2009).

Finally, it should be noted that a sufficient understanding of time in the disease

process is crucial when evaluating treatment effects because a change in biological

system parameters frequently results in an altered response to drug therapy over time

(de Winter et al. 2006; Holford and Nutt 2008). As a consequence, a stronger

consideration of the different time domains, such as time since the start of disease,

in model-based drug development will help to further increase our understanding of

the variability associated with the clinical data and to more appropriately select

respective study populations. It should further be noted that understanding of the

time scale or dimensionality in disease processes may help to identify fast-responding

biomarkers early on and allow accurate prediction of the long-term treatment effects.

In addition, identification and validation of such biomarkers would significantly
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improve the chances for a successful therapeutic intervention. This could be achieved

by choosing suitable doses or dosing regimens for patients initiating drug treatment at

different stages in the disease process. It is important to note that different biomarkers

can represent different qualitative responses to treatment as shown for postmeno-

pausal osteoporosis. In this example, symptomatic treatment effects were identified

for fast responding bone turnover markers, whereas disease modifying effects were

determined for slower responding but more clinically meaningful bone mineral

density measures (Post 2009). Nevertheless, within the context of dynamic disease

system analysis, it is still feasible to obtain information from short term markers to

predict long term changes. As a consequence, the selection of an appropriate study

design, including the effects of dropout and of differences in patient population

(disease status) are critically important aspects. They should be carefully evaluated

before attempting to quantitatively characterize the effects of treatment on disease

processes.

Fig. 19.7 Predicted change in the Unified Parkinson’s disease rate scale (UPDRS) over time for a

drug with symptomatic and disease modifying effects compared with placebo in a parallel group

design with and without washout (left hand plot), and to a delayed start design (right hand plot).
In the delayed start design one group receives placebo treatment first and will then be switched to

active treatment, whereas the other group receives active treatment immediately. The vertical

dashed line indicates the start of washout for the washout design or the start of delayed treatment

for the delayed start design. Figure and legend from Ploeger and Holford (2009)
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19.4 Summary

1. In conventional PKPD analyses, the status of the biological system is generally

assumed to be invariable with time and considered constant at baseline.

This assumption does not hold for progressive, chronic disorders where

biological functions change over time. The change of biological functions and

subsequent changes in treatment response can be characterized by disease

progression modeling.

2. Disease progression modeling is an advanced analysis tool that allows charac-

terizing the interaction between drug, biological system and disease by combin-

ing models for the pharmacology of drugs with those for disease processes.

3. Disease progression models can be established at different levels of complexity

using two opposing approaches: top-down or bottom-up. Top-down approaches

are usually data-driven, starting at a clinical observation level, and becoming

increasingly more complex to better understand the system. In contrast, bottom-

up approaches are based on a complete mechanistic description of the biological

system, starting at the molecular level. Both approaches have advantages and

disadvantages. Although a descriptive disease progression model may not pre-

dict the clinical outcome beyond the data on which it was established, a full

system approach may face problems with the identifiability of model para-

meters. Mechanism-based disease progression models represent a mixture of

these two extremes.

4. Conceptually, a mechanism-based disease progression model consists of three

distinct parts: a pharmacokinetic model to predict target exposure, a pharmaco-

dynamic model to characterize target binding, target activation and transduction

(receptor theory; dynamical system analysis), and a disease model to character-

ize placebo response and disease progression.

5. Mechanism-based disease progression models often require information on

multiple biomarkers/clinical endpoints, taking into account the underlying dis-

ease processes as well as feedback and feed-forward mechanisms associated

with the etiology and (patho)physiology.

6. A distal-proximal classification system has been proposed for biomarkers,

which can be used as basis for disease modeling, providing comprehensive

information on the interaction between the drug, the biological system, and the

disease.

7. Two basic types of qualitative treatment effects can be distinguished: sympto-

matic and disease modifying. Symptomatic treatments typically have a fast onset

of effect but can only reduce the severity of clinical symptoms or change the

biomarker response, whereas disease modifying treatments can slow, halt, or

even reverse the progression of a disease.

8. A mechanism-based modeling approach can be used in conjunction with opti-

mized study designs to separate symptomatic from disease-modifying effects.

These differences are not evident from visual inspection, or simple regression of

the time course of response.
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9. The selection of an appropriate study design, including the effects of dropout

and of differences in patient population (disease status) are critically important

aspects that should be carefully evaluated before attempting to quantitatively

characterize the effects of treatment on disease processes.
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Chapter 20

Using a Systems Biology Approach to Explore

Hypotheses Underlying Clinical Diversity

of the Renin Angiotensin System and the

Response to Antihypertensive Therapies

Arthur Lo, Jennifer Beh, Hector De Leon, Melissa K. Hallow,

Ramprasad Ramakrishna, Manoj Rodrigo, Anamika Sarkar,

Ramesh Sarangapani, and Anna Georgieva

Abstract In this chapter, we discuss how a systems biology approach can be used

in drug development, by presenting an example of building and parameterizing a

model of the renin angiotensin system (RAS) pathway. The RAS plays a pivotal

role in regulating blood pressure (BP) and kidney function. We introduce a

mathematical representation of the pathway in the systemic circulation and

describe how we derived the parameters of the model from available clinical

measurements and inferences about the homeostatic nature of the physiological

system. The chapter includes a brief introduction to the implementation of RAS-

modulating therapies, model validation and variability at the pathway level. The

chapter also describes the process of extending the model from the systemic

circulation to the kidney and the process by which the two models were connected.

The work presented here is part of one regulatory pathway in a larger physiological

model of BP regulation and renal function (in both healthy and disease states) that

is used to generate and test hypotheses of the underlying physiology to investigate

a range of clinical scenarios.

20.1 Introduction

The appeal of an integrated model of human physiology in drug discovery and

development is the ability to investigate the interactions among multiple biological

systems as a whole rather than as individual pieces. Just as the actions of a therapeutic

agent extend beyond the binding kinetics at a target site, a systems biology approach to
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modeling disease can reveal subtleties of the entire physiological system that may not

be apparent in a model based on the individual physiological components. By extend-

ing the focus of the integrated model to encompass both a detailed representation of

the mechanism of action and the functional changemeasured in the clinic, the systems

biology approach can provide both meaningful and practical insights to further guide

and optimize the process of drug discovery and development.

The current model of the renin angiotensin system (RAS) pathway is part of a

larger model that has been developed to investigate different hypotheses about the

role of angiotensin II (Ang II) in the physiological function of the kidney, in

addition to its recognized role in blood pressure (BP) regulation. In particular,

hypertensive patients receiving therapies that suppress or down regrate the RAS

may experiences a delay in the onset of glomerulosclerosis, interstitial and tubulo-

fibrosis (Brenner et al. 2001). The larger model is a powerful tool for quickly testing

multiple hypotheses about the physiology that can help answer a wide range of drug

development questions. For instance, it can be used to predict the expected changes

in BP for specific therapies in clinical trials, or to identify patient types that are most

likely to benefit from RAS therapies based on specific characteristics or biomarkers

(and thus enrich a clinical trial). It can be used to test mechanistic hypotheses that

are infeasible or impractical to test clinically, or to test the impact of known or

hypothesized drug characteristics (e.g., localization in the kidney, ability to access

specific receptors) on end-organ protection, possibly providing support for drug

development and differentiation claims.

Moreover, pathway models are increasingly being used in drug discovery and in

clinical development to address a range of circumstances in which characterizing

the efficacy or safety of a drug effect is dependent on perturbations at the molecular

and cellular level. While the variability in drug response among patients can be

linked to characteristics routinely collected in demographic surveys, including

gender and race, some variability can be traced to different protein expression

levels, gene expression levels, and mutations in relevant biological entities such as

drug target receptors or metabolizing enzymes. To this end, mathematical models

of signaling and metabolic pathways have been used to elucidate the dynamic

behavior of the biological system of interest (Michelson 2006).

The utility of mathematical models in drug development have included: (1) identi-

fying and optimizing drug targets within complex pathways via mechanistic dynamic

simulations (Aksenov et al. 2005; Rullmann et al. 2005; Michelson et al. 2006);
(2) identifying combinations of therapies that would achieve efficacy without inter-

fering with the biological function of the drugs’ targets in normal tissue, thus limiting

toxicity (FitzGerald et al. 2006; Christopher et al. 2004); (3) characterizing the

role that mutations in the drug target have on the overall clinical efficacy (Liu et al.
2007); (4) reconciling seemingly contradictory experimental data by showing

that different protein expression levels in cell lines and tissues can lead to a largely

different behavior of the same signaling network (Schoeberl et al. 2006); and (5)

translating animal data into usable interventions for a corresponding response in

human patients (Shoda et al. 2005).
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20.2 Overview

The regulation of BP involves multiple (and not necessarily independent) pathways

that affect different physiological systems to maintain homeostasis. In this chapter,

we introduce a clinical data-based approach to developing and validating a mathe-

matical representation of one biological pathway that has been shown to play a

pivotal role in cardiovascular pathophysiology. We investigate the functional effect

of the RAS pathway at the level of the systemic circulation and at the level of an

organ. At the end of the chapter, we provide a description for the procedure to

integrate the RAS pathway into a larger physiological model of BP regulation.

While our focus is on the RAS and its role in hypertension, we believe this approach

can be generalized to other pathways and diseases. Our goal is to demonstrate that

relevant clinical insights can be achieved by modeling at the pathway level through

a representation of the normal physiological state and the physiological perturba-

tions that lead to disease, and by modeling at the integrated level of the larger

physiological system.

In what follows, we will briefly discuss hypertension, introduce the RAS path-

way, describe previous modeling efforts of BP regulation and acquaint the reader

with the process of pathway modeling and how it has been used to answer clinical

research questions.

20.2.1 Epidemiology and Pathophysiology of Hypertension

Hypertension, the medical condition of elevated BP, is a public health problem that

affects both developed and developing nations. The American Heart Association

states that hypertension is the most important risk factor for heart disease and stroke

in the United States. Despite substantial improvements in public awareness, clinical

diagnosis, and treatment, the number of patients diagnosed with hypertension that

successfully respond to medications is below optimal (27%) (Hajjar and Kotchen

2003). Hypertension has been long recognized to confer increased risk to patients

with diabetes, atherosclerotic, and atherothrombotic cardiovascular disease leading

to an increased likelihood of myocardial infarction (MI), stroke, peripheral vascular

disease (PVD), renal failure and heart failure (HF). Other risk factors contributing to

the complex etiology of hypertension include age, weight, race/ethnicity, diabetes

and dietary sodium intake.

20.2.2 Role of the RAS Pathway in Modulating Arterial Pressure

The etiologies of elevated BP are varied and difficult to characterize in any specific

patient or clinical subject. Hypertension is postulated to result from numerous
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pathophysiological mechanisms including increased peripheral resistance, increased

sympathetic nerve system activity, overproduction of sodium-retaining factors and

vasoconstrictors (e.g., Ang II and endothelin), increased sodium reabsorption by the

kidneys, deficiencies of vasodilators such as atrial natriuretic peptide (ANP), nitric

oxide (NO) and prostacyclin (PGI2), or from an imbalance in the regulation of

glomerular pressure. These mechanisms all lead to hypertension, but a single mecha-

nism is difficult to identify in any individual patient. Ang II has been the focus of

intensive research aimed at elucidating its role in the control of BP, extracellular fluid

and electrolyte homeostasis as shown in Fig. 20.1. Ang II is a peptide with potent

vasoconstricting effects that is part of the RAS pathway, a cascade of bioactive

peptides and regulatory enzymes. The classical systemic RAS pathway has been

described to start with the synthesis and release of angiotensinogen (AGT) into the

systemic circulation by the liver. Renin, a proteolytic enzyme synthesized by the

juxtaglomerular cells in the kidney, cleaves AGT to form the decapeptide angiotensin

I (Ang I). Angiotensin-converting enzyme (ACE) cleaves Ang I to form Ang II,

which is the octapeptide hormone that regulates BP by the modulation of sodium

reabsorption in the kidney and by effecting central and peripheral nervous system

activity to increase cardiac output and systemic vascular resistance.

RAS-modulating therapies directly manipulate this pathway to alter the levels

of Ang II in the systemic circulation to reduce BP. Three classes of RAS-modulating

pharmacological therapies are currently available on the market: direct

renin inhibitors (DRIs) target renin activity; ACE inhibitors (ACEI) block the

conversion from Ang I to Ang II; and angiotensin-receptor blockers (ARBs) prevent

the binding of Ang II to the angiotensin II receptor type I (AT1). All three reduce the

Angiotensinogen
(AGT)

Angiotensin I 
(Ang I)

Angiotensin II
(Ang II)

Renin

ACE
activity

Kidney
Sympathetic stimulation
Hypertension
Decreased Na+ delivery

Cardiac & vascular
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Systemic
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volume

Sodium & water
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cortex
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Fig. 20.1 A diagrammatic representation of the role of Ang II in regulating blood pressure
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systemic activity of Ang II, which leads to vasodilation, decreased renal sodium

reabsorption and reduced secretion of vasopressin (from the brain) and aldosterone

(from the adrenal cortex).

20.2.3 Modeling Approaches to Long-Term Regulation
of Blood Pressure

Computational approaches to modeling BP regulation were pioneered by Guyton

and Coleman in 1972. These authors published the first model that provided the

foundation toward our understanding of the relationship between venous return,

cardiac output and the vasculature (Guyton et al. 1972a, b). The original and updated
versions of the model focus on the role of the kidney in long-term BP regulation and

the effect of blood volume regulation in the development of hypertension, but have

been noted to underestimate the influence of the sympathetic nervous system (SNS)

(Osborn et al. 2009). In addition, the representation of the RAS pathway in this

model is oversimplified. The Guyton/Coleman (GC) model does not include vascu-

lar remodeling and its effects on vascular geometry and hemodynamics as signifi-

cant contributors to increased peripheral vascular resistance (Korner and Angus

1997; Korner et al. 1992). To address the under-representation of the SNS,

Karaaslan et al. (2005) published a modified version of the GC model that added

the influence of the renal sympathetic nerve activity (rSNA) on the synthesis and

release of renin and the afferent arteriolar tone.

20.2.4 Creating a Model of Hypertension Incorporating
the RAS Pathway

Ourgoalwas to develop amodel that captures current knowledgeof the pathophysiology

of hypertension and incorporates the RAS pathway to predict the effects of RAS-

modulating therapies on BP regulation and renal function in subjects with essential

hypertension or compromised renal function. The Guyton/Karaaslan models for normal

BP regulation provided a starting point with the following extensions:

1. Changes in the physiology were represented by different parameter values in the

model to capture the transition from normal to diseased states.

2. Addition of a detailed mechanistic representation of renal function (glomerular

filtration rate and albuminuria), incorporating concepts from existing models

(Lazzara and Deen 2007; Smithies 2003; Drumond 1994).

3. Inclusion of a detailed representation of the concentration of the systemic circulat-

ing RAS-related peptides including intermediates such as angiotensin I (Ang I) and

angiotensin (1–7) (Ang(1–7)) and a separate representation of intrarenal RAS.

4. Incorporation of the effects of Ang II in hypertension and the pharmacological

actions of RAS-modulating therapies on the RAS pathway.
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The focus of this chapter lies in the following two sections to demonstrate the

application of the RAS pathway model in the context of clinical pharmaceutical

research.

20.3 Model of Systemic RAS

In our model, the representation of the RAS pathway incorporates the synthesis and

conversion of AGT to Ang I, Ang II and downstream metabolites such as Ang(1–7).

The activity of enzymes including renin, ACE, a chymase-like enzyme, and neutral

endopeptidase (NEP) were included in the model in addition to the binding rates of

Ang II to the twoAng II receptors (AT1 andAT2). The inclusion of these peptides and

enzymes allows for the investigation of antihypertensive therapies that target the RAS.

Figure 20.2 is a diagrammatic representation of the pathway model.

20.3.1 Model Structure

The model that describes the dynamics of the RAS (Fig. 20.2) is represented using a

system of ordinary differential equations (20.1)–(20.7). Each biochemical reaction

has zeroth-order components of production (kn) and first order degradation kinetics

expressed through half-life parameters (hn). We have assumed that binding or

enzymatic reactions can be expressed as first-order reactions with
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Fig. 20.2 The renin-angiotensin pathway that is represented in the model describes the precursors

and metabolites of Ang II
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parameters (cn). A justification for this simplification is provided later in the text.

A feedback function, f, relating plasma renin activity (PRA) to AT1-bound Ang II is

also included in the model.

PRA ¼ Vmax½AGT�
½AGT� þ ½AGT�0

� f ð½AT1� bound AngII�Þ (20.1)

d½AGT�
dt

¼ kAGT � PRA� lnð2Þ
hAGT

½AGT� (20.2)

d½AngI�
dt

¼ PRA� ðcACE þ cChym þ cNEPÞ½AngI� � lnð2Þ
hANGI

½AngI� (20.3)

d½AngII�
dt

¼ ðcACE þ cChymÞ½AngI� � ðcACE2 � cAngII¼AngIV � cAT1 � cAT2Þ

� ½AngII� � lnð2Þ
hAngII

½AngII� (20.4)

d½Angð1�7Þ�
dt

¼ cNEP½AngI� þ cACE2½AngII� � lnð2Þ
hAngð1�7Þ

½Angð1�7Þ� (20.5)

d½AngIV�
dt

¼ cAngII¼AngIV½AngII� � lnð2Þ
hAngIV

½AngIV� (20.6)

d½AT1� bound AngII�
dt

¼ cAT1½AngII� � lnð2Þ
hAT1

½AT1� bound AngII� (20.7)

d½AT2� bound AngII�
dt

¼ cAT2½AngII� � lnð2Þ
hAT2

½AT2� bound AngII� (20.8)

A range of feasible values for the enzyme activity rates in humans was determined

from the available data in the published literature. When a specific range of data

could not be found, an assumption was made about the steady-state equilibrium for

the angiotensin peptide concentrations to calculate the rates of the remaining

unknown parameters. For example in (20.2) a steady-state approximation yields:

kAGT ¼ ðPRAþ lnð2Þ
hAGT

ÞAGT� (20.9)

As the degradation rate (hAGT) of AGT and a range of baseline PRA rates are

known, we selected a steady-state equilibrium value for AGT (AGT*) from the

range known in literature to obtain a value for the rate of AGT synthesis (kAGT).
The variables and parameters with their reported ranges from clinical studies are

summarized in Table 20.1, as are the parameters where the values are not reported

or known.
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20.3.2 Systemic RAS Model Assumptions

A complete parameterization of the model rate constants based upon experimental

measurements was not available in the literature. Thus, multiple assumptions about

the physiology were made to complete the parameterization of the model structure,

as follows.

1. The baseline PRA is the rate of AGT conversion to Ang I in healthy subjects.

The rate of substrate conversion can change in response to the circulating

concentration of AGT and in response to the feedback function f from a change

in AT1-bound Ang II.

l These assumptions are based on the detailed kinetic studies in human

plasma conducted by Poulsen (1973).
l PRA is assumed to be proportional to the concentration of its substrate,

AGT, because the concentration of AGT is comparable to the Michaelis-

Menten constant (Km).

Table 20.1 List of definitions and values of various physiological rates and parameters in the

systemic RAS module

Parameter Units Reported range Reference

[AGT] pmol/ml 4.8–4,50,000 Katsurada et al. (2007)

[Ang I] fmol/ml 3.9–22.9 Nussberger et al. (2002)

[Ang II] fmol/ml 2.2–7.3 Nussberger et al. (2002)

[Ang(1–7)] fmol/ml 3.1–31.7 Chappell et al. (1998)

[Ang IV] fmol/ml ?

[AT1-bound Ang II] fmol/ml ?

[AT2-bound Ang II] fmol/ml ?

AGT t1/2 (hAGT) h 16 Hyp primer

Ang I t1/2 (hAngI) min 0.5 Schalekamp et al. (1989)

Ang II t1/2 (hAngII) min 0.5 van Kats et al. (1997)

Ang(1–7) t1/2 (hAng(1–7)) min 29 Iusuf et al. (2008)

Ang IV t1/2 (hAngIV) min ?

AT1 and AT2 Ang II t1/2 min ?

AGT synthesis rate (kAGT) fmol/ml/h ?

PRA ng/ml/h 0.34–1.45 Nussberger et al. (2007)

ACE (cACE) 1/h ?

Chymase (cChym) 1/h ?

NEP (Ang I-Ang(1–7)) (cNEP) 1/h ?

ACE2 (cACE2) 1/h ?

Ang II to Ang IV (cAngII-AngIV) 1/h ?

Ang II AT1 binding rate (cAT1) 1/h ?

Ang II AT2 binding rate (cAT2) 1/h ?

Regulatory feedback on PRA (f) n/a ?

The question marks indicate parameters where the data was difficult to find from the literature or

not known

468 A. Lo et al.



2. The activity of ACE and chymase (CACE, Cchym) in converting Ang I to Ang II

is assumed proportional to the concentration of the substrate (Ang I).

l ACE and chymase activity in the vasculature were determined to have Vm

values of 222 and 154 pmol/ml/h, respectively, which was considerably

greater than rates (~0.3 pmol/ml/h) measured in humans (Takai et al. 1997;
Meng et al. 1995).

3. ACE was assumed to be responsible for >95% of the conversion of Ang I to

Ang II.

l Human and animal data support the hypothesis of ACE being the primary

enzyme responsible for Ang I to Ang II conversion in normotensive humans

(Saris et al. 2000; Wei et al. 2002; Schuijt et al. 2002).
l ACE expression and systemic conversion of AGT to Ang I take place

primarily in the pulmonary circulation.

4. 10% of Ang II was assumed to be converted to Ang(1–7) and 90% to Ang IV.

l Since no quantitative data in the literature is available, this assumption was

based on measured circulating activity of ACE2, the primary pathway for

the conversion of Ang II to Ang(1–7) compared to the rate of Ang II

degradation to Ang IV (van Kats et al. 1997).

5. The instantaneous amount of Ang II bound to membrane AT1 and AT2

receptors is a small fraction of circulating Ang II.

l This assumption is based upon the geometric relationship between the

volume of the blood and the surface area of the vasculature.

6. Ang II binds preferentially to AT1 than AT2 receptors.

l Data from human smooth muscle cells and renal tissue indicate that AT2

receptors are expressed at lower levels compared to AT1 receptors (Haulica

et al. 2005).

7. Ang I and Ang II have half lives of approximately 30 s in the systemic

circulation (Schalekamp et al. 1989; van Kats et al. 1997).
8. For Ang IV, the model assumes a half-life of 10 min, which is between the

reported half lives of Ang II and Ang(1–7).

9. The concentrations of Ang IV and Ang(1–7) in the systemic circulation were

calculated based on the solution of the steady-state equilibrium equations.

10. PRA increases via a regulatory feedbackmechanism in response to a reduction in

BP, in a relationship that reflects a reduction in Ang II binding to the AT1

receptors.

l An analysis of clinical data from trials testing therapies thatmodulate the RAS

pathway suggests a rapid increase inPRA24h posttreatment,which correlates

with the reductions in Ang II bound to AT1 receptors and BP (LeFebvre et al.
2007; Maillard et al. 1999; Gainer et al. 1998; Delacretaz et al. 1995; Burnier
et al. 1995).
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20.3.3 Parameterization of a Representative Normotensive
Virtual Patient (VP)

To our knowledge, no studies have incorporated both known and hypothesized

activity rates for the RAS pathway cascade into a single dynamic system. Based

upon the aforementioned assumptions about the enzyme activities and the existence

of a steady-state equilibrium, a single parameterization of this system of equations

was derived such that the resulting numerical solution described a feasible normo-

tensive patient (Table 20.2). It is important to note that the ranges of measured Ang I

and Ang II concentrations in normotensive and hypertensive patients are assumed

identical and that there is no obvious way to distinguish between normal and

elevated BP solely on these concentrations (Matsui et al. 1999). The steady-state

solution of the system described of ordinary differential equations (20.1)–(20.8) is

shown in Table 20.3 (results derived by numerical methods). This parameter set

Table 20.2 Representative parameter set describing a feasible normotensive virtual patient (VP)

Parameter Units Normotensive VP

AGT t1/2 h 10

Ang I t1/2 min 0.5

Ang II t1/2 min 0.66

Ang(1–7) t1/2 min 30

Ang IV t1/2 min 0.5

AT1 and AT2 Ang II t1/2 min 12

AGT synthesis rate fmol/ml/h 34,620

PRA ng/ml/h 0.97

ACE 1/h 54.1

Chymase 1/h 1.1

NEP (Ang I-Ang(1–7)) 1/h 1.1

ACE2 1/h 2.4

Ang II conversion to Ang IV 1/h 23.5

Ang II AT1 binding rate 1/h 11.8

Ang II AT2 binding rate 1/h 3.9

Regulatory feedback on PRA n/a 1

A solution was obtained by solving the equilibrium solution of the system at steady state. Shaded

rows show parameters that were determined by the steady state solution of the system of equations

Table 20.3 The steady-state values of the system described by equations (1) to (8) describing one

feasible normotensive patient

States Units Normotensive VP

[AGT] pmol/ml 483.9

[Ang I] fmol/ml 7.5

[Ang II] fmol/ml 4.75

[Ang(1–7)] fmol/ml 14

[Ang IV] fmol/ml 1.29

AT1-bound Ang II fmol/ml 16.2

AT2-bound Ang II fmol/ml 5.4

Shaded rows show the values determined by the steady state solution of the system of equations
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describes one hypothetical subject or virtual patient (VP), and is the foundation of a

framework for conducting hypothesis testing of this physiological system, as

described by Friedrich and Paterson (2004).

20.4 Model Validation

20.4.1 Angiotensin Peptide Infusion Experiments

Avalidation of anymodel consists of the agreement betweenmodel predictions and one

or more experimental data sets that were not used to determine the initial parameteriza-

tion of the model. For this model of the RAS pathway, a validation of the model

parameters describing the VP was conducted using a series of published radio-labeled

angiotensin peptide infusion experiments (Danser et al. 1998;Admiraal et al. 1993). The
published studies quantified the rates of systemic and tissue Ang II production and

clearance by using a constant infusion of radio-labeled 125I-Ang I and 125I-Ang II. Based

upon the known specific radioactivity of 125I-Ang I and 125I-Ang II, the plasma and

tissue concentrations of Ang I and Ang II could be separated by their source (locally

synthesized or exogenously delivered). In five human subjects where 125I-Ang I was

directly infused at a constant rate, blood samples taken between 5 and 10 min after the

start of the infusion had constant levels of both 125I-Ang I and 125I-Ang II,which implied

that the system reached a steady state within 5 min (Danser et al. 1998).
The infusion experimentwas reproduced bymodifying (20.3)with the addition of a

term k2 ¼ 23.1 fmol/ml/h to represent a constant infusion rate of 125I-Ang I consistent

with the experimental protocol based upon the measures of radioactivity. Figure 20.3

Fig. 20.3 The simulated change in radio-labeled 125I-Ang I and 125I-Ang II following an infusion

at time 0. The model results are consistent with experimental observations

20 Systems Biology Approach 471



shows the simulated time course of both 125I-Ang I and 125I-Ang II as a steady state is

reached in the normotensive VP within 5 min, thus confirming the set of chosen

parameters.

Similar simulation experiments were conducted to reproduce the study by Admiraal

et al., in which arterial and venous levels of 125I-Ang I and 125I-Ang II across a

number of vascular bedsweremeasured to determine the local tissuemetabolism and

production of Ang II (Admiraal et al. 1993). In this study, tracer doses of 125I-Ang I
and 125I-Ang II were infused in hypertensive patients and the study found that

equilibrium was achieved within 8 min. To reproduce these experiments, (20.3)

and (20.4) were modified with the additional terms k2 ¼ 26.9 fmol/ml/h and

k3 ¼ 21.8 fmol/ml/h respectively.

In both simulations described above, a steady state was reached within 8 min,

reinforcing the hypothesis that the chosen parameters in the model that describe a

feasibleVP are consistentwith the behavior of a normotensive patient in the clinic. It is

important to note that though the comparison was made between measurements in

hypertensive patients and model simulations represented normotensive human sub-

jects, the comparison is still justifiable based on data not showing differences between

normal and patient populations (Matsui et al. 1999).

20.4.2 Representation and Parameterization
of Antihypertensive Therapies

Additional testing of the model parameterization was conducted by incorporating

the effects of the three main RAS-modulating therapies in the model and compar-

ing the resulting simulated angiotensin peptide concentrations with data. ACEIs

were simulated by changing the effect of the rate constant cACE, ARBs were

simulated by modulating the effects of the rate constant cAT1, and DRIs were

simulated by altering the overall rate PRA. In (20.1)–(20.3) and (20.6) the thera-

peutic inhibitory effects of ACEI, ARB and DRI were implemented via the use of

fractional reductions in enzyme activity, a, b and d, respectively. For example,

(20.6) becomes:

d½AT1� bound AngII�
dt

¼ ð1� bÞcAT1½AngII� � lnð2Þ
hAT1

� ½AT1� bound AngII� (20.10)

AT1 receptors mediate the majority of Ang II actions involved in the regulation

of BP and blood volume. Mazzolai et al. (1999) showed a 90% reduction (b ¼ 0.9)

in Ang II bound to AT1 receptors 4 h after a 150-mg dose of irbesartan, an ARB,

administered to normotensive patients. ACEI blocks the action of ACE competi-

tively and thus the conversion of Ang I to Ang II, thereby reducing circulating and

local levels of Ang II. Data from Manhem et al. (1985) demonstrated a 96%
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reduction (a ¼ 0.96) in ACE activity 4 h following a 20-mg dose of ramipril, an

ACEI. Similarly, Nussberger et al. (2007) measured a 60–70% reduction in PRA

4 h after an 80-mg dose of aliskiren, a DRI, was administered to normotensive

patients. Finally, the calibration of the regulatory feedback function f was based on

observations from the literature showing that PRA increases in response to ACEI,

ARB and DRI therapy (Luque et al. 1996). The reactive increase in PRA was

hypothesized to be related to the reduction in AT1-bound Ang II based on the

comparable increase observed in ACEI therapy (reduced Ang II) and ARB therapy

(increased Ang II but reduced Ang II binding to AT1 receptors).

20.4.3 Validation of Antihypertensive Therapies in the Model

A comparison of the change in angiotensin peptide concentrations between the model

and the literature was used to validate the implementation and parameterization

of the antihypertensive therapies. The summary of this comparison is presented in

Table 20.4.

ACEI therapy is associated with a decrease in Ang II, a reactive increase in plasma

renin activity (PRA) and an increase in plasma Ang I. The reactive increase in PRA

was also observed in response to ARB and DRI therapy. The simulated ACEI in the

model predicted increased concentrations and Ang I and Ang(1–7) and decreased

concentrations of Ang II, consistent with reported clinical data (Manhem et al. 1985).
The time course of the Ang I and Ang II response predicted an equilibration in the

angiotensin peptide concentrations after 5 h, in agreement with short-term measure-

ments taken in the studies highlighted in Table 20.4.

Since ARBs act by blocking the binding of Ang II to the AT1 receptor rather

than by inhibiting Ang II synthesis, their use results in an increase in plasma Ang II

levels. The blockade of AT1 receptors increases renin activity and the

corresponding concentration of plasma Ang I. The simulated effect of ARBs in

the model predicts increased concentrations of circulating Ang I, Ang II, Ang(1–7)

and PRA, consistent with published clinical data (Christen et al. 1991).

Table 20.4 Simulated vs. measured changes in circulating peptides and PRA following

therapy (4 h)

Ang I

(%)

Ang II

(%)

Ang(1–7)

(%)

PRA

(%) Reference

ACE

inhibition

Simulation "474 #71 "160 "293
Measurement "480 #76 "100 "370 Luque et al. (1996)

Renin

inhibition

Simulation #56 #55 #55 #62
Measurement #64 #50 #67 Nussberger et al. (2007,

2002)

AT1 block Simulation "232 "276 "258 "259
Measurement "320 "370 Christen et al. (1991)
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DRIs have a significant and sustained effect on PRA to reduce the concentration

of both Ang I and Ang II in the circulation. The simulated effect of DRIs in the

model predicts a decreased concentration of circulating Ang I, Ang II and Ang

(1–7), consistent with results reported in clinical studies (Nussberger et al. 2007).

20.4.4 Representation of Variability Across Different
Clinical Populations

Table 20.1 summarized the wide range of reported clinical values of enzyme

activities in the RAS pathway cascade to reflect the intrinsic variability between

human subjects. The values summarized in Table 20.2 described only one set of

parameters for the system of equations that yields a feasible solution. To capture

physiological variability observed in the clinic, the parameter values in Table 20.1

can be changed within the observed ranges to generate a new VP hypothesis.

Although changing the parameters may yield a mathematically correct steady

solution for a new VP, the combination of parameter values may not result in steady

state concentrations or enzyme activity rates that are consistent with the physiologi-

cal data. For example, decreasing the rate of Ang II clearance from the circulation

will increase the time it takes for Ang II to reach an equilibrium. If the resulting Ang

II concentration at equilibrium increases significantly beyond physiological range

determined by the infusion studies, then the chosen set of parameters for the VP is

considered invalid. The verification of the simulated results against plausible data is

an essential step during the process of model building.

A collection, or cohort, of multiple feasible VPs can be generated using a

systematic process to explore the parametric space and a method for testing the

feasibility criteria of each parameterization (Michelson et al. 2006). Table 20.5

summarizes one such method for exploring the parametric space that varies the half

lives and enzyme activity rates around the nominal values of the first virtual patient

Table 20.5 A range of values that define the parametric space to explore the physiological

variability of the biology

Parameter Units VP1 Nominal range (%)

AGT t1/2 h 10 20–400

Ang I t1/2 min 0.5 20–400

Ang II t1/2 min 0.66 20–400

Ang(1–7) t1/2 min 30 20–400

Ang IV t1/2 min 0.5 20–400

AT1 and AT2 Ang II t1/2 min 12 20–400

PRA ng/ml/h 0.97 20–400

ACE 1/h 55.8 20–400

Chymase 1/h 0.56 20–400

NEP (Ang I-Ang(1–7)) 1/h 1.1 20–400

ACE2 1/h 2.4 20–400

A patient hypothesis may be generated by simulating using different parameters within the

nominal range where the value of 100% is equal to the values chosen for the first virtual patient
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(VP1). Table 20.6 summarizes a set of feasibility criteria for the concentration of

angiotensin peptides based on a survey of the literature.

The cohort of feasible VPs can be modified depending on the criteria used to

describe a particular disease phenotype. For example, the feasibility criteria for PRA

can be increased accordingly in patients that exhibit exaggerated renal production of

renin leading to increased concentrations of plasma renin. It is important to note that

the cohort of VPs may not follow the same distribution as the clinical population and

additional refinement of the patient-generation procedure may be required.

20.4.5 Insights from Model Simulations

1. In the range of parameter values of the systemic RAS pathway described in

Table 20.5, the long half life of AGT (h1) compared to Ang I and Ang II

(h2 and h3) indicates a slower rate of AGT turnover compared to Ang I and Ang II.

l As a result, the concentration of AGT is susceptible to larger changes resulting

from increases or decreases in PRA compared to Ang I or Ang II. Changes in

the circulating concentration of AGT may be easier to measure and may

function as a better marker of changes to the RAS pathway than Ang II.

2. ACE is the primary enzyme for the conversion of Ang I to Ang II in the systemic

circulation.

l Chymase is another enzyme that can convert Ang I to Ang II. Therapy that

focuses on the inhibition of ACE activity does not affect the continued

conversion of Ang I to Ang II by chymase.
l Based on the clinically measured changes in circulating Ang I and Ang II and

the assayed reduction in ACE activity in response to moderate doses of ACEI,

the model predicts that ACE is responsible for greater than 95% of Ang II

synthesis in the representative normotensive patient.
l If the role of ACE in the synthesis of Ang II was reduced to<95%, the model

was unable to reproduce the clinically measured reduction in Ang II.

3. PRA increases in response to ARB or ACEI therapy can be represented by

establishing a relationship between decreased Ang II binding to AT1 receptors

and PRA.

Table 20.6 The published range of angiotensin peptide concentrations that describe the criteria

for a physiologically feasible normotensive patient

States Units Normotensive VP range

[AGT] pmol/ml 75–480

[Ang I] fmol/ml 3.9–21

[Ang II] fmol/ml 2.2–17

[Ang(1–7)] fmol/ml 3.1–31

[Ang IV] fmol/ml 0.6–4.8
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20.5 Modeling RAS Within the Kidney

20.5.1 Introduction

In recent years, there has been additional focus on the role of local tissue-specific

RAS in the development of cardiovascular and renal disease. In particular, the

kidney possesses all the RAS components and enzymatic machinery required for

the local tissue generation of Ang II and other RAS-related peptides. Here, we

briefly address our approach of constructing and quantifying the renal RAS path-

way and connecting it together with the systemic circulation of the angiotensin

peptides. We will mention how uncertainty and lack of data are addressed and the

application of the resulting model to test a variety of hypotheses on the potential

effects of renal RAS.

20.5.2 Model Development

The model divides the kidney into two regions: the renal vasculature compartment,

comprised of all vascular structures within the kidney (including the blood volume

within those structures); and the renal tissue compartment, comprised of all tissue

external to vascular structures (including the tubules and interstitial tissue)

Fig. 20.4. The model makes the following assumptions and simplifications:

l RAS peptides are arterially delivered from the circulation to the renal vascular

compartment at concentrations equal to systemic levels, and the peptides flow

out of the renal vascular compartment back to the systemic circulation at

concentration equal to renal vasculature levels.
l All angiotensin peptides and all enzymes in the RAS pathway are also produced

locally within each compartment, although the rates of production and enzy-

matic conversion can vary greatly from those in systemic circulation, as dis-

cussed below. A concentration gradient exists between the renal tissue and renal

vasculature, such that RAS peptides produced in the renal tissue diffuse into the

Fig. 20.4 The intrarenal RAS is compartmentalized into two regions: the renal vasculature and

renal tissue. RAS peptides flow freely between the systemic circulation and renal vasculature.

RAS peptides diffuse from the renal tissue to the renal vasculature due to the higher tissue

concentrations
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renal vasculature. Biopsy data shows that renal tissue levels of Ang I and Ang II

are 10- to 100-fold higher than circulating levels (Navar et al. 2002; Metzger

et al. 1999; Navar and Nishiyama 2004).
l Ang IV and Ang(1–7) levels in the kidney were not specifically modeled because

of the limited availability of data. Instead, rates of conversion of Ang I and Ang

II to Ang(1–7) and Ang IV were assumed to be incorporated into the degradation

rates of Ang I and Ang II.
l Since limited data is available on any changes in the concentrations of AGT and

renin within the renal tubules and interstitium, the rate of Ang I synthesis in the

renal tissue compartment was assumed to be at equilibrium levels.

Thus, in modeling RAS concentrations within the renal vasculature compartment,

we accounted for: (1) arterially delivered Ang I andAng II peptides and return of these

peptides to the systemic circulation; (2) production and utilization of Ang I and Ang II

in the renal vascular bed (Navar et al. 2002;Metzger et al. 1999); (3) diffusion ofAng I
and Ang II from the renal tissue into the renal vasculature; and (4) binding of Ang II to

its receptors. For the model angiotensin peptide concentrations within the renal tissue

compartment, we considered: (1) production and utilization of Ang I and Ang II in the

renal tissue (Danser et al. 1998); (2) diffusion of locally produced peptides into the

renal vasculature, and (3) binding of Ang II to its receptors.

Equations (20.11)–(20.14) for the renal vascular RAS are shown below. These

equations are almost identical to those for systemic RAS, but the rates are specific for

the renal circulation, include additional terms to describe the flow of angiotensin

peptides in and out of the the kidney at a rate Fk, and include the diffusion of

angiotensin peptides from the renal tissue compartment to the renal vasculature at a

rate of Dk.

d½AngI�rv
dt

¼ kAngI�rv � ðcACE�rv þ cChym�rvÞ½AngI�rv �
lnð2Þ

hAngI�rv

½AngI�rv
þ Fkð½AngI�circ � ½AngI�rvÞ þ Dkð½AngI�rt � ½AngI�rvÞ (20.11)

d½AngII�rv
dt

¼ ðcACE�rv þ cChym�rvÞ½AngI�rv � ðcAT1�rv þ cAT2�rvÞ½AngII�rv

� lnð2Þ
hAngII�rv

½AngII�rv þ Fkð½AngII� � ½AngII�rvÞ

þ Dkð½AngII�rt � ½AngIIrv�Þ (20.12)

d½AT1� bound AngII�rv
dt

¼ cAT1�rv½AngII�rv
lnð2Þ
hAT1�rv

½AT1� bound AngII�rv

þFkð½AT1� bound AngII�circ
�½AT1� bound AngII�rvÞ (20.13)
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d½AT2�boundAngII�rv
dt

¼ cAT2�rv½AngII�rv�
lnð2Þ
hAT2�rv

½AT2�boundAngII�rv

þFkð½AT2�boundAngII�circ�½AT2�boundAngIIrv�Þ
(20.14)

Equations for RAS within the renal tissue compartment are as follows:

d½AngI�rt
dt

¼ kAngI�rt � ðcACE�rt þ cChym�rtÞ½AngI�rt �
lnð2Þ
hAngI�rt

½AngI�rt
� Dkð½AngI�rt � ½AngI�rvÞ (20.15)

d½AngII�rt
dt

¼ ðcACE�rt þ cChym�rtÞ½AngI�rt � ðcAT1�rt þ cAT2�rtÞ½AngII�rt

� lnð2Þ
hAngII�rt

½AngII�rt � Dkð½AngII�rt � ½AngIIrv�Þ (20.16)

d½AT1�boundAngII�rt
dt

¼cAT1�rv½AngII�rt�
lnð2Þ
hAT1�rt

½AT1�boundAngII�rt (20.17)

d½AT2�boundAngII�rt
dt

¼ cAT2�rt½AngII�rt�
lnð2Þ
hAT2�rt

½AT2�boundAngII�rt (20.18)

20.5.3 Parameterization of the Renal RAS Model

20.5.3.1 Renal Vascular Compartment

The parameterization of the RAS enzyme activities in the renal vascular bed was

primarily constrained based on experiments conducted by Danser et al. (1998).
In this study, radio-labeled Ang I was injected into the renal artery of five hyper-

tensive patients while catheters in the abdominal aorta and renal vein were used

to sample the concentration of radio-labeled and endogenous Ang I and Ang II.

The constraints of the renal RAS pathway based upon the Danser study can be

summarized as follows:

1. Of Ang I entering the kidney from the systemic circulation, 70% is degraded,

10% is converted to Ang II, and 20% exits unchanged.

2. 73% ofAng II entering the kidney is degraded, and the remainder exits unchanged.

3. The concentration of Ang I at the renal vein is approximately 50% higher than

the concentration at the renal artery.

4. The concentration of Ang II at the renal vein is approximately 50% lower than

the concentration at the renal artery.
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The following assumptions regarding the renal vascular RAS pathway were

made to satisfy these constraints:

1. The rate of blood flow to the kidney (Fk) is ~1 L/min at rest and the blood

volume of the kidney is 70 ml, equivalent to a residence time of 4 s.

2. The rate of local Ang I and Ang II degradation in the kidney is significantly

increased over the systemic degradation rate to account for the high rate of

angiotensin peptide removal in the renal circulation.

3. Since the concentration of Ang I leaving the renal circulation is 50% higher than

Ang I entering the renal circulation, we assumed a large amount of endogenous

Ang I formation. This endogenous Ang I was assumed to be generated in the

renal tissue and to diffuse into the renal vasculature.

4. The rate of ACE activity is significantly higher in the renal circulation than the

systemic circulation, in order to convert 10%ofAng I entering the kidney toAng II.

Based upon these constraints and assumptions, the following parameters

(Table 20.7) were calculated as one possible behavior for the renal RAS pathway

based on the dynamic system that satisfies the constraints.

The chosen parameters yielded a solution for the dynamical system that

satisfied the known constraints of the renal vascular bed. The renal vascular

parameters with the same value as their systemic counterpart are not listed in the

Table 20.7.

20.5.3.2 Renal Tissue Compartment

The RAS pathway within the renal tissue was implemented in a similar fashion as

the renal vascular RAS, with identical enzymes, peptides and receptors. Although

the concentration and activities of the enzymes were assumed different, there is

minimal quantitative data for these rates in the published literature. The primary

constraint for the renal tissue RAS is the assumption that the renal tissue should

function as a source of Ang I and Ang II that enters into the renal vasculature.

Therefore, the parameters describing the activity of the renal tissue RAS pathway

was parameterized such that: (1) the equilibrium concentrations of the angiotensin

peptides in the tissue pathway were a source of Ang I and Ang II in the renal

vascular compartment; and (2) the constraints on Ang I and Ang II concentrations

measured by Danser, 1998, were satisfied.

Table 20.7 A comparison between the rates of RAS pathway enzyme activity in the renal

vasculature and the systemic circulation

Parameter Units Renal vasc. value Systemic value

hANGI-rv Ang I half life s 0.62 30

hANGII-rv Ang II half life s 1.25 30

cACE-rv ACE activity 1/h 500 43

kAng I-rv Ang I synthesis fmol/ml/h 1,080 1,080
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20.5.4 Hypothesis Testing and Other Applications
of the Renal RAS Model

Since it is difficult to directly measure the peptide concentrations and enzyme

activities of the RAS within different regions of the kidney, there is a considerable

amount of uncertainty around the rates and concentrations of various RAS compo-

nents. Our model of renal RAS provides the ability to hypothesize the effects of

different scenarios and to determine the sensitivity of renal and systemic AT1-bound

Ang II levels to changes in different model parameters. This approach to hypothesis

testing can yield relevant insights on therapy targets that are more likely to result in

renal protection, and help in interpreting results of experimental studies. For

instance, we have used the model to show that changes in renal RAS peptide

concentrations are not strongly reflected in changes in the concentration of systemic

angiotensin peptides. In turn, this suggests that the measured levels of PRA, Ang I or

Ang II in response to therapy in systemic circulation may not fully capture the

changes that occur within the renal tissue, even though local concentrations of Ang II

have a greater effect on renal function than systemic concentrations. In addition, we

can test the effects of different enzyme rates on AT1-bound Ang II-induced damage

to different compartments within the kidney by adding a model of renal disease

progression dependent on the effects of local tissue concentrations of Ang II.

Our model may also be used to understand how enhanced localization of RAS-

modulating therapies can selectively affect renal vs. systemic targets and affect the

rate of renal disease progression.

20.6 RAS Pathway Model Application in Drug Development

The detailed model of systemic and renal RAS pathways presented in this chapter is

the foundation of a platform to investigate the response of this system to multiple

RAS-modulating therapies. In particular, after careful parameterization and valida-

tion of model behavior with available clinical biomarker data, the model can be

used to predict the relative effects of the different therapies on entities that are

difficult to measure clinically. Further more, it can be used to predict the response to

combination therapies for which clinical data is not available. The model also

highlights any differences between circulating and renal RAS peptide concentra-

tions, and how therapies that localize in the renal tissue may have different effects

than therapies that remain only in the systemic circulation. The predicted concen-

trations of renal RAS peptides may also yield insight into the changes in local Ang

II in response to therapies without requiring invasive and difficult tissue sampling.

In addition, the model can be used to investigate questions around the effect of

therapies on local tissue Ang II that, in turn, has an effect on renal function.

Using combinations of different classes of RAS-modulating therapies to treat

hypertension is of interest in drug development. Since none of the currently pre-

scribed therapies can block 100% of Ang II activity, it is thought that inhibiting the
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RAS pathway at two points may provide a more complete blockade and have a better

effect on reducing BP. While there is a large body of RAS biomarker data available

for monotherapies, there is less complete data on the corresponding biomarker

response to combination therapy due to a lack of resources to pursue all potential

combinations and the cost factor of clinical trials. To further compound the problem

of quantitation, AT1-bound Ang II is the actual effector of the RAS pathway and is

not measured in the clinic. Instead, the changes in upstream biomarkers are used to

estimate and compare the effectiveness of different classes of RAS modulating

therapies. In particular, PRA and Plasma renin concentration (PRC) are typically

measured in clinical trials but different classes of RAS drugs affect these biomarkers

in different ways (e.g., DRIs reduce PRA, while ARBs and ACEI increase PRA).

This makes it difficult to compare the relative level of the reduction in AT-1 bound

Ang II achieved by different mono and combination therapies.

The model presented above can be used to fill this gap, by predicting the relative

% change in AT1-bound Ang II (i.e., the effector of downstream changes in BP,

glomerular filtration rate, end-organ protection, etc.) for different monotherapies

and for combination therapies even in the absence of clinical biomarker data.

To accomplish this analysis, the model was rigorously calibrated with biomarker

data (PRA and PRC) from a large number of studies for a range of RAS-modulating

monotherapies (e.g., aliskiren, valsartan, losartan, irbesartan, enalapril, ramipril).

The predicted changes in the RAS biomarkers by the model were subsequently

validated using a smaller set of biomarker data from available combination studies

(Fig. 20.5). In particular:

Fig. 20.5 Comparison between observed and predicted PRA and PRC response for a range of

therapies
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1. Studies of different doses of aliskiren (a DRI) monotherapy provided data on the

reduction in PRA as well the corresponding reactive rise in PRC for each dose.

This data was used to calibrate a pharmacodynamic (PD) curve relating aliskiren

dose to % inhibition of PRA, and was used to calibrate the shape and strength of

the feedback on renin with changes in AT1-bound Ang II (f) in Eq. 20.1.

2. After parameterization of this feedback relationship (f), the model was able to

capture the PRA/PRC response to ARB and ACEI therapy using only changes in

calibration of the % inhibition of AT1 binding rate or ACE activity, respectively.

No additional changes in the model, including the feedback from AT1 to PRA,

were needed.

3. The model was able to predict the biomarker (PRA/PRC) response to combina-

tions of RAS drugs for which data was available, (e.g., aliskiren + valsartan),

with no additional changes in model parameters.

The model can be used with confidence to predict the change in biomarkers for

different combination therapies when sufficient biomarker data is not available to us

(Fig. 20.6). For example, it has been used to predict the biomarker response for

aliskiren 300 mg + ramipril 10 mg. In addition, the model predicts the relative %

inhibition of AT1-bound Ang II for the different doses and types of RAS-modulating

therapies. The strength of this integrated model lies in the prediction of AT1-bound

Ang II levels, a valuablemeasure of the primary effector of the downstream response

of the RAS pathway that is difficult to measure in vivo, and even more difficult to

measure in the tissue.

20.7 Conclusion

In this chapter, we have briefly introduced our approach to building and calibrating a

model of the RAS pathway in the systemic circulation and renal tissue. This model

Fig. 20.6 Model prediction of the relative % change in AT-1 bound Ang II in response to a range

of therapies
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then becomes part of a larger physiologymodel of BP regulation and kidney function.

After creating the fundamental mathematical structure for the pathway, we presented

our approach to parameterizing the model, either directly from available clinical

measurements or inferred from steady-state assumptions. We then discussed our

approach to representing the effects of RAS-modulating therapies in the model and

validated the model behavior with data not used for its calibration.

We touched upon ways to include clinical variability in the model and concluded

with a description of how the RAS pathway model was extended from the systemic

circulation to the kidney. While a larger degree of uncertainty around the parameter

values in the renal RAS pathway model may appear as a limiting factor, capturing

the basic biology and physiology allows to the model to be used for hypothesis

testing and sensitivity analysis. Finally, we hope that this work will encourage the

reader to find out more details of (1) how the RAS pathway model was linked to the

model of BP regulation and renal functions, (2) include the effects of aldosterone,

another peptide that regulates sodium and water reabsorption, (3) how the model

was modified to capture the pathophysiology of hypertension and renal disease and

(4) how the combined model was used to test various clinical hypothesis around

RAS-modulating therapies in different patient phenotypes.

The goal of a model is to speed up the development process along the drug

development pipeline. Novel therapies can be prioritized based on efficacy early in

the drug development process, with multiple dosing regimens and protocols tested

and simulated results returned prior to recruiting the first patient in a clinical trial.

Combination therapies can also be evaluated in the model to look for potential

nonadditive effects, and to identify the most potent approach in lowering BP in

patients with multiple disease etiologies. A set of biomarkers could be determined

that can identify the best responders to different therapeutic approaches for treating

hypertension. Ultimately, the model is a versatile tool for pharmaceutical research

and development to optimize current approaches to drug development, and pro-

vides new insight into the physiology to reduce the time to bring an effective novel

therapy to the market.
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Chapter 21

Recent Developments in Physiologically

Based Pharmacokinetic Modeling

Vikash Sinha and Holly H.C. Kimko

Abstract Physiologically based pharmacokinetic (PBPK) modeling is a mechanism

based mathematical modeling technique to predict and integrate drug absorption,

distribution, metabolism and excretion (ADME) of a compound in animals and

human. A PBPK model maps the transfer of drug through different “organ” compart-

ments and accounts for anatomical, physiological, physical, and chemical properties

that influence ADME processes. Thus, application of PBPK has been of great interest

lately in various phases of drug discovery and development. However, until recently

PBPK based approaches could not be frequently applied within pharmaceutical

industry because of the complexity of the model and the difficulty in obtaining

necessary input parameters for a PBPK model, such as labor intensive tissue-to-

plasma partition coefficient. In recent years, further improvement of in vitro,
ex vivo, and in silicomethods to provide input variable information has significantly

increased the applicability of the PBPK based approach. In addition, several software

programs have incorporated relevant PBPK equations and have made its application

more widespread and simpler. More recently, the support of regulatory agencies for

use of PBPK based methods has also encouraged drug developers to apply this

technique in drug development. This chapter describes whole-body PBPK modeling

methodology and its various applications in pharmaceutical industry.

21.1 Introduction

Selection of drug candidates with optimal pharmacokinetic (PK) parameters in early

drug discovery is essential for convenient dosing regimens and effective therapy in

patients. During drug discovery, considerable resources are required to assess the PK

properties of potential drug candidates via in vivo and in vitro preclinical studies.

Traditionally, the pharmaceutical industry has relied on empirical approaches such
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as allometry for predicting human PK before first-in-man studies. However, in

recent years, there has been a growing interest in methods that improve predictions

of human PK via mechanistic understanding of the underlying processes impacting

drug’s PK disposition.

PBPK approach has been intensively discussed as a tool to improve drug

development process (Rowland et al. 2004, 2011; Peck 2010; Nestorov 2003;

Theil et al. 2003). The concept of PBPKmodeling was first described in the seminal

work of Teorell (1937a, b), in which a set of differential equations for absorption,

distribution and elimination of a drug was provided to describe pharmacokinetics.

However, in the 1930s when the concept was developed, the computational power

was not sufficient to solve the sets of equations to easily apply the concept of PBPK

modeling in drug development. Therefore, simpler empirical models (e.g., sums of

exponential expressions) representing a small number of nonphysiological body

compartments were used to describe the pharmacokinetics in the human body.

PBPK models employ in vitro and/or in silico data inputs, some of which are

described in this chapter, to predict concentration vs. time profiles in plasma and

tissues. The physiological framework provided by a PBPK model can integrate all

input data and aid in understanding PK characteristics of potential drug candidates.

An important differentiating feature is that, unlike empirical approaches, PBPK

based approaches are derived from an understanding of the underlying anatomy and

physiology of the species. Hence, the basic model equations representing anatomy

and physiology are not drug specific but common to mammalian species, thereby

facilitating interspecies scaling.

The Critical Path Opportunities Report issued by FDA in March 2006 states that:

“The findings from in silico testing (computer simulation, rather than laboratory or

animal testing) could reduce the risk and cost of human testing by helping product

sponsors make more informed decisions on how to proceed with product testing and

when to remove a product from further development.” Application of mathematical

modeling and simulation is being extensively used in drug development (Holford

et al. 2000; Kimko and Duffull 2003), and simulation via PBPK certainly has a

special niche in predicting human testing results by integration of information of

physiology and physicochemical properties of an investigational drug. In addition,

the support from the FDA in the use of PBPK approach is noteworthy: recently,

scientists at the FDA have published the cases in which results from PBPK

approach were used in supporting claimed contents regarding drug–drug interaction

in the submissions by pharmaceutical companies during the period of August 2008

and August 2009 (Zhao et al. 2010; Rowland et al. 2011).
PBPK modeling starts from the understanding of anatomy, physiology and

pathology to set up a model, whereas compartmental PK modeling derives from

the observation of a measured time course of concentrations. Regardless of the

starting points, the predicted concentration can be used to predict the pharmacody-

namic (PD) response of the compound by extending the PK model via a PD link

model. The characterization of a drug’s PK in a complex biological system can be

described by assembling all ADMEprocesses in one globalmodel, for example, using

whole-body physiologically (WB-PBPK) based models (Gerlowski and Jain 1983;
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Nestorov 2003; Nestorov et al. 1998). WB-PBPK models map the complex drug

transport scheme onto an anatomically correct and physiologically realistic compart-

mental structure, comprised of the organs of the body each perfused by and connected

to the vascular system. The model is, therefore, predetermined and independent of

the drug of interest. An example of a generic PBPK model is shown in Fig. 21.1.

The most recent developments and applications of WB-PBPK have been reviewed

in the literature (Nestorov 2007; Rowland et al. 2011).
Advances in the development of physiologically based prediction tools to assess

the required input parameters such as tissue-plasma partition coefficient (Ptp),

intrinsic clearance (CLint), and rate and extent of absorption solely from in vitro
data, together with the increasing availability of physiological data and user-

friendly software interfaces (e.g., GastroPlus®, PKSim®, SIMCYP®) has now

greatly extended the application of WB-PBPK. An interesting feature of WB-

PBPK models is allowance of linking of data from various sources (in vitro and

in vivo) into a single mechanistic framework, making full use of all drug-related

information available at each stage of the drug discovery process. As mentioned

before, another major advantage is that, unlike empirical modeling, WB-PBPK

models are not purely descriptive but may also account for the mechanistic basis of

the observed data. For example, prediction failures with preclinical species can

guide experimental efforts to understand the compound’s properties and achieve a

higher level of prediction accuracy before first-in-human studies. Sometimes more

complex models that take into account factors such as involvement of active

transporters may be required. The validation of model assumptions in a preclinical

PBPK model such as rat or a dog may help in mechanistic understanding of

pharmacokinetic behavior of a drug before first-in-human studies.

Figure 21.1 depicts the framework of WB-PBPK modeling approach. In the

sections below, the concepts and applications of relevant in vitro based prediction

procedures that can be used to predict drug clearance, tissue distribution and rate

Fig. 21.1 Components of PBPK modeling approach
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and extent of absorption are introduced. The ability of these prediction tools to

predict plasma and tissue concentration time profiles, when placed within a generic

WB-PBPK model, is also briefly discussed.

21.2 Input Parameters for PBPK Modeling

21.2.1 Prediction of Hepatic Drug Clearance

For many drugs, the major organ of drug metabolism is the liver. Hence, prediction

of hepatic drug clearance (CLH) has received much attention in physiologically

based modeling. The representative models available for CLH predictions are well-

stirred model, parallel tube model and dispersion models and are described below

briefly:

(a) Well-stirred model: The “well-stirred” model of hepatic drug clearance was

first proposed by Gillette (1971) and established by Rowland et al. (1973) and
Wilkinson and Shand (1975). This model assumes that the liver as well-stirred

compartment and therefore the drug concentration in the hepatic sinusoids is

assumed to be equal to that in the hepatic vein (Pang and Rowland 1977). In the

commonly used form, net hepatic drug clearance based on whole-blood drug

concentration (CLH,B) is derived as a function of hepatic blood flow (QH,B), the

free fraction of drug in blood (fuB), and the intrinsic metabolic clearance in the

liver based on unbound drug concentration (CLuint,H):

CLH;B ¼ ðQH;B � CLuint;H � fuBÞ
ðQH;B þ CLuint;H � fuBÞ (21.1)

This model assumes that the drug is distributed instantly and homogenously

throughout liver water and that the unbound concentrations in plasma and liver

water are identical. Effectively, this means that drug distribution into the liver is

perfusion-limited with no diffusion delay and that no active transport systems are

involved.

A key feature of this model is that it equates whole-blood drug clearance, rather

than plasma drug clearance, to liver blood flow, because the organ is potentially

capable of extracting the drug from both plasma and blood cells. Most reported

clearance values are referenced to plasma rather than blood, because it is more

common to measure drug concentration in plasma. If plasma drug clearance (CLH)

is to be estimated, then (21.1) must be modified to take into account the free fraction

in plasma (fu) and the total blood to total plasma drug concentration ratio (CB/CP):

CLH ¼ ðQH;B � CLuint;H � fuÞ
ðQH;B þ CLint � fuÞ=ðCB=CPÞ (21.2)
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(b) Parallel tube model: The parallel tube model assumes that the liver is

composed of a collection of identical and parallel tubes, along which drug

concentration decreases progressively in the direction of the hepatic blood flow

(Pang and Rowland 1977).

(c) Dispersion model: This is another commonly used but mathematically more

complex model, which describes the hepatic uptake metabolic processes in

terms of convective flow, axial dispersion (mixing of blood) and disappearance

of drugs by elimination (Roberts and Rowland 1985, 1986a).

The well-stirred and parallel tube models are functionally equivalent if the

hepatic extraction ratio (EH) is low (<0.5), but differ at high EH (Pang and

Rowland 1977). For compounds with intermediate and high EH, the well stirred

model gives a lower CLH than the parallel tube model (Pang and Rowland 1977;

Jansen 1981; Pond and Tozer 1984; Iwatsubo et al. 1996, 1997; Houston 1994). The
dispersion model has been shown to be superior to the well-stirred and parallel tube

models for highly extracted drugs in rats (Roberts and Rowland 1986b). CLint values

from an in vitro microsomal study and an in vivo PK study in a preclinical species

may be compared for the different models to select the right model for a particular

compound.

21.2.2 Prediction of In Vivo CL from In Vitro CL

This is a two step process: firstly determination of intrinsic CL in microsomes or

hepatocytes, and secondly scaling of in vitro CL to in vivo CL. In-depth reviews can
be found in the literature describing this methodology (Iwatsubo et al. 1996, 1997;
Houston 1994). Some of the basic principles are described below.

A drug’s CLint is defined as the ratio of the maximum metabolic rate (Vmax) and

the substrate concentration at the half-maximal velocity (Km) of all enzymes

involved in its metabolism, provided that the substrate concentration is well below

the Km of the metabolizing system (Iwatsubo et al. 1996). A simpler and commonly

used approach is to estimate the CLint directly from the rate of disappearance of

parent drug at various substrate concentrations in a defined metabolizing system

such as microsomal fraction of the organ of interest. This method is referred to as

the in vitro half-life method. The CLint is described then by the relationship

CLint ¼ 0.693/in vitro half-life. Although both Vmax/Km and in vitro half-life

approach have been shown to provide accurate estimation of in vivo CL (Obach

et al. 1997), caution must be exercised with in vitro half-life approach which

requires the substrate concentration to be well below the Km value of each of the

relevant enzymes involved in the metabolism. A saturable metabolism can yield to

nonlinear kinetics and underestimation of CLint (Iwatsubo et al. 1997). Also in some

cases such as auto-activation and auto-inhibition, the classical Vmax/Km approach

model cannot be applied (Houston and Kenworthy 2000).
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21.2.3 Scaling of In Vitro CLint to In Vivo CLint

The CLint data obtained from in vitro studies further requires scaling-up to obtain

in vivo CLint. The CLint data obtained from in vitro studies is typically expressed as
a function of microsomal protein concentration or on a per million hepatocyte basis.

For the microsomal system, the scaling is performed based on the enzyme content

of the microsomal system (i.e., amount of microsomal protein per gram of liver).

For hepatocytes, the scaling factor is determined by the hepatocyte content of the

liver (i.e., number of cells per gram of liver). The obtained CLint is then scaled for a

species-specific amount of liver (gram) per kilogram body-weight. The in vivo
scaling of in vitro CLint for both rat and human microsomes and hepatocytes has

been recently reviewed by Barter et al. (2007).
The metabolic capacity of hepatocytes is because of full complement of drug-

metabolizing enzymes, including phase I and II (e.g., direct conjugation) metabolic

processes and active transport systems contained within the hepatocyte cell. For

these reasons, CLint derived from hepatocytes have often been advocated to provide

a better prediction of CLH as compared with the microsomes extracted from

hepatocytes (Brown et al. 2007; Miners et al. 2006; Lave et al. 1997). However,
activity of metabolic enzymes in hepatocyte culture can vary extensively with time,

culture conditions and the quality of liver donors (Lave et al. 1997; Blanchard et al.
2006; LeCluyse 2001). More recently, recombinant CYP systems have gained

popularity to predict both inter-individual variability of drug CL within the popula-

tion (Galetin et al. 2004; Rawden et al. 2005; Rostami-Hodjegan and Tucker 2007)

and potential drug–drug interactions (Brown et al. 2005; Galetin et al. 2006).

21.2.4 Factors Influencing Hepatic Clearance

Inter-individual variability in hepatic clearance can be introduced by variability in

liver abundance of cytochrome P450 enzymes (CYPs), microsomal protein per

gram of liver (MPPGL), and liver weight. Also hepatic blood flow being a function

of cardiac output is dependent on body surface area and age. Therefore, variability

in these parameters can result in variability in hepatic blood flow (Johnson et al.
2006). The influence of extrinsic factors such as eating (Mathias 1990; Matheson

et al. 2000), posture and physical activity (Bernardi et al. 1992; Edell et al. 1989;
Ruckert and Juchems 1970; Wong et al. 1996) and diseases associated with

significant hemodynamic changes may also be incorporated into the prediction of

variability in drug clearance by allowing changes in hepatic blood flow (Rostami-

Hodjegan and Tucker 2007).

The blood to plasma ratio is sometimes another important parameter influencing

hepatic clearance. The fraction of drug unbound in blood (fuB) is dependent on a

drug’s affinity for relevant plasma proteins and red cells, as well as the circulating

concentrations of plasma proteins and the hematocrit. When the drug is unequally

492 V. Sinha and H.H.C. Kimko



distributed between red cells and plasma, the hematocrit also becomes a source of

variability when predicting drug clearance. The population distribution of hemato-

crit values is well characterized, and the effects of age and sex, as well as many

environmental influences, on the hematocrit are known (Rostami-Hodjegan and

Tucker 2007).

Other factors that may influence hepatic clearance of drugs include active

hepatic uptake and biliary transporters and their interplay with drug metabolizing

enzymes. However, currently our knowledge on the abundance of specific trans-

porters in the human liver and its associated variability is limited.

21.3 Physiologically Based Predictions of Tissue Distribution

Tissue distribution is another important determinant of the pharmacokinetics of

drugs. In the WB-PBPK model, an important determinant of pharmacokinetic

behavior is the affinity of drugs for specific tissues, which is characterized by the

tissue-to-plasma partition coefficients (Ptp). These values can be determined at

steady state, i.e., when distribution equilibrium has been attained (Fichtl et al.
1991). Alternatively Ptp values can be determined in vitro using tissue homoge-

nates, tissue slices or isolated perfused organs, all of which are steady state

approaches (Post et al. 1978; Bickel and Gerny 1980; Bazil et al. 1987). However,
these in vitro approaches are not always representative of the in vivo situation

(Schuhmann et al. 1987). For example, basic drugs frequently distribute into

lysosomes, which are disrupted by homogenization resulting in under-estimation

of in vivo Ptp values in lysosomes-rich tissues such as lung, liver and kidney

(MacIntyre and Cutler 1988).

Determination of Ptp values by drug infusion to animals and assay of blood and

tissues is quite laborious, and therefore various methods have been proposed to

predict Ptp from the physicochemical characteristics of the drug and the physiolog-

ical composition of the tissues (Davis and Mapleson 1993; El Masri and Portier

1998; Poulin and Theil 2000, 2002; Poulin et al. 2001).
Volume of distribution in steady state (Vss) is the volume of plasma (Vp) plus the

sum of the apparent volumes of distribution of each tissue. These are determined by

the drug’s plasma to tissue partition coefficient (Ptp) multiplied by the tissue

volume (Vt) (Sawada et al. 1984).

Vss ¼ Vp þ
X

Vt � Ptp ¼ Vp þ
X

Vt � fup=fut (21.3)

In vivo determination of Ptp is time consuming and not amenable to high throughput

screening. To avoid the need for in vivo preclinical data, new approaches have

investigated the correlation between human fut, (calculated from human Vss and fup
literature data) and physicochemical properties such as logD, pKa and fup (Lom-

bardo et al. 2002, 2004). Thus by measuring in vitro parameters such as logD, pKa
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and fup, Ptp is calculated using tissue composition based equations as described in

the sections below.

The equations reflecting a tissue composition based approach were first

described by Poulin and coworkers and were applied to predict tissue partitioning

of pharmaceutical acids, bases and neutrals. For a detailed description of derivation

of these equations the readers should refer to their published work (Poulin and Theil

2000; Poulin et al. 2001). In brief, it is assumed that a drug distributes homo-

geneously into each tissue (and plasma) by passive diffusion. Consequently, the

drug partitions between lipids and water and binds reversibly to common proteins

present in plasma and tissue interstitial space:

Ptp ¼ ðP� ½VNLt þ 0:3� VPHt� þ ½VWt þ 0:7� VPPHt�Þ � fup

ðP� ½VNLp þ 0:3� VPHp� þ ½VWp þ 0:7� VPPHp�Þ � fut
(21.4)

The tissue composition input to (21.4) comprises the fractional tissue volume

content (V) of neutral lipids (NL), phospholipids (PH), and water (W) in tissue (t)

and plasma (p). The drug-specific input comprises the drug’s lipophilicity

(P, antilog of log P) and macromolecular binding to common proteins present in

plasma (fup) and the tissue interstitial space (fut) (Poulin and Theil 2002). The main

assumption implicit in these equations is that only passive diffusion governs tissue

distribution of a drug, in which mainly two processes need to be accounted for: (a)

reversible partitioning into tissue lipids and water; and (b) reversible binding to

common proteins present in plasma and the interstitial space.

Poulin and Theil reported support for their equations with in vivo data of about 140
structurally diverse drugs obtained from the literature and found that 80% of all

predicted Vss were within a factor of two of the corresponding experimental values

(Poulin and Theil 2002). The accuracy ofPtp predictions in adipose tissue (Poulin et al.
2001) as well as in nonadipose tissues has also been investigated (Poulin and Theil

2000). Overall, 85% of the predicted Ptp values differed from the mean experimental

values by a factor of three (n ¼ 269). Although considered generally successful by the

authors, follow-up studies indicated thatwhen applied to different data sets, the overall

Vss prediction accuracy of these equations was reduced (Jones et al. 2006; Parrott et al.
2005a). This may be explained by different physicochemical properties (Parrott et al.
2005b), as well as by distribution processes that are not covered in these equations,

such as active transport, specific macromolecular binding, limitation for membrane

permeation and ionic interactions (Poulin and Theil 2002).

A clear drawback of (21.4) is thatPtp predictions in lung and intestine, aswell as the

overall Vss of moderate-to-strong bases, are less accurate, mainly as a result of under-

predictions (Poulin and Theil 2000). The under predictions associated with moderate-

to-strong bases have been thoroughly investigated by Rodgers et al. (Rodgers et al.
2005a, b) who showed that in the absence of other specialized mechanisms, electro-

static interactionswith acidicmembrane phospholipids will predominate for any basic

compound that is sufficiently positively charged within tissue cells (Rodgers et al.
2005b). To accommodate the ionic interaction, Rodgers et al. have developed a new
tissue composition-based approach and showed it to improve the predictability of Ptp
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over the equations developed by Poulin and Theil (Rodgers et al. 2005a; Rodgers and
Rowland 2006). More recently, De Buck et al. directly compared both approaches

for their ability to predict rat and human Vss on a data set mainly comprised of

moderate-to-strong basic compounds. In both rat and humans the approach by Rod-

gers yieldedmore accurate predictions ofVss; however, prediction accuracywas better

in rats (80% within twofold) as compared with human (80% within threefold)

(De Buck et al. 2007a, b).
It should also be noted that, irrespective of the approach, under-predictions in lung

and liver tissue were more pronounced than in other tissues (Poulin and Theil 2000;

Rodgers et al. 2005a, b; De Buck et al. 2007a). This may be explained by the fact that

distribution kinetics of lipophilic bases is also driven by sub cellular disposition

kinetics, such as accumulation into acidic organelles and lysosomes (Yokogawa

et al. 2002). A failure to account for such interactions may yield underpredictions

and future approaches should be directed to incorporate these. Last but not least,

overprediction ofPtp is a common issuewith brain tissue, most probably because these

approaches assume passive diffusion, and in comparison with other tissues, brain

penetration is known to be more restrictive and selective (Berezhkovskiy 2004).

21.4 Prediction Models for Oral Absorption and Bioavailability

Oral administration is the most popular and convenient route of drug administra-

tion. Therefore, it is of particular interest to predict oral absorption in human from

experimental in vitro data and biopharmaceutical properties. After oral administra-

tion, the drug will pass sequentially from the gastrointestinal lumen, through the

intestinal wall and through the liver before entering the systemic circulation. Thus,

oral bioavailability is defined as:

Foral ¼ Fa � Fg � Fh ¼ Fað1� EgÞð1� EHÞ (21.5)

where Fa is the net fraction of dose absorbed from the intestinal tract, Fg is the

fraction of dose that escapes intestinal first-pass metabolism in enterocytes, Fh is

the fraction of dose that escapes hepatic first-pass metabolism, Eg is the intestinal

extraction ratio, and EH is the hepatic extraction ratio. The oral bioavailability of a

drug is dependent on physiological and drug specific parameters. Some of the

important factors affecting these parameters are outlined below:

(a). Factors affecting Fa:

– Characteristics of the formulations such as drug particle size, shape, and

excipients as they influence disintegration and dissolution

– Physicochemical properties of the drug such as solubility, lipophilicity, pKa

as they influence dissolution, permeability, and chemical stability

– Physiological and biochemical processes such as gastric emptying, intestinal

transit time, GI fluid pH, intestinal blood flow, active transport, enterohepatic

recirculation, presence of food and fluids

21 Recent Developments in Physiologically Based Pharmacokinetic Modeling 495



(b). Factors affecting Fg include the abundance and location of enzymes and

transporters in the gastrointestinal tract (GIT).

(c). Factors affecting Fh has been discussed in more detail earlier in the clearance

section.

In addition, age, sex, race and disease may have a role to play in the variability

observed in the physiological factors affecting these parameters.

The interplay of parameters describing these processes determines the rate and

extent of absorption. For more detailed information, the readers are referred to more

in-depth review by (Rostami-Hodjegan and Tucker 2007; Jamei et al. 2009).
Different absorption models have been developed (Norris et al. 2000; Yu and

Amidon, 1999) and incorporated in commercially available software tools – Gas-

troPlus®, SIMCYP®, IDEA®. The commercially available models have not been

published fully for proprietary reasons. In brief, these models are physiologically

based transit models segmenting the GIT into different compartments, where the

kinetics of transit, dissolution and uptake are described by sets of differential

equations. For more details the reader are advised to refer to publications from

Yu and Amidon (1999), Norris et al. (2000) and Jamei et al. (2009). Some of the

basic elements of oral absorption models are discussed below.

The simulation models for oral absorption require a number of in vitro input

parameters such as solubility, permeability, pKa and dose to predict Fa. Simulation

software such as SIMCYP® estimate the Fg using Qgut model (Yang et al. 2007).
The Qgut model uses the form of “well-stirred” liver model of hepatic drug

clearance to describe Fg but the flow term Qgut is a hybrid of both permeability

through the enterocyte membrane and villous blood flow (Yang et al. 2001;

Rostami-Hodjegan and Tucker 2002).

Fg ¼ Qgut

Qgut þ ðfuG � CLuint;GÞ : (21.6)

where fuG is the fraction of drug unbound in the enterocyte, and CLuint,G is the net

intrinsic metabolic clearance in the gut based on unbound drug concentration.

Operationally Qgut model is based on the assumption that a higher permeability

through enterocyte will decrease first-pass exposure to the enzyme, as will a higher

blood flow-carrying drug away from the enterocyte. Details of how the parameters

of both the well stirred and Qgut model are determined and implemented in the

model are discussed in the published work of Yang et al. (2007).

21.5 Applying Physiologically Based Approaches

in Drug Development

PBPK based approaches are now commonly used in answering critical questions in

early and late phases of drug development. The application of PBPK modeling may

vary from early discovery to full clinical development of the compound depending on
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the questions posed during the drug’s development pathway. Some of the common

uses are listed below:

– To estimate compound’s physico-chemical properties and associated PK para-

meters based on chemical structure (such as Vss, plasma protein binding,

effective permeability, solubility, Log P, pKa etc.)

– In vivo drug disposition in plasma and target tissues

– Human PK prediction for first-in human (FIH) study dose selection

– Drug–drug interaction potential

– Regional drug absorption and formulation evaluation

– Drug disposition in special populations

– Answering “what if questions” (e.g., what if the particle size is reduced or

dissolution profile of compound is changed, what will be its effect on PK

properties)

In the absence of any clinical data (i.e., pre-FIH phase), prediction of human PK

can be made by first using in vitro/preclinical PK data as input for the models

loaded into the simulation tools (Parrott et al. 2005b). PBPK modeling approach

may involve the following steps, which is further illustrated in the example shown

in Fig. 21.2:

1. Prediction of model parameters using established in vitro to in vivo scaling

for clearance and mechanistic models of tissue distribution (described in the

Sects. 21.2 and 21.3).

2. Simulation of the concentration vs. time profile of the compound in a preclinical

species such as rat after an intravenous (IV) bolus dose, followed by comparison

with observed IV profile. The model can be optimized using the observed IV

profile, if needed.

3. Simulation of plasma concentration vs. time after an oral dose in a preclinical

species using model parameters from the optimized IV model, followed by

comparison with observed oral profile; further model optimization for absorp-

tion using the observed oral profile, if needed.

4. Prediction of human plasma concentration profile using the model parameters

from the optimized preclinical PBPK model.

In the absence of experimentally measured input parameters (e.g., early discovery
projects), in silico predicted parameters (such as log P, pKa, Solubility, Permeability,

Plasma protein binding etc.) using chemical structure of the compound can be used

(Fig. 21.2a). However, one should be careful in predicting PK profile using in silico
data only, as understandably the predictions may not be optimal (Fig. 21.2a). As more

experimental input data become available during lead optimization stage, the predic-

tions tend to become more reliable (Fig. 21.2b, c). It is recommended that human

PK predictions are made after validation of model assumptions in at least one

preclinical species.
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21.6 Concluding Remarks

Physiologically based modeling offers an insight into the underlying mechanistic

processes involved, hence have the potential to be more reliably predictive compared

to the empirically based methods. This offers an opportunity to link various in vitro
and in vivo data generated during different phases of discovery and pre-clinical

development. Thus PBPK based modeling not only aids in the candidate selection

very early on, but also allows answering “what if” questions in case a particular

parameter needs to be changed (e.g., by adjusting particle size).
The advances in computation capability have enabled simultaneous solutions

from many differential equations that are necessary to calculate time courses of

concentration in each physiological compartment. A few software that has been

used for PBPK modeling includes Berkeley Madonna (University of California,

Berkeley, http://www.berkeleymadonna.com), ADAPT (Biomedical Simulations

Resource, University of Southern California, http://bmsr.usc.edu), SAAM II

(SAAM Institute, Inc., http://www.saam.com), acslX (Aegis Technologies Group,

Inc., http://www.acslsim.com), SIMULINK (based on MATLAB, The Math

Works, Inc. http://www.mathworks.com), MATHEMATICA (Wolfram Research,

Inc., http://www.wolfram.com), STELLA (High Performance Systems, Inc. http://

www.hps-inc.com), and so forth.

Using simulation software that is specifically designed for PBPKmodeling such as

GastroPlus®, Simcyp® and PKSIM® can be used to improve preclinical and clinical

study designs by enabling PK prediction in preclinical species and human. Some of

these tools allow us to assess the effect of food on PK, drug–drug interaction potential,

prediction of PK in children, inter-subject PK variability, and PK in special population

such as renal failure or hepatic failure subjects. Despite its great potential, there are

several scientific hurdles that need to be overcome for an optimal prediction using

PBPK. Of particular concern are the inherent limitations and variability in some

in vitro systems. These include the underprediction of hepatic clearance using micro-

somal systems or hepatocytes and the lack of in vitro assays for predicting renal and
bilirubin clearance. Another hurdle is to integrate the in vitro data on active uptake and
secretory transporters systems in a mechanistic way. The lack of physiological data on

the abundance and variability of such transporters in human limits the possibility to

evaluate the impact of transporters on drug’s disposition profile, but efforts are

ongoing in this direction.

Prediction of the exposure of neonates, infants and children to a drug is also

likely to be more successful using physiologically based pharmacokinetic models

than simplistic allometric scaling, particularly in younger children, because of

various organ maturation rates in the age groups. Such models require comprehen-

sive information on the ontogeny of anatomical, physiological and biochemical

variables, which is not easily available. Attempts to predict pharmacokinetics of

drugs in several pediatric age groups, considering the ontogeny change in pediat-

rics, have been published (Bjorkman 2005; Ginsberg et al. 2004).
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PBPK has significant potential to be an important component of model based

drug development. A mechanistic approach integrating input data from various

sources may lead to predictions that are more reliable, better-designed experiments

and better selection of drug candidates. We predict that as more advanced in vitro
tests and PBPK models are developed and validated, the level of confidence in

PBPK based predictions will increase and improve its acceptance within the

pharmaceutical industry and by regulatory agencies.
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Chapter 22

Covariate Distribution Models in Simulation

Peter L. Bonate

Abstract The components of a clinical trial simulation consist of the input–output

model, the covariate distribution model, and the trial execution model. The

input–output model consists of submodels that incorporate the drug’s pharmacokinet-

ics and pharmacodynamics, the disease progression during the trial, the trial endpoints,

and the residual variability. Some of these submodels may include covariate influ-

ences on model parameters, which comprise the covariate distribution model. Appro-

priate simulation of clinical trials requires appropriate simulation of covariates

because generation of covariates from an invalid probability distribution may result

in an inadequate distribution of the simulation output. Basically, you need the right

inputs to get the right outputs. This chapter will define covariate distribution models,

will show how internal and external datasets may be used to define an appropriate

probability distribution, and will demonstrate how to model covariate distributions.

22.1 Introduction

Modeling and simulation has use across all phases of drug development from

scaling preclinical data for predicting the starting dose in a first-time-in-human

study to simulating the statistical power of a clinical trial given a drug’s exposure-

response relationship (Chien et al. 2005). The latter is referred to as clinical trial

simulation, which has a principle goal of reducing drug development costs and

timelines through the application of in silico “test-driving” study designs and study
conditions before their actual implementation. Given what is already known about

the drug, the idea is to maximize the probability of success of a future clinical trial

through the application of modeling and simulation.
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Holford et al. (2000) define the components of a clinical trial simulation as the

input–output model, the covariate distribution model, and the trial execution model.

The input–output model consists of submodels that incorporate the drug’s pharma-

cokinetics and pharmacodynamics, the disease progression during the trial, the trial

endpoints, and the residual variability. Some of these submodels may include

covariate influences on model parameters, which comprise the covariate distribu-

tion model. Basically, the input–output models are functions that map the set of

inputs to the set of outputs. The covariate distribution model describes the distribu-

tion of the covariates and their intercorrelations. The trial execution model consists

of the study design elements, and potential submodels for compliance, protocol

deviations, and missing data.

In a population pharmacokinetics submodel, a set of doses and covariate influ-

ences are mapped to the concentrations through the pharmacokinetic model

fdoses; covariatesg�!model

concentration

Using the terminology just described, the set of doses and covariates are the

inputs, whereas the resulting concentrations are the outputs. The input-output

model may be a compartmental model (e.g., a 1-compartment model with first-

order absorption) or a physiologically based model. The dose and drug concentra-

tion observation or prediction event times are trial execution components. The

covariates are the set of patient characteristics (e.g., age, sex, weight, renal function,
etc.) that may influence the pharmacokinetic parameters in the model. How these

covariates are distributed and how they are correlated are defined in the covariate

distribution model. The purpose of this chapter is to introduce covariate distribution

models, explain how they are used in trial simulations, and show the roles of

internal and external datasets and how they may be used in practice.

22.2 Covariate Distribution Models

Covariate distribution models will be illustrated by example. Bonate (2006) reported

on the population pharmacokinetics of tobramycin using the dataset previously

reported by Aarons et al. (1989). A two-compartment pharmacokinetic model best

described the plasma concentration-time profile by incorporating a covariate submo-

del that linked drug clearance (CL) to the trial subject’s creatinine clearance (CrCL)

and central volume of distribution (V1) to the trial subject’s weight. The final mean

pharmacokinetic and covariate model parameter estimates follow:

CLðL/hÞ ¼ 7:47 CrCL in L/h
7.2 L/h

8: 9;
V1ðLÞ ¼ 17:4

weight in kg
67 kg

8: 9;
QðL/hÞ ¼ 1:50
V2ðLÞ ¼ 7:73

(

(22.1)
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where Q is intercompartmental clearance and V2 is the peripheral volume of

distribution. In order to simulate using this model, the dose, time, CrCL, and body

weight data must be provided. Event times for dose(s) and concentrations are trial

design elements that are specified by the trial design submodel. CrCL and bodyweight

valuesmust be provided in the course of simulating the concentration-time profiles. To

illustrate the influence of the covariate submodel, Fig. 22.1 presents the results of a

deterministic (non-stochastic) simulation of tobramycin b-half-life as a function of

weight and CrCL. When CrCL is less than 5 L/h, elimination b-half-life appears to
remain relatively constant regardless of weight. But when CrCL is decreased, such as

during renal impairment, then b-half-life increases with increasing weight.
It should be noted that deterministic simulations have their place, but may be

misleading for planning clinical trials. This is what Savage (2009) refers to as the

“Flaw of Averages,” which states that plans based on average conditions may be

wrong on-average. The Flaw of Averages is derived from Jensen’s Inequality

(http://en.wikipedia.org/wiki/Jensen’s_inequality, accessed March 2010) which

simply states that the nonlinear transform of a mean is not equal to the mean after

nonlinear transformation, e.g., Ln(mean of X) 6¼ mean of Ln(X). For linear func-
tions, like a linear regression model, Jensen’s inequality does not apply, but

modeling in pharmacokinetics and pharmacodynamics are usually in the nonlinear

domain and the inequality applies.

Fig. 22.1 Tobramycin b-half-life as a function of weight and CrCL under the 2-compartment

model of Aarons et al. (1989). Reprinted from Bonate (2006)
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Covariate influences and clinical trial simulations are most realistic when Monte

Carlo simulation is used, rather than deterministic simulation. Monte Carlo simula-

tion, which got its name from Ulam and von Neumann in the 1940s who invented the

methodology during their work on the Manhattan project (Metropolis 1987), is based

on random sampling of some or all of the model inputs from a proposed probability

distribution function (pdf) that results in the generation of the outputs and can be

summarized, for example, by its range and expected value. Returning to the tobramy-

cin example, a Monte Carlo simulation would involve randomly selecting a patient’s

weight and CrCL from a realistic range of values, calculating his/her pharmacokinetic

profile, and then estimating the half-life. When this process is repeated many times, a

range and expected value can be derived from the distribution of simulated half-lives.

Deterministic simulation yields that for a 60 kg person with a CrCL of 135 mL/min,

the tobramycin half-life is 4.5 h. Clearly, not every person in the worldweighing 60 kg

and having a CrCL of 135 mL/min has a tobramycin half-life of 4.5 h. Some might be

5 h, some might be 3 h because of different covariates that are not identified in each

person. The point is, in a realistic setting, for patients weighing 60 kg and having a

CrCL of 135 mL/min, there is an expected range of half-lives, not a single value.
To obtain the expected value and probable range using Monte Carlo simulation,

it is necessary to be able to simulate the model covariates – weight and CrCL in this

case. To simulate these covariates, it is necessary to define the pdf of the covariates

and their joint distribution. Once the joint covariate distribution model is defined,

the covariate values can be realistically, stochastically simulated and used as the

inputs to the model. It is still assumed that dose and time are fixed study design

elements, but, if appropriate, it is possible to treat dose and time as stochastic

elements as well.

To appreciate the complexity of a joint pdf, notice that CrCL can be calculated

using the Cockcroft and Gault (1976) equation,

CrCL ¼ ð140� AgeÞ �Weight� ð0:85 if femaleÞ
72� Scr

(22.2)

where Age is in years, Weight is in kg, and Scr is serum creatinine concentration in

mg/dL. Thus, age, weight, sex, and Scr values are needed for each simulated

subject, which results in a four-dimensional joint pdf. As the number of covariates

increases, the dimensionality increases and it becomes increasingly difficult to

define the joint pdf, as well as judging the impact any single covariate has on the

dependent variable.

A number of assumptions may be made to simplify the construction of a joint

pdf. One approach to defining the joint covariate distribution is to treat all covari-

ates as independent. This was illustrated by Lowe et al. (2009). In their simulation,

1,000 subjects were simulated by randomly sampling from independent uniform

distributions using the range of observed body weights and range of observed

baseline IgE values. When the covariates are uncorrelated this is a perfectly valid

approach. Sometimes though, covariate independence may lead to unrealistic
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combinations of covariates. For example, in a simulation of children and adults, an

adult with a weight of 5 kg might be simulated. Hence, treating the covariates as

independent must be used with caution.

A different simplification is to treat the covariates as hierarchical and conditional in

the sense that even though two covariates might be correlated, one covariate might be

thought of as being predictive of the other such that if one covariate value is selected

first, the other covariate can then be selected conditional on the first covariate. In this

example, one might first randomly select the subject’s gender followed by age, each

independently of the other. Then weight could reasonably selected conditional on sex

and age. Lastly, Scr might be calculated based on age, weight, and sex. In this manner,

all covariates are randomly selected according to realistic marginal and joint pdfs.

But what are these distributions? How does one determine what is the range or

mean of covariates required in the simulation? Sometimes these are made using

educated guesses, using only a range of realistic values. For example, in a study in

adults, one might assume that age is uniformly distributed on the range 18–60 years

old and that males and females are equally likely. Hence, one would first generate a

random number from a uniform distribution on the interval (0, 1) and if the value is

�0.5, the patient is male, otherwise they are female. Then age can be simulated

using the equation

Age ¼ 18þ ð60� 18ÞU (22.3)

where U is a different random number drawn from the Uniform (0,1) distribution.

However, age and weight are correlated in a nonlinear manner, since as patients age

they tend to get heavier, but when they become elderly, their weight tends to

decline. How is weight then conditional on age? And once age, weight, and sex

are selected, how is Scr dependent on these variables? Hence, conditional distribu-

tions become difficult to define. The only real answer to these more complicated

conditional distributions is to use external or internal databases and develop the

relationships through modeling or resampling.

22.2.1 Internal Databases

Biopharmaceutical companies often have clinical trial data, including covariate data,

in internal databases from previous clinical trials undertaken by a company. For

instance, a pdf of alanine aminotransferase (ALT) values, a marker of drug-induced

liver injury, may be generated from a clinical trial that included adult patients with

acute myelogenous leukemia (AML). From such a database, a software program that

uses maximum likelihood to fit different pdfs can be used to find the optimal distribu-

tion that best fits the data. Examples of these software include Risk Solver

(http://solver.com, accessed May 2010) or EasyFit (http://www.mathwave.com/pro-

ducts/easyfit.html, accessed May 2010). To illustrate, with EasyFit the program

fits almost 60 different pdfs, e.g., normal, log-normal, gamma, Weibull, Student’s

T-distribution, etc., to the data and determineswhich one is the best fit to the data using
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goodness of fit criteria (Kolmogorov–Smirnov, Anderson–Darling, and Chi-squared

test) yielding the maximum likelihood estimates for the parameters that define the

distribution, e.g., mean, shift, variance, etc. The resulting pdf using the estimated

parameters can be randomly sampled from to generate covariate values from the

distribution. When needed covariates are not independent, however, a model for the

relationship between one covariate and another may be required, which will be

discussed later in this chapter.

In a sense, when looking at data from other studies, this is a type of data mining

problem and all the issues and problems regarding data mining apply. Many ques-

tions need to be asked in a data mining exercise, but foremost is how representative

are the data to the population of interest since generating a covariate distribution

model from a nonrepresentative dataset may invalidate an entire analysis. The data

mining process may be thought of as follows: extract the data, model the data, and

then interpret and use the results. Each step presents its own issues and challenges. In

the dataset identification and extraction step, finding the data (where it is located,

what is the directory structure) may be quite difficult. Once the data are located, it

may need to be converted to a usable format. For example, if it is stored as a SAS®

transport file, it may need to be converted to an Excel spreadsheet or an R-dataset.

Once read into a usable dataset, the data may need to be cleaned. Missing values and

outlier values may need to be dealt with. Clinical chemistry or hematology measure-

ments derived from different sites may have reported different units in their data

which will need to be standardized to a common unit across all sites.

Accepting a best fit pdf model presents its own challenges. What level of

validation is needed at this stage? How well does the covariate pdf model need to

fit the observed data to be useful? There are no guidelines here; the analyst must

make his/her own decision, documenting assumptions, and justifications. Once the

covariate pdf is accepted, obtaining random covariate values from that distribution

may not be possible. For instance, suppose that the distribution that best described a

covariate was a Nakagami distribution (a distribution related to the Gamma distri-

bution).Many programs like SAS (SAS Institute, Cary, NC), R (www.r-project.org),

and the Pharsight Trial Simulator 2 (Pharsight, Mountain View, CA) do not have

built-in functionality to randomly select values from a Nakagami distribution, so it

may be necessary to use a less well fitting distribution such as a Gamma distribution

that can be easily used by available simulation software.

22.2.2 External Databases

22.2.2.1 The United States Census of Demographic Characteristics

of Americans

The United States (US) census is commissioned by the US Department of Commerce

to generate every decade a representative database of individual demographic char-

acteristics of Americans. Every 10 years, questionnaire forms are mailed to every
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household in the US that query many things, including the age, race, and number of

people in the home. The information is used in many different government programs

ranging from the number of congressional seats assigned to a state to how much

money a state gets from the national government for education. It is a tremendous,

costly effort. The last census was in 2010 with the next one planned in 2020.

The data from the census can be used to generate age, race, and sex pdfs that are

representative of US citizens. A summary of the 2000 census can be found at http://

www2.census.gov/census_2000/datasets/100_and_sample_profile/0_United_States/

2kh00.pdf, accessed May 2010. Based on the results of the 2000 census, 49.1% of

the population was male, 50.9% was female. The median age was 35 years with

28.7% of the population less than 19 years old and 12.4% being 65 years or older.

The majority of the population was White (75.1%), followed Hispanic or Latino

(12.5%), Black (12.3%), and Asian (3.6%). Assuming that similar demographic

characteristics will be exhibited in future clinical trial subjects, demographic

pdfs derived from this database can be used to generate general population

demographic covariates that can then be used directly or for other higher level

covariate assignments.

22.2.2.2 National Institutes of Health Databases

External databases are public domain databases and some of these can be an

excellent source of covariate information. Most, if not all, of the useful ones are

generated by governments or through government grants. Private companies do not

readily share their data although there are efforts to persuade companies to release

their placebo data from large clinical trials. The largest source of such external data

is available from the US National Institutes of Health. Many of the Institutes release

their clinical trial data after a period of time and make it available to researchers for

free or for a nominal fee. In accordance with Health Insurance Portability and

Accountability Act (HIPAA) regulations, all the public released data have been

stripped of any type of identifiable features that could link a data record to a

particular individual. Each institute has its own guidelines for access to the data

and which data they make available to researchers. Although not all Institutes have

made their data publicly available, Institutes that do allow data access are noted as

follows:

l The National Institute of Allergy and Infectious Diseases (http://www.aactg.org/

clinical-trials/access-published-data, accessed May 2010) allows access to AIDS

Clinical Trials Group (ACTG) studies databases through the National Technical

Information Services (http://www.ntis.gov/, accessed May 2010), which is a

warehouse for data and documents issued by US government agencies. One

problem with Institute-specific databases, such as the ACTG databases, is that

they may not include all relevant covariate data for a particular clinical trial

simulation project. For instance, most ACTG databases do not capture
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electrocardiographic QT interval data. If these data are needed, a database from

the National Heart Lung and Blood Institute (NHLBI) may be needed.
l The NHLBI has a number of epidemiological databases available for researchers

(https://biolincc.nhlbi.nih.gov/home/, accessed May 2010), including the Fra-

mingham Heart Study, as well as a number of clinical trials. The Framingham

Heart Study (http://www.framinghamheartstudy.org, accessed May 2010) is

especially useful since it has studied patients every other year since 1949.

Included in the database are weight, height, age, blood pressure, electrocardio-

gram, smoking history, alcohol consumption, as well as many cardiovascular

laboratory tests. Most clinical studies are of short duration and the demographics

in their database capture information that is limited to a brief period of a

patient’s life. If long-term weight or weight-derived metrics like body mass

index or body surface area are needed, then the Framingham dataset may be

more informative than brief, time-limited demographic data.
l The National Institute on Mental Health (NIMH) allows researchers who have

authorization via a Data Use Certification (DUC) can access to NIMH databases

(http://www.nimh.nih.gov/health/trials/datasets/index.shtml, accessedMay 2010).

A total of six studies in adults and two studies in pediatric patients were available at

the end of 2009. The NIMH is limited by lack of documentation regarding the

variables collected in each study. Industry access to this data might be problematic

since the NIMH requires researchers to certify that their organization is covered by

a FederalWideAssurance issued by theDepartment ofHealth andHuman Services

Office of Human Research Protections assuring that privacy and distribution

guidelines will be followed.
l The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

has a large number of databases available to researchers (https://www.-

niddkrepository.org/niddk/jsp/public/resource.jsp, accessed May 2010), including

data inAfrican-Americanswho are often underrepresented in clinical trials (https://

www.niddkrepository.org/niddk/jsp/public/AASK/AASKDesc.jsp, accessed May

2010). The NIDDK warehouse allows on-line access but requires Institutional

Review Board approval and completion of a DUC.

Sometimes, but not always, one can find a published clinical trial report with key

covariate data concerning the population of interest in a particular therapeutic area.

Using the baseline data or data from the placebo arm, one can generate the covariate

distribution and how particular covariates are correlated with each other. From

these databases, covariate pdfs can be developed from which to sample for a

clinical trial simulation project.

22.2.2.3 The US National Health and Nutrition Examination Survey

One of the most useful of all databases is the National Health and Nutrition

Examination Survey (NHANES) (U.S. Department of Health and Human Services

and Health Statistics et al. 2007), which was initiated in the early 1960s and first
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completed in 1971 to study the health and nutritional status of adults and children in

the United States, and is available from the National Center for Health Statistics

(www.cdc.gov/nchs/nhanes.htm, accessed May 2010). Originally conducted peri-

odically, in 1999 the NHANES switched to a continuous survey with data updated

more regularly. The most recent update was 2010 and the next update is planned in

2012. Also, with the NHANES III survey, select components, including clinical

chemistry and hematology data, were assessed twice on the same patient so that this

particular database is more longitudinal in nature and can be used to assess both

between- and within-subject variability. The NHANES is freely available to the

public without IRB approval or DUC and even has a tutorial on how to use and

analyze their data.

The NHANES is a combination of interview-administered questionnaire and

mobile physical examination that collects demographic, socioeconomic, medical,

and laboratory data. The laboratory data collected, although not comprehensive,

includes a wide variety of clinical laboratory test results including glucose, lipid

panel, electrolytes, liver function tests, and hematology. Medical history data

include blood pressure, body mass index, and some information on diseases the

person might have, like diabetes. Demographic data include sex, race, age, weight,

and height. Most of the covariates needed for pharmacokinetic-pharmacodynamic

analyses can be found in the NHANES database. However, this database is a

random sample of the US population irrespective of age and comprises a “snapshot”

set of values. It is not limited to particular disease states. Thus, if the demographics

of patients with AML were needed, this database may not be representative of that

population because of differences between biochemistry and hematology values in

cancer patients and the population in general.

Generating Covariate Probability Density Functions

The NHANES database is a good source upon which to use for generating covari-

ates pdfs. In the tobramycin example, the goal was to simulate the tobramycin

pharmacokinetic parameters, which required first assigning CrCL and weight

values to each simulated patient. To calculate CrCL, randomly selected values of

age, weight, sex, and Scr were needed. The NHANES III database was used for this

purpose. The NHANES data that were needed are stored in various datasets, which

must be downloaded from the NHANES website. It is a good practice to download

the corresponding documentation with variable names and descriptors since the

variable names are obscure at times, e.g., DMARETHN corresponds to the variable

name for race-ethnicity. Each dataset is stored as a SAS transport file that will have

to be converted to a usable format if the analyst’s statistical analysis resources

cannot directly read SAS transport files. In this case, SAS for Windows (Version

9.2) was used for the analysis. Fortunately, the NHANES website also has a SAS

program that converts the SAS transport file to a usable SAS dataset where each

column has the corresponding label identifier.
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After importing the data, summary statistics were used to characterize each

variable. It was decided that only adult subjects 18 years or older with normal

weight and Scr would be used in the analysis. Therefore, subjects with body mass

index greater than 35 kg/m2 and subjects with Scr greater than 3 mg/dL or less than

0.5 mg/dL were removed from the database. The dataset had 14,974 observations

consisting of 7,682 females (51.3%) and 7,292 males (48.7%) with summary

statistics presented in Table 22.1.

In the first step, the dataset was split into a pdf model development dataset

consisting of ~90% of the data (n ¼ 13,503) with the remainder assigned to be a

model validation dataset (n ¼ 1,471). Data splitting was done using a random

uniform variable; if the variable was �0.90 the observation was assigned to the

model development dataset, otherwise it was assigned to the model validation

dataset. In the pdf model development dataset, weight was modeled as a function

of sex and age, where sex was coded as “0” for males and “1” for females. A scatter

plot of weight as a function of age indicated that a quadratic regression model was

required and that males appeared to be generally heavier than females (Fig. 22.2).

Robust regression using MM estimation (Yohai 1987) was used to fit the following

model to weight since the methodology is not as sensitive to outliers and/or

influential data than ordinary least squares methods

Weight ¼ y0 þ y1AGEþ y2AGE2 þ y3SEX (22.4)

Examination of the residuals showed that the residual tails deviated from

normality (data not shown) and that the assumption of normality might not be

tenable. Hence, the model was refit using the Ln-transformation of Weight

LnðWeightÞ ¼ y0 þ y1AGEþ y2AGE2 þ y3SEX (22.5)

The model parameter estimates are presented in Table 22.2.

Figure 22.3 presents the goodness of fit plots to the model which showed that

weight was adequately modeled using age and sex as predictors. When race was

included in the model, it was not statistically significant at the 0.01 level (data

not shown). Using the model validation dataset, the average prediction error

was 1.02 kg with a standard deviation of 18.0 kg; the lower and upper deciles

were �21.7 to 24.4 kg.

A predictive check was done to see how well the model predicted weight given

sex and age based on a simulation of 10,000 subjects. First, a random value from a

uniform (0, 1) distribution was chosen. If the value was less than 0.49, the subject

Table 22.1 Summary statistics for NHANES III database used for modeling and

simulating CrCL

Mean Std dev Min Max

Age (years) 47.5 20.3 18 90

Weight (kg) 71.7 14.3 21.8 130.5

Scr (mg/dL) 1.07 0.24 0.50 3.00
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was assigned to be male; otherwise the subject was assigned to be female. Next, the

subject’s age was randomly chosen using (22.3) with a lower limit of 18 years and

an upper limit of 90 years. Given the subject’s age and sex, his/her weight was then

simulated using (22.5). The bottom right panel of Fig. 22.3 presents a kernel

smoothed histogram of the simulated and observed values. The average simulated

Fig. 22.2 Scatter plot of weight as a function of age in the NHANES III database (top) and box

and whisker plot of weight as a function of subject sex. Solid line in top plot is the LOESS smooth

using a 0.5 spanning proportion
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weight was 72.1 kg with upper and lower deciles of 54.2 and 92.0 kg, which was

comparable with the observed mean weight of 71.7 kg and upper and lower deciles

of 53.7 and 90.6 kg, respectively. Based on the results of the predictive check and

residual analysis, the model was deemed credible.

Amodel for Scrwas next developed as a function of age,weight, and sex. The same

methodology was employed. The distribution of Scr values was right-skewed, so a

log-transformation was used to make the data more close to a normal distribution

(Fig. 22.4). Age and weight appeared to be slightly curvilinear with regards to

Ln-transformed Scr and males tended to have higher Scr values than females
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Fig. 22.3 Residual analysis of Ln-transformed weight as a function of age and sex based on

(22.5). The bottom right plot is a kernel smooth histogram comparing the observed data with the

simulated data given the final model in (22.6)

Table 22.2 Model parameter estimates for (22.5)

Parameter Estimate Standard error

Intercept (y0) 4.025 0.0109

Age (y1) 0.0146 4.70 � 10�4

(Age)2 (y2) �1.452 � 10�4 4.56 � 10�6

Sex (y3) �0.169 0.00330

Standard deviation 0.176
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(Fig. 22.4). Robust regression using MM estimation was used to estimate the

following model to the Ln-transformed Scr data

LnðScrÞ ¼ y0 þ y1SEX þ y2WEIGHT þ y3AGEþ y4ðWEIGHTÞðSEXÞ
þy5ðAGEÞðSEXÞ þ y6ðWEIGHTÞðAGEÞ þ y7ðSEXÞðAGEÞðWEIGHTÞ

þy8WEIGHT2 þ y9AGE2

(

(22.6)

This model allowed for interactions between age, sex, and weight, and also for

age and weight to be incorporated with quadratic terms. Examination of the

goodness of fit plots shown in Fig. 22.5 revealed that the residuals were heavy-

tailed on both sides of the mean. Thus, the assumption of normality did not appear

appropriate in this case. Hence, the same linear model was refit but with the residual

variance being modeled as a Student’s T-distribution where the degrees of freedom
were estimated. The effect of sex was not significantly different than zero based on

a T-test (T ¼ 0.57, p ¼ 0.57). However, when a model contains significant inter-

actions and nonsignificant main effects, it is recommended to keep the main effects

in the model (Kirk 1982). Thus, all the terms were kept in the model. The model

parameter estimates are presented in Table 22.3.
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The goodness of fit plots are shown in Fig. 22.6. Using the model validation

dataset, the average prediction error was �0.007 mg/dL with a standard deviation

of 0.24 mg/dL; the lower and upper deciles were �0.28 to 0.26 mg/dL.

A predictive check was done to see how well the model predicts Scr given sex,

age, and weight based on a simulation of 10,000 subjects. First, a random variate

from a uniform distribution was chosen. If the value was less than 0.49, the subject
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Fig. 22.5 Goodness of fit plots for Ln-transformed Scr as a function of age, weight, and sex using

(22.6) with residual variability modeled as a Normal distribution

Table 22.3 Model parameter estimates for (22.6)

Parameter Estimate Standard error

Intercept (y0) �0.127 0.0480

Sex (y1) 0.0113 0.0378

Weight (y2) 0.00544 0.00106

Age (y3) �0.00280 6.79 � 10�4

Sex � Weight (y4) �0.00349 5.35 � 10�4

Sex � Age (y5) �0.00340 7.32 � 10�4

Weight � Age (y6) 2.12 � 10�5 7.15 � 10�6

Sex � Weight � Age (y7) 6.22 � 10�5 1.04 � 10�5

(Weight)2 (y8) 1.57 � 10�5 6.01 � 10�6

(Age)2 (y9) 6.45 � 10�5 3.76 � 10�6

Degrees of freedom 5.56 0.259

Standard deviation 0.0169 3.55 � 10�4
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was male; otherwise the subject was female. The subject’s age was then randomly

chosen using (22.3) with a lower limit of 18 years and an upper limit of 90 years.

Conditional on the subject’s age and sex, weight was then simulated using (22.5).

Once his/her sex, age, and weight were simulated, their Scr was calculated using

(22.6) with Student’s T-distribution and six degrees of freedom. The bottom right

panel of Fig. 22.6 shows a kernel smooth histogram of the observed and simulated

data. The average simulated Scr was 1.09 mg/dL with upper and lower deciles of

0.86 and 1.33 mg/dL, which compares to the observed mean of 1.08 mg/dL and

upper and lower deciles of 0.80 and 1.40 mg/dL, respectively. Based on the results

of the predictive check and residual analysis, the Scr model was deemed acceptable.

Given the models developed for weight and Scr, a simulation can now be devel-

oped to calculate individual CrCL values using the Cockroft-Gault equation (22.2).

A histogram of resulting simulated values is shown in Fig. 22.7. The average calcu-

lated CrCL was 76 mL/min with lower and upper deciles of 40 and 115 mL/min,

which compares to the observed mean of 82 mg/dL and upper and lower deciles of 44

and 118 mL/min, respectively. The average CrCL was lower than the normal mean

usually reported as 90mL/min. However, the age range in this simulation was up to 90

years old and since CrCL decreases with increasing age, it would be expected that in a
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a kernel smooth histogram comparing the observed data with the simulated data given the final

model in (22.6). Note that QQ plots are unavailable with a Student’s T-distribution
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simulation with a large proportion of elderly subjects, the average CrCL would be

lower than derived from a database comprising mostly younger individuals. Hence,

the parametric simulation model for CrCL was accepted.

In summary, the NHANES III database was used to develop a hierarchical model

for CrCL based on a subject’s sex, age, weight, and Scr. The modeled values for

weight and Scr were practically identical to observed values. Calculated CrCL

values derived from the sex, age, and weight pdfs were lower than observed values

but this can be explained by difference in the ages of subjects in the two groups.

Nevertheless, the simulated CrCL values were quite similar to the observed values.

This approach can then be used to simulate the population pharmacokinetics of

tobramycin.

Generating Laboratory Clinical Values

A second example of the use of the NHANES III database concerns generation of

clinical laboratory values. Drug clearance or volume of distribution may be patho-

physiologically related to clinical chemistry measurements like AST or ALT when

the drug is subject to hepatic metabolism in health and disease. In this case, AST or
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ALT database values are needed to generate pdfs for these covariate. The NHANES

datasets are cross-sectional data and are not longitudinal, except for the NHANES III.

In NHANES III, AST and ALT measurements were made a second time in a

nonrandom subsample of ~10% of subjects. The participants in the second query

were mainly adults equally split between 20 and 39 years of age and 40 years or older

with an equal sex distribution. Lazo et al. (2008) used this dataset to show that elevated

AST, ALT, and bilirubin concentrations would be reclassified as normal in more than

30% of retested subjects and that alkaline phosphatase and SGPT were more reliable

with only 15% being reclassified as normal upon retesting.

With repeated measures data, the total variability in the data can be partitioned

into a between-sample component (between-subject variability, BSV) and residual

component (within-sample variability, WSV). In the CrCL example, the total

variance represented a composite of between-, within-, and residual variability.

With the repeated measures data, the residual variance represents residual varia-

bility and within-subject variability. In this example, AST activity was analyzed in

an effort to find a suitable model to simulate baseline values in adults 18 years and

older.

The NHANES III secondary measurement database was merged with the

NHANES III primary database and only those subjects 18 years and older with

both first and secondary measurements included. A total of 1,250 subjects were

available with the average time between the first and second measurement being

17.5 days (range: 1–52 days). Figure 22.8 presents a kernel smooth of the AST values

Fig. 22.8 Histogram of AST activity pooled from the time of the first and second measurements
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at the time of the first and second measurement. The distribution of AST values for

the first and second measurements were quite similar though both were highly

skewed. To begin, a linear mixed effects model of the following form was estimated

LnðASTÞ ¼ y0 þ y1ðSEXÞ þ y2ðVISITÞ þ e (22.7)

where VISIT refers to the first or second measurement and the residuals were

assumed to be normally distributed. AST does not differ between males and

females so sex was not included in the model. The goodness of fit of the residuals

showed distinct deviations from normality, as might be surmised from such a highly

skewed dataset. Further, a predictive check showed that the simulated values could

not reproduce the upper range of AST observations (data not shown).

Next, a mixture model was estimated using the NLMIXED procedure in SAS

where

LnðASTÞ ¼ y0 þ y2ðSEXÞ þ y4ðVISITÞ þ e if Group 1

LnðASTÞ ¼ y1 þ y2ðSEXÞ þ y4ðVISITÞ þ y3e if Group 2
(22.8)

In this model, subjects were assigned to Group 1 or Group 2 with probability

p and each group was allowed to have a different mean and variance. Essen-

tially what the model does is to test whether a better fit is obtained for each

patient if they were Group 1 or Group 2. The visit effect (whether it was the first

or second measurement) under this model was not statistically significant and

the reduced model (y4 ¼ 0) was refit. With the reduced model, all parameters

were precisely estimated with coefficients of variation <50% for all parameters

(Table 22.4).

The residuals appeared to be normally distributed with no clear trends in the

residual vs. predicted values (data not shown). Hence, a mixture model appeared to

be a more appropriate model than a normal distribution. The model was then used to

simulate results for 10,000 subjects. A kernel smooth to the simulated and observed

data are shown in Fig. 22.9. A comparison of the simulated and observed summary

statistics showed that the mean values were similar (23 U/L for the observed data

and 22 U/L for the simulated data). Further, the ranges were similar (8–257 U/L for

Table 22.4 Model parameter estimates for (22.8)

Parameter Estimate Standard error

y0 3.072 0.0111

y1 3.459 0.0406

y2 �0.178 0.0154

y3 2.145 0.0944

Proportion in Group 1 0.897 0.0137

CV% BSV in Group 1 25.2 0.825

CV% BSV in Group 2 57.2 1.856

Residual variability % 12.7 0.317
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the observed data and 5–218 for the simulated data). The lower and upper deciles

were even closer (14–32 U/L for the observed data and 14–31 U/L for the simulated

data). Hence, given this model, an analyst can simulate baseline AST data in a

random adult population.

The AST dataset was challenging to model because of the extreme skewness in

the distribution. Luckily a parametric mixture model could be found to adequately

describe the data. But suppose a parametric model could not be found, how then

does one simulate the appropriate covariate distribution? One method is to resample

from observed data using a random sampling with replacement approach.

Figure 22.9 also shows the distribution from 10,000 resampled subjects compared

to the simulated and observed distributions. The results are indistinguishable. The

advantage of the resampling method is ease of programming. There is no modeling

involved so the simulated values are easily obtained. Also, the dataset can be

conditioned to obtain resample in certain subpopulations. For instance, Fig. 22.10

presents a kernel smooth of males 65 years and older whose ALT was normal

(<33 U/L). The resampled data was indistinguishable from the observed data. The

down-side to this method is that it requires a dataset of fairly large size such that the

resampling does not result in multiple copies of the same observation.

Fig. 22.9 Kernel smooth of simulated, resampled, and observed (solid line) AST values at

baseline. Simulated values (dashed line) were generated from 10,000 simulated subjects.

Resampled values (dash-dot line) were generated from 10,000 subjects
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A modification to the resampling method is to add some small degree of random

error to the resampled values so that if the dataset being resampled is relatively

small there won’t be a large degree of copying the same values. So, if the resampled

value were X, then X* ¼ X + s, where s is a normally distributed random variable

with mean 0 and variance s2. Figure 22.10 shows the resampled values when a

normally distributed random error term was added with a standard deviation of 4 U/L.

Again, the resampled values with error were indistinguishable from the observed data.

The problemwith thismethod is that if the randomerror termvariance is too large then

the resampled valuesmight not approximate the observed datawell, so some degree of

fine-tuning may be needed on the variance estimate.

22.3 Future Perspectives

There is current debate in the literature about transparency of data. How much data

should be made available after a study is completed? Pharmaceutical companies

argue that data should be proprietary to maintain the intellectual property. But is

it really necessary to keep placebo data or comparator data away from other

Fig. 22.10 Kernel smooth of resampled and observed AST values at baseline in males 65 years

and older with normal ALT values (<33 U/L). Observed values (solid line) were based on 1,370

subjects. Resampled values (dashed line) and resampled with error (dashed-dot line) were

generated from 10,000 subjects
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investigators that might find it useful? Right now there are some external data

available to the public for building covariate distribution models, but not a lot. All

of it seems to be from the United States; Japan, China, the European Union, none of

them make data from their studies available. It can be expected though that as more

data become available models for covariates will become available and be portable

from study to study much like the current effort to develop disease progression

models.

There is an effort in the pharmacometrics field to develop public-access, open-

source disease progression models (see www.opendiseasemodels.org, accessed

May 2010). The underlying hypothesis for this program is that these models,

being open-source, will help facilitate their acceptance and increase their utiliza-

tion. These same efforts should be applied for covariate distribution models.

If someone needs to simulate the weight for a subject in some age range, the

model used should not be dependent on the company where that person is

employed. These models should be portable and applicable universally. It is

hoped that these same organizations will expand their charters to include covariate

distribution models.

In summary, covariate distribution models are just as important for simulation

purposes as are pharmacokinetic-pharmacodynamic models. A poorly defined

covariate distribution can invalidate the results from a simulation. Modelers cannot

simply input a range of covariates and expect to achieve simulation results that are

robust, representative, and reliable. Time and effort must be spent in developing

and validating these models. Only then can the results from a simulation be

confidently trusted.

Acknowledgments The author would like to thank Steve Weller at GlaxoSmithKline for his

thoughtful comments.

References

Aarons L, Vozeh S, Wenk M, Weiss P, Follath F (1989) Population pharmacokinetics of tobra-

mycin. Br J Clin Pharmacol 38:305–314
Bonate PL (2006) Pharmacokinetic-pharmacodynamic modeling and simulation. Springer, New

York

Chien JY, Friedrich S, Heathman M, de Alwis DP, Sinha V (2005) Pharmacokinetics/pharmaco-

dynamics and the stages of development: role of modeling and simulation. AAPS J
7:E544–E559

Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine.

Nephron 16:31–41

Holford NHG, Kimko HC, Monteleone JPR, Peck CC (2000) Simulation of clinical trials. Annu
Rev Pharmacol Toxicol 40:209–234

Kirk RE (1982) Experimental design: procedures for the behavioral sciences. Brooks/Cole

Publishing Company, Belmont

Lazo M, Selvin E, Clark JM (2008) Clinical implications of short-term variability in liver function

test results. Ann Intern Med 148:348–352

22 Covariate Distribution Models in Simulation 525



Lowe PJ, Tannenbaum S, Gautier A, Jimenez P (2009) Relationship between omalizumab

pharmacokinetics, IgE pharmacodynamics, and symptoms in patients with severe allergic

(IgE-mediated) asthma. Br J Clin Pharmacol 68:61–76
Metropolis N (1987) The beginning of the Monte Carlo method. Los Alamos Sci 12:125–130
Savage S (2009) The flaw of averages. Wiley, New York

U.S. Department of Health and Human Services, Center for Disease Control and Prevention,

National Center for Health Statistics (2007) National health and nutrition examination survey,
2007–2008. http://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/overviewbrochure_0708.pdf.

Accessed May 2010

Yohai VJ (1987) High breakdown point and high efficiency robust estimates for regression.

Ann Statist 16:642–656

526 P.L. Bonate



Index

A

ACE. See Angiotensin-converting enzyme

ACE inhibitors (ACEI), 217, 460

a1-Acid glycoprotein (AAG), 302

Adaptive designs (AD)

confirmatory studies

AD, 118–119

enrichment designs, 121–122

group sequential designs, 117–118

practical considerations, 122–123

sample size re-estimation, 119–120

treatment selection, 120–121

type I error rate, 117

definition, 109

dose escalation, 110

features, 110

learn phase

ADR approaches, 116

aMCP-Mod, 114

DcoD, 114

dose selection and response, 111–113

GADA, 113–114

IntR, 115

MULTOB, 115

t-test adaptation, 115–116
U.S. FDA and EMEA, 111

simulation programs, 110–111

toolbox strategy, 128

and trial simulations

ADR approaches comparison, 124–127

operating characteristics, 123–124

Adaptive dose-ranging (ADR) methods

aMCP-Mod, 114

DcoD, 114

GADA, 113–114

IntR, 115

MULTOB, 115

t-test adaptation, 115–116

Adaptive multiple comparison procedure-

modeling (aMCP-Mod), 114

Adaptive trial designs. See Adaptive
designs (AD)

Angiotensin-converting enzyme (ACE), 216,

460, 473, 479

Anticancer therapeutic intervention strategy,

282, 283

Anti-HIV inhibitors, 233

Antihypertensive agents

modeling and simulation, 218–220

pharmacology, 216–218

Antihypertensive therapies, 475–477

Anti-inflammatory drug development

FDA’s Critical Path Report, 150–151

information, knowledge, understanding,

and wisdom paradigm, 154, 155

learn-confirm-learn process

noise ratio, 152

nonclinical to clinical development, 152

response surface, 151–152

scientific tools, 152–153

leveraging pharmacometrics

drug actions, 154–155

drug concentration vs. time, 157

FTIH study (see First-time in human

(FTIH) study)

NDA reviews, 155–156

nonclinical information–knowledge

translation, 157–158

model-based approach

PGDD, 153

pharmacometric knowledge

integration, 153–154

new chemical entities (NCEs), 150

Antimicrobial chemotherapy

antiinfective therapies, 253

antimicrobial-resistant pathogens, 252

H.H.C. Kimko and C.C. Peck (eds.), Clinical Trial Simulations, AAPS Advances

in the Pharmaceutical Sciences Series 1, DOI 10.1007/978-1-4419-7415-0,
# American Association of Pharmaceutical Scientists 2011

527



Antimicrobial chemotherapy (cont.)
bench-to-bedside piece-wise knowledge

integration, 266–268

clinical application

biomarker, 268

CART analysis, 273

dichotomous clinical outcomes, 268

dose recommendation decisions, 272

logistic regression analysis, 270

Monte Carlo simulation, 271, 272

PK/PD indices, 268–270

defensive and offensive approach, 251

human evolution, 253

microbiota, 253

PK/PD model

advantage, 255

antimicrobial drug combinations,

262–264

concentration vs. effect curves, 260–261
Hill model, 261–262

host defense submodel, 265–266

in vivo thigh model, 264

minimum inhibitory concentration

(MIC), 257–258

pharmaco-microbiological principles,

255–256

resistance submodel, 265

time-kill studies, 258–260

streptococcus pneumoniae, 252
Antithrombus therapy

anticoagulant agents

modeling and simulation, 207–209

pharmacology, 205–206

thrombus formation, 204–205

Aranesp® (darbepoetin alfa)

anemia treatment, 318

dosing schemes, 317

maturation-structured cytokinetic

model, 316

mechanistic PK/PD model, 319

pediatric subjects, 321, 324

visual predictive check (VPC), 322

Argatroban Injection® (argatroban), 50

Atorvastatin, 330

B

Best Pharmaceuticals for Children Act

(BPCA), 405

Between-subject variability (BSV), 81,

325, 525

Bivariate normal distributions, 66–73

Blood pressure (BP) regulation. See also Renin
angiotensin system (RAS)

arterial pressure modulation, 467–469

epidemiology and pathophysiology, 467

GC model, 469

Guyton/Karaaslan models, 469

Bridion (sugammadex), 32. See also Celsentri

(maraviroc); Keppra (levetiracetam)

C

Canadian Neurological Scale (CNS), 209

Cardiopulmonary bypass (CPB), 428

Cardiovascular pharmacology

adaptive dosing simulation techniques

dosage limitations, 223

pharmacokinetic/pharmacodynamic

model, 221

visual predictive check, 222, 223

antithrombus therapy

anticoagulant agents, 205–209

thrombus formation, 204–205

hypercholesterolemia

characterization, 199–200

cholesterol lowering agents, 201–204

statin effects, 200–201

hypertension

antihypertensive agents, 216–220

risk factors, 216

stroke

clinical trials, 209–210

disease progression models, 210–214

longitudinal model, nonmonotonic

stroke scale data, 214–216

Celebrex® (celecoxib), 50

Celsentri (maraviroc), 31. See also Bridion

(sugammadex); Keppra

(levetiracetam)

Classification and regression tree (CART)

analysis, 273

Clinical Utility IndexSM (CUISM)

basic elicitation steps, 105

Bayesian methods, 103

conjoint analysis, 105–106

construction and function

attributes independency, 93

basic linear formula, 91–92

elicitation process, 92

integrated CUI construction, 90–91

Monte Carlo simulation, 91

swing-weighting method, 92–93

decision context setting

decision-maker(s) perspective, 90

go/no-go decisions, 89–90

high-quality decision, 89

dopahexadine (see Dopahexadine)

528 Index



Francis Anscombe’s approach, 103

index estimation, 88

multiattribute decisions, 87

multiplicative functions, 103–104

publications

animal toxicity, 101

calcium channels comparison, 102

human efficacy and toxicity, 101

Korsan’s publication, 101–102

multiattribute utility function, 100–101

utility calculation

Effect 1, 93–95

Monte Carlo simulation, 94–96

single drug dose vs. comparator, 93, 94

utility concept illustration, 87, 88

CNS. See Canadian Neurological Scale

Cockroft-Gault equation, 523

Combined D-and C-optimality (DcoD), 114

Contract research organizations (CROs), 407

Controlled ovarian stimulation (COS),

133–134

Corifollitropin alfa

COS, 133–134

development program, 134–136

dose-response studies

aims, 136

development program, 135, 136

model framework, 136–137

NOoc, 139–140

probability of success, 138, 139

regression models, 137–138

simulations, 138, 139

dose selection

body weight, impact, 142–143

cancelation rate, 143, 144

drug exposure and NOoc, 143, 144

inhibin-B levels, 140–142

model framework, 140, 141

PK model, 142

regression models, 142

COS. See Controlled ovarian stimulation

Covariate distribution models

CrCL calculation, 512

demographic characteristics, 514–515

Flaw of Averages, 511

input–output model, 510

internal databases, 513–514

Monte Carlo simulation, 512

NHANES (see National Health and

Nutrition Examination Survey

(NHANES))

NIH databases, 515–516

parameter estimation, 510–511

pharmacokinetic-pharmacodynamic

models, 529

placebo data/comparator data, 528–529

tobramycin b-half-life, 511
Creatinine clearance (CrCL), 510–512, 524

CTS and quantitative pharmacology

dose-response relationship, 1

in drug development, 7–8

EMA and FDA, 3–5

protocol deviation, 5

technical definition, 2

variable adherence, 5–7

virtual trial subjects, information

sources, 2

Cytochrome P450 (CYP) enzymes, 201, 496

Cytokinetics

cell lifespan

erythrocytes, 382

PK-PD modeling, 382, 383

platelets, 383

cell proliferation and maturation, 384

D

Data use certification (DUC), 516

DcoD. See Combined D-and C-optimality

Decision-making, drug development

Clinical Utility IndexSM (CUISM)

basic elicitation steps, 105

Bayesian methods, 103

conjoint analysis, 105–106

construction and function (see Clinical
Utility IndexSM (CUISM))

decision context setting

decision-maker(s) perspective, 90

go/no-go decisions, 89–90

high-quality decision, 89

dopahexadine (see Dopahexadine)
Francis Anscombe’s approach, 103

index estimation, 88

multiattribute decisions, 87

multiplicative functions, 103–104

publications (see Clinical Utility
IndexSM (CUISM))

utility calculation

Effect 1, 93–95

Monte Carlo simulation, 94–96

single drug dose vs. comparator, 93, 94

utility concept illustration, 87, 88

model-based framework

diagnostic tests, 62

dose-response evaluation, 73–74

joint model, 81

Index 529



learning and confirming questions, 62

model-based framework, 63, 78–80

notation and terminology

D estimation, 63–64

PTV and P(Correct), 65, 66
target value (TV), 64

trial data, 64–65

truth vs. trial, 65
oncology, 303

operating characteristics, decision

criteria (see Model-based drug

development framework)

predictive models, 80–81

Deep hypothermic circulatory arrest

(DHCA), 428

Deep vein thrombosis (DVT), 422

DHCA. See Deep hypothermic circulatory

arrest

Diabetes mellitus

biomarkers, 178

definition, 176

experimental techniques, 178–180

insulin, 176, 177

treatment option and drug class, 177

types, 176

Direct renin inhibitors (DRIs), 468, 476, 477

Disease process and progression models

cascading turnover models

b-cell function, 451
FPG and FSI, 451–452

Frey model, 452

glucose-insulin homeostasis, 450

descriptive models

drug treatment, 445

Frey model, 447

linearly progressing diseases, 446

symptomatic treatments, 445

drug and biological system, 447

systems pharmacology

bone homeostasis model, 454–455

physiological properties, 453

turnover models

Parkinson’s disease, 448–449

symptomatic and disease-independent

treatment, 449–450

synthesis/elimination processes, 448

Dispersion model, 495

Dopahexadine. See also Clinical Utility

IndexSM (CUISM)

CUI attributes, 96, 97

efficacy, 96

literature data, 98

outcomes to utility translation, 97

predictive regression models, 98, 99

reformulation, 98–100

DRIs. See Direct renin inhibitors

Drug-disease models

benefit-risk assessments, 195

biologically based mathematical

models, 187

clinical outcomes, 195

clinical trial simulations, 195

diabetes mellitus

biomarkers, 178

definition, 176

experimental techniques, 178–180

insulin, 176, 177

treatment option and drug class, 177

types, 176

disease progression, 196

dosing calculators and guidance tools, 195

drug development

categories, 187

concept and time-course response,

190–192

dose response and safety attributes, 192

dose selection, 193–194

estimating human potency, 189

human exposure prediction, 189

projecting human doses, 190

stage-dependent application, 188–189

FPG-HbA1c model, 184–185

glucose-insulin regulation, 180–181

incorporating disease progression, 185

indirect response models, 183–184

literature database, 185–187

regulatory considerations, 194–195

target prioritization, 195

time-course models, 181–183

DVT. See Deep vein thrombosis

E

EMA. See European Medicines Agency

End-of-Phase 2a (EOP2a) meetings, 41

EPS. See Extrapyramidal symptoms

Erythropoietic stimulating agents (ESA)

cell production and cell loss, 312

dosing interval regimen

Aranesp® (darbepoetin alfa) (see
Aranesp® (darbepoetin alfa))

dose adaptation algorithm, 316

dose adjustments, 318

hemoglobin concentrations, 319

RBC lifespan, 317

pediatric study design

530 Index



data analysis methods, 321–323

drug efficacy, 320

intravenous and subcutaneous dosing,

321, 322

parametric bootstrap approach, 325

population pharmacokinetic

parameters, 322–325

PK/PD model

BFU-E cells, 313

human erythropoietin, 312, 313

PED, 314, 315

population-based interspecies

allometric scaling, 313–314

risk-benefit assessment, 315

UT-7 cells proliferation assays, 314

RBC dynamics, 312

Etoposide, 294

European guideline, pharmacokinetic

modeling, 18–24

European Medicines Agency (EMA), 3, 404

European regulatory bodies. See also U.S.

Food and Drug Administration

applications, 15

documentation assessors, 33

guidelines

advanced techniques, 25

dose response and selection, 25

European guideline, 17–24

ICH and pediatric guidelines, 17

model-based drug development, 16

modeling documentation

Bridion (sugammadex), 32

Celsentri (maraviroc), 31

Keppra (levetiracetam), 29–31

regulatory decisions

clinical trial application, 26–27

marketing authorization approval,

28–29

Pediatric Investigation Plan, 26

scientific advice, 27–28

regulatory system and procedure, 16

short and long term perspectives, 33

Swedish Medical Product Agency, 16

Exposure-response modeling, 17–24, 27

Extensive metabolizers (EM), 210

Extracellular water (ECW), 372–373

Extrapyramidal symptoms (EPS)

disease progression model, 350

drug effect, 350

incidence prediction

exposure-response relationship,

356, 357

hazard, 355, 356

parameter estimates, 356, 357

PK/PD simulation, 357–358

plasma concentration, 355–356

intramuscular injections, 349

maximum likelihood estimation, 351

PK/PD-simulation, 351–352

population pharmacokinetic model, 349

three-parameter logistic model, 351

F

Fasting plasma glucose (FPG), 178, 183,

446, 452

FDA. See U.S. Food and Drug

Administration

FDA’s Critical Path Opportunities

Report, 492

FDA’s Critical Path Report, 150–151

First-order conditional method (FOCE), 422

First-time in human (FTIH) study

clinical trial simulation vs. clinical
outcome, 169–171

irreducible population model, 168–169

monocyte count, 168

nonclinical knowledge, 159–163

performance, 162

PK and PD data, 159, 162, 164

population pharmacokinetic analysis

drug concentration vs. time,

164, 165

Michaelis–Menten-type function, 164

parameter estimation, 166

population predicted vs. drug
concentration, 164–166

response analysis, 167–169

TNFa–time data, 167

Flaw of Averages, 511

FPG. See Fasting plasma glucose

FPG-HbA1c model, 184–185

G

Gabapentin, 331

Gaddum’s equation, 314

General adaptive dose allocation (GADA),

113–114

Generalized anxiety disorder (GAD). See
PD0332334 (PD334); Pregabalin

Gestational diabetes, 176

Glucose-insulin regulation, 180–181

Glycosylated hemoglobin (HbA1c), 178

Guyton/Coleman (GC) model, 469

Guyton/Karaaslan models, 469

Index 531



H

Haloperidol, 345

hCG. See Human chorionic gonadotropin

Hepatic drug clearance

parallel tube and dispersion model, 494

well-stirred model, 494

Hepatitis C

drug efficacy value, 242

mechanistic simulations, 244

model structure, 242, 243

nonlinear mixed effects model, 242

pegylated interferon effects, 241

physiology of liver, 240

ribavirin effects, 241

RNA, 240

sustained virologic response, 239

therapy outcome, 239

viral load profiles, 243, 244

Hill model, 261–262

Host defense submodel, 265–266

Human chorionic gonadotropin (hCG), 134,

294

Human immuno virus (HIV)

anti-HIV drug effects, 231

anti-HIV inhibitors, 233

cell types, 230

dose and dosing schedule, 234–237

INH, 232

model parameters estimation, 237–239

PK-PD principles, 234

reproductive minimal inhibitory

concentration, 233

viral load-time profiles, 233

Hypercholesterolemia

characterization, 199–200

cholesterol lowering agents

clinical trials, 201

interarm variability, 204

K-PD model, 202

LDL time course, 202

meta-analysis, 203

model-based approach, 202

statin effects, 200–201

Hypertension

antihypertensive agents

modeling and simulation, 218–220

pharmacology, 216–218

risk factors, 216

I

IGF binding proteins (IGFBP), 373

Indirect response models, 183–184

Interesting region (IntR) of DR profile, 115

K

KD3 concept, 132–133

Keppra (levetiracetam), 29–31. See also
Bridion (sugammadex); Celsentri

(maraviroc)

Kidney

hypothesis testing and applications, 484

model development

Ang I and Ang II peptides, 481

renal tissue compartment, 481–482

renal vasculature, 481

parameterization

renal tissue compartment, 483

renal vascular compartment, 482–483

L

Lotka-Volterra predator prey models, 228

Low density lipoprotein (LDL)

cholesterol, 199

Low molecular weight heparin (LMWH),

206, 422–425

M

MABEL. See Minimum anticipated biologic

effect level

Mechanism-based models

biological functions, 442, 444

clinical trials, 443

disease process and progression models

cascading turnover models, 450–453

descriptive models, 444–447

drug and biological system, 447

systems pharmacology, 453–455

turnover models, 448–450

disease processes, 442

PKPD modeling

biological function deterioration, 442

biomarker response, 442–443

disease processes and

pharmacodynamic effects, 443, 444

practical challenges and implementations

delayed and washout design, 457, 458

drug-related factors, 456

optimal design, 455

physiology-based disease models, 456

placebo treatment, 457

MI. See Myocardial infarction

Michaelis–Menten approximation, 379–380

Microsomal protein per gram of liver

(MPPGL), 496

Minimum anticipated biologic effect level

(MABEL), 369

532 Index



Minimum inhibitory concentration (MIC),

257–258

Model-based drug development framework

diagnostic tests, 62

dose-response evaluation, 73–74

joint model, 81

learning and confirming questions, 62

model-based framework, 63, 78–80

notation and terminology

D estimation, 63–64

PTV and P(Correct), 65, 66
target value (TV), 64

trial data, 64–65

truth vs. trial, 65
operating characteristics, decision criteria

based on dose estimated effect, 77–78

based on interval estimates, 70–73

based on point estimates, 67–70

based on relative potency, 74–75

based on relative potency and top

dose, 75–77

theoretical calculation, 66–67

predictive models, 80–81

Modeling and simulation (M&S)

corifollitropin alfa (see Corifollitropin alfa)

fit-for-purpose approach, 147

interdisciplinary collaboration, 132

KD3 concept, 132–133

learn-and-confirm cycles, 145

longitudinal modeling, 147

optimal synergy, 145, 146

Modeling and simulation studies contribution

European regulatory agencies

applications, 15

Bridion (sugammadex), 32

Celsentri (maraviroc), 31

clinical trial application, 26–27

documentation assessors, 33

guidelines (see European regulatory

bodies)

Keppra (levetiracetam), 29–31

marketing authorization approval,

28–29

model-based drug development, 16

Pediatric Investigation Plan, 26

regulatory system and procedure, 16

scientific advice, 27–28

short and long term perspectives, 33

Swedish Medical Product Agency, 16

U.S. FDA

approval types, 43–45

approved doses, phase 3 trials, 50–52

confirmatory evidence, 52, 53

drug development and dose

optimization, 54

model-based primary endpoints,

52, 54

pediatric dosing regimen, 48–50

pharmacokinetic review, 43–44

pharmacometrics (see
Pharmacometrics)

regulatory impact, published cases,

44–48

standardization, 55

Modified ultrafiltration (MUF), 428

Monte Carlo simulation, 91, 94–96, 271,

272, 512

Multiple objectives (MULTOB), 115

Myocardial infarction (MI), 53, 467

N

National Health and Nutrition Examination

Survey (NHANES)

analyses, 517

clinical laboratory values generation

AST activity, 524–525

first and second measurements, 526

Kernel smooth, 526, 527

residual vs. predicted values, 526

covariate pdfs generation

Cockroft-Gault equation, 523

CrCL values, 523–524

fit plots, 522

Ln-transformed Scr data, 520, 521

quadratic regression model, 518

robust regression, 521

SAS program, 517

Scr values, 520, 521

National Heart Lung and Blood Institute

(NHLBI), 516

National Institute of Diabetes

and Digestive and Kidney

Diseases (NIDDK), 516

National Institute on Mental Health

(NIMH), 516

National Institutes of Health (NIH),

405–407, 515–516

National Institutes of Health Stroke Scale

(NIHSS), 209

NDA and BLA submissions, 39

Neutral endopeptidase (NEP), 470, 472,

474, 478

New chemical entities (NCEs), 150, 152

New molecular entities (NMEs), 189, 403

NIH. See National Institutes of Health

Index 533



NIHSS. See National Institutes of Health
Stroke Scale

N-methyl-d-aspartate (NMDA) receptor, 210

NSCLC disease model, 42–43

O

Obstetrics Pharmacology Research Unit

(OPRU), 405

Office of Generics Drugs (OGD), 5

Oncology

AAG, 302

adverse event modeling and prediction

hemoglobin dynamics, 299

myelosuppressive effect, 301

paclitaxel, 300

red blood cells (RBC), 300

risk-benefit ratio, 300

trabectedin-induced neutropenia,

300, 301

anticancer therapeutic intervention

strategy, 282, 283

antineoplastic agents, 302

biomarkers vs. surrogate endpoints
capecitabine vs. fluorouracil, 292
etoposide, 294

hCG, 294

multivariate logistic models, 293

second-line treatment strategies, 292

tumor activity, 291

tumor growth inhibition (TGI), 292, 293

cellular kinetics, 282

differential diagnosis, 303–304

drug development, 302, 303

mathematical modeling tool, 281, 282

translational models

anticancer drugs, 296

anticancer treatments, 294

cell death process, 295

cMet phosphorylation and HGF

receptor, 296, 297

rituximab, 297

time efficacy index (TEI), 296

tumor growth

angiogenesis and apoptosis, 288

biological dynamic systems, 284

cell cycle model, 285, 286

cell proliferation, 289

decay, 289–291

dynamic, stable and unstable system

models, 285

k-stage multilevel Markov model, 288

metastasis, 288

molecular clock, 287

proliferative or circular models, 286

time parameterization, 286

OPRU. See Obstetrics Pharmacology

Research Unit

P

Paclitaxel, 300

Paliperidone extended-release (Paliperidone

ER)

dose-response model, 359

D2-receptor occupancy

advantage, 347

healthy volunteer studies, 348

plasma concentrations, 347

population PK-model, 348

prediction, 348–349

efficacy and safety prediction, 353–355

EPS (see Extrapyramidal symptoms (EPS))

population simulations, 359

rationale, 346–347

schizophrenia, 345, 346

Parallel tube model, 495

Parkinson’s disease, 42, 448

PD0332334 (PD334)

atorvastatin, 330

data analysis, 332

dose response analysis

efficacy, 333–334

model selection, 334

model uncertainty, 334–335

tolerability, 334

dose–response curve, 339

dose selection, 335

drug development process, 329

DSM-IV criteria, 336

efficacy, 336–337

Emax relationship, 342

gabapentin, 331

HAM-A dose–response relationships,

339, 340

lipid-lowering agent, 330

model validation, 336

phase 3 study, 341, 342

prevalence, 330

somnolence vs. dose, 339, 340
therapeutic index (TI), 343

tolerability, 338–339

PED. See Pharmacological effective dose

Pediatric dosing regimens, 48–50

534 Index



Pediatric Investigation Plan, 26

Pediatric Pharmacology Research Units

(PPRU), 405

Pediatric research and development

actinomycin-D and vincristine

nonlinear mixed-effects model, 426

power-sample size analysis, 427

and VCR, 425–426

bottom-up approaches, 431

clinical pharmacology, 405

CTS model

components and model elements, 417

data hierarchy, 419

data repositories, 420

PK/PD, 420–421

typical workflow, 421

disease progression models, 432

drug developers, 405

exploratory PK/PD trial

CPB and MUF, 428, 429

drug kinetic model, 428–430

TPM, 428

WM injury, 427

implementation, 404

LMWH

Box-n-whisker plots, 424

clinical trials, 422

PK/PD analysis, 424

single-point designs, 423–424

two-point designs, 423

modeling and simulation applications

BSA, 410–411

common trial designs, 408–410

maturation function, 411

ontogeny-based functions, 414

PBPK models, 415

P450 family, 414

vs. physiologic model, 411

physiologic processes, 416

OF value, 413

various age indices, 412

NIH, 405–407

trial design factors, 431–432

Pegylated interferon, 241

Peripheral vascular disease (PVD), 467

Pharmacological effective dose (PED),

314, 315

Pharmacometrically-guided drug development

(PGDD) program, 153

Pharmacometrics

division

EOP2a meetings, 41

knowledge management, 41–42

NDA and BLA submissions, 39

pediatric trials, 40–41

QT studies, 39–40

research and policy development, 42–43

vision and strategic goals, 38

drug development and dose

optimization, 54

history, 37–38

leveraging

drug actions, 154–155

drug concentration vs. time, 157

FTIH study (see First-time in human

(FTIH) study)

NDA reviews, 155–156

nonclinical information–knowledge

translation, 157–158

regulatory decisions

approval types, 43–45

approved doses, phase 3 trials, 50–52

confirmatory evidence, 52, 53

model-based primary endpoints, 52, 54

pediatric dosing regimen, 48–50

pharmacokinetic review, 43, 44

regulatory impact, published

cases, 44–48

standardization, 55

Physiologically based pharmacokinetic

(PBPK) modeling

applications, 493

components, 493

drug development, 500–502

input parameters

factors influencing hepatic clearance,

496–497

hepatic drug clearance, 494–495

in vitro CL to in vivo CL, 495

scaling, 496

mechanistic integration, 503

model based drug development, 504

oral absorption and bioavailability,

499–500

tissue distribution

plasma volume, 497

tissue composition-based approach,

498–499

PK/PD models

antimicrobial chemotherapy (see
Antimicrobial chemotherapy,

PK/PD model)

EPS-incidence, 355–357

EPS-related adverse events, 349–351

ESA, 312–315

mechanism-based models, 442–444

Index 535



PK/PD models (cont.)
protein drugs (see Protein drugs, PK/PD

models)

Plasma renin activity (PRA), 471, 472, 477,

479, 485, 486

Plasma renin concentration (PRC), 485, 486

PPRU. See Pediatric Pharmacology

Research Units

PRA. See Plasma renin activity

Pregabalin. See also PD0332334 (PD334)

Emax relationship, 342

fixed and random effects, 339

HAM-A dose–response relationships, 339,

340

mechanism-of-action, 330

phase 2 and 3 trials, 332

somnolence, 334

therapeutic index (TI), 343

Product Research and Equity Act (PREA), 405

Protein drugs

application, 398

biotechnology methods, 367

clinical development model and simulation

different patient populations, 392–393

disease covariates, 393–395

dose-concentration-effect, 391–392

dosing regimen, 397

drug–drug interactions, 395–396

evaluation, 389–390

fixed dosing vs. body size-based

dosing, 396–397

pharmacological effect, 389

phase II/III doses, 390–391

PK-PD models, 390

rationale provision, 398

drug discovery

application, 386

molecules and protein, 385

PK-PD modeling, 386–387

PK/PD models

absorption and bioavailability, 369–371

attributes and implications, 367, 368

bimolecular interaction, 371–372

biodistribution, 372–374

cytokinetics, 381–384

drug and soluble target interaction, 381

FcRn, 375

filgratim and pegfilgrastim, 375–376

Michaelis–Menten approximation,

379–380

QSS and RB approximations, 379

RES, 374–375

TMDD, 376–379

preclinical development, 387–388

target evaluation, 385–387

target-mediated pathway, 369

Q

Quantitative pharmacology and CTS

dose-response relationship, 1

in drug development, 7–8

EMA and FDA, 3–5

protocol deviation, 5

technical definition, 2

variable adherence, 5–7

virtual trial subjects, information sources, 2

Quasi-steady-state (QSS) approximation, 379

R

Rapid binding (RB) approximation, 379

RAS. See Renin angiotensin system

Regulatory review

European regulatory bodies

applications, 15

Bridion (sugammadex), 32

Celsentri (maraviroc), 31

clinical trial application, 26–27

documentation assessors, 33

guidelines (see European regulatory

bodies)

Keppra (levetiracetam), 29–31

marketing authorization approval,

28–29

model-based drug development, 16

Pediatric Investigation Plan, 26

regulatory system and procedure, 16

scientific advice, 27–28

short and long term perspectives, 33

Swedish Medical Product Agency, 16

U.S. Food and Drug Administration

drug development and dose

optimization, 54

pharmacometrics

EOP2a meetings, 41

history, 37–38

knowledge management, 41–42

NDA and BLA submissions, 39

pediatric trials, 40–41

QT studies, 39–40

research and policy development, 42–43

vision and strategic goals, 38

regulatory decisions

approval types, 43–45

approved doses, phase 3 trials, 50–52

536 Index



confirmatory evidence, 52, 53

model-based primary endpoints, 52, 54

pediatric dosing regimen, 48–50

pharmacokinetic review, 43, 44

regulatory impact, published

cases, 44–48

standardization, 55

Renal sympathetic nerve activity (rSNA), 469

Renin angiotensin system (RAS)

ACE activity, 479

AGT turnover, 479

angiotensin peptide infusion, 475–476

assumptions, 472–473

BP regulation

arterial pressure modulation,

467–469

epidemiology and pathophysiology, 467

GC model, 469

Guyton/Karaaslan models, 469–470

characteristics, 466

clinical populations, 478–479

drug development

model behavior, 484

vs. PRA and PRC, 485–486

kidney

hypothesis testing and applications, 484

model development, 480–482

parameterization, 482–483

mathematical models, 466

model structure

AGT synthesis, 471

first-order reactions, 470

physiological rates and parameters, 472

steady-state, 471

zeroth-order components, 470

physiology model, 487

representation and parameterization,

476–477

validation, antihypertensive therapies,

477–478

virtual patient (VP), 474–475

RePharmaCo. See Dopahexadine
Reproductive minimal inhibitory concentration

(RMIC)

binary outcomes, 234

ECCss, 235, 236

model parameters, 233

R0 value, 234

Reticuloendothelial system (RES), 374

Ribavirin, 241

Risperidone

D2-receptor antagonists, 346–347

EPS-related adverse events, 355, 356

longitudinal PK/PD model, 359

steady-state plasma concentration, 350

Rituximab, 297, 298

S

Schizophrenia, 345, 346

Spinal muscular atrophy (SMA), 419

Streptococcus pneumoniae, 252
Stroke

clinical trials, 209–210

disease progression models

CYP2D6 gene activity, 210, 211

NIHSS, 211

NMDA receptors, 210

pharmacokinetic-pharmacodynamic

analysis, 211

population pharmacodynamic

parameters, 213

population pharmacokinetic

parameters, 212

nonmonotonic stroke scale data, 214–216

Swedish Medical Product Agency. See
European regulatory bodies

Sympathetic nervous system (SNS), 469

T

Target-mediated drug disposition (TMDD),

367, 376–379

Thromboembolism (TE), 422, 423

TMDD. See Target-mediated drug disposition

Topirimate (TPM), 428–430

Trileptal® (oxcarbazepine), 50

t-Test adaptation, 115–116
Type 1 diabetes, 177

Type 2 diabetes, 177

Type 2 diabetes mellitus (T2DM), 446–447, 451

U

U.S. Food and Drug Administration. See also
European regulatory bodies

Critical Path Opportunities Report, 492

Critical Path Report, 150–151

draft guidance, 111, 123

drug development and dose

optimization, 54

pharmacometrics

EOP2a meetings, 41

history, 37–38

knowledge management, 41–42

NDA and BLA submissions, 39

Index 537



pediatric trials, 40–41

QT studies, 39–40

research and policy development, 42–43

vision and strategic goals, 38

regulatory decisions

approval types, 43–45

approved doses, phase 3 trials, 50–52

confirmatory evidence, 52, 53

model-based primary endpoints, 52, 54

pediatric dosing regimen, 48–50

pharmacokinetic review, 43, 44

regulatory impact, published

cases, 44–48

standardization, 55

V

Variable adherence phenomena, 5–7

Viral dynamic model

chain reaction, 230

free virions, 229

hepatitis C

drug efficacy value, 242

mechanistic simulations, 244

model structure, 242–243

nonlinear mixed effects model, 242

pegylated interferon effects, 241

physiology of liver, 240

ribavirin effects, 241

RNA, 240

sustained virologic response, 239

therapy outcome, 239

viral load profiles, 243–244

HIV

anti-HIV drug effects, 231

anti-HIV inhibitors, 233

cell types, 230

dose and dosing schedule, 234–237

INH, 232

model parameters estimation, 237–239

PK-PD principles, 234

reproductive minimal inhibitory

concentration, 233

viral load-time profiles, 233

quantitative elements, 228

Virtual patient (VP), 353, 474–475

Visual predictive check (VPC), 222, 223

Vogel water-lick model, 342

W

Well-stirred model, 494

Within-sample variability (WSV), 525

Z

Zosyn® (piperacillin/tazobactam), 49

538 Index


	Clinical Trial Simulations
	Preface
	Contents
	Contributors
	Chapter 1: Clinical Trial Simulation and Quantitative Pharmacology
	Part I: Application of M&S in Regulatory Decisions

	Part II: Strategic Applications of M&S in Drug Development

	Part III: Application of M&S in Selected Therapeutic Areas

	Part IV: Expanded Applications of M&S

	Part V: Evolving Methodologies in M&S

	Index



