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Focusing on Chinese Mathematics Teaching, 

Teachers and Teacher Education:  

An Introduction 

Since our first book, How Chinese Learn Mathematics: Perspectives 

from Insiders (hereafter called “Insiders 1”), was published in 2004, we 

as editors have received much encouraging feedback from educational 

researchers and practitioners, as well as general readers, from different 

countries. We have also gladly noticed that Insiders 1 has been reviewed 

in leading research journals and other publication avenues in a number of 

countries including the US, UK, Germany, Singapore, and China.
 1

 In 

particular, soon after the publication of the book, we began to receive 

encouragement from our publisher and our advisors, as well as from 

some readers to publish a new book, or Insiders 2, with a particular focus 

on Chinese mathematics teaching.   

Meanwhile, the last decade has continuously witnessed a growing 

interest in Chinese education and, in particular, Chinese mathematics 

education. This growth of interest is arguably related to the fact that, in 

                                                 
1
 For example, see Bishop, A. J. (2005). Review of "How Chinese Learn Mathematics: 

Perspectives from Insiders" [in Chinese]. Journal of Mathematics Education, 14(2), 100-

102; Xie, L., & Zhao, X. (2006). How do we teach mathematics: Perspectives from How 

Chinese Learn Mathematics? [in Chinese]. Hunan Education, Issue No. 6, 44-45; Bishop, 

A. J. (2006). How Chinese learn mathematics perspectives from insiders (book review). 

Asia Pacific Journal of Education, 26(1), 127-129; Star, J. R., & Chang, K. -L. (2008). 

Looking inside Chinese mathematics education: A review of "How Chinese learn 

mathematics: Perspectives from insiders”. Journal for Research in Mathematics 

Education, 39(2), 213-216; and Jones, K. (2008). Book review—Windows on 

mathematics education research in mainland China: A thematic review. Research in 

Mathematics Education, 10(1), 107-113. Also see S. Lancaster’s (2005) online review on 

the Mathematical Association of American website at http://www.maa.org/. 
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the Programme for International Student Assessment (PISA) 2009 and 

2012 assessments, the Chinese participating students from Shanghai 

schools, were the very best performers.
2
 As a matter of fact, the Shanghai 

students’ average scores in mathematics were 600 and 613 in PISA 2009 

and 2012 respectively, while the average scores of the second best 

performers, Singapore students, were 562 and 573, with the international 

average for each assessment being 500. Although there exist different 

interpretations and views about the top performance of Shanghai students, 

the gaps measured using the average scores in these two large-scale 

assessments between the Chinese students and their counterparts from 

other countries are too large to be ignored. It is also notable that, after 

PISA 2009, Tucker and his colleagues published a book entitled 

Surpassing Shanghai: An Agenda for American Education Built on the 

World’s Leading Systems (Tucker, 2011),
3
 and after PISA 2012, the UK 

government announced, in March 2014, its intention to recruit about 60 

Shanghai mathematics teachers to work in English state schools to raise 

the standards of mathematics and close the gap between the two 

countries (Parton, 2014).
4
 It seems apparent that the interest in Chinese 

mathematics education will continue for many years, and in terms of 

academic research, many issues about Chinese mathematics education 

and Chinese students’ performance need to be thoroughly examined. 

The present book, or Insiders 2, is not only a continuation of our first 

book, Insiders 1, which focused on the learning side of Chinese 

mathematics education, but also in a sense a response, from a research 

perspective, to the on-going interest and scholarly discourse about 

Chinese mathematics teaching and learning.  

                                                 
2 PISA is organized by the Organisation for Economic Co-operation and Development 

(OECD) starting from 2000 on a 3-year cycle. PISA 2009 is the first time that students 

from the Chinese mainland took part in the assessment (see: www.oecd.org/pisa). So far 

Chinese students from the mainland have not participated in another international 

comparative study, the Trends in Mathematics and Science Study (TIMSS). 
3 Tucker, M. S. (Ed.). (2011). Surpassing Shanghai: An agenda for American education 

built on the world's leading systems. Cambridge, MA: Harvard Education Publishing 

Group. 
4 Paton, G. (2014, March 14). Chinese teachers sent into English schools to boost results. 

The Daily Telegraph. Retrieved from http://www.telegraph.co.uk 
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The focus of this book is on the teaching side of Chinese mathematics 

education. More specifically, it is about teaching, teachers, and teacher 

education and professional development relating to Chinese mathematics 

education.  

The book is organized into three main sections. In Section 1, 

Historical and Contemporary Perspectives, we start with Chapter 1 by 

DAI and CHEUNG, which aims to provide readers with a broad and 

historical perspective on traditional mathematical teaching in ancient 

China by examining the key values, thoughts, and approaches as 

documented in ancient Chinese mathematics texts. In contrast, Chapter 2 

by FAN, MIAO and MOK examines contemporary international research 

and presents an up-to-date review on how modern Chinese mathematics 

teachers teach and pursue their pre-service training and in-service 

professional development, in which the crucial role of the Teaching 

Research Group in schools and Teaching Research Office at different 

government levels is worth particular attention.   

Section 2, Understanding the Chinese Ways of Teaching 

Mathematics, contains 12 chapters, investigating a wide range of issues 

at both the macro- and micro- levels on how Chinese mathematics 

teachers teach mathematics. These investigations were undertaken by 

different researchers in different regions.  

Both Chapters 3 and 4 involve some new theoretical models and 

frameworks to analyze and understand the Chinese ways of teaching 

mathematics. Chapter 3 by HUANG Rongjin, MILLER and TZUR 

presents a hybrid model consisting of a tripartite theoretical lens and 

hence provides a fine-grained examination of learning opportunities 

created via Chinese classroom instruction, particularly the general 

features of teaching with variation. Chapter 4 by WANG, CAI and 

HWANG presents another careful analysis of a model Chinese 

mathematics lesson and explores the discourse strategies the teacher used 

to achieve instructional coherence and more generally the features of 

classroom instruction in China (mainland), for which the authors also put 

forward a framework for examining instructional coherence. 

Chapters 5 through 10 provide readers with an in-depth look into how 

Chinese mathematics teachers teach a variety of specific mathematics
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topics. In Chapter 5, HUANG Hsin-Mei examines 12 instructional cases 

collected from elementary schools in Taiwan using videotaping and 

interviews and provides a portrait of how teachers conducted lessons and 

what they were concerned about when teaching length, area, and volume 

measurements, which the author intends to help in understanding such 

classroom practices. In Chapter 6, FANG looks at how an experienced 

secondary teacher in Shanghai explained student homework on 

geometric proofs and uncovers the hidden dimensions of mathematics 

teaching in Shanghai classrooms mediated through homework practice. 

The chapter sheds new light on the role and potential of homework in 

mathematics instruction.  

Chapter 7 by LI Titus reports on primary students’ ability in solving 

time interval problems in Macau, Hong Kong and the Netherlands, and 

reveals, through interviews and lesson observation, how time interval 

calculations are taught in each place. Chapter 8 by YANG Der-Ching, 

CHEN Pei-Chieh, TSAI Yi Fang and HSIEH reports how number sense 

was taught using interactive multimedia in a primary classroom in 

Taiwan and shows the differences in students’ use of number sense 

strategies before and after the instruction. The results suggest that 

interactive multimedia can be an effective tool both in helping children 

develop number sense and in promoting children’s motivation for 

learning. In Chapter 9, DING, JONES and ZHANG Dianzhou present a 

case study and analyze how an expert teacher in Shanghai used the “Shen 

Tou” (“permeation”) method to teach theorems in geometry to an eighth-

grade mathematics class, in which two key features of the instruction 

were identified: one is the complex learning support structure and the 

other the repetition and accumulation of practices of hierarchically-

ordered skills and gradual understanding of the systematical connections 

of knowledge within the multiple-layered teaching procedures. In 

Chapter 10, HUANG Xingfeng, YANG and LI Shiqi examine three 

experienced Chinese teachers’ teaching of the use of letters to represent 

numbers based on the new curriculum standards in four dimensions 

(strands), i.e., knowledge and skills, mathematical thinking, solving 

problem, and affect and attitude.   

In contrast to the previous chapters, Chapters 11 to 14 focus more on 

general teaching approaches in Chinese mathematics classrooms. In 
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Chapter 11, XU and ZHU Guangtian look into two cases of project-based 

instruction, a relatively new development in Chinese mathematics 

teaching practices, and examine multiple aspects of students’ 

engagement in the project-based classroom environment. In Chapter 12, 

LEE Yuan-Shun and LIN Fou-Lai investigate the teaching behaviors of 

Taiwanese mathematics teachers using a large-scale video survey of the 

fourth-grade classrooms across Taiwan, and reveal the general features 

of their mathematics teaching. Similarly, in Chapter 13, MA and ZHAO 

also examine the features of exemplary lessons in the Chinese mainland 

under the curriculum reform by studying 13 such lessons in elementary 

mathematics. The results show that these exemplary lessons not only 

practiced the advocated ideas of the new current reform, but also 

embodied some elements that might reflect the stable characteristics of 

Chinese mathematics classrooms. Finally, in Chapter 14, GU, YANG 

Yudong and HE present the Qingpu experiment, a very well-known 

mathematics teaching reform in the Chinese mainland, and examine its 

impact on the eighth-grade students’ learning in mathematics. 

Section 3, Chinese Mathematics Teachers, Teacher Education 

and Teacher Professional Development, comprises seven chapters, 

focusing on issues about Chinese mathematics teachers’ knowledge, 

beliefs, and their professional development. 

In Chapter 15, ZHANG Qiaoping and WONG first provide a review 

of the literature on how beliefs and knowledge influence mathematics 

teachers’ teaching with a particular focus on studies conducted in the 

Chinese regions and then introduce readers to a series of five studies with 

different research methods to address how beliefs and knowledge affect 

the teaching of mathematics in the Chinese context. In Chapter 16, FAN, 

ZHU Yan and TANG investigate more than 30 mathematics master 

teachers in seven different regions of China through questionnaires and 

interviews, and examine the reasons behind the success of those master 

teachers in their acclaimed teaching careers. The results reveal that the 

master teachers valued internal (personal) factors more than external 

ones in their professional growth. In Chapter 17, CHEN Qian and 

LEUNG investigate three Chinese teachers’ mathematics beliefs that 

were espoused and enacted in the context of a constructivism-oriented 

curriculum reform, and reveal the different beliefs of these teachers.  



xii  How Chinese Teach Mathematics: Perspectives from Insiders 

 

Focusing on teacher professional development, Chapter 18 by YUAN 

and LI Xuhui use a case study method to explore how “Same Content 

Different Designs” (SCDD, or Tong Ke Yi Gou in Chinese), which has 

become popular as a new form of teacher professional activity in the 

Chinese mainland, has an impact on the professional development of 

prospective mathematics teachers. They propose a model that 

characterizes the key components and stages of SCDD activities. In 

Chapter 19, JIN, LU and ZHONG examine Chinese mathematics 

teachers’ perceptions of concept map, and their incorporation, after brief 

training, of concept map in mathematics teaching through lesson plans 

and practical teaching. Their study reveals the importance of operational 

training and professional development for teachers to adopt new tools 

and ideas in their teaching. In Chapter 20, LIN Pi-Jen and TSAI Wen-

Huan present a study on how the use of research-based cases in a teacher 

training programme in Taiwan enhanced mathematics teachers’ 

awareness of and abilities in maintaining high-level cognitive demands 

of mathematical tasks in classroom practice. The final chapter of this 

book, by LEU, CHAN and WONG, takes an in-depth look at the 

relationships between religious beliefs and teaching among mathematics 

teachers in the Chinese mainland, Taiwan and Hong Kong through a 

comprehensive review of the related literature and two empirical studies 

they conducted. It is a must read for any readers who are interested in 

this very specialized and under-researched topic.  

It has taken quite a long time to reach the completion of this book 

since 2010 when we started calling for contributions to the book after 

having reached official agreement with the publisher in early 2010. For a 

project of this magnitude, it would be impossible without much support 

and help along the way from many people, and for this we wish to offer 

here our deep appreciation. 

First, we would like to thank all the contributors who submitted their 

proposals and later initial manuscripts, and all the authors of accepted 

chapters, who we think have made great efforts in writing and revising 

their chapters. 

Second, all the contributed manuscripts have gone through blind peer 

review by at least two and, in some cases, three or four colleagues, who 

are all university-based academics and/or hold doctoral degrees. We are 



 Focusing on Chinese Mathematics Teaching, Teachers and Teacher Education  xiii 

 

much indebted to all the reviewers for offering their generous help and 

time. The list of the reviewers is as follows: 

BOEY Kok Leong (Singapore) LI Titus Siu Pang (Netherlands) 

Kim BESWICK (Australia) LI Wenlin (China) 

Christian BOKHOVE (UK) LI Xuhui (USA) 

Astrid BRINKMANN (Germany) Mailizar Mailizar (Indonesia) 

CAI Jinfa (USA) Lionel PERERIA-MENDOZA (Canada) 

CHAN Yip-Cheung (Hong Kong) MOK Ah Chee Ida (Hong Kong) 

CHENG Chun Chor Litwin (Hong Kong) JONG Siu-Yung  Morris (Hong Kong) 

DING Liping (Norway) NG Swee Fong (Singapore) 

Shelley DOLE (Australia) NG Wee Leng (Singapore) 

FAN Lianghuo (UK) NI Yujing (Hong Kong) 

FANG Yanping (Singapore) NIE Bikai (USA) 

KOH Kim Hong (Canada) Leah A. NILLAS (USA) 

HSIEH Feng-Jui (Taiwan) Thomas E. RICKS (USA) 

HUANG Hsin-Mei E. (Taiwan) SUN Xuhua (Macau) 

HUANG Rongjin (USA) SUN Ye (USA) 

HUANG Xingfeng (China) TANG Kwok Chun (Hong Kong) 

Gwen INESON (UK) Fay TUNER (UK) 

JIANG Chunlian (Macau) Charis VOUTSINA (UK) 

JIN Haiyue (China) WONG Khoon Yoong (Singapore) 

Keith JONES (UK) WONG Ngai-Ying (Hong Kong) 

LAW Huk-Yuen (Hong Kong) YANG Yudong (China) 

LEU Yuh-Chyn (Taiwan) YUAN Zhiqiang (China) 

LEUNG Yuk Lun Allen (Hong Kong) ZHANG Qiaoping (Hong Kong) 

Third, we wish to express our sincere appreciation to our four 

advisors, ZHANG Dianzhou, LEE Peng Yee, LIN Fou-Lai, and GU 

Lingyuan for their advice and continuous support for this book. 

Editorial meetings were held in Hangzhou, China in April 2011, 

Seoul, Korea in July 2012, and Shanghai, China in June 2013. We wish 

to thank Zhejiang Education Publishing House and The Department of 

Mathematics, East China Normal University for helping to organize 

these meetings.  

Finally, we must thank our editorial assistants, ZHANG Qiaoping and 

LI Xiaoqing for their critical editorial assistance during the final stage of 
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the completion of this book. We also wish to record our thanks to 
Manahel ALAFALEQ, CHEN Yangting, LU Jitan, ZHANG Ji, Angeline 
FONG, KWONG Lai Fun, Elizabeth LIE, Lionel PEREIRA-MENZODA, 
Ida MOK, HUA Qiong, WANY Yi and XIANG Kun for their help at 
different stages of work on the book.   

This book intends to present another concerted effort from an 
international group of researchers from different parts of the world on the 
study of Chinese mathematics education. Nevertheless, it remains clear, 
or in a sense has even become clearer, to us that given the complex 
nature of teaching and learning, particularly in connection to the large 
variety of social, economic, cultural and even religious backgrounds of 
Chinese schools, students and teachers, many issues remain to be further 
studied in this area. Like our first book, Insiders 1, we hope that this 
present book, Insiders 2, will also make a meaningful contribution to the 
advancement of research in Chinese mathematics education, and hence 
more generally to that in the international mathematics education. We 
continue to welcome exchanges and feedback from colleagues and 
general readers as well.  
 

 
 
 

FAN Lianghuo 
WONG Ngai-Ying 

CAI Jinfa 
LI Shiqi 

 
July 2014 
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Chapter 1 

The Wisdom of Traditional Mathematical  

Teaching in China 

DAI Qin  CHEUNG Ka Luen 

For the past 3,000 years mathematics education in China has developed 

its own traditions in which abundant and profound teaching thoughts 

have been accumulated and summarized. Throughout the history of 

mathematical education in China, there are many typical and inspiring 

teaching examples which fully display the wisdom of heuristic 

pedagogy, concise explanation of mathematical concepts with abundant 

practice, the emphasis of “practice makes perfect”, and the idea of 

alternative solutions to the same mathematical problem. Based on the 

examples in the mathematics masterpieces in ancient China such as The 

Arithmetical Classic of the Gnomon and the Circular Paths of Heaven, 

The Nine Chapters on the Mathematical Art, Mathematical Treatise in 

Nine Sections, and Yang Hui’s Algorithms, this chapter examines and 

discusses the traditional values, thoughts, and approaches used in the 

mathematical education in ancient China. 

 

Keywords: traditional Chinese mathematics education, Chinese 

ancient mathematics, mathematics education thoughts 

1. Understanding Traditional Chinese Mathematics Education 

Mathematics education in traditional China has a long history of over 

3,000 years during which a lot of outstanding mathematicians were 

cultivated. Due to geopolitical reasons, for most part of her history, 

China developed her own education system and philosophy during which 

influence from the West virtually played no direct role in the 

development. Scientific knowledge and technology from the Western 
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world began to germinate in China only briefly in the 16th and 17th 

centuries, when Jesuits began their mission to the Far East (Katz, 2009). 

Such interaction was soon paused abruptly due to the isolation policy 

adopted by the newly-established Qing Dynasty (1644-1911). 

Nevertheless this is also the time when Chinese mathematics started to 

decline. As a result, we will use in this chapter the term “Traditional 

China” and “Ancient China” interchangeably
1
 to refer to the country 

until around 17th century. During this long period Chinese 

mathematicians and educators have broken a number of records in world 

history. For instance, China has the record of establishing the first 

institute of higher education for mathematics in the world, called 

Suanxue Guan (the Computation Institute) in the Tang dynasty 

(618-907). Chinese mathematicians succeeded in approximating π 

correctly to 6 decimal places, a record which was not broken until almost 

a millennium later. They also succeeded in discovering numerous 

theorems and properties long before Western literature made the same 

discoveries (Wu, 1998). Hence, from a historical perspective it is 

worthwhile to study mathematics education in traditional China in order 

to glimpse at the success of Chinese mathematicians and educators. 

Though mathematics education in China nowadays is strongly affected 

by the West, the spirit and methodology created in traditional China still 

shed light on modern mathematics education. Thus, from an education 

perspective it is also important to investigate how traditional Chinese 

teachers taught mathematics, so as to learn from their teaching 

experience and even to apply some of their methodologies to 

contemporary classroom teaching. 

In recent years, there are numerous papers and books focusing on 

various aspects and examples in mathematics education in ancient China. 

Mathematics classics such as Zhou Bi Suan Jing (the Arithmetical 

Classic of the Gnomon and the Circular Paths of Heaven) and Jiu Zhang 

Suan Shu (the Nine Chapters on the Mathematical Art) have been 

translated into English so that more people can access this literature. Also, 

there are many papers and books discussing about the learning and 

                                                             
1 This period of time is usually referred to as “Ancient and Medieval China” (see Katz, 

2009, Ch. 7). 
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teaching of mathematics in ancient China (cf. Wei, 1987; Lam & Ang, 

1992; Li & Qian, 1998; Tong et al., 2007; Dai & Matsumiya, 2011). In 

short, the discussion on mathematics education in ancient China is no 

longer limited to some typical cases, such as some stories about Chinese 

mathematicians, or sporadic discussion on mathematical problems like 

Wu Bu Zhi Qi Shu (the Chinese Remainder Theorem) and Gou Gu Ding 

Li (the Chinese version of Pythagorean theorem) (Wu, 1998; Guo & Li, 

2010).  

Croce (1866-1952), a well-known Italian historian, asserted that 

“however remote in time events there recounted may seem to be, the 

history in reality refers to present needs and present situations wherein 

those events vibrate” (Croce, 1949, p. 19). He also pointed out how 

historical works can bring inspirations in the present time: “[i]t often 

happens that the historical sense of a book is lifeless to us…until 

suddenly it springs to life through new experience gained out of the 

course of events and through new requirements born in us which have 

their counterpart in, and bear a more or less intimate resemblance to 

those of former times” (Croce, 1949, p. 18). In a similar fashion, the 

thought of “gaining new insights through reviewing old materials” has 

also been advocated and practiced since ancient times in China: 

Importance has been attached to reviewing known facts and past 

experience so as to acquire new knowledge and insights; On a broader 

sense, Chinese people even emphasize history as a means of reflection 

during the development of their nation.  

In this chapter, we will basically ask two fundamental questions with 

regard to ancient Chinese mathematics education:  

A. What is the philosophy and principles of mathematics education 

in ancient China? 

B. How does the education philosophy affect the methodologies 

and pedagogies adopted by Chinese mathematics teachers at 

that time? And what are the features of mathematics education 

in ancient Chinese that result from this education philosophy? 

We will try to give the answer to the first question in Section 2 while for 

the second question, we will go over a number of examples presented in 

various mathematics classics in ancient China so as to get a general 
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picture of the mathematics education at that time. 

2. Traditional Mathematics Education Thought in China 

As a subject in the “liu yi” (six arts)
2
, mathematics is an indispensable 

part of traditional Chinese education. Traditional mathematics education 

in China shares the same principles as all of the traditional education in 

China. In other words, the philosophy of traditional Chinese education is 

the soul of the traditional mathematics education in China. The 

traditional Chinese education is influenced heavily by Confucianism, 

Daoism, Mohism and Legalism. Since the official teaching of 

Confucianism started from the Han dynasty (206-220 BC), we can state 

that Confucianism is the most important underlying philosophy guiding 

the mathematics education in ancient China (see also: Wong et al., 2012). 

This is reflected by the emphasis on eternal themes such as “respecting 

teachers and esteeming the truth” and “teaching benefits teachers as well 

as students” in traditional mathematics education in China. In this regard, 

the first author of this chapter has expounded in the first chapter of his 

book (Dai, 2009) on mathematics education values of ancient China in 

great detail. Generally speaking, mathematics education in ancient China 

has the following philosophy and principle: 
(a) The emphasis on the dominant role of students and teachers. This is 

in turn reflected by the following principles: 

• Teaching in a way according to the ability and interest of the students; 

• Emphasis of stimulation and inspiration on students; 

(b) Emphasis of the equal importance of the thinking and learning 

processes. 

(c) Inductive reasoning: Students are encouraged to understand the 

underlying mathematics principles through studying many examples, so that 

afterwards they can solve new yet similar questions themselves (Dai, 2009). 

Firstly, the traditional mathematics education of China advocates both 

the dominant role of students and teachers in the teaching process. Since 

ancient China, teachers have been highly respected by the general public, 

                                                             
2 During the Zhou Dynasty (ca 1122–256 BCE), students were required to master the Liu 

yi (six arts) in the ancient China. They are: Rites (礼), Music (乐), Archery (射), 

Charioteering (御), Calligraphy (书), and Mathematics (数). These six arts have their 

roots in the Confucian philosophy (Tong et al., 2007). 
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enjoying a lofty social status in Chinese ethics. Here are some of the 

brilliant expositions of ancient Chinese philosophers in this aspect.  

Record on Subject of Learning in Book of Rites (《礼记．学记》; see 

Legge, 1885): 

“When the proper reverence for the master is secured, the course which the 

master inculcates is regarded with honour. When the course is regarded with 

honour, the people know how to respect learning.”  

Da Lue in Xun Zi (《荀子．大略》; see Knoblock, 1994): 

“When a country is on the verge of a great florescence, it is certain to prize its 

teachers and give great importance to breadth of learning…When a country is 

on the verge of decay, then it is sure to show contempt for teachers and slight 

masters.”  

Taigong Family Education in Lost Ancient Books found in Mingsha 

Mountain (《鸣沙石室佚书, 太公家教》; see Luo): 

“He who teaches me for one day is my father for life.”  

Revised Constitution of Liu Yang Mathematics School, written by TAN 

Sitong
3
 (谭嗣同：《浏阳算学馆增订章程》; see Tan): 

“As to the academic students, nothing is more important than respecting their 

teachers.” 

 

 “Esteeming the truth” means that knowledge is presented as it is to the 

students, and such presentation cannot be realized unless the dominant 

role of students is guaranteed. However, some people misunderstand it as 

denying the principal status of students during teaching process. Being 

strict with students cannot be confused with denying their dominant roles 

in education.  

On the aspect of teaching, Confucius emphasized teachers’ devotion 

with an attitude of “the silent treasuring up of knowledge; learning 

without satiety” (Shu Er in The Analects of Confucius; see Legge, 1861) 

and argued that it’s a teacher’s fault to be lax in teaching, while the 

                                                             
3 Names of historical figures in China are translated using pinyin, starting with family 

name followed by first name, unless in some cases where the family names of some 

ancient people are uncertain. Family names are capitalized at their first appearance in this 

chapter. 
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importance of learning is analogous to that of gem-cutting: gems 

unwrought can do nothing useful. If a student cannot learn well, a teacher 

must be responsible for it to some extent. Hence, teachers view the 

leading function in teaching as their responsibility.  

The dominant role of students in the education system in ancient 

China is realized by the requirement of teaching according to students’ 

ability, characteristics and interest. Education is delivered from the 

perspective of the needs of the students. To achieve this, teachers should 

have a thorough understanding of the students themselves. Ji Kang Zi 

once asked Confucius whether some of his students could be suitable 

candidates for government officials, the latter could clearly replied that 

his students Zhong You was determined, while Zi Gong was smart and 

Ran Qiu was talented, and hence all of them would become good 

officials.  

The dominant role of students is also realized by the emphasis of 

bringing stimulation and inspiration to students. Education is not merely 

rote-memorization of facts and rules; rather, it promotes understanding of 

these facts and rules in a way that students can apply them appropriately 

to new situations. To achieve this, students must actively think about the 

materials they learn, and teachers are here to help stimulate the process 

of active thinking. In particular, when students raise a question, the 

teacher should be careful of whether they should reply, and how far the 

teacher should tell to the students. In this regard, Confucius gave three 

general guidelines. He would advise not to answer students’ queries 

unless (1) they are eager to learn; (2) they are anxious to explain the 

problems themselves and (3) they could understand the greater picture of 

the problem provided that they are given some hints about a corner of the 

problem itself. We will see in the later part of this section that some 

Chinese mathematicians agreed with these guidelines that they simply 

repeated these when they gave advice to readers in the commentaries.  

The idea of “teaching benefits teachers as well as students” was 

introduced by Confucius over 2,000 years ago. It is the education 

philosophy which concisely highlighted the integration of both the 

dominant role of students and the leading function of teachers. In simple 

words, Confucius advocated that teaching and learning can enhance each 

other, that interaction can be achieved between teachers and students, 
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and that improvement can be made on both the pedagogy and the 

self-learning of teachers. The idea of “teaching benefits both teachers and 

students” disapproves the dichotomy of “student-centered” or 

“teacher-centered” viewpoints, and encourages the balance and harmony 

between teaching and learning. It is reiterated in different manners in 

various teaching scenarios. For instance, “When I walk along with two 

others, they may serve me as my teachers” (Shu Er in The Analects of 

Confucius; see Legge, 1861) and “So pupils are not necessarily inferior 

to their teachers, nor are teachers better than their pupils. Some learn the 

truth earlier than the others, while different people have different 

specialties.” (On the Teacher, written by HAN Yu (768-824)). The 

concept of “teaching benefits teachers as well as students” is always the 

backbone of the practice and development of traditional mathematics 

education in China.  

On the aspect of learning, Confucius valued the combination of 

learning and thinking: “Learning without thought is labor lost; thought 

without learning is perilous” (Wei Zheng in The Analects of Confucius; 

see Legge, 1861). As an old Chinese saying goes, “it is the master who 

leads you to the door of a profession, but it is yourself who can train your 

own skills”. All of these encourage the initiative of students. Above all, 

students should place equal emphasis on learning and thinking.  

We should point out that other tradition philosophies like Daoism, 

Mohism and Legalism have also played interesting roles in the forming 

of above philosophy and principles as stated in (a)-(c) too. One is 

referred to Wong et al. (2012) and the references therein for more details. 

The thought of “teaching benefits teachers as well as students” can be 

realized by the discussion and communication between teachers and 

students, which is similar to the Socratic method of elicitation teaching. 

Many typical teaching cases of mathematics in ancient China were done 

in the form of conversation and discussion. The following case from 

Zhou Bi Suan Jing (Cullen, 1966) will illustrate this point vividly.  

Long time ago, Rong Fang asked Chen Zi “Master, I have recently heard 

something about your Way (道). Is it really true that your Way is able to 

comprehend the height and size of the sun, the [area] illuminated by its radiance, 

the amount of its daily motion, the figures for its greatest and least distances, 

the extent of human vision, the limits of the four poles, the lodges into which 



10  Q. Dai & K. L. Cheung 

the stars are ordered, and the length and breadth of heaven and earth?” 

“It is true” said Chen Zi. 

Rong Fang asked “Although I am not intelligent, Master, I would like you to 

favour me with an explanation. Can someone like me be taught this Way?” 

Chen Zi replied “Yes. All these things can be attained to by mathematics. 

Your ability in mathematics is sufficient to understand such matters if you 

sincerely give reiterated thought to them.” 

At this Rong Fang returned home to think, but after several days he had been 

unable to understand, and going back to see Chen Zi he asked “I have thought 

about it without being able to understand. May I venture to enquire further?” 

Chen Zi replied “You thought about it, but not to [the point of] maturity. This 

means you have not been able to grasp the method of surveying distances and 

rising to the heights, and so in mathematics you are unable to extend categories 

[i.e. unable to think analogically about similar problems]. This is a case of 

limited knowledge and insufficient spirit. Now amongst the methods [which are 

included in] the Way, it is those which are concisely worded but of broad 

application which are the most illuminating of the categories of understanding. 

If one asks about one category, and applies [this knowledge] to a myriad affairs, 

one is said to know the Way. Now what you are studying is mathematical 

methods, and this requires the use of your understanding. Nevertheless you are 

in difficulty, which shows that your understanding of the categories is [no more 

than] elementary. What makes it difficult to understand the methods of the Way 

is that when one has studied them, one [has to] worry about lack of breadth. 

Having attained breadth, one [has to] worry about lack of practice. Having 

attained practice, one [has to] worry about lack of ability to understand. 

Therefore one studies similar methods in comparison with each other, and one 

examines similar affairs in comparison with each other. This is what makes the 

difference between stupid and intelligent scholars, between the worthy and the 

unworthy. Therefore, it is the ability to distinguish categories in order to unite 

categories which is the substance of how the worthy one’s scholarly patrimony 

is pure, and of how he applies himself to the practice of understanding. When 

one studies the same patrimony but cannot enter into the spirit of it, this 

indicates that the unworthy one lacks wisdom and is unable to apply himself to 

practice of the patrimony. So if you cannot apply yourself to the practice of 

mathematics, why should I confuse you with the Way? You must just think the 

matter out again.” 

Rong Fang went home again and considered the matter, but after several days 

he had been unable to understand, and going back to Chen Zi he asked “I have 

exerted my powers to the utmost, but my understanding does not go far enough, 

and my spirit is not adequate. I cannot reach understanding, I implore you to 

explain to me.” 

Chen Zi said “Sit down again and I will tell you.” At this Rong Fang returned 

to his seat and repeated his request. Chen Zi explained to him […]. 

 

Just as ZHAO Shuang (around the 3rd century CE) remarked in his 
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commentaries on Zhou Bi Suan Jing (Cullen, 1966), “[a teacher] should 

not open up the truth to one who is not eager to get knowledge, not help 

out anyone who is not anxious to explain himself…[When a teacher] has 

presented one corner of a subject to anyone, he should be able to learn 

the other three from it.” This viewpoint is exactly what has been pointed 

out at Shu Er in The Analects of Confucius (see Legge, 1861) some 

centuries before Zhao, and is quite similar to LIU Hui’s (225-295) ideas 

put forward in his commentaries in the chapters of Su Mi (Maize) and 

Fang Cheng (Equations) in The Nine Chapters on the Mathematical Art 

(Shen, Crossley, & Lun, 1999), which emphasize the importance of 

inductive reasoning in the mathematical application. As described in the 

above quoted dialogue between Chen Zi and Rong Fang, traditional 

mathematics education in China implicitly groups different mathematical 

problems into different “categories”, with problems in the same category 

share some similar features and can be solved by the same set of 

mathematical techniques. A teacher not just instructs the students to 

rote-memorize the skills used in solving a particular example (“a corner 

of a subject”); instead, he should also inspire the students to internalize 

the mathematical tools introduced in that example so that when given 

another similar example in the same category, the students can modify 

and apply the learned tools to solve the new problem themselves. 

Though the examples mentioned above are special ones, they all 

reflect the philosophy of Chinese mathematics pedagogies. The 

following three methodologies and pedagogies can be inferred: First, in 

the mathematics teaching of ancient China, heuristic teaching method 

was applied through conversation between teachers and students. This 

kind of interaction is similar to Socrates’ “elicitation teaching theory” in 

his teaching of geometry as described in Menon by Plato of ancient 

Greece. Second, while Chen Zi advocated independent study, Rong Fang 

clarified the importance of reflection in mathematics learning. Third, 

Chen Zi didn’t pass on his knowledge to Rong Fang directly until the 

latter pondered on it over and over again for a long time.  

In brief, it is emphasized in Zhou Bi Suan Jing that in Chinese 

mathematics learning, inductive reasoning on similar problems, the drill 

and cultivation of thinking ability as well as some basic mathematical 

knowledge are all essential. The heuristic education in Zhou Bi Suan Jing 



12  Q. Dai & K. L. Cheung 

is comparable to Socrates’ “elicitation teaching theory” (Ferrari, 2000) 

and both of them play a positive role in mathematics education history in 

the East and West, then and now.  

3. Common Features of Traditional Chinese Mathematics 

Education and Some Examples 

Throughout the history of ancient China, education is provided by 

various schools and academies to teach young people the relevant skills 

and knowledge. Some of these institutions are state-run, while the others 

are privately-run. With the setup of “keju” (a state examination or 

recommendation system to select state officials) and “Guozijian” 

(national central institution for higher education) in the 7th century, 

education in China focuses more on preparing young candidates for 

serving the civil service administration (Siu, 2004; Tong et al., 2007). 

Amongst the various skills and knowledge delivered in these institutions, 

mathematical knowledge and techniques are also covered in the 

education system in ancient China as the sixth arts. Though there are 

abundant sources of mathematical texts throughout the long history of 

ancient China, the source for the general mathematics education is best 

summarized by Suan Jing Shi Shu (Ten Mathematical Manuals), a list of 

ten mathematics classics (refer to Table 2 below for the names of the ten 

texts). Amongst these ten textbooks, Zhou Bi Suan Jing and The Nine 

Chapters on the Mathematical Art are the first to appear and stay on the 

top of the list. Hence, we will firstly examine the writing of these two 

texts and the explanatory notes provided by famous ancient Chinese 

mathematicians to highlight some common features of the mathematics 

teaching in ancient China. 

3.1 Instructional Style in Traditional Chinese Mathematical Texts — 

Generality and Conciseness over Abstraction 

The presentation of logical deductions in Chinese mathematical texts is 

somewhat different from that in classical Western mathematical literature. 

Following the tradition of the Elements of Euclid, Western 
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mathematicians almost always start with a list of definitions and axioms 

to verify some clearly stated theorems and propositions, providing the 

details of those necessary steps and lemmas explicitly (Heath, 1956). 

This is a process of abstraction. However, this practice is not followed in 

traditional Chinese mathematical texts and the axiomatic approach is not 

adopted at all. The treatment of mathematical deductions in ancient 

China invites a lot of misunderstanding, all of which are best 

summarized by Matteo Ricci as “[the Chinese] propose all kinds of 

propositions but without demonstration” (Ricci, 1953).  

Nevertheless, traditional Chinese mathematicians do write their 

“general techniques or procedures” when presenting their solutions to 

problems (Chemla, 2003). Despite the absence of clearly defined axioms 

and definitions, the authors of various ancient mathematics texts in China 

still give sufficient details so that readers can follow and work them out. 

A typical situation is as follows: Very often the presentation starts with a 

particular problem (wen, in Chinese) being stated in words. Then an 

answer (da, in Chinese) is given immediately after that, and from time to 

time, when it is necessary, the technique or algorithm (shu, in Chinese) 

for solving the problem will be outlined. Very rare, some lines of very 

concise calculations (cao, in Chinese) are also given hinting how the 

answer is worked out, but usually there are still some gaps and details 

where readers should fill in themselves. One may say that traditional 

Chinese mathematicians and mathematics teachers usually provide just 

enough ingredients for the “backbone” and the students and readers 

should provide the “flesh” in between. Compared to the abstract 

axiomatic approach, the Chinese way of demonstration is more in line 

with the actual logical activities when one is confronted by an unsolved 

mathematical problem: very often one outlines the general “shu” of 

attacking the problem before going into the formality. 

It should be noted that a traditional mathematical text in China is 

usually a collective work of many different mathematicians who lived in 

different centuries. Both Zhou Bi Suan Jing and the Nine Chapters on the 

Mathematical Art are examples. They are believed to be complied during 

the Han dynasty (Katz, 2009). The book Zhou Bi Suan Jing already 

existed around 200 BC but its original author is not certain. It is 

suspected that the book had been written much earlier and there is more 
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than one author. The original version of Zhou Bi Suan Jing is very 
concise: It is simply a collection of mathematical problems together with 
the final answers (Cullen, 1966). The Nine Chapters on the Mathematical 
Art is the first Chinese treatise especially on mathematics, and in 
influence on the development of mathematics it is comparable only the 
Elements (Needham, 1959, p. 25). While Euclid's Elements is often 
considered to be the basis of the Western branch of mathematics, Nine 
Chapters is considered the cornerstone of its Chinese counterpart. It 
provides arithmetical rules focused on practical applications, compiled in 
wen (question) – da (answer) – shu (technique or algorithm) format 
(Shen et al., 1999). Later, mathematicians added comments and remarks 
on the two books and published their commented versions. These 
comments and remarks have several functions as a “teacher”: (1) to give 
explanatory notes to the original text; (2) to state, explain and 
demonstrate the mathematical ideas, techniques and algorithms used in 
the derivation and (3) to inspire the readers to “think outside the box” by 
integrating techniques and algorithms learnt from different problems. 
Zhou Bi Suan Jing has been commented by mathematicians/educators 
including Zhao Shuang, ZHEN Luan (535-566) and LI Chunfeng 
(602-670). The Nine Chapters on the Mathematical Art has been 
commented by Liu Hui and Li Chunfeng. Zhao and Liu lived in around 
the same era while Zhen and Li were three centuries later. This is indeed 
a good example of the accumulation of knowledge, especially in teaching 
which we are going to address later. 

3.2 Traditional Chinese Mathematical Teaching — Highly Real Life 
and Application Oriented 

Mathematical teaching in ancient China always echoes the various 
aspects and applications in the daily life, and traditional mathematics 
educators in China emphasize the applications of mathematics besides 
the logical deductions behind. This is reflected by two aspects: (A) the 
use of problem-oriented teaching approach, and (B) the use of shu 
(techniques or algorithms) in unifying mathematical problems. 
 
(A)  The use of problem-oriented teaching approaches 
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Traditional Chinese mathematics educators put more emphasis on the 

applications of mathematical techniques to real-life problems. For 

instance, though both ancient Western and Chinese made various 

discoveries in geometry, the former is more interested in the logical 

foundations behind all those geometrical facts and leads to the 

development of Euclid’s Elements which starts from a handful of 

explicitly stated axioms and definitions, while the latter continues 

delving into various mathematical problems arising from daily life and 

tries to conclude some laws and formulas that are universally true or at 

least true in most of the cases that are carefully framed. An example is 

The Nine Chapters on the Mathematical Art. Like many other typical 

traditional Chinese mathematical texts, it extracted and investigated 246 

mathematical problems that are frequently encountered in ancient China. 

These problems are grouped into the following nine chapters (and hence 

the name of the book): 

(1) Survey of land (fang tian): mainly on the calculation of the area 
of farmlands of various shapes. 

(2) Millet and rice (su mi): mainly on the exchange and pricing of 
commodities at different rates. 

(3) Distribution by progressions (shuai fen): mainly on distribution 
of commodities in proportion. 

(4) Diminishing breadth (shao guang): mainly on extractions of 
square and cubic roots, and on volume of spheres. 

(5) Consultation on engineering works (shang gong): mainly on 
volumes of various shapes. 

(6) Imperial taxation (jun shu) 
(7) Excess and deficiency (ying bu zu) 
(8) Calculating by tabulation (fang cheng): mainly on solving linear 

equations 
(9) Right triangles (gou gu) 

Indeed, from the title of each chapter one can infer that the original 

author of The Nine Chapters on the Mathematical Art tries to encompass 

every aspect in the real life, from the administrative to the economic side 

of the society, by looking into the 246 problems (Shen et al., 1999). The 

problem-oriented approach presented in traditional Chinese mathematics 

texts is actually the starting point of the inductive reasoning in ancient 

Chinese mathematics education as what we shall discuss below.  
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(B) The emphasis on shu in unifying mathematical problem—distinguish 

categories in order to unite categories 

As mentioned above, mathematics education in ancient China is usually 

problem-oriented, and starts from problems in real applications. 

Knowledge from Chinese mathematicians were gradually accumulated 

by solving numerous typical questions, leading to some summaries and 

generalizations of mathematical skills, algorithms or techniques (shu) 

that are frequently used in tackling those problems. This kind of 

education philosophy is very typical in Liu Hui’s commentaries on The 

Nine Chapters on the Mathematical Art. Indeed, Liu remarked on the 

preface by saying that “[t]hings are related to each other through logical 

reasoning so that like branches of a tree, diversified as they are, they 

nevertheless come out of a single trunk. If we elucidated by prose and 

illustrated by pictures, then we may be able to attain conciseness as well 

as understand the rest”. 

From the eyes of Liu Hui (and many other ancient Chinese 

mathematicians), albeit the fact that many different mathematics 

problems may have different “appearances”, very often they can be 

solved by the same set of mathematical techniques, and hence can be 

“unified” or categorized into the same group of problems. As a result, 

these shu or techniques are stated, one by one after each of the 246 

mathematical problems in The Nine Chapters on the Mathematical Art 

when Liu wrote his commentaries, and they are altogether 202 different 

shu. Indeed, Liu Hui places so much emphasis on these shu that he 

named most of them one by one, for instance, ge yuan shu for the 

technique of approximating π using inscribed N-gons and chong cha shu 

for the trigonometric method of finding heights and lengths (Shen et al., 

1999). Besides, as pointed out in Chemla (2009) that mathematical 

problems in The Nine Chapters on the Mathematical Art were more than 

questions to be solved, they also played a key part in conducting proofs 

of correctness of algorithms. 

It should be noted that these shu are important not only due to their 

essential role in solving those mathematical problems, but also due to the 

fact that The Nine Chapters on the Mathematical Art are categorized by 

the shu. For instance, problems in Chapters 2 and 3 in the book are 

mainly solved by techniques that deal with rates and ratios, while 



 Wisdom of Traditional Mathematical Teaching in China  17 

 

 

methods of finding volumes of various geometrical objects are discussed 

in Chapters 4 and 5. Furthermore, Liu also gives the insight that one 

should not be confined by any particular shu; instead, he also proposes 

“inter-disciplinary” techniques which are applicable to problems in 

different chapters. Amongst the various techniques he introduces, jin you 

shu (the rule of three) is the mathematical tool that Liu valued most 

(Tong et al., 2007). In modern terms, jin you shu is the technique for 

solving problems involving ratios. Liu Hui states about this shu as a 

universal techniques or algorithm (Shen et al., 1999). He proposes that 

every mathematical problem can be solved by jin you shu provided that 

one can find the relationship among various quantities in terms of ratios. 

Indeed, he succeeded in transforming a number of problems originally 

solved by other shu (including techniques for solving equations, excess 

and deficiency, taxation problems, etc.) into equivalent problems that are 

solvable by jin you shu. To a certain extent, jin you shu is one of the 

“trunks” which branch out to, and have applications in various 

mathematical problems in the daily life.   

In the case of Zhou Bi Suan Jing, as we have seen from Chen Zi that 

he wanted his student to be able to apply the techniques learnt from one 

problem to a new yet similar problem of the “same category”. The 

ultimate aim was to “distinguish categories in order to unite categories”. 

In other words, ancient Chinese mathematicians and educators try to 

distinguish different problem types (according to the shu used), and 

attempt to find out some common structures underlying different 

problem categories. A comparison with the Western axiomatic approach 

can help clarify this. Western mathematics starts with a small number of 

definitions and axioms to derive numerous theorems and facts through 

deductive logic. Chinese mathematics, on the other hand, goes in the 

reverse direction by first considering (possibly) infinitely many problems 

and tries to reduce them to a handful of “categories” (Cullen, 2002). This 

is exactly the inductive reasoning reflected in ancient Chinese 

mathematics education! 



18  Q. Dai & K. L. Cheung 

3.3  Teaching Style of Ancient Chinese Mathematicians and 

Mathematics Educators ———— Explaining Mathematical Ideas by 

Combining Logical Deduction and Intuitive Analysis 

(A)  “Multiple approaches to the same problem” and “multiple proofs 

to the same theorem”—the accumulation of explanations of mathematics 

ideas and principles from commentary notes    

Mathematics educators in ancient China emphasize the importance of 

“learning the other three corners of a subject when one is presented one 

corner of it”. To achieve this goal, they tried to provide multiple proofs to 

theorems and multiple approaches to the same problem so as to help the 

students when they need to apply the same principle to other similar 

problems. In this part we are going to use the demonstrations of the 

Pythagoras’ theorem shown in Zhou Bi Suan Jing and The Nine Chapters 

on the Mathematical Art, and their commentaries to illustrate this point. 

The Pythagoras’ theorem is stated clearly in Zhou Bi Suan Jing as 

follows: “If we require the oblique distance [from our position] to the sun, 

take [the distance to] the subsolar point as the base, and take the height 

of the sun as the altitude. Square both base and altitude, add them and 

take the square root, which gives the oblique distance to the sun.” The 

ninth chapter gou gu (right triangles) in The Nine Chapters on the 

Mathematical Art is on the application of the Pythagoras’ theorem. 

Although the original text of both books does not give the proof for this 

important theorem, later commentaries on both books have supplemented 

a number of different proofs to it. The different versions of proofs also 

serve as a purpose to illustrate that there are usually multiple approaches 

to the same problem. The role of a proof is not only for verification of 

theorems; it also serves the important function of enlightenment. 

Theorems with multiple proofs are everywhere in Chinese literature. Siu 

(1993) also gives another example of Jiu Zhang Suan Shu in which Liu 

Hui gives three different proofs for finding the diameter of an inscribed 

circle of a right-angled triangle whose three sides are known. Here are 

two different demonstrations to the Pythagoras’ theorem given by Zhao 

Shuang for the Zhou Bi Suan Jing and Liu Hui for The Nine Chapters on 

the Mathematical Art. 
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(a) The demonstration by 

Zhao Shuang (Cullen, 1966). 

While making the 

commentaries on Zhou Bi 

Suan Jing, Zhao Shuang 

created “by words” the Gou 

Gu Yuan Fang Tu, a figure 

which makes use of the fact 

that area is invariant under a 

series of translations and 

rotations. Note that although 

the invariance of area under 

rigid motions (and many other 

“facts” and “definitions”) is 

implicitly assumed without 

stating, the proof itself is still valid and such omission does not hamper 

students’ understanding of the main proof. Knowing that the area of a 

rectangle is a product of its length and breadth, Zhao proves in the figure 

by rearranging and re-assembling triangles into rectangles, a principle 

summarized as chu ru xiang bu yuanli (out-in complementary principle: 

those in deficiency are compensated by those in excess). He then 

explained the logic as follows: Obtain a rectangle (xian shi) whose 

dimensions are the gou (the shorter length of a right-angled triangle) and 

gu (the longer length of a right-angled triangle). Its area is twice that of 

the right-angled triangle with base and height equal to gou and gu, and 

each of these triangles is painted red in the figure. Make four copies of 

the xian shi and arrange them so that there is a small square, painted 

yellow in the figure, in the middle. This small square has sides of length 

which is the difference of gou and gu. The resulting Gou Gu Yuan Fang Tu 

is depicted as in Figure 1. 

In modern mathematical language, we can express the argument of 

Zhao Shuang as follows: Let a, b and c be the gou, gu and xian 

(hypotenuse) of the triangle, then the red triangle has an area of ½ ab, so 

that the four rectangles have a total area of ab2 , and the middle yellow 

square has an area of 2)( ab − . As a result, calculate the area of the 

 

Figure 1. Gou Gu Yuan Fang Tu 
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largest square in the figure in two different ways, we have

,)(2
2222

baababc +=−+=  
i.e. 222

bac += . 
 

(b) The demonstration by Liu 

Hui (Shen et al., 1999). Liu 

Hui also applies the chu ru 

xiang bu yuanli, but with a 

different rearrangement of 

rectangles. He constructs three 

different squares whose sides 

are gou, gu and xian 

respectively also “by words”, 

as shown in Figure 2
4
. Again, 

let a, b and c be the gou, gu 

and xian of the right-angled 

triangle. Then, by rearranging 

the triangles labeled I, II and III, he also concludes that the sum of the 

areas of two smaller squares is equal to the area of the largest square, i.e. 
2 2 2

c a b= + . 

The two demonstrations of the Pythagoras’ theorem given by Zhao 

Shuang and Liu Hui highlight the importance of applying known results 

(in this case the area of rectangles) to deduce some unknown facts (the 

Pythagoras’ theorem). Offering two proofs to the same problem help 

reinforce the understanding of the problem by looking into it from 

different perspectives. Students can be inspired by this way to actively 

look for other alternative approaches when they encounter mathematical 

problems in the future.  

The accumulation of commentaries also changed the writing style of 

the ancient Chinese mathematics. On top of the wen– da – shu or wen– 

da – shu – cao formats as discussed before, one more section tu 

(illustrations or diagrams to illustrate the ideas of the proof or approaches) 

for explanation purpose was often added later. For example, the 

commentary book for The Nine Chapters on the Mathematical Art, in 

                                                             
4 Figure 2 was given by Li Huang (Qing dynasty) in his book: Jiu Zhang Suan Shu Xi 

Cao Tu Shuo (Detailed calculations and illustrations for the Nine Chapters on the 

Mathematical Art). It is really a “proof without words”! 

Figure 2. Diagram proof by Liu Hui 
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which Figure 2 is taken from: Jiu Zhang Suan Shu Xi Cao Tu Shuo 

(Detailed calculations and illustrations for The Nine Chapters on the 

Mathematical Art) by Li Huang at the Qing dynasty (1644-1912) was 

written in this wen – da – shu – cao – tu format with emphasis on the last 

two explanatory sections! 

Another feature of traditional Chinese mathematical teaching that is 

shown in the proof of Zhao Shuang is the use of colors for illustration 

and as a visual proof. Although chromolithography and other extensive 

color-printing techniques were not available until a millennium after 

Zhou Bi Suan Jing was first written, various portions in Figure 1 are still 

“colored” by labeling each portion with the name of the color. In this 

way students can realize which triangles should be matched and 

combined without actually coloring them. Such treatment is clever and 

makes any further explanation on the proof, if any, concise and highly 

understandable.  

 

(B) The emphasis on the intuitive understanding of mathematical ideas 

and meanings—the use of manipulatives 

Ancient Chinese mathematics education uses a number of teaching tools 

to enhance the intuitive understanding of mathematical concepts. Besides 

visual aids such as “coloring by label”, shown in the discussion of 

demonstrations of Pythagoras’ theorem as part of the teaching strategy 

suggested by Liu Hui: Elucidating by ci
5
 and illustrating by tu, he also 

developed the ideas of finding the volumes of some complicated solids 

such as yangma (pyramids with a square base) and bienao (a tetrahedron 

of a particular type); by disintegrating the solids into some assembling 

blocks (see Straffin, 1998; Siu & Volkov, 1999; Shen, 2006; and Chemla, 

2009 for details). Mathematics educators in ancient China also used the 

idea of qi, building blocks or building pieces, when explaining the 

method of finding the volumes of some solids. The idea is to decompose 

the solid into some visual building blocks or pieces (labeled by different 

colors) with their cross sectional areas or volumes are known. The way of 

decomposition depends on the shape of the solid. In some circumstances, 

                                                             
5 Ci (辞, prose or words)  
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one may consider slicing it (perpendicular to the axis of revolution) into 

thin disc like objects. If one can keep track of these pieces then one can 

keep track of the volume of the original solid. Roughly speaking, one can 

try to know more about the volume of a solid from a stack of qi’s (thin 

disc like pieces) generated from that solid.  

A very good example of mathematics education in ancient China is 

the demonstration of finding the volume of a sphere. The whole story 

begins from a wrong statement in Jiu Zhang Suan Shu. There, it was 

stated that the volume V of a sphere is equal to 9/16 times the cube of its 

diameter D, i.e., V = 9D
3
/16. Later, Liu Hui noticed that this is wrong 

and mentioned it in his commentaries. What is rare in mathematical 

literature at that time is that Liu also provided a proof by contradiction in 

order to justify why the original statement should be incorrect. Before 

correcting it, Liu first explained how the original author came up with 

the formula V = 9D
3
/16: The original author used the approximation that 

π = 3. With this approximated value, the ratio of the area of a square to 

the area of its inscribed circle would be 4:3. Thus, it can be concluded 

that the ratio of the volume of a cube to that of its inscribed circular 

cylinder would also be 4:3. Liu proposed that it was likely that the 

original author assumed that the volume of this inscribed cylinder to that 

of its inscribed sphere would also be 4:3 which would lead to the original 

formula V = 9D
3
/16. Liu pointed out that this assumption is wrong, and 

he explained the reasoning by considering an intermediate” solid which 

he called it as mou he fang gai, literally meaning two square 

umbrellas/lids piecing together, i.e. Steinmetz solid obtained by 

intersecting two circular cylinders of same radius at right angle (See 

Figure 3).  

Liu noticed two facts: (1) the ratio of the cross section of mou he fang 

gai to that of its inscribed sphere at every altitude is 4:3. (2) Thus, with 

the Cavalieri’s principle in mind (at that time he did not explicitly state 

this fact. Cavalieri’s principle is discussed below), the ratio 4:3 should be 

the ratio of volume of mou he fang gai to that of its inscribed sphere. 

Since the mou he fang gai is contained in the cylinder, the ratio of 

volume of cylinder to that of its inscribed sphere should not be 4:3, as the 

original author may have assumed. As a result, this proof by 

contradiction disapproves the original statement that V = 9D
3
/16. 
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If Liu could find out the volume of mou he fang gai, then he would 

have succeeded in getting the correct formula for the volume of a sphere. 

Unfortunately, Liu got stuck at finding the volume of mou he fang gai 

but he honestly stated that this problem was not yet solved, hoping that 

mathematicians in later generations could help find this missing piece of 

the puzzle. About 200 years later, ZU Geng (around the 6th century CE) 

elaborated on the idea of qi and stated a fact which is equivalent to 

Cavalieri’s principle. In Zu Geng’s word, the principle says that “if 

blocks (qi’s) are piled up to form volumes, and corresponding areas are 

equal, then the volumes cannot be unequal.”
6
 (see Figure 4). Zu then used 

his principle and applied it correctly to obtain the correct formula for the 

volume of mou he fang gai, and hence that of a sphere (see Shen, 2006 or 

Ke, 2007 for details). In other words, the quest for the formula for the 

volume of a sphere is a concerted effort of several generations of Chinese 

mathematicians.  

In short, the story of finding the volume of a sphere highlights the 

following features in mathematics education in ancient China: 

(1) Chinese mathematicians and mathematics educators use 

manipulatives such as qi and mou he fang gai to explain and 

visualize some geometrical principles and facts. This is  

 

                                                             
6 The English translation is based on Wagner (1978). 

Figure 3. Mou he fang gai and its inscribed sphere. The cross sections for mou he 

fang gai and the sphere are squares and circles respectively, with a ratio of 4 : π.   
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well reflected in Lui Hui’s commentaries to The Nine 

Chapters on the Mathematical Art about introducing the idea 

of qi: “Speech cannot exhaust the meaning (yi, in Chinese), 

hence to dissect/analyze (jie, in Chinese) this (volume), we 

should use qi; so that we can get to understand”(Shen et al., 

1999). 

(2) They do not hesitate in stating what they do not understand. 

Instead, they have strong reservation making statements 

which they are unsure of, as this would bring confusion and 

misunderstanding to students and readers. 

(3) Though ancient China did not place as much emphasis on the 

development of a logical system for proof as in ancient 

Greece, Chinese mathematics educators could still manage to 

demonstrate their logical argument, say proof by contradiction, 

to their students, and such demonstration was rare in all 

known mathematics literature, both East and West, at that 

time. 

(4) The development of Chinese mathematics shows a clear 

inheritance from generations to generations. It is a common 

heritage to all mathematics learners in ancient China, with 

knowledge being accumulated and passed on by the 

contribution from each generation. 

 

 

Figure 4. Illustration of Cavalieri’s or Zu Geng’s principle 
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WU Wen-Tsun pointed out that in the instructional strategy proposed 

by Liu Hui: Elucidating by ci and illustrating by tu, ci should be 

interpreted as logic, while tu should be understood as graphical intuition. 

The strategy should mean: combining logical deduction and intuitive 

analysis to deduce the truth of the mathematical conclusions (Wu, 1988, 

Book 1, p. 101). This is exactly what we have seen from the above 

examples (in both (A) and (B) of 3.2) on how mathematicians in ancient 

China managed to explain ingeniously about why mathematical facts and 

principles were true!  

 

(C)  The use of mathematical games in mathematics education to 

enhance the learning and teaching results 

Ancient Chinese mathematics educators do not only focus on the 

applicability of mathematical skills in daily life, but also place great 

emphasis on how to make mathematical teaching interesting to the 

students. From time to time, they incorporated various mathematical 

games into the mathematics curriculum so that students can learn through 

games, develop interest in mathematics and stimulate their mathematical 

thinking effectively. 

This reflects that mathematics teaching in ancient China is always 

student-oriented and is delivered in a way according to the attitude and 

ability of the students. Amongst the various mathematical games 

introduced in ancient China, tangram (known as qi qiao ban, in Chinese) 

and magic squares are the most accessible to Chinese children at all 

social classes.  

Tangram was first invented in 

the Song dynasty (960-1279). As a 

dissection puzzle, it consists of 

seven different polygonal shapes. 

The objective is to find a specific 

shape given only its outline. For 

instance, shapes in Figure 5 can 

be obtained by rearranging the 

tangram. Through playing 

tangram, children can experience 

Figure 5. Tangram shapes  
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assembling and dissembling polygons and grasp the concept of different 

geometric shapes.  

The history of magic squares in ancient China can be dated back to a 

much earlier time. It is said that the first magic square was obtained by a 

semi-mythical emperor Yu (禹) around the third millennium BC (Joseph, 

2011, p. 208). The legend says that he obtained two gifts from a magical 

dragon-horse, one is called he tu which is a crucifix array of numbers 1 

to 10 so that except the central 5 and 10 both the odd and even sequences 

of numbers add up to 20, and the other is called luo shu, a regular magic 

square of order 3. The first general discussion of magic squares, or luo 

shu, appears in 1275 when YANG Hui (1238-1298) wrote his Xu Gu 

Zhai Qi Suan Fa (Continuation of Ancient Mathematical Methods for 

Elucidating the Strange Properties of Numbers). In this book he not only 

demonstrates some magic squares of order up to 10, but also gives 

explicitly the algorithms for constructing luo shu of orders 3, 4 and 5 so 

that students can follow and elaborate on it. We have more to say about 

the role of algorithms in ancient Chinese mathematics education in the 

next section.  

3.4 Procedural Approach in Ancient Chinese Mathematics Education 

Mathematics education in ancient China is highly procedural. This is 

reflected by four different aspects: (A) a well-defined mathematics 

curriculum emphasized on procedures; (B) algorithmic or mechanical 

approach to mathematical problems; (C) The development and the 

teaching of rod calculus and (D) the extensive use of mnemonic poets 

and rhymes in teaching. 

 

(A) Mathematics curriculum in ancient China emphasized procedures 

Since the education in ancient China is to serve mainly for the 

recruitment of administrative staff, and the examination system is the 

main way to select possible candidates, a well-defined curriculum is 

necessary to help shape the materials to be covered. As mathematics is 

also examined in some of the selection processes, mathematics educators 

in ancient China also developed some curricula for mathematics 
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education. During the long history of China before the Western science 

began to influence the scientific development of China in the 17th 

century, mathematics curriculum was slowly developed, and modified to 

suit the needs of the society and to reflect the latest collection of 

mathematics literature when new texts were written. For details about the 

change of mathematics curriculum in China, one can refer to Tong et al. 

(2007). 

Table 1. Yang Hui’s suggestion of time allocation on learning basic arithmetic 

(multiplication and division) skills 

Stage Skills to learn Time 

required 

I Multiplication: 

� Examples and placing digits, with exercises 

� Revision of questions on multiplication of 1- to 6-digit 

numerals, with exercises 

 

1 day 

5 days 

II Division: 

� Examples and placing digits, with exercises 

� Revision of questions on divison of 1- to 6-digit numerals, 

with exercise 

 

1 day 

half a 

month 

III Further practice: Students should study two books: Wu Cao, Ying 

Yong Suan Fa and do two to three exercises in those books each 

day. Students can also check the 13 questions in Chapter 1 of Xiang 

Jie Suan Fa. 

Less than 

two months 

IV Various shortcuts in multiplication and division: 

� Study jia (addition literally, but here it actually means 

multiplication7) method and placing digits, with exercises 

� Revision of jia method 

� Study jian (subtraction literally, but here it actually means 

division) method and placing digits, with exercises 

� Revision of jian method 

� Study jiu gui (tables of division). Yang also commented that 

one needs 5 to 7 days to recite those 44 sentences, but can be 

shortened to 1 day if one carefully studies the commentaries 

on jiu gui in Xiang Jie Suan Fa. 

� Study qiu yi (this is a shortcut which makes multiplication 

and division easier by making the first digit of the 

multiplier/divisor to be 1 through suitable multiplication) 

 

1 day 

 

3 days 

1 day 

 

5 days 

1 to 7 days 

depending 

on 

approaches 

 

Revision 

takes 1 day 

                                                             
7 The jia method makes use of the distributive property of multiplication: For instance, 

when computing 11x29, one can move 29 by one digit forward (hence 290) and add 29, 

i.e. 11x29=10x29+1x29=290+29. The principle of jian method is similar. 
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Here we will concentrate on the example called Xi Suan Gang Mu (A 

General Outline of Mathematical Studies), where Yang Hui gave a very 

detailed study plan of mathematics, and Suan Jing Shi Shu (Ten 

Mathematical Manuals), a curriculum for higher education of 

mathematics suggested by Li Chunfeng.  

Xi Suan Gang Mu is the title of the preface to the first chapter of a 

book called Cheng Chu Tong Bian Ben Mo (Alpha and Omega of 

Variations on Multiplication and Division). In the preface, Yang gave 

very detailed procedures (a plan!) of studying basic arithmetic. Besides 

the topics and skills to learn, he also suggested a study schedule so that 

students can follow and check their progress and moreover, some other 

mathematics texts so that students can refer to for further practice. Some 

of the suggestions by Yang is summarized in Table 1. 

It should be noted that though basic arithmetic is indeed very “basic” 

in modern mathematics, it was not so at the time when Yang Hui wrote 

his Xi Suan Gang Mu; instead, arithmetic used in the daily life and 

commerce at that time can be very laborious and difficult. Hence, his 

study plan is very crucial for those beginners in mathematics.  

Besides study schedule on a particular theme, there is also a 

well-defined list of mathematics textbooks for students who would like 

to sit for the state examination. A typical example is Suan Jing Shi Shu 

Table 2. Li Chunfeng’s suggestion on study scheme for sitting for the state examination 

of mathematics in Tang dynasty 

Text Translated Meaning of Text Time Spent on 

Studying the Text 

Zhou Bi Suan Jing  The Arithmetical Classic of the Gnomon 

and the Circular Paths 

1 year 

Wu Jing Suan Shu  Arithmetic in the Five Classics 

Jiu Zhang Suan Shu  Nine Chapters on the Mathematical Art 3 years 

Hai Dao Suan Jing  Sea Island Mathematical Manual 

Wu Cao Suan Jing  Mathematical Manual of the Five 

Government Departments 

1 year 

Sun Zi Suan Jing  Master Sun’s Mathematical Manual 

Xia Hou Yang Suan Jing  Xia Hou Yang’s Mathematical Manual 1 year 

Zhang Qiu Jian Suan Jing  Zhang Qiu Jian’s Mathematical Manual 1 year 

Qi Gu Suan Jing  Continuation of Ancient Mathematics 3 years 

Zhui Shu  Art of Mending 4 years 
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suggested by Li Chunfeng. According to Xin Tang Shu (The New History 

of the Tang Dynasty) and Tang Liu Dian (The Six Codes of the Tang 

Dynasty), there is even a breakdown of a study schedule (procedures for 

the studies) telling how one should spend on each text (see Table 2). 
 

(B) Algorithmic/mechanical approach to mathematical problems 

As mentioned before, mathematical techniques and algorithms, or shu, 

play an important role in ancient mathematics teaching in China. In 

addition to that, we can also notice that these shu are usually algorithms. 

Very often Chinese mathematicians study a mathematical problem, 

devise a mathematical model for this problem, and derive an algorithm 

for this model. Then next time when they come across another problem 

which fits the model, they can directly apply the algorithm to find the 

final answer quickly. Take qi tong shu as an example. It is a technique 

introduced by Liu Hui to handle addition of two fractions with different 

denominators, say a/b and c/d. It states that the sum of two such fractions 

is simply a fraction (ad + bc)/bd. So this is the algorithm for the 

mathematical model in which we need to sum two fractions. Liu then 

discussed the problem: Given that a wild duck takes 7 days to travel from 

South Sea to North Sea, and a goose takes 9 days to travel in the reverse 

direction. Suppose also that both the wild duck and goose starts to fly at 

the same time, when will they meet each other? 

To solve this goose and duck problem, Liu suggested that one can 

rephrase the given information as in one day’s time, the wild duck and 

the goose finish 1/7 and 1/9 of their respective journey. He then applied 

the qi tong shu by rewriting the two fractions as 9/63 and 7/63. So in a 

period of 63 days, they should fly 9 + 7 = 16 times. In other words, it 

takes 63/16 days to meet each other. In other words, he noticed that this 

goose and duck problem fits into the mathematical model where he can 

apply qi tong shu.  

By algorithm we mean it is procedural, step-by-step, consistent and 

mechanical, provided that the right mathematical model (and hence the 

corresponding right algorithm) is applied to the given problem. Indeed, 

many of the algorithms in various Chinese mathematics texts can be  
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Figure 6. Yang Hui triangle as 

described by Zhu Shijie (朱世杰) in  

his book Si Yuan Yu Jian (四元玉鉴). 

transformed easily into computer programmes. One such example is the 

method of finding the highest common factor of two integers, called 

geng xiang jian sun shu, described in Jiu Zhang Suan Shu as a method to 

simplify a fraction. It is similar to the Euclidean algorithm, as stated in 

Proposition 1 of Book VII in Euclid's Elements (Heath, 1956), consists of 

the following steps. 

Step 1: If both numbers are even, divide each of them by two; 

otherwise, go to Step 2. 

Step 2: Subtract the smaller number q from the larger number Q to 

obtain the difference r. If r is zero, stop and r is the common factor; 

otherwise, go to Step 3. 

Step 3: Repeat Step 2 by applying subtraction once between r and q. 

In essence, this method is almost the same as the Euclidean algorithm, 

with the exception that the latter adopts a division approach rather than 

subtractions, making it faster than the Chinese version (Guo & Li, 2010).  

Another typical example 

which displays mechanicalization 

is the Yang Hui triangle (Figure 6). 

This is the Chinese version of the 

Pascal triangle for binomial 

coefficients. Yang Hui clearly 

states that the numbers in the 

triangle correspond to the 

coefficients of the binomial 

expansion of (x + a)
n
, where a is a 

constant, explains how to write 

down the terms in the expansion, 

and explicitly gives the famous 

algorithm (Figure 7): 

C
n

r + C
n

r – 1 = C
n + 1

r 

This discovery predates the first 

European documentation of the same result (by Petrus Apianus, 1495-1522) 

by almost five centuries.  

Aided with the geometrical insight, ancient Chinese mathematicians  
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went one step further by developing an iterative approach of finding the 

n-th root of a number. Here we will discuss how ancient Chinese find out 

the square root of a number through an iterative algorithm. Suppose we 

are given a natural number A and would like to find out its positive 

square root x so that x
2
 = A. Liu Hui gave the following detailed 

procedure (rephrased using modern terminology):  

Step 1: The number of digits of the root is the smallest integer greater than or equal to 

the number of digits of A divided by 2. If A is 1- or 2-digit number its root must 

be single-digit, and if A is 3- or 4-digit number its root must be of a size of ten. 

Step 2: Estimate the first digit a1 of the root x so that a1 so that A – 102na1
2 < 102na1

2 (< 

A). This estimate is obtained when A is divided by 102na1 the quotient is a1 and 

the remainder is smaller than 102na1
2. Yang also explained that this is 

equivalent to extracting of a square of side 10na1 from a square of area A. 

Step 3: Estimate the second digit a2 (if any) of the root x so that A – (10na1+10n – 1a2)
2 

< (2(102n – 1)a1+102n -2a2)a2. This estimate is obtained when A – 102na1
2 is 

divided by 2(102n – 1)a1+102n -2a2 the quotient is a2 and the remainder is smaller 

than (2(102n – 1)a1+102n -2a2)a2. Yang also explained that this is equivalent to 

extracting a square of side 10n -1a2 from a region obtained after deleting the 

square of side 10na1 and two rectangles each of which has length 10na1 and 

breadth 10n -1a2. 

Step 4: If the remainder in Step 2 or 3 is zero, then the iteration stops. Otherwise, 

proceed further on with the geometrical picture (Figure 8) in mind. 

With the experience of finding square roots, Liu Hui proceeded to 

consider a similar approach of finding cubic roots iteratively. The 

generalization is a natural extension: This time, he extracted cubes and 

cuboids, instead of squares and rectangles from a cube of but volume A. 

We will not go into details; readers can refer to Guo (1991) or Joseph 

(2011). Finding n-th root in general, however, requires the knowledge of 

binomial expansion (i.e. Yang Hui triangle) and is usually tedious for 

(x + a)0 = 1 1 

(x + a)1 = x + a 1 1 

(x + a)2 = x2 + 2ax + a2 1 2 1 

(x + a)3 = x3 + 3ax2 + 3a2x + a3 1 3 3 1 

(x + a)4 = x4 + 4ax3 + 6a2x2 + 4a3x + a4 1 4 6 4 1 

(x + a)5 = x5 + 5ax4 + 10a2x3 + 10a3x2 + 5a4x + a5 1 5 10 10 5 1 

(x + a)6 = x6 + 6ax5 + 15a2x4 + 20a3x3 + 15a4x2 + 6a5x + a6 1 6 15 20 15 6 1 

Figure 7. Binomial Expansion as suggested by the Yang Hui triangle 
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higher orders. A more efficient algorithm is proposed by Jia Xian, which  

avoids finding the binomial 

terms of higher orders by 

iterative additions and 

multiplications. Jia Xian 

even wrote down how he 

obtained the 4th root of 

1336336 using his method. 

In modern terms, it means 

that we want to find x such 

that x
4
 – 1336336 = 0. We 

first make a guess on x, say 

a. Then all we need to do is 

to substitute x by y + a to get 

(y + a)
4
 – 1336336 = 0.  

However, instead of 

expanding (y + a)
4
 using 

binomial terms such as 6y
2
a

2
, 

Jia noticed that 

(y + a)
4
 = a

4
 + (4a

3
 + (6a

2
 + (4a + y)y)y)y, 

and did the following (the first guess is a = 30):  
 

1 + 0 + 0 + 0 –  1336336 30 

 + 30 + 900 + 27000 + 810000  

1 + 30 + 900 + 27000 – 526336  

 + 30 + 1800 + 81000    

1 + 60 + 2700 + 108000    

 + 30 + 2700      

1 + 90 + 5400      

 + 30        

1 + 120        

          

1 + 120 + 5400 + 108000 – 526336 4 

 + 4 + 496 + 23584 + 526336  

1 + 124 + 5896 + 131584 + 0  

 

Hence, the answer is 34. This method is exactly the same as the 

Horner’s method discovered by William George Horner (1786-1837) and 

Paolo Raffini (1765-1822) 600 years later (Wang & Needham, 1955). 

10
n
a1 

10
n -1

a2 

x 

Figure 8. Finding the side x of a square 

whose area is given. 
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The interested readers can refer to Wu (1988), Guo & Li (2010) and 

Tong et al. (2007) for more discussions about the algorithmization 

/mechanicalization of mathematics in ancient China. 

 

(C)  The development and the teaching of rod calculus  

In modern language, if algorithm is the software part of a computation 

process, then the ancient Chinese mathematicians also invented suan 

chou (counting rods) as the hardware part to support their computations. 

Suan chou was used to represent numbers and fractions for the purpose 

of counting and arithmetic at the very beginning (see Joseph, 2011, pp. 

198-206; Needham, 1959). Later, with different color, different labeling 

and arrangements in different relative positions, suan chou could also be 

used to perform complicated calculations that can involve negative 

numbers (Needham, 1959). However, ancient Chinese did not stop there, 

they proceed to use suan chou further to develop “rod calculus” or rod 

calculation to perform formula calculations. Ancient Chinese seldom use 

“pen calculations”, and they did not have a system of mathematical 

symbols for the formula calculations. To perform such task, they rely on 

the sophisticated operations with suan chou. So, rod calculus could be 

regarded as a symbolic computation system for ancient Chinese. ZHU 

Shijie, one of the most famous Chinese mathematicians in Yuan dynasty 

(1271-1368) has developed rod calculus to include polynomial equations 

of two to four unknowns (Wu, 1988; Li, 2007). “Rod calculus”, the 

highly procedural operational system, was widely taught by mathematics 

teachers to students in ancient China till the Ming dynasty (1368-1644). 

To facilitate even more effective performing of arithmetic operations for 

application and commercial purposes, Chinese abacus was invented and 

further developed later. A series of poems and mnemonics were also 

written, summarizing the steps when using the abacus, they were well 

recorded in many ancient Chinese mathematics texts (Guo & Li, 2010).  

 

(D)  The use of mnemonics in Chinese mathematics teaching 

It is commonly believed by ancient Chinese that firm rote-memorization 

is one way that can lead to understanding of concepts. To help facilitate 

memorization of some hard-facts, procedures and algorithms, and to 
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make the process of memorizing more interesting, ancient Chinese 

people developed various mnemonics including simple poems and 

rhymes. The same is true in the mathematical education in ancient China. 

Chinese poems and rhymes usually have tail-rhymes and equal number 

of words (and hence syllables, since Chinese language is monosyllabic), 

which make them highly rhythmic. The introduction of Chinese poets 

and rhymes in the mathematical education in ancient China is an organic 

synergy between Chinese art and mathematics. Many mathematical 

problems and their solutions that appear in ancient Chinese texts are 

written in the form of poems and rhymes. The first mathematical poem in 

ancient China that is known to date appears in the preface of Zhou Bi 

Suan Jing: 平矩以正绳 偃矩以望高 覆矩以测深 引矩以知远 环矩以为圆 合矩以为方 

Translated in English, the above verse reads: “The level trysquare is used 

to set lines true. The 

supine trysquare is 

used to sight on 

heights. The 

inverted trysquare 

is used to plumb 

depths. The 

recumbent 

trysquare is used to 

find distances. The 

rotated trysquare is 

used to make circles, 

and joined 

trysquares are used 

to make square” 

(Cullen, 1966). The first four lines of the verse explain the method of 

surveying using the idea of similar triangles, while the last two lines give 

the general construction of circles and squares. In modern terminology, 

 A 

B 

C 

D E 

F 

Figure 9. Diagram of trysquare 
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the surveying is done in the following way as shown in Figure 9: 

Suppose we put the trysquare on the ground so that its side AC coincides 

with the horizon AE. The side BC should be perpendicular to AC. Now 

look at an object F (say, the sun, as the text assumes the distance to the 

sun is known) from point A and record the point D on BC so that A, D 

and F are collinear. Then, as ACD∆ ∽ AEF∆ , 
AC AE

CD EF
= , and hence 

the height 
CD AE

EF
AC

×
= . 

Another famous application of poets for educational purpose occurs 

in the case of da yan qiu yi shu. Originally proposed by QIN Jiushao 

1208-1261) in 1247 in his book Shu Shu Jiu Zhang, da yan qiu yi shu is a 

technique for solving systems of linear congruence equations. This 

serves to answer an old question asked in Sun Zi Suan Jing at the 4th 

century: “Given a number whose reminders are 2, 3 and 2 after division 

by 3, 5 and 7 respectively, what is that number?” Qin himself gave a 

complete solution to this kind of questions. Later in 1592, CHENG 

Dawei (1533-1606) in Suan Fa Tong Zong (Systematic Treatise on 

Algorithm) summarized the technique into the following poem (Tong et 

al., 2007): 
 三人同行七十稀 

 

(It is rare to find a person of 70 years of age 

amongst a group of three) 五树梅花廿一枝 (There are 21 plum flowers on 5 trees) 七子团圆正半月 (It takes half a month (i.e. 15 days) to gather 7 

masters) 除百零五使得知 (The answer can be obtained after division by 105) 

 

In modern terminology, it explains Qin’s algorithm as follows: Find out 

the smallest multiple of 35 (which is the LCM, least common multiple, 

of 5 and 7) so that its reminder after division by 3 is 1. In this case it is 

70. Then find out the smallest multiple of 21 (the LCM of 3 and 7) 

whose reminder after division by 5 is 1. This time we get 21. Do the 

same for the smallest multiple of 15 (the LCM of 3 and 5), and we obtain 

15. Now, 

70 × 2 + 21 × 3 + 15 × 2 = 233 

and the division by 105 will give the final answer, which is 23.  
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4. Conclusion and Prospects 

We have seen from the above that ancient Chinese officials adopted the 

Confucianism as the major working philosophy and took a practical 

approach in the development of mathematics and mathematics education. 

Consequently, as suggested by many Chinese scholars that (i) putting 

emphasis on calculation, (ii) making extensive use of calculation tool 

(rod calculus), (iii) building an algorithmic system, and (iv) “hiding the 

theory [or principle, li] in calculation” (yu li yu suan, in Chinese) are the 

main features of the mathematics development along this approach in 

ancient China (Wu, 1998; Li, 2007; Guo & Li, 2010). Mathematics was 

used to solve problems encountered by the highly civilized society of 

ancient China, and the traditional Chinese mathematical teaching is 

highly life and application oriented. As driven by this working 

philosophy and the development of mathematics, traditional Chinese 

mathematical texts (canons) were written in such a way that emphasis 

was put on effective calculations and general algorithms rather than on 

building mathematical theories. Also, ancient Chinese officials took a 

procedural approach for their mathematics education as what we have 

observed in Section 3.4 so as to increase the teaching effectiveness of the 

“official system” and at the same time to prepare students to adapt to the 

mathematical as well as the social development like sitting for the keju 

examination to become a government official at that time. 

However, as we all know that there is always a mathematical theory 

behind an algorithm. Educators cannot teach students mathematics 

without explaining mathematics principles to them. Actually, teachers of 

ancient China, no matter from state-run or privately-run institutions, 

would provide oral explanations on mathematics principles to students in 

their teaching of mathematics. However, such explanations would 

seldom be transformed into written records as they would respect the 

writing of the original mathematics “canons” (Li, 2007). Luckily, we can 

still find valuable commentaries for those mathematics canons in ancient 

China, by many eminent Chinese mathematicians including Liu Hui and 

Yang Hui. There, not only can we learn the accumulated “wisdom of 

traditional mathematical teaching”, but also, on how ancient Chinese 

mathematicians can provide ingenious “proofs” to mathematics 
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principles by combining logical deduction and intuitive analysis as we 

have discussed in Section 3.3. We would like to use the following remark 

suggested by Siu (2004) that is worth our deep reflections: 

Although the official system did produce tens of thousands of capable 

“mathocrats” who were employed as officials or imperial astronomers, 

almost all the eminent mathematicians who left their footprints in the 

history of mathematics seem to have been nurtured through other 

channels. An historian of mathematics once listed 50 Chinese 

mathematicians of fame who flourished between the 4th century B.C. and 

the end of the 19th century, with only two who can be labeled as educated 

in the official system (p. 163). 

In 1676, Newton said “If I have seen farther than others, it is because 

that I was standing on the shoulders of giants”. “The shoulders of giants” 

is the scientific traditions and achievements in Europe. Traditions are the 

sources and the basis for new ideas and inspiration. Based on its own 

traditions, the development of mathematics education in China should 

gain the experience from other countries and bring into suitable positive 

elements of new ideas and thoughts from other cultures. Chinese 

mathematics education has its own strength that might serve as a solution 

to educational problems faced by other countries on one hand, and its 

own weaknesses and problems could be remedied by ideas from other 

education systems on the other hand. There is no point of denying 

traditional Chinese mathematics education. As Zhang had questioned 

(Zhang & Zhao, 2012), “in recent years, the so called ‘traditional’ 

educational methods are almost the synonyms of ‘backward’ and 

‘obsolete’.” In our opinion, the tradition is inseparable from, and indeed 

intertwined with the present and the future. “Innovation” does not mean 

the inevitable separation from tradition; instead, while we surpass and 

violate traditions as a prerequisite of innovation, there should be some 

circumstances in which modern and traditional values are compatible. On 

the contrary, any “rootless” social or cultural development may have the 

trouble of repeating past failure and the result can be catastrophic. 

Second, there is no point of insisting on whether Chinese education is 

“better” than that in the West, or vice versa. Instead, one should realize 

that each education system has its own set of strengths and weaknesses, 
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and because of this fact it is important to interact with other cultures and 

learn from their experience! 

In recent decades, there has been a trend of introducing materials on 

mathematics history in mathematics teaching. Many researchers 

suggested that incorporating history of mathematics in classroom can 

have positive effects on mathematics learning (e.g., Fauvel, 1991; 

Gulikers & Blom, 2001). 

First, the use of anecdotes and biographies of mathematicians make 

lessons more interesting and dynamic (Perkins, 1991; Siu, 1997). 

Students become more actively involved in classroom activities when 

mathematics history is sprinkled in. Students are more motivated to learn 

about mathematics if they are able to identify the important role that 

mathematics play in human culture through history (Tymoczko, 1994). 

Also, students are able to appreciate the usefulness of mathematics in 

real life through history, as mathematical concepts are often developed to 

solve real-life problems in the past (Burton, 1998). Consequently, the use 

of history of mathematics can arouse students’ interest on mathematics, 

improve their perception about the value of mathematics to mankind, and 

enhance the learning atmosphere in general. 

Second, through explaining the stories behind the mathematical 

theories, students can obtain a better understanding of the theories. This 

helps clarify the historical development of mathematical theories, which 

somehow reflects the logical development of the theories as well (Katz, 

1993). Learning takes place more effectively when a learner retraces the 

key steps in the historical development of the subject (Gulikers & Blom, 

2001). As mathematical concepts are often oversimplified in textbooks 

and by teachers (Freudenthal, 1991; Siegel & Borasi, 1994), students 

may not be able to understand these concepts which are often broken up 

into smaller parts and presented to them from an expert’s viewpoint (Tall 

& Vinner, 1981). Showing students the historical development of 

mathematical concepts can help them to see the links between the broken 

parts and improve their understanding of these concepts (Furinghetti, 

2000).  

Third, incorporating mathematics history into lesson planning can 

bring out the construction of mathematical concepts in students’ mind. 

Such mental reflection on mathematical concepts is helpful to students. 
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Also, teachers can better understand the common difficulties faced by 

current students by examining the errors and misconceptions of past 

mathematicians. They can then take preemptive measures to ensure more 

effective learning. At the same time, when students realize that it is 

common for mathematicians to commit errors and learn from their own 

or others’ mistakes, they appreciate that collaboration and perseverance 

are necessary to derive mathematical concepts which they often feel are 

beyond their ability to derive or understand initially (Lim, 2010). This 

gives them the confidence to explore and participate in mathematical 

activities (Siu & Siu, 1979).  

As a result, it is hoped that by having a glimpse on some of the 

features of mathematics history and education in ancient China, 

mathematics teachers today can have some ideas about the development 

of mathematics and mathematics education in China, and about the 

possibility of introducing history of Chinese mathematics to the current 

mathematics classrooms (c.f. Siu, 1995; Katz, 2000; Cai & Cifarelli, 

2004; Wang, 2009; Ng, 2006).  
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Chapter 2 

How Chinese Teachers Teach Mathematics and 
Pursue Professional Development: Perspectives 

from Contemporary International Research 

FAN Lianghuo  MIAO Zhenzhen       MOK Ah Chee Ida 

This chapter aims to provide readers with a comprehensive review of 

related literature on how Chinese mathematics teachers pursue pre-

service training and in-service professional development, and how they 

teach in classrooms. The results suggest that China (Mainland) has 

established a highly unique and unified pre-service mathematics 

teacher education system; pre-service teachers learned more advanced 

mathematics courses and showed better motivation toward their 

training as compared with other countries such as the UK and US. 

China has also established its unique and well-institutionalized teacher 

professional development system for in-service teachers, with Teaching 

Research Groups (TRG) at the school level and Teaching Research 

Office at different government levels playing a crucial role. About 

teaching, it was found that Chinese mathematics teachers planned their 

lessons carefully; they adopted more whole-class teaching strategies, 

emphasized two basics (basic knowledge and basic skills), teacher-

student interaction and students’ engagement academically and the 

method of teaching with variation, and assigned homework daily for 

reinforcement as well as assessment of students’ learning. Some issues 

and suggestions on future research in these areas are raised at the end of 

the chapter.   

Keywords: Chinese mathematics education, mathematics teaching, 

mathematics teacher education, teacher professional development  

1. Introduction 

It is well-known that international comparative studies and large-scale 

assessments over the last two decades or so have consistently shown that 
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Chinese students are among the best performers in mathematics (e.g., see 

Fan & Zhu, 2004). In the latest Programme for International Student 

Assessment (PISA) conducted in 2012 for students of 15 years old from 

65 countries and regions, Chinese students from Shanghai were the top 

performers with an average score of 613, significantly higher than the 

second top performers, Singapore students whose average score was 573, 

and the OECD countries’ average of 494 (OECD, 2013). The world has 

shown growing interest in knowing the reasons behind Chinese students’ 

stellar performance, and in particular, why they have steadily 

outperformed their peers in the West (Hiebert, Gallimore, Garnier, 

Givvin, Hollingsworth et al., 2003; Stigler, Gonzales, Kawanaka, Knoll 

& Serrano, 1999; Stigler & Hiebert, 1999; Stigler, Lee & Stevenson, 

1987). Many scholars in different countries have investigated various 

factors that may have contributed to the results, such as cultural and 

social values, language systems, parental involvement, and curricula and 

textbooks (Cai, 2003, 2004; Mok, 2006). Some researchers have also 

looked into issues regarding Chinese teachers and how they teach in 

classrooms (e.g., Ma, 1999; Mok, 2006), though some are not necessarily 

from a comparative perspective. Undoubtedly, teachers play one of the 

most important roles in the formation of students’ performance (e.g., 

Hiebert et al., 2003). As the National Commission on Teaching and 

America's Future (1996) pointed out: “What teachers know and can do 

makes the crucial difference in what children learn.” (as cited in Fan, 

2014, p. 3).  

The main purpose of this chapter is to provide readers with a 

comprehensive review of the related literature on teaching aspects of 

Chinese mathematics education with a focus on two main areas
a
, that is, 

how Chinese mathematics teachers teach in classrooms, and how their 

pre-service training, in-service and professional development take place. 

By doing so, we hope to present an overall picture of what research has 

told us in these two areas and what particular patterns or features, if any, 

are revealed about Chinese mathematics teachers’ teaching and 

                                                 
a We originally included two other important and related areas, Chinese mathematics 

teachers’ belief and knowledge. We later decided to exclude these two areas in this 

chapter as they have been well reviewed and discussed in other chapters of this book (see 

Zhang & Wong, this volume; Chen & Leung, this volume).      
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professional development, and offer suggestions for further research in 

the concerned areas. The chapter is also, to some extent, intended to 

provide readers with a helpful background for the main theme of this 

book, that is, how Chinese teach mathematics.  

2. Methods 

The literature surveyed in this chapter was primarily obtained through 

relevant international research journals, online search engines, and our 

own accumulation and connections.  

There are a great number of different journals in education and 

mathematics education. In order to keep the literature survey reasonably 

manageable and focused, we selected research journals based on the 

following criteria: (1) they are peer-reviewed; (2) they are well-

established and truly international (not just focused on one country or 

region) in terms of their aims and scope, editorial boards, contributors, 

reviewers and target readers; and (3) they are either highly reputable 

mathematics education journals covering mathematics teaching, teacher 

and teacher education, or educational journals mainly devoted to or 

focusing on the areas of teaching, teachers and teacher education. As a 

result, our survey mainly included the following journals: 

Asia-Pacific Teacher Education 

Australian Journal of Teacher Education  

Educational Studies in Mathematics 

European Journal of Teacher Education  

International Journal of Science and Mathematics Education  

Journal for Research in Mathematics Education 

Journal of Mathematics Teacher Education 

Research in Mathematics Education 

Teaching and Teacher Education 

ZDM-International Journal on Mathematics Education 

Some other journal articles were also included in our review, but they 

were obtained mainly through online search, as described below.  

The online search was primarily made through the so-called world’s 

largest digital library for education literature, the Education Resource 

and Information Centre (ERIC). Firstly, we employed the search terms 
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“China/Chinese, mathematics, teaching”, “China/Chinese, mathematics, 

lesson”, and “China/Chinese, mathematics, class” for the issue how 

Chinese teachers teach mathematics. Concerning Chinese mathematics 

teachers’ professional development including teacher education, we used 

the search terms “China/Chinese, mathematics, teacher education”, 

“China/Chinese, mathematics, teacher training”, and “China/Chinese, 

mathematics, prospective teacher”. In addition, we also used two themes 

“mathematics teaching in China” and “mathematics teacher education in 

China” to carry out the literature search through mainly ERIC, although 

sometimes other search engines, such as the Web of Science, 

Informaworld, Science Direct, and Google, were also used as 

supplementary sources. Finally, a small number of research publications 

were obtained via our own accumulation and connections (e.g., through 

email communication).  

We must point out that our survey is mainly limited to contemporary 

research literature on Chinese mathematics teaching and teacher 

education in Mainland China, published in international research journals 

and other publications and in English. To conduct a survey on research 

literature in Chinese is beyond the scope of this chapter, and readers who 

are interested in knowing more about the literature published in Chinese 

on these two issues may wish to read the relevant chapters in this book. 

In addition, although we tried to make our survey as comprehensive as 

possible, it is still possible that some important research work in the 

surveyed areas was not included into the review. 

Two main criteria guided the selection of relevant literature for our 

review. The first criterion is based on the quality of studies, including 

clear research questions, methods, and results. Particular attention was 

paid to empirical studies reported and published in international peer-

reviewed journals. In addition, a small number of book chapters 

presenting high quality studies were also included and reviewed, but 

general discussion papers were excluded.  

The second criterion is the contemporary-China relevance. In terms 

of timespan, we decided to focus our survey mainly on the research 

literature from 1980 onwards, though we also paid some attention to the 

literature before 1980. Our reason for focusing on the past three decades 

or so is that before this period China basically closed its door to 



 How Chinese Teachers Teach Mathematics and Pursue Professional Development  47 

international exchange, especially to the West, because of a variety of 

internal and external factors. Consequently there was little international 

research available on Chinese education including mathematics 

education and teacher education over this period. The situation has 

significantly changed since China initiated its reform and adopted the 

open door policy in the late 1970s.   

Using the sources and criteria described above, we obtained 30 

journal articles and other types of publications on Chinese mathematics 

teaching, teacher, and teacher education. Table 1 displays the sources of 

the literature surveyed in this chapter.   

Table 1. Sources of literature surveyed about Chinese mathematics teaching, teacher and 

teacher education 

 Pre-1980 1980-89 1990-99 2000-09 2010-12 Total 

Journal articles 0 0 2 18 2 22 

Other publications 0 0 2 6 0 8 

Total 0 0 4 24 2 30 

As we can see from Table 1, there were no studies meeting our 

criteria on Chinese mathematics teaching, teacher and teacher education 

before 1980, which is not surprising because of the reason mentioned 

above. However, we were a bit surprised that there were also no such 

studies published internationally in the 1980s, which however is arguably 

related to the fact that even after China adopted its open-door policy in 

late 1970s, it would still take some time to see the concrete outcome and 

publication of research and exchange concerning Chinese education 

(including mathematics education) in the international arena. Moreover, 

Chinese students’ outstanding performance was much less well known 

before the 1990s, largely due to the fact that all well-known modern 

large-scale international comparative studies, such as TIMSS and PISA, 

started either in the 1990s or 2000s.  

Below we first report our survey findings about Chinese mathematics 

teachers’ pre-service training, in-service and professional development, 

followed by how they teach in mathematics classroom. We shall also 

provide relevant general background along with the research findings.  
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3. Mathematics Teacher Education and Professional Development 
in China 

According to Chen, Hu and Wang (1996), the Fourth National 

Conference on Teacher Education held by the Chinese Central 

Government in 1980 marked the start of a new stage for comprehensive 

development and reform of teacher education in Mainland China. The 

conference claimed that the advancement of teacher education should be 

given the highest priority in the country’s educational development with 

a new series of national targets in preparing teachers for the new era after 

the Cultural Revolution which was widely considered to have ruined the 

educational system across the whole country.  
Since 1980, Chinese teacher education has been progressing steadily 

under the influence of several nation-level innovations which not only 

raised the importance of teacher education to a strategic level but also 

increased the financial support for teacher preparation. In addition, over 

the last decade or so, the organizational forms of teacher-preparation 

institutions have experienced a systematic transformation from the 

traditional form of normal institutions, which have operated for over half 

a century, to diversified forms that contain not only normal universities, 

but also comprehensive universities and other types of institutions (Shi & 

Englert, 2008).   

After the subsequent decades of evolution, the providers of teacher 

education in China have now been organized into four types of 

institutions: 1) three-year normal schools accepting junior secondary 

graduates as candidates, who will mainly become primary school 

teachers after completing training; 2) normal specialized postsecondary 

college accepting senior secondary graduates as candidates in two- or 

three-year programs or junior secondary graduates as candidates in five-

year programs, whose graduates will primarily become junior secondary 

school teachers; 3) four-year normal colleges and universities mainly for 

the training of senior secondary school teachers, and 4) comprehensive 

universities running four-year bachelor degree programs since 1998, 

which are new comers due to the expansion of initial teacher training and 

education and mainly focus on senior secondary school teachers (Li, 

Zhao, Huang & Ma, 2008).  
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3.1 Pre-service Training Programs for Mathematics Teachers 

Before we turn our attention to specific studies, it should be mentioned 

that, within the context of China’s centralized education system, Chinese 

teacher-education institutions have for a long time implemented basically 

the same curriculum and textbooks, and structured their programs with 

many similarities (Sun, 2000).  

Among a very few studies that have been conducted in relation to 

pre-service training programs for mathematics teachers in China, 

Ferrucci, Li, and Carter’s study (1995) is particularly notable. The 

researchers reviewed three earlier studies (reports) related to China’s pre-

service teacher training programs from early 1970s and late 1980s, and 

highlighted that in the program of study provided in the 1980s by Beijing 

Normal University for pre-service secondary mathematics teachers, 63% 

of the curriculum time was devoted to mathematics, 12% foreign 

language, 6% physics, 6% mathematics methods (mathematics 

pedagogy) and education, and 12% science; in East China Normal 

University, the required mathematical courses in the pre-service teacher 

training program included calculus, real analysis, probability and 

statistics, analytic geometry, advanced algebra, abstract algebra, 

differential equations, complex variables, topology, computer and 

informatics, different geometry and higher geometry.  From the topics or 

numbers of hours they either obtained from the three earlier studies or  

for their own study about the mathematical courses offered in the pre-

service teacher training programs in universities in Beijing and Shanghai 

from 1970 to 1992, we can see a great similarity in either topics of 

mathematical classes or hours that prospective teachers are expected to 

devote to those classes in these Chinese universities. 

More importantly, collecting data through a questionnaire survey with 

the focus being on mathematics content, pedagogy, and the practices in 

teacher training curricula and the respective course arrangements in six 

teacher-preparation institutions, two from Beijing, China and four from 

both the eastern and western regions of the US, Ferrucci et al. (1995) 

concluded that secondary mathematics teacher training programs in the 

two countries shared a similar way of organizing their training courses 

which were mostly delivered through lectures and ended with 
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discussions on homework for mathematics sessions and in-class activities 

for pedagogy sessions. However, Chinese prospective teachers spent 

substantially more hours in mathematical classes, and consequently 

studied more advanced mathematics topics than their American 

counterparts, as shown in Table 2. In other words, the difference found is 

mainly in the content of training, but not in the method of training.   

Concerning prospective primary mathematics teachers’ training, Li 

(2002) conducted a two-stage study in China. The first stage was to 

examine the content and structure of mathematics teaching method 

courses, which are the same to all prospective primary teachers in China, 

and the second stage consisted of two case studies in Beijing and 

Zhejiang, focusing on how the method courses were actually taught, 

including informal interviews with the tutors. The study found, in the 

course textbooks used, a great emphasis was placed on these trainee 

teachers’ deep understanding and thorough integration of mathematical 

subject knowledge, student cognitive development and pedagogical 

principles in the learning of the courses. Moreover, elementary school 

Table 2. Mathematics courses required for Chinese and American 

prospective secondary school teachers 

 PRC1 PRC2 USA1 USA2 USA3 USA4 

Calculus 

Real analysis 

Elementary functions 

Probability/Statistics 

Number theory 

Analytic geometry 

Euclidean geometry 

Linear algebra 

Advanced algebra 

Abstract algebra 

Numerical methods 

Differential equations 

Complex variables 

Topology 

Mathematics modelling 

History of mathematics 

Computers/informatics 

378 

90 

* 

90 

0 

108 

112 

0 

216 

85 

72 

90 

85 

68 

0 

0 

72 

450 

72 

72 

72 

72 

0 

72 

144 

0 

72 

72 

72 

72 

72 

0 

72 

72 

120 

0 

0 

40 

40 

40 

40 

40 

0 

40 

0 

0 

0 

0 

0 

40 

60 

224 

42 

0 

84 

0 

0 

42 

42 

42 

42 

0 

0 

0 

0 

42 

42 

84 

168 

42 

42 

84 

0 

0 

42 

42 

0 

42 

42 

42 

0 

0 

42 

42 

84 

210 

0 

0 

42 

42 

0 

84 

42 

0 

42 

0 

0 

0 

0 

0 

42 

42 

* The content in this course is contained in other courses. 

   Source: Ferrucci et al., (1995, p. 222).  
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textbooks were also used in the method courses for prospective teachers 

to consider appropriate teaching methods to teach the knowledge 

effectively in their future practices. The study found that these 

mathematics student teachers had already achieved a deep understanding 

of what and how they were going to teach, before they started formal 

practices in schools.  

More recently, You and Jia (2008) conducted a survey with 136 

Chinese student teachers and 134 American counterparts who were 

studying in teacher-preparation programs in their home countries 

respectively. Data were collected with two questionnaire instruments 

measuring learning approaches and learning styles. The researchers 

found that Chinese student teachers were more willing to learn 

knowledge for its own sake and read books in a particular depth 

compared to their American counterparts. In addition, the results 

indicated that Chinese student teachers were deep learners with more 

intrinsic motivations to understand the knowledge itself than their peers 

in the US. 

It seems clear from the limited number of studies available that there 

is great similarity among Chinese mathematics teacher education 

programs; when compared with the US, Chinese pre-service teacher 

training emphasizes more on developing trainee teachers’ advanced 

mathematical knowledge, and trainee teachers are better motivated 

toward their training. It appears to us that the fact that Chinese 

prospective teachers are better motivated and they studied more 

mathematics topics is evident, when comparing with the US and many 

other countries in the West, though more studies in this direction are still 

needed to further investigate how and why pre-service training courses 

differ in their influences on teachers’ classroom teaching and students’ 

learning of mathematics across different countries. In addition, the 

results appear also consistent with the findings from Ma’s well-known 

interview-based study, in which she found that Chinese mathematics 

teachers had a profounder understanding of fundamental subject 

knowledge and pedagogical content knowledge than their American 

colleagues (Ma, 1999). 
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3.2 In-service Teachers’ Professional Development  

Researchers have generally agreed that China has developed a coherent 

and institutionalized in-service teacher education or professional 

development system, in which peer collaboration and interaction play a 

crucial role in developing in-service teachers’ expertise and 

competencies. More specifically, teachers are involved into various 

programs such as in-service training programs, apprenticeship practices, 

school-based teaching research activities (Huang, Su, & Xu, 2014), and 

public lesson development (Han & Paine, 2010; Huang & Li, 2009).  

The in-service training programs in China are mainly provided by 

institutes of education at the province and city/district/county levels, and 

the professional development is mainly organized by Teaching Research 

Offices, known as “Jiao yan shi” in Chinese (hereafter called “TRO”) 

within the governmental education bureaus at county, district, city, and 

provincial levels. These institutions or offices are responsible for guiding 

teaching research activities, overseeing teaching quality in schools on 

behalf of educational bureaus, providing consultation and teacher 

professional development programs, and promoting high-quality 

classroom teaching (also see Li & Ni, 2011; Huang et al., 2014). 

In each school, as for the case of other subjects, there is usually a 

mathematics “Teaching Research Group” (TRG), which is responsible 

for all mathematics teachers’ professional development in the school. 

TRG is a unique organization in Chinese schools, originally introduced 

from the Soviet Union in the 1950s (Paine & Ma, 1993). In a sense, the 

mathematics TRG is equivalent to the “Department of Mathematics” in 

many other countries, but the TRG focuses more on research on 

classroom teaching and professional development, and it is subject-based 

and often consists of a sub-unit — Collective Lesson Planning Groups or 

simply Lesson Planning Groups (LPG) — a teaching organization usually 

for teachers teaching at the same grade level (Wang, 2002; Wong, 2010). 

Working as a team, teachers in the TRG or its LPG meet weekly, prepare 

lessons together, observe each other’s lessons, reflect and comment on 

observations collectively, and conduct open lessons regularly. In a sense 

school-based TRG and LPG function as in-service teacher education 

institutions but in actual classroom situations, foster reflective 
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practitioners, and consequently promote continuous development of the 

whole teaching team. Many schools also have Grade Level Groups, 

which is more for administrative purposes beyond the subject matter.  

It should also be noted that China has established a professional 

ranking and promotion system since the mid-1980s. The ranking and 

promotion system provides teachers, like university academic and 

teaching staff, with professional titles. They include Senior Teacher 

(equivalent to Associate Professorial Grade at the university), 

Intermediate Grade Teacher, and Junior Grade Teacher. Earlier than that, 

the title Master Teacher was awarded (e.g., see Fan & Shen, 2008; 

Huang & Li, 2009) and more recently Full Senior Grade Teacher 

(equivalent to the Professorial Grade in the university) have also been 

used in some regions in China (e.g., Wei, 2013). This system not only 

specifies components of teacher professional expertise and other related 

requirements for different grades of teachers, but also provides teachers 

with professional recognition and incentives and a culturally supported 

mechanism for teacher to seek professional development at different 

levels, e.g., school, district, county, city, provincial, or national levels. 

Concerning mentoring programs in schools, Wang (2001) 

investigated 23 teacher mentors in the US, UK and China with two semi-

structured interviews, and examined their beliefs about what novice 

teachers should learn and how they interacted with novice teachers in 

practice.  Among a considerable proportion of similarities that the three 

countries’ mentors shared, the study revealed some notable differences 

between Chinese mentors and those in other two countries. Unlike their 

western colleagues, Chinese mentors more commonly believed that 

novice teachers should establish a solid base of subject matter knowledge 

and a deep understanding of curricular requirements, be able to build 

connections among various subject areas of knowledge, and know how 

to tailor specific methods in teaching particular knowledge and 

addressing different teaching targets. Their interactions with novice 

teachers contained 72% pedagogical discussions focusing on novices’ 

pedagogy, whereas the percentages for their American and British 

colleagues were respectively 68-69% and 34%. It is believed while the 

centralized curriculum and assessment criteria provide Chinese teachers 

with less leeway or autonomy, such a school environment also triggers 
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more collaboration and shared visions between mentors and novice 

teachers than the case of their counterparts in the US and the UK. In 

particular, at the beginning of new teachers’ teaching career, Chinese 

schools generally arrange a number of peer observations followed by 

discussions, based on the observed lessons and focusing on pedagogical 

matters, between experienced and novice teachers. Such subject-oriented 

professional communities within schools and the corresponding 

professional interactions between members of the communities offer an 

essential contribution to the professional growth of new teachers. 

Wang and Paine’s case study (2003) also shed light on the 

effectiveness of school-based collaborative teacher development in 

China. In the study, they followed a beginning middle-school teacher 

through her preparation for a public lesson in the second year of her 

teaching career. They noted that, like many other Chinese teachers, the 

new teacher belonged to two subject-matter teaching groups based within 

the school. One was a TRG, as mentioned earlier, which was organized 

at the school level aiming to promote peer observations and discussions 

in collaboratively coping with examinations, and the other is an LPG, 

which was set up at each grade level for teachers to plan lessons, share 

their understanding of curricular resources, and exchange teaching 

experiences. Data were collected from interviews with the teacher, the 

leader of the TRG for mathematics and the school principal and 

subsequently triangulated with the curricular framework and the lesson 

itself. The teacher’s high-quality lesson was found being significantly 

influenced by the guidance of curricular resources and the teaching 

groups where teachers met regularly (usually weekly). 

It is worth noticing that professional communities within Chinese 

schools not only foster new teachers’ development but also stimulate 

other in-service teachers’ professional development through various 

research approaches over time. Some professional communities from 

different schools also involve educational researchers doing action 

research collectively with teachers. One such approach is through Ke-Li, 

literally meaning Lesson Example or Exemplary Lesson Development as 

described in Huang and Bao (2006). According to Huang and Bao 

(2006), Chinese mathematics teachers’ collaboration are similar to 

Japanese Lesson Study in that both involve teachers’ collaboration on 
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lesson planning, peer observation and post-lesson discussion; they are 

also quite different from each other because the former gives prominence 

to experts’ input, revising lesson plans and carrying out new lessons 

subsequently. In Chinese schools, professional communities are subject-

oriented and school-based, providing rich opportunities for teachers to 

consistently learn how to teach better while they are teaching in schools.  

More recently, the Parallel Lesson Study (PLS) has become a very 

popular Chinese lesson study model, responding to the call for 

innovative use of textbooks in the classrooms under the new curriculum. 

While a lesson study group in Chinese usually consists of a mathematics 

teaching researcher from a district/county education bureau, a master 

teacher and a demonstrating teacher, the new development extends the 

lesson study group activity to research collaboration between at least two 

independent lesson study groups at the cross-district level (Huang et al., 

2014). It seems that such school-based professional communities are 

continuously evolving and steadily widening external connections along 

with the country’s curricular innovation. 

Below we turn our attention to Chinese mathematics teachers’ 

teaching in the classroom.  

4. Mathematics Teaching in Chinese Classrooms 

Compared with research on Chinese mathematics teachers’ education 

and professional development, there are significantly more studies on 

how Chinese mathematics teachers teach mathematics.  These studies 

addressed a variety of issues related to teachers’ teaching in Chinese 

classrooms from different angles. This section aims to provide an overall 

picture about Chinese mathematics teachers’ teaching practices and their 

features as revealed in the available empirical studies on mathematics 

teaching either solely done in China or cross-nationally comparing 

lessons from China with those from other countries. To highlight the 

main features of how Chinese mathematics teachers teach mathematics, 

we shall organize our review into the following nine aspects: planning 

lessons systematically, emphasizing two basics, whole-class teaching and 

interaction, teaching with variation, teacher-student interaction and 

engagement, assigning and marking homework frequently, using 
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textbooks with deep understanding, structured instruction, and making 

change in light of curriculum innovations.  

4.1 Planning Lessons Systematically 

Researchers have consistently maintained that Chinese mathematics 

teachers generally devote a great amount of time and energy in advance 

to scrutinizing the syllabus, textbooks, teacher manuals and other 

teaching materials, before they formally give lessons, and they also 

frequently share their ideas and develop understandings of mathematical 

content they have taught or are about to teach with their colleagues in the 

subject-based TRG (Ma, 1999, Ch. 6; Paine & Ma, 1993; Wong, 2010).  

According to An’s study, during the lesson planning stage, Chinese 

teachers paid more attention as to how appropriate connections could be 

built between the content of teaching and classroom activities, to suit 

different levels of student cognition, and between previous knowledge 

and new knowledge than their American counterparts who concerned 

more about classroom activities (An, 2008). Moreover, in lesson plans, 

Chinese mathematics teachers often focus on the essence of 

mathematical concepts, deal with important and difficult knowledge 

points, organize teaching steps to develop knowledge progressively, and 

pay attention to the readiness of students’ knowledge and cognition 

levels, the appropriateness of the textbook use and the selection of 

teaching methods (Huang & Li, 2009). Likewise, another comparative 

study also found that Chinese teachers’ lesson plans were much longer 

with more details regarding contents and procedures than were those of 

American teachers who generally just drew a lesson outline and prepared 

a number of worksheets (Cai & Lester Jr, 2005; also see Cai, 2005).  

4.2 Emphasizing Two Basics 

Basic knowledge and basic skills, often jointly called two basics in 

China, are put at the heart of mathematics teaching and learning in China 

(Zhang, Li, & Tang, 2004). Teachers are expected to demonstrate a high 

level of proficiency in two basics themselves, and more importantly, they 

should be able to help their students obtain solid foundation of 



 How Chinese Teachers Teach Mathematics and Pursue Professional Development  57 

knowledge and skills. The dual emphases of two basics are on both 

understanding and application. Through learning and practice, students 

are expected to reach six basic goals: 

• Rapid and accurate mental calculation of four arithmetic 

operations involving various types of numbers; 

• Speedy and accurate manipulation of “polynomial 

expressions, algebraic factions, exponential and radical 

expressions and memorization of rules”; 

• Precise memory of definitions, properties and formulas of 

various mathematical topics, for instance, those of quadratic 

equations, curves of the second order, trigonometry, 

logarithm, etc. 

• Logic, clarity and accuracy of mathematical expressions, 

classification, and mathematics propositions; 

• Clear and accurate presentation of rigorous reasoning in the 

process of problem solving; 

• Awareness of basic solution patterns and ability of applying 

them to similar problems under changing conditions (Zhang et 

al., 2004, p. 193). 

In order to address the learning goals, mathematics teachers in China 

generally play a leading role in the process of teaching and learning in a 

class of around 50 students. Teachers aim at delivering mathematical 

contents effectively and efficiently in a direct way, so as to leave 

sufficient time for students to practice new knowledge. Although 

teachers see both understanding and application of knowledge as equally 

important, they allocate more time to the latter, as they believe 

appropriate practice can deepen and consolidate understanding. 

Moreover, teachers tend to give students exercises which contain varying 

non-fundamental elements but invariant properties of specific point of 

knowledge. Teachers’ emphasis on rigorous mathematics thinking and 

interconnection of knowledge also transforms the application of two 

basics to a higher level. Last but not least, students’ mastery of two 

basics is also realized through systematic and rigorous practice of 

deductive reasoning. The above teaching characteristics collectively 

contribute to the formation of two basics among students. 
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4.3 Whole-class Teaching and Interaction 

If, traditionally, emphasizing “two basics” (basic knowledge and basic 

skills) is the most typical feature in terms of teaching content in Chinese 

mathematics teachers’ teaching (e.g., see Zhang, Li, & Tang, 2004), then 

it seems also reasonable to say that, the most typical feature in term of 

the teaching format in mathematics teaching by Chinese teachers is 

“whole-class teaching and interaction”, which is used in most of the 

lesson time. This is most evident in the findings of a study on 

mathematics lessons in three cities by Leung (1995) who observed 36 

lessons in Beijing, 36 in Hong Kong and 40 in London. Many differences 

have been found in classrooms between locations, with the most 

significant ones being durations of teaching activities and time off task. 

As shown in Table 3, Beijing and Hong Kong teachers spent the majority 

of their lesson time on whole-class activities, with little time spent on 

off-task activities, whereas London teachers spent either no or less than a 

half of the lesson time on whole-class teaching and more time on 

individualized teaching, with more time lost in off-task activities.  

Teacher-guided active whole-class teaching is a common feature in 

Chinese mathematics classrooms where students are fully engaged in 

academic-oriented activities (Huang & Leung, 2005). Such activities 

usually consist of enormous (on average 50-120 per lesson) questions 

and answers between the teacher and students, which means that the 

instruction is highly interactive. Moreover, teachers often give questions 

that are easy to answer. By doing so, teachers are able to guide students 

Table 3. Durations of various teaching activities in the classrooms in Beijing, Hong Kong 

and London 

Types of activities Beijing Hong Kong London (W) London (I) 

Whole class activities 86.30% 72.52% 42.13% 0.00% 

Individual activities 13.21% 18.93% 38.35% 77.84% 

Off-task activities 0.25% 8.55% 16.58% 20.37% 

Note: London (W) stands for London lessons conducted in a whole-class instruction 

setting; London (I) stands for lessons following individualized programs.  

Source: Leung (1995, p. 321).  
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through small and easy steps towards the grasp of learning targets of 

each lesson (around 40 minutes) (Zhang et al., 2004).  

4.4 Teaching with Variation 

Another important feature of Chinese mathematics lessons is the so-

called teaching with variation which has received many researchers’ 

attention over the last two decades (e.g., An, 2008; Gu, 1994; Gu, Huang 

& Marton, 2004; Huang & Leung, 2005; Lim, 2007; Mok, 2006). 

Researchers have argued that teaching with variation helps in increasing 

the level of student engagement, reducing the amount of disruptive 

behaviors, and drawing students’ attention (Borich, 2004; Emmer & 

Evertson, 2009; Evertson & Emmer, 2009), and effective teachers have 

the ability of presenting a lesson with variability or flexibility (Borich, 

2011; Brophy, 2002; Brophy & Good, 1986). 

In a classroom-based study, Lim observed 19 randomly chosen 

mathematics lessons from five schools in Shanghai, with student 

socioeconomic status ranging low to medium (Lim, 2007). Lim found 

that those lessons shared a list of similar features including the use of 

variation. Around a mathematical concept, teachers generally presented 

different examples in a logical sequence to help students understand the 

concept from superficial to a deeper level, which is called conceptual 

variation. Regarding a mathematical problem, teachers tended to 

encourage students to tackle the same problem with different methods 

through various procedures, which is known as procedural variation. It 

should be noted that Lim’s study is largely consistent with earlier 

comparable studies in this line about Chinese mathematics lessons (e.g., 

Gu et al., 2004; Huang & Leung, 2005; Mok, 2006). 

4.5 Teacher-student Interaction and Engagement  

Researchers have widely considered the effective use of teacher-student 

interaction including questioning as a crucial factor contributing to  

effective teaching and therefore learning (Borich, 2011; Evertson, 

Anderson, Anderson & Brophy, 1980).  
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Employing classroom observation and video recording methods, Li 

and Ni (2009) compared the forms and contents of teacher-student 

dialogue in primary classrooms between expert and novice Chinese 

mathematics teachers and found notable differences. Overall, 55 lessons 

were observed and recorded in the classrooms of 16 expert teachers and 

16 novice teachers who taught either 4th or 6th grade students. The result 

showed that expert teachers tended to use analytical and comparative 

questions frequently to foster students’ mathematical reasoning. Their 

interaction model often involves the following steps: (1) students present 

an answer, (2) the teacher and other students question the answer, and (3) 

then the students explain the answer. In other words, expert teachers 

were more likely to judge students’ responses collaboratively with 

students, and more likely to make adequate use of and transfer student 

answers into teaching resources. On the other hand, the typical teacher-

student interaction in a novice teacher’s classroom is more likely to 

involve the following steps: (1) the teacher asks a question, (2) students 

answer, and (3) the teacher comments. Li and Ni’s study reminds us that 

one should not forget that, within Chinese classrooms, there also exist 

differences.  

Research evidence also shows that Chinese mathematics teachers 

differ from their American counterparts in the way they deal with 

students’ errors during the teaching and learning process in class. 

Through lesson observations (n=44) and teacher interviews, 

Schleppenbach et al. (2007) conducted a comparative study on 

participating teachers’ responses to students’ errors during the lesson 

time between China and the US. The study found that Chinese 

mathematics teachers asked more follow-up questions, in addition to 

informing the students about the errors they made, while the American 

teachers generally just made simple announcement of errors. Again, what 

is not so clear is how typical or representative these lessons are, given 

both China and the US are large countries. 

Students’ time spent on task in mathematics lessons has been found to 

have a positive correlation with their academic engagement and learning 

gains (Fisher, Berliner, Filby, Marliave, Cahen et al., 1980; Stallings, 

Cory, Fairweather & Needles, 1978). Engaging students in tasks of 

learning is commonly seen in mathematics lessons in China. Cross-
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national studies revealed Chinese teachers generally taught in a faster 

pace and applied lesson time more efficiently than their western 

colleagues (An, 2008). In another study, through structured observations 

of 8 mathematics lessons in China and 7 lessons in the US, Lan et al. 

(2009) found Chinese teachers were more proactive and more able to 

engage students consistently into academic activities than were their 

American colleagues, which led to better student engagement and more 

time-on-task (Lan et al., 2009).  

4.6 Assigning and Marking Homework Frequently 

Both empirical data and systematic reviews suggest that regular 

homework over short intervals with timely feedback from teachers has 

positive effects on student achievement and attainment, particularly in 

mathematics (Cooper, Robinson & Patel, 2006; Good & Grouws, 1979; 

Muijs & Reynolds, 2003).  

Studies on mathematics lessons in China have found homework 

assigned by teachers a common everyday task for Chinese students (Lim, 

2007). Through all-day observations of a Shanghai mathematics 

teacher’s homework-related work over two months, interviews with the 

teacher, her colleagues, and her students, and video-recorded classroom 

observations, Fang (2010) investigated in depth the nature and functions 

of homework errors that the teacher defined, coded and made use of in 

her daily work either individually or collaboratively with colleagues. 

According to Fang, teachers considered marking students’ homework as 

an important way to assessing students’ daily learning results and 

accordingly examining their teaching effectiveness from day to day. 

They developed a shared set of discourse symbols in checking homework 

items and indicating to students what was right and what was wrong, 

with hints and clues left on students’ homework. Thus, their homework 

marking was process-oriented, which made their students understand not 

only what but also why in dealing with homework errors. Teachers 

communicated with each other while marking homework, exchanged 

their understanding of various homework errors, and consequently 

developed their pedagogical knowledge on specific subject content, as 

they shared a unified teaching pace across the curriculum of 
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mathematics. Moreover, such collective investigation on information 

embedded in everyday homework among colleagues promoted 

pedagogical reasoning and contributed to continuous development of 

teachers’ knowledge in both subject matter and pedagogy.  

On the other hand, we should point out that the recent PISA 2012 

results revealed that in Shanghai, students of 15 years old spend almost 

14 hours per week on the homework of all school subjects set by 

teachers, while across OECD countries the average is about 4.9 hours 

(OECD, 2013). It is clear that assigning homework regularly is a 

common feature of Chinese mathematics classrooms, however, how 

much homework is adequate is another issue and it is worth further 

investigation.   

4.7 Using Textbooks with Deep Understanding 

Chinese teachers rely considerably on textbooks in planning and carrying 

out lessons. Thorough understanding of textbooks is widely accepted as 

an essential way for mathematics teachers in China to improve their 

teaching both mathematically and pedagogically (Li, 2004). Focusing on 

Chinese mathematics teachers’ use of textbooks, Fan, Chen, Zhu, Qiu 

and Hu (2004) collected data with 36 teachers and 272 students from two 

major cities in South China through questionnaires, classroom 

observations, and interviews. The study found that all teachers used 

textbooks as the main source of teaching contents and methods, that the 

way teachers used textbooks varied slightly as their teaching experience 

accumulated over time, and that overall teachers used textbooks in a 

similar rather than different way across the sample regardless of their 

genders and the geographical locations and the performance levels of 

their schools. 

4.8 Structured Instruction  

Mathematics lessons in China are in general well structured, with 

specific types of activities more emphasized. For example, drawn on a 

sequence of five consecutive lessons by a teacher in Shanghai, Lopez-

Real, Mok, Leung and Marton (2004, p. 407) found that about 96% of 
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the total time was covered by three elements: Foundation/Consolidation 

(32%), Exploration (19%), and Guided Practice (45%). Guided Practice 

obviously occupied a significant part of the lessons. The contrast 

between lessons illustrated that the teacher, though with different time 

spans, gave an equal importance in his teaching to both foundations and 

explorations, where the students had the opportunity to discuss and 

express their own ideas. Nevertheless, it was also clear that the overall 

direction of learning was tightly controlled by the teacher and the 

explorations were limited to ‘mini-explorations’. In addition, 

“Summarizing”, another element recognized as important in the 

interview with the teacher, although took up only a relatively small 

amount of time, appeared regularly in the end of the lesson and 

sometimes even in the middle of the lesson. 

4.9 Making Change in Light of Curriculum Innovations 

It should be noted that new and reformed mathematics teaching methods 

in Chinese classrooms have developed over the time, which is 

particularly evident under the new curriculum reform, as the national 

curriculum usually includes clear explanations and guidance concerning 

classroom teaching practices. 

The latest national mathematics curriculum for China issued in 2001 

(Ministry of Education, 2001a, 2001b) emphasizes the necessity of (1) 

diversifying knowledge components, facilitating active learning, 

cultivating independent and critical learners, (2) reinforcing inter-subject 

connections rather than isolating them, (3) transforming abstract and 

complicated knowledge in the previous version of national curriculum 

into knowledge largely connected to the real world, and (4) 

decentralizing the power of choosing curricular materials from the 

central government to the local authorities and schools. The change in 

the national expectation on the educational results thus encourages 

changes at all levels, particularly in the instructional practice at the 

classroom level. 

By comparing two groups of teachers who had either been 

implementing the new curriculum for over five years (n=32) or been 

constantly sticking to the previous curriculum (n=26), Li and Ni (2011) 
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investigated the effect of this reform on primary mathematics teachers’ 

classroom practices, with particular focus on two domains: instructional 

tasks and teacher-student interactions. With lessons video-taped and 

videos coded systematically afterwards, the study found in the teaching 

process more high-cognitive-level tasks delivered by the teachers 

applying the new curriculum than those who had kept implementing the 

conventional curriculum since the reform. In addition, innovative 

teachers tended to represent knowledge in a more visualized way and 

asked more process questions and less product questions than their 

conventional colleagues. This to a certain extent indicates the impact of 

the curricular reform on the curricular implementers’ practice, i.e., the 

teachers’ teaching. In fact, cooperative learning, constructivism learning, 

emphasizing realistic mathematics and using of ICT in mathematics 

learning have also been promoted in the new curriculum reform 

(Ministry of Education, 2001a, 2001b), and it seems reasonable to say 

that they have gradually had impact on Chinese teachers’ teaching of 

mathematics in recent years, though further studies are needed to 

examine to what extent the influence is and will last.   

5. Concluding Remarks 

This chapter aims to examine research-based evidence to illustrate an as-

authentic-as-possible picture of how Chinese mathematics teachers 

receive pre-service training and pursue professional development, and 

how they teach mathematics in classrooms.  

The review of the available limited number of studies suggests that 

China has established highly unique and unified pre-service teacher 

education systems with great similarity among mathematics teacher 

education programs across different parts of the country, that Chinese 

pre-service mathematics teachers take more advanced mathematics 

courses during their pre-service study at teacher-training institutions, and 

that they also showed better motivation toward their training.  

In addition, China has also established its unique and well-

institutionalized teacher promotion and professional development system 

for in-service teachers, with Teaching Research Group (TRG) at the 

school level and Teaching Research Office at different government 
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levels playing a crucial role in the system. The Chinese mathematics 

teachers’ professional communities and development activities are more 

subject-oriented and school-based, and provide rich opportunities for 

peer collaboration, peer observation and collective lesson planning for 

mathematics teachers to development professionally. 

Regarding classroom teaching, available research shows that Chinese 

mathematics teachers pay much attention to lesson planning before their 

teaching, and in classrooms they adopt whole-class teaching strategies, 

emphasize two basics (basic knowledge and basic skills), teacher-student 

interaction, student engagement and teaching with variation, and finally 

assign homework daily for reinforcement as well as assessment of 

students’ learning.  

On the other hand, it should be also noted that, as aforementioned, 

there have been only a very limited number of studies available on how 

Chinese teachers teach mathematics in classrooms and how they develop 

professionally. Moreover, most of the studies reviewed above are of 

small scale, often conducted in certain regions of China (particularly 

Shanghai and Beijing), and focused on certain school grade levels. Most 

international comparisons were limited to between China and the US or 

UK. The research issues covered in the available international literature 

are overall fragmented and unbalanced, leaving many areas and issues 

untouched. For example, the use of ICT by Chinese mathematics 

teachers in mathematics teaching is understudied. In particular, while the 

weakness of the Chinese way of teaching mathematics is widely 

recognized domestically in China, it has been only occasionally 

mentioned but not really researched internationally. There is no doubt 

that international research in these two areas concerning Chinese 

mathematics education is still at an early stage, and much more remains 

to be done. It is our hope that this book can make a meaningful 

contribution to this end.  
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Chapter 3 

Mathematics Teaching in a Chinese Classroom:  

A Hybrid-Model Analysis of Opportunities  

for Students’ Learning 

HUANG Rongjin  L. Diane MILLER Ron TZUR 

This chapter analyzes mathematics teaching in Chinese classrooms by 

articulating opportunities for learning (cognitive change) created for 

students. A hybrid model consisting of a tripartite theoretical lens is 

presented and used: Reflection on Activity-Effect Relationship 

(Ref*AER), Hypothetical Learning Trajectory (HLT), and Teaching 

with Bridging and Variation. The analysis examines how teachers use 

the latter two strategies to (a) tie goals for students’ learning with their 

extant knowledge, (b) create a need for exploring the new mathematics, 

and (c) provide situations for action and reflection that promote 

achieving the learning objects. This analysis inspires a three-tiered 

model for examining and guiding mathematics instruction. At a macro 

tier, HLT guides setting learning goals, designing mental activity 

sequences, and articulating cognitive reorganization processes. At an 

intermediate tier, teaching with bridging and variation provides tools 

for the deliberate design of problem situations and tasks within a 

specific HLT to create opportunities for the intended reorganization and 

thus achieving goals for students’ learning—interrelated conceptual and 

procedural understandings. At a micro tier, Ref*AER provides a lens to 

link situations/tasks with changes in students’ conceptions.  

 

Keywords: Chinese mathematics classroom, opportunity for learning, 

hybrid model analysis 

1. Introduction  

Mathematics teaching and learning in China have become an area of 

interest for educational researchers (Fan, Wong, Cai, & Li, 2004; Li & 
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Huang, 2012). Often, mathematics classrooms in China have been 

characterized as well disciplined, polished (Stevenson & Lee, 1995), and 

coherent (Chen & Li, 2010). In particular, Teaching with Variation has 

been studied as an effective instructional strategy in China (Gu, Huang, 

& Marton, 2004; Wong, 2008). Yet, much research on interpreting and 

theorizing Chinese learning and teaching phenomena needs to be 

completed. Recently, some scholars have attempted to characterize 

features of Chinese mathematics teaching in terms of a constructivist 

theory of learning (e.g., Jin, 2012; Jin & Tzur, 2011).  This latter work 

was rooted in a stance that mathematics classroom instruction needs to 

be linked to and articulated in terms of learning opportunities it creates 

and realizes for students (Tzur, 2011b).   

  This chapter is to further extend this line of inquiry. To this end, we 

use a tripartite, hybrid model that combines constructivist accounts of 

learning and teaching—Reflection on Activity-Effect Relationship 

(Ref*AER) (Simon, Tzur, Heinz, & Kinzel, 2004; Tzur, 2007; Tzur & 

Simon, 2004) and the Hypothetical Learning Trajectory (HLT) construct 

(Simon, 1995; Simon & Tzur, 2004)—with the Bridging and Variation 

strategies identified in Chinese teachers’ practices.  This hybrid model of 

how teaching can promote conceptual learning provides a lens for 

examining the design and delivery of mathematics lessons in regular 

classrooms.  That is, we analyze mathematics lessons taught in China by 

focusing on three key aspects of HLT: (a) goals teachers set for student 

learning in terms of conceptions (activity-effect relationships) they are 

expected to construct, (b) sequences of mental activities (and reflections 

on them) hypothesized to promote students’ transformation of their 

extant conceptions into the intended ones, and (c) tasks designed and 

implemented to fit with and promote hypothetical reorganization 

processes from available to intended mathematics.   

We use data of lesson segments from Clarke, Keitel and Shimizu’s 

(2006) study to examine how a Chinese teacher’s deliberate use of a 

series of mathematical tasks over a few consecutive lessons promoted 

opportunities for students’ conceptualization of a key topic in algebra.  

This examination provides evidence in support of a twofold, central 

thesis: pedagogical approaches used by Chinese teachers hold high 

potential for promoting students’ learning (interrelated conceptual and 
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procedural understandings), and the hybrid model (described next) 

provides a useful tool for explaining and realizing this potential.  

2. Conceptual Framework 

Teaching involves promoting students’ understanding of particular 

mathematics through designed activities (Marton & Tsui, 2004; Simon, 

Saldanha, McClintock, Akar, Watanabe, & Zembat, 2009), that is, 

teaching can and should purposely create opportunities for student 

learning.  To tie mathematics teaching and learning, we use a hybrid 

model that explicitly articulates the learning process and how teaching 

can promote it (Tzur, 2007, 2011b). This hybrid model uses a 

constructivist stance to articulate how teaching with bridging and 

variation can promote learning opportunities.   

  Marton and Tsui (2004) explained that variation helps learning by 

allowing students to develop new ways of experiencing and thinking 

about the objects of learning. Gu et al. (2004) and Jin (2012) further 

articulated how Chinese teachers’ systematic variation of problems 

and/or solutions (answers + reasoning) effectively helps students to 

discern key features of the object of learning.  Specifically, Gu et al. 

(2004) identified two types of variations: conceptual and procedural, 

which are crucial for promoting students’ learning. Conceptual variation 

provides students with a variety of instances of the intended concept—

including counterexamples—that orient their attention to critical features 

of that concept from different perspectives. Procedural variation 

provides a series of scaffoldings aiming at formulating concepts logically 

and coherently, and/or finding solutions to a problem progressively. For 

example, to help students form the concept of equation—discerning the 

two critical features of balance (equivalence) and known, a teacher could 

use a prototype word problem: “Peter pays two dollars to buy three 

same-price erasers, and gets 2 dimes in return. What is the price of one 

eraser?”  To guide students’ development of the concept of equation, 

Chinese teachers may enact learning through three stages: iconic 

representation (e.g., 2 dollars -3 =2 dimes); letter label representation 

(e.g., 20-3E=2), and abstract unknown representation (e.g., 20-3x=2) 

(Huang & Leung, 2004).  
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Bridging refers to tasks Chinese teachers use for helping every 

student in the class reactivate her or his available knowledge in a way 

that supports learning of the intended mathematics (Jin & Tzur, 2011).  

For example, to teach simplifying algebraic fractions at grade 7 (e.g., 

8ab
2
c/-12a

2
b), a teacher engaged the students in simplifying a few 

numerical fractions (e.g., -16/42).  Students learned simplifying such 

numerical fractions at grade 4 and could successfully complete these 

tasks. The whole class discussion of their solutions focused on the 

invariant mental process reactivated for the goal of simplification, 

namely, finding and dividing both the numerator and the denominator by 

the greatest common factor. Students were then oriented by the teacher to 

use this method for solving variations of tasks with algebraic fractions. 

To explain how teaching with bridging and variation may impact 

learning, we anchor it in the recent elaboration of a social-constructivist 

perspective proposed by Simon and Tzur and their collaborators (Simon 

et al., 2004; Simon & Tzur, 2004; Tzur, 2007, 2011b; Tzur & Simon, 

2004).  Building on the seminal work of Piaget (1985), Dewey (1933), 

and von Glasersfeld (1995), they explained the design and 

implementation of mathematical tasks/lessons by coordinating a 

postulated mechanism of cognitive change—reflection on activity-effect 

relationship (Ref*AER) (Tzur, 2007, 2011a; Tzur & Lambert, 2011) with 

a Hypothetical Learning Trajectory (HLT) (Simon, 1995).  Below, we 

briefly present aspects of these two key notions relevant to this study. 

A foundational constructivist principle, consistent with sociocultural 

perspectives (Vygotsky, 1986), asserts that learning entails progressive 

reorganization of knowledge already available in the learner’s mind 

through reflection on goal-directed activities.  Building on Piaget’s (1985) 

work, von Glasersfeld (1995) postulated a tripartite mental structure—a 

scheme: (i) a situation that assimilates and interprets an external stimulus 

(e.g., mathematical problems) and triggers one’s goal, (ii) a mental 

activity triggered to accomplish that goal, and (iii) a result anticipated to 

be brought forth via that activity. The reorganization of available 

schemes into ones that are new to the learner has been explained via the 

key construct of reflective abstraction (Piaget, 1985), which has been 

further articulated via the Ref*AER mechanism (Simon & Tzur, 2004).  

This mechanism commences with a learner’s assimilation of 
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(mathematical) situations into her available schemes and setting the 

learner’s goal for which an activity sequence is called up and executed.  

Regulated by the goal, the learner’s mind performs two types of 

comparison that constitute the Ref*AER mechanism. The first 

(Reflection Type-1) continually and automatically compares between the 

effects of the activity and the learner’s goal (Tzur, 2011a). When the 

learner notices effects of the activity that differ from the anticipated goal, 

results of this comparison are sorted and stored as records of novel 

activity-effect dyads. The second (Reflection Type-2) is not necessarily 

automatic, but it can be prompted from within or outside the learner’s 

mental system.  It consists of comparison among a variety of situations in 

which the recorded activity-effect dyads are called upon, which can bring 

about abstraction of the activity-effect relationship as a reasoned, 

invariant anticipation. This invariant anticipation involves a 

reorganization of the situation that brought forth the activity in the first 

place, that is, of the learners’ previous assimilatory conceptions.  It is in 

this sense that the Ref*AER mechanism highlights the key role of 

teaching with variation; a teacher can promote opportunities for 

abstracting a new invariant AER by selecting problems and solutions 

methods that orient either or both types of reflection in students.  

  In postulating the Ref*AER mechanism, Tzur and Simon (2004) also 

distinguished two stages in the construction of a new conception. The 

participatory (first) stage is characterized by dependence on being 

prompted for the activity at issue. At this stage the learner forms a 

provisional anticipation of AER, which includes the capability to reason 

why the effects follow the activity. This stage is marked by the well-

known “oops” experience, in which a learner realizes in retrospect that 

the effect of her activity could have been anticipated without running it.  

It is postulated that the first type of reflection, between one’s 

goal/anticipation and the actual effects, is necessary to bring forth 

construction of a new scheme at the participatory stage.  The anticipatory 

(second) stage is characterized by a learner’s independent calling up and 

utilizing of an anticipated AER proper for solving a given problem 

situation.  At this stage, which necessitates reflection of the second type, 

the learner has formed an explicit link between the newly formed AER 

and an array of situations that was not abstracted in the participatory 
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stage.  That AER becomes an object that can be taken as ‘input’ for other 

operations (Sfard, 1991; von Glasersfeld, 1995). It should be noted that 

in both stages the essence of the anticipated relationship is the same; 

what differs is its availability to the learner.  

Based on Simon’s (1995) notion of HLT, Simon and Tzur (2004) and 

Tzur (2011b) have further linked the Ref*AER mechanism to a 

framework for designing and implementing lessons.  In their framework, 

HLTs are made up of three major components: the learning goal that 

defines the direction for students’ learning (the intended mathematics), 

the mental activities inferred to be involved in learning that mathematics, 

and the hypothetical learning (reorganization) process — a prediction of 

how the students’ understanding will evolve in the context of the 

teaching-learning endeavor.  Simon and Tzur (2004) articulated a way to 

design task-based lessons that therefore proceeds from specifying both 

students’ current knowledge and the pedagogical goal (intended 

mathematics), identifying the mental process of change (activity 

sequence), and selecting a task sequence that can promote students’ use 

of the activity sequence and the two types of reflections (proper to the 

stage at which students’ conceptions seem to be).  Building on empirical 

studies with using such designs in classroom instruction, Tzur (2011b) 

further theorized the following, seven-step framework for generating 

Ref*AER-rooted HLTs: (1) specifying student assimilatory conceptions, 

(2) specifying a goal for students’ learning, (3) identifying a mental 

activity sequence, (4) selecting and sequencing tasks, (5) engaging 

students in the task sequence, (6) examining students’ progress, and (7) 

introducing follow-up prompts to orient students reflection (1 and 2).  

Tzur’s (2011b) seven-step framework can be linked to the widely 

used, four-component structure of mathematics lessons in China: 

Reviewing recent lessons, bridging (‘xian jie’) to reactivate long-existing 

knowledge, teaching with variation to introduce and practice new 

knowledge, and summarizing the lesson (Huang & Leung, 2004; Jin, 

2012; Li, Huang, & Yang, 2011; Tzur, 2011a, 2011b). In particular, we 

propose the following six components for examining classroom 

instruction in China: 
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Component 1:  Tailoring old-to-new—how relevant previous 

AERs (concepts, skills, and thinking/solution methods) 

available to learners are explicitly linked and likely to 

promote the learning of the intended mathematics;  

Component 2:  Specifying intended mathematics—how are goals 

for student learning identified in terms of important content 

points, critical/focal content points, and difficult concept 

points (Jin, 2012; Yang & Ricks, 2012); 

Component 3:  Articulating mental activity sequences—how are 

mental AER considered and progressively interconnected, for 

promoting students’ advances from available to intended 

mathematics;  

Component 4:  Designing variation tasks—how are initial and 

follow-up (prompting) tasks selected and sequenced to create 

opportunities for students’ abstraction of the intended 

understandings (i.e., for orienting both types of reflection);  

Component 5: Engaging students in tasks—how do teacher-

student interactions proceed through the task sequences to 

individually and collectively compare and contrast solutions 

(and problems) and thus discern what remains the same across 

those variations (i.e., the invariant AER); 

Component 6: Examining students’ progress—how do teachers 

continually assess students’ actual work and progress through 

variation problems and shared solutions (Huang, Mok, & 

Leung, 2006) as a means to tailor the intended mathematics of 

today’s lesson to Component 1 of the next lesson. 

  Among these six components, Component 1 is fundamentally 

important for ensuring that students commence the Ref*AER mechanism 

via assimilating tasks into available schemes. Component 2 sets the 

concrete goals to guide the teacher’s design and delivery of the lesson.  

Component 3 addresses the trajectory by which students may reorganize 

the new knowledge (AER) while Components 4 & 5 constitute enactment 

of Component 3 in a classroom. Component 6 provides the ongoing, 

formative, conceptually based assessment of students’ learning and thus 

a basis for designing the next lesson.  We note that summarizing 
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different content points during the work on the task sequence is done not 

just at the end of a lesson but rather embedded throughout Components 

4-6. Such summarizing can promote each student’s reflection on how (a) 

her goals were (or were not) accomplished via activities she carried out 

and (b) how AER dyads were used across solutions (one’s own, shared 

by others publicly). The process of executing, reflecting, and 

summarizing is aimed to cement the learned concept structure and the 

anticipatory stage and build connections between different concepts.   

Figure 1 depicts how the hybrid model links the theoretical 

perspectives outlined above and the six components of Chinese 

classroom teaching. This schematic depiction is organized in a three-

tiered way by which we propose to  establish the links among the parts of 

this hybrid model: HLT at the macro tier, teaching with bridging and 

variation at the intermediate tier, and reflection on activity-effect 

relationship (Ref*AER, with its two stages and corresponding types of 

reflection) at the micro tier.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A hybrid model for examining Chinese mathematics teaching in terms 

of a systematic creation of opportunities for student learning 
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This hybrid model served to guide our study of the following research 

questions:  

1) What features of enacted HLTs can be identified in the lessons? 

2) To what extent do the lessons unfold in line with certain HLTs?  

3) How does the unfolding of lessons contribute to the creation of 

opportunities for students’ learning? 

3. Methods 

3.1 Data Sources  

The larger data sets we considered for addressing the above research 

questions were collected in three schools via the Shanghai Learner’s 

Perspective Study (LPS) (Clarke et al., 2006).  Each of the data sets 

consists of more than 10 consecutive lessons taught by a competent 

teacher at his/her respective seventh grade classrooms. In these lessons, 

the mathematics intended as a goal for students’ learning included the 

concepts of systems of linear equations with two unknowns (SLE2), 

methods of solving SLE2, and applications of SLE2 methods to solve 

realistic (or symbolic) problems. For the purpose of our study, we 

selected one data set from School 3, because it was (a) the most complete 

set and (b) generated in classrooms in which teachers used the Chinese 

official curriculum.  

All videotaped lessons taken from the Chinese LPS data set focused 

on that unit of systems of linear equations. According to the textbooks 

(Curriculum Research Institute, 2005; Shanghai Education Press, 2006), 

the main goals of learning SLE2 include: (a) understanding the concept 

of SLE2 and its solution, (b) understanding and mastering various 

methods of solving SLE2 (substitution method and addition-subtraction 

elimination method), and (c) applications of solutions to SLE2. This 

chapter focuses on achieving the first two purposes. In particular, we 

focused on the middle five lessons in which the concepts of SLE2 and 

methods of solving SLE2 were taught. 
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  The teacher, Mr. Kang (SH3 in Clarke et al.’s study), taught the 

concepts of SLE2 in lesson 5, substitution methods in lesson 6, and 

addition-subtraction methods in lessons 7, 8 and 9.  The data for our 

study consist of lesson plans and videotaped lessons. Mr. Kang earned 

his bachelor’s degree in mathematics from a Teacher Education Institute 

and had 24 years of teaching experience.  In the lessons on which we 

focused, there were 55 seventh-grade students in the classroom.  Each 

lesson lasted approximately 45 minutes.  Within the lesson sequence, 

some findings have already been reported on the use of mathematical 

tasks (Huang & Cai, 2010), pedagogical representations (Huang & Cai, 

2011), and instructional coherence (Huang & Li, in press).  Our analysis 

in this chapter focuses on how teaching created opportunities for student 

learning as explained through the hybrid model lens. 

3.2 Data Analysis  

We analyzed data in three iterations. At the macro-tier, we examined 

lesson plans to identify teachers’ intended goals for student learning and 

classroom situations for promoting it, that is, HLT.  Then, we combined 

this analysis with line-by-line scrutiny of the videotaped (enacted) 

lessons to identify instructional tasks used in bridging and variation 

(intermediate tier), while linking those tasks to the HLT.  Then, we used 

the micro-tier lens of Ref*AER to explain how the unfolding of Mr. 

Kang’s teaching could have contributed to creating learning 

opportunities of the intended concepts and skills for his students. Finally, 

we further articulated a HLT based on the analysis of the enacted lessons 

to show that the Chinese teacher (implicitly) conducted his lessons in 

line with the HLT we articulated.  

4. Results 

In this section we present results of our analysis of algebra lessons 

intended for 7th grade students’ learning to understand and master 

solutions to systems of linear equations with two unknowns (SLE2). 
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First, we analyze goals for students’ learning during the entire 5-lesson 

sequence. We gleaned these goals from objectives stated in both the 

curriculum and the teacher’s lesson plans, as well as from the lesson 

component of Summarizing (Jin & Tzur, 2011), in which a teacher 

typically recaps and emphasizes the focal and important points taught.  

Next, we present a task sequence used by the teacher during the first 

lesson and suggest the particular role each task could hypothetically play 

in student learning. Then, we present data excerpts that enable “zooming-

in” on opportunities that the instructional tasks seemed to create for 

students’ learning of the intended ideas.  In that part of our analysis we 

use the Ref*AER framework to postulate how student extant conceptions, 

and teacher-student exchanges when working on particular tasks, could 

enable the intended learning.  Due to space limitation, we selected a few 

excerpts that provide compelling data for supporting the type of analysis 

we seek to provide.  Finally, we present a schematic HLT that could have 

served as a basis for the instruction analyzed (noting that neither the 

curriculum nor the teacher plan/implementation was rooted in this 

constructivist-based HLT). 

4.1 Intended Mathematics: Goals for Student Learning of SLE2 

The mathematical domain in which students’ learning to solve SLE2 is 

situated includes (a) understandings and mastery of each 

representation—algebraic (symbolic formula), graphical, and tabular—

and translations among these representations, and (b) using those 

interrelated representations as a means for solving realistic (word) 

problems.  When characterized by the number of solutions that SLE2 

may have, this domain includes the following three distinct options: 

A single point (value-pair) solves the SLE2; graphically this means 

the two lines intersect at the point of solution (e.g., y=3x and x-y=10) 

Infinitely many points solve the SLE2; graphically this means the two 

lines fully overlap, as one equation is equivalent to the other but 

transformed in its written, symbolic form (e.g., y=3x and 2(y-

2x+4)=8+2x); 

No point solves the SLE2; graphically this means that the two lines 

are parallel (e.g., y=3x and 6x-2y-9=0). 
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Among these three options, our focus is on teaching that promoted 

students’ learning of algebraic representations of Option 1, because 

starting with this option makes developmental sense. Within the first 

option, the Chinese curriculum emphasizes two major algebraic 

(symbolic) methods. The first method involves solving SLE2 by the 

substitution method (SM; e.g., substitute 3x for y in x-y=10 to obtain one 

equation with one unknown: x-3x=10).The second method involves 

elimination of an unknown via addition or subtraction of equations 

(ASM; e.g., add y=3x with x-y=10 to eliminate y and obtain x=3x+10). 

Regardless of the method one may use to solve a given SLE2, goals for 

student learning include (a) recognition of the existence of realistic 

problems that, when presented algebraically, involve SLE2, (b) 

understanding that (and why), as long as equivalence is maintained, 

substitution can be applied not only to numbers but also to an entire 

expression (a critical shift in reasoning, see Kieran, 1992), and (c) 

knowing when, how, and why to strategically and effectively use steps 

for finding a solution. Table 1 displays intended and actually enacted 

goals in the selected lessons, with numbers of lessons corresponding to 

their indices in Clarke et al.’s (2006) study.  

Seen through the lens of Ref*AER, an established scheme of Option 1 

(single solution) of SLE2 can be described as follows (lessons in which 

aspects of this scheme were taught are given in parentheses). The 

situation into which a word problem is assimilated consists of two 

distinct quantities (symbolized by letters) and given relationship among 

them (L5). This situation triggers the mental, global goal of finding the 

values of the asked for, unknown quantities (L5). To accomplish this 

goal, a first part of the activity sequence is called upon: symbolizing the 

unknown quantities and the given relationship by a set of two equations, 

that is, representing the realistic problem in corresponding algebraic 

formulas (L5).  Once two equations are set, they are re-assimilated into a 

threefold anticipation included in the scheme’s situation: (a) (infinitely) 

many value-pairs can satisfy each equation separately, but only one such 

value-pair will satisfy both equations simultaneously (L5), (b) a 

systematic process, not just guess-and-check, can yield the desired effect 

of finding this value-pair (L5-L6), and (c) verification will be needed 

whether or not the found value-pair (effect) is a simultaneous solution  
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Table 1.  Goals for student learning in the selected lessons 

Lesson Intended goals Enacted goals 

L5 - Establish link between realistic 

problems and SLE2 

- Create need and awareness of 

reason for using SLE2 when 

solving problems 

- Grasp what constitutes a SLE2 

and its solution 

- Judge if a system of equations is, 

or is not, a SLE2 

- Judge if an ordered pair is a 

solution to a given SLE2 (or not) 

- Introduced SLE2 and the ‘service’ 

they provide via student attempts to 

solve word problems (initially by 

guess-and-check) 

- Restated the definition of SLE2 and 

its solutions 

- Emphasized how to check if a 

solution satisfies both equations 

L6 - Know how/when to use the SM 

for solving a given SLE2 

- Experienced and summarized steps 

of using the SM  

- Emphasized fundamental reasons for 

using SM: isolating each unknown 

(while expressing one in terms of the 

other) 

L7 - Grasp, preliminarily, the 

Addition-Subtraction Method 

(ASM) of solving SLE2  

- Experienced and summarized steps 

of using ASM 

- Summarized conditions of using 

ASM 

- Compared and contrasted SM vs. 

ASM 

L8 - Develop facility and flexibility in 

using ASM to solve SLE2  

- Experienced and summarized five 

steps of using ASM in general 

L9 - Develop reasoning for flexibly 

and strategically selecting a 

method to solve a SLE2 based on 

characteristics of coefficients of 

the unknowns 

- Emphasized and summarized key 

points: simplifying SLE2, 

standardizing SLE2, and proper 

selection of method, SM or ASM, 

based on coefficient characteristics 

  

(L5). This re-assimilation triggers the second part of the activity 

sequence, namely, choosing and using one of the two methods (SM or 

ASM) while always maintaining equation equivalence (L6-L9), followed 

by actually verifying that the found value-pair satisfies both equations.  

This verification, in turn, triggers returning to the quantities given in the 

realistic problem and checking the soundness of the value-pair (L5-L9).  

  Taken together, Table 1 and the articulation of the intended SLE2 

scheme showed that in each lesson the teacher identified and enacted 

very specific learning goals, which were developmentally and 
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mathematically coherent.  Thus, these goals could provide direction to 
the creation of a HLT, which in turn could guide implementing an 
enacted lesson consistent with the intended goals.  Because the last two 
lessons (L8-L9) focused on promoting students’ flexibility in using SM 
and ASM, we shall now turn to data from the first three lessons to 
analyze tasks and learning opportunities.  

4.2  Activity and Task Sequences for Promoting Student Learning of 
SLE2 

To articulate an activity sequence and a corresponding task sequence that 
may promote students’ learning of the intended mathematics, one must 
begin with specifying presumed extant (assimilatory) schemes students 
are expected to reactivate at the outset of learning (Jin & Tzur, 2011; 
Simon & Tzur, 2004; Tzur, 2011b). Indeed, we do not have data or 
knowledge about these extant schemes. Thus, we provide a brief 
description of what a teacher could have supposed Chinese students have 
constructed in previous lessons about solving single linear equations. All 
of these suppositions are rooted in what we know about how solving 
SLE1 is taught and learned in these classrooms.  In particular, we 
suppose the students have understood the equal sign (“=”) as equivalence 
between two expressions (Kieran, 1992).  Thus, they could solve linear 
equations by operating equivalently on both sides of given equations 
toward the goal of isolating the unknown.  We also suppose that students 
could anticipate and explain why certain operations maintain (or not) an 
equivalence, that is, why are such operations mathematically justified for 
creating equivalent forms of the same equation (e.g., “combine like-
terms,” “add/subtract the same expressions to both sides,” “substitute a 
number for an unknown,” etc.).  In addition, we suppose that the students 
could anticipate and explain why using certain operations in a particular 
order would be useful in solving different kinds of linear equations (e.g., 
“combine like-terms before dividing by the coefficient of an unknown,” 
“multiply all addends above a fraction bar,” etc.).  Finally, we suppose 
that students could anticipate the possibility, and equivalence-
maintaining effect, of an activity of substituting a number for an 
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unknown (or for an expression), but not necessarily substituting one 

unknown/expression for another.   

  Mental activities students could use and reflect upon while 

capitalizing on the aforementioned extant schemes could include the 

following sequence.  It would be beneficial to begin by reactivating their 

available processes of recognizing a realistic problem, setting algebraic 

expressions for the given quantities and relationships, and using guess-

and-check to find value-pairs that satisfy at least one equation (maybe 

both). The guess-and-check activity can lead to identifying and 

discussing why numerous (infinite) solutions are possible. This 

recognition serves in creating students’ need (perturbation) for devising 

a solid method (Fang Fa, or 方法 in Chinese) for finding the single 

value-pair that would necessarily satisfy both equations simultaneously. 

Here, an activity of checking a few value pairs—some true and some 

not—could help to further substantiate this need and how properly 

substituting values can confirm or disconfirm whether a pair is a solution.  

This twofold need (find and confirm a value-pair) can lead to 

recognizing the source of the issue at hand, namely, the infinite number 

of value-pairs due to the number of unknowns, which can yield a key 

sub-goal: to reduce the number of unknowns from two to one. This goal 

can then give good reason for and trigger the use of a substitution 

activity for SLE2 in which one equation initially expresses one unknown 

in terms of the other (e.g., m=k) and then in gradually more complex 

variations (e.g., m=2+k, 3m+k=5). The different ways one equation can 

be operated on to allow substitution can then become the source, 

invariant anticipation underlying both methods of solution (SM and 

ASM). That is, students will learn to anticipate that equivalence-

maintaining transformations of one or both equations can yield the effect 

of eliminating one unknown, solving for the other, and then use the 

found value in the substitution equation to find the necessary, single 

pairing.  

  The activity sequence specified above is echoed in the sequence of 

tasks used by the Chinese teacher in the first lesson on SLE2 (L5).  Table 

2 presents the tasks (left column) under each of three lesson-components 

(bold-face) and a possible instructional rationale (right column) for using 

these activities when seen through the Ref*AER lens. 
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Table 2. Task sequence (L5) for initiating student learning of SLE2 

Tasks  Rationale 

Task 1: Bridging   

Task 1:  Wang goes to the post office to buy some $1 

and $2 stamps.  At least one of each type of stamps 

will be bought.  [Create expressions for] How many 

stamps of each type can Wang get from the 

postman? 

Reactivate extant knowledge 

relevant to intended learning 

(symbolize a word problem by 

an equation) 

Tasks 2-4: Teaching intended ideas with variation  

Task 2:  Wang goes to the post office to buy a total 

of seven ($1 and $2) stamps.  At least one stamp of 

each type will be bought.  The total amount he 

spends on these stamps is $10.  How many stamps of 

each type does Wang get from the postman? 

Introduce SLE2 concept as a 

means for solving realistic 

problems; trigger guess-and-

check, create need for method 

(Fang Fa) 

Task 3:  For each set of the equations judge if it is  a 

SLE2 or not: 
(1) x-2y=1 and 3x+y=5; (2) x=2+y and 1/2x-3y=8;  

(3) x+8=4 and 5x-7y=-2; (4) xy=1 and 2x+3y=1;  

(5) x+2y=4 and x-2z=3.  

Discriminating “what is a 

SLE2” from “what is not” 

(based on definition the 

teacher provided after class 

discussion of Task 2) 

Task 4:  Find possible solutions to each equation in 

the system of linear equations we created for the 

word problem in Task 1 (i.e., 2x+y=10 and x+y=7).  

Creating awareness of 

numerous possible solutions 

and need/concept  of a single 

(value-pair) solution 

Tasks 5a-5c: Elaborating with variation   

Task 5a:  Given the system of linear equations, (1) 

x+y=6 and (2) 2x+y=8, judge which of the 

following value-pairs is a solution to that system: (i) 

x=-2 and y=8; (ii) x=2 and y=4.  

Anticipate need to confirm (or 

disconfirm) if a found value-

pair is a solution 

Task 5b: Given the value-pair of x=-2/3 and y=2, 

identify to which of the following systems of  linear 

equations it is a solution:  

(i) 3x+y=0 and x-2y=-14/3;  

(ii) 3x-y=-4 and 3x+10y=14.  

Anticipate need to confirm (or 

disconfirm) if a found value-

pair is a solution (more 

‘messy’ numbers) 

Task 5c: Given the value-pair of x=1 and y=2, 

design a system of linear equations so that it has this 

pair as the solution.  

Anticipate overarching 

structure of AER, including 

multitude of SLE2 for which a 

given value-pair is a solution 

* Note: The additional words in brackets indicate the way in which the Chinese teacher 

seemed to expect his students to interpret the question. 
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Table 2 shows that the task sequence in the first lesson (L5) 

corresponded to the presumed extant conceptions and the hypothesized 

sequence of mental activities we have articulated through the Ref*AER 

lens. Yet, whereas task sequences may provide a glimpse into how a 

lesson might have been enacted, we believe that finer analysis of learning 

opportunities requires attention to teacher-student exchanges in the 

classroom. Analysis of such exchanges is presented next. 

4.3 Promoting Opportunities for Students’ Construction of SLE2 

As shown in Table 2, the teacher’s use of Task 1 could serve in 

reactivating extant conceptions of students that would be relevant for the 

intended learning. Particularly, this “bridging” task provided every 

student with an opportunity to bring forth her or his extant knowledge 

about how to symbolize linear relationships among quantities (e.g., 

setting x and y for the number of $1 and $2 stamps bought, respectively, 

and writing the expression x+2y for the total expenditure).  We note that 

this task was a new-and-easy one for students, not just a review of 

previously solved homework problems or “warm-up” problems from a 

different, not relevant topic. Thus, like Mr. Kang, we would have 

expected students with the extant knowledge as described above to 

generate such expressions. Moreover, the short whole-class discussion 

that ensued could reveal key differences and similarities among student 

solutions to the same problem. Whether capturing the relationship 

correctly or incorrectly, every student would hear others’ (peers, teacher) 

expressions of the effect of their symbolizing activity. Thus, every 

student was provided with an opportunity for Type-1 reflection (between 

one’s actual and supposed effect—the expression she or he wrote). 

Furthermore, students could symbolize correct solutions by different 

letters (e.g., a+2b), which would provide an opportunity for Type-2 

reflection (across activity-effect instances). Such a reflection could lead 

to cementing a previously constructed invariant—that the defining issue 

for a mathematically justified solution is not the letter chosen but rather 

the way the given relationship was symbolized (e.g., comparing x+2y 

with x+(y+2) where letters are the same but relationships differ). 

Through these two types of reflections on a variety of solutions to Task 1, 
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students who were not yet at the anticipatory stage of the supposedly 

known symbolizing activity for realistic problem situations received 

further opportunity to make sense of and master this concept.  Once the 

extant, relevant conceptions were reactivated via Task 1 (bridging), the 

teacher moved to teaching with variations, using three tasks designed to 

focus on the lesson’s goal. 

4.4 Promoting Learning of What Constitutes SLE2 and Its Solution 

We turn to discussing Tasks 2-4 and how they could promote 

opportunities for students’ learning of the new, intended mathematics.  In 

that 3-task sequence, Task 2 could promote students’ understanding of 

which type of realistic problems is symbolized by a system of linear 

equations with two unknowns (SLE2) and the issues involved in solving 

such a system (hence, the realistic problem). These issues would be 

revealed through students’ attempts to create proper equations (SLE2 or 

single equations), listing several solutions of each linear equation (e.g., 

making a table), and detecting a solution common to both equations.  

Following a whole class introduction of the meaning and definition of 

SLE2 based on students’ work on Task 2, Task 3 could then help them 

clarify this new idea by learning to distinguish what is SLE2 from what it 

is not (see Xie & Carspecken, 2008), that is, to deepen their 

understanding of what constitutes SLE2.  Task 4 would then promote 

opportunities to learn via recognizing that there are numerous solutions 

to each equation separately and hence to the need (perturbation) for a 

solution method. Below, we further analyze learning opportunities 

created by each of these three tasks. 

  Students’ work on Task 1 and the class discussion of possible 

solutions produced an expression with chosen unknowns: 2x+y. Mr. 

Kang then moved on and asked them to work individually on Task 2, 

with the clear norm established in his classroom that different solutions 

would then be shared. Key in sequencing the tasks is that Task 1 and 

Task 2 consisted of identical relationships between the given quantities 

(two types of stamps). Reactivating the AER of representing such 

relationships algebraically could support students’ extension of it to a 

linear equation for the same relationship and a constraint, namely, 
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2x+y=10. Said differently, a learning opportunity was promoted because 

students have just used their extant schemes to produce one expression 

(2x+y) needed for the equation, which could enable each student to, at 

least, start the work independently. At this point, to find out how many 

stamps of each type would Mr. Wang get, they could begin generating 

solutions to this single equation (e.g., x=1 and y=8, or one $2 and eight 

$1 stamps). Some students may have also noticed the other condition and 

tried producing an equation and solutions for it, too (e.g., x+y=7, and 

value-pairs such as -2 and 9, or 6 and 1, etc.). All in all, the teacher (and 

observers) could suppose that each student had at least a few value-pairs 

to solve 2x+y=10 and possibly value pairs to solve x+y=7 (but not 

necessarily the pair that solves both simultaneously). Thus, Mr. Kang 

proceeded to the sharing of solutions, as presented in Excerpt 1 below. 

Excerpt 1: Whole class discussion of multi-solutions (teaching with  

                  variation) 

 T: …. in the problem we just solved [individually], according to the condition that   

     the total amount of money is $10, we set this equation as 2x+y=10, and we found 

four solutions of the equation by making a table. (Mr. Kang shows a table on the 

screen, including the solutions:  x=1 and y=8;  x=2 and y=6;  x=3 and y=4;  x=4 

and y=2). According to the second condition, that the total number of stamps is 7, 

we set the equation x+y=7; and then we obtained 6 solutions for that equation. 

(Mr. Kang shows another table on the screen, including the solutions: x=1 and 

y=6;  x=2 and y=5;  x=3 and y=4;  x=4 and y=3;  x=5 and y=2;  x=6 and y=1). 

According to the word problem, the values of x and y must satisfy the first 

equation 2x+y=10 and the second equation x+y=7, too. That is, the value of the 

pair of x and y is a solution of the first equation and the second equation as well.  

Can you find such a solution?  

Ss:  There is. 

T:  Which one?  

Ss (in unison):  x=3, y=4.  

Excerpt 1 indicates how the whole class discussion, following individual 

students’ work on Task 2, could promote attention to and awareness of 

an essential need for solving SLE2, namely, finding a value-pair that 

solves both equations simultaneously. We note the teacher’s start with 
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the 2x+y=10 equations, which he seemed to suppose all students could 

use. Different students provided the value-pairs in the table during the 

sharing of individual solutions. The teacher then proceeded to the second 

equation (x+y=7).  Some students may have not produced this equation 

on their own. However, they have seen it during the sharing by those 

who did produce the second equation. This provided all students with a 

learning opportunity as they could compare and notice an effect of the 

activity of producing an equation and value-pairs for both conditions in 

the realistic word problem that differed from what they might have 

produced on their own.  It is precisely this effect that turned out to be the 

focus of the teacher’s next probing.  First, he emphasized the need to find 

a value-pair for x and y that satisfies both conditions (and hence, both 

equations), and recast this pair as a solution for both equations (“That is, 

the value of the pair of x and y is a solution of the first equation and the second 

equation as well”).  Then, he asked students if they could find such a 

value-pair.  The students’ unison responses (“There is”) indicated they 

could apply the stated, general anticipation to the value-pairs in both 

tables and identify the pair (“x=3, y=4”) that solved both equations.  

  Following this individual and whole-class work on the first two 

tasks, Mr. Kang introduced (PPT on the screen) the concept of SLE2 and 

the notation used for it.  Particularly, he emphasized that such a system 

needs to include two equations, each consisting of both unknowns—none 

at a power higher than 1 and each multiplied only by a constant number 

(including 1 or -1).  He then engaged the students in Task 3 (determining 

which system is SLE2) and in finding a way to solve the SLE2 created 

for Task 2.  The latter move is of specific interest, as the answer (value-

pair) has already been discussed. We thus point out the benefit of 

orienting students’ attention onto possible methods, besides guess-and-

check, they could use to solve the system. At this point, Mr. Kang moved 

on to Tasks 5a and 5b, which we postulate could orient student reflection 

on and anticipation of a central effect of their activity, namely, the 

simultaneous nature of a solution (value-pair).  By asking students to 

check a few instances of value-pairs, starting with rather simple ones 

(Task 5a) and progressing to more complex ones (Task 5b), he used 

variation to create an opportunity for both reflection Type-1 (one’s 

verification to each instance could be correct or incorrect) and Type-2 
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(comparing the invariant AER used across all value-pairs). A particularly 
important Reflection Type-2 instance can be seen in Excerpt 2, which 
presents data from the class discussion about whether (-2, 8) was a 
solution for the SLE2 of x+y=6 and 2x+y=8. 

Excerpt 2: Whole class discussion of value-pair (-2, 8) 
T:  Please think about how to judge whether a pair of [ordered] numbers is the  

solution to a given system of  [linear] equations. … We ask one classmate to 

express the solution. You [pointing to Eliza], how do you think about this, 

please tell us your thoughts. 

  Eliza: (….) 

 T:   How to compute when substituting the value-pair into the equations?   

 Eliza: x+y=6, 2x+y=8, (…), -2+8=6, and then substituting into the second   

                         equation.  

T:  Substituting into the second equation. This means substituting into each of 

the two equations, is it not?  Good. Let us do it together by following this 

thinking method.   Substituting x=-2 and y=8 into the first equation. Please 

do not use your pencils; let’s just do it together. Let us speak out together … 

(here, the entire class talked in unison while the teacher wrote down on the 

board what students said.) 

Ss: -2+8=6; the left side is equal to 6; because the left equals the right, x=-2   

      and y=8 is a solution of the first equation. 

T: Is it finished?   

Ss: Substituting x=-2 and y=8 into Equation 2, the left side equals 2(-2)+8,   

     which is 4; the right side is equal to 8. Because the left side is not equal to  

     the right side, x=-2, and y=8 is not a solution of Equation 2 [The teacher  

     continued writing down what students said]. 

T: Is it finished?  

Ss: No 

T:  Why?  

Ss:  Because … so… 

T: So, … So… ? 

Ss: So x=-2, and y=8 is not the solution of system of equations x+y=6 and  

      2x+y=8 [The teacher wrote down what students said]. 
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Excerpt 2 indicates two key points about the teacher’s use of value-pair 

instances to check the validity of solutions.  The first and obvious point 

is orienting students’ attention to the key requirement—to be considered 

a solution of a given SLE2 a value-pair must satisfy each of the 

equations simultaneously. We do not have data to judge Mr. Kang’s 

knowledge about the student (Eliza) he asked to provide the answer first.  

It is quite possible that the teacher knew Eliza was still struggling and 

thus invited her to share (Jin, 2012, had shown how Chinese teachers 

know who among their students needs further support and thus 

frequently call upon them).  We do get a sense that, for Eliza, the activity 

of substituting x-y values from the pair into each equation (one learned 

when solving single equations) was not yet anticipatory. But once 

prompted for the activity, Eliza quickly resumed and successfully 

completed it for Equation 1. Seen through the Ref*AER lens, one would 

consider the possibility that Eliza has been at the participatory stage of 

conceptualizing the link between substitution of values in a pair and the 

validity of that solution.  

  The second point indicated in Excerpt 2 is the teacher’s purposeful 

use of a non-example—an instance that violates simultaneity. Such a 

pedagogical move is prevalent among mathematics teachers in China (Jin, 

2012), and seems rooted in the Chinese dialectical perspective about 

knowing and learning (Xie & Carspecken, 2008).  This move creates a 

learning opportunity in that it orients students’ attention to distinguishing 

‘what is’ from ‘what is not’, which provides further impetus and input 

for Reflection Type-2.  Mr. Kang further promoted such a reflection by 

changing the class activity from one student sharing to a whole class 

unison (out loud) recitation of the entire activity sequence: substituting 

the value-pair into Equation 2, figuring out it does not satisfy the 

required equivalence (left-right sides), and explicitly linking this effect to 

the global goal of the entire substituting activity, namely, determining the 

given value-pair was not a solution.   

In regard to this last point, we note that at this early stage of learning 

about SLE2 most of the class might still have been at a participatory 

stage, as indicated in their answer to the teacher’s question (“Is it 

finished?”). While their initial response (“No”) could reflect interpretation 

of Mr. Kang’s intonation that they were not yet done, the hesitation that 
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followed (line 12) suggested they needed more thinking to make the 

conceptual leap from finding that the value-pair does not satisfy one of 

the equations to concluding that it is therefore not a solution to the SLE2.  

All in all, by using a few instances in which the value-pair satisfies both 

equations and other instances in which it satisfies only one equation (i.e., 

teaching with variation), the teacher created an opportunity for students’ 

abstraction of the goal set for their learning. Here, they learned a key 

principle (and method) that remains invariant: checking equivalence of 

both sides in each of the two equations (activity) is anticipated to yield 

the effect of determining a solution (or not) to a given SLE. 

As a move that could further promote students’ construction of the 

new anticipation of SLE2 and what constitutes a valid solution for it, Mr. 

Kang proceeded to Task 5c (designing SLE2 for which a given pair, x=1 

and y=2, is a valid solution).  Students were first working on this task in 

pairs, and then shared solutions in a whole class discussion. Conceptually, 

this task is more challenging not just or mainly because it is totally 

open—it literally has infinitely many answers. Rather, the conceptual 

challenge is in inverting one’s thinking from ‘seeing’ the anticipated 

effect of an activity of substitution to determining a process by which 

solutions can be traced back to a source SLE2. Such reversal of thinking 

is a hallmark of what Piaget (1985) referred to as a mental operation. By 

engaging students in starting the activity from what, to this point for 

them, has been the effect of a different activity, seemed to create a 

powerful opportunity for cementing the intended concept.  Seen through 

the Ref*AER lens, asking students to pose a problem for a given solution 

entails (a) assimilation of the givens into the newly formed activity-effect 

relationship dyad (2nd and 3rd parts of a scheme) and (b) relating this 

dyad back to an instance of a situation that could trigger such an AER in 

the first place.  Excerpt 3 presents data from the whole class discussion 

following students’ work on Task 5c in pairs. 

Excerpt 3: Whole class discussion of Task 5c (Kang writes what   

                  students say) 

T:  Do you have your design?  

Ss (out loud in unison): Yes. 

T:  Good. Let us exchange our solutions. Who would like to come up first? (The  



96  R. Huang, L. D. Miller, & R. Tzur 

     majority of students raise their hands). Good. Felix? 

Felix:  x+5=6, and x+2y=5. 

T:  Classmates, can you judge whether it is correct or not? 

Ss (out loud in unison): Correct! 

T (to Felix):  Please sit down. Who will go next? Denson. 

Denson:  3x+y/2=4, I am still thinking about the second one [equation]. 

T:  You have not finished. It is good to have one. Donnie, can you complement   

the second equation? 

Donnie:  2x-5y=-8. 

T:  Class, is it correct or not? 

Ss (out loud in unison): Correct. 

T: (Invites two more students to share their SLE2, each time the class confirms  

     in unison. Then, he summarizes two key points: the definition of the system  

     and how a given value-pair, such as x=1 and y=2, could be a solution of  

     many different equations (that is, it simultaneously satisfies both equations in  

     each system.) 

Excerpt 3 indicates that most (if not all) students in Mr. Kang’s 

classroom benefited more learning from their work on Task 5c. Key to 

their learning seemed to be an opportunity to work with peers. While 

some students might have been struggling on their own, they all received 

a chance to discuss the creation of two equations. Indeed, not all students 

solved the challenging task successfully. On one hand, students like Felix 

could complete the creation of SLE2 on their own (and justify it during 

the pair work). Furthermore, students like Donnie could assimilate ‘half-

a-solution’ (provided by Denson) and complete it to have a second 

equation that the given value-pair also satisfied. On the other hand, 

students like Denson needed more work to abstract the inversion of the 

AER and solidly link it to the SLE2 situation. Nevertheless, Denson’s 

response suggested that he had abstracted the key principle (anticipation) 

learned in the previous parts of the lesson.  He seemed to anticipate not 

only the need to check that a value-pair satisfied one equation but also 

that another one would be needed (“3x+y/2=4, I am still thinking about the 

second one [equation]”) to satisfy the same value-pair. Critically, Mr. Kang 

created a learning opportunity for all students, Denson included, by 

orienting their Reflection Type-2 across different instances in which the 
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same link between the situation and the newly formed AER is established 

and anticipated. These SLE2 instances, produced (one equation after 

another) by most students during the pair work and shared during whole 

class discussion, could promote inversion of the AER as a means for 

cementing it within the SLE2 scheme. 

  In summary, the sequence of tasks used by Mr. Kang in Lesson 5 

seemed to promote all students’ learning at least up to the point of 

inverting the method of verifying if a value-pair is a solution. In 

particular, students have actively abstracted the concept of (what 

constitutes) a solution to a system of linear equations, including (a) the 

need to solve a word problem, (b) building the concept of solution to a 

system of linear equations as transformation of the concept of a solution 

to one linear equation (Task 1), (c) deepening the concept through 

resolving a perturbation (not just guess-and-check) and solving a variety 

of problems (Tasks 2-5b), and (d) applying the concept through open-

ended problem solving (Task 5c).  The work on the systematically 

progressing variation of tasks seemed to engender students’ development 

of a deep understanding of the intended concept: its connection to 

previous concepts and discernment of the critical feature for the new 

concept (simultaneous solution to both linear equations).  The 

culminating, challenging experience of creating many different SLE2 

(Task 5c – pair work and sharing in whole class) seemed to further 

cement the newly abstracted anticipation in close linkage with solving 

(and posing) problems. This analysis through the Ref*AER lens—of 

opportunities created by Mr. Kang for his students’ learning—provides a 

basis for articulating a HLT that could underlie his teaching. 

4.5 Articulating HLT for the SLE2 Unit 

As explained in the conceptual framework section, a HLT (Simon, 1995; 

Simon & Tzur, 2004) consists of the following three components: goal 

for student learning, mental activities inferred to be involved in 

accomplishing it, and hypotheses about the reorganization of the 

cognitive process from current to intended mathematics.  It is important 

to note that HLT, a central notion of a pedagogy rooted in a 

constructivist stance on learning, does not seem to be how Chinese 
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teachers in general and Mr. Kang in particular devise their lessons.  

Nevertheless, the meticulous selection of tasks and the way lessons 

unfolded enable us to use HLT as a tool for further portraying a 

constructivist-based rationale that could potentially inform their practice 

(Jin, 2012).  This theoretical portrayal focused on two key phases of the 

Chinese lesson structure, bridging (Jin & Tzur, 2011) and variation (Gu 

et al., 2004; Wong, 2008).  

  The goal (scheme) of a HLT potentially underlying the Chinese 

curricular unit taught by Mr. Kang has been articulated at the start of the 

Results section (see Table 1 for details). In a nutshell, it consists of an 

assimilatory situation into which word problems are assimilated by 

recognizing and quantitatively relating two different quantities in a word 

problem. This situation triggers a goal of finding a value-pair that 

satisfies both equations simultaneously. In turn, this goal triggers an 

activity sequence consisting of equivalence-maintaining operations on 

one or both equations to (a) eliminate an unknown (transform a SLE2 to 

a linear equation with one unknown (extant knowledge), (b) solve for the 

value of the other unknown (working with the extant knowledge), (c) use 

that value to find the value of the eliminated unknown, (d) check that the 

value-pair does, in fact, satisfy both equations (building the connections 

between the new concept and previous knowledge), and (e) check that 

the value-pair also solves the word problem soundly. The last step of the 

activity sequence is relevant when SLE2 was not simply introduced and 

solved algebraically but was produced to reflect on the relationships 

among quantities in a word problem. The result part of this scheme is 

therefore a value-pair that can be found methodically, which also 

demarcates the intersection point of the two lines that correspond to the 

equations. When such a scheme is established, it is further extended to 

recognize at least two different methods for eliminating one unknown 

(substitution method and addition-subtraction method) and strategically 

choosing one of them depending on the characteristics of coefficients of 

the two equations. The multiplicity and flexibility in methods of solving 

SLE2 help students realize the invariant feature of eliminating unknowns, 

which is the core mathematics thinking method (Fangfa) in this unit. Due 

to space limitations, using data and analysis about this latter part of the 

curricular unit will appear in a forthcoming paper. 



 Opportunities for Students’ Learning in Chinese Mathematics Classroom  99 

  Mental activities inferred as part of HLT for students’ learning of 

SLE2 (here, for the SM method), when assuming they know how to 

solve a word problem and the value-pair cannot be trivially guessed, 

include the following (not necessarily in this order): 

 
1.  Identifying the quantities that are relevant to the question asked (e.g., the number 

of $1 and $2 stamps bought); 

2.  Selecting letters to stand for those quantities, including what, precisely, is the 

meaning of each letter (e.g., x = number of $2 stamps Mr. Wang buys); 

3.  Determining the relationships that link the quantities (e.g., addition, division, 

exponentiation, etc.) and setting corresponding equations for them, which usually 

includes a visible action of writing down the equations (e.g., total number of 

stamps is the sum of each type separately, hence x+y=7; total amount paid is the 

sum of products of each type multiplied by its price, hence $2x+$1y=$10 or 

simply 2x+y=10); 

4.  Selecting possible ways to eliminate one of the unknowns and selecting one that 

seems useful (e.g., it’s easy to “isolate” y in the first equation, as y=7-x, and 

substitute into the second to avoid an extra step of multiplying by 2 if x was 

isolated); 

5.  Executing the substitution and solving for the other unknown, which is done 

mentally and may also be manifested in a visible action such as writing, though 

this is not necessary (e.g., 2x+(7-x)=10, hence x=3); 

6.  Recognizing that, unlike in a single equation, the equations are not yet solved and 

thus setting a sub-goal of finding the substituted unknown accomplished by 

reverse substitution of the found value (e.g., y=7-3, hence y=4); 

7.  Checking that the unknowns, as defined in Step #2, satisfy both equations 

simultaneously (i.e., no errors were made that created a “misfit” value pair), and 

possibly also graphing the solution (not used by Mr. Kang) to indicate the 

intersection point; 

8.  Linking the value-pair back to the given word problem and judging the 

reasonableness of this solution (e.g., if the solution to SLE2 included zero as a 

value it does not fit because at least one stamp of each type was bought). 

9.  Examining and adjusting any of the previous steps in case a ‘misfit’ of values for 

the SLE2 and/or problem was found, until all conditions are satisfied. 

 

As the examples given in parentheses illustrate, these nine, goal-directed 

mental activities were all promoted within the design of lessons found in 

the Chinese curriculum and taught by Mr. Kang (not including graphing 
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the SLE2 in Step 7). Furthermore, the lessons seemed to sequence 

student engagement in these activities in a progressive way.  The lessons 

unfolded from reactivating (bridging) available schemes of solving single 

linear equations with one unknown and using such a solution to create a 

need for methods.  This led to identifying relationships among quantities 

and generating algebraic representations of those relationships.  Before 

solving SLE2s, students were then engaged in a few activities that 

promoted, through variation of solutions, their ability to set a proper goal 

and know when it is accomplished (i.e., when a value-pair is the solution 

to the SLE2 and thus to the word problem). This identification, through 

distinguishing “what is” from “what is not” (distinguishing what is 

invariant from what varies is the key in learning according to variation 

theory (Marton & Tsui, 2004)), gave way to more variation of 

problems/SLE2s solved via two different methods (moving from easy, 

almost trivial, to quite challenging). Consequently, students could 

strengthen each mental activity and link all of them into a meaningful 

sequence. 

  Indeed, the nine mental activities—some of which may be 

accompanied by an individual’s physical actions—are necessarily carried 

out in one’s mind. Nevertheless, a student carrying out each of these 

activities may greatly benefit from repeatedly being engaged in working 

with others, or detecting others’ observable actions when solving the 

problem. Key to such benefit would be that the individuals (a) establish 

compatible goals, which would guide one’s making sense of someone 

else’s visible actions (and inferred mental processes) and (b) can 

meaningfully link the observable actions of others back to one’s own 

particular mental activity and its role/purpose within the entire activity 

sequence. This last comment is crucial, as too often teachers may engage 

their students in working cooperatively while, just like a teacher’s 

actions and language, the work of peers may be meaningless to an 

individual due to incompatible goals and/or having no internal activities 

by which to assimilate and interpret the peers’ observable actions.  In this 

regard, we note that Chinese students are educated learners (Cortazzi & 

Jin, 2001).  They seem to understand teachers’ intentions (i.e., shared 

goals), know the instructional flow (Huang & Barlow, 2013), and are 

willingly and attentively listening to the teacher or peers’ talks. As our 
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analysis showed, progress made by students in Mr. Kang’s class differed, 

but more often than not the problems posed and solutions shared seemed 

to be within every student’s reach. 

  We culminate the could-be HLT by articulating a hypothesized 

reorganization of the cognitive process by which students may build on 

their existing algebraic knowledge (specified earlier) and transform it 

into the intended mathematics (SLE2 as explained in the HLT’s goal 

above). To initiate this reorganization, students’ available scheme of 

linear equations with one unknown, and word problems such equations 

can help solve, could be activated (e.g., Tasks 1 and 2 in Lesson 5).  

After creating single equations to symbolize each of two single 

relationships among the quantities, a first reorganization may take place 

through noticing the conditions required by both equations (e.g., Mr. 

Kang’s repeated questions such as “are we done?”).  That is, a first step 

in the reorganization, which seemed well oriented by the curricular unit 

and its implementation, concerns the new, intended anticipation that 

some problems consist of two quantities and double relationships among 

them, and hence required creation of two equations.  Through generating 

different value-pairs for each equation, this new anticipation can in turn 

orient students’ attention onto the variation of these pairs, and hence the 

need to identify one pair that solves both equations simultaneously.  

Consequently, through students’ use of their known guess-and-check 

activity, and Reflection Type-2 on its effects, a need (perturbation) could 

arise for developing a method to figure out that pair. Bridging lesson 

portions used by Mr. Kang seemed to be directly geared at and quite 

effectively accomplishing this first set of transformations from single 

linear equations to SLE2 in Lesson 5. 

  To further reorganize previous knowledge, variation of substitutions 

could promote both types of reflection. Initially, a few substitutions 

could be quite simple, building on previously known ones such as 

substituting a number for a letter/unknown (guess-check activity). These 

simple substitutions could give way to gradually more complex ones, in 

which a letter is substituted for another letter, and then an expression is 

substituted for a letter and/or expression (e.g., the SLE2 Mr. Kang asked 

students to solve in Lesson 6: 2x+3y=4 and 5x-2y=29). This variation of 

problems in which substitution is used creates an activity-effect dyad for 



102  R. Huang, L. D. Miller, & R. Tzur 

each problem—the activity sequence used for the solution and the effect 

it brought about (e.g., a value-pair that, students notice, does not solve 

both equations simultaneously).  Reflection Type-1 is continually applied 

to and its results are recorded in terms of dyads linking solution activity 

and the value-pair found for it (e.g., first substituting for y or for x to find 

the value of one of them). Meanwhile, Reflection Type-2 could be 

oriented across solutions in which similar activity sequences were used 

(e.g., isolate and eliminate an unknown appropriately in Lesson 6, such 

as solving systems of linear equations 3x+2y=13 and x-y+3=0; or 

3a+4b=0 and 2a-2b=7) 

  Combined, both types of reflection could lead to noticing and 

abstracting the intended, threefold, new invariant—how two linear 

equations constitute SLE2, the simultaneity of a justified solution, and 

the methods (goal-directed activity sequences) that can yield (a) the 

needed equations and (b) solutions through elimination, isolation, and 

finally linking of the unknowns.  

  Moreover, the following word problem was used to reactivate the 

arithmetic method (learned in elementary school) and the equation 

method (just learned in previous lessons):  

Siu Ming’s family intends to travel to Beijing during the national holiday by train, 

so they have booked three adult tickets and one student ticket, totaling $560. After 

knowing this news, Siu Ming’s classmate Siu Wong would like to go to Beijing 

with them. As a result they bought three adult tickets and two student tickets for a 

total of $640, can you calculate how much it costs for each adult and student 

ticket?  

The arithmetic method (e.g., 640-560=80 is the student’s price and (560-

80)÷3=160 is the adult’s price) lays the foundation for discovering a 

method of solving 3x+y=560 and 3x+2y=640 by subtraction. This 

unintentional solution creates a need for exploring a new method: 

eliminating unknowns by addition and subtraction. Reflection (Type-1) 

on the AER for solving a SLE2: 3x+2y=8 and 3x-2y=4, leads to an 

understanding of the process of eliminating unknowns by using addition 

and subtraction, and the rationale for using the method (Properties of 

equation). Then reflections (Type-2) on the AER with observation of the 

characteristics of coefficients of SLE2s such as: 5x-4y=7 and 5x+y=4; 
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3x+7y=9 and 4x-7y=5, leads to noticing the characteristics of 

coefficients when addition or subtraction could be used. Reflection 

(Type-2) on the experience in solving x+2y=8 and x-2y=4 in three 

different ways creates a need to develop flexibility in selecting 

appropriate methods, which was the focus of the following two lessons. 

Moreover, in contrast with different methods (substitution, addition and 

subtraction) the invariant principle of eliminating unknowns was 

discerned. It is the fundamental thinking method underlying all methods 

of solving SLE2. Thus, taking two types of reflection on various 

experiences (or AER) together provides the opportunities to (1) reactivate 

students’ extant knowledge of the arithmetic method and equation 

method, (2) create a need for exploring the addition and subtraction 

method, (3) learn the process of using the method appropriately, and 

finally (4) create a need for exploring the flexibility in selecting 

appropriate methods of solving SLE2s.  

  It seems that, although not informed by the conceptual analysis 

offered in this chapter, the Chinese curricular unit and the way Mr. Kang 

enacted it in class, could effectively foster the above reorganization 

process.  

5. Discussion and Conclusion  

In this chapter we analyzed data from algebra lessons in Chinese 

classrooms (Clarke et al., 2006) to demonstrate and support our twofold, 

central thesis: (a) pedagogical approaches used by Chinese teachers hold 

high potential for promoting students’ learning (interrelated conceptual 

and procedural understandings), and (b) the hybrid model (Ref*AER, 

teaching with bridging and variation, HLT) provides a useful tool for 

explaining and realizing this potential. In this final section we discuss 

each of these. 

5.1  Promoting Conceptual Understanding and Procedural Fluency in 

Tandem 

This study demonstrates a way of structuring a mathematics lesson that is 

consistent with a constructivist stance on learning as transformation in 
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students’ available conceptions.  Chinese teachers use such structuring 

consistently and competently, via the two key lesson components of 

bridging and teaching with variation.  In bridging, they strategically 

reactivate relevant extant knowledge and trigger intended learning 

objects.  In variation, they capitalize on and promote change in this 

knowledge through variation of problems and solutions that create 

opportunities for students to reorganize and consolidate new, intended 

knowledge.  The deliberate use of these two pedagogical strategies 

makes it possible to (a) connect the goals for student learning with extant 

knowledge, (b) create a need for exploring new mathematics, (c) provide 

effectual situations for action and reflection, and (d) achieve the learning 

objects.   

 We have analyzed how these two teaching strategies unfolded 

(particularly solving variation problems progressively) while promoting 

both types of reflection postulated to underlie the reorganization of new 

conceptions.  Reflection Type-1 opened the way for students to notice 

and link novel activity-effect relationship (AER) dyads (e.g., there is only 

a single value-pair that simultaneously satisfies both equations of SLE2).  

Reflection Type-2 then deepened understanding of the new concept 

through contrasting different instances of AER dyads and discerning 

what (necessarily) remains invariant across a variety of situations.  Thus, 

our analysis of learning opportunities indicates the power of teaching 

with variation to deepen and consolidate conceptual understanding and 

procedural fluency concurrently.  In this sense, our study provides further 

articulation of the theory of variation (Gu et al., 2004；Huang et al., 

2006) and of the potential of Chinese mathematics instruction to 

effectively promote student learning.  

5.2 A Hybrid Theory for Examining Classroom Instruction  

This study provides a fine-grained examination of learning opportunities 

created via Chinese classroom instruction—particularly the general 

features of teaching with variation.  This examination was situated in a 

model that combined a constructivist way of explaining learning as 

cognitive change (Ref*AER) with a corresponding stance on teaching 

(HLT). Both Ref*AER and HLT focus on students’ conceptual 
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development while teaching with variation is a broad pedagogical 

practice and overarching strategy of teaching mathematics in China.  

Thus, the study provides a lens for deepening our understanding of 

Chinese mathematics classrooms.  The Ref*AER mechanism postulates 

how learning may happen, and HLT projects a goal-oriented, task-driven, 

progressive journey of cognitive reorganization.  The importance of our 

analysis is then seen when these accounts are integrated with the 

processes of selecting and implementing tasks used by Chinese teachers.  

That is, teaching via bridging and variation seems to provide feasible and 

practical strategies for creating, sequencing, using, and adjusting 

strategically designed mathematical tasks.  This study demonstrates the 

power of the three-tiered, hybrid model (Fig. 1) for examining and 

guiding mathematics instruction.  At the macro tier, HLT provides an 

overall guidance for setting learning goals, designing mental activity 

sequences, and articulating processes of cognitive reorganization.  At the 

intermediate tier, teaching with bridging and variation provides practical 

tools for deliberate design of problem situation and tasks that are likely 

to create opportunities for such reorganization and thus lead to achieving 

intended goals for students’ learning. Moreover, strategically using 

variation problems is employed not only in classrooms (Cai & Nie, 2007; 

Huang et al., 2006) but also in textbooks (Sun, 2011).  At the micro tier, 

Ref*AER provides a lens to examine connections between tasks and 

students’ learning, which constitute the crucial process of promoting 

students’ understanding of the intended mathematics.  We note that, in 

China, there is no explicit notion about HLT or Ref*AER; yet, Chinese 

teaching practices seem highly relevant and linkable to these accounts, as 

they emphasize foundation, connection, and progression in mathematic 

teaching and learning (Shao, Fan, Huang, Li, & Ding, 2012). Thus, the 

tradition and practice in China may support teachers in developing 

relevant ideas about learning progressions and how learning as cognitive 

reorganization (Ref*AER) can be explicated.  
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5.3 Understanding Chinese Mathematics Instruction beyond the 

Classroom  

We culminate this chapter with an extension of our study, and the 

proposed three-tiered model, to pedagogical aspects beyond the ‘walls’ 

of the classroom.  Our extension is rooted in the premise that teaching is 

a cultural activity (Stigler & Hiebert, 1999), which entails that 

classrooms should reflect relevant aspects of cultures in which they are 

embedded.  Concerning mathematics teaching in China, studies revealed 

that Chinese mathematics teachers typically have strong mathematics 

knowledge for teaching (Huang, 2014; Ma, 1999).  Moreover, Chinese 

teachers develop much of their professional competencies through 

extensively studying the mathematics in textbooks they use (Ding, Li, Li, 

& Gu, 2012; Ma, 1999) and participating in various teaching research 

activities such as lesson group planning (Huang, Peng, Wang, & Li, 2010; 

Li, Qi, & Wang, 2011).  These activities support teacher development of 

strong mathematics and pedagogical content knowledge necessary for 

teaching with variation and the consistency needed to implement 

textbooks in classroom with high fidelity (Huang, Ozel, Li, & Rowntree, 

2013). Thus, lesson plans transformed from textbooks can possibly be 

organized as intended HLTs and enacted in the classrooms. Then, 

Chinese teachers’ extensive observations of peers’ classroom teaching, 

and their development of public or exemplary lessons, can provide 

teachers with opportunities to continuously anchor their expertise in a 

theoretical stance on learning.  
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Chapter 4 

Achieving Coherence in the Mathematics 

Classroom: Toward a Framework for  

Examining Instructional Coherence 

WANG Tao    CAI Jinfa   HWANG Stephen 

Coherence has been identified as an important factor in fostering 

students’ learning of mathematics.  In this chapter, by applying 

classroom discourse theories, we propose a framework for examining 

instructional coherence through a fine-grained analysis of a video-taped 

lesson from China. The lesson was chosen because it has been 

recognized as a model lesson for instructional coherence. Based on a 

careful analysis of instructional coherence on multiple levels of 

classroom discourse, we explored discourse strategies the teacher used 

to achieve instructional coherence in the classroom, as well as the 

features of classroom instruction in China.   

 
Keywords: instructional coherence, classroom discourse, international 

study, mathematics learning, student voice, mathematics classroom 

1. Introduction 

A frequently cited result from the Third International Mathematics and 

Science Study (TIMSS) is that there is a direct relationship between 

students’ exposure to coherent instruction and their performance. This 

finding has prompted increased interest and research in instructional 

coherence in mathematics education. It has generally been acknowledged 

that instructional coherence can enhance student understanding by 

providing students with connected mathematical ideas. Recent 
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international studies in mathematics education have identified a high 

degree of instructional coherence as a distinguishing feature in 

classrooms in China (Cai, 1995, 2005; Cai & Wang, 2010; Cai, Ding, & 

Wang, 2014; Chen & Li, 2010; Fan, Wong, Cai, & Li, 2004; Ma, 1999; 

Wang & Murphy, 2004) and other East Asian countries such as Japan 

(Fernandez, Yoshida, & Stigler, 1992; Sekiguchi, 2006; Shimizu, 2007; 

Stevenson & Stigler, 1992; Stigler & Hiebert, 1999).  Researchers have 

tried to determine the important features of instructional coherence in 

these classrooms. So far, most studies have focused on analyzing 

connections between the pieces of mathematical content taught in a class.   

Although content connections are important for instructional 

coherence, two salient constraints in the literature have limited our 

understanding of the complex and dynamic process of achieving 

instructional coherence. First, the content connections described in the 

literature are quite linear and are based on researchers’ general 

observations with very limited, fine-grained, and systematical analyses of 

discourse data. According to discourse theory (cf. Tomlin, Forrest, Pu, & 

Kim, 1997), content connections in discourse are not linear but rather 

form a complex system with thematic connections on multiple levels. 

The over-simplified description of content coherence in the classroom 

limits our understanding of this complexity. Second, some research 

findings (Stevenson & Stigler, 1992; Truxaw & DeFranco, 2008; Wood, 

1998) have revealed that merely having interrelated content does not 

guarantee student mathematical understanding. This is because learning 

is realized through complicated intermental interactions mediated by 

dynamic class discourse (Cobb, Jaworski, & Presmeg, 1996; Cobb, 

Yackel, & McClain, 2000; Truxaw & DeFranco, 2008; Voigt, 1996).  

Therefore, in addition to content analysis, it is critical to understand how 

the teacher uses classroom discourse to make content coherence clear for 

students learning.  

To complement previous research, this chapter uses a fine-grained 

analysis of discourse data from a sixth grade classroom in China to 

discuss the ways the teacher uses discourse strategies to achieve 

instructional coherence. By applying theories of discourse analysis, and 
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particularly of classroom discourse, this chapter attempts to develop a 

multi-level model for analyzing instructional coherence. 

2. Theoretical Framework 

In this section, we review the literature from two perspectives. First, we 

review the research literature on studies of discourse coherence and 

classroom discourse structure.  The aim of this part of review is to set up 

an analytical framework to analyze coherence in classroom discourse.  

Second, we review the literature on coherence in mathematics 

classrooms and in Chinese mathematics classrooms.   

However, it is first necessary to explain the construct of instructional 

coherence. Given that language (both written and spoken) is the main 

medium through which instructional content is planned and exchanged in 

the classroom, our use of the term instructional coherence is largely 

congruent with discourse coherence. As in other studies of discourse, 

discourse here is treated as both a linguistic structure and a social 

interactional process. Unlike informal talk at home and in the street, 

classroom discourse is a “staged, goal-oriented social practice” (Christie, 

1995, p. 222). Recognizing its distinct discourse structure and 

instructional function, Bernstein (1986, 1996) treated classroom 

discourse as a special genre of discourse and labeled it as pedagogical 

discourse. Following this vein, we use the term instructional coherence to 

highlight pedagogical meaning in analyzing thematic and structural 

connections in classroom discourse.  

2.1 Discourse Coherence and Classroom Structure 

In this study we adopt a multilevel framework to analyze the coherence 

of mathematics classroom discourse by combining the discourse 

coherence theory of Tomlin et al. (1997) and the classroom structure 

theory of Mehan (1979). Here, we will present a review of discourse 

theory to explain what discourse coherence is and how it can be studied 

on multiple levels of classroom structure. Then, we will discuss a 
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theoretical structure for discourse strategies used by speakers to achieve 

coherence.   

2.1.1 Discourse Coherence and its Different Levels 

Discourse is not a sequence of arbitrary utterances with irrelevant topics.  

Rather, the topics are related each other, thereby making discourses 

meaningful (van Dijk, 1997).  Discourse coherence reflects the degree of 

relatedness of topics affecting listeners’ understanding (Dore, 1985).  A 

coherent story, for example, with thematically related events is easy for 

the reader or listener to comprehend.  However, discourse coherence is 

not a flat and linear entity because the organization of discourse meaning 

is hierarchical and interwoven. For example, a story could consist of 

multiple chapters, each of which consists of several episodes.  Each 

episode could be divided into paragraphs, and further into finer units 

(e.g., sentences and phrases). Correspondingly, discourse coherence that 

reveals the connectedness of different semantic units can be discussed at 

different levels. Tomlin et al. (1997) distinguish discourse coherence on 

three levels: 

1. Global coherence: the participants develop a sense of what the 

overall narrative or procedure or conversation deals with. 

2. Episodic coherence: the participants are sensitive to smaller 

scale units which contribute to global coherence but which 

display an internal gist of their own. 

3. Local coherence: the participants make sense of the 

contribution of individual sentences or utterances (p. 66).  

Note, however, that the number of levels of coherence can vary 

according to different structural features of the target discourse and the 

purposes of the research.   

Unlike casual daily conversation, classroom discourse uses unique 

structures to realize its pedagogical function (Bernstein, 1986; Cazden, 

2001; Christie, 2002; Coulthard, 1974; Mehan, 1979).  One popular 

structural model for classroom activity was proposed by Mehan (1979), 
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who suggested investigating classroom activities along sequential and 

hierarchical dimensions.  The sequential dimension follows the flow of 

the lesson as it unfolds through time from beginning to end.  The 

hierarchical dimension refers to the disassembly of the lesson into its 

component parts.  Along the sequential dimension, Mehan divided the 

lesson into three phases: opening, instructional, and closing. Discourse in 

the three phases serves to fulfill goals specific to each phase: to begin 

class, to exchange academic information, and to end the class, 

respectively. Along the hierarchical dimension, the activity in each phase 

is further disassembled into its component parts. The instructional phase 

consists of a series of topic-related discourse sets (TRS).  The most basic 

unit of dialogue in the class is a three-part IRE sequence: Initiation, 

often by the teacher; Response, often by the student(s); and Evaluation, 

often the teacher’s feedback.  

2.1.2 Discourse Strategies for Achieving Coherence 

Although the coherence of the content of discourse is important for 

listeners, the implicit connections in that content do not themselves 

guarantee that the listeners will be able to integrate the content 

coherently (Tomlin, et al., 1997). Instead, the ease with which listeners 

can quickly establish connections between concepts is largely dependent 

on the speaker’s use of discourse strategies that help listeners perceive 

the thematic connections. Tomlin et al. (1997) noted three kinds of 

discourse management strategies that a speaker usually considers to help 

listeners construct a coherent knowledge base: rhetorical, referential, and 

focus strategies.
1
  

A rhetorical management strategy helps listeners to be clear about the 

goals and main topics of the discourse so they can easily integrate 

various kinds of information from speech into a coherent picture. A 

                                                 
1
 Tomlin et al. (1997) included a fourth strategy, the thematic strategy. However 

its basic function is similar to the focus strategy; that is, to let the listener “know 

what information is more central” and should be noticed (p. 93). Therefore, we 

use the term focus strategy in this study to include both the focus and thematic 

strategies.  
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referential management strategy helps listeners establish connections 

between known and unknown knowledge. Typically, this strategy is in 

play when the speaker frequently refers back and forth between old and 

new themes. Finally, a focus management strategy highlights the main 

and important topics in the speech flow.   

The fundamental goal in a mathematics classroom is to facilitate 

student conceptual understanding by establishing connections between 

different knowledge pieces. Recently, a few studies (e.g., Clarke, 2013; 

Sekiguchi, 2006) have started to examine instructional coherence from a 

discourse perspective. However, it remains largely unclear what 

discourse strategies teachers use to achieve instructional coherence in 

mathematics classrooms.  

2.2 Comparative Studies of Coherence in Mathematics Education 

Just as a good story keeps readers interested, a mathematics lesson that is 

organized with highly interrelated themes is more likely to help students 

achieve conceptual understanding (Fernandez, Yoshida, & Stigler, 1992; 

Stevenson & Stigler, 1992). Although there has been relatively little 

research on discourse strategies that contribute to coherent mathematics 

lessons, in the past two decades educational researchers have started to 

examine how teachers organize coherent mathematics activities in 

classrooms. Most of the existing literature has come from cross-national 

studies comparing U.S. and Asian mathematics classrooms. To compare 

classroom teaching across cultures, researchers have investigated three 

aspects of the coherence of activities: coherence of the mathematical 

topics in classroom activities, discourse transitions explicating the 

relationship between activities, and interruptions in proceeding with the 

activities (Fernandez et al., 1992; Stevenson & Stigler, 1992). With this 

framework, researchers have found that mathematics instruction in China, 

Japan, and Korea is more coherent than in the U.S. 

After observing mathematics classrooms in Taipei (Taiwan), Sendai 

(Japan), and Chicago (United States), Stevenson and Stigler (1992) noted 
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that the Asian classrooms were structured in a more coherent fashion 

than the U.S. classrooms.  Stigler and Perry (1990) provided further 

quantitative analysis to illustrate different coherence levels in these 

classrooms.  They believed that a lesson with fewer mathematical topics 

might be more coherent than one with more topics.  Segmenting the 

classroom flow into 5-minute segments (the median length of segments 

with ongoing instruction), they counted the number of topics included in 

each segment. Of all the segments in Sendai classrooms, 75% focused on 

only one topic, compared with 55% of the segments in Taipei and only 

17% of the segments in Chicago.  Although this time-sampling method is 

useful for tabulating the frequency of numbers of topics, it obscures the 

sequential flow of classroom activity. In particular, marking tallies at 

regular time intervals fails to reveal the contingent (and sequential) 

connections among classroom discourse topics (see the theoretical 

discussion in the previous section).  

Other researchers (Grow-Maienza, Hahn, & Joo, 2001; Ma, 1999) 

have observed that Korean and Chinese teachers also tend to devote an 

entire 40-minute class to the solution of only one mathematics problem. 

In such a lesson, a single mathematical topic is discussed from multiple 

perspectives.  For example, Ma (1999) reported that in Chinese primary 

classrooms, students are often encouraged to solve one mathematics 

problem using several ways (yi ti duo jie).  This one-topic design in 

Asian classrooms helps teachers organize activities around one clear 

mathematical topic at a time.   

In addition to focusing on the number of topics discussed, some 

researchers have considered the components of mathematics lessons and 

how they are connected. For example, Leung (1995) observed 36 lessons 

from grade 1 to grade 3 in four elementary classes in Beijing.  He found 

that in both selected, high-performing inner Beijing schools and remote, 

below-average rural area schools, all the lessons strictly followed a clear 

structure that promoted coherence in organizing mathematics activities.  

Briefly, lessons were organized into four sequential instructional phases: 

reviewing, teaching new content, student practice, and assigning 

homework. Although Leung described several teachers’ strategies that 

promoted instructional coherence (e.g., summarizing content from time 
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to time, solving one mathematical problem with various methods), he did 

not provide discourse data to show how the structure he observed 

contributed to instructional coherence. For example, it is not clear 

whether the review phase was connected to the new content teaching that 

followed. If it was connected, how did the teachers use transitional 

discourse to connect the mathematical topics in the two instructional 

phases? 

By analyzing a tape of an open-class lesson in a Chinese 5th grade 

class, Wang and Murphy (2004) investigated the use of transitional 

discourse between the review and new content phases. They found that 

the teacher did indeed use transitional discourse to connect the review 

phase to the new content.  For example, she highlighted the connection 

between old knowledge and new knowledge by explaining the 

conceptual continuity between the content just reviewed and the 

forthcoming content.  In our own studies comparing U.S. and Chinese 

mathematics teachers’ beliefs about effective teaching, the Chinese 

teachers more often explicitly emphasized the value of high coherence 

than their U.S. counterparts (Cai & Wang, 2010; Wang & Cai, 2007) and 

took pains to achieve such coherence in preparing their lessons (Cai, 

2005; Cai & Wang, 2006; Cai et al., 2014).  For example, we found that 

most Chinese teachers’ lesson plans tended to look like scripts of a stage 

play with careful arrangements connecting different activities in 

classroom.  

The existing literature provides a general picture of the coherence in 

Chinese mathematics classrooms. The teacher tends to use coherent 

discourse to unfold well-connected mathematical themes carefully.  

However the details of discourse coherence in this picture are rather 

sketchy.  Moreover, the focus of the studies has mainly been on the 

teacher. As we noted above, student learning is a social interaction, and 

both coherence and student engagement affect student learning. Clearly, 

the lack of student voices in coherence analysis limits our insight into the 

impact on coherence on student learning.  In this analytical framework, 

one of the focuses is on student voices in coherence analysis.  
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3. Method 

3.1 The Teacher and the Class 

Our analysis in this chapter is based on one video-taped sixth grade 

lesson about circles delivered by an experienced mathematics teacher in 

China. The teacher was recommended by the local educational bureau as 

an outstanding mathematics teacher who had been teaching elementary 

mathematics for more than twenty years.  She held a top-level certificate 

for teaching elementary mathematics and had received several honors for 

her excellent teaching.  The local teacher training department selected 

this teacher several times to give model lessons (gongkaike) (see the 

relevant information in Ma, 1999; Paine, 1990), so other local teachers 

could learn how to teach in a coherent way. Therefore, her teaching has 

been recognized as a model of high coherence.   

3.2 Data Analysis 

We used the CLAN software (MacWhinney, 2000)  as a tool to 

transcribe and code the data. One advantage of using CLAN was it 

allowed us to link utterances in the transcript precisely to the 

corresponding moments in the video and display both on the same 

screen. With this tool, we could easily look back and forth between the 

transcript and the live classroom situation. 

3.2.1 Lesson Discourse Structure Coding 

Following Mehan’s (1979) theory of lesson structure, we analyzed the 

structure of discourse along two dimensions: sequential and hierarchical.  

Sequentially, this lesson had three phases: opening, instructional, and 

closing.  The boundaries between the phases of lessons in China are 

often very clear because the beginning and ending phases are formal 

greetings and close with prescribed physical rituals (standing up and 

bowing). Therefore our analysis focused on the instructional phase and 
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along the hierarchical dimension.  It consisted of several sequential 

stages. In each stage, the classroom activity was further disassembled 

into topic-related sets (TRS) (see Figure 1). The boundaries between 

stages and between TRSs were identified by discourse marks and content 

in adjacent utterances (see Table 1 for an example).   

3.2.2 Discourse Strategy Coding 

We followed the definitions of the three kinds of discourse management 

strategies described above (rhetorical, referential, and focus) to identify 

the teacher’s use of different discourse strategies.  We paid special 

attention to those strategies specific to the instructional context and 

discussed the discourse and instructional functions of those strategies in 

detail.  It should be noted that a speaker normally adopts more than one 

strategy at a time. Any piece of discourse can have multiple functions 

(cf. Redeker, 1990), and thus could be multiply coded. For example, 

blackboard writing could be seen as both a referential and a focus 

strategy (see the discussion in Results).  

4. Results 

We present our results in two parts, corresponding to the two main 

components of our theoretical framework. First, we analyze thematic 

coherence and discourse in the lesson along both sequential and 

hierarchical dimensions (see Figure 1).  Then, we explore how the 

teacher used particular discourse strategies to achieve instructional 

coherence in the lesson. 

4.1 Thematic Coherence and Classroom Discourse 

According to Mehan (1979), the structure of a lesson can be analyzed 

along two dimensions: sequential and hierarchical. Sequentially, this 

lesson had three phases: beginning, instructional, and ending. 

Hierarchically, the instructional phase can be disassembled into four  
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sequential stages: reviewing, teaching new content, practicing, and 

assigning homework. In every stage except the assigning homework, the 

activity can be further disassembled into topic-related sets (TRS). In this 

section, we first trace the thematic coherence and the discourse in the 

sequential phases. Then, we discuss thematic connections between the 

hierarchically nested stages within the instructional phase.  

 

Figure 1. Overall structure of the lesson 

4.1.1 Discourse in the Beginning and Ending Phases 

The discourse in each of the beginning, instructional, and ending phases 

serves to fulfill goals specific to that phase: to begin class, to exchange 

academic information, and to end the class, respectively. Like other East 

Asian classes reported in literature (Stigler & Hiebert, 1999), it began 

and ended with a short, but formal customary exchange through 

imperative language use and prescribed physical rituals (standing up and 

bowing).  

 

Excerpt 1 

TEA2: Class begins. 

ST1: Stand up. 

(All students stand up). 

 

                                                 
2
 TEA: Teacher; ST1: an individual student (in this example, the individual 

student is the student monitor); SSS: student choral response. 
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TEA: Good morning, students. 

SSS: Good morning, teacher. 

(All students bow to the teacher). 

ST1: Sit down. 

(Students sit down).  

The discourse in the ending phase mirrors the beginning.  At the end of 

the class, the teachers and students had a customary exchange similar to 

that at the beginning, saying “Good bye” to each other instead of “Good 

morning.” The physical behavior was exactly the same (standing up and 

bowing).  

Note that the teacher started the classroom discourse with a short 

imperative utterance (“Class begins”).  In a more casual situation, people 

often use other linguistic forms to signal an initiation of behavior, for 

example a request form, “Can we start?” or with a little harsher voice, 

“Please start.” Sociolinguists Brown and Levinson (1987) explained that 

in daily life people speak in these ways because people want to show 

their politeness to one another. The strategy of using these linguistic 

forms is called a redressive action. Redressive actions mitigate the 

directness of the speech and save face for both the addressor and 

addressee. For example, with a request form (“Can we start?”) the 

addressor shows politeness by providing the addressee the chance to 

refuse. In contrast, direct and imperative speech like the utterance, “Class 

begins,” used by the teacher in this lesson is speech in a bald form 

(without any redressive actions), and is very face-threatening according 

to Brown and Levinson.  

Why did the teacher use this face-threatening speech form? 

According to Brown and Levinson’s (1987) theory, this kind of face-

threatening speech can be justified in a situation where the addressor 

enjoys high power.  In this classroom setting, by legitimately using this 

imperative linguistic choice, the teacher enacted a hierarchical social 

norm for the upcoming event (the formal class), where she had power to 

direct student attention and behavior.  The students’ subsequent physical 

and verbal responses acknowledged the high authority of the teacher by 

obeying her order for the initiation of the class. Pragmatically, this 
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exchange initiated the class event.  Socio-linguistically, it enacted the 

social interactional norms acknowledged by the participants.  

Classroom discourse, as Bernstein (1986) pointed out, with its 

pedagogical goal, has two basic functions, a regulative function and 

instructional function.  The regulative function sets up a social context 

which constrains the way that subject-matter content will be exchanged. 

Although the opening exchange in this lesson did not include any 

mathematical content, it set the tone for the rest of the lesson.  From a 

discursive perspective, it functioned as a rhetorical strategy, helping the 

students be clear about the goals (mathematics instruction in this case) of 

the subsequent discourse interaction (Tomlin et al., 1997).  Therefore this 

opening exchange contributed to thematic coherence in the instructional 

stage by tuning student minds to the propositional content of production 

(formal mathematical knowledge), thereby helping them understand the 

construal of what was to be heard (see the discussion of rhetorical 

management below).  

4.1.2  Thematic Coherence and Classroom Discourse in the Instructional 

Phase  

The instructional phase consisted of four stages: reviewing, teaching new 

content, practicing, and assigning homework. These four stages can be 

identified by content and discourse marks used by the teacher. For 

example, after the beginning ritual exchange, the teacher started the 

instructional stage with the discourse mark, “Okay,” followed by a clear 

announcement of the instructional task – recalling specific mathematical 

knowledge learned in the semester (see Table 1). With linguistic choices 

like this at various points in the instructional phase, the teacher 

coherently presented a sequential structure for the lesson by announcing 

the beginning of the reviewing stage and the content transitions in the 

next two stages.  

The stage of teaching new content was the pedagogical core of the 

lesson. The other three stages served to support the learning of the new 
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Table 1. Stage-initiating discourse and discourse marks 

Stage Transitional Discourse Discourse Marks 

and clear 

information of the 

new stage 

Transition of the 

themes and activity 

1. Reviewing Okay, students recall what 

plane figures we have 

learned in this semester? 

Okay, recall From greeting to 

mathematical theme 

2. Teaching 

new content 

Today, we will learn about 

a plane figure shaped with 

curve. That is a circle. 

Today, will learn From prior 

knowledge to new 

knowledge 

3. Practicing Following, please look at 

several circles given by the 

teacher on the blackboard. 

Following From new content 

teaching to practice 

4. Assigning 

homework 

That’s all for today’s 

content. Today’s 

homework is questions 2 

and 3 on page 109. 

That’s all, Today’s 

homework 

From teaching 

mathematics to 

assigning 

homework 

 

content (see Figure 2). Although sequential connections provided a local 

structural coherence that helped listeners to be aware of the start of a new 

speech event, the thematic connections between and within stages that 

were created through the classroom discourse provided students with 

conceptual connections within the content. The sequence of main themes 

introduced during the new content stage was as follows: the circle is a 

two-dimensional curve figure, drawing a circle, the center point of the 

circle, the radius, the diameter, and the symmetry of the circle. In the 

remainder of this section, we will use discourse data to examine the 

thematic connections in this lesson on two levels. First, we will discuss 

the thematic coherence among the four stages of the instructional phase. 

Specifically, we will focus on the connections between the stage of 

teaching new content and each of the three other stages. Then, we will 

turn our attention to coherence within the stage of teaching new content 

and explore how the teacher uses discourse to make connections between 

new knowledge pieces.  
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Figure 2. Relationships among the four stages in the instructional phase 

 

 

4.1.2.1  Thematic connections between the reviewing stage and the stage 

of teaching new content 

 

In the reviewing stage, the teacher asked three questions to review some 

previously learned knowledge about two-dimensional figures. Three 

themes emerged from these questions: the names of the polygons, 

symmetric polygons, and that polygons are composed of line segments 

(Figure 3). The first theme served as a starting point to initiate the next 

two themes. The second theme, symmetric polygons, included two sub-

themes, the number of axes of symmetry and their locations. During the 

stage of teaching new content, this symmetry theme was connected to a 

new theme through the following discourse exchange: 

 

 
Excerpt 2 

 

TEA: A circle has numerous axes of symmetry. What is the difference between it 

and other symmetric figures? How is it different from the previously learned 

 

 



126 T. Wang, J. Cai, & S. Hwang 

  

 
 
 
 

 

 
 Figure 3. Thematic connections between the reviewing and teaching  
 new content stages. 

 
symmetric figures like a square and isosceles triangle? What is the 
difference? Jing [a student’s name]. 

ST1: Squares and isosceles triangles have a limited number of axes of 
symmetry. Circles have an unlimited number of axes of symmetry. 

TEA: Was Jing’s answer correct?  

SSS:  Yes. 

TEA: All right. Let’s repeat Jing’s statement together. Squares and isosceles 
triangles’ axes of symmetry… Start. 

SSS: Squares and isosceles triangles have a limited number of axes of 
symmetry. Circles have an unlimited number of axes of symmetry. 

 

It seems that knowledge about symmetry in polygons from the 
reviewing stage was intentionally selected to serve as an introduction to 
the new but related content about symmetry in circles. The connection 
was established by comparing the number and locations of axes of  
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symmetry between the circle and the two previously-learned polygons. In 

this manner, a wider conceptual coherence was realized through the 

device of local discourse coherence. 

The third theme that arose in the reviewing stage was that the 

previously-learned polygons were composed of line segments. After 

summarizing this feature of polygons, the teacher used it as a 

springboard to launch the new content stage by contrasting this feature to 

the shape of circle.  
 

Excerpt 3 

 

TEA:  The five figures we learned are squares, rectangles, parallelograms, 

trapezoids, and triangles. They are all shaped with straight lines. Right? 

SSS:  Right. 

TEA:  Today, we will learn about a plane figure shaped with curve. That is a 

circle. 

It is clear that the reviewing stage served two pedagogical functions: 

reviewing previously learned material and setting up a conceptual 

context for new content.  In our previous research (Wang & Cai, 2007), 

some Chinese teachers tended to highlight the second function by 

naming this stage as导入 (daoru). The literal meaning of this word is to 

gradually put something into an existing container. Thus, this word 

describes a process of introducing a new concept into the students’ 

existing knowledge structure. We found that the Chinese teachers 

explicitly pointed out that this reviewing stage is extremely important for 

an effective lesson because it provides a process to connect old and new 

knowledge.  For example, one Chinese teacher explained the function of 

the reviewing stage in this way: 

It is crucial to clarify the connection between today’s content and previously 

learned content. You should study extremely carefully when you design the 

review because it paves the road for teaching the new content (p. 296).  

In the same spirit, the teacher in the present study purposefully selected 

some previously learned content to discuss during the reviewing stage 

that would set up a conceptual context for the stage of teaching new 

content. 
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4.1.2.2 Thematic connections between the practicing stage and the  

stage of teaching new content  

 

After the new content was taught, the teacher asked the students to use 

their just-learned knowledge to solve some problems. Different questions 

in the exercises provided opportunities to practice the themes just learned 

in a new context (see Figures 4 and 5). In Exercise 1, the students were 

asked whether certain line segments are radiuses. In two of the given 

figures, the segments were not radiuses because they violate the 

definition of a radius (one segment does not start from the center and the 

other does not stop at a point on the circle). Students applied the newly 

learned definition in a concrete context to explain their judgments. The 

second exercise follows a similar pattern, highlighting that diameters 

pass through the center and have both endpoints on the circle. Exercise 3 

provides three more complex situations with various examples that 

violate the definitions of radius and diameter.  Within the practicing 

stage these three exercises are connected to each other and are carefully 

arranged from easy to difficult. At the same time, the concepts 

introduced during the stage of teaching new content are applied in 

different contexts. Figure 6 shows a map of the thematic connections 

between the stage of teaching new content and the practicing stage. 

 

Figure 4.  Exercises 1 and 2 on the blackboard. 
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Figure 5. Exercise 3 on the blackboard. 

 

 

 

 

 

 

 

 

 

Figure 6. Thematic connections between the practicing and teaching new 

content stages 
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4.1.2.3  Thematic connections between the assigning homework stage 

and the stage of teaching new content  

 

Although doing homework is not part of the classroom activities, it is an 

indispensible extension of learning that involves both the school and the 

home. Thus the thematic coherence between homework and learned 

content also plays an important role in facilitating learning.  Usually the 

instructional purpose of homework assignments is to provide the student 

with an opportunity to practice or review relevant material that has 

already been presented in class (Cooper, 1989).  Indeed most exercises in 

the homework that were assigned in this lesson reviewed some important 

concepts taught in class.  For example, Exercise 4 required the students 

to apply the formula d = 2r to fill in the blank cells shown in Table 2.  

 

Table 2. Exercise 4 from homework assignment 

r (meters)  0.24  1.42  2.6 

d (meters)  0.86  1.04  

 

In addition to the function of reviewing, some questions in the 

homework were intended to extend the students’ conceptual 

understanding. For example, in Exercise 5, the first question required the 

students to identify which line segment was a diameter.  The second 

question then asked the students to measure the four segments and to 

conclude that the diameter is the longest among all the segments with 

two ends on the circle.  The third question required the students to apply 

this new knowledge to measuring the length of the diameter in a circle 

without a marked center point (see Figure 7). These assigned homework 

problems strongly connected to the main themes taught in the class by 

practicing and even extending the relevant concepts. 
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Figure 7.  Exercise 5 from the homework assignment 

 

In summary, the mathematical themes in the reviewing, practicing, 

and homework-assigning stages within the instructional phase were all 

closely connected to the new content taught in the stage of teaching new 

content. However each of those three stages served different pedagogical 

functions. The reviewing stage set up a conceptual context for 

introducing the new content. The practicing stage provided a concrete 

context with different variations for applying the newly-learned content. 

Finally, the homework reviewed the concepts and extended the students’ 

understanding of those concepts. 

4.1.2.4 Connections within and among themes 

In addition to the thematic connections across the four stages of the 

instructional phase, the teacher also built connections within the stage of 

teaching new content. One set of these connections involved a series of 

activities that linked the students’ concrete and abstract understandings  
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of circles. Once she had introduced the new central topic of circles, the 

teacher proceeded with the following sequence of activities: talking 

about round figures in real life, drawing a circle, folding a circle, 

teaching concepts of the components of circles, and teaching about the 

symmetry of circles.  The core instructional activity involved the 

concepts of the circle components, including the center, radius, and 

diameter.  The other four activities in the sequence served to connect 

with and reinforce the teaching of these concepts  

(see Figure 8). 

After pointing out that the new figure for today’s lesson was a curved 

figure, the teacher led the class to talk about circular objects in daily life.  

Through this activity, she connected the new content of circles to the 

students’ life experiences while at the same time highlighting the curved 

feature of the shape. The teacher then summarized the connection and 

initiated the next activity, drawing a circle. 

 

 

Figure 8. Classroom activities and mathematical themes within the stage of 

teaching new content 
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Excerpt 4 

TEA: This is a circle [Placing a paper circle on the blackboard]. 

TEA: A circle is surrounded by a curve. [Writing on the blackboard: A figure 

surrounded by a curve].  

TEA: All right. It is surrounded by a curve. Then, how to draw a circle? How 

to draw a circle? Look at what the teacher is going to do. 

The teacher demonstrated how to draw a circle on the blackboard and 

then asked the students to follow her instructions to draw another circle.  

Excerpt 5 

TEA:   Now you have seen how the teacher drew the circle. Follow the 

teacher’s approach and draw a circle by yourself. The teacher’s 

approach is, as the teacher just said, first open the two legs of the  

compass, fix the leg with the pin onto the paper; move the other leg with 

the pencil around. (Pointing to the blackboard) Okay, now everyone 

follow this method of drawing a circle to draw a circle on your own 

paper. 

The steps of this drawing process embodied two important mathematical 

concepts about circles to the class: the center (fixing the leg with the pin 

onto the paper) and the radius (opening the two legs a certain distance).  

Although the teacher did not start the conceptual discussion at this 

moment, she did connect back to this activity when teaching the concept 

of radius in various ways. For example, after teaching the concept of 

radius, she asked the students to draw a circle with a radius of 2 cm. 

Then she asked the students to discuss the difference between the two 

drawing processes (drawing without a specific radius and drawing with a 

specific radius of 2 cm).   

After the students finished drawing their circles, the teacher asked 

them to use scissors to cut them out. She then began the folding activity.  

Excerpt 6 

TEA:  Okay. Now students, please fold your circle symmetrically, then open it. 

Then, change a direction to fold again. All right, after several folds, 

students, what do you find? 

TEA:  What do you find? Cheng. 

ST1:  I found that all the creases pass through a center point of the circle. 

TEA:  Is Cheng right? 

SSS:  Right. 
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At the end of this folding process, the teacher finally started to teach 

the concept of the first component of circle, the center. Once the teacher 

described the center, she soon led the class to define and discuss the 

concepts of two other circle components, radius and diameter. During the 

defining and discussing process, the connections among these three main 

thematic concepts were established (see Table 3).  

Table 3. Thematic relationships between center point, radius, and diameter 

Concepts Connection 

Radius and Center Radius starts from the center 

Diameter and Center Diameter passes through the center 

Radius and Diameter d = 2r 

Radius, Diameter, and Center Center point is in the middle of the 

diameter and divides it into two radiuses 

In these activities, the teacher gradually introduced the mathematical 

concepts of the circle by connecting mathematical circles to students’ life 

experiences (round objects in daily life), and abstracting specific 

mathematical concepts of the circle (center and radius) from hands-on 

manipulative processes (drawing and folding).  In addition, the teacher 

developed connections among the three main thematic concepts of center, 

radius, and diameter.  

4.2 The Teacher’s Use of Discourse Strategies to Achieve Thematic 

Coherence 

As we noted above, the implicit connections in discourse content do not 

necessarily guarantee that the listener can integrate the content into a 

coherent version (Tomlin et al., 1997).  However, the speaker’s use of 

discourse strategies can help the listener perceive those thematic 

connections.  In this section, we consider how the teacher in this lesson 

 

 

 

 



 Achieving Coherence in the Mathematics Classroom  135 

 

 

made use of three types of discourse management strategies (rhetorical, 

referential, and focus) for this purpose. Recall that a rhetorical 

management strategy helps the listeners to be clear about the goals and 

main topics of the discourse. This allows the listeners to integrate 

different pieces of information from speech into a coherent picture.  A 

referential management strategy helps the listeners establish connections 

between new knowledge and already-held knowledge. Typically the 

speaker will refer back and forth between old and new themes.  Finally, a 

focus management strategy highlights the main topics in the speech flow. 

In this lesson on circles, the teacher clearly used these discourse 

strategies, intentionally or unintentionally, to make connections explicit 

for her students. We will explain the three strategies and their 

manifestations below. 

4.2.1 Rhetorical Management Strategy 

In a lesson, the teacher has several goals or intentions and wants to 

produce discourse interactions that promote them. This dimension of 

coherence between goals and discourse production is called rhetorical 

management.  The teacher in this study used this strategy from time to 

time at various levels of the lesson structure. As we described above, the 

lesson had three phases: beginning, instructional, and ending.  The 

formal ritual exchange at the beginning announced that the subsequent 

speech event would be formal mathematics teaching.  Once the 

instructional phase started, the main topic, concepts about circles, 

unfolded in a four-stage script: reviewing, teaching new content, 

practicing, and assigning homework. At the beginning of each stage, the 

teacher explicitly marked a shift in the pedagogical goal (see Table 1). In 

addition, within each stage the teacher often announced the main goal of 

the next activity. For example, in the stage of teaching new content, the 

teacher first asked students to give examples of round shapes from daily 

life. Then she explicitly shifted the discourse to the theme of drawing 

circles:  
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Excerpt 7 

TEA:  Then, how do we draw a circle? How to do it? In the following, let’s see 

what the teacher is going to do. Usually we use a compass to draw a 

circle. How to draw it? 

The teacher used a question to capture the students’ attention at this point. 

It is clear that the topic in this discourse move (drawing a circle) differed 

from the previous topic (finding round objects in daily life). Then, the 

teacher followed up with the discourse mark “next” to further remind the 

students that their main responsibility was to observe the teacher.  Finally, 

before the teacher started to draw a circle, she refined the topic to 

drawing a circle with a specific tool, a compass.   

In addition to announcing the pedagogical goals at the beginning of 

each event, the teacher used a rhetorical strategy when she periodically 

summarized just-learned content. This also served to keep the discourse 

coherent with her pedagogical goals. For example after discussing some 

features of the radius, the teacher summarized what had just been said 

about the radius before moving on to new content.  

Excerpt 8 

TEA:  Okay, just now, we have learned about the radius of a circle. A circle 

can have numerous radiuses. All the radiuses have same length. In the 

following, we will continue learning about diameter. 

 

In the first utterance, the teacher used two discourse marks, “Okay” and 

“just now.” While the “Okay” served to mark the start of a TRS, the “just 

now” signaled that the new event would be summarizing the contents of 

previous speech events. This summarizing strategy further highlighted 

the teacher’s pedagogical goals by recapitulating them. Then, after she 

had finished the summary, the teacher used another discourse mark, 

“Next,” to announce that the new topic in the next event would be 

diameter. From time to time throughout the lesson, the teacher used this 

summarizing and announcing rhetorical management strategy to help the 

students recognize the boundaries of different TRSs and the main topic 

in each TRS. 

 

 

 



 Achieving Coherence in the Mathematics Classroom  137 

 

 

4.2.2 Referential Management Strategy 

In addition to using rhetorical management strategies to point out the 

main topics in each TRS, the teacher also used referential strategies, 

moving back and forth between already-learned knowledge and new 

knowledge to help make her instruction coherent. Indeed, one of the 

characteristics of connected and coherent discourse is that entities, once 

introduced at a given point in text, are often referred to again at a later 

point (Tomlin et al. 1997).  In the stage of teaching new content, the 

teacher moved through the new topics in the following sequence: center, 

radius, and diameter.  Once the center was introduced, it soon became 

given information from which the other two new concepts (radius and 

diameter) were introduced.  

Excerpt 9 

TEA:  Okay, some students have already marked it [the center]. 

TEA:  Okay, let us have another look.  From the center, from the center to any 

point on the circle, this line segment, from the center to any point on the 

circle is called a radius. 

In this discourse segment, after seeing that the students could find the 

center of the circle, the teacher said, “From the center, from the center to 

any point on the circle…” Instead of immediately finishing her statement, 

the teacher then repeated her words, “this line segment, from the center 

point to any point on the circle, is called a radius.” It is clear that the 

teacher introduced the new concept by repeatedly referring to the 

previous concept, the center.  

Tomlin et al. (1997) have observed that “one important problem in 

reference management has been understanding how speaker and listener 

keep track of referents during discourse production and comprehension” 

(p. 80). Unlike standard samples of discourse in linguistics, there are 

many strategies and tools available to help the participants keep track of 

referents in classroom discourse. One tool that the teacher made use of in 

this lesson was the blackboard. The blackboard is one of the most 

effective tools for coping with the limitation of human short-term 

memory in classroom lessons. For example, Figure 9 shows how the 
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teacher wrote down important mathematical content on the blackboard 

and then referred the students to the blackboard whenever needed. 

  

Figure 9. Important mathematical information written on the blackboard. 

 

 

In our previous study (Cai, 2005; Cai & Lester, 2005), we found that 

experienced Chinese teachers carefully planned their blackboard writing 

(“banshu”) in their lesson plans by recording exactly what should be 

written on the blackboard and when it should be written. These teachers 

used large blackboards in such a carefully planned manner that the 

students could easily understand and remember what had been discussed 

and take well-organized notes for review.  Chinese teachers often write 

important mathematical concepts on the blackboard as this teacher did in 

Figure 9. Therefore, in addition to the function of coping with the 

limitations of human short-term memory and allowing the teacher to 

easily make references to previously-discussed content, blackboard 

writing also serves to highlight and foreground important mathematical 

concepts. This function helps the students to focus appropriately on the 

important concepts. 
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4.2.3 Focus Management Strategy  

A single utterance can often embody multiple themes. Some of these 

themes are more important and central than others. In a long speech flow, 

a key strategy to make discourse coherent is to direct the listener’s focus 

to the themes which are most central to the discourse.  In this lesson, the 

teacher used various tactics to manage students’ focus.  For example, in 

the previous section we noted that the teacher highlighted the important 

concepts by writing them on the blackboard.  In addition to blackboard 

writing, the teacher also used the following strategies: comparing and 

contrasting themes, recurring themes, and using choral responding.  

4.2.3.1 Comparing and contrasting 

One approach to make certain information more prominent or salient is 

to compare or contrast it with other information in the discourse. This 

can be an important approach to establishing thematic connections, for 

example using questions to help students focus on similarities and 

differences between mathematical concepts and features. Sometimes, this 

strategy is used at the beginning of teaching a new concept so that the 

new concept can become the central focus.  For example, in Excerpt 3 

the teacher directed the students’ attention to the concept of the circle by 

contrasting its curved nature to the straight line segments that made up 

the five previously-studied polygons. This strategy made the circle the 

central focus at the beginning of the teaching. 

In addition to using the comparing and contrasting strategy at the 

beginning of teaching a new concept, sometimes the teacher can use it 

after a new concept has been taught.  For example, in Excerpt 2 after the 

students had learned that a diameter is an axis of symmetry of the circle 

and that a circle has numerous diameters, the teacher contrasted this just-

learned knowledge with the knowledge learned in previous lessons about 

the limited number of axes of symmetry of squares and isosceles 

triangles.   
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Another typical situation where the teacher can use the contrasting 

strategy is during the practicing stage. In this lesson, the teacher assigned 

three exercises (Figures 4 and 5) that were designed to contrast the radius 

and diameter with other line segments on the circle that did not satisfy 

their definitions.  Again, this comparing and contrasting task served to 

focus the students on the conceptual features of radius and diameter.  

4.2.3.2 Recurring theme(s)   

An important feature of a long but coherent speech flow is its great topic 

persistency (Givon, 1983). Thus, a flow of coherent classroom discourse 

should maintain a persistent focus on one topic or a limited number of 

main topics. One approach to measuring the level of topic persistence in 

a discourse is simply to count the frequency of main terms. We have 

already pointed out that the whole lesson we are analyzing in this chapter 

was designed with one clear central topic, the circle. Under this central 

topic are three related subtopics, the center, radius, and diameter. In the 

40 minutes of instruction, the term “circle” was used 220 times, more 

than five times in every minute on average. The three-subtopic terms 

were also used frequently through the discourse. “Center” was used 58 

times, radius 78 times, and diameter 72 times.  On average, these terms 

were mentioned more than once every minute. The frequent occurrences 

of these themes may reflect a great deal of thematic centrality and topic 

persistency in the classroom discourse of this lesson.  Note however, that 

the teacher did not simply repeat these main concept terms through the 

discourse. Instead the terms were introduced in various learning contexts 

including students’ life experience, hands-on activities, mathematical 

definitions, and practice with applications. 

4.2.3.3 Choral response 

In addition to the strategies of comparing and contrasting and recurring 

themes, the teacher also used a special discourse format, student choral  
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response, to direct the students’ attention to important mathematical 

information.  Choral response is defined as a pattern of student responses 

when the teacher opens the speaking floor to every student in classroom 

(Wang, 2010).  In this lesson, we can identify two variations of choral 

response: choral reading and answering simple questions.  Both 

variations play an important role in directing student attention to 

important mathematical themes.   

Although choral reading was used only four times throughout the 

lesson, each instance focused on core mathematical content.  In the first 

and second choral readings, the definitions of radius and diameter were 

read by the whole class loudly. The third choral reading concerned some 

of the features of radius and diameter that had been written on the 

blackboard (see Figure 9). The last choral reading was to repeat a 

student’s response about the difference between circles and other 

previously-learned symmetric figures (see Excerpt 2).  Here the teacher 

initiated the choral reading with a short clear cue in an imperative tone, 

“Start.”  This explicit cue set a serious and formal tone for the exchange 

and thus implied a strong obligation for student participation.  As a 

consequence, the whole class responded to the teacher by reading the 

content in unison in a rhetorically exaggerated voice with a slow pace 

and high pitch.  These discourse features indicate the high level of 

formality of choral reading, which orients students’ attention fully on the 

content being read at the moment.   

Compared to choral reading, answering simple questions is less 

formal in terms of discourse structure and student participation level.  

However, it happened much more frequently in the lesson than choral 

reading. Throughout the lesson it happened 49 times, or on average more 

than once per minute.  Often the student response was only a word or a 

short sentence.  Nevertheless, the students’ choral responses in answer to 

simple questions often included important mathematical information that 

the teacher wanted to highlight.  For example, the following exchange 

happened as the teacher reminded the students of the correct approach 

for drawing a diameter.  
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Excerpt 10 

TEA:  Pay attention to the approach for drawing a diameter. 

TEA:  First, it should pass through what? 

SSS:   The center point. 

TEA:  And what else? 

SSS:  The two endpoints are on the circle. 

TEA:  Correct. 

 

These student choral responses highlighted the exact two features of the 

diameter that the teacher had emphasized earlier in the lesson.  In general, 

the high frequency and selectively targeted content of the answering 

simple questions variation of choral response served to increase student 

participation in the lesson and to foreground important mathematical 

information.  

5. Discussion 

Instructional coherence is a complex phenomenon achieved both through 

careful planning and through a spontaneous and dynamic process in the 

classroom. In order to study instructional coherence, at least two 

interrelated dimensions must be attended to: the complex connections of 

content and thematic coherence across various levels of discourse, and 

the teacher’s use of discourse management strategies to achieve coherent 

instruction that helps the students to perceive those complex connections. 

In this chapter, we have closely analyzed the discourse in one model 

sixth-grade lesson about circles in order to identify the thematic 

connections that are made across stages of instruction. We have also used 

a theoretical framework of discourse management strategies (Tomlin et 

al., 1997) to help us understand how the teacher used discourse to help 

her students perceive the desired thematic connections. 

Our analysis of coherence and discourse in this lesson on circles 

reveals that the lesson is very well-structured in several ways. As others 

have observed, coherent lessons often focus on very few themes or even  
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a single topic (Ma, 1999; Stevenson & Stigler, 1992). We found a similar 

sharpness of focus in this lesson. There was one clear main theme, 

circles, with three well-defined sub-topics, center, radius, and diameter. 

In addition, these concepts were presented and discussed within a 

coherent lesson structure. As in Leung’s (1995) observations of Chinese 

lessons, the instructional phase of this lesson comprised four sequential 

stages: reviewing, teaching new content, practicing, and assigning 

homework. Moreover, our analysis of the discourse data from this lesson 

shows that the teacher made a number of specific thematic connections 

across these stages. The new content about circles was introduced in a 

conceptual context that the teacher had set up in the reviewing stage. 

And, the exercises given to the students in the practicing and assigning 

homework stages were connected both to the themes introduced in the 

stage of teaching new content and to one another, forming a well-

designed progression designed to extend the students’ understanding of 

the themes of the lesson. This arrangement of carefully sequenced 

exercises that highlight different important features of the content 

reflects a commonly-used teaching technique in China known as 

teaching with variation (Gu, Huang, & Marton, 2004).  

With respect to the teachers’ use of discourse strategies, we found 

examples of rhetorical, referential and focus management strategies. 

Each type of strategy served a different purpose within the discourse, but 

all supported coherence in instruction. For example, the teacher used 

several focus management strategies including directing the participation 

of her students in the discourse through choral responses to highlight 

important mathematical information. In the process of teaching the new 

content, she drew attention to connections between new and old 

knowledge and among the knowledge pieces within the new content. 

This finding accords with the practice of making connections between 

old and new knowledge that Wang and Murphy (2004) observed. Indeed, 

the teacher made effective use of the blackboard as a tool to help the 

students manage referents within the lesson, thus helping to make the 

thematic connections of the content salient for the students.  

 



144 T. Wang, J. Cai, & S. Hwang 

  

It is interesting to ask whether the nature of the mathematical content 

in this lesson may have been particularly amenable to building 

connections through discourse management strategies such as these. For 

example, the definition of a radius depends naturally on having 

established what the center of a circle means. Thus, one might expect 

that the teacher would necessarily organize her instruction so that her 

discussion of the radius would refer back to her previous discussion of 

the center. The mathematical structure of the lesson content may thus 

prompt the teacher’s structuring of the discourse to some degree. 

However as we have noted above, listeners are not guaranteed to be able 

to integrate content coherently simply because there are implicit 

connections in the content (Tomlin, et al., 1997). Thus, it is critical for 

the teacher to recognize and deeply understand the implicit connections 

of the mathematical content and then make them explicit for students 

through strategic management of the discourse.   

Finally, given that it was the teacher who planned the content and 

controlled the classroom discourse in this model lesson, this chapter 

focused mainly on the teacher’s contributions to the discourse. However, 

it remains important to ask how the students contributed to achieving this 

high instructional coherence. In this lesson, the teacher largely stated 

information rather than developing ideas with her students. She appeared 

to treat students as passive receivers and employed a highly controlled 

discourse structure (e.g., choral response). This discursive positioning of 

the teacher and students reflects socially-established student and teacher 

roles in China that are “developed through reinforcement, social 

contracts, conformities, and social negotiations” common in Confucian 

heritage culture classrooms (Wong, 2008, p. 976). Nevertheless, to 

further understand the relationship between instructional coherence and 

student learning, whenever possible and relevant we should include 

analyses of the contributions of student voices to achieving instructional 

coherence.  
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Chapter 5 

Elementary School Teachers’ Instruction in 
Measurement: Cases of Classroom Teaching  

of Spatial Measurement in Taiwan 

HUANG Hsin-Mei Edith 

This study demonstrates how elementary school teachers in Taiwan 

enacted lessons involving spatial measurement of length, area, and 

volume in different grade levels based on 12 instructional cases 

collected using videotaping and interviews. The analyses of the 

videotaped lessons reveal that these teachers have formed a consensus 

about the importance of actual measuring manipulations and workbook 

reviewing about students’ construction of measurement concepts. The 

processes of teaching measurement were reviewed sequentially, from 

visual perception, to direct and indirect comparisons, and to the use of 

nonstandard measures, and finally, to the application of a standard 

measure. Two groups were mixed together in the instructional cases—

collaborative-learning groups working on measuring activities and 

teacher-led instruction. Teacher-guided explorations were specifically 

evident in the case of teaching area formulas and displaced volume for 

upper-grade students. Although the teachers strived to create lesson 

enactments and offer opportunities for students to participate in actual 

measuring manipulations, more teacher effort is needed for making 

measurement a thought-provoking activity that stimulates students to 

communicate their ideas about measuring and estimating, and reflecting 

thinking. This is an essential intervention for developing students’ 

conceptual understanding and sense of measurement.   

 Keywords: Taiwan mathematics classroom, teaching of spatial 

measurement, primary mathematics education 

1. Introduction 

Mathematically, spatial measurement of length, area, and volume 

involves spatial structures of units of one to three dimensions. 

Mathematics educators have suggested that once teachers understand 
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how to develop students’ knowledge of the spatial attribute, they may 

later facilitate generalizing the general measurement concepts to other 

measurement domains (e.g., time and angle) because these three 

measurements consist of similar learning stages—the identification of the 

attribute, informal measurement, and unit structure (e.g., Outhred, 

Mitchelmore, McPhail, & Gould, 2003; Owens & Outhred, 2006). Thus, 

many studies have pinpointed what teachers need to teach in the 

classroom for measurement lessons (Dickson, 1989). Yet, few studies 

have focused on the nature of teachers’ teaching practices for developing 

students’ understanding of length, area, and volume measurement. 

Seeing this inadequacy, this chapter aims at looking into the features of 

teaching practices about spatial measurement of linear, area, and volume 

in the primary grades, as exhibited by elementary school teachers in 

Taiwan.  

Recent research and documents regarding curriculum and instruction 

call for teachers’ attentions for taking advantage of measurement 

activities which engage students in doing actual measurements, 

measuring estimations, and reflecting on their ideas of measurement 

(National Council of Teachers of Mathematics [NCTM], 2006; Owens & 

Outhred, 2006). Within the domain of measurement, the subject matter 

of measurement that should be included in elementary school textbook 

curricula mandated in the four sets of curriculum standards (or 

guideline), as initiated by the Ministry of Education in Taiwan  (referred 

to Taiwan Ministry of Education, TME hereafter) (TME, 1975, 1993, 

2000, 2003) remained stable (Chu, 2000; Chung, 2003; Huang, 2012a). 

In contrast, in the aspect of teaching measurement, the vision set forth by 

the recent curriculum documents emphasizes equally developing 

students’ conceptual understanding of measurement and procedural skills 

by the use of instructional strategies and technology rather than 

memorization of factual knowledge of measurement and calculations 

(TME, 1993, 2010). Therefore, the extent to which teachers provide 

activities that involve actual measurement manipulations, measurement 

estimations, and questions that demand high-level thinking processes for 

developing students’ competence in conducting measurement, were 

examined separately in the study. Through analyses of teachers’ 

classroom practices, this study may provide a window with regard to 
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trends in teachers’ teaching of measurement during the past two decades 

in Taiwan. 

The purposes of the study are to look into the instructional processes 

and approaches in which teachers have adapted to teaching length, area, 

and volume measurement lessons in classroom practices on the basis of a 

theoretical framework. Thus, three questions were included in the study:  

1) Through what sequential process do teachers fashion their 

instructional activities for teaching spatial measurement of 

length, area, and volume?  

2) What approaches associated with measurement estimation do 

teachers frequently use to help students develop a sense of 

measurement?   

3) To what extent do teachers provide meaningful inquiries into   

students’ understanding of measurement concepts and skills for 

post-measurement activity discussion? 

2. Theoretical Framework 

2.1 Research-Based Perspectives for Teaching and Learning Length, 

Area, and Volume Measurements   

Spatial measurement combines activities with cognitive thinking, 

geometry, and arithmetic (Clements, 1999). Moreover, length, area, and 

volume measurements include the repetition of a particular unit of 

measurement throughout the extent of whatever it is that is being 

measured. Additionally, the process of measurement consists of selecting 

attributes for an object that may be compared and measured by units 

which can be counted and reported (Owens & Outhred, 2006). Thus, 

there are three mathematical components that support much of 

measurement concepts and measuring skills. These three components 

include: a. partitioning, b. unit iteration, c. tiling and accumulating units 

that pertain to space and then are related to number (Lehrer, 2003; 

Stephan & Clements, 2003). In addition, an understanding of transitivity 

and conservation are commonly regarded as important reasoning abilities 
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for solving problems involving measurement (Stephan & Clements, 

2003; Wilson & Rowland, 1993). Although some researchers (e.g., 

Clements, 1999) have debated the necessity of the development of 

conservation and transitivity as prerequisites for learning length 

measurement, which was suggested by Piaget’s research (Piaget, 

Inhelder, & Szeminska, 1960)—conservation and transitivity and the 

components mentioned above should be developed through measurement 

activities in which students are required to think about, “What is being 

measured?” (e.g., the attributes of length, area, and volume 

measurement), “What is a good unit for measuring and making 

comparisons?” (e.g., the use of units for making comparisons), and 

“What is a suitable procedure for measurement?” (e.g., iterating, 

covering, counting, and the use of tools and formulas).  

In the domain of length measurement, students need to know that 

length means the distance between two points and that the distance of a 

line segment can be quantified by a number. Conceptualizations of 

unitization, iterations, and scale are the core content of length 

measurement (Lehrer, 2003; Stephan & Clements, 2003). To learn 

concepts of area measurement requires acquisition of concepts about 

shapes, as well as the ability to incorporate units about two-dimensional 

regions—based on knowledge of length measurement (Fendel, 1987).  

Research-based instructional sequences for teaching area 

measurement commonly suggest that one should begin with a tiling 

activity in which students use a square as a unit for covering a region. 

Next, after sufficient experience has been obtained in covering various 

squares with squared units, students can be led to find the area formula 

for rectangles, the basis for understanding the formulas for other basic 

figures (parallelograms, triangles, trapezoids) and circles (Lehrer, 2003).  

Volume measurement includes measuring the space occupied by 

three-dimensional objects and measuring the capacity of containers that 

refer to interior volume (Cathcart, Pothier, Vance, & Bezuk, 2003; 

Wilson & Rowland, 1993). For teaching volume measurement, the 

concepts of internal volume, occupied space, and the formula for volume 

measurement of a rectangular solid (container) are essential subject 

matter components with respect to volume measurement. Furthermore, 

direct-measurement activities, which include stacking the Cuisenaire 
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cubes and counting the number of cubes structured in a rectangular solid 

(container), are suggested for helping fifth-grade students learn volume 

measurement. Understanding a concept of volume as a certain number of 

unit cubes, and the idea about occupied space, lays the foundation for 

further understanding of displacement volume. It is a topic in school 

mathematics frequently included in fifth-grade or six-grade textbook 

units (TME, 2010).  

Therefore, many conventional activities designed in the textbook 

curricula for introducing volume measurement seem to suggest the 

following instructional sequence: counting the number of cubes built into 

rectangular solids and finding the spaces of containers at the beginning, 

and then proceeding to search for formulas and numerical volume 

calculations for determining the volume of solids (or finding capacity of 

containers) (e.g., Nan-I Publishing Group, 2008; Kang-Hsuan 

Educational Publishing Group, 2012). Nevertheless, more activities 

involving finding the volume of solids and measuring occupied space, 

few opportunities were provided for students to experiment with 

displaced volume. To understand the idea that the volume of the object 

which is immersed in a container of water leads to the volume of liquid 

displaced is difficult for students (Dickson, Brown, & Gibson, 1984). 

However, research on developing students the concept of displaced 

volume is limited. 

2.2 Sense of Measurement 

In addition to the measuring concepts and skills mentioned above, 

measurement sense, which fosters the sense of getting a “feeling” for 

units of measurement and processing a set of meaningful reference points 

or benchmarks for these units, should be taken into account for 

developing students’ competence in measurement (Joram, 2003). 

Estimation instruction for developing students’ ideas about measurement 

and making reasonable approximations of the measurement is highly 

advocated (NCTM, 2006; TME, 1993, 2003, 2010).  

According to Joram, Gabriele, Bertheau, Gelman, and 

Subrahmanyam’s (2005) and Joram’s (2003) suggestions, guess-and-

check and finding benchmarks are two approaches that have been 
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recommended as effective ways to train students for measurement 

estimation, which in turn helps deepen their sense of measurement. a. 

Guess-and-check. Students were asked to make (write down) an estimate 

and then measure the to-be-estimated item. b. Building references (or 

finding benchmarks) for estimating. Students were asked to identify a 

personal reference point (or an item that is available) and use it for 

representing measurement units for generating estimates. Students may 

gradually learn how to produce estimates and make improvements in 

estimation accuracy with an incremental approach to measuring 

experiences. 

Although measurement estimation needs a repertoire of a wide 

variety of everyday measurement referents, children are able to utilize 

perception to make judgments about relative size without using tools 

(Joram, 2003; Joram, Subrahmanyam, & Gelman, 1998). Moreover, 

measuring estimation should be a part of measurement instruction from 

the beginning of school (TME, 1993). 

2.3 Teacher-and-Student Interaction for Sharing and Reflection on 

Measurement Ideas 

To develop students’ conceptual understanding of measurement and 

sense of measuring, the use of an appropriate language to represent and 

communicate mathematical ideas is considered as important as the use of 

actual measurement manipulations while teaching measurement (NCTM, 

2006; Outhred et al., 2003; Van den Heuvel-Panhuizen & Buys, 2008). 

For learning measurement, students’ sense of measurement will not 

necessarily arise from their manipulations carried out with a lack of 

reflection about measurement. This can be accomplished through 

mathematical discussions about instructional purposes, done within a 

shared learning context (Ball, 1992). In other words, doing measurement 

activities that require students to do manipulations do not necessarily 

ensure that they understand the concepts underlying measurement tasks. 

Consequently, there must be ample classroom discourse in which 

teachers shift students’ attention toward making sense of their measuring 

experiences. This can be accomplished through posing questions that 

demand high-level thinking processes (Grant & Kline, 2003). For 
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example, questions such as “How did you arrive at that solution?” 

“Which units (tools) would be appropriate for measuring the area of the 

window?” “Why do you think they are suitable?” These types of 

questions demand students’ explanations, clarifications, and reflections 

on the problems with which they are engaged.  

The nature of problems (or tasks) provided by teachers can 

potentially influence and structure the way students think about or view 

subject matter with which they are engaged (Henningsen & Stein, 1997). 

The questions that require explanations, verifications, and reflections 

elicited for instructional discussion by teachers in accordance with 

instructional goals may serve as an effective means of communicating a 

deeper conceptual grasp of mathematical knowledge and developing 

more higher-order thinking in students (Hicks, 1996). Thus, teachers’ 

engagement in meaningful inquiry into their students’ measurement 

experiences is an essential intervention which may enhance students’ 

powers of thinking and reasoning (Owen & Outhred, 2006).  

2.4  A Brief Description of the Curriculum Standards and Mathematics 

Curricula in Taiwan     

In Taiwan, the elementary school mathematics curriculum and 

instruction was modified because of the efforts of an educational reform 

movement that took place during the past two decades (Chung, 2003; 

Huang, 2012a). During the time period of educational reform, between 

the 1990s and 2000s, the mathematics curriculum, as enacted in the 

classroom, can be classified into four types of textbooks, according to the 

disparate sets of mathematics curriculum standards (or guidelines) 

initiated by Ministry of Education in Taiwan in 1975, 1993, 2000, and 

2003 that were undertaken for textbook design. The four sets of 

curriculum standards (or guidelines) embodied in the textbooks included 

are as follows. First, the curriculum standards for elementary school 

mathematics, initiated in 1975 (referred to hereafter as 1975-Standards, 

TME, 1975). Second, the curriculum standards for elementary school 

mathematics, initiated in 1993 (referred to hereafter as 1993-Standards, 

TME, 1993), which was a revision of 1975-Standards (TME, 1993, pp. 

346-347). It is noteworthy that the guidelines regarding instructional 



156  H.-M. E. Huang 

approaches mandated in the 1993-Standards, which highlighted 

conceptual understanding, problem solving, and student-centered 

learning, were different from those in suggested in the 1975-Standards 

(Chung, 2005). Third, the Temporary Grade 1-9 Curriculum Guidelines 

for Junior High School and Elementary School- Learning Stage I, which 

maintained the characteristics of instructional approaches that were 

highlighted in the 1993-Standards, initiated in 2000 (referred to hereafter 

as 2000-Temporary Guidelines, TME, 2000). Fourth, the Grade 1-9 

Curriculum Guidelines for Junior High School and Elementary School, 

which was a revision of the 2000-Temporary Guidelines, initiated in 

2003 (referred to hereafter as 2003-Guidelines, TME, 2003, 2010).  

  As mentioned in the previous section, the subject matter components 

of spatial measurement and the specific instructional sequence for 

introducing the concepts included in the strand of quantity and 

measurement that were highlighted in the four sets of curriculum 

standards (or Guidelines) mentioned above were relatively similar (Chu, 

2000; Chung, 2003). In contrast, the instructional approach was 

gradually shifted from memorization of factual knowledge of 

measurement and practices of procedures--which were emphasized in the 

1975-Standards--toward instruction that stressed incorporating students’ 

mathematical intuition, and levels of awareness and mathematical 

inquiry by using mathematical language to developing their construction 

of measurement knowledge from 1993 to 2000 (Chung, 2003, 2005; 

Huang, 2001a, 2012a). However, compared to the instructional features 

that emphasized conceptual understanding and mathematics competence 

in the 1993-Standards and 2000-Temporary Guidelines, a swing back 

toward the mastery of arithmetical skills of instruction, which was 

stressed in the 1975-Standards, can be seen in the 2003-Guidelines 

(Chung, 2005; Hsu & Chang, 2008). Thus, the 2003-Guidelines are 

comparatively different from both the 1993-Standards and 2000-

Temporary Guidelines. Fostering students’ basic competency in 

mathematics, both conceptual understanding and arithmetic ability, along 

with problem-solving ability—are given equal stress with regard to 

current mathematics curriculum and instruction (TME, 2003, 2010). 
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3. Methodology 

3.1 Data Source 

Researchers suggest that making comparisons and syntheses across 

studies can provide new insights, which in turn facilitate deeper 

understanding and further elaboration of theory (e.g., Griffin & Reddick, 

2011; Noblit & Hare, 1988). Based on the full data sets regarding 

teaching practices of spatial measurement which were readily accessible, 

a new theoretical lens on instructional actions that incorporate types of 

questions asking for developing students’ understanding of measurement 

can be taken, for the purpose of understanding the nature of elementary 

school teachers’ classroom practices.  

  Therefore, the research questions are addressed through a study that 

synthesize three parts of the existing data, which involves instruction on 

spatial measurement, as collected by the author, and spanning the 1997-

1998 through 2009-2010 school years. This includes the interview data 

about teachers’ perspectives on teaching measurement, as collected from 

the teachers who enacted the videotaped lessons.  

  First, there are two sets of data containing eight teachers’ teaching 

practices and perspectives regarding teaching and learning length 

measurement for grades 1 through 4 (i.e., G1A’s, G1B’s, G2A’s, G2B’s, 

G3A’s, G3B’s, G4A’s, and G4B’s instructional videotapes), as collected 

by Huang (1999, 2001b, 2004). To obtain the eight teachers’ viewpoints 

about teaching and learning length measurement (or measurement 

estimation), each teacher took part in face-to-face interviews, which were 

twice administrated by the author−during or after teaching lessons.  

Second, there are sets of data involving three teachers’ instruction 

regarding area measurement and perspectives on teaching and learning 

area measurement (i.e., G2C’s, G5A’s, and G6A’s instructional 

videotapes). These cases were respectively adopted from websites and 

instructional sources provided by researchers and Compulsory Education 

Advisory Groups, which serve to supporting elementary school teachers’ 

professional development under permissions. The sources of the  
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videotapes collected for the study included: a. The videotaped lesson on 

area measurement for grade-2 students, which was videotaped in 2001, 

was collected by Huang (2012b). b. The videotaped lesson on area 

formula of trapezoids for grade-5 students, which was videotaped in 

2010, was adopted from instructional sources provided by Taipei City 

Compulsory Education Advisory Groups. c. The videotaped lesson on 

the formula for area measurement of circles for grade-6 students, which 

was videotaped in 2008, was adopted from the website of Tao-Yuan 

County Compulsory Education Advisory Groups (http://mod.tyc.edu.tw/ 

MediaInfo.aspx?MID=2307&ChID=90&CateID=743,745,751).  

Finally, an additional videotaped lesson related to displaced volume 

(measuring the volume of irregular-shaped objects) for grade-5 students, 

which was videotaped in 2010, was included. 

In the study, the set of interview data for collecting the teachers’ 

perspectives on teaching area measurement and displaced volume (i.e., 

G2C’s, G5A’s, G6A’s, and G5B’s viewpoints) were collected after their 

lessons was completed.     

Overall, the data in the study consisted of 12 instructional cases with 

regard to the teaching practices of spatial measurement, including eight 

cases of length measurement, three cases of area measurement, and one 

case of volume measurement. A brief description of the demographic 

characteristics of the 12 teachers investigated and the main mathematical 

content involved in the videotaped lessons are summarized as Table 1.  

3.2 Demographic Characteristics of the Teachers Investigated  

Table 1 shows the lessons related to length measurement, across four 

grade levels. The grade-1 teachers (G1A and G1B), grade-3 teachers 

(G3A and G3B), and grade-4 teachers (G4A and G4B) were from the 

same public school in Taipei, whereas the grade-2 teachers (G2A and 

G2B) were from another public school in Taipei.  

For the instructional cases of area measurement, the grade-2 teacher 

(G2C) and the grade-5 teacher (G5A) were listed separately from two 

public schools in Taipei, while the grade-6 teacher (G6A) was from a 

public school in Tao-Yuan County. For the instructional case of volume 
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measurement, the grade-5 teacher (G5B) was from a public school in 

Taipei, which is different from the schools mentioned above.  

The number of students in a class who received the measurement 

instruction was between 19 and 32 (M = 26.00, SD = 4.49). The range of 

number of years of teaching experience of the 12 teachers was between 8 

and 35 (M = 19.75, SD = 7.84).  

3.3 The Number of Lessons Enacted and Mathematical Content and 

Length of Instruction  

As can be seen in Table 1, for the cases of length measurement, the 

length of instruction for each unit took place from between three to eight 

40-minute class sessions. All of the instructional cases of length 

measurement for grades 2 through 4 contained one textbook lesson 

enacted, whereas the two grade-1 cases included two lessons enacted. 

The main content of length measurement involved in the lessons for 

grades 1 through 4 included: (a) the attribute of length measurement and 

direct and indirect comparisons of lengths for grade 1, (b) standard units 

of metric system for grade 2, (c) unit conversions within the metric 

system for grade 3, and (d) estimation of length for grade 4.    

  As to the three instructional cases of area measurement, teacher 

G2C’s instruction focused on acquisition of the attribute of area 

measurement and a direct comparison of the area of figures for grade-2 

students, whereas teachers G5A’s and G6A’s instruction focused on 

introducing the respective formulae for the area measurement of 

trapezoids and circles. The length of instruction time on area 

measurement took place between one and three sessions. Finally, the 

instructional case of teacher G5B, focusing on volume measurement of 

irregular-shaped objects, took place in about one session.  

3.4 The Curriculum Standards Embodied in the Mathematics  

Textbooks Adopted  

The curriculum standards embodied in the mathematics textbooks that 

were adopted by the 12 instructional cases included three sets of 

curriculum standards (or guidelines). As Table 1 shows, the textbooks  
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Table 1. The demographic characteristics of the 12 teaching cases of spatial measurement 

of length, area, and volume, and the curriculum standards embodied in the textbooks 

enacted  

 

Code of 

teacher 

 

Years of 

teaching 

Grade No. of 

students 

No. of curriculum unit 

and core content   

Length of 

instruction  

Curriculum  

standards 

embodied in 

textbooks 

enacted 

G1A 10 1 n=24 2 units (The attribute of 

length measurement) 

6 sessions 1993-Standards 

G1B 12 1 n=24 2 units (The attribute of 

length measurement) 

8 sessions 1993-Standards 

G2A 22 2 n=31 1 unit (Standard units 

of metric system) 

4 sessions 1993-Standards 

G2B 24 2 n=32 1 unit (Standard units 

of metric system)  

3 sessions 1993-Standards 

G3A 20 3 n=23 1 unit (Unit 

conversions within the 

metric system) 

4 sessions 1975-Standards 

G3B 30 3 n=27 1 unit (Unit 

conversions within the 

metric system)  

4 sessions 1975-Standards 

G4A 35 4 n=21 1 unit (Estimation of 

length) 

4 sessions 1975-Standards 

G4B 18 4 n=24 1 unit (Estimation of 

length) 

3 sessions 1975-Standards 

G2C 22 2 n=31 1 unit (Basic concepts 

of area measurement) 

3 sessions 1993-Standards 

G5A 20 5 n=24 Partial unit (The 

formula for area 

measurement of 

trapezoids)  

1session 2003-Guidelines 

G6A 8 6 n=32 Partial unit (The 

formula for area 

measurement of circles) 

1 session 2003-Guidelines 

G5B 16 5 n=19 Partial unit (measuring 

the volume of irregular-

shaped objects) 

1 session 2003-Guidelines 

 

that were adopted for teaching third- and four-grade length measurement 

(G3A, G3B, G4A, and G4B) were designed based on the 1975-

Standards, whereas the textbooks that were adopted for teaching first- 
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and second-grade length measurement and area measurement (G2A, 

G2B, and G2C) were designed based on the 1993-Standards. Finally, the 

textbooks that were adopted for teaching area formulas and volume 

measurement for upper-grades (G5A, G5B, and G6A) were designed in 

alignment with the 2003-Guidelines.  

3.5 Coding and Analysis Procedures  

To conduct a more thorough analysis of the data, all of the respective 

detailed transcriptions of the videotaped instruction and interview data, 

as well as field notes taken from classroom observations during the times 

of data collection were reread and identified by the author and a rater. 

The rater has a qualification of being an elementary school teacher with a 

master’s degree in education.  

 In addition to describing the modes of sequential process of teaching 

spatial measurement, as exhibited by the teachers investigated, the 

coding processes that were administered to analyze the data included two 

domains. a. Teachers’ approaches involving measurement estimation 

utilized in the lessons; b. Types of teachers’ questions asked during post-

measurement activity discussions. The coding scheme adopted for each 

aforementioned analysis is described as follows. 

3.6 The Mode of Sequential Teaching Process  

Seeing that the types of teaching processes provide insights into teachers’ 

patterns of teaching measurements, the sequence of teaching processes 

were investigated and analyzed, and then presented as flow charts. To 

describe the nature of instruction in spatial measurement, teaching 

actions or activities that teachers carried out for fulfilling the lesson’s 

instructional goals and objectives were identified and organized 

according to the sequential teaching process they employed. The 

teaching process included the following four steps. a. Beginning of 

Lesson. This step includes a beginning activity in which a brief review of 

a previously learned concept, or a brief talk about a new topic to-be-

learned, without an elaborated explanation. b. Lesson Development. This 

step included teachers’ activities in which they attempt to engage 
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students in physical manipulations or solving measurement problems for 

the purpose of developing their mathematical understanding and skills 

through individual work, or in pairs or small groups. c. Post-Activity 

Discussion. This step included activities in which the teacher and 

students engaged in sharing ideas about measurement or solutions to the 

problems they were solving, and reflection on previously completed 

measurements, as well as verbal interactions for making summaries and 

drawing conclusions. d. Workbook (WB) or Worksheet (WS) 

Reviewing. This review consisted of checking student WB (WS) 

solutions and correcting mistakes. 

  Additionally, the types of instructional settings, manipulatives, 

instruments, and types of measurement activities that the teachers 

assigned students to work on measuring were identified. 

3.7 Teachers’ Approaches Involving Measurement Estimations  

Taiwanese teachers’ method of mathematics lesson enactment, in 

general, is characterized by staying quite close to the textbook content 

that is provided in the textbooks or curriculum guides (Askew, Hodgen, 

Hossain, Bretscher, 2010; Tan, 1999). Seeing that engaging students in 

solving problems given in the textbook and WB was a part of 

instructional activities involved in each cases, for estimation problems, 

only the supplementary problems that required measurement estimation 

provided beyond the textbook curriculum were coded for each 

instructional case. Moreover, the problems in WB or WS provided for 

the lesson by the individual teacher and the two instructional cases of 

G5A and G6A, which centered on the area formulas, were excluded from 

the coding of estimation problems. In sum, all estimation questions posed 

extendedly by the 10 teachers were identified by comparing the detailed 

transcripts of an enacted lesson with written problems suggested in 

textbooks and curriculum guides.  

  In all, three types of estimation problems were identified and coded 

with reference to Joram et al.’s (1998) and Joram’s (2003) studies. a. 

Guess-and-check: Students were asked to write an estimate and then 

measure the to-be-estimated item. b. Finding benchmarks for estimating: 

Students were asked to find an item that could serve as a benchmark for a 
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centimeter, a meter, a square centimeter, and a cubic centimeter, or to 

find a container that could serve a benchmark for a cup. c. Guessing 

without checking: Students were asked only to make a guess or to show a 

length/distance/size by gesticulations or body movements, without 

additional types of measurement, for checking the particular estimate. 

Once all of the types of estimation problems had been identified, every 

extensive problem involving measurement estimation posed by the 

teachers investigated was coded according to these types. Moreover, the 

frequency of each type of approach was calculated.   

3.8 Types of Teachers’ Questions Asking for Post-activity Discussion  

In the study, an analysis was done on the types of teachers’ questions 

which were intended to reconvene the class to share findings and 

reflections on measuring manipulations for generating post measuring 

activity discussions. The types of questions were categorized with 

reference to the synthesis of theoretical literature on types of questions 

that might initiate different types of student responses (Hicks, 1996; 

Walshaw & Anthony, 2008). a. High-level thought process (HTP) 

question. The questions that students were asked to verbally explain their 

meaning or to demonstrate their understanding of the concepts 

underlying their measure activities, may be laid as a foundation for a 

follow-up teacher-and-student verbal discussion. The HTP questions may 

potentially support teachers in identifying out students’ levels of 

understanding or clarifying students’ misconceptions. These questions 

might also highlight the content or generate an extended analysis of 

reasoning by listening to student explanations (Henningsen & Stein, 

1997; Walshaw & Anthony, 2008). Moreover, the HTP questions that 

were asked to initiate teacher-student discussion (about the measurement 

manipulations that students engaged in each session) may, to some 

extent, facilitate follow-up mathematical discourses for instruction. For 

example, “Here, we have lots of different objects which have been used 

as units for measuring the length (or area) of the item,” or, “How can we 

make sure that these results of measurement are correct?” and so on.  

  In contrast, low-level thought processes questions (LTP) are those in 

which students are requested to respond by repeating memorized facts 
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without explanations, or providing step-by-step algorithmic procedures 

without any connection to underlying meaning. An example of this 

would be recognizing units and measuring with a ruler and reporting the 

results, or offering a yes-or-no short answer. This type of question is 

frequently adopted in a classroom in which the direct instruction of skills 

is conducted or when teachers focus on seeking the “correct answer” 

(Hicks, 1996).     

 The types of teachers’ questions asked in post-activity discussions 

were coded according to the coding scheme mentioned above. The 

frequency of each type of questions was then calculated.  

4. Results     

For assessing inter-rater reliability for the coding of categories of 

teachers’ approaches involving measurement estimations and types of 

questions asking for post-activity discussion, the results of Kappa 

analyses were found to be .74, p < .001 and .86, p < .001, respectively.  

4.1  The Teaching Process and Characteristics Involved in the 

Teachers’ Measurement Instruction 

After a detailed rereading of all 12 transcripts of instructional cases and 

field notes, the four steps commonly included in each lesson enacted 

included: Beginning of Lesson, Lesson Development, Post-Activity 

Discussion, and WB reviewing. In the Beginning of Lesson phase, 

teachers frequently began their lessons by either asking questions (e.g., 

“Which one is longer? Can you tell by looking?” “Do you know how to 

measure the length of the item held in my hand?” “How tall are you? 

How can you measure your height?”), or providing a brief reviewing of 

previously learned concepts (e.g., “What are the characteristics of a 

parallelogram (or a rectangle or a trapezoid)?” “How do you measure the 

circumference of a circle?”). The length of Beginning of Lesson time 

varied from teacher to teacher. The majority of the teachers took about 

two to four minutes each session for starting their lesson.  

  Next, the teachers proceed to the Lesson Development phase by 

assigning measurement activities in which students became engaged in 
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processing actual measurements, recordings, and the reporting of results 

of their various measurements. For example, the objects provided by the 

teacher (e.g., strings of a given length, 30-cm rulers, cloth tape, metal 

tape) and readily available objects (12-cm or 15-cm rulers, erasers, edge 

of a mathematics textbook) or body parts were commonly used to 

measure various lengths. The objects frequently used to measure areas 

included paper, the face of a student notebook, transparent grids, unit 

squares, a face of a 1-cm
3
 cube, sets of figure cards and paper 

manipulatives attached to student workbooks. For measuring volumes, 

different sizes of containers, 1-cm
3 

cubes and small rocks were used. 

Basically, the content of textbooks and curriculum guides (teaching 

manuals) were the primary sources for teachers’ lesson enactments.  

  When students worked on measuring, the majority of the teachers 

circulated through the classroom to assess students’ performance in 

measuring manipulations, gave feedback, and gave support for individual 

student’s or small groups’ needs. The instruction time that the teachers 

allocated for student’s actual measuring manipulations varied from 

teacher to teacher. About half to two thirds of the total amount of 

instruction time that was scheduled for unit teaching was allocated by the 

majority of teachers in order to facilitate students to delve into measuring 

activities.  

  Next, teachers reconvened with their students to share measuring 

results or to argue about the validity of particular measurement ideas. 

They also, as a group, discussed questions that emerged from measuring 

activities. The types of questions that demanded different levels of 

thinking, which were asked by the teachers at the time of post-activity 

discussions, are presented later in this paper. The length of time for post-

activity discussion depended upon types of questions asked by the 

teachers, as well as students’ responses. The teachers commonly used 

about five to 10 minutes for post-activity discussions.      

  Finally, there was the matter of reviewing and checking WB (or 

WS) answers. With regard to the WB reviewing session, all of the 

teachers investigated reviewed the problems in WB (or WS) at the end of 

instruction, excluding teachers G5A and G5B who integrated the lessons 

with the problems of WS, which were edited and provided specifically 

for the lesson enacted. Generally, aside from the three teachers who 
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taught area measurement, the remainder of the teachers investigated took 

about one session to check students’ WB answers and discuss how to 

solve their problems in WB. Although there were some minor 

differences in classroom teaching practices among the 12 instructional 

cases, two examples of the modes of sequential teaching process 

implemented in the teachers’ measurement instructions are summarized 

and represented briefly as flow charts, as seen in Figure 1 and Figure 2.  

 

 
 

Figure 1. An example of the mode of sequential teaching process for lower-grade 

students and occasions of teacher-led instruction 

 

 

The mode of sequential teaching process in Figure 1 was frequently 

exhibited in teaching measurements for first-grade students and 

occasions of teacher-led instruction, in which the teachers were more 

likely to dominate the teaching processes. Furthermore, teacher-student 

interaction and student-tool interaction was contained in the mode in 

Figure 1. In contrast, the mode in Figure 2 was frequently exhibited in 

teaching measurement for middle-grade students and occasions of 
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Figure 2. An example of the mode of sequential teaching process for middle-grade 

students and occasions of collaborative group work 

 

collaborative group work, in which more student-to-student interactions 

were involved for the measurement lessons.  

  In the study, the teachers who taught length measurement at the 

first-grade level and the teachers who taught area formulas, as well as the 

teacher who taught displaced volume, were observed to frequently 

deliver concepts and principles of measurement to their students and then 

engaged students in solving measurement problems through individual 

work or whole class or group work, with the exception of activities 

involving outdoor measurement. They believed that teachers’ 

explanations and demonstrations of concepts of measurement and 

measuring techniques are important for students’ learning of 

measurement. Conversely, the teachers who taught length measurement 

at the second-grade level, and the teachers who taught middle-grade 

levels, as well as the teacher who taught the basic concepts of area 

measurement, tended to engage students in collaborative group work and 

have discussions referring to students’ ideas about measurement. They  
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tended to highlight the importance of collaborative group work, as well 

as discussions for solving measurement problems that demanded 

measuring the lengths of large-sized objects or large distances.          

The common characteristics of classroom practice enacted in teaching 

measurement as exhibited by these teachers can be derived based on an 

analysis of the videotaped lessons. This is true regardless of some 

distinctions that occurred from differences in the content of the lessons 

as they were enacted, and the grade levels of the students who 

participated in the instructional cases. These characteristics include the 

following three aspects. 

First, activities integrating with real measuring manipulations inside 

(or outside) the classroom, coupled with a review of the student WB, 

were perceived by the teachers investigated as effective mediums in 

which to develop students’ measurement concepts and skills. For the 

instructional cases of length measurement, all eight of the teachers 

investigated stimulated interest in measuring daily life objects or body 

parts, through employing activities that involves actual measuring 

manipulations. In addition to indoor activities, seven of the eight teachers 

were found to have their students work in pairs or small groups, 

measuring larger distances outside the classroom by means of pacing-

and-counting, recording, and reporting the approximate lengths of 

measured objects. Furthermore, teachers G2A, G2B, and G2C tended to 

accentuate the importance of collaborative group work in problem-

solving explorations and carrying out measurement. 

For the instructional cases of area measurement, teacher G2C 

highlighted the meanings of area and measuring the area of an enclosed 

region, as well as skills of covering, such as no overlapping. She 

conducted activities for area comparisons, which students engaged in by 

tiling and counting 1-cm
3
 cubes (or grids) covered by the given figures. 

Teacher G5A engaged the students in exploring the relationships 

between triangles and either parallelograms and trapezoids through 

rearranging the various triangles given, whereas teacher G6A engaged 

the students in arranging eight sectors of a circle and 16 sectors of a 

circle into approximate parallelograms.  
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For the instructional case of volume measurement, Teacher G5B got 

the students involved in observing, recording, and comparing changes in 

water levels prior to and after putting an object into a container of water 

(throughout the session of actual manipulations). The questions 

involving the equivalence between the volume of an object when it was 

dropped into a container of water, and the amount of water level raised, 

were discussed through the entire session.      

Evidence that teachers’ emphasis on the importance of real 

measurement can be supported from the interview data. For example:  

“Real measurement manipulations are crucial for developing 

students’ sense of measurement though preparing for the 

measurement materials needs teachers’ efforts and lesson preparatory 

time. Students need experiences of measuring manipulations even 

though the fact that measuring manipulations often take much 

instruction time and that teachers strive for meeting the lesson 

schedule.” (Teacher G2B) 

In addition to activities of actual measurement, most of the teachers 

investigated discussed how to solve the problems on WB (or WS) and 

carefully checked students’ written solutions. Specifically, some of the 

teachers investigated (including G1A, G2A, G3A, G3B, and G5B) 

explicitly indicated that WB served as an important tool to ensure that 

students grasped core of knowledge that is learned from actual 

manipulation activities. Most of the teachers who taught length 

measurement added measuring daily objects as part of homework, such 

as measuring the length/width of a table or requesting that children work 

cooperatively with their parents.  

  Second, the subject matters that the teachers concerned about was 

students’ learning of measurement manipulations. In the observations of 

the instructional cases, all of the teachers who taught length and volume 

measurement, including teacher G2C, focused their attention on students’ 

conceptions of unit, unit iteration, and addition that are combined, so that 

numerical values are assigned. Yet, compared with checking students’ 

measuring manipulations and skills of using rulers, the teachers provided 

fewer activities involving comparing attributes of a to-be-measured 

object, as well as logical comparisons with third objects. This was 
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especially true in the cases of length measurement and volume 

measurement. For example, only teachers G4A and G2C were found to 

explicitly discuss what it means to measure with students and explain 

meanings (e.g., “What does the length (or area) measure mean?” “What 

does measurement estimation mean?”) at the time they enacted their 

lessons. Conversely, the remaining seven teachers who taught length 

measurement—and Teacher G5B, who taught volume measurement— 

seemed to believe that the meaning of the attribute to be measured could 

be attained through manipulative activities which involve much 

perception and direct comparisons.  

  Moreover, the teachers were prone to having their students measure 

given objects (or using a given unit) and report both the number of units 

and the name of the units. Conversely, a lack of the activities that involve 

making objects of given sizes or representing objects of a given size 

through drawing or the use of written reports, were provided in the 

instructional cases. Additionally, the teachers who taught length 

measurement for the first- and second-grade students did not seem to pay 

much attention to examining students’ ideas about length conservation, 

which is associated with the ideas of additivity property and partition, 

and transitive property reasoning, which is a comparison idea. 

  Third, there was a concern about the use of a variety of 

manipulatives (e.g., figure cards) and technology integrated with two-

dimensional geometry. Equipments such as over-head projectors, 

electronic whiteboards, and computers were commonly used in 

classroom teaching. For example, over-head projectors were commonly 

utilized in the instructional cases of length and area measurement for the 

grade-2 students. To help the students explore the relationships among 

the areas of basic shapes and circles, teachers G5A and G6A integrated 

technologies of dynamic geometry programs with manipulations. For 

example, Teacher G5A demonstrated the dynamic processes of figure 

transformations and rearrangements by means of an electronic 

whiteboard, whereas Teacher G6A applied technology which combined 

PowerPoint program, Flash, and Activate Mind Attention (AMA) 

programs to demonstrated how figures become closer and closer to the 

shape of a rectangle through respective arrangements of 50 sectors or 

100 sectors of a circle. Moreover, by experimenting with cut-up circles 
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and changing them into a rectangle, Teacher G6A guided his students to 

see the correspondences between: a. the circumference of a circle as 

corresponding to the lengths (horizontal sides) of the rectangle whose top 

and bottom was formed by the circumference of a circle, so that the 

length is half the circumference, and b. the radius of the circle as 

corresponding to the width (vertical sides) of the rectangle.  

  On the basis of the interview data, teachers G5A and G6A highly 

recommended the importance of the connections between knowledge of 

geometry and concepts of area measurement for developing students’ 

understanding of area formulas for trapezoids and circles. In particular, it 

is crucial that students take the advantage of dynamic geometry programs 

to explicitly demonstrate the processes of figure transformations and 

rearrangements—essential content involving relationships between the 

areas of basic shapes and circles. 

  In sum, the findings indicate that all of the teachers were devoted to 

actual measuring activities and WB reviewing. Moreover, in our 

interview data, they expressed their struggle with the pressure of 

maintaining the schedule of their lesson plans. Due to time constraints 

and the extra efforts needed to prepare a measurement activity, these 

activities could be simplified or displaced by teacher demonstrations or 

exhibitions that would be performed by calling on a few students. Such 

simplification may occur in teaching area and volume measurement in 

the upper-grade levels.                  

4.2  Teachers’ Approaches Involving Students Engaged in 

Measurement Estimations  

Table 2 shows the frequency of the various approaches that teachers 

adopted for teaching measurement estimation. As can be seen in this 

table, with the exception of the two instructional cases of area formulas 

(G5A and G6A), seven of the 10 teachers provided students with 

supplementary estimation problems beyond the textbook unit—whereas 

three teachers did not provide any extra estimation problems in their 

lesson enactments. All of the teachers investigated tended to highlight 

numbers used with the correct unit labeled, and posed questions such as 

“Which unit can be suitable for expressing the length of a pencil, 
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‘centimeter’ or ‘meter’?” and the like. However, the two approaches 

“guess and check” and “finding benchmarks,” which contain a complete 

process of estimation, seemed not to be typically adopted. Only teachers 

G4B and G2C adopted both of the two approaches mentioned above into 

their lesson enactments. Moreover, some of the teachers (G1A, G2A, 

G2B, G3A) showed a preference for using “guessing without checking” 

which contains an incomplete process of estimation rather than that of 

“guess and check” or “finding benchmarks.”  

 
Table 2. Frequency of measurement estimation conducted by each teacher 

Spatial 

Measurement 

Length Area Volume Total 

Teachers 
G1A G1B G2A G2B G3A G3B G4A G4B G2C G5B  

Number of 

sessions 
6 8 6 3 4 4 4 3 3 1 42 

1. Guess and 

check 
- - 1 4 3 - 2 1 1 - 12 

2. Finding a 

reference point 

(or benchmarks) 
- - - - - - - 2 3 - 5 

3. Guessing 

without checking 
3 - 6 1 2 - - 2 - - 14 

Total 3 - 7 5 5 - 2 5 4 - 31 

 

  It is noteworthy that teachers G4A and G4B provided guess-and-

check problems and went through the process of estimating problems 

given in the textbook unit—in which “measurement estimation” 

comprised the main content. However, they did not provide additional 

measurement estimation problems beyond the textbook unit. Instead, 

they were inclined toward providing informational feedback, which 

allowed estimators to hone their skills; however, questions such as “How 

can you obtain a reasonable estimation?” seemed to be ignored.     

Looking closely at the estimation activities in which teachers and 

students were engaged, students were frequently asked to estimate 

measurements of remembered and familiar objects, such as the length of 

the students’ desks that were used in the classroom. Teachers then 

evaluated students’ responses to these questions, which demanded a 

certain amount of correct answers. Conversely, the students had few 



 Elementary School Teachers’ Instruction in Measurement  173 

opportunities to discuss about questions that required making reasonable 

measurement estimates, and justifying their reasoning. For example, 

“How do you make the estimation? Why do you think that your 

estimation is reasonable?” or “How do you improve estimation 

accuracy?” or “How do you find an item that could serve as a benchmark 

for a centimeter and a meter?”  

4.3  Types of Questions That Teachers Asked for Post-Activity 

Discussion 

Table 3 shows the frequency of the two types of questions asked by the 

12 teachers investigated for post-activity discussion. Most of the teachers 

conducted a whole-class discussion and provided more LTP questions 

than HTP questions in a session. Only four teachers (G2B, G2C, G5A, 

and G6A) asked more than two HTP questions for post-activity 

discussion in each session. Conversely, four of the 12 teachers (G3B, 

G4A, G4B, and G5A) asked solely LTP questions rather than HTP 

questions. When comparing the average number of HTP questions asked 

in a session among the 12 teachers investigated, the frequency of HTP 

questions provided by teachers G2C, G5A, and G6A seemed to be 

slightly higher than those provided by the other teachers.    

A close look at the content of teacher-and-student interaction in the 

post-activity discussion phase shows that, with some exceptions (of the 

teachers who taught area measurement), the teachers in our study were 

more likely to call on some students to share their measurement results 

by reporting a numerical answer or representing arithmetical equations, 

or to ask questions which required short answers without explanations. 

For example, the questions asked by the teachers who taught grade-1 and 

grade-3 and -4 length measurement focused on the results of 

comparisons, the use of standard units, the amount of units used for the 

measure, the correct method for using rulers, and reading the scales. 

Teacher G5B tended to asked questions which demanded quantitative 

reports with regard to how much the water level rose when different 

amounts of 1-cm
3
 blocks were dropped into a container.  
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Table 3. Frequency of the types of questions asked by the teachers for post-activity 

discussion 

Spatial 

Measurement 

Length Area Vol- 

ume 

Teachers G1A G1B G2A G2B G3A G3B G4A G4B G2C G5A G6A G5B 

Number of 

sessions 
6 8  6  3  4  4  4 3  3 1 1 1 

1. HTP questions  5 2 6 7 3 - - - 11 3 5 - 

2. LTP questions  8 15 6 7 8 3 3 4 1 9 3 8 

3. Average 

number of HTP 

questions asked 

in a session 

5/6 2/8 6/6 7/3 3/4 - - - 11/3 3/1 5/1 - 

4. Average 

number of LTP 

questions asked 

in a session 

8/6 15/8 6/6 7/3 8/4 3/4 3/4 4/3 1/3 9/1 3/1 8/1 

 

Teachers who inquired about students’ understanding of and 

reflection about their measurement experiences were inclined to ask HTP 

questions. For example, frequently asked questions included: “How was 

the measurement done?” “How did you measure the length of a to-be-

measured object when the amount of objects that are used as units for 

measuring was fewer than what was needed?” “How did the measurer 

ensure the accuracy of the measurement?” and “Is there another way of 

finding out the area, and which figure is bigger?” and so on. Moreover, 

Teacher G2C who taught area measurement brought students’ 

misconceptions to a later discussion. She explicitly discussed what it 

means to measure an area, and devoted time to clarifying and correcting 

students’ confusion about whether they should count points or squares 

inside the given rectangles, which were created using geoboards.       

It is noteworthy that some of the teachers tended to ask HTP 

questions, but the response time offered for students’ thinking or further 

teacher-and-student discussion seemed to be inadequate. This was 

evident in the cases of upper-grade lessons. For example, both teachers 

G5A and G6A were inclined to guiding their students to find the answers 

follow a series of questions asked sequentially by the teachers though 

they did pose some HTP questions.  
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5. Discussion and Conclusion 

5.1 Discussion 

At the level of classroom practice, this study demonstrates how 

elementary school teachers enacted lessons involving spatial 

measurement across different grade levels. Based on the above results, 

the 12 instructional cases analyzed in the study reveal that all of the 

teachers were devoted to students’ acquisition of measurement and 

focused much of their attention on students’ skills of measuring, using 

tools, and recording and representing the results of measurement by 

using units and numerical calculations. For teaching estimation skills, 

only seven of the 10 teachers included estimation activities in their 

lessons, with the exceptions of the two teachers who taught area 

formulas. The approaches of teaching estimations as adopted by the 

seven teachers included guess-and-check, guessing-without-checking, 

and finding benchmarks. All of the teachers reconvened the class to share 

findings of actual measurement and took post-activity discussions 

seriously. However, they were inclined to ask more LTP questions than 

HTP questions. The questions which demanded students’ explanations, 

reasoning, and reflections about measuring manipulations regarding 

properties being measured did not seems to be adequately addressed by 

the teachers.  

Additionally, teacher-led instruction and collaborative-learning group 

working on measuring activities were conducted in a mixed fashion in 

the instructional cases. Teacher-guided explorations were frequently 

undertaken to help students pay attention to some complicated principles 

that would demand additional contemplation. This is specifically evident 

in the case of teaching basic concepts of length measurement for first-

grade students and in the cases of teaching concepts of area formulas and 

displaced volume for upper-grade students. As to the use of technology 

and teaching aids, aside from the use of various concrete manipulatives 

(e.g., 1-centimeter cubes, figure cards, geoboards, or containers), the 

activities that integrated manipulations (transformed figures) with 

dynamic geometry programs on the computer were adopted for 

developing students’ understanding of area formulas.  
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  The findings from the analyses of the instructional cases of spatial 

measurement showed that the teachers investigated were competent to 

teach spatial measurement of length, area, and volume. They displayed a 

consensus about the importance of actual measuring manipulations with 

respect to students’ construction of measurement concepts. The 

processes of teaching lessons involving length and area measurement 

were carried out sequentially, from visual perception, to direct (and 

indirect) comparisons, and then to the use of nonstandard measures—

and, finally, to the application of a standard measure. The concepts of 

volume measurement and formulas were then to be introduced into the 

upper grades on the basis of knowledge of length and area measurement, 

and geometry concepts. These teaching practices regarding developing 

students’ measurement knowledge are in accordance with recent 

instructional recommendations that begin with comparing and ordering, 

and then move on to repeated use of a unit to find quantity--and, finally, 

to read off a scaled value by using a tool (Sarama & Clements, 2009; 

Van den Heuvel-Panhuizen & Buys, 2008).  

  With respect to developing students’ understanding of area 

formulas, the two upper-grade teachers helped students derive formulas 

for the area measurement of trapezoids and circles by means of using 

computer-generated activities which integrated figure transformations 

with dynamic geometry programs. These approaches, integrated with 

geometry and manipulations (Huang & Witz, 2011) and dynamic 

geometry programs, are also recommended by mathematics educators as 

an effective method for facilitating students’ reasoning and 

understanding when the subject matter is complex and a particular 

manipulating task is quite demanding (Huang, 2012; Kordaki & 

Balomenou, 2006). For example, teachers might lead the students in 

perceiving the relationships among the family of basic shapes and to 

discover the area formula of circles based on the process of figure 

transformations and generalization.  

As to estimation instruction, the teachers adopted two approaches, 

guess-and-check and finding benchmarks, as useful strategies for 

developing skills in measurement estimation (Joram et al., 1998; Fendel, 

1987). In addition to the two approaches mentioned above, guessing-

without-checking also was utilized by some of the teachers investigated. 
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Given the fact that teachers showed a preference for using guessing-

without-checking, the effectiveness on improving students’ refinement of 

making reasonable approximations of measurement may be limited 

because of a lack of any checking process (Joram, Gabriele, Bertheau, 

Gelman & Subrahmanyam, 2005).  

As Sovchik (1996) suggested, lower-and middle-grades students need 

to intuitively develop experience with measurement through explorations 

and estimations rather than via precision of measurement. The analyses 

of the present study reveal that the students were exposed to more 

opportunities for doing actual measuring manipulations, as assigned by 

the teachers, but fewer activities involving explorations and 

measurement estimations. Although estimation skills can be fostered 

through experiences of actual measurement (e.g., establishing standard 

reference measures based on familiar objects) (Joram et al., 2005), a 

sense of measurement that develops from ample experience with 

estimating measures may not occurs naturally for most students within 

the regular curriculum (Hope, 1989). Indeed, students’ development of 

estimation skills heavily relies upon teachers’ instruction, namely, that in 

which various strategies used for guiding students to obtain reasonable 

answers are employed. Thus, to some extent, the findings of this study 

may provide a reason for explaining why Taiwanese students’ estimation 

skills are not well developed, as previously indicated by Tan (1998). 

The teachers in this study have demonstrated a strong tendency to 

engage their students in actual measuring manipulations, such as skills of 

using rulers and reviewing student’s work through workbooks or 

worksheets. Students’ participation, collaboration, and idea-sharing were 

appreciated by these teachers. Nevertheless, the use of questioning 

techniques for stimulating students’ high-level thinking and reflection 

about measurement tasks seemed insufficient. Such inadequacy was 

displayed in most of the instructional cases in the study regardless of the 

modes of sequential teaching processes the teachers had adopted. 

Actually, teaching practices that highlighted measuring skills and 

quantity information may lead to apparent procedural competence; 

however, these factors are not adequate for enhancing students’ 

conceptual understanding of measurement (Lehrer, 2003). As Owens and 

Outhred (2006) suggested, making sense of measurement depends 



178  H.-M. E. Huang 

heavily upon the use of actual manipulations and language (or symbols) 

to interpret practical experience in doing manipulations and reflecting 

upon learning. Examples of the above would include thinking how to 

answer questions related to “what if” or “finding a relationship among 

different units,” or “drawing a conclusion from measuring data.” Seeing 

that fourth-grade students in Taiwan were less successful in doing 

problems underlying measurement concepts rather than solving problems 

underlying number and data display knowledge of the sort addressed in 

the assessments of Trends in International Mathematics and Science 

Study (TIMSS) in 2003 (Lin & Tsai, 2003) and 2007 (Mulliss, Martin, & 

Foy, 2008). That is, more teacher effort is needed for making 

measurement a thought-provoking activity that stimulates students to 

communicate their ideas about measuring and estimating, as well as 

reflecting thinking. 

Moreover, curriculum guidelines and instructional suggestions given 

in teaching guides (or teaching manual) are assumed to impact on 

teachers’ instructional approaches for implementing curriculum (e.g., 

Shkedi, 2009). Interestingly, the findings of the study reveal two 

examples of modes of sequential teaching processes adopted by the 

teachers across different content of lessons, and the grade levels of 

students who participated in the classes, and sets of curriculum standards 

(or guidelines). It implies that teachers’ adoption of instructional 

approaches depends on their viewpoints on what and how concepts and 

skills of measurement should be learned and their individual preference 

in teaching measurement. However, the findings of the study were 

obtained from a small sample of in-service teachers’ instructional 

videotapes for teaching spatial measurement of length, area, and volume, 

the descriptions of teachers’ instructional approaches discussed in this 

study might be viewed as researchable presumptions. These 

presumptions merit further research with larger samples to investigate 

instructional mode adopted by teachers for teaching length, area, and 

volume measurements.     

A related issue concerns the use of the geoboards or dot-papers for 

teaching area measurement: these two aids are frequently suggested for 

helping students explore areas (e.g., Fendel, 1987; Van Voorst, 2000). 

Observations of the videotaped lesson involving grade-2 students found 
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that they become confused while counting the pegs and a square 

enclosed in a rectangle, as formed by rubber bands on a geoboards. The 

students’ confusion probably was generated from insufficient experience 

in measuring shapes, a process that entails covering square pieces of 

paper or 1-cm
2
 squares, which is an instructional step suggested for 

beginning learners (Lehrer, 2003; Wilson & Rowland, 1993). For 

guiding grade-2 students who are beginning to learn area measurement to 

explore area, the appropriateness of using figures represented on dot-

paper or the geoboards needs further investigation.  

5.2 Conclusion 

This study covers sets of data about teachers’ teaching practices in 

length, area, and volume measurement across different grade-levels. The 

findings show that some ideas about teaching spatial measurement that 

were advocated by recent research and documents of curriculum and 

instruction (e.g., Lehrer, 2003; NCTM, 2006; Owens & Outhred, 2006; 

TME, 2010) were implemented in their instructional practices. For 

example, the task of measuring manipulations is inclined to be partially 

skipped in classroom teaching because of teachers’ struggle in getting 

students to become fully involved in real measuring activities (e.g., Van 

den Heuvel-Panhuizen & Buys, 2008). Nonetheless, it was not found to 

be the case with the teachers investigated in this study. They tended to 

offer many activities involving actual measuring manipulations, and took 

advantage of using manipulatives, dynamic geometry programs, and 

electronic tools to affect learning. Notwithstanding that the teachers 

made great efforts to fulfill the instructional objectives preseted in 

textbook units, offering additional opportunities for students to 

participate in measurement estimations and extending teacher-and-

students discussions were recommendations put forth by recent research 

and curriculum documents, as mentioned above. None of these 

approaches were significantly evident in the instructional cases.  

On the other hand, the data in this study provide a portrait of what 

teachers concern about when teaching and learning length, area, and 

volume measurements—a picture which may facilitate mathematics 

researchers in understanding such classroom practices. A limitation of 
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the study is its small sample size. Thus, any generalization from the 

findings is limited. In particular, the three instructional cases of area 

measurement which were videotaped for supporting teacher professional 

development should not be taken as necessarily representative of other 

teachers outside the context of those in the study. Moreover, teaching 

measurement in a computer-based environment heavily depends upon 

teachers’ competence in using technology and supportive sources, as 

afforded by school contexts. At most, the modes of the teaching process 

and lesson enactment shown in the study may represent many of the 

teaching practices prevalent in urban schools in Taiwan. Further studies 

are needed about instructional cases for teaching spatial measurement 

that incorporate an emphasis on students’ learning outcomes.    

Acknowledgments 

Research for this paper integrated the data collected for the research 

projects (Grant Numbers: NSC 87-2511-S-152-012 and NSC 99-2511-S-

133-006 and NSC 100-2511-S-133-006-MY2) supported by National 

Science Council in Taiwan. This paper does not necessarily represent 

positions of National Science Council in Taiwan. Moreover, the author 

would like to thank the two reviewers for helpful suggestions and the 

teachers for their supports for the research, including CHANG Ling-

Hsueh, CHEN Ming-Yu, CHEN Chun-Lung, CHIOU Hsin-Yi, CHOU 

Hsiao-Ching, LEE Chun-Hsien, LIU Shu-Nu, LIU Shu-Mei, WANG Fu-

Mei, WANG Hung-Ying, WU Hsin-Yueh, and YANG Mei-Ling.     

References 

Askew, M., Hodgen, J., Lossain, S., & Bretscher, N. (2010). Values and variables. 

Mathematics education in high-performing countries. London, Great British: 

Nuffield Foundation. Retrieved from http://www.nuffieldfoundation.org 

Ball, D. L. (1992). Magical hopes: Manipulatives and the reform of math education. 

American Educators, 16(2), 14-18, 46-47. 

Carthcart, W. G., Pothier, Y. M., Vance, J. H., & Bezuk, N. S. (2003). Learning 

mathematics in elementary and middle school (3rd ed.). Upper Saddle River, NJ: 

Pearson Education. 

Chu, C. -J. (2000). Interpretation for elementary school quantity and measurement 

curriculum materials: From the 1993 Curriculum Standards to the Grade 1-9 



 Elementary School Teachers’ Instruction in Measurement  181 

Curriculum Guidelines for Junior High School and Elementary School [in Chinese]. 

Hann-Lin Cultural and Educational Magazine, 16, 6-19.  

Chung, J. (2003). Curriculum design for nine-grade alignment mathematics [in Chinese]. 

In Ministry of Education (Ed.), Handbook of basic research on mathematics learning 

of the Grade 1-9 Curriculum for Junior High School and Elementary School (pp. 89-

103). Taipei, Taiwan: Ministry of Education.  

Chung, J. (2005). Opinions on transform of mathematics curriculum over the past 10 

years [in Chinese]. Journal of Educational Research, 133, 124-134.  

Clements, D. H. (1999). Teaching length measurement: Research challenges. School 

Science and Mathematics, 99(1), 5-11. 

Dickson, L., Brown, M., & Gibson, O. (1984). Children learning mathematics: A 

teacher’s guide to recent research. London, Great Britain: Chelsea College, 

University of London. 

Dickson, L. (1989). Area of a rectangle. In K. Hart, D. C. Johnson, M. Brown, L. 

Dickson, & R. Clarkson (Eds.), Children’s mathematical frameworks 8-13: A study 

of classroom teaching (pp. 89-125). Windsor, England: NFER-Nelson. 

Fendel, D. M. (1987). Understanding the structure of elementary school mathematics. 

Boston, MA: Allyn and Bacon. 

Grant, T. J., & Kline, K. (2003). Developing the building blocks of measurement with 

young children. In D. H. Clements, & G. Bright (Eds.), Learning and teaching 

measurement: 2003 year book (pp. 46-56). Reston, VA: National Council of 

Teachers of Mathematics. 

Griffin, K. A., & Reddick, R. J. (2011). Surveillance and sacrifice: Gender differences in 

the mentoring patters of black professors at predominantly white research university. 

American Educational Research Journal, 48 (5), 1032-1057. 

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: 

Classroom-based factors that support and inhibit high-level mathematical thinking 

and reasoning. Journal for Research in Mathematics Education, 28, 524-549. 

Hicks, D. (1996). Discourse, learning, and teaching. In M. W. Apple (Ed.), Review of 

research in education 1995-1996 (Vol. 21, pp. 49-95). Washington, DC: American 

Educational Research Association. 

Hope, J. (1989). Promoting number sense in school. Arithmetic Teacher, 36(6), 12-16. 

Hsu, W. -M., & Chang, J.-L. (2008). Analyses of competency indexes in elementary 

school mathematics textbooks in different periods in Taiwan [in Chinese]. Electric 

Journal of Taiwan Mathematics Teachers, 14, 27-47.  

Huang, H. -M. E. (1999). Investigating teachers’ knowledge about children’s length 

knowledge and measurement [in Chinese]. Journal of Taipei Municipal Teachers 

College, 30, 175-192.  

Huang, H. -M. E. (2001a). Teaching mathematical problem solving in Taiwan elementary 

Schools. In E. Pehkonen (Ed.), Problem solving around the world (pp.75-81). Turku, 

Finland: University of Turku. 



182  H.-M. E. Huang 

Huang, H. -M. E. (2001b). A study of elementary school teachers’ instruction in length 

measurement [in Chinese]. Curriculum and Instruction Quarterly, 4 (3), 163-184.  

Huang, H. -M. E. (2004). Children’s thinking in solving mathematical problems [in 

Chinese]. Taipei: Psychological Publishing Company.  

Huang, H. -M. E., & Witz, K. G. (2011). Developing children’s conceptual understanding 

of area measurement: A curriculum and teaching experiment. Learning and 

Instruction, 21 (1), 1-13. 

Huang, H. -M. E. (2012a). One hundred years of curriculum and textbook development 

of elementary school geometry and measurement and their founding theories of 

education and psychological frameworks [in Chinese]. In National Academy for 

Educational Research (Ed.), Enriches your mind: Textbooks’ retrospect and prospect 

(pp. 367-411). Taipei, Taiwan: Higher Education Publishing Company.  

Huang, H. -M. E. (2012b). An exploration of instructional transformation of mathematics 

teaching: A case of an experienced teacher’s teaching of basic concepts of area 

measurement [in Chinese]. Journal of Textbook Research, 5(3), 99-129. 

Huang, H. -M. E. (2012, July). An exploration of computer-based curriculum for teaching 

children volume measurement concepts. In Tso, T. -Y. (Ed.), Proceedings of the 36th 

Conference of the International Group for the Psychology of Mathematics Education 

(Vol. 2, pp. 315-322). Taipei, Taiwan: PME.  

Joram, E. (2003). Benchmarks as tools for developing measurement sense. In D. H. 

Clements, & G. Bright (Eds.), Learning and teaching measurement: 2003 year book 

(pp. 57-67). Reston, VA: National Council of Teachers of Mathematics. 

Joram, E., Subrahmanyam, K., Clements, D. H., & Gelman, R. (1998). Measurement 

estimation: Learning to map the route from number to quantity and back. Review of 

Educational Research, 68(4), 413-449.  

Joram, E., Gabriele, A., Bertheau, M., Gelman, R., & Subrahmanyam, K. (2005). 

Children's use of the reference point strategy for measurement estimation. Journal 

for Research in Mathematics Education, 36(1), 4-23. 

Kang-Hsuan Educational Publishing Group (2012). Teacher’s manual: Elementary 

school mathematics (Level 5, Volume 2). New Taipei City, Taiwan: Author. 

Kordaki, M., & Balomenou, A. (2006). Challenging students to view the concept of area 

in triangles in a broad context: Exploiting the features of Cabri-II. International 

Journal of Computers for Mathematical Learning, 11, 99-135. 

Lehrer, R. (2003). Developing understanding of measurement. In J. Kilpatrick, W. G. 

Martin, & D. Schifter (Eds.),  A research companion to principles and standards for 

school mathematics (pp. 179-192). Reston, VA: National Council of Teachers of 

Mathematics. 

Lin, P. -J., & Tsai, W. -H. (2003). Fourth graders’ achievement of mathematics in TIMSS 

2003 field tes [in Chinese]t. Science Education Monthly, 258, 2-20. 

Mulliss, I. V. S., Martin, M. O., & Foy, P. (2008). The TIMSS 2007 International 

Mathematics Report: Finding from IEA Trends in international mathematics and 

science study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS 



 Elementary School Teachers’ Instruction in Measurement  183 

International Study Center, Boston College. Retrieved from 

http://timss.bc.edu/timss2007/mathreport.html 

National Council of Teachers of Mathematics (2006). Curriculum focal points for 

prekindergarten through grade 8 mathematics. Reston, VA: National Council of 

Teachers of Mathematics. 

Na-I Publications (2008). Elementary school mathematics learning field (Grade Five, 

Vol. 10) [in Chinese]. Tainan, Taiwan: Author.  

Noblit, G. W., & Hare, R. D. (1988). Meta-ethnography: Synthesizing qualitative studies 

(Vol. 11). Newbury Park, CA: Sage. 

Outhred, L., Mitchelmore, M., McPhail, D., & Gould, P. (2003). Count me into 

measurement. A program for the early elementary school. In D. H. Clements, & G. 

Bright (Eds.), Learning and teaching measurement: 2003 year book (pp. 81-99). 

Reston, VA: National Council of Teachers of Mathematics. 

Owens, K., & Outhred, L. (2006). The complexity of learning geometry and 

measurement. In A. Gutiérrez, & P. Boero (Eds.), Handbook of research on the 

psychology of mathematics education: Past, present and feature (pp.83-115). 

Rotterdam, The Netherlands: Sense Publishers.   

Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child’s conception of geometry. 

(E.A. Lunzer, Trans.) New York: Basic Books.  

Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: 

Learning trajectories for young children. New York: Routledge. 

Shkedi, A. (2009). From curriculum guide to classroom practice: teachers’ narratives of 

curriculum application. Journal of Curriculum Studies, 4, 833-854. 

Sovchik, R. J. (1996). Teaching mathematics to children (2nd ed.). New York: Harper 

Collins. 

Stephan, M., & Clements, D. H. (2003). Linear and area measurement in prekindergarten 

to grade 2. In D. H. Clements, & G. Bright (Eds.), Learning and teaching 

measurement: 2003 year book (pp. 3-16). Reston, VA: National Council of Teachers 

of Mathematics.  

Ministry of Education. (1975). Elementary school curriculum standards [In Chinese]. 

Taipei, Taiwan: Author. 

Ministry of Education. (1993). Elementary school curriculum standards [In Chinese]. 

Taipei, Taiwan: Author. 

Ministry of Education. (2000). Grade 1-9 curriculum for junior high school and 

elementary school: Temporary guidelines for learning stage I [In Chinese]. Taipei, 

Taiwan: Author. 

Ministry of Education. (2003). Grade 1-9 curriculum for junior high school and 

elementary school: Mathematics [In Chinese]. Taipei, Taiwan: Author. 

Ministry of Education. (2010). Grade 1-9 curriculum for junior high school and 

elementary school: Mathematics (3rd ed.) [In Chinese]. Taipei, Taiwan: Author. 

National Council of Teachers of Mathematics. (2006). Curriculum focal points for 

prekindergarten through Grade 8 mathematics. Reston, VA: Author.  



184  H.-M. E. Huang 

Tan, N. -C. (1998). A study on students’ misconceptions of area in elementary school [in 

Chinese]. Journal of National Taipei Teachers College, XI, 573-602.  

Tan, N. -C. (1999). A study on the exploration of the elementary teachers’ pedagogical 

content knowledge on the students’ misconception in measurement [in Chinese]. 

Journal of National Taipei Teachers College, XII, 407-436.   

Van den Heuvel-Panhuizen, M., & Buys, K. (2008). Young children learn measurement 

and geometry- A learning-teaching trajectory with intermediate attainment targets 

for the lower grades in primary school. Rotterdam, The Netherlands: Sense. 

Van Voorst, C. (2000). Pattern in squares. Teaching Children Mathematics, 7(3), 170-

173. 

Walshaw, M., & Anthony, G. (2008). The teacher’s role in classroom discourse: A 

review of recent research into mathematics classrooms. Review of Educational 

Research, 78(3), 516-551.  

Wilson, P. S., & Rowland, R. (1993). Teaching measurement. In R. J. Jensen (Ed.), 

Research ideas for the classroom early childhood mathematics (pp. 171-194). 

Reston, VA: National Council of Teachers of Mathematics. 

 



 

185 

Chapter 6 

Pedagogical and Curriculum Potentials of 

Homework: A Case Study About Geometric 

Proofs in Shanghai 

FANG Yanping 

 

This study reports how an experienced secondary teacher in Shanghai 

explained student homework on geometric proofs. A discourse analysis 

reveals a structured set of her routine instructional actions in involving 

students in an IRE/F-patterned instructional discourse to get students to 

recall, reconnect and reconstruct their earlier learning. Marking student 

homework, ‘analyzing’ student thinking and tutoring individual 

students made the explaining detailed, multifaceted, structured and 

targeted at the mathematical substance. Analysis of curriculum 

materials and marked student work finds that difficulties in learning 

were with the fundamental norms to follow and habit of thinking 

required in writing geometric proofs. Finally, the tradition of design 

with variation was found to have students discern and master the 

fundamental deductive reasoning skills under diverse, carefully 

designed problem settings. These uncover the hidden dimensions of 

math teaching in Shanghai mediated through homework practice and 

help us rethink the role and potentials of homework. 

 

Keywords: mathematics homework, mathematics errors, design with 

variation; geometric proof, pedagogical reasoning and action 

1. Introduction 

After Tr. Wang and the students bid each other good morning, she summoned the 

lesson.  “I continued marking your homework as soon as I arrived this morning,” 

she shared. “In doing proofs,” she continued, “our classmates again missed  
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either an arm or a leg.” She read the names of the students who did well and then  

directed the class attention to the first figure that she drew on the blackboard. 

She used examples of students’ wrong methods in guiding them, step by step, to 

understand why they were wrong and how they should approach their own 

correction. She explained three of the proof writing assignments that required 

students to apply the perpendicular bisector theorem that she taught on the 

previous day. Explaining homework allowed her to review the topic in a 

contextualized way. In less than ten minutes, she started the new lesson. “Today, 

we’re going to study another bisector theorem: an angle bisector and its 

converse theorem,” she announced and wrote the topic on the blackboard. By 

capitalizing on the review, she made a smooth transition to the related topic, 

angle bisector theorem.  

 

The above captures a glimpse of a typical activity at the beginning of 

Teacher (Tr.) Wang’s lessons on the days when she taught the unit on 

geometric proofs, in one of her two eighth grade classrooms. As usual, 

she would explain and comment on student homework to the whole class 

focusing on the problems or errors she identified from homework 

assigned the day before that students had submitted and she had carefully 

marked. In less than 10 minutes she helped students attend to and make 

sense of the issues in learning the topic and get them ready for the related 

new topic of the day. Compared to her teaching the subsequent topic on 

functions, the level of engagement with homework was found to be more 

intensive in teaching geometric proofs because of the large class size and 

more importantly, the nature of proof writing that demands the rigor of 

logic and thus meticulous attention to the process. In this chapter, I draw 

on my observations on one of the sections, Converse Propositions and 

Theorems, which she taught in mid-November 2002, to demonstrate how 

she used homework in teaching students’ deductive thinking. Detailed 

analysis of this activity across those teaching days reveals a clear 

structure of her actions and visible discourse patterns in explaining and 

commenting on homework (jiangping zuoye), a common teaching 

practice in China, hereafter referred to as explaining homework. 

Homework use is common to mathematics teaching in schools in both 

Western and Eastern countries (Mullis et al., 2000; Stigler & Stevenson, 

1991; Stigler & Hiebert, 1999). In the U.S., homework research in the 
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past three decades has been focused on whether homework is useful and 

effective in promoting student academic achievement (Cooper et al., 

2003) given the public’s concerns about its disruptive role in children’s 

life (Vatterott, 2009). In East Asian countries, however, homework’s 

supporting role in teaching and learning has been taken for granted. 

Nevertheless, in both the East and the West, there has been a dearth of 

literature on how homework is used effectively in teaching (Cooper, 

1989; Cooper et al., 2003).  

Meanwhile, teaching is culturally embedded and so is use of 

homework in teaching and learning. Berliner (1986) and Leinhardt 

(1990) found that mathematics teachers in the U.S. use homework 

checking as a routine activity at the beginning of a lesson. Leinhardt and 

Greeno’s study (1991) of the knowledge gap between the homework-

checking practices of novice and expert teachers in U.S. schools found 

that “homework correction [checking]” performed by an expert teacher 

“is an ideal example of how one rather small lesson component (it lasts 2 

to 5 minutes and is rarely mentioned by teachers, student teachers, or 

texts) can help achieve multiple goals” such as taking attendance, 

knowing who has not completed the day’s assignment, finding out what 

mistakes there are, and deciding how to adapt the lesson to overcome 

existing problems (pp. 238-241). In both situations, they found that 

homework checking is largely a disciplinary tool for teachers to monitor 

homework completion. For mathematics teachers in China, as reflected 

in Tr. Wang’s lessons, homework explaining focused on errors identified 

by the teacher would go way beyond simply checking homework and 

when conducted in structured ways to all students, it would provide 

timely and targeted feedback to support students’ learning of 

fundamental mathematical ideas. As a veteran teacher and Head of the 

school’s Mathematics Teaching Research Group, her excellence in 

teaching was highly regarded by her colleagues. Her example would 

speak to what Hattie and Timperley (2007) advocated, the powerful role 

of timely feedback provided to students in promoting effective learning.  

     As detailed in this chapter, explaining homework as a typical lesson 

component for Tr. Wang has a routine activity structure and discourse  
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patterns. Hours of marking, tutoring individual students and talking with 

her colleagues about problems in homework would have made it possible 

for her to explain homework in structured and detailed ways (Fang, 

2010). It is hoped that Tr. Wang’s case would open up a window of a 

hidden homework-mediated activity system to help reveal more fully 

mathematics teaching practice in China (Fang, 2010). 

     To build Tr. Wang’s case, classroom discourse analysis and document 

and artifact analysis were conducted to tease out patterns of her teaching 

actions and goals, structures of discourse, homework tasks and patterns 

of their design and use. I use the notion of variation and draw on key 

research in teaching and learning of geometric proofs to examine the 

homework tasks and how they are designed in ways to focus teachers’ 

and students’ attention to discerning the critical dimensions of geometric 

proofs (Marton & Tsui, 2004).  In doing so I aim to offer a more 

systematic understanding of the values behind the curriculum and 

pedagogical traditions and the culturally embedded meaning that support 

the mediating role of homework in mathematics teaching and learning in 

China. 

2. Method 

This was an ethnographic study with focused participant observations of 

a teacher’s teaching practice both in her classrooms and her grade-level 

office as well as weekly meetings.  A case study approach was adopted 

to provide an in-depth examination of the teacher’s homework-related 

practice because it “offers a means of investigating complex social units 

consisting of multiple variables of potential importance in understanding 

the phenomenon” (Meriam, 1998, p. 41). These variables were examined 

by collecting a full range of evidence, including documents, artifacts, 

interviews in addition to observations to uncover their relationships to 

the curriculum and cultural contexts. Classroom observations were able 

to surface how the explained homework, marked homework artifacts, 

curriculum documents and open-ended interviews with Tr. Wang were 

able to uncover why she explained those errors, what mathematics is  
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entailed in the errors that she explained as well as the design features of 

the tasks.  In addition, key literature on teaching of geometric proofs was 

consulted to shed more light on the teaching actions and goals, structures 

of discourse, homework tasks and the patterns of their design and use.  

     The analysis was conducted on two levels to form a general picture of 

the object of explanation and the multiple dimensions revealed through 

the teacher’s selecting and explaining processes. The first level focused 

on the discourse and structure of Tr. Wang’s pedagogical actions in 

explaining, that is, how she explained the errors in ways to make the 

mathematics entailed accessible to students and how she used the 

information she collected from student errors to assist her explaining 

process. The IRF/IRE (initiate–response– feedback/evaluation) discourse 

structure (Cazden, 1988) was examined to understand the dynamic 

interaction with students in providing her feedback: how the teacher 

initiated the activity, how her explanation was enriched with the help of 

the information she collected from marking homework, and how students 

responded and how she probed for more understanding about student 

problems of learning. Furthermore, the teacher-student interaction 

routines (such as students’ choral responses) showed how she 

manipulated the information she gathered from marking homework to 

orchestrate the explanation, engage the students and move the 

explanation forward. These reflect some of the cultural dimensions of  

Tr. Wang’s teaching practice given the large class size and teacher’s 

leading role that requires a different kind of student participation in the 

form of active mental participation (Briggs, 1996).  

     The second level of analysis is aimed at understanding the nature and 

role of the errors that Tr. Wang chose to explain. The errors and her 

explanations were coded for knowledge and skills involved, the 

curricular location, the mathematics entailed, the purposes for student 

learning as well as the pedagogical characteristics. Research on teaching 

and student learning of the topic was drawn on to shed more light on the 

importance of the assignment, the errors and her explanations to teaching 

and learning. On both levels, interviews and other observation data were  
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drawn wherever necessary to help cross-reference the coding and better 

understand the construction of the object as well as its transforming 

process. 

3. Findings 

Three major findings are reported. First, a discourse analysis of Tr. 

Wang’s activity of explaining and commenting on student homework 

reveals a structured set of routine actions under reviewing, introducing 

the problem context, explaining and commenting on the errors, and 

generalize to conclude. These were enacted in clear IRE/F patterns 

involving students to recall, reconnect and reconstruct their earlier 

learning in ways to allow them to make timely corrections. Hours of 

marking student homework and ‘analyzing’ student thinking had, to a 

great extent, made the explaining detailed, multifaceted, and structured. 

The patterned IRE/F discourse allowed the teacher and her students to 

focus on the substance embedded in the errors. Second, analysis of the 

curriculum materials and marked student work vis-à-vis the errors 

explained finds that students did not have problem with the new 

theorems they learned but struggled with the fundamental norms of 

geometric proofs, which was reflected in the errors they made. Third,  

the tradition of design with variation is found to have students surface 

those errors to discern the fundamental mathematical ideas while 

allowing the teacher to pick them up to explain and help address through 

marking, explaining, and commenting. Together these findings mark a 

hidden practice of mathematics teaching in Shanghai mediated through 

teachers’ homework practice and helps us rethink the role of homework 

in mathematics teaching and learning. 

3.1 The Activity Structure of Explaining Homework   

Coding the classroom discourse with a focus on the brief beginning 

segments of Tr. Wang’s lessons found a fairly consistent structure in the  
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way she explained homework to her students—it consists of three or 

sometimes four routine sets of actions: reviewing the previously taught 

content; introducing the context of the problem or errors in the assigned 

task; explaining the problems or errors; and summarizing and 

generalizing her feedback to conclude. The following details what is 

entailed in each set of these actions.  

     Reviewing previously taught content. Reviewing previously taught 

content is common to mathematics teaching as a way to bridge between 

related prior knowledge and the new knowledge to be taught (Compiling 

Committee of Record of Famous Teachers’ Lessons—Secondary Math, 

1999).  Very often, Tr. Wang’s review was either initiated with or 

followed by explaining homework. For instance, in the opening narrative 

of this chapter, on November 19, 2002, she started explaining homework 

after asking students to recall the perpendicular bisector theorem and its 

converse taught on the previous day: all points of equidistance to the 

endpoints of a line segment are on the perpendicular bisector of the line 

segment. She then moved from the “two points” (referred to as the 

endpoints of a given or constructed segment) to “three points”—“the 

three residential areas” in the first assignment (see Table 1, Row 2, Ex.1 

for this assignment). She then transitioned to explaining homework:  

 
Then, the homework we did yesterday. There are three points given here 

(pointing to the board at the already drawn points), now we need find the point, 

so that its distances to these three points are all equal. Now here, there are three 

points (emphatically), how should we solve this problem?  

 

     As discussed later, the use of variation in curriculum and task design 

has allowed students to use homework to both practice and apply the 

theorem taught in the lesson in a new problem setting. In turn, marking 

student homework would enable Tr. Wang to identify the difficulties 

they tended to encounter in trying to use it accurately in proof writing. 

She could then provide timely feedback to assist them in mastering the 

fundamental steps of sound deductive reasoning.  
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     Introducing the problem contexts and error(s). With or without a 

review proceeding her explaining homework, Tr. Wang would give a 

complete introduction to each of the major assignments that she had 

chosen to explain. For instance, a few days earlier, on Nov. 15, 2002, she 

started explaining and commenting on student homework by sharing her 

feedback (see the original assignment in Table 1, Row 1):  

     T:      Our classmates in proof, I marked homework of 3 groups as soon as I arrived 

in the morning, in applying the theorems you just learned, like these two 

corollaries, you all used very well. But, some, in fact, the majority of our 

classmates, in proof writing, missed either an arm or a leg. For example, 

yesterday, you wrote the “Given” and ‘To prove’ statements on your own. 

This, AB=AC, ∠C =15°, and the altitude on the side, BD. It requires us to 

prove that BD is half of the side, right? Some classmates wrote their proof in 

this way: the first sentence, because angle C=angle ABC=15 degrees… 

      S:  (A few students) Wrong. (More students joined in noisily.) 

 

 In this brief introduction, she did several things: first, she shared with 

students the status of her marking homework (attaching a sense of 

importance to homework as she usually would do). To relate to the 

review, she commented that students used the two corollaries quite well 

in their homework and then focused directly on the problem of proof 

writing (missing of conditions) that she found in their homework. She 

then provided an example to illustrate her point. She went through the 

proof writing virtually line by line, as shown later, and then zoomed in 

on the first sentence in which the error was commonly found. She also 

drew the sketch on the blackboard and referred to it while explaining step 

by step. This sequence of actions was more apparent in the introduction 

she gave on homework at the beginning of her lesson on Nov. 20, 2002 

(see Table 1 for more details of this assignment) after she taught angle 

bisector theorem, as shown below: 

      T:      (Holding a set of marked workbooks in her hand) These many students have 

all got wrong. (She then read the names of a smaller pile one by one) Jiang 

XXX… These students all paid attention to when to use perpendicularity. 

Those classmates who got it wrong, please make corrections during recess  
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after lunch. (She started drawing the figure on board while the monitor was 
passing the workbooks back to the students.) Those who have got your 
workbooks, please take a look at where you got wrong. Where (have you got) 
wrong? In general, mistakes were found in Problem No. 2. Do you know 
what you got wrong? Some students after drawing the perpendiculars  
(she drew them on the blackboard, pause a while), and then said, because, 
AB = CD, OE = OF. This so statement, is it right or wrong?  

      S:  (A boy first and more students joined him.) Wrong. 

     In introducing the problem, the teacher brought students to the same 
page through her drawing on the blackboard, helped them to recall from 
memory of their thinking in doing those tasks the night before, engaged 
them with questions to initiate their responses, and then she evaluated the 
responses before moving on. Brief as it was, she communicated clearly 
to students how well they learned and what they missed or ignored.   
     Developing explanations. This essential step involved interactions 
between the teacher and her students to come up with the explanations 
even though the responses given by students are often brief and obvious 
since they could recall how they completed the homework tasks. 
Continuing with her introducing the problem on November 15, 2002 as 
mentioned earlier, she engaged her students in developing explanations 
for the error involved:      

1 
2 

I T:   Some classmates wrote their proof in this way: the first 
sentence, because ∠C=∠ABC=15 °… 

3 R S:   (A few students) Wrong. (More students joined in noisily.) 
4 I T: This first sentence, is it right or not? (With emphatic tone) 
5 R S: (More students) No, not right. 
6 I T: Why not?  
7 
8 

R S: (Noisily) You can’t immediately say it (it’s not immediately 
known)… 

9 E/I T: C=ABC, what’s its reason?  
10 R S: (A few students) AB=AC. 
11 
12 
13 

Ev/Ex T: AB=AC. Then angle C equals angle ABC. Right? 
Included in this step there is a logical deductive segment 
(syllogism). Right? There is a syllogism (segment) like this. 

14  S: (A student repeating the teacher) A logical deductive 
segment. 

16 
17 
18 

I/ 
Ev/ 
Ex 

T: Then how can you start by stating that the two angles are 
equal? This is not a given condition, is it? They are 
deducted from AB=AC. So we should say… 
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19 R S: (Trying to answer at the same time) Because AB=AC… 

20 

21 

22 

23 

24 

25 

26 

27 

28 

Summarize 

& 

generalize 

T:  (Picking up) So we should say: (because) AB=AC, 

∠∠∠∠C=∠∠∠∠ABC; and (because) ∠∠∠∠C =15°°°°, (then) ∴ 

∠∠∠∠C=∠∠∠∠ABC=15°°°°. Is it like this?  So our class all tends to err 

at such small links…  With a small problem like this in the 

first sentence, the entire proof you write is not valid. But in 

practicing the theorems like these (pointing at the board), 

our classmates did generally well. So we really need to pay 

attention to the small details in writing our proofs. Please 

correct your errors after lunch.   

 Transition to new 

lesson 

 [Then, next, we proceed to our new lesson. Like the two 

theorems, (slower and softer to engage students) what kind 

of relationship exists between their statements and 

conclusions?] 

This brief segment of explanation (Line 1-22) has a clear pattern of 

IRE (teacher initiation-student response-teacher evaluation). Even 

though student responses are very brief, such as Line 3, a one-word 

response while Line 5, a three-word response to a yes-or-no question, 

each time, the teacher made use of students’ responses for her to 

continue initiation or evaluation. For instance, in Line 4 of the quick IR 

exchange from Line 1-11, when she heard only a proportion of them 

answered (Line 3) she questioned with a more emphatic tone about 

whether they thought the step was wrong until more students answered 

“No” (Line 5). In Line 7, when students answered why, “You cannot 

immediately say it…,” the teacher followed with “∠C=∠ABC” echoing 

the “it” in students’ response and initiated with another question (Line 8). 

When students responded why in Line 10, “AB=AC”, the teacher 

confirmed their answer by repeating it in Line 11.  

     This brief and quick exchange illustrates a co-construction by the 

teacher and her students, which was made possible by capitalizing on 

students’ fresh memory and recall from doing their own homework the 

night before. The teacher held the key but instead of just telling students 

what went wrong and how to correct it, her goal was obviously to engage 

students in an interaction by questioning and probing on the errors step 

by step and sentence by sentence to get them to recall from their solution 

steps and push them to think over again. Therefore, the explaining would 

not have been accomplished by the teacher alone—she needed the 
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students’ involvement, their being there attentively with refreshed 

memory of how they performed the homework tasks explained. As 

discussed later, the explaining was made possible by her thinking during 

hours of marking student homework. 

     Summarize and generalize to conclude. In developing the 

explanations, Tr. Wang would often lead her students to open up 

different ways of viewing an error or multiple dimensions of the errors, 

such as in the segment presented above. She would often share different 

ways an error was made – “some students did this…, other students 

wrote that …, and still others ….” As written earlier (Fang, 2010), she 

achieved this capacity through long hours of marking homework, a 

process in which she found she was always analyzing student thinking, 

tutoring individual students coming to her grade-level office and 

conversing with her ‘desk-mate’ math colleague who was often marking 

student work from his classes (Fang, 2010). 

     Most of her explanations did not end there; instead, in the way she 

introduced the problem context and the error, she would close up by 

summarizing the key ideas (such as she did from Line 20-22 above) and 

highlighting the important role that the error would play for determining 

a successful proof writing (Line 23-24 above). She would always end by 

reminding students to make corrections and ask them to show her their 

corrections which required their understanding to make and it was this 

understanding that her error explaining aimed to achieve.  This final step 

of explaining is found at the end of all her explaining to geometric proof 

assignments, which could give students a sense of structure required in a 

proof writing and model for them to achieve such structure and 

completion.  

3.2 Mapping out the Activity Structure 

Figure 1 summarizes the activity structure of the actions and the goals 

guiding them. This diagram uncovers a clear set of goals that direct Tr. 

Wang’s explicit pedagogical actions she would usually take in explaining 

homework as a form of feedback. It is quite visible that these goal-

directed actions move towards building connections between the old  
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Figure 1. Activity structure and pedagogical actions in Teacher Wang’s explaining 

homework 

 

content and the new, between problem contexts and errors, between 

different forms and representations of errors and misunderstandings  

to get students to understand the key mathematical concepts and 

procedures behind such errors and misunderstandings. These routine 

actions that the teacher and her students performed together regularly 

“allow relatively low-level activities to be carried out efficiently” 

through a discourse of repeated IRF/IRE structure, “without diverting 

significant mental resources from the more general substantive activities 

or goals of teaching” (Leinhardt & Greeno, 1991, p. 235), which is to 

 

Review prior knowledge 

Introduce problem 

context and the error 

Develop explanations through 

interactions with students 

Summarize and 

generalize 

Explaining Homework Errors 

 

Goals: Bring students onto 

the same page. Actions: 

read problem context and 

requirements; present the 
error; and use 

blackboard… 

Goals: Bridge old and new 

and scaffold explanation 

Actions: call on and initiate 

students’ responses and 

evaluate them; sketch and 
write on board 

Goals: Enrich and find 

different interpretations 

Actions: Initiate and 

evaluate student (teacher’s 

own) responses to expand 

alternative explanations 

 
Goals: Close up and 

elevate the horizon  

Actions: sum up key ideas 

and generalize the 

importance in content and 

learning 
 



 Pedagogical and Curriculum Potentials of Homework 197 

 

establish, little by little, the habit of deductive thinking. Through these 

clearly structured actions over time, the teacher modeled to her students 

how to approach a proof writing in structured ways.  

3.3  Nature and Substance of the Feedback Provided by Explaining 

Homework 

Through the above discourse analysis, the pedagogical values of 

explaining homework are clearly shown: it allowed Tr. Wang to 

communicate her feedback to students interactively and in structured 

ways within a very limited amount of time. The importance she attached 

to conveying her feedback timely before moving on with her teaching of 

the subsequent content points us naturally to the importance of such 

feedback to student learning. Analysis of the homework tasks by 

matching them with the errors explained to students has revealed the 

embedded fundamental mathematical ideas and their roles in student 

learning to do geometric proofs. These tasks were designed with strategic 

variations in order for students to commit those errors and for the teacher 

to attend to them via student homework. Such a design allows Tr. Wang 

to tap into the curriculum and pedagogical values of the errors 

systematically to promote students’ habit of deductive thinking.  

3.3.1 Locating the Errors in the Curricular Sequence  

The learning of new topics or concepts depends on the mastery of 

previously learned ones (Ausubel, 1963). As Converse Propositions and 

Theorems is the last section in the Unit on Geometric Proof, it builds on 

teaching of the previous concepts, such as construction of figures, 

definition of lines and shapes, adding of auxiliaries and procedures of 

proof writing, which can all be found in the assigned tasks chosen by Tr. 

Wang to explain in Table 1 below. The curriculum also prepares for this 

section by transitioning from the converse relation of the two corollaries  
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of the right triangle theorem taught on November 14, 2002. As the errors 

unfold, one can notice the intricate relationships between the errors and 

these previous knowledge and skills. As the teacher explained the errors, 

she assisted students in brushing up and reinforcing the understanding of 

the previous concepts and building connection to extend the current 

learning. Table 1 has located the errors identified by Tr. Wang in the 

homework that she assigned and explained in this section. 

     Tr. Wang selected the errors to explain to all students either based on 

their being typical or difficult or both. Her beliefs about what needed to 

be emphasized in student learning were both determined by availability 

of teaching time and whether the error(s) represented typical student 

learning difficulty or important points that the curriculum stipulated. As 

she shared, “Because of time, I cannot explain all the problematic ones; I 

choose the most typical ones, the ones not necessarily just typical or 

difficult; they are the ones I believe that need to be emphasized again” 

(interview, 11-19-02).  

3.3.2 Trivial at First Sight but Fundamental to Deductive Reasoning  

At a first glance, the selected errors given in Table 1 do not bear directly 

upon the learning of the newly taught theorems or concepts: for instance, 

Error 1 is not directly related to the corollaries of the right triangle 

theorems taught on the day when the homework was assigned or Error 5, 

not immediately related to angle bisector theorem and its converse. 

Instead, they appeared to be trivial. For example, Error 1 does not have 

to do with the context of the assignment, applying the theorem in an 

isosceles triangle: students wrote in the first sentence of the proof that the 

base angles are equal instead of the isosceles sides are equal. Error 5 has 

to do with the auxiliary distances (see the two dotted segments in the 

figure, OE and OF) that students drew from the center of the circle, O, to 

the chords (AB and CD) but failed to use the auxiliaries to indicate 

perpendicularity as distances. 
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Table 1.  Locating the explained errors and the design features of these homework 

assignments in the section, Converse Proposition and Theorems 

Date/Topic of

assignments  

Exercise and problems chosen 

to explain   

Error chosen to 

explain 

Assignments with 

variations 

Friday,  

Nov. 15,  

2002 

Two 

theorems   

(Nov. 13)  

and two 

corollaries  

of right 

triangles* 

(Nov. 14) 

 

Ex. 1-4, Vol. 

A/p.35-36:  

Ex. 2. An isosceles triangle with 

a base angle equal to 15°. To 

prove: the altitude on one side is 

half of the side.  

(Students are to do the drawing) 

[Vol. A/p. 35. Ex 22.4 (8) 2.]  

Error 1 

 

Ex. 2. Opening the 

proof writing by 

citing the congruent 

base angles: ∠ C=

∠ ABC=15°  

 

Apply the theorems* 

in Rt ∆created by 

altitudes in other 

shapes: altitude on the 

hypotenuse of a Rt

; on the side and the 

base of an isosceles 

; and a Rt 

trapezoid  with aof 

60- degree angle – 

need an auxiliary 

altitude to make a Rt 

.  

Tuesday, 

Nov. 19, 2002 

 

Perpendicular 

bisector 

theorem 

 

Both classes: 

Ex. 1, 2 & 3 

in Vol. A (p. 

37). Extra for 

Class 4: Ex. 

2, 3 & 4, 

Textbook  

(p. 79) 

 

Ex.1. Say how to find a point of 

equidistance to the three 

residential sites shown in the 

drawing.  

                        

 

                               

 

(The drawing is the completed 

version of the construction) 

[Vol. A/p. 37, Ex. 22.5 (2) 1.] 

Error 2 

Ex.1.  (1) Two 

perpendicular 

bisectors (PB) 

suffice but many 

drew a third one for 

AC; (2) Failure to 

write  complete 

construction 

methods and 

conclusion in 

standard language. 

One construction, 

one filling blanks 

(calculate lengths of 

sides and degrees of 

angles), and 4 proof 

writing.  

Apply PB theorem 

and its converse in 

different types of 

exercises:  

construction--find a 

point of 

equidistance to a 

given segment or 

points; calculate  

angles and 

proportion of sides 

in given right ;  

and proof writing. 

Ex. 2. The given: See drawing, in 

ABC∆ , 90ACB∠ = ° ,  

∠ 1= ∠ B. Prove: D is on the 

perpendicular bisector of AC.  

                                   

                              

   

                                                                                                                             

A                                                                                

 [Vol. A/p. 37, Ex. 22.5 (2) 3.] 

Error 3 

Ex.2 Drawing an 

unnecessary 

auxiliary, the PB of 

AC and used it as 

median with D not 

given as midpoint. 

Creates the givens 

and mixing up what 

is the given with 

what is to prove. 

 

 

 

 

∆

∆

∆

∆

A 

D 

O 

B 
C 

A 

 C 

B 

D 

B C 
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Table 1.  (Continued) 
Tuesday, 
Nov. 19, 
2002 
 
(Continued) 
 

Ex. 3. The given: See drawing, 

90C   , the perpendicular 
bisector of AC intersects with AC 
and AB at point M and N, and 

AM=2CM. To prove: 30A    
                                     

             
 
 

                                         

 
 
 
[Textbook/p. 79. Ex. 22.5 (2): 4] 

Error 4 
Ex. 3. A few 
students failed to 
use the concept of 
PB to draw the 
auxiliary by  
connecting M and 
B. 
 
 
 
 

In proof writing, 
apply the theorem 
in a quadrilateral 
with perpendicular 
diagonals and in 
triangles:  
Given relationships 
between sides or 
angles to prove that 
a point is on a PB; 
or given the PB and 
sides, to get the 
degree of an angel. 

Wed. Nov. 
20, 2002  
 
Angle 
bisector 
 
For both 
classes:  
Ex. 1, 2, & 3, 
Vol. B (p. 
42). 
Extra for 
Class 4:  
Ex. 1, 2 &3, 
Textbook (p. 
81-82) 
 

Ex. 2.** The given: See the drawing, 

Circle O intersects MPN to get 
AB=CD. To prove: PO is bisector  

of MPN . [Vol. B/p. 42. Ex. 22.5 
(3) 2.] 

 
           
                                   
                                                
                                  D 
         
 
 
In this exercise, 3 errors were 
identified and explained. 

Error 5 
Ex. 2  1) Drew 
distances from O 
to AB and CD 
but failed to write 
construction in 
accurate 
language; 
2) Failed to 
indicate them as  
perpendiculars 
and use them as 
sufficient 
conditions to 
justify the two 
equal distances; 
3) Failed to use 
the concept of 
distance as 
perpendicularity 
to justify  O  on 
the bisector of 
angle MPN. 

Apply the angle 
bisector theorem 
and its converse to 
find the distances 
from a point to two 
intersecting rays 
and to sides of an 
angle. Find the 
distances from the 
intersecting point 
of a vertex of a 
triangle intersected 
in an angle to the 
sides of the angle. 
Prove that  center 
of a circle 
intersecting an 
angle is on the 
angle’s bisector: 
given either the 
intersected arcs are 
equal or  the 
intersected chords 
are equal.  

 

 

 

 

 

 

P 

A 
B 

C 
D 

E 

F 

O 

M 

N 

B 

C 

A N 
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Table 1.  (Continued) 

Wed. Nov. 

20, 2002  

 

(Continued) 

 

Ex. 1. As in the figure below, 

AB//CD, AP and CP respectively 

bisect ∠ BAC and ∠ DCA. If the 

altitude of ∆PAC, PE=8cm, then the 

distances from AB and CD are 

respectively ___________. 

 

                                      

            

                            

             

                                  
 

 

(Take advantage of a shared side to 

allow substitution of equal 

distances.) 

 

Note the day’s two errors are 

arranged in the order that was 

explained. 

Error 6 

The exercise 

requires filling in 

the lengths of 

two distances. A 

number of 

students only 

filled in one. 

They were 

misled by being 

given only one 

blank. They did 

not pay attention 

to the word, 

“respectively”.  

Two parallel 

lines 

intersected by 

a third line 

forming two 

angles. Find 

the distance 

from the 

intersecting 

point of the 

angle’s 

bisector to the 

two parallel 

lines. 

* Theorem: In a right triangle, the median on the hypotenuse is half of the hypotenuse. 

Corollary 1: In a right triangle, if an acute angle is 30 degrees, the right side it faces is 

half of the hypotenuse. Corollary 2: In a right triangle, if a right side is half of the 

hypotenuse, the angle it faces is 30 degrees. 

** The Teaching Reference Material gives a rationale for choosing to represent the 

content in the concept of set versus locus (to be taught in the second semester of 8th 

grade) and compares their similarities. Note that Schoenfeld (1991)’s chapter in Informal 

reasoning and education edited by Voss, Perkins, and Segal used this similar 

construction on some college students and Fawcett’s (1938) use of it on high school 

students. The later was both based on the concept of locus. They used it to let students 

construct by drawing on the theorems while this exercise was used in Shanghai’s 8th 

grade as a situation to practice the theorem of an angle bisector.  

 

Careful reading of the explanations that Tr. Wang gave to her 

students on these errors, however, reveals important but fundamental 

mathematics behind them that the students are unfamiliar with. Both 

Error 1 and Error 5 have important implications for student learning of 

 

P 

B A 

D C 

E 
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the nature of the deductive system:  the need to understand that the 

axiomatic proof is established on the basis of definitions or some “rock 

bottom self-evident facts upon which the whole structure is to rest” 

(Davis & Hersh, 1981, p. 149). As she questioned her students, “What’s 

the reason for C= ABC (the two base angles)?” She wanted to let 

her students understand that the two equal base angles are derived from 

the two equal sides that define an isosceles triangle and “there is a logical 

syllogism in this step” that cannot be missed. Included in Error 5 are two 

key requirements for learning to write a good and rigorous proof: to 

justify a statement with sufficient evidence and to put the conditions and 

steps in logical sequence. The mathematics entailed in the errors and the 

explanations given by the teacher and research related to student learning 

of related topics are summarized in Table 2, which illustrates that these 

seemingly trivial errors entail important mathematics and considerations 

about student learning of the mathematics involved. 

     The rest of the selected errors are also emblematic of other different 

dimensions of a geometric proof, such as the need for deduction in doing 

construction (Error 2), the ability to see where an auxiliary is needed and 

how to draw them (Error 4, 5 & 6), use of geometric language in both 

construction and proof (Error 2, 4 & 5) and use of language in 

mathematics (Error 6). These errors also represent issues related to 

student learning of geometric proofs widely identified and documented 

in important research on mathematic education. In the study done by 

Fuys and colleagues (1988), for example
 
, students, like those of Tr. 

Wang’s who are at the transition from van Hiele Level 2 to Level 3, 

typically do not recognize the need for definitions in a proof.  Schoenfeld 

(1991, p. 149)
 
found that college and high school students do not see that 

constructions and proofs are connected when they are given a 

construction before a proof.  

3.3.3 Homework Assignments Designed with Variations  

The last column on the right in Table 1 indicates the design features of 

the homework assignments selected by Tr. Wang to explain to her 

students. They are designed to consolidate and extend teaching and 

learning by changing a problem in multiple forms to increase the  

 

∠ ∠
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Table 2.  Mathematics and student learning entailed in the errors in the proof writing 

Types of 

error/date  

Mathematics entailed   

 

Role of the error in student 

learning  

Nature of 

axiomatic 

system: 

Error 1  (11-

15-02); Error 5 

(11-20-02) 

 “There is a logical reasoning 

segment (syllogism) in this step 

(that you cannot miss).” 

Deductive and axiomatic system 

starts with a definition or axiom; 

justification based on sufficient 

conditions. 

Students transitioning from van 

Hiele Level 2-3, “…do not grasp 

the meaning of deduction in an 

axiomatic sense, e.g., do not see the 

need for definitions and basic 

assumptions” (Fuys et al., 1988). 

Deductive 

reasoning is 

needed in a 

construction 

problem: 

Error 2 (11-

19-02); Error 3 

& 4 (11-19-

02) 

Ex. 1 “Do we need to draw a 

third perpendicular bisector?” 

Deductive reasoning is needed to 

justify that it is sufficient to 

connect two segments (instead 

of three) and draw their 

perpendicular bisectors 

intersecting at one point. 

Procedures of construction; 

language of construction; and 

writing of the procedures in 

clear construction language. 

“…students do not often see the 

connection between construction 

and proof problem when a 

construction problem is given 

before a proof.” 

(Schoenfeld, 1991:319) 

“Have we found the point?” “Many 

students drew 3 PBs. Is it 

Necessary?” questioned Tr. Wang 

repeatedly. 

“… Does this exercise need an 

auxiliary?” Wang questioned 

students. 

How to decide 

where and 

what auxiliary 

is needed:  

Error 3 & 4 

 

Ex.2  

“When is an auxiliary 

needed?”—use of counter 

examples; 

knowledge and skills to find 

auxiliary lines to assist finding a 

proof; writing the construction in 

geometric language. 

Ex. 2 & 3. “(F)ind the lines is part 

of finding a proof, and this may be 

no easy matter” (Davis  & Hersh, 

1981, p.150). According to the 

Teaching Reference Material, 

knowing when and how to tell if an 

auxiliary is necessary is both an 

important and difficult point. 

Logical 

sequence in 

proof writing: 

Error 5 (11-

20-02); Error 1 

(11-15-02) 

“Distance has to be used twice 

in constructing this proof” 

 

The rigor of deductive proof 

demands justification of a 

statement with sufficient 

conditions and put them in a 

logical sequence. 

The place of a concept in the 

axiomatic chain or the “chains of 

deductive proof” (Brumfiel, 

1973:102): how it becomes part of 

the deductive chain and how it is 

used to extend the chain. (Farrell, 

1987:239). Some, after drawing the 

perpendiculars, wrote, because 

AB=CD, (so) OE=OF (E on AB 

and F on CD). “Is this because 

statement right or wrong?” asked 

Tr. Wang. 

Understanding 

of language 

 Error 6 

“Respectively”  

Language use in assisting 

understanding of mathematics  
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pedagogical value. This is similar to the design of one problem (or 

concept) with multiple changes in format (Cai, 1995). For instance, the 

assignments for Nov. 15, 2002 aim to practice the two theorems of right 

triangles and their converses by using the concept (approach) of an 

altitude (perpendicularity) located in different geometric shapes: a right 

triangle, isosceles triangle and a trapezoid. Assignments for Nov. 19, 

2002 apply the perpendicular bisector in different triangles and the 

relationships of their sides.  Those for Nov. 20, 2002 are designed to 

apply the angle bisector theorem and its converse in the context of angles 

formed by two rays, intersected by circles or in between two parallel 

lines. The design also used different types of exercises, such as 

construction, filling blanks and proof writing. It goes as what Zhang, Li, 

and Tang (2004) put it, “The focal point of variation is the procedure or 

form in which problems are proposed. It is carefully designed such that 

only the non-fundamental elements of knowledge and skills are changed 

in a variety of ways. By comparing and differentiating, students struggle 

to identify invariant properties: the essence of mathematics ideas and 

procedures” (pp. 196-197). In this case, the fundamentals of deductive 

reasoning and proof writing are discerned and understood. 

     What is noticeable, however, as mentioned earlier, although the 

designed changes provide difficulty for students, what they got wrong 

was not typically with the newly taught concepts or topics that they 

needed to practice through these changes. In certain ways the design of 

variations surfaced errors and problems of learning in proof writing 

(beyond simply applying the theorems), such as use of conditions or 

evidence to support a claim, ways of expression, so that the teacher take 

the advantage to hone them again through homework to achieve real 

understanding. The goal of learning geometric proofs is to be able to 

write proofs with the required deductive reasoning habit not simply 

applying the theorems. In this way, the writing mechanism got practiced 

in different problem settings for students to see that the rules and norms 

remain the same even though the problems situations vary. Such 

application can also help avoid a sense of repetition and repeated drilling 

in practice.  
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4. Discussion and Conclusion 

Tr. Wang’s case allows us to rethink about homework’s role in teaching 
and learning, particularly as a vehicle for providing feedback not only for 
learning but, more importantly, for the purpose of informing teaching. 
The case makes us reconsider too what constitutes feedback and how it 
works. A case of teaching geometric proofs, a topic requiring special 
attention to the process of the working, provides an ideal example to 
shed light on the curriculum and pedagogical values that the Chinese 
traditions of teaching assign to homework and how homework, in turn, 
designed and used with variation, mediates teaching and learning by 
capitalizing on these values to promote teaching and learning. To 
understand the process, a broadened view of teaching is needed. 
     First of all, when homework mediates teaching and learning in 
substantive ways, it weaves a coherent pedagogy with numerous 
connection building. One connection is between feedback provision and 
instruction. According to Hattie and Timperley (2007), “when feedback 
is combined with effective instruction in classrooms, it can be very 
powerful in enhancing learning” (p. 104). But they were unable to show 
what this combination looks like with their review on a large number of 
quantitative studies. In fact, explaining homework is both a powerful 
way of providing feedback and a brief but structured instructional 
segment to review and transition to new content. For feedback provision, 
it helps students recall, reconceptualize and redo for timely correction 
and building a habit of deductive thinking; for instruction, it was 
conducted through dynamic interaction with students addressing directly 
errors and faulty solutions to reinforce understanding and procedural 
knowledge. Tr. Wang’s “analysis” and reasoning during long hours of 
marking homework allowed her to grapple with “the routes to 
understanding that student had experienced” by “getting inside the head 
of the learner” (Beveridge & Rimmershaw, 1991, p. 289). Her 
explanations of the problems of learning identified from homework was 
elaborate, multi-faceted and highly structured, targeted at the central 
objects of learning. For the teacher herself, homework mediates her 
pedagogical reasoning and action process to create comprehension of the  
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subject matter content from student learning perspectives, assessing their 

misconceptions in different representations and engaging her in the 

evidence-informed decision making and timely corrective measures. 

Through Tr. Wang, we can visualize a teacher being engaged in 

Shulman’s (1987) model of pedagogical reasoning and action overtime, a 

process concretized by homework mediation, enabling a connected and 

thorough understanding of the fundamental mathematics of teaching that 

Ma (1999) found many mathematics teachers in China may possess.   

     Second, explaining homework to convey her feedback to students 

connects classroom learning and learning outside classroom weaving 

them together into a coherent and consolidated learning experience for 

students. As part of the routine 45-minute classroom instruction and 

given the brevity of time, a pattern of IRE/F questioning, choral 

responses followed by teacher evaluation or summary enabled the 

teacher to share or ‘co-construct’ feedback and reach most of the 

students in a large class of 58 students in ways that drew their 

participation. This kind of “clear and consistent event structure” 

“allow(s) participants to attend to content rather than procedures” 

(Cazden, 1988, p. 47). With students’ being able to recollect their 

solution or proof writing process they did the night before in doing their 

homework, such engagement was made possible to a great extent by the 

boundary role of the homework activity. Leading a review and also a 

formal lesson by numerous questioning and student choral responses was 

a cultural approach of mathematics teaching well documented by Gu and 

his colleagues (1999) in their observation of middle school mathematics 

classroom practices in Shanghai. While this approach appeared to highly 

engage students to follow the teacher’s orchestrating, the researchers are 

also concerned that, with the teacher acting as the leader of the scene 

most of the time, it hinders students from more active participation. 

     Third, as mentioned earlier, the tradition of design with variations has 

created the space for students to struggle and discern the essential 

properties of a concept by applying it in diverse and carefully designed  
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contexts in homework tasks and for teachers to identify the issues of 

learning in marking homework and explain them to students in a next 

lesson.  Design and teach with variation has a lot to do with a curriculum 

and pedagogical discourse found in the curriculum materials and 

teachers’ daily work in Shanghai structured by analysis of the important, 

difficult and hinge points of teaching and learning: “the important 

points” refer to the fundamental but crucial parts in the knowledge 

system that teaching aims to help students learn; “the difficult points” 

are based on what pupils have trouble learning but vary with pupils 

and schools; and “the hinge points” are specific and key pieces of 

understanding, strategies or solution methods adopted to help pupils 

overcome the difficulty in learning the important points (Paine, Fang, & 

Wilson, 2003, p. 51).  Students practice with variation to master the 

important points, in the process of which the difficult points are surfaced 

and overcome through teacher feedback and student correction. 

Therefore, the important points are not necessarily the most difficult to 

understand but are central and fundamental. Difficult points are not 

necessarily the most important and they include procedures and forming 

the desired habits of mind. Such design traditions and institutional 

arrangement of teaching create instructional resources and tool-mediated 

interactions that connect students and teachers and teaching and learning 

to create multi-layered resources (Cohen, Raudenbush, & Ball, 2003). 

     Fourth, to understand teaching as a system, studying teaching through 

classroom observation alone would only capture the visible part of the 

enacted curriculum during the interactive phase of teaching. The pre-

active and post-active of teaching as spelt out by Jackson (1990) have to 

be carefully observed too by shadowing a teacher’s work inside and 

outside the classroom in order to build a holistic view of mathematics 

teaching in China (Fang & Gopinathan, 2009). What happens in the 

backstage of teaching, in teachers’ offices (different settings from teacher 

staffrooms in the Western schools) are dynamic interactions between 

colleagues and between teachers and students involving a lot of informal 

conversations around homework issues and tutoring of individual 

students on their homework issues (Fang, 2010). The mediating role of  
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homework as a pedagogical resource cannot be underestimated in a 

mathematics teacher’s work in China. Teachers’ homework practice 

mediates their pedagogical reasoning and action to build comprehension 

of student learning and different representations of student 

misconceptions, deepen their mathematics teaching knowledge through 

analyzing, discussing and addressing such misconceptions through 

marking, talking, tutoring and classroom explaining. 

     Finally, as reported earlier, the ways with which such homework 

practice capitalizes on errors through marking, tutoring, explaining and 

talking with colleagues speak to the importance that the culture of 

Chinese mathematics education attaches to student errors in both 

teaching and learning. Yet, in the current educational reform in Chinese 

classrooms, even though Tr. Wang’s homework feedback was well 

tailored to students’ needs and offered on a timely and systematic basis, 

some scholars would argue that it was given as if students were led to the 

water to drink rather than they were let to look for and drink the water on 

their own. What would it be like if the homework activity system 

involved the students taking into their own hands the responsibility to 

spot, analyze, correct, and learn from errors? How would homework’s 

mediating role change in the curriculum and pedagogical reform? 
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Chapter 7 

Teaching Calculation of Time Intervals:  

Comparing Mathematics Competence of Students 

in Macau, Hong Kong and the Netherlands 

LI Titus Siu Pang  

 

An investigation is reported of the ability of 106 students in their final 

year of primary schooling in the Netherlands, 358 in Hong Kong and 

389 in Macau to execute a subtraction problem involving using time 

units in 24-hour clock format. The test item was derived from a test 

used in PISA 2003 to gauge students’ mathematics proficiency. 

Teachers were asked about the level of difficulty in the time item and to 

suggest errors that students might make in reaching an answer. Even 

though the Dutch children outperformed the Macau and Hong Kong 

children, common errors and misconceptions were being made across 

all three locations. Many Macau and Hong Kong students used the 

decimal rather than the 60 unit hour arrangement to answer the 

question. Interviews and lesson observations revealed how time 

interval calculations are taught in each location. Less than one-third of 

the Macau and Hong Kong teachers anticipated that students might use 

the decimal system, teachers in both locations very regularly drilling 

students in the mechanics of working out time intervals, while teachers 

in Dutch habitually use the ‘time-line’ to help students calculate  

time intervals. The implications for practice are explored and 

recommendations are offered. 

 

Keywords: primary mathematics, comparative education, teaching of 

time intervals, mathematics teaching in Macau 

1. Introduction 

Regardless of the geographical location, mathematics has for years been 

the focus of searching educational research. Mathematics educators, 
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curriculum researchers and planners are constantly looking at how to 

facilitate students’ learning of the subject and how to teach it more 

effectively. There is also a common belief that ethnic Chinese students 

are particularly good at mathematics, particularly since students from 

mainland China, Hong Kong, Taiwan, Singapore and Macau have 

performed excellently in recent years in large scale international 

mathematics studies, for example in the Second International 

Mathematics Study (SIMS), the Trends of International Mathematics and 

Science Study (TIMSS) conducted by the International Association for 

Evaluation of Educational Achievement (IEA), and the Programme for 

International Student Assessment (PISA) administrated by the 

Organisation for Economic Cooperation and Development (OECD) 

(Beaton, et al., 1996; Mullis, et al., 1997, 2000a, 2000b, 2000c, 2008, 

2012; OECD, 2001, 2004, 2007, 2009, 2010; Robitaille & Garden, 1989). 

However, Fan and Zhu (2004) caution that, even though ethnic Chinese 

students are good at mathematics, there are “blind spots” in their grasp of 

some concepts and mental operations. Hence, the study reported in this 

chapter is an element of the author’s doctoral study. It focuses on the test 

item of time intervals calculation as it was the most serious “blind spot” 

of ethnic Chinese students being identified in PISA 2003 and the pilot 

study conducted in 2007 (OECD, 2009; Li & Westerman, 2008). 

2. The Need to Adopt a Holistic Approach When Examining the 

Teaching and Learning of Time Interval Calculations 

TIMSS and PISA looked at why children in some parts of the world 

seem to be more proficient learners of mathematics than children in other 

parts of the world, and identified concepts that children in particular 

locations find especially hard to understand. For instance, when PISA 

experts conducted a study (OECD, 2009) of patterns of students’ 

mathematics performance in order to identify strengths and weaknesses 

in their reasoning in PISA test domains, analysis of students’ proficiency 

on a Level 5 question based on the 24-hour clock system revealed that 

less than 40% of Macau 15-year-olds could produce the correct answer. 

These students’ proficiency on the time-interval question was in the 

bottom 7 of the 41 participating countries and economies, and was lower 
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than that of students in European countries and in neighboring Hong 

Kong. 

As a person closely involved in mathematics education in Macau and 

Hong Kong in different roles for several decades, the author was curious 

to learn why Macau students are so poor at calculating time interval 

subtraction problems and how this topic is taught in Macau. This led him 

to research this and other aspects of mathematics attainment in primary 

schools in the East and West as part of his doctoral study (Li, in press).  

The international comparative study conducted by the author examined 

similarities and differences in primary school mathematics teaching and 

learning in part via a test covering major domains of the primary 

mathematics curriculum. It looked in particular at the mathematical 

ability of final year primary students from the Netherlands, Hong Kong 

and Macau, a key aim of the study being to investigate whether final year 

primary students of ethnic Chinese origin outperform European students 

in mathematics. It also sought evidence about whether ethnic Chinese 

and European primary students share similar misconceptions when trying 

to solve mathematics problems and whether these are linked to the way 

mathematics has been taught. 

The effectiveness of students’ learning is related to the effectiveness 

of teachers’ teaching. It is a common belief among educationists that 

professionally trained and experienced mathematics teachers will have 

more professional knowledge about mathematics than will have 

generalist trained colleagues, be able to teach students to learn 

mathematics more swiftly and to help them grasp mathematical concepts 

more securely. An important aim of this study was to investigate whether 

teachers from the East have more professional mathematical knowledge 

than teachers from the West. If this is the case, it may partly explain why 

ethnic Chinese students so regularly outperform Western students in 

PISA, TIMSS and other international studies. 

TIMSS and PISA organisers are adamant that simply being aware of 

the theoretical framework underpinning the mathematics testing they 

carry out is insufficient for helping teachers improve their performance. 

TIMSS and PISA researchers used questionnaire data from students, 

schools and parents to obtain a more complete picture of what makes a 

successful mathematics curriculum. From a comparative education 
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perspective, is it the case that students will reach their academic potential 

anywhere in any part of the world given sound teaching, or is it the case 

that the quality of environmental and pedagogic input and provision is 

the key to success? Education involves interpersonal and intrapersonal 

issues: the teacher who teaches and the student who learns. Teaching and 

learning are interlinked and students’ performance mirrors how teachers 

operate in the classroom. The present study looked at how students learn 

time interval calculations; how they have been taught the mechanics of 

the operational procedures; and how well they have really understood the 

rationale for the procedural steps involved. 

3.  Mathematics Teaching in Macau Schools in the 21st Century 

Unlike Hong Kong and China, there have been few, in-depth scholarly 

studies of mathematics teaching in Macau. To help explain why such 

Asian countries as Hong Kong, Japan and Singapore performed so well 

in TIMSS 1995 and TIMSS 1999, Clarke studied mathematics teaching 

in a number of Western and Asian countries, including Hong Kong, and 

Huang (2002) investigated how mathematic lessons are taught in Chinese 

secondary schools. Huang identified several distinct features of how 

Chinese teachers teach mathematics in secondary classrooms (Huang, 

2002, 2006; Huang & Leung, 2004). In a later study of Macau secondary 

schools, Huang and Wong (2007) found that Macau secondary teachers 

share many common points of belief and procedural practices with 

teachers from Shanghai and Hong Kong. However, they talked much 

more; gave fewer opportunities for students to explore content 

independently; and gave less scope for students to discover mathematics 

principles for themselves. Sadly, Huang’s studies did not extend to 

primary school classrooms. 

The Macau Government is presently initiating various projects to 

improve the standard of mathematics teaching in primary and secondary 

classrooms. For instance, aware that the small-scale “Mathematics 

Educators Supporting Schools Project” run by Beijing Normal University 

from 2000 to 2004 had limited impact, the Education and Youth Affairs 

Bureau (DSEJ) introduced in 2008 the “Mainland Excellent Teachers in 

Macau Exchange Scheme”. Every year, distinguished Mainland teachers 
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in Chinese Language, mathematics and preschool education have been 

sent to work in Macau schools, their mission being to coach local 

teachers in the teaching of mathematics and Chinese (Sou, 2009). In 

addition, the DSEJ has launched two journals especially for Macau 

teachers: the “Teacher Magazine” and the “Collaboration of Mainland 

Excellent Teachers in Macau Exchange Scheme”. One aim is to attract 

and invite mathematics teachers and teacher-coaches to write papers 

about ways by which teachers can help primary students learn 

mathematics more effectively. Several articles have been produced about 

how to teach key topics in mathematics, how to plan lessons and how to 

teach so that all in the class learn effectively (Chen, 2011; Chen & Lung, 

2010; Ching & Poon, 2010; Ng & Ching, 2011; Wu & Chen, 2011). 

Although these publications identify strengths and weaknesses in how 

Macau primary mathematics teachers were delivering topics on the 

mathematics curriculum prior to the Mainland intervention, they do not 

comprehensively report how primary mathematics is being taught today 

in the diverse range of Macau primary classrooms. Evaluations of the 

successfulness of the range of the above interventions have been based 

on subjective and descriptive observations of classroom teaching, records 

of students’ learning successes and the identification of mathematics 

failings in need of attention.  Success has been measured in terms of 

whether students are able to perform a range of mathematical procedures, 

not by how well they understand the rationale of these procedures, for 

example working out the area of triangles and calculating profit and loss. 

They give no clues about whether students are confident in their handling 

of time calculation problems, nor do they offer explanations for why 

many Macau secondary students have performed so miserably on certain 

topics in PISA cycles in the past. 

4.   Major Factors Being Examined in this Study 

4.1 Misconceptions and Students’ Mathematics Learning 

The first issue addressed in the study was to identify common mistakes 

and misconceptions made by primary students when calculating time 
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intervals. From a psychological perspective, Piaget’s stage theory of 

cognitive development has demonstrated that young children bring with 

them to mathematics lessons concepts that are at odds with many of 

those universally held by adults (Piaget, 1961).  For example, their 

ability to understand conservation concepts is swayed by the appearance 

of features in situations. If two rods of identical length are presented so 

that one sticks out further than the other, then it will be judged to be 

“longer” than the other. Students do not come to the classroom as “blank 

slates” but with concepts that, for the time being at least, explain the 

world around them. Their grasp of these concepts often conflicts with 

mathematical concepts accepted by their teachers, such “misconceptions” 

impeding students’ constructions of knowledge and trapping them into 

producing “errors” when completing tasks set by the teacher (Smith et 

al., 1993). Unless learners have a concrete grasp of principles and 

concepts, they will resort to learning routines that result in the “right” 

answer, with no questioning of the rationale of the algorithms employed. 

Ryan and Williams (2007) divide misconceptions into four 

categories: “modelling”, “prototyping”, “over-generalizing” and 

“process-object” linking. Modeling refers to how mathematics is 

connected with the “real”, everyday world. Prototyping refers to 

mistakes resulting from a culturally “typical example” of a concept, such 

thinking often being intuitive. Overgeneralization results from personal, 

incomplete insights of a concept taught at a younger age. For instance, 

misconceptions about “taking the smaller digit from the larger” in 

subtraction sums, the belief that “multiplication always makes bigger” 

and “division always makes smaller” are well documented (Vergnaud, 

1979, 1983; Bell et al., 1984; Graeber & Baker, 1988; Graeber & 

Campell, 1993). Process-object conceptions occur when children are 

very young and in an early stage of learning mathematics (Gray & Tall, 

1994). For instance, young children may cope with a 3 + 5 = ? question, 

but if faced by the question “? – 128 = 200”, may give 72 as the answer.  

Misconceptions often arise as a consequence of students’ earlier 

learning, either in the classroom or from their interactions with their 

physical and social world (Smith et al., 1993). In elementary 

mathematics, misconceptions frequently originate in prior instruction as 

students incorrectly generalize earlier learning to solve new problems 



 Teaching of Time Intervals in the Netherlands, Hong Kong and Macau 217 

(Nesher, 1987; Resnick et al., 1989). Misconceptions are commonly 

found in students’ responses in various areas of the mathematics 

syllabus, are often widespread and similar in nature and may be resistant 

to change. They continue to surface even after corrections have been 

made, so much so that Clement (1982) proposes that misconceptions 

often “happily co-exist” alongside correct approaches.  

Misconceptions are best corrected if the teacher actually understands 

why they have occurred and whether they have their roots in faulty 

teaching, teaching that is too complex for the learner or if the learner 

lacks the intelligence and subject grounding to appreciate the nature of 

the misconceptions (Ryan & Williams, 2007). To overcome and remove 

misconceptions, teachers will usually confront students with the disparity 

between their misconceptions and the correct procedures or answers. In 

fact, misconceptions are commonly embedded in many learners’ grasp of 

basic arithmetic operations, and the elimination of errors in mathematics 

through repeated drill and practice should not be taken to signal that 

teachers have dealt positively with the mathematical misconceptions 

possessed by their students. In fact, it is not unusual for students to learn 

algorithms for arriving at correct answers without ever having really 

comprehended the rationale of the procedures used. 

4.2 Teachers’ Knowledge of Students’ Strengths and Weaknesses 

The second issue of this study is whether Chinese origins teachers have 

more professional knowledge in mathematics teaching compared to 

teachers in the Western. An interesting phenomenon is that mathematical 

geniuses with a deep understanding of mathematics do not always make 

good mathematics teachers. Nevertheless, it is widely accepted that good 

mathematics teachers will benefit from having a clear understanding of 

mathematics, a willingness to keep up-to-date with methodological 

advances and the possession of insights into difficulties learners face in 

grasping concepts (Grossman et al., 1989; Ma, 1999; Silverman & 

Thompson, 2008). Research has shown that teacher inexperience, limited 

mathematics knowledge, unclear explanations of procedures, lowly 

expectations and inability to see where students have gone wrong 

contribute to errors in students’ mathematical performance (Begle, 1972, 
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1979; Monk, 1994). Interestingly, Romberg and Carpenter (1986) argue 

that many studies of the relationship between teacher knowledge and 

student attainment share a common drawback: they look at global 

measures of teacher knowledge rather than at the instructional skill of 

teachers in the classroom, and at global performance rather than at the 

ability to apply specific algorithms and procedures with understanding.  

In most countries a rich knowledge of mathematics is a criterion for 

being a good mathematics teacher, and the ways that teachers behave 

inside the classroom is a most important factor influencing teaching and 

learning (Pietilä, 2003). In order to identify what teachers need to know 

(besides knowledge of their school subject) to make teaching and 

learning successful, Shulman (1986a) argues that knowledge of subject 

content alone is insufficient to support teachers’ efforts to teach for 

understanding, and he coined the term “pedagogical content knowledge” 

(PCK). PCK refers to “ways of presenting a subject which make it 

comprehensible to others … [it] also includes an understanding of what 

makes the learning of specific topics easy or difficult; and the 

conceptions and preconceptions that students of different ages and 

backgrounds bring with them. If these preconceptions are 

misconceptions, which they often are, teachers need knowledge of the 

strategies most likely to be fruitful in reorganizing the understanding of 

learners” (Shulman, 1986b, p.9). Shulman (1987) later claimed that 

subject matter knowledge (SMK) (including mathematics knowledge), 

pedagogical content knowledge (PCK) and curriculum knowledge (CK) 

are closely related. SMK is more than knowledge of facts or concepts: it 

requires knowledge both of the substantive structure (organizing 

principles and explanatory frameworks) and the syntactic structure 

(nature of enquiry in the discipline, and how new knowledge is 

introduced and accepted). In order to be an effective teacher, a teacher 

needs to transform SMK and CK into PCK as this “conceptualises the 

link between knowing something for oneself and being able to enable 

others to know it” (Huckstep, Rowland,  & Thwaites, 2002, p. 1). 

Shulman’s PCK theory has been applied to mathematics teaching by 

a number of mathematics educators. Some Chinese mathematics 

educators claim that PCK is composed of three components: the form of 

knowledge of content, knowledge of the curriculum, and knowledge of 
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teaching (An et al., 2004).  Muir (2007) suggests that PCK also involves 

observable instructional acts such as interacting effectively with students 

through questions and probes, answers and reactions, praise and 

criticism. In short, PCK is the combination of content knowledge, 

knowledge of students’ thinking and knowledge of mathematics and 

pedagogy (Silverman & Thompson, 2008). A successful mathematics 

teacher needs to have knowledge of content, knowledge of the 

curriculum, knowledge of teaching and knowledge of students’ thinking.  

Shulman’s PCK has been accepted and developed by many 

mathematics educators. For instance, Hill, Ball and Schilling (2008) 

introduced a framework to modify the theory of PCK (see Figure 1).  

 
Figure 1. Domain map of mathematical knowledge for teaching (Hill et al., 2008) 

Hill et al. argue that mathematical knowledge for teaching (MKT) 

refers to the entire body of knowledge that a mathematics teacher needs 

to master for successful teaching in the classroom. MKT is made up of 

subject matter knowledge (SMK) and pedagogical content knowledge 

(PCK). SMK is made up of three elements: common content knowledge 

(CCK), specialized content knowledge (SCK) and knowledge at the 
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mathematical horizon. CCK is equivalent to Shulman’s idea of subject 

matter knowledge which includes the knowledge used in the work of 

teaching in ways in common with how it is used in other professions or 

occupations that also use mathematics. Specialized content knowledge 

(SCK) refers to the mathematical knowledge that enables teachers to 

engage in particular tasks, such as representing mathematical ideas 

accurately, providing mathematical explanations for common rules and 

procedures, and examining and understanding unusual solution methods 

to problems. PCK is also made up of three elements: knowledge of 

content and students (KCS), knowledge of content and teaching (KCT), 

and knowledge of the curriculum. KCS is a subset for both PCK and 

MKT and it focuses on teachers’ understanding of how students learn 

particular content. The separation of KCS from KCT and knowledge of 

curriculum emphasizes that teachers need to know how students learn, as 

well as knowledge of the subject itself and the curriculum. 

Through introducing KCS, Hill et al. (2008) suggest that teachers 

need to be familiar with common errors that students make when 

developing proficiency in areas of mathematics, and in procedures 

associated with tasks. They also need good knowledge of how to 

diagnose students’ errors, students’ understanding of content, 

developmental sequences in students’ mastery of subject matter and 

common computational strategies that students need to acquire. In other 

words, teachers need to possess the knowledge and skills to identify and 

provide explanations of errors, to have insights into which errors arise, in 

which content areas they surface and why. Teachers also need 

appropriate knowledge to make correct interpretations of students’ 

answers and solutions to mathematical problems, and to be able to judge 

which solutions indicate sophisticated thinking and which reflect 

immature and faulty mathematical thinking. In order to do all of this, 

teachers need to have rich knowledge of categories of mathematical 

problems and topics, and mathematical activities that are easy or very 

difficult for children at particular ages and stages. They need to know 

what students are expected to be able to do, and to be aware of the 

demands that will be made in the next phase of learning up the school. 



 Teaching of Time Intervals in the Netherlands, Hong Kong and Macau 221 

5. The Rationale for the Comparative Study 

Based on the argument above that teaching and learning are interrelated, 

the present study of the teaching of aspects of time intervals in primary 

schools was informed by evidence from three sources. A specially 

constructed test was administered; a teacher questionnaire seeking their 

views on how time and other mathematical concepts are learned and 

should be taught was distributed; and observations of lessons were 

carried out and discussions held with teachers. As a key intention of the 

author was to find out how well Macau primary teachers teach the topic 

of time and the calculation of time intervals, there was a need for some 

means of highlighting the effectiveness of the mathematics teaching in 

Macau and to set this against the outcomes of approaches used by 

teachers elsewhere. Hence a comparative study was conducted of 

students in Macau and in neighbouring Hong Kong in the East, and in the 

Netherlands in the West. 

A major consideration for choosing Hong Kong, Macau and Dutch 

students as subjects was based on the philosophy of fair comparison 

(Postlethwaite & Leung, 2007). For instance, the PISA 2006 

mathematics mean scores gained by 15-year-old students in the three 

locations, Hong Kong 547, the Netherlands 531, and Macau 525, were 

quite close and they were all in the top ten of all participating countries, 

an indication that the mathematics education standards in the three 

educational jurisdictions were very similar (OECD, 2007).  

Another determining consideration was a fundamental principle of 

comparative education: the familiarity of the researcher to avoid 

attaching disproportionate significance to chance or surface comparisons 

(Bray et al., 2007). The author was brought up and educated in Hong 

Kong where he taught mathematics in secondary and primary schools for 

over 10 years. He also served in a Macau university for 8 years preparing 

pre-service and in-service primary mathematics teachers. Even though he 

presently works in Macau, he is still a Standing Committee member of 

the Hong Kong Primary School Mathematics Competition. He has also 

acted as a consultant for a Chinese school and a Chinese Women’s 

Centre in Amsterdam since 1985 following a comparative education field 

trip. When helping with homework tutorial classes during visits to 
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Amsterdam, he saw at first hand that Chinese Dutch students are quite 

smart at mathematics. Hence, he feels confident about conducting a 

comparative study in mathematics teaching and learning in the 

Netherlands, Hong Kong and Macau in the hope of identifying issues and 

contrasts in the teaching of time concepts in these three locations. 

In the light of the above discussion, the following research questions 

guided the execution of the study:  

a) To what extent do primary school students in Macau, Hong Kong 

and the Netherlands differ in terms of their global mathematics 

performance and in how they respond to a question exploring their 

grasp of procedures for subtracting time in a 24-hour clock system? 

b) What errors are Grade 6
1
 primary school students prone to make in 

executing a 24-hour clock time interval subtraction problem?  

c) To what extent are teachers in the three locations able to predict the 

difficulty level of a 24-hour clock time interval question set for 

students? 

d) To what extent are teachers in the three locations able to anticipate 

likely errors that students might make in executing a time interval 

calculation problem? 

6.   Design of the Study 

6.1 The Mathematics Test 

A mathematics test made up of 12 questions was constructed, the choice 

of items being based upon public assessment test scripts of the type 

regularly encountered in the three locations. All of the items were given 

to students in their own mother tongues. One question was particularly 

designed to measure the ability of final year primary students to calculate 

a period of time taken to complete a journey on the basis of 24-hour 

clock information. The test item is a common area of study in the three 

regions, particularly the procedure for carrying out four rules of number 

calculations when the base unit is 60 minutes. 

                                                 
1 The final year of primary education in the Dutch education system is Grade 8 while it is 

Grade 6 for both Hong Kong and Macau schools. 
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6.2 Student Subjects 

Schools with differing religious/governing bodies were invited to join the 

study, proportionate to the incidence of these schools in the systems in 

the three regions. To narrow the diversity of learning ability, most of the 

Dutch students were caucasians while the Hong Kong and Macau 

students were locally born Chinese or Mainland China immigrants. The 

Dutch cohort of students also included a group of children of Chinese 

extraction, and the Macau and Hong Kong cohorts included a number of 

students in “elite” streams. Unlike the situation in the author’s doctoral 

study, a group of students from normal classes in Hong Kong and Macau 

schools were invited in order to strengthen the validity of any 

comparisons. In the event, there were 6 classes in 5 schools in the 

Netherlands; 10 classes from 6 schools in Hong Kong; and 8 classes 

from 8 schools from Macau. In total, 853 final year primary school 

students took the test: 106 from the Netherlands, 358 from Hong Kong 

and 389 from Macau (see Table 1). The imbalance of subjects from the 

three locations to an extent reflects differences in “normal” class sizes in 

primary schools in each place. Whereas most classes in primary schools 

in the Netherlands are of mixed ability, some division of classes into 

“normal” and “elite” occurs in Hong Kong and Macau. As mentioned 

above, out of interest, a small group of ethnic Chinese students was 

focused on in classes in the Netherlands (see Table 1). 

Table 1. Distribution of students taking the test in the three locations 

 Netherlands Hong Kong Macau Total 

Elite Class -- 186 214 400 

Normal Class -- 172 175 347 

Chinese Dutch 9 -- -- 9 

Dutch 97 -- -- 97 

Total 106 358 389 853 

6.3 Conduct of the Test 

Testing was conducted in the Netherlands in 2008 by the author and a 

Dutch university lecturer in the presence of the class teachers of each 
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class, students being given 30 minutes to finish the test. The test in 

Macau was also conducted in 2008 in eight schools: two Catholic, two 

other Christian denomination and four other associated schools in the 

Macau peninsula. Mathematics teachers in these schools supervised the 

test with their own Primary 6 class, students being given 30 minutes to 

finish the test. The test in Hong Kong was also conducted in 2008 in six 

schools: three Roman Catholic, two other Christian and one Taoist in 

East Kowloon and in the New Territories. The test was conducted in 

exactly the same way as in Macau. 

6.4 Data Encoding and Analysis of Test Responses 

SPSS was used to analyze the data, with between-group variance 

analyses being used to examine overall performance. “Percent correct” 

figures were also used as this was a relatively simple comparison 

strategy for gauging success on each test item.  It also allowed the author 

to compare, for example, the success rates of students from high-ability 

and normal classes in the three jurisdictions. 

6.5 Teacher Questionnaire Data 

A teacher questionnaire was distributed asking teachers (a) to judge the 

level of difficulty of each of the 12 test items and (b) to suggest up to 

three common mistakes that students might commit for each item. The 

teacher questionnaire, based on the content of the test given to students, 

first gathered demographic data then looked into the relationship 

between teachers’ knowledge of students’ common misconceptions, their 

judgment of the ability of their students and predictions of success rates. 

The first task for teachers was to rate the level of difficulty of each 

question on a five-point Likert-type scale, 1 standing for very easy and 5 

standing for very difficult. The second task was to foretell any mistakes 

that might be committed by their students on each question. 

6.6 Subjects in the Teacher Survey 

The mathematics teacher of each selected class was invited to answer the 
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teacher questionnaire after students had completed the test. In addition, 

other mathematics teachers in the subjects’ schools teaching the same 

form were invited to answer the questionnaire in order to enlarge the 

sample size and obtain a more representative sample. In total, 66 primary 

mathematics teachers completed questionnaires; 6 from the 3 Dutch 

schools, 29 from the 6 Hong Kong schools and 31 from the 8 Macau 

schools. The teacher surveys were carried out in the Netherlands by the 

author and a Dutch university lecturer, translation of the responses into 

English being made by the Dutch university lecturer in preparation for 

data coding and analysis.  The teacher survey in Macau was conducted at 

the same period as the students were tested. The teacher survey in Hong 

Kong was conducted in exactly the same way as in Macau. 

6.7 Classroom Teaching Observations and Follow-Up Interviews 

After analyses of the student test answers and teacher questionnaire 

responses, the author carried out classroom teaching observations and 

interviews in the Netherlands, Hong Kong and Macau primary schools. 

The aim was to obtain an accurate and up-to-date synopsis of the 

mathematics teaching approaches used by teachers in the three locations. 

In particular, the focus was on uncovering differences in the teaching of 

time intervals in the three locations and to try to explain any major 

differences in the attainment profiles across the regions. 

7.   Results 

7.1 Students’ Performance on the Time Interval Question in the 

Attainment Test 

The question on the students’ test was as follows:  

“Lily went to Disney Park yesterday: Take off time: 8:57, 

Arrival time: 10:41. How long did it take her to go to the park?” 

Students were asked to calculate the time it took for Lily to go to the 

Disney Park, and allowed to use subtraction or any other method to 

arrive at the correct answer. They were required to write down the whole 
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calculation process in the test paper. The correct answer rates for 

students in the Netherlands, Hong Kong and Macau were 73.6%, 46.9% 

and 31.6% respectively. The performance of the small group of Dutch 

Chinese students was the best with a “correct” rate of 77.8%, while the 

group of white Dutch students came second with a correct rate of 73.2%. 

Students in the “elite” groups from Hong Kong and Macau had correct 

rates of 62.9% and 41.6%. The performance of the “normal” classes of 

Hong Kong and Macau students was the worst, with 29.7% and 19.4% 

(see Table 2). Hence the prediction that Hong Kong would outperform 

their counterparts was rejected, the Netherlands students outperforming 

national counterparts (p<0.001). The performance of the Macau students 

was the worst among students in the three locations (see Table 3). 

Table 2. Students’ performance in solving the time interval question 

REGION 

Groups 

Elite 

Class 

Normal 

Class 

Dutch 

Chinese 

Dutch 

student 

Total 

n % n % n % n % n % 

Netherlands wrong     2 22.2 26 26.8 28 26.4 

 correct     7 77.8 71 73.2 78 73.6 

 Total     9 100 97 100 106 100 

Hong Kong 

 

wrong 69 37.1 121 70.3     190 53.1 

correct 117 62.9 51 29.7     168 46.9 

 Total 186 100 172 100     358 100 

Macau wrong 125 58.4 141 80.6     266 68.4 

 correct 89 41.6 34 19.4     123 31.6 

 Total 214 100 175 100     389 100 

 
Table 3. Students’ performance in solving the time interval question 

No of subjects Correct %  df Mean Square F Sig. 

Netherlands 106 73.6** Between-Group 2 7.750 33.979 0.000 

Hong Kong 358 46.9 Within-Group 850 0.228   

Macau 389 31.6 Total 852    

If the comparison is narrowed down to elite classes with the Dutch 

students, then the correct answer rates are 73.6%, 62.9% and 41.6% for 

students of the Netherlands, Hong Kong and Macau respectively. It is 

clear that the performance gap between the Netherlands and Hong Kong 
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elite class students is large, whilst the correct rate gap is even larger 

between the Netherlands and Macau student cohorts. Statistically 

significantly, the Macau students were outperformed by their 

Netherlands and Hong Kong counterparts (p<0.001, see Table 4).  

Table 4. Bonferroni Post Hoc One-Way ANOVA of students’ performance in solving the 

time question according to region and elite class 

(I) REGION 

 

(J) REGION 

 

Mean Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Netherlands Hong Kong 0.11 0.058 0.205 -0.03 0.25 

 Macau 0.32(*) 0.057 0.000 0.18 0.46 

Hong Kong Netherlands -0.11 0.058 0.205 -0.25 0.03 

 Macau 0.21(*) 0.048 0.000 0.10 0.33 

Macau Netherlands -0.32(*) 0.057 0.000 -0.46 -0.18 

 Hong Kong -0.21(*) 0.048 0.000 -0.33 -0.10 

* The mean difference is significant at p<0.05 level. 

If the comparison focuses on normal classes of students with the Dutch 

students, then the correct answer rates are 73.2%, 29.7% and 19.4% for 

students of the Netherlands (excluding the Dutch Chinese students), 

Hong Kong and Macau respectively. Statistically significantly (p<0.001), 

both the Hong Kong and Macau normal class students were 

outperformed by their Dutch counterparts. Even though the Hong Kong 

normal class students did not outperform the Macau normal class 

students (as was the case in the elite class comparisons, see Table 5), the 

performance of the Macau normal class students was the lowest among 

all of the sub-groups. 

Table 5. Bonferroni Post Hoc One-Way ANOVA of students’ performance in solving the 

time question according to region in normal classes 

(I) REGION 

 

(J) REGION 

 

Mean Dif. 

 (I-J) 

Std. 

Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Netherlands Hong Kong 0.44(*) 0.053 0.000 0.31 0.57 

 Macau 0.54(*) 0.053 0.000 0.41 0.67 

Hong Kong Netherlands -0.44(*) 0.053 0.000 -0.57 -0.31 

 Macau 0.10 0.046 0.084 -0.01 0.21 

Macau Netherlands -0.54(*) 0.053 0.000 -0.67 -0.41 

 Hong Kong -0.10 0.046 0.084 -0.21 0.01 

* The mean difference is significant at p<0.05 level. 
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7.2 Teachers’ Responses about the Time Interval Item on the 

Questionnaire 

Among the 66 teacher questionnaires collected, 6 were not included for 

analysis as there was too much missing data. Consequently, the 

questionnaires of 6 Dutch teachers, 25 Hong Kong teachers and 29 

Macau teachers were selected for analysis. In terms of judging the 

difficulty of the time interval question, the levels of difficulty for 

teachers of the Netherlands, Hong Kong and Macau were 1.40, 2.55 and 

2.39 respectively. The Netherlands teachers made an accurate estimate 

that the time test item was an easy question for their students as the 

“correct” rate was the highest at 73.6%. It is interesting that Macau 

teachers did not consider the time question to be a difficult question for 

students in Macau, who in the event had the lowest correct rate of 31.6%. 

On the task of making predictions about students’ likely mistakes 

when trying to solve the time question, even though each teacher was 

asked to write down up to three mistakes their students might commit, 

few anticipated that students would have any problems. Only 3 Dutch 

teachers provided 3 predictions, 15 Hong Kong teachers provided 17 

predictions in all and 20 Macau teachers offered 22 predictions. The 

numbers of successful predictions of students’ mistakes were 1, 10 and 

13 for the Netherlands, Hong Kong and Macau teacher subjects 

respectively. Hence the correct prediction rate of students’ committing 

mistakes was 33.3%, 58.8% and 59.1% and the “teachers’ rate of 

successful prediction” was 16.7%, 40.0% and 44.8% for the Netherlands 

(Dutch), Hong Kong and Macau teachers respectively (see Table 6). 

With reference to the author’s anticipation that Hong Kong teachers 

would have comparatively greater awareness of students’ likely 

mistakes, the results show that Hong Kong teachers rated the time 

question as posing only a moderate level of difficulty for their students. 

In fact, the Hong Kong “teachers’ rate of successful prediction” was 

lower than that of the Macau teachers. Against the expectation of the 

author, the Macau teachers were best at predicting students’ errors in 

solving the time problem! The results tempt one to suggest that Macau 

and Hong Kong teachers had similar levels of knowledge of students’ 

common mistakes, while the Netherlands teachers had comparatively 

less knowledge of students’ likely common mistakes in dealing with the 

time interval problem. In fact, a number of probable explanations may 

clarify why Macau teacher subjects were able to achieve a higher 

prediction rate of students’ mistakes on the time interval question. For 
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Table 6. Teachers’ prediction of students’ common mistakes of the time interval question  

Type of students’ mistakes expected by the 

teachers 

Dutch 

N=6 

Hong Kong 

N=25 

Macau 

N=29 

n % n % n % 

1 used decimal system –mistakenly converting 

1 hr into 100 min rather than into 60 min 0 0.0 6 24.0 9 31.0 

2 calculation mistake 0 0.0 3 7.5 3 10.3 

3 time conversion mistake 0 0.0 0 0.0 3 10.3 

4 mistake in borrowing and place value 0 0.0 0 0.0 3 10.3 

5 one hour is 60 minutes 1 16.7 0 0.0 0 0.0 

6 mistaken 8:57 to 8:51 to get 1:40 0 0.0 1 2.5 0 0.0 

7 mistake when doing 57-41 0 0.0 1 2.5 0 0.0 

8 forgot how to convert an hour into minutes 0 0.0 0 0.0 1 3.4 

9 borrowing and adding mistake in hour and 

minute conversion 

0 0.0 1 2.5 0 0.0 

10 forget to change 1 hour into 60 minutes 0 0.0 1 2.5 0 0.0 

11 change back to hour 0 0.0 1 2.5 0 0.0 

12 forget to add 57 min 0 0.0 1 2.5 0 0.0 

13 convert one hour into 60 minutes and 

subtract directly 

0 0.0 1 2.5 0 0.0 

14 don't know how to calculate time 0 0.0 0 0.0 1 3.4 

15 don't use deduction 0 0.0 0 0.0 1 3.4 

16 used to pointing out the time directly from 

the clock 

0 0.0 0 0.0 1 3.4 

17 general error: 8 : 57 + 2 = 10 … 1 16.7 0 0.0 0 0.0 

18 errors / carelessness in counting 1 16.7 0 0.0 0 0.0 

19 mistake in calculate hours 0 0.0 1 2.5 0 0.0 

Sub-total of teachers’ guesses** 3 50.0 17 60.0 22 75.7 

Success prediction of students’ committed 

mistakes 

1 33.3 10 58.8 13 59.1 

Teachers’ rate of successful predication (n/N) 1/6 16.7 10/25 40.0 13/29 44.8 

*Does not include other mistakes not expected by the teachers;  

**Sub-total of teachers’ expected student mistakes could be more than the number of 

teachers as one teacher gave three answers. Highlighted expected mistakes were rarely 

committed by the students. 

 

instance, around 70% of the Macau students failed to give the right 

answer, while the failure rates for Hong Kong and Dutch students were 

56.1% and 26.4%. Proportionately, the correct prediction rate for the 
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Macau teachers showed that many did not correctly anticipate the failure 

rate for their students. It would seem that further research is needed to 

uncover the true strengths and weaknesses of Macau teachers on the 

issue of teaching time intervals with reference to the 24-hour clock 

system and in predicting likely errors of computation. 

8. Discussion 

8.1 Reasons Why the Macau Students Were Poor at Solving the Time 

Interval Question 

The results reveal that many Macau students were poor at solving the 

time interval question. Even though the elite class performed better than 

the normal class, the correct rate was still below 50%. It is striking that 

fewer than 1 out of 5 students in the normal class managed to solve the 

time interval question, indicating that most students in Macau have 

difficulty in solving time interval calculations, whether or not they are in 

elite or normal classes. As the students were required to present their 

calculations on the test paper, it was possible to look into the errors they 

commonly committed. It is clear that the two most commonly offered 

wrong answers by the Macau students were 2 hours and 24 minutes 

(22.9%) and 1 hour 84 minutes (16.7%). Only 0.9% and 1.9% of the 

Netherlands students committed these two errors (see Table 7). For all 

the students in the three regions, the third most common erroneous 

answer was 2 hours 16 minutes (3.6%), and the fourth most common 

mistake was 2 hours and 44 minutes (2.4%). These errors suggest that 

students in all three locations were suffering from different 

misconceptions or had some difficulty in making accurate calculations 

regarding time differences in hours and minutes. 

It is not the author’s intention here to discuss all the mistakes made 

by students.  Even though the Dutch students performed much better than 

students from Hong Kong and Macau, they had similar misconceptions 

and weaknesses, but to a smaller degree of seriousness. The most 

common mistake committed by the Dutch students was to apply a 

common misconception held by many students about subtraction: that  
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Table 7. Common mistaken answers given by students on the time interval question  

 Common mistakes 

committed by students 

Dutch 

(106) 

Hong Kong 

(358) 

Macau 

(389) 

Sub-Total 

(853) 

N % N % N % N % 

1 Not attempted 1 0.9 16 4.5 13 3.3 30 3.5 

2 1 hr 16 min 1 0.9 4 1.1 9 2.3 14 1.6 

3 1 hr 24 min 0 0.0 2 0.6 9 2.3 11 1.3 

4 1 hr 34 min 0 0.0 5 1.4 2 0.5 7 0.8 

5 1 hr 54 min 0 0.0 7 2.0 3 0.8 10 1.2 

6 1 hr 84 min 1 0.9 28 7.8 63 16.2 92 10.8 

7 2 hr 24 min 2 1.9 74 20.7 89 22.9 165 19.3 

8 2 hr 16 min 9 8.5 13 3.6 9 2.3 31 3.6 

9 2 hr 34 min/1 hr 94 min 0 0 3 0.8 9 2.3 12 1.4 

10 2 hr 44 min 2 1.9 9 2.5 8 2.1 19 2.2 

11 2 hr 84 min 0 0.0 0 0.0 3 0.8 3 0.4 

12 Other mistakes 12 11.3 29 8.1 49 12.6 90 10.6 

Sub-total 28 26.4 190 53.1 266 68.4 484 56.7 

 

one always has to take the smaller number away from the larger number. 

The most common error made by students of Macau and Hong Kong was 

a “prototyping” misconception in that the students applied the decimal 

number system when dealing with the 60-unit time system. Hence the 

most common erroneous response made by the Dutch students was 2 hr 

16 minutes, while the most common mistake made by students of Macau 

and Hong Kong was 1 hr 84 minutes (2 hr 24 min was evolved from 1 

hr84 minutes and it will be discussed later). In other words, the most 

serious mistake committed by students of Macau and Hong Kong was to 

overlook the 60 (minutes) unit system of time and to apply the decimal 

number system. In other words, the students converted 1 hour into 100 

instead of 60 minutes. In fact, many students treated the subtraction of 

time as if they were manipulating the more familiar decimal number 

system.   

10.41 －   8.57 

1.84 

Some 92 out of the 853 subjects gave 1 hr 84 min as their answer. 

Some gave 1hr 94 min when answering as they committed an additional 

mistake when “borrowing”. It is interesting to report that 165 “clever” 
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students (most from elite classes) remembered to do a unit 

transformation from minutes into hours using the 60 unit system 

correctly after the subtraction of decimal numbers. They refined 1 hr 84 

min into 2 hr 24 min, and the calculation thus became: 

1.84 hr = 1 hr+60 min+24 min = 1 hr + 1 hr +24 min = 2 hr 24 min 

Some students gave 2 hr 34 min or 2 hr 14 min as their answer due to 

mistakes in borrowing. Table 8 lists four of the most common mistakes 

that teachers need to be aware of when teaching the time interval topic. 

As well as mistakes of borrowing in subtraction, the most striking 

misconception (that of always subtracting the smaller from the larger 

number) persisted with the final year students in the primary school.  

Even though the total number of Macau students writing down 2 hr 16 

min (2.3%) or 1 hr 16 min (2.3%) was the lowest when compared to 

Hong Kong (3.6% + 1.1%) and Dutch students (8.5% + 0.9%), such 

erroneous thinking reflects the fact that many Macau students, particular 

students in “normal” classes, suffered from misconceptions when 

subtracting time intervals when hours and minutes units were involved.  

8.2 How Time Issues are Taught in Macau, Hong Kong and 

Netherlands Primary Schools 

The great regional differences in students’ performance in the calculation 

of time prompted the author to observe classroom practice and talk to 

teachers from the three locations about erroneous answers on the test 

paper. The main explanation given by teachers about why the Dutch 

students were able to solve the time problem more successfully was that 

Dutch teachers teach learners to apply quite different strategies to tackle 

time problems than do counterparts in Macau and Hong Kong. Most of 

the Macau and Hong Kong teachers considered the best way to calculate 

a period of time is direct addition or subtraction. In addition, they were 

mindful of the special method or format when subtracting time in the 

lower primary year classrooms. For instance, teachers in Macau instruct 

the students to write down “時 (hour)” at the head of the hour column 

and “分 (minute)” on the head of the minutes column. They may even 

write “秒 (second)” at the head of a column for seconds to add or 
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Table 8. Different mistakes made by students when answering the time interval question 

Type of mistake  Example of mistake Explanation of mistake 

Type I: 

Confusion of 60 

unit system of 

time with decimal 

system 

(a) The basic form 

of mistake 

 

10:41 －  8:57 

 1:84 

Not using appropriate unit quantities when 

calculating time interval and applying decimal 

quantities     

10  41 

 －   8  57 

  1  84 

(b) For higher ability 

students 

1hr 84min = 2 hr 

24min 

In trying to round up the answer, it seemed 

logical to round up 84 min to 1 hr 24 min: 

1 hr 84 min = 1 hr+60 min+24 min  

= 1  hr + 1 hr +24 min = 2 hr 24 min 

Type II: 

Combination of 

confusion of 60 unit 

system of time with 

decimal system and 

borrowing mistakes 

in subtraction. 

(a) basic mistakes 

10.41 (forgot the  －  8.57  borrowing  

1.94  process) 

First, confusion of the 60 unit system with the 

decimal unit system. Then, students committed the 

common mistake in subtraction of forgetting the 

borrowing procedure. 

(b) 1:94 = 2 hr 34 

min 

Some “clever” students remembered to round up 

the answer using the 60 unit system of time. Then 

they transformed 1:94 into1+1 x60 + 34=2hr34min 

Type III: 

Misconceptions of 

subtraction: always 

subtract smaller from 

larger number 

(a) basic mistake 

2 hr 16 min 

Misconception of always subtracting from the 

large number. 10 is larger than 8, so 10-8 = 2 

   10:41   (1－7 = 7－1＝6)  － 8:57     (4－5＝5－4＝1) 

     2:16 

(a) for “smarter” 

students 

1 hr 16 min 

There is a borrowing process for 4-5, so they 

deducted 1 from 10 into 9 to carry out the 

subtraction as 9-8 to get 1 

 10:41   (1－7 = 7－1＝6)  －   8:57   (4－5＝5－4＝1) 

1:16   (10－1－8=1) 

Type IV: 

Careless mistake 

of forgetting the 

process of 

borrowing  

2 hr 44 min Forgetting to subtract 1 from 10 to make it 9 for 

subtraction of the hour unit as the borrowing 

process was carried out on the minute unit:  

10 : 41 －    8 : 57 

2 : 44 

1 hr 54min or 1 hr 

34 min 

Forgot the subtraction of 1-7, borrowing was 

taking place for “4” and failed to reduce 4 into 3. 

During the second borrowing step from the hour 

unit, kept 4 + 6 = 10 then subtracted 5 to get 5.  

10 : 41             10 : 41 －    8 : 57    or  － 8 : 57  

1 : 54              1 : 34 
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subtract as appropriate as follows:    

hr  min  s 

10  41   0 －    8  57   0 

Using this format in the calculation of time intervals, Macau teachers 

believed that they were adequately emphasizing the distinction between 

the 60 unit system of time and the 10 unit system used with decimal 

numbers. Students are taught that they should remember the importance 

of using the 60 unit system rather than the decimal system when solving 

time problems. Quite a number of Macau teachers mentioned on their 

questionnaire that some students might be confused by the fact that the 

decimal system is not fully operating in all time calculations. 

Misconceptions about simple subtraction are not a vital focus in the 

teaching of time, so none of the Macau teachers expected that their 

students would commit such a low level mistake. In fact, inspection of 

the papers suggests that a significant number of Macau students in 

“normal” classes made unexpected errors. 

Turning to the finding that how time is taught in Dutch classrooms 

leads to superior performance among the Dutch students over the Macau 

students, the author investigated at first-hand how Dutch teachers teach 

time. He discovered that Dutch teachers teach students to solve time 

interval problems by making use of the concept of the “Time Line” to 

help them calculate time intervals. The Dutch teachers said that this 

approach is more meaningful for students and gives learners concrete, 

easy-to-understand ways to visualize time. For example, taking the 

question used in the present study, Dutch teachers would not ask students 

to calculate through direct subtraction. Rather, they would ask them to 

draw a “time line” and to calculate the time interval on a minutes and 

hours gap basis. When teaching the whole class, Dutch teachers will 

draw a time line on the blackboard or computer as this helps students to 

visualize and count up how time passes. The first step is marking down 

the starting time 8:57 at the left end of the line and the arrival time at the 

right end. The second step is putting down the 9:00 and 10:00 o’clock 

time points between the two ends of the time line. The third step is to 
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mark out the three time intervals, 3 minutes between 8:57 and 9:00,  

1 hour between 9:00 and 10:00, and 41 minutes between 10:00 and 

10:41. Finally the problem is solved by adding up the three intervals of 

time: “3 min + 1 hr + 41 min”. Hence the calculation is much easier for 

students as it is based on concrete concepts of how time passes. 

Step I: 

  8:57                                                                                         10:41  

 

Step II: 

  8:57     9:00                 10:00                                                   10:41   

 

Step III: 

  8:57     9:00                     10:00                                               10:41   

          3min                    1hour                           41min 

 

Step IV: 

3min + 1 hr + 41 min = 1hr 44min 

 

The counting of time interval periods and units in Dutch classrooms is 

very obviously linked with a real-life, everyday context. In contrast, in 

Macau and Hong Kong classrooms the time interval calculation is chiefly 

arrived at by the subtraction of numbers. This is inviting students to fall 

into the trap of using a “prototype” misconception, that of overlooking 

the 60 unit (minutes in one hour) system and using the 100 unit decimal 

system. 

9. Implications of the Study 

The study showed that the way students have been taught mathematics in 

all three locations was predominantly via mastering routines or 

algorithms. This leads students to learn how to arrive at the right answer 

but does not guarantee a clear understanding of the mathematical 

rationale for performing sequences of steps that produce a correct 

response. The message seems to be: “Learn how to produce the right 
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answer and the reason for taking the steps needed for producing the right 

answer will become apparent later!” Taught through repeated practice in 

working out common time problems, the Macau primary students 

committed a number of mistakes when faced with a problem presented in 

an unfamiliar format. Whereas many of them suffered a “prototyping” 

misconception (confusing of 60 unit and 100 unit systems), only 3 out of 

106 Dutch students fell into this trap. Clearly, students’ performance is a 

reflection of how they have been taught, not principally the way they 

understand or internally visualize algorithms. Macau teachers do teach 

the time topic and they are also very skilled in teaching basic calculations 

such as addition, subtraction, multiplication and division. On the other 

hand, there is a widespread belief among Macau mathematics teachers 

that mathematics requires both speed and accuracy. When students do 

not have to think out a problem from first principles and, instead, only 

need repeated practice in working out a tried and tested procedure to 

produce the right answer, they are assured by teachers and parents that 

insight will follow. This led students taught by such teachers in the 

present study to go straight to applying previously learned subtraction 

and addition operations to calculate time intervals.  They were not used 

to having to think up their own logical approach to solving an unfamiliar 

mathematical problems presented by the teacher.  

Although the Hong Kong students too were taught algorithms, to be 

perfected in homework and revision lessons, more students had been 

encouraged to think out a solution by themselves. Parents will pressurize 

schools to teach all procedures in the class textbook “to the letter” and 

will often pay for private tuition for their children. Many Hong Kong 

parents do not agree with the notion that young children should be taught 

how to think for themselves, and ask: “What is the point, when teachers 

can short-cut ‘thinking out for oneself procedures and go straight to the 

most efficient and rapid way of solving known problems?”  

In the Netherlands, where mathematics procedures are taught as tools 

for students to use to arrive at solutions to problems that they themselves 

can visualize, large amounts of repetitive drill and practice are not 

esteemed, for Dutch teachers believe in giving students strategies for 

dealing with real-life problems that arise in and out of school. However, 

Dutch teachers need to realize that some students acquire confidence and 
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self-belief when mathematical “facts” automatically spring to mind or 

are “at their finger tips”. Dutch teachers also need to improve their 

teaching in other topics as their students did not always perform well in 

the rest of the 12 question test paper compared to Macau and Hong Kong 

students. Similarly, Macau teachers should consider the value of teaching 

topics and routines that make sense to the students, rather than having 

every student in the class complete exercises that eventually may result 

in a real understanding of skills taught in school. For example, they need 

to stray from the textbook from time to time and to use time lines and 

other ways of visualizing problems to promote genuine understanding of 

mathematics concepts by children. Teachers need to remember that not 

all children learn well by using prescribed routines, and that different 

methods may be used equally validly to help some students arrive at 

solutions rather than using one method alone to teach students to get 

answers to problems.   

10. Conclusion 

A major lesson outcome of this research is that teachers can learn a lot 

from paying attention to misconceptions that occur in children’s minds, 

and to the “wrong” answers children give in class and in homework 

assignments. The answers students offer often reveal how they have not 

yet mastered conceptual problems, and they also give clues about the 

nature and roots of misconceptions. Teachers from Macau, Hong Kong 

and the Netherlands can become more professional mathematics teachers 

through looking closely at what students can do and the reasons why 

some students cannot do tasks which others in the class find easy. The 

sharing of teaching experience internationally is also one way for 

teachers around the world to expand their knowledge of pedagogy and to 

learn about how counterparts in other countries approach and tackle 

problems that they themselves find daunting. 

Summing up, the present study revealed that teachers from Macau, 

Hong Kong and the Netherlands need to improve their pedagogical 

content knowledge (PCK) and mathematical knowledge for teaching 

(MKT) in order (a) to enhance their teaching of time interval calculations 



238 S. P. T. Li  

and (b) to encourage students’ learning using easy-to-visualise time 

concepts. The teachers seemed to be concentrating on teaching students 

strategies that they themselves used, rather than looking at the problem 

from the child’s point of view. There are also improvements that should 

be kept in mind if the present study is to be replicated or extended. For 

instance, classroom observations and scrutiny of students actually 

working out problems should be conducted; the researcher should know 

the language spoken by the teachers and students; greater effort should 

be made to increase the number of subjects in some of the design cells; 

and more examples and variations of time interval questions should be 

examined and explored. 
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Chapter 8 

Teaching Number Sense via Interactive  
Multimedia in a Primary School in Taiwan 

      YANG Der-Ching  CHEN Pei-Chieh  TSAI Yi Fang  HSIEH Tien-Yu 

 

This paper describes how number sense was taught with interactive 

multimedia in a primary classroom in Taiwan and reports the 

differences of interviewed students’ use of number sense strategies 

before and after the instruction. One sixth grade class which contains 

32 students (18 boys and 14 girls) was selected to join the teaching 

experiment in a technology-based environment. The results show that 

the teaching of number sense can be implemented through the 

appropriate use of interactive multimedia into the mathematics class 

and a well-designed learning environment created by the teacher. The 

results also show that interactive multimedia can both be an effective 

tool in helping children develop number sense and promote 

children’s motivation for learning.  

 
Keywords: teaching of number sense, teaching with technology, primary 
education in Taiwan 

1. Introduction 

What is number sense? Number sense refers to a person’s general 

understanding of numbers and operations and the ability to handle daily-life 

situations that include numbers. This ability is used to develop practical, 

flexible, and efficient strategies (including mental computation or estimation) 

for handling numerical problems (McIntosh, Reys, & Reys, 1992; Reys & 

Yang, 1998; Yang, 2006; Yang & Li, 2008; Yang & Wu, 2010). 

Number sense has been considered a key topic for developing formal 

mathematical concepts and skills in the primary schools (Jordan, Glutting, & 
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Ramineni, 2010; Jordan, Kaplan, Locuniak & Ramineni, 2007; Yang, Li, & 

Lin, 2008). Having good number sense is important for higher level 

mathematical thinking and learning (Geary, Bow-Thomas , & Yao, 1992); 

however, a lack of number sense will likely result in mathematical learning 

difficulties (Gersten, Jordan, & Flojo, 2005; Mazzocco & Thompson, 2005). 

Therefore, the international mathematics education highly emphasizes the 

development of students’ number sense, and regards it as an important topic 

that should be taught in primary schools (Anghileri, 2000; Faulkner, 2009; 

Jordan, Kaplan, Oláh, & Locuniak, 2006; Yang, Reys, & Reys, 2009; Yang & 

Wu, 2010).  

However, Jordan, Hanich, and Kaplan (2003) found that students in 

primary grades had difficulties with arithmetic combinations, counting 

strategies, and number sense in their longitudinal studies. Similar results have 

been widely found in the Huaren Region due to the emphasis on written 

computation in this area without conceptual understanding (Reys, Reys, 

McIntosh, Emanuelsson, Johansson, & Yang, 1999; Reys & Yang, 1998; 

Yang et al., 2008; Yang & Li, 2008). Hence, international mathematics 

evaluations, such as TIMSS 2003, 2008 (Mullis, Martin, Gonzalez, & 

Chrostowski, 2004; Mullis, Martin, & Foy, 2008), and PISA 2006, 2009 (Lin, 

2008; Ministry of Education in Taiwan, 2003) have reported that students in 

Taiwan were ranked at the top, whereas the study of Reys and Yang (1998) has 

suggested that students who have skills in written computation do not 

necessarily possess well-developed number sense. In addition, several studies 

have further indicated that students in Taiwan preferred to use the written 

method rather than the use of number sense (Yang, 2006; Yang & Li, 2008). 

Moreover, the studies of Markovits and Sowder (1994), Menon (2004), and 

Yang (2005) showed that students tended to use standard written algorithms to 

answer questions related to number sense. This implies that over emphasis on 

memorization of mathematical principles and written computation will limit 

conceptual understanding and result in the lack of number sense (Burns, 1994, 

2007; Markovits & Sowder, 1994; Reys & Yang, 1998). This result is also 

consistent with the finding of Cai (2000) that Chinese students had better 

performance on a process-constrained task than U.S. students, but the U.S. 

students had better performance on process-open tasks than the Chinese 

students. In fact, a tight focus on written algorithms may narrow students’ use 

of flexible strategies and cause some misconceptions.  
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Due to the importance of number sense and the potential effect of focusing 

on written computation, mathematics educators internationally have 

emphasized the teaching of number sense in the hope of helping children 

develop this capacity (Anghileri, 2000; Markovits & Sowder, 1994; Menon, 

2004; Yang & Li, 2008; Yang & Tsai, 2010; Yang & Wu, 2010). Even though 

teaching number sense in primary school has been considered a key issue 

(National Council of Teachers of Mathematics [NCTM], 2000; Yang & Li, 

2008) and the Guidelines of Nine-Year Integrated Mathematics Curriculum for 

Grade 1 to 9 in Taiwan (Ministry of Education in Taiwan, 2003) values the 

importance of number sense, the mathematics textbooks in Taiwan include few 

activities which relate to number sense (Yang & Li, 2008). Moreover, most of 

the teachers at primary schools in Taiwan prefer to use traditional teaching 

methods and are accustomed to emphasizing written computation to find an 

exact answer. This results in the poor development of number sense for 

students in Taiwan (Reys & Yang, 1998; Yang, 2005; Yang et al., 2008; Yang 

& Li, 2008). It is reasonable to believe that students perform poorly on number 

sense due to the lack of opportunities to learn number sense. In this study, we 

report on ways to help children develop number sense. The research questions 

are as follows: 

1) How can number sense be taught via interactive multimedia in a primary 

classroom? 

2) What are the differences of the use on number sense methods among the 

students who being interviewed before and after instruction on number sense 

via interactive multimedia? 

2. Background 

2.1 Number Sense Framework 

What are the components of number sense? Even though different 

researchers have defined the components of number sense from different 

perspectives (Berch, 2005), several research studies and documents have 

included common number sense components, such as understanding the basic  
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meaning of numbers, recognizing number size, judging the reasonableness of a 

computational result, and so on (Markovits & Sowder, 1994; Reys et al., 1999; 

Verschaffel, Greer, & De Corte, 2007; Yang & Tsai, 2010). Having reviewed 

the literature related to number sense (Markovits & Sowder, 1994; McIntosh, 

Reys, & Reys, 1992; Reys et al., 1999; Reys & Yang, 1998; Verschaffel et al., 

2007; Yang & Tsai, 2010), we define five components of number sense for this 

study as follows: 

1. Understanding the basic meaning of numbers: This includes understanding 

of the number system, including whole numbers, fractions and decimals, 

and their relationships (McIntosh et al., 1992; Yang & Tsai, 2010).  

2. Recognizing the magnitude of numbers: This implies that an individual can 

recognize the size of numbers. For example, when comparing the fractions 

11

5  and 
15

8
, children do not need to depend on a standard written 

computation (e g., 
11

5
 = 

1511

155

×

×
 and 

15

8
 = 

1115

118

×

×
, which is taught 

in mathematics textbooks). Rather, children are able to use an efficient 

strategy, such as using a benchmark to compare the fractions (e.g., 
11

5
 < 

2

1
 and 

15

8
 > 

2

1
, so 

15

8
 > 

11

5
). 

3. Being able to use multiple representations: This implies that an individual 

can use different forms of representations, such as pictorial representations, 

symbolic representations, and others, to solve problems efficiently under 

different numerical situations (Yang & Tsai, 2010). 

4. Recognizing the relative effect of an operation on numbers: This implies 

that children can make sense of how the four basic operations affect a 

computational result (McIntosh et al., 1992). For example, when children 

are asked to decide the best estimate for 998 × 0.98, they do not need to 

rely on a written computation to find an exact answer. Rather, they should 

know the answer is about 1000 and, in fact, should be less than 1000 due to 

0.98 being slightly less than 1. 

5. Being able to judge the reasonableness of a computational result: This 

implies that children can develop and use an efficient strategy (e g., mental 

computation or estimation) to solve problems and judge the reasonableness 

of the computational result (McIntosh et al., 1992; Yang & Tsai, 2010). 
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2.2 Studies of Interactive Multimedia and Number Sense 

Due to the convenience and efficiency of technology, there is currently great 

interest in learning how to use technology, such as interactive multimedia in 

mathematics education (Aliasgari, Riahinia, & Mojdehavar, 2010; NCTM, 

2000; Shiong, Aris, Ahmad, Ali, Harun, & Tasir, 2008). For example, the study 

of Shiong et al. (2008) showed that interactive multimedia material is 

user-friendly and many students are preferred learning via interactive 

multimedia material than traditional learning method. In particular, technology 

via interactive multimedia can change teaching and learning styles, including 

fostering whole class engagement and the creation of assessments (Cooper & 

Brna, 2002; Eseryel, Guo & Law, 2012; Godwin & Sutherland, 2004; Sadik, 

2008; Yang & Tsai, 2010). Previous studies have shown that appropriate use of 

technology, including interactive multimedia, can not only promote students’ 

mathematics performance (Dick, 2007; Eseryel et al., 2012; Inamdar & 

Kulkarni, 2007; Ruthven, 2007; Shion, 2008; Vulis & Small, 2007; Zbiek, 

Heid, Blume, & Dick, 2007), but also foster positive attitudes toward 

mathematics learning (Aliasgari et al, 2010; Chan, Tsai, & Huang, 2006; 

Eseryel et al., 2012; Lan, Sung, Tan, Lin, & Chang, 2010; Lin, 2008; Olkun, 

Altun, & Smith, 2005; Yang & Tsai, 2010). In addition, interactive multimedia 

can connect and bridge the gap between the concrete and abstract mathematical 

concepts for all mathematics grade levels (Shion, 2008; Yang & Tsai, 2010; 

Zbiek et al., 2007). Therefore, it has the potential to greatly assist young 

students in better understanding mathematics and number sense (Lyublinskaya, 

2009; Su, Marinas, & Furner, 2010; Yang & Tsai, 2010). Indeed, several studies 

have found that classroom use of interactive multimedia-based practice for the 

teaching of estimation concepts can promote students’ number sense 

(Lyublinskaya, 2009; Shion, 2008; Yang & Tsai, 2010). Moreover, an effective 

problem-based estimation instruction using mobile devices can help students 

develop computational estimation skills (Lan et al., 2010). This shows that 

emerging interactive multimedia can supply teachers and students with new 

opportunities to grasp number sense through creating visual images and 

practical understanding of mathematical concepts and relationships.  

Moreover, the results of Trends in International Mathematics and Science 

Study [TIMSS] (Mullis, Martin, Foy, & Arora, 2012) show that mathematics 

self-efficacy beliefs and attitudes toward mathematics learning are quite low. 
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Under test-driven teaching situation, many mathematics educators emphasize 

that highly emphasizing on written computation without meaningful 

understanding will hinder students’ thinking and exploring. To promote 

students’ learning interest and understanding, we believed that the technology 

integrated into mathematics learning is a appropriate approach. In addition, 

cognitive load theory which reduces cognitive load focuses on considering 

instructional design and adjusting teaching strategies to enhance quality of 

teaching and learning. Hence, this study applied the Cognitive Theory of 

Multimedia Learning (Mayer, 2009) to integrate interactive multimedia into 

teaching and learning number sense. Cognitive Theory of Multimedia Learning, 

based on limited working memory and actively processing information with 

human being, proposed many design principles to improve multimedia 

teaching. The theory suggests that visual search and attention are highly 

connected. Therefore, the features of visual search and nature of attention are 

essential knowledge for interactive multimedia. 

3. Method 

3.1 Sample 

The target school was located in a suburb in which parents’ social-economic 

statuses were quite consistent. Most parents were public officials, and took 

their children’s school work very seriously. One sixth grade class of 32 

students (18 boys and 14 girls) was selected for the teaching experiment. 

These students learned number sense in a technology-based environment.  

All the 32 students took a web-based two-tier test of number sense (pretest) 

for sixth graders before the experimental instruction. Based on the pretest, the 

students’ performance was divided into three levels: high level (top 20%), 

middle level (middle 40%-60%), and low level (bottom 20%). Two students 

were randomly selected from each level for interviews. They are coded as H1, 

H2 (high level); M1, M2 (middle level), and L1, L2 (low level).  

3.2 Instruments 

Three instruments were used in this study. 
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Web-based two-tier test of number sense. This test, designed by Yang 

and Li (2007), served as pretest and posttest in the study. Two-tier test implies 

that the first tier test assesses children’s responses to number sense related 

questions and the second tier test examines children’s reasons for their related 

choice made in the first tiered-test (Yang, 2013). It included five number sense 

components (as defined above) with each component composed of 10 items. 

The test included 50 items and was divided into two subtests. Each subtest 

included 25 items and required about 40 minutes of class time. The Cronbach’s 

α coefficient of the test was .881 and its construct reliability was .987. 

Interview questions. Twenty questions were selected from the web-based 

two-tiered test. Four questions from each of the five number sense components 

were included. These questions were reviewed by researchers and two 

elementary teachers who are familiar with number sense. They all agreed that 

these questions could be used to examine the sixth graders’ number sense.      

Teaching and learning tools. 11 teaching and learning tools (T1 – T11) 

were used in the study. T1 – T9 were selected from the web-based learning 

resources http://nlvm.usu.edu, http://www.interactive-resources.co.uk/, and 

http://120.126.129.40/flashmath/. T10 (cif_01.exe) and T11 (cif_02.exe) were 

designed by authors and a computer specialist using Visual Basic computer 

programs to support the development of number sense (Yang & Tsai, 2010). 

The contents of T1 to T11 were briefly described as follows: 

T1 focuses on developing concept of equivalent fractions. The web site is as follows:  

http://nlvm.usu.edu/en/nav/frames_asid_105_g_2_t_1.html. 

T2 focuses on developing fraction concepts. The web site is as follows:   

http://www.interactive-resources.co.uk/mathspack1/equivfrac/fracdrag.html. 

T3 focuses on developing the concept of comparing fractional size with circle picture, from: 

http://nlvm.usu.edu/en/nav/frames_asid_274_g_2_t_1.html?open=activities. 

T4 focuses on developing the concept of comparing fractional size. It was selected from    

http://nlvm.usu.edu/en/nav/frames_asid_159_g_2_t_1.html. 

T5 focuses on developing concept of equivalent fractions. It was from the following web site: 

http://163.30.150.88/lii/flashMath/Games/arithmetic/等值分數_Length.swf. 

T6 focuses on developing decimal concepts. It was from the following web site: 

http://www.coolmath.com/decimals/03-decimals-expanded-notation.html. 

T7 focuses on developing decimal meanings. It was from the following web site: 

http://www.interactive-resources.co.uk/mathspack1/placeval/decimal.html. 

T8 focuses on developing the concept of comparing three different decimals. It was from:  

http://nlvm.usu.edu/en/nav/frames_asid_264_g_3_t_1.html. 
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T9 focuses on developing the concept of prime factors. It was from the following web site: 

http://nlvm.usu.edu/en/nav/frames_asid_202_g_3_t_1.html. 

T10 and T11 focus on developing fraction number sense.  

These tools were used because 1) they can be used to implement the key 

purpose of the study, i.e. these tools can be used to help children develop 

number sense; 2) These tools are very convenient for students to manipulate; 3) 

they are free to download and use for students in mathematics classes; 4) the 

researchers do not need to spend a lot of time to design new interactive tools.   

3.3 Treatment 

We designed eight technology-integrated number sense activities for the 

teaching experiment. Each activity required two class periods of teaching. The 

activities were taught for four class periods (40 minutes per period) per week 

and continued for 4 weeks. The total engaged time was 16 class periods. Table 

1 reports the instructional process for teaching the experimental class.  

 
Table 1. The teaching activities, tools, and schedule for the Experimental Class 

Schedule                          Class periods       Teaching tools used in the class 

Week 1 

Activity 1: Fraction concepts  2  T1 and T2 

Activity 2: Comparing fractional size  2   T2, T3, T10, and T11 

Week 2 

Activity 3: Residual strategy    2      T2, T10, and T11 

Activity 4: Use the benchmark    2      T1, T2, T4, T10, and T11 

Week 3 

Activity 5: Number line        2          T5 

Activity 6: Decimal concepts     2        T6, T7, and T8 

Week 4 

Activity 7: Comparing decimals    2         T9  

Activity 8: Effect of operation on number  2           T2, T10, and T11 

 

During the teaching, students were divided into 8 small groups and each 

group included 4 students with heterogeneous ability on mathematics. Students 

were encouraged to do small-group collaboration. Each group had a computer 

for students to access the materials. At the same time, the materials were also 
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projected from teachers’ computer as demonstration.  

4. Data Collection and Analysis 

Three different types of data were collected and analyzed in this study. They 

were as follows: 

Web-based two-tiered test of number sense. The test was used as a 

pretest (before teaching) and a posttest (after teaching). Data were collected 

on-line. The test included 50 items. The scoring rules were: (1) If the answer 

was correct, then 1 point was given; if the selected reason was a number 

sense-based method, then 1 more point was given; if the selected reason was a 

rule-based method, then 0.5 points were given; if the selected reason was a 

misconception, then 0.25 points were given (children probably own part of 

knowledge even though he/she has misconceptions); if the selected reason was 

a guess, then 0 points were given. (2) If the answer was incorrect, then 0 points 

were given. The maximum score was 100 for each pretest and posttest based on 

these scoring rules. 

Pre- and post-interviews. During the interviews, a number of specific 

probes were used, such as “Why did you do it that way?”, “Can you tell me 

your reasons?”, “Can you do it another way?” to help the interviewer 

investigate each student’s number sense, as well as his or her thinking processes. 

Each interview lasted about 50 minutes and was conducted in a private 

schoolroom; the interviews were video taped and later transcribed.  

The participants’ responses were reviewed and sorted based on earlier 

studies (Markovits & Sowder, 1994; Yang, 2005). To identify the different 

strategies used by participants, each response was coded (as correct or incorrect) 

according to one of the following categories:  

1. Number sense (NS)-based method: The participants’ strategies fit 

definition of number sense.  

2. Rule-based method: Participants could only use the written or formula 

method to solve a problem.  

3. Wrong explanation: Participants did not understand the concept clearly, 

explained the strategies vaguely, or guessed the answer. 

The participants’ responses were reviewed by two raters independently. 

These initial reviews produced over 90% categorization agreement of the 
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participants’ responses. The remaining differences were reexamined and 

discussed by both raters until complete categorization agreement was reached. 

Teaching artifacts. During the integration of technology into teaching, 

three different artifacts were collected and analyzed. (1) Video and audio of the 

teaching process was recorded to collect real teaching situations, the 

interactions between teacher and students, and students’ responses. After these 

data were transcribed, we took them as references for subsequent teaching and 

analysis. (2) Students were asked to write on worksheets and in mathematics 

learning diaries. By analyzing students’ worksheets and learning diaries, we 

could examine students’ learning situations and teaching problems. (3) After 

every teaching activity, researchers wrote down teaching reflections, including 

students’ responses and the appropriateness of the teaching materials.  

5. Results 

To help sixth graders develop number sense, this study embarks on integrating 

technology into number sense activities designed by the researchers. The 

interactive multimedia can easily transfer abstract concepts via pictorial 

representations which help children to understand mathematics concepts and 

engage students’ learning motivation. Here, we report the process of teaching 

with these number sense activities to help children develop number sense via 

interactive multimedia. Based on the order of teaching events and the 

chronological order of data collection, we report the process according to three 

aspects: teaching process, mathematics learning diary feedback, and teaching 

retrospectives. Through describing the process of integrating technology into 

number sense activities, we can observe how students develop their number 

sense. We begin by describing the teaching process of one of the activities. 

5.1 Teaching Process (Activity Four: Use the Benchmark) 

Teaching goals:  

1. Students can observe the existence of a benchmark. 

2. Students can use benchmarks to solve fractional size problems. 

3. Students can develop and use fractional benchmarks. 

Several relevant websites and teaching tools, such as T1, T2, T4, T10, and T11, 
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were used. For example, teacher can use the T5 (Figure 1) to help children 

make sense that 
13

6  is not greater than 
2

1 . 

 

Figure 1. T5 

 

Through manipulation of T5, students can compare the two fractions through 

pictorial representations. This will help children understand that 
1

2
 can be 

used as an efficient benchmark to compare with the other fractions. The teacher 

also encourages the children to find out what half of 13 is, and helps the 

children develop their use of benchmarks abstractly.  

5.1.1 Introducing the Tools and the Problem 

The teacher began by showing the children how to manipulate the animation 

panels, and encouraged the children to use this software, engaging their 

learning motivation. Through the teacher’s guidance and during the discussion 

with students, students could use the animation panels to get the answer. At the 

same time we could determine whether the students were interested in 

manipulating the animation panels. They were able to find out the results of 

comparisons quickly by using pictorial representations, which could enhance 

their conceptual understanding and confidence. While the students were 
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manipulating the animation panels, the teacher asked, “What did you 

discover?” to encourage them to think and share ideas. In this way, the teachers 

could transform semi-concrete representations to abstract symbolic 

representation and build students’ number sense.  

5.1.2 Launching a Worthwhile Mathematical Problem 

After the students were familiar with the manipulation of the animation 

panels, the teacher began the activity by posing the following problem: 

  T: I am going to show you several fraction cards. Please order 
8

6
,
11

12
, 

16

15
, and 1, 

without using a written method and write down your reasons. You can use the 

animation panels. 

After the teacher posed the problem, she asked if the students had any 

questions in order to make sure they understood the problem. If no questions 

were asked by the students, the teacher asked them to begin small-group 

cooperation and discussion.  

5.1.3 Small-group Cooperation and Discussion 

When each group started its discussion, the teacher asked the students to 

record their answers, strategies, and thoughts. While the groups were in 

discussion, the teacher could observe their behavior, explain unclear parts for 

them, and keep an eye on their discussion.  

  During the process of problem-solving, members of all the groups 

provided different thoughts to inspire each other. In the intense debate, 

students could find the best answer cooperatively. Below, we describe the 

discussions of some of the groups.  

The first group used figures to express the size of 
16

15 and 
8

6 . 

4S5: We can use animation panel 2 to find the answer. 

4S24: This figure is too obvious! 

4S13: You are better at drawing so you do it. (see Figure 2)  
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Figure 2. Problem-solving record of the first group 

  Students in the first group compared the fraction sizes by using animation 

panel 2. They were able to draw what they saw on the computer and use it to 

compare the fraction size. We can also see that the students were able to take 

1 as a benchmark. As for the proper fractions, they chose to use figures to 

solve the problem. 

In the third group, the students thought that according to what the teacher 

said they could not use a written method. 

4 S25:  The teacher asked us not to find a common denominator, so if we did, we are 

wrong. 

4 S7:  Our previous teacher always taught us how to find a denominator for this kind of 

problem. I think this one can be solved by the same way.   

4 S6:  The point is the teacher forbids us to find a common denominator. 

4 S25:  Actually, I know the teacher’s intention, because the answer to this one can be 

easily found without finding a common denominator.   

4 S8:  Fine, you go ahead. 

4 S25:  
11

12＞
16

15＞
8

6
, this is easy. 

4 S8:  How do you know? 

4 S25: 
11

12＞1 is the biggest; 
16

15
 and 

8

6
 are smaller then 1. 

16

15
 only plus 

16

1
 equals 

1, but 
8

6
 plus 

8

2
 equals 1, and 

16

1 ＜
8

2 . That’s why
11

12＞
16

15＞
8

6
. We can 

use the animation panel 2 and panel 3 to show the above results.  

4 S28:  I got it! 
8

2
 ＝

16

1
, 

16

1 ＜ 
16

4
 ,  this one is really easy. 

At first, students in the third group discussed whether they should find a 
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common denominator or not. Because the teacher encouraged them to work 

without using paper-and-pencil, they started to resolve the problem without 

finding a common denominator. S25 used 1 as a benchmark, stated that 
11

12＞1 

is the biggest, and used the distances between 
16

15
 and 1 as well as 

8

6
 and 1 

to judge the fraction sizes.    

The fifth group compared the fraction sizes by finding a common 

denominator. 

4S27: I can solve this problem without using common denominator. 

4S11: I think that the teacher looks down on us. 

4S27: Just use mental computation! 
11

12＞1, 
8

6
= 

28

26

×

× ＝ 
16

12
, so 

16

15＞
16

12
 = 

8

6
.  

4S12: You still found the common denominator. 

4S27: Oh – never mind, the answer is correct. 

The members in the fifth group only used the written method to find a 

common denominator. The number was not big and they had multiple relations, 

so it was easy to compare size by common denominator. Therefore, the 

teacher’ original idea to let students take 1 as a benchmark could be missed. 

According to these observations, it is important to ensure that the teachers’ 

design of the problem is carefully planned to influence the students’ thinking. If 

we change 
16

15
 and 

8

6
 to 

16

15
 and 

13

12
, students will feel the numbers are too 

big to find a common denominator, which can inspire them to seek different 

problem-solving strategies. 

5.1.4 Whole-class Discussion 

After small-group cooperation, the teacher leads the whole class to share results 

with each other and let each group present their answer and problem-solving 

strategy. We report a portion of the whole-class discussions.  



 Teaching Number Sense via Interactive Multimedia in Taiwan   257 

 

T: Which group would like to share your ideas? 

T: (Several groups would like to share their answers): Fourth group please! 

4S12: We can solve this problem without using a common denominator. 

4S26: Just use the animation panel! 
11

12
 ＞ 1, because 

11

12
 is over 1. It is easy to see  

16

15
 ＞ 

8

6
 by the animation panel. (see Figure 3). 

 

Figure 3. The fourth group used the animation panel 4 to solve problem 

T: Very good! Do you understand? 

S: Yes! 

T: Who has a different method to solve this problem? Third group please! 

S25: 
11

12＞1 is the biggest; 
16

15
and

8

6
 are smaller than 1. 

16

15
+

16

1
 = 1, 

8

6
+

8

2
 = 1. 

However, 
16

1 ＜
8

2
. Therefore, 

11

12＞
16

15＞
8

6
.  

 

The members in the fourth group used the animation panel to decide the 

answer. The pictorial representations helped them to compare fraction sizes 

easily. The students in the third group were also able to transfer concepts from 

the pictorial representation to a symbolic representation, including the use of 1 

as a benchmark and a residual strategy to solve the problem.  
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5.1.5 Posing and Discussing a Second Problem 

To check the students’ understanding, the teacher posed a different problem to 

evaluate the students’ responses: “Please write down a fraction which has to be 

smaller than 
2

1
 but very close to it. At the same time, explain why your 

fraction is smaller than 
2

1
.”  

Students in the fourth group took 
2

1
 as a benchmark using the computer 

animation panel, and they listed the fraction that was smaller than 
2

1
. 

4S15:  Everybody look at the figures A, B, C, D, and E on the webpage. Isn’t it easy?  

(see Figure 4) 

 

Figure 4. Problem-solving record of the fourth group 

T:  The answer of the fourth group is correct. It is clear that they used pictures to explain 

for everybody. What else can you discover with these figures? Who can share ideas 

with us; I will give a bonus point. (Many students raised their hands.) 

The teacher tried to help students make sense of the meaning of 
2

1
 from the 

pictorial representation to the symbolic representation and expected that they 

could build up their ability to use 
2

1
 as a benchmark.   
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T: S30, can you tell us your idea? 

S30: We discussed 
50

24＜
2

1
 because half of 50 is close to 24 (see Figure 5).  

We can see that the fourth group said half of 7 is 3.5 so they wrote down 3, 

which is 
7

3＜
2

1
. Half of 9 is 4.5, so they wrote down 4, which is 

9

4＜
2

1
. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Problem-solving record of the third group 

 

T:  Very good! Can everybody understand what S30 means? What other thoughts do you 

have, except S30? 

The teacher encouraged the students to develop different problem-solving 

strategies, and hoped they could develop another thinking method.  

S13: Teacher! We have a different solution. We take 27−13=14 of 
27

13
, so 14＞13 (see 

Figure 6). That is why 
27

13＜
2

1
. Just like 

7

3
 of the first group, and they used 7−3 = 

4, 4 ＞ 3,
7

3＜
2

1
. We are better than them because we don’t have to use division. 

T: S13, can you explain why 7−3 ＝ 4, 4 ＞ 3, 
7

3
 ＜ 

2

1
? 

S13: That is the solution I created. 
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T: Great! Do you know why you can make that decision? 

S13: It is my own idea, even if I tell everybody, you won’t understand. 

 

 

 

 

 

 

 

 

 

Figure 6. Problem-solving record of the first group 

 

The teacher encouraged the students to present their own ideas, no matter if 

they were right or wrong, because the teacher could assess students’ thinking 

by their sharing, and moreover could discover if they had any new conceptions 

or misconceptions. The teacher then summarized the discussion and 

complimented the students’ on their bravery in expressing their 

problem-solving strategies. Meanwhile, the teacher was looking forward to 

cultivating the students’ individual thinking abilities.  

5.1.6 Posing another Problem to Evaluate Students’ Understanding 

The teacher hoped that the students could use 
2

1
 as a benchmark to solve 

problems. Therefore, the teacher used another problem to test whether the 

students could apply the concept fluently. Moreover, the teacher wanted to 

strengthen the students’ number sense and detect any misunderstandings. After 

the teacher assigned the problem, each group started to discuss it with the 

expectation that they would then have to express their ideas. The teacher hoped 

the students would find the answer through critical thinking and discussion.  

T: Please compare 
7

4、
2

1、
5

2、1, without finding the common denominator. 
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We describe the discussions of the first and second groups. 

 

Second group  

T:  Who would like to share your idea? … S9. 

S9:  Using division is not convenient for us to solve this problem.  It is easy for us to 

use the difference of numerator and denominator to find the answer. 

T:  Can you be more specific? 

S9:  The difference between 
7

4
 and 1 is 

7

3
; the difference between 

2

1
 and 1 is 

2

1
; 

and the difference between
5

2
and 1 is 

5

3
. 

7

3
<

2

1
<

5

3
, so 

7

4
>

2

1
>

5

2
.  (see 

Figure 7) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. S9’s explanation 

T:  How do you know 
7

3 ＜
2

1＜
5

3
? 

S32:  Last class, we learned the concept, “When the numerators are the same, the bigger the 

denominator is, the smaller the fraction is”. 

T:  How do you know when the numerators are the same, the bigger the denominator is, 

the smaller the fraction is? 

S32:  It’s very easy to use the animation panel to show it. As you can see in the pictures, 

when the numerator is same, the bigger the denominator is, the smaller each piece is. 

Therefore, 
7

3＜
5

3
. 
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T:  Alright! Now we know 
7

3＜
5

3
, but how about 

2

1
? 

S32:  We know that 
2

1
=

6

3
, so 

7

3＜
6

3＜
5

3
. 

S9:  3 is not over a half of 7 and 3 is over a half of 5, therefore 
7

3
<

2

1
<

5

3
. 

T:  Very good! Any questions? 

 

First group 

S13:  We have a different idea. 

T:  You can share it with us.  

S13:  By judging whether the numerator is the half of denominator, we can know that 4＞
3.5, which is half of 7, so 

7

4＞
2

1
 and 2 ＜ 2.5, which is half of 5, so 

5

2＜
2

1
.  

T:  The first group explained it very clearly. Does anyone have a question? 

 

The teacher and students listened to the first group’s problem-solving strategy 

together, and the teacher encouraged other students to ask questions. Students 

in the first group were able to take half as a benchmark to compare fractional 

size, and they used the pictures in their presentation, which shows that these 

students were able to transform their thinking from a pictorial representation 

and oral representation to a symbolic representation.  

Based on the above, we can see that the students can make sense of fraction 

size by using pictorial representations via animation panels, and then efficiently 

compare fraction sizes by different approaches. Also, we see that students have 

various ways of thinking, and sometimes there are unexpected responses.  

5.2 Feedback from the Mathematics Learning Diaries 

In the learning diaries, students were able to reflect their feelings and reactions 

directly. Here we describe some results from the learning feedback students 

provided in their diaries. We can see that many students learned how to use one 

and half as benchmarks to compare fraction sizes. Of the 32 students, 31 

responded in their diaries that they knew how to use the benchmark to compare 
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fraction size. For example: 

S25:  When comparing fraction size, I do not use the common denominator all the time, I 

can use whether numerator is the half of denominator or not to compare fraction size.  

S31:  Now I know when comparing size, I can cut fractions in half. When the fraction is 0.5 

more than the half one, it is bigger and when the fraction is 0.5 less than the half one, 

it is smaller. 

All the students liked the teaching method of integrating information 

technology into the mathematics class and responded in their diaries that they 

liked using the computer in mathematics class. For example, 

S11:  Every time before math class, I will expect its [computer] coming because the way 

the teacher explains makes me understand quickly and clearly.  

S26:  Using the computer for math class is better than using a blackboard.  

S1:  It was fun today, and I hope the teacher can always use the same way [use the 

computer] to teach math.  

S30: It is really interesting because we can see the pictures and manipulate the software.  

Thus, by looking at the students’ learning diaries, we observed that many 

students learned to take half as a benchmark to compare fraction size. In 

addition, all the students liked the teaching method of integrating information 

technology because they liked to operate the program by themselves. It is clear 

that integrating information technology into number sense teaching not only 

promotes students’ number sense but increases their interest in mathematics.  

5.3 Reflections and Improvement of Teaching 

5.3.1 A Review of the Teaching Material  

Most of the students were able to accept 1 and 
2

1
 as benchmarks to compare 

fraction sizes and they were able to judge the correctness of the answer quickly. 

However, there were difficulties in the problem posed by the teacher. First, the 

denominator was not big enough, as in 
8

6
 
and 

16

15
. Second, 8 and 16 are 
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trivially related by multiplication, which allowed students to easily find the 

common denominator. Both these factors did not encourage students to use the 

benchmark. Clearly, the appropriateness of the problem is key to the 

effectiveness of teaching.  

  For those students who had a low level of mathematics performance, 

dividing an odd number by 2, such as 13÷2, 17÷2, was hard. So it was a little 

difficult for them to learn to use 
2

1
 as a benchmark. However, S13’s 

problem-solving strategy (subtracting the numerator from the denominator to 

judge the number size, such as 11－6＝5，6＞5 and then 
11

6＞
2

1
 or 

11

6
× 2＝

11

12＞1 which means 
11

6
 is bigger than half) is a different approach. Although 

this kind of strategy cannot help students detect what a benchmark is, for those 

students with poor mental computation it provides an alternate way to learn 

how to compare fraction sizes.  

5.3.2 Reflection on Teaching Skill 

Students can literally see the difference in fraction sizes by using a pictorial 

representation. However, although it may be easy for the teacher to see this, the 

connection may be vague for some students because they do not understand the 

basic concept of fractions and thus find it hard to transform a pictorial 

representation to symbolic representation and thinking. For example, S23 only 

remembered that “the bigger the denominator is, the smaller the fraction is” 

without knowing the meaning. 

  Students were very excited about using computer animation, but aside from 

the excitement, did students learn from it? Did they think more when they saw 

the result? Or was it only interesting for them to play with computer animation? 

The teacher has to ask questions to engage students’ thinking if students are to 

build up the concept of benchmarks after their experiences manipulating the 

computer animation. Therefore, the teacher can give hints and help students to 

raise their thinking ability appropriately.  
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5.4 Differences for the Interviewed Students on the Use of Number Sense 

Strategies before and after Instruction.  

Table 2 reports the interview results for the students in the three different levels 

when responding to number sense related questions. Five of the students made 

progress on correctness and use of a number sense-based method (L2 was the 

exception): 11 times to 16 times for H1, 10 times to 15 times for H2, 3 times to 

7 times for M1, 5 times to 12 times for M2, and 2 times to 6 times for L1. 

However, the use of NS-based methods did not change after the instruction for 

the L2. 

Table 2. Strategies used by students before and after instruction 

 

Strategy 

High-level Middle-level Low-level （H1） （H2） （M1） （M2） （L1） （L2） 

Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Post- 

Correct             

NS-based 11 16 10 15 3 7 5 12 2 6 3 3 

Rule-based 4 2 2 2 3 2 3 4 0 4 2 2 

Wrong 1 0 2 0 3 3 2 2 3 4 1 2 

Incorrect 4 2 6 3 11 8 10 2 15 6 14 13 

  In an effort to better understand the changes in the strategies and the thinking 

used by these students, we analyzed their responses; these responses are 

discussed below. 

5.4.1 The Changes of H1 after Instruction 

The use of NS-based methods increased from 11 times to 16 times, the use of 

rule-based method decreased from 4 times to 2 times, and the incorrect 

responses decreased from 4 times to 2 times for H1. This indicates that H1 

made progress on number sense after the instruction. For example, on question 

5-5 H1 tried to make a guess to solve the problem before the instruction: 

R: Q5-5: Without using paper and pencil, which answer of the following is greater than 1? 

(a) 
15

7 ＋
17

8
  (b) 

14

19－
11

6
  (c) 

17

16＋
16

1   (d) 
13

14－
12

1
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H1:  I guess the answer is 
15

7 ＋
17

8
. 

R:  Why?  

H1:  I don’t know the answer without using paper-and-pencil. Therefore, I guessed. 

After instruction, H1 applied 1 and 
2

1
 as benchmarks to solve problem: 

H1:  The answer is 
17

16 ＋
16

1
. 

R:  Why? 

H1:   Because 
17

16
 plus

17

1
 is equal to 1 and 

16

1
>

17

1
. Therefore, 

17

16 ＋
16

1
 > 1. 

R:  Why is the answer not 
15

7 ＋
17

8
? 

H1:  Because 
15

7
<

2

1
 and 

17

8
<

2

1
. Therefore, 

15

7 ＋
17

8
 should be less than 1. 

Thus, H1 could not use the NS-based method to solve the problem before the 

instruction. However, H1 was able to apply the NS-based method to solve the 

problem after the instruction. This implies that the technology integrated into 

the instruction had a positive effect on the number sense development of H1.  

5.4.2 The Changes of H2 after the Instruction 

The use of NS-based methods increased from 10 times to 15 times, and the 

incorrect responses decreased from 6 times to 3 times for H2. This indicates that 

H1 made progress on number sense after the instruction. For example, consider 

H2’s responses to question 2-2. H2 used guessing to solve the problem before 

the instruction: 

R: Without using paper and pencil, determine which of the following is the best 

estimate of the product of 246×0.512? 

(a) Greater than 123  (b) Less than 123  (c) Greater than 246  (d) Can’t tell 

H2: Less than 123. 

R : Why？ 

H2: Without using paper-and-pencil, I don’t know how to find the answer. Therefore, 
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I guessed. 

Before the instruction, H2 could not find the answer without using 

paper-and-pencil. Therefore, he randomly guessed the answer. However, after 

the instruction, H2 was able to apply a benchmark to reasonably decide the 

answer: 

H2: Greater than 123. 

R :  Why? 

H2:  Because 0.5 is a half, a half times 246 is equal to 123. 0.512＞0.5, therefore the product 

of 246×0.512 should be greater than 123.  

After the instruction, H2 applied 0.5 as a benchmark to solve the problem. 

This shows the improvement of H2 on the use of NS-based methods after the 

instruction. 

5.4.3 The Changes of M2 after the Instruction 

The use of NS-based methods increased from 5 times to 12 times for M1 and 

incorrect responses decreased from 12 times to 2 times after the instruction. M1 

originally used a rule-based method to solve the problem before the instruction: 

R:  Can you tell me your answer for the following question: 

Q1-2: Which of the following descriptions about decimals is correct? 

Arti:  There are more decimals between 2.1 and 2.4 than between 3.7 and 3.9. 

Bei:  The four basic operations of two decimals will also produce an answer with a decimal. 

M2:  The answer is Arti.  

R:  Why? 

M2:  Because there are two decimals between 2.1~2.4. They are 2.2 and 2.3. However, there 

is only one decimal 3.8 between 3.7 – 3.9. In addition, 0.5 + 0.5 = 1, so Bei is wrong. 

Before the instruction, M2 did not make sense of the density of decimal 

numbers, however, he could show an example to prove that the statement of 

Bei is wrong. After instruction, the response of M2 to Q 1-2 was different:  

R: Can you tell me your answer about Q1-2?  

S:  Both Arti and Bei are wrong.  

R:  Why? 
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S:  There are many decimals between 2.1 and 2.4, such as 2.11, 2.12, …. ; 2.21, 2.22….. 

There are many decimals between 3.7 and 3.9, such as 3.71, 3.72, … 3.711, 3.712,….  

This evidence shows that M2 has developed a good understanding of the 

concept of density about decimals. It is apparent that teaching has changed the 

thinking of M2 and affected his understanding of the concept of decimal.  

5.4.4 The Changes of L1 after the Instruction 

The use of NS-based methods increased from 2 times to 6 times for L1 and 

incorrect responses decreased from 15 times to 6 times after the instruction. L1 

used the rule-based method to solve problems before the instruction:   

R:  Can you tell me the answer of Q4-1: Which of the following four options produces the 

largest answer? Please answer without using paper and pencil?  

  (a) 167×0.8   (b) 167÷0.8   (c) 167+0.8   (d)167-0.8 

L1:  I need to use paper-and-pencil to find the answers. 

R:  Without using paper and pencil, can you estimate the answer? 

L1:  167+0.8. Because 0.8 is less than 1, the result of 167×0.8 should get smaller. The division 

usually makes the result smaller, so the result of 167 ÷ 0.8 should be smaller. 

Before the instruction, L1 knew that when one multiplies a number times 

another number which is less than 1, the result should be less than the original 

number. However, L1 had a misconception about division. Li believed that 

division usually makes the answer smaller. However, after the instruction, L1 

was able to make sense of the meaning of division: 

R:  Can you tell me the answer of Q 4-1? 

L1: The answer is 167÷0.8. 

R:  Why? 

L1: Because the result of 167×0.8 becomes smaller, 167+0.8＝167.8 increases a little, the 

result of 167-0.8 becomes smaller.  

R:  Why the answer is 167÷0.8? 

L1: 167 divided by 0.8 is larger than 167 a lot due to 0.8 is less than 1. 

This shows that L1 was able to make sense of the meanings of the four 

operations and the effects of operations on numbers. This implies that the 

teaching was helpful to L1.  
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6. Discussion and Conclusion 

The results we have described of integrating interactive multimedia into 

number sense teaching shows that the computer animation panels not only are 

effective tools to help children make sense of the meanings of fraction and 

decimal, but also can promote children’s use of number sense-based methods 

efficiently. This supports earlier studies and documents that technology has a 

positive effect on helping children learn mathematics (Dick, 2007; Inamdar & 

Kulkarni, 2007; NCTM, 2000; Ruthven, 2007; Vulis & Small, 2007; Zbiek et 

al., 2007). In addition, the results also show that children are interested in and 

feel comfortable using the computer animation panels to help them solve 

problems in mathematics class: “It is fun. I feel that it not only can let us 

operate animated program but also let us know other students’ thinking.” (S23); 

“It is funny and interesting. I hope we can have every math class like this.” 

(S22); and “I like the teacher using the computer rather than the blackboard.” 

(S26). This finding is consistent with earlier studies that have shown that 

technology has a positive impact on mathematics learning (Lin, 2008; Isiksal & 

Askar, 2005; Olkun, Altun, & Smith, 2005; Yang & Tsai, 2010).  

  Why was teaching number sense via interactive multimedia in this 

Taiwanese primary classroom effective? There are several reasons that 

contributed to this result. First, the teacher played several key roles in helping 

children develop number sense. As noted in the study of Yang (2006), “the 

teacher plays an important role in the creation of good learning environment, 

which encourages exploration, communication, and reasoning” (p. 109). The 

teacher in this study knew how to create a good learning environment to help 

children develop number sense. The teacher in this study knew when and how 

to appropriately integrate the technology into mathematics teaching and 

learning. She not only knew how to encourage her students to have small-group 

cooperation and whole-class discussion, but also knew how to lead her students 

to communicate and share their problem-solving ideas during whole class 

discussion. Teachers and students will have a richer teaching and learning 

environment by using technology. Through group discussion and appropriate 

guidance from the teacher, students can be encouraged to think more deeply 

about problems which will help them develop number sense ability. 

Furthermore, the teacher asked her students to write diaries after each class. 

This helped the teacher to understand the students’ learning problems and their 
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thinking about the integration of technology into the mathematics class. 

Diary-writing can be a useful tool in helping teachers to revise their teaching 

methods (Yang, 2005). Again, this finding supports the results of earlier studies 

that showed the important role that teachers play in helping children develop 

number sense (Yang, 2006; Yang, Hsu & Huang, 2004). Moreover, the teacher 

in this study also knew how to lead children to learn the transition from 

pictorial representations to symbolic representations. For example, children  

used the computer animation panels to order 
7

4
, 

2

1
, and 

5

2
 easily.  However,  

the teacher knew that it was important to lead the children to make sense of the 

relationship between the pictorial representation and the symbolic 

representation. Therefore, she encouraged her students to solve problems by 

using different approaches than the computer and the rule-based method. With 

this encouragement from the teacher, some students were able to discover the 

relationship between the numerator and denominator and apply the benchmark 

to solve problems, as in the case of S13:  

S13: By judging whether the numerator is the half of denominator, we can know that 4＞3.5, which is half of 7, so 
7

4＞
2

1
 and 2 ＜2.5, which is half of 5, so 

5

2＜
2

1
.  

Thus, the students in this study were able to make sense of the relationship 

between pictorial representations and symbolic representations, which formed a 

good basis for helping them develop number sense. This finding lends support 

to the recommendations from several earlier studies and documents that the 

flexible use of multiple representations is an important indicator of 

mathematical understanding and that flexible transfer between different 

representations can help students to develop advanced mathematical 

understanding (Brenner, Herman, Ho, & Zimmer, 1999; Dreyfus & Eisenberg, 

1996; NCTM, 2000; Yang & Huang, 2004). Indeed, representations are 

powerful tools that can enhance mathematical thinking, understanding and 

learning which is widely recognized (Fennell & Rowan, 2001; NCTM, 2000; 

Yang & Huang, 2004).  

A second factor in the effectiveness of the number sense instruction in this 

study was the use of the computer animation panels. The power of the 

animation panels lies in their ability to allow children to easily manipulate 

pictorial representations which can help them understand the mathematical 
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concepts. In particular, the pictorial representations made by the students via the 

computer not only allow them to more easily make sense of the meanings of 

fractions and decimals, but also help them to see one and half as benchmarks 

for comparing fraction sizes. Most students can accept this method. It can 

enhance students’ impressions with pictorial representations which can be used 

to judge the fraction size easily. This is consistent with the study of Olive and 

Lobato (2008), which found that technological tools which support children to 

enact their own mathematical thinking can be a very powerful instrument to 

support children’s mathematics learning, and with the assertion that technology 

provides dynamic visualization, immediate feedback, and interactivity that can 

help children learn mathematics effectively (NCTM, 2000). In the traditional 

mathematics classroom, the teacher usually teaches students knowledge 

directly from the textbook, for example asking them to memorize the formulas 

and operations. However, textbooks often focus on rules and procedures, telling 

students to find the common denominator to compare fraction size, or that 

when multiplying decimals, to locate the decimal point in the product by 

counting the multiplicand’s decimal place and the multiplier’s decimal place. A 

great deal of research has demonstrated the drawbacks of memorizing rules for 

developing students’ understanding and number sense (Cai, 2001; Yang, Hsu, 

& Huang, 2004). The integration of technology into number sense teaching in 

this study emphasizes that various animation panels from multimedia can help 

children make sense of mathematical concepts effectively. This further supports 

the findings of earlier studies that technology can provide dynamic 

visualization, immediate feedback, and interactivity that can help children learn 

mathematics effectively (Moyer, Niezgoda, & Stanley, 2005; Olive & Lobato, 

2008; Suh & Moyer- Packenham, 2007).  

  Third, the use of computer animation panels in this study supported the 

development of number sense by promoting positive student mathematics 

learning attitudes. Almost all of the students in this study liked using the 

computer and enjoyed manipulating the computer animation panels in 

mathematics class, making statements such as “Using the computer for math 

class is better than using the blackboard”, “It is really interesting because we 

can see the pictures and manipulate the software”, and “It is funny and 

interesting. I hope we can have every math class like this.” This kind of 

learning environment strongly promotes positive learning attitudes, and is very 

different from the traditional teaching method and learning environment. This 
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is consistent with the earlier studies showing that integrating technology with 

mathematics teaching and learning can result in better attitudes towards 

mathematics learning than traditional teaching without using technology 

(Isiksal & Askar, 2005; Lin, 2008; Olkun, Altun, & Smith, 2005). 

The interview results from this study show that the students tended to use 

rule-based methods, memorizing the rules to solve problems or giving incorrect 

answers before the technology was integrated into the number sense instruction. 

This echoes previous studies around the world that have found that elementary 

school children perform poorly on number sense and are weak in the use of 

number sense-based methods to solve problems (Menon, 2004; Reys et al., 

1999; Reys & Yang, 1998; Yang, 2005; Yang & Li, 2008; Yang, Li, & Lin, 

2008). However, the students interviewed for this study, with the exception of 

L2, greatly increased their use of number sense-based methods (e.g., 

understanding the basic meaning of numbers, recognizing the magnitude of 

numbers, being able to use multiple representations, recognizing the relative 

effect of an operation on numbers, and judging the reasonableness of 

computational results) and decreased the use of rule-based methods and 

inaccuracy after experiences the technology-integrated number sense 

instruction. This is consistent with earlier studies that found that integrating 

technology into the mathematics class can help children develop better 

understanding of mathematical concepts (Bennison & Goos, 2010; Dick, 2007; 

Inamdar & Kulkarni, 2007; NCTM, 2000; Ruthven, 2007; Vulis & Small, 

2007; Zbiek et al., 2007) and number sense (Yang & Tsai, 2010). In addition, 

our results also show that students’ responses after the experimental instruction 

tend to be more flexible with respect to thinking about the concepts of fraction 

and decimal and using benchmarks (e.g., 1 and 1/2) efficiently. However, one 

of the low level students (L2) did not make any progress on the use of number 

sense-based methods and inaccuracy after the instruction. This reflects the 

findings of earlier studies that some low performers in mathematics do not 

improve under instruction without the use of technology as well (Yang, Hsu, & 

Huang, 2004). The lack of progress shown by L2 is likely due to a weak 

understanding of the basic meanings of fraction and decimal. Even though L2 

can use the computer animation panels to make fractions, it is still very difficult 

for him to transfer from pictorial representations to symbolic representations. 

Students who do not have a profound understanding of basic concepts and 

meanings will almost certainly be unable to develop good number sense. L2 
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likely needs more remedial instruction and learning opportunities to build his 

understanding of mathematics. 

In conclusion, there are three major contributions of this study to 

mathematics education research worldwide. Firstly, the integration of 

interactive multimedia into mathematics classroom can effectively promote 

students’ number sense. In addition, number sense not only has been 

internationally considered to be a key topic in mathematics education (NCTM, 

2000; Verschaffel et al., 2007; Yang, 2013), but also it is a key predictor of 

students’ mathematics performance in the future learning (Jordan et al., 2007; 

Jordan et al., 2010; Yang et al., 2008). Especially, few practical studies show 

that children’s number sense can be promoted via interactive multimedia 

materials. It will encourage more studies to integrate interactive multimedia 

into the learning of number sense. Secondly, this study shows that children’s 

learning interest and motivation can be promoted via the manipulation of 

interactive materials. They can freely access the computer to discuss and share 

their ideas via the manipulation of interactive multimedia. Thirdly, this study 

shows that the interactive multimedia is a powerful tool to help teacher’s 

instruction. Especially, the teacher can demonstrate mathematical concepts via 

pictorial representations which is the most powerful tool of computer as 

compared with the traditional board cards.   

In addition, there are three elements in this work that would distinguish it 

from research done in the west. First, in Taiwan, teachers need to follow the 

competence indicators of national mathematics curriculum guideline when 

teach mathematics in the classrooms. Therefore, the goals of teaching materials 

used in this study have to follow the competence indicators of national 

mathematics curriculum guideline for six graders. Second, parents usually 

believe that enhancing their children’s ability on written computation is very 

important in Taiwan. Therefore, teacher in the study need to persuade the 

parents to agree the use of interactive multimedia materials in the class before 

the teaching experiment. Teacher need to tell children’s parents that the use of 

technology will help their children’s mathematics learning. Third, the 

web-based two-tier testing system and two of the tools (T10 and T11) were 

designed by the researchers in this study. The testing system and tools are 

designed in Chinese contexts. Therefore, they can be friendly used by students 

in Taiwan. 

Future research should include a longitudinal study, with different grade 
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levels, more students, and different teachers and researchers invited to join the 

teaching experiment. Some questions to be considered in future studies are: a) 

How can we help children develop number sense efficiently through 

technology?; b) Do students retain what they have learned regarding number 

sense 1–2 years after their experience using computer animation panels? c) Do 

students perform better on mathematics achievement or standardized tests after 

using computer animation panels to learn number sense?  
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Chapter 9 

Teaching Geometrical Theorems in Grade 8  

Using the “Shen Tou” Method: A Case Study  

in Shanghai 

DING Liping  Keith JONES ZHANG Dianzhou 

 

The teaching of geometry, especially the teaching of proof in geometry, 

is central to mathematics education in China at the lower secondary 

school level. This chapter uses a case study of how an expert 

mathematics teacher in Shanghai taught geometrical theorems to a class 

of Grade 8 students to illustrate the “Shen Tou” (“permeation”) method 

of teaching the initial stages of plane geometry. Comprising a set of 

teaching strategies, the “Shen Tou” method aims gradually to develop 

the multiple layers of reasoning skills required in geometry, especially 

the skills to use geometrical language in writing proofs. 

Keywords: teaching of geometry, “Shen Tou” method, mathematics 

classroom in Shanghai 

1. Introduction 

Proof and proving are central to geometry, just as they are central to 

mathematics. However, there are many reports of teachers finding proof 

in geometry to be a challenging subject to teach well, and of students 

having significant difficulties in learning (e.g., Arsac, Balacheff, & 

Mante, 1992; Herbst, 2002; Herbst & Brach, 2006; Knuth, 2002; 

Lampert, 1993; Schoenfeld, 1988, 1989, 1994; Senk, 1985, 1989; 

Usiskin, 1982). For instance, Lampert (1993) shows that in doing 

geometrical proof, students conceive proof as a procedure whereby they 

must fit together—like a puzzle—the pieces of knowledge they have 

about the concepts involved to generate the desired sequence of steps. 

Jones (2000) points out that students are unable to distinguish between 

different forms of mathematical reasoning, such as explanation, 
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argument, verification and proof as the curriculum emphasizes not on the 

wider reasons for and forms of proof, but on the format of the result. 

Herbst et al. (2009) shows that it is hard for students to learn to 

distinguish between what appears to be true and what they can justify as 

true based on reasons. 

There is a growing research focus on the culturally- and socially-

situated mathematics classroom, in particular on the significant role of 

teachers in developing students’ views on proofs and their capabilities in 

proving. For instance, Heinze and Reiss (2004) show that the typical 

proof process in the mathematics classroom is planned and controlled by 

the teacher (e.g., by asking short questions and giving hints). Heinze et al. 

(2008) show that two quite different instructional approaches practiced 

by teachers in different cultures (one being Taiwan, the other being 

Germany) could have different advantages and limits on learners with 

different levels of achievement on constructing a multi-step proof. 

Martin et al. (2005) point out that the teacher can draw students into the 

action of class-negotiated conjecture development and proof construction, 

and thereby provide the students with the opportunity to learn the rules of 

the ‘game’ (of formal proof development) by playing the game, rather 

than by watching others play. Jones and Herbst (2012) urge to make 

explicit the role of the teacher in teaching proof and proving in the 

mathematics classroom, especially in terms of the teacher’s part in the 

teacher-student interactions in the context of mathematics teachers’ day-

to-day instructional practice. 

In our early studies of the Shanghai (SH) classroom (Ding & Jones, 

2007, 2009), we noted how the SH expert teacher focused carefully on 

leading students to experience the systematical network of theorems in 

constructing a proof through a sequence of well-designed, though 

demanding, multi-stepped exercises. Based on our study of the SH 

teachers’ classes, we proposed a pedagogical framework (see Ding, 2008) 

to account for alternative instructions to the van Hiele-based instructional 

model of teaching in geometry (for the latter, see Geddes, Fuys, & 

Tischler, 1984). In this chapter, we focus on analyzing and interpreting 

how the SH expert teacher taught geometrical theorems to a class of 

Grade 8 students (aged 13-14 years old) from the perspective of Chinese 
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teachers’ day-to-day instructional practice. In particular, we address the 

following question:  

How does the teacher’s use of the “Shen Tou” (渗透) (“permeation”) 

method help students improve the multiple layers of reasoning skills 

required in geometry, especially the skills to use appropriate geometrical 

language in writing proofs? 

The data analysis is in the form of a case study of a sequence of 

twelve lessons given over three weeks by an expert teacher on the topic 

of the family of quadrilaterals (parallelogram, rectangle, rhombus and 

square). In the sequence of lessons, the teacher carefully employed the 

“Shen Tou” method gradually to develop the multiple layers of reasoning 

skills in geometry, especially the skills to use geometrical language in 

writing proofs. Before doing so we provide some background to the 

teaching and learning of plane geometry in China. 

2. Teaching and Learning of Plane Geometry in China  

Xu Guangqi and Matteo Ricci first introduced Euclid’s Elements into 

China in 1607. Since then, this has enabled people in the country to gain 

insight into the features of logic, rigor, and abstractness of the axiomatic 

system of western mathematics (Tian, 2001; Yang, 2000; Zhang, 2005a). 

Plane geometry, which retains the axiomatic system of the first six 

chapters of Euclid’s Elements (e.g., the concepts of point, line, plane and 

angle, triangles, the position relationship of straight lines (e.g., parallel, 

vertical), quadrilaterals, circle, similarity and the areas of various shapes, 

etc.), has long been the core of Chinese school mathematics curricula and 

textbooks (Zhang, 2006). 

  This approach to plane geometry was initially introduced to 

secondary schools in the country in 1905 through a Chinese translation 

of Japanese textbooks. These plane geometry textbooks (known as 3S 

after the three American mathematicians Schultz, Sevenoak and Schuyler 

who authored Plane and Solid Geometry in 1901) became used in 

schools from 1930 to 1950. During the 1950s, the axiomatic system of 

geometry, together with the rigor of proof, was, emphasized in school 

textbooks due to the heavy influence from the former Soviet Union. 
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After the 1950s, the amount of geometrical content in the textbooks was 

generally reduced from what was common prior to then (Zhang, 2006).  

A significant change in the amount of plane geometry was made in 

the school mathematics curriculum syllabus (SMCS) published in 1963. 

The degree of difficulty of the examples and exercises in the textbooks 

was largely reduced. The SMCS in 1963 highlights that 

“…geometry at the secondary school level is different from Euclidean geometry 

as a science. It should not and it is impossible to teach geometry in terms of the 

rigorous axiomatic system of Euclidean geometry. However, in order to help 

students more systematically to understand geometrical knowledge, and to 

cultivate their capability to prove, the rigor of logic should be stressed as much as 

students are able to appreciate.” (Zhang, 2006, p. 7)    

Up to 2001, apart from the Cultural Revolution (during the period 1966-

1976), the school geometry curriculum and textbooks remained rooted in 

the 1963 SMCS. 

In 2001, another significant change of plane geometry was made in 

the Mathematics Curriculum Standards (MCS) (Ministry of Education 

[MOE], 2001). The teaching of geometry, and, in particular, the teaching 

of geometrical proof, received reduced emphasis. The term ‘Geometry’, 

for instance, was replaced by the term ‘Space and Shape’, which chiefly 

concerned “the shapes, sizes, position relationship and transformation of 

objects in the practical world and in geometry” (MOE, 2001, p. 11). 

However, the 2001 MCS was the subject of considerable criticism from a 

range of leading mathematicians and mathematics educators, as well as 

teachers, from across the country (Zhang, 2005b). Zhao (2005, p. 219) 

summarised the criticisms: 

“The New Math Curriculum has been sharply criticized for betraying an excellent 

educational tradition, sacrificing mathematical thinking and reasoning for 

experiential learning, giving up disciplinary coherence in the name of inquiry 

learning, lowering expectations in the name of reducing students’ burden, and 

causing confusion among teachers and students”. 

Apart from the criticism from schools and from academics, the MCS 

in 2001 also drew serious concerns from the wider society in the country. 

For instance, one of the leading mathematicians in the country, Professor 

Jiang Boju of Beijing University, who at the time was also a member of 
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Chinese People’s Political Consultative Committee of the country, was 

interviewed by the Guangming Daily (one of the largest official media of 

China). Jiang gave the following opinion about the usefulness of plane 

geometry as a means of developing students’ mathematical thinking. 

“Many concepts in plane geometry may look simple, yet they must be taught 

thoroughly. … The simplest concepts are usually the most essential basics in 

mathematics. Mathematical thinking is scientific spirit. That is, in mathematics, 

the amazing outcome is usually attained by first mastering the simple concepts and 

then by establishing thinking system and finally by proving. …” (quoted in Cai, 

2005) 

Similarly, in an interview with the influential Chinese mathematician 

Shiing-Shen Chern, he expressed the view that: 

“Students should learn Euclidean (plane) geometry. … because they could then 

experience the power of reasoning even in a simple situation. … Ordinary students 

get use to do calculation, but not used to such a way of reasoning in geometry. 

However, Euclidean geometry should not be deleted just because students have 

difficulty in learning. On the contrary, it needs to be taught well in order to help 

students overcome such difficulty…” (Li, 2005, p. 2). 

In 2011 the term ‘Space and Shape, was changed again in the MCS; 

this time to ‘Shape and Geometry’ (MOE, 2011). Thus, an attempt was 

made to retain the basic axiom-theorem-deductive feature of plane 

geometry in the 2011 MCS. 

Indeed, for many mathematicians, mathematics educators and 

teachers in the country, plane geometry, taught well, is considered as an 

effective means of developing students’ capability in important 

mathematical reasoning skills. Over several decades, mathematics 

educators in China have been engaged in conducting classroom 

experimental studies for improving geometry teaching and learning (e.g., 

Gu, 1981; Qingpu County Teaching Reform Experiment, 1991; The 

Editorial Board, 1992; Yang, 1988). Such studies show that well-

designed instruction could enhance students’ learning interests and help 

them to overcome difficulties in plane geometry. In the next section, we 

discuss further some of the relevant studies by researchers who mostly 

live in the country.  

At this point it is worth noting some interesting findings of students’ 

learning performances in plane geometry in two large-scale national 
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surveys conducted before the MCS in 2001. One finding comes from the 

national survey led by East China Normal University in 1987 (Tian, 

1990). The study sample included 605 secondary schools with 49, 603 

Grade 9-10 students (students aged 14-16) from 250 counties across the 

country. It was found that students’ learning performance in geometry 

was better than that in algebra in the general mathematics test (in 

geometry, the rate of students’ correct answers was 70%, whilst in 

algebra the rate was 65%). Another finding comes from the first national 

survey in China of the quality of the compulsory education over the 

period from 1992 to 1994 (Xie & Tan, 1997). The study sample included 

201 schools with 12, 888 Grade 9 students across eleven provinces and 

cities in the country. They reported that the number of students who 

attained the full marks in geometry (in total 2, 003 students) was more 

than those in algebra (in total 1, 424 students), though the rate of 

students’ correct answers in algebra was higher than that in geometry. 

Even so, for nearly 10% of students their learning attainment was fairly 

low. In view of such findings, Zhang (2005) drew educators and 

teachers’ attention to the three reasons: 1) there was a large learning gap 

between the best and the weakest students in plane geometry; 2) plane 

geometry is more difficult than algebra for average students at the lower 

secondary school level; 3) the best students generally have good 

attainment in plane geometry. 

In addition, it is important to note the intensive examination-driven 

culture of classroom teaching and learning in China. As a matter of fact, 

even though the degree of difficulty of the examples and exercises in the 

textbooks has been reduced over the recent curriculum reforms, the 

degree of difficulty in the standard examinations has remained 

consistently high. Thus, students have to do much more difficult 

exercises than those in the textbooks to achieve well in the standard 

examinations. In Figure 1 is an example from the collection of the 

geometry test items from a lower secondary school final year city 

standard examinations in Shanghai. This test item requires a long multi-

step proof, as it is not valid directly to prove congruent triangles ABD 

and CDB according to the givens. Students are expected to prove 

congruent triangles twice (first to prove congruent triangles ABE and 

CDE and then congruent triangles ABD and CDB). 
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Figure 1. A test item on geometrical proof. In the diagram, the givens are AB = CD, angle 

A = angle C. To prove: angle ADB = angle CBD 

Source: http://wenku.baidu.com/view/4b00e273a417866fb84a8e31.html 

In the next section, we outline the “Shen Tou” teaching method at the 

initial stages of plane geometry based on the work of Yang (1988), with 

a particular focus on teaching strategies to develop the skills to use 

geometrical language in writing proofs. 

3. The “Shen Tou” Teaching Method in the Initial Stages of Plane 

Geometry  

Yang (1988) points out that the “Shen Tou” teaching method should be 

emphasized at the initial stages of plane geometry (ISofPG). For Yang, 

the “Shen Tou” method entails establishing a particular relationship 

between the teacher’s purposeful instruction and students’ gradual 

learning progress from being unfamiliar at the beginning to eventually 

acquiring some skills or rough understanding of a method in certain area 

of mathematics. In Chinese, the “Shen Tou” method is compared to the 

civil engineer work of establishing a system of drainage (Chinese saying 

“Shui Dao Qu Cheng” or 水到渠成). It is not a single effort, but the 

diligent repetition and accumulation of practices, with a well-designed 

plan in hand, that make the system of drainage work eventually.  

Some researchers have tried to distinguish the subtle difference 

between the step-by-step learning process in the Chinese classroom and 

the ‘rote drill’ learning supposed by observers from outside the country. 

For instance, Paine (1990) noted that while the Chinese teacher 

dominated the classroom talk, knowledge was transmitted progressively 

to students in a precise and elegant manner. Zhang, Li and Tang (2004) 

pointed out that a teacher’s whole-class approach in the Chinese 
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classroom is by no means a form of spoon-fed teaching. Rather, to teach 

“Two Basics” (basic knowledge and basic skills) effectively, the teacher 

commonly applies what Zhang et al. (2004) called the ‘small-step’ 

teaching approach in the classroom. That is, the teacher uses a sequence 

of questions to guide students to reach the learning objectives step-by-

step rather than leaving the students to struggle for discovery. Gu, Huang 

and Marton (2004) highlighted that Chinese teachers also apply the “Pu 

Dian” teaching approach (e.g., procedural variation) to enable students to 

gain the hierarchical system of experiences and processes in 

mathematical activities.  

Shao et al. (2013) identified a number of ancient Chinese education 

philosophies. One of them is “emphasizing the cumulative process of 

learning and the importance of basic knowledge” (p. 11). Shao et al. 

(2013) further argued that a teaching principle, called “taking a 

progressive approach” (Xun Xu Jian Jin, “循序渐进”, in Chinese), 

particularly emphasizes a learner’s foundation and progress in learning. 

Indeed, the teaching principle of “Xun Xu Jian Jin” has been widely 

practiced in almost every aspect of the Chinese mathematics classroom. 

Apart from the studies discussed above, there are other teaching practices 

that underlie the “Xun Xu Jian Jin” principle. These include, for example, 

the multiple perspectives and longitudinal coherence of profound 

understanding of fundamental mathematics (Ma, 1999), the implicit 

variation in SH teachers’ classroom practice (changes from the prototype 

of problems to their variations that have to be discerned by abstract and 

logical analysis by learners are considered as ‘implicit variation’; see 

Huang, Mok, & Leung, 2006, p. 265), the heuristic nature of teaching 

(Zheng, 2006), and the ‘indigenous’ variation practice (Sun, 2011).  

We consider that the “Shen Tou” method also underlies the “Xun Xu 

Jian Jin” principle. For the purpose of our research question of the multi-

layered skills of using geometrical language (GL) in writing proofs, we 

use Yang’s (1988) work on the “Shen Tou” method to help us to analyze 

our classroom data. In particular, we consider that the “Shen Tou” 

method enable us to gain insight into the repetition and accumulation of 

practices in the SH expert teacher’s sophisticated instruction. Here, we 

make two points clear from the book by Yang (1988). First, this book 

was based on five years of empirical study (from 1982-1987) on the 
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specific issue of plane geometry teaching at the lower secondary schools 

in the country at the time. The research group consisted of over twenty 

researchers and a considerable number of teachers from more than thirty 

local schools in Changzhou (a city in Jiangsu province). Thus, the book 

should be considered as an educational effort made by a group of leading 

Chinese educators, researchers and teachers in that region. Secondly, the 

value of the book is chiefly on its inquiry and exploration of the 

instructional rules of ISofPG on the ground; namely the research group’s 

instructional experiments and practices with teachers on students’ 

learning difficulties in the classrooms. Thus, the book has been regarded 

as an important reference by teachers, educators and researchers in China, 

though it lacks description of the research framework and methodology. 

In terms of teaching the skills of using geometrical language (GL) in 

writing proofs, Yang (1988) argued that correctly understanding and 

representing GL plays an important role in mastering concepts, 

identifying figures, and correctly and smoothly writing proofs. However, 

in classroom practice, Yang (1988) noted that students have great 

difficulty with the GL at the ISofPG. As a result, language can seem an 

obstacle for students when learning plane geometry.  

In the first place, Yang (1988) identified four factors that relate to 

students’ difficulties with GL. 

1) The change in mathematical language resulting from the shift 

of teaching/learning content from numbers to diagrams; this is the 

change from algebraic language to geometry language. Yang (1988) 

argues that in geometry it is difficult to convert word language into 

symbol language according to a model of generalization. That is, 

although word language is used to describe geometrical diagrams 

and their orientation and quantitative relationships, its use is varied 

due to the varied diagrams and different letters for which there is 

no agreed standard way of representing the same kind of 

geometrical diagrams. Consequently, some students may separate 

the two forms of language and learn geometrical concepts and 

theorems solely in a rote manner (only reciting word language and 

making no connection to symbols and diagrams). In that way they 

are unable to make the translation between the two forms of 
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language in the use of concepts and theorems which are essential 

for proving and writing proofs in geometry.  

2) When teaching the ISofPG, a large amount of geometrical 

word language is introduced and used in a concise and rigorous 

manner in the classroom. It takes time for students to learn to use 

such language in a concise and rigorous way. For instance, there 

are some frequently-used terms that students often cannot correctly 

understand such as “every two points”, “draw/take any”, “any one”, 

and “have and only have”, etc. It also takes time for students to 

learn the words that represent the orientation and quantitative 

relationship of geometrical diagrams and the sentences that show 

the action of drawing/making such diagrams. 

3) Students’ everyday natural language can lead them to make 

negative transformation in GL learning. For instance, students 

cannot fully understand the meaning of the basic property of a 

straight line that “there is one and only one straight line that 

crosses two points on a plane”. They often find that the word “and 

only one” is not necessary according to their daily language.  

4) Grade 8 students (aged 13-14 years) do not immediately adapt 

to learning deductive reasoning in geometry due to the limits of 

their language skills and grammar knowledge. Yang (1988) 

distinguishes two aspects of student difficulties. First, some Grade 

8 students cannot distinguish the essential part and the unessential 

part of a considerably long simple sentence. Thus, they can neither 

draw a correct diagram according the meaning of the sentence nor 

distinguish the “givens” and the “to prove” from the sentence; let 

alone write the proof. Secondly, Grade 8 students have not yet 

systematically acquired the grammar knowledge of how to transfer 

a simple sentence to a compound sentence. Yet, in plane geometry, 

such instances of word-to-word transformation are highly required. 

Such a lack of connection across geometric topics can bring 

difficulty to students when they are asked to transfer a proposition.    
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Based on observations of such student difficulties, Yang (1988) 

suggests a number of teaching strategies to help students to overcome 

these language difficulties. As the data we present later in this chapter 

focuses on the teaching of geometrical theorems at Grade 8, we 

concentrate on four teaching strategies for developing skills of mutual-

translation of GL that are particularly applicable; these teaching 

strategies are laid out in Table 1. 

Yang (1988) points out that the first two teaching strategies in Table 

1 are intended to focus on developing students’ translation skills from 

word language to diagram and symbol language. Such kinds of 

translation is analogue to the process of synthetic thinking (e.g., logic 

Table 1. Four teaching strategies (TS) for developing the mutual-translation of GL 

Teaching strategy Key explanation  

1. The W-S strategy: Translate the word 

language of concepts, definitions and 

proposition into the geometrical symbol 

language with diagrams  (p. 73). 

The W-S strategy is to help students 

smoothly to draw a proof diagram 

according to the proposition in words and to 

use geometrical symbols to distinguish 

between ‘the givens’ and ‘to prove’ when 

writing a proof. 

2. The R-D and O-D strategy: Read the 

word statements and then draw the 

diagrams (R-D), and draw the diagram 

by listening to the teacher’s oral 

statements (O-D) (p. 73). 

The R-D strategy is similar to that of W-S. 

Yet the O-D strategy can be much more 

flexible and more highly cognitively-

demanding for students, as they must be 

familiar with the commonly-used 

geometrical terms and be able to understand 

a number of relative concepts, together with 

considerable listening and language 

translation skills. 

3. The O-T strategy: Talk about the 

properties of the diagram according to 

the observation (O-T) (p. 74). 

The O-T strategy is to develop students’ 

skills to use word language to generalize 

the geometrical properties of diagrams.   

4. The W-F-S strategy: Based on the O-

T, to use word language correctly and 

as concisely as possible to generalize 

geometrical facts (e.g., propositions and 

theorems) according to the diagram and 

symbol language (W-F-S) (p. 74). 

The W-F-S strategy is to pave the path for 

students by a multiple-layered instructional 

procedure. 
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reasoning from the “givens” and the “to prove” in proof). The last two 

strategies are to stress the translation skills from diagram and symbol 

language to word language. It is analogue to the process of analytic 

thinking (e.g., analytic reasoning from “to prove” and the “givens”).  

4. The Case of Geometry Teaching in Teacher Lily’s Grade 8 Class 

In this section, we select and describe four teaching episodes from a 

sequence of twelve lessons (each lesson was 40 minutes long) in teacher 

Lily’s Grade 8 class (all names are pseudonyms in this chapter). By 

analyzing and interpreting these four episodes, we illustrate the features 

of the repetition and accumulation of practices in this expert teacher’s 

use of the “Shen Tou” method of teaching geometrical theorems across a 

sequence of lessons. We use “L” to code the lessons observed in Lily’s 

class. “L1” represents the first observed lesson, “L2” the second 

observed lesson, and so on. As the teacher taught a number of 

geometrical theorems during the observed lessons, “L1-T1” meant the 

first theorem observed as a whole that took place in the first observed 

lesson given by Lily, and so on. We also used four students’ voices to 

represent other students’ similar learning responses in the mathematics 

class (we call the boys Linlin and Liuliu, and the girls Beibei and 

Youyou).  

In our study, we observed the Grade 8 geometry classes at the later 

stage of the second school term (there are two school terms in each 

school year in SH). Thus, students were on the transition from 

experimental geometry to proof geometry. In SH, plane geometry has 

been divided mainly into two phases at the lower secondary mathematics 

curriculum: experimental geometry (Grades 7 and 8) and proof geometry 

(Grade 9) since the regional curriculum reform took place in the late 

1980s (SH has its own curriculum and textbooks reforms which are 

independent to the national curriculum and textbooks reforms). At Grade 

8, students acquire geometrical knowledge mainly by observations and 

experiments. At Grade 9, they are expected to understand the learned 

geometrical knowledge by rigor proof in geometry (Zhang, 2005a).  
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4.1 Teaching Episode One: Teaching T2 in L1 

When teaching L1-T2 (T2: if two pairs of opposite sides of a 

quadrilateral are equal, then it is a parallelogram), Lily first led students 

to review one of the properties of a parallelogram (two pairs of opposite 

sides of a parallelogram are equal). Students were then engaged in 

working on a sequence of tasks set by Lily. They were first asked to 

transfer this proposition to its inverse proposition. They were then 

requested to draw a diagram of T2 and write down ‘the givens’ and ‘to 

prove’ on their notebook. Finally, they were engaged in proving T2. One 

girl student was invited by Lily to write her proof on the blackboard 

while the rest of students in the class were asked to write their proof in 

their notebook. 

We observed that there were a certain number of students who had 

difficulty in transferring the proposition to its inverse. Some of them 

confused the proposition with the definition of parallelogram (D1: two 

pairs of opposite sides of a parallelogram are parallel). Some of them had 

difficulty in distinguishing ‘the givens’ and “to prove” of the T2. These 

are evident in the classroom interactions as follows: 

Lily: (moved around the class and talked to one student to assist his learning) 

How could this (proposition) be the definition? Two pairs of opposite sides 

(of a parallelogram) are equal. The definition is about two pairs of parallel 

opposite sides. You would not be requested to prove the definition for it is 

already given (as in the textbook).  

S:  (one boy sitting near the researcher asked his classmate) What is the given 

(of this proposition)? 

Lily: (moved around the class and talked to another student to assist his learning) 

How could it be a parallelogram? You are asked to prove a parallelogram. 

After Lily had taken a look around the students’ work in the class for 

a while, she drew the students’ attention to the use of definition and 

theorem in proving a parallelogram in the classroom as follows: 

Lily:  Did we learn how to prove a parallelogram? (Lily stopped for a moment for 

students to think about the question.) We haven’t yet learned the theorems to 

verify a parallelogram. We only know the definition and the properties of a  

 



292  L. Ding, K. Jones, & D. Zhang 

 parallelogram. As you know, we cannot use the properties to verify a 

parallelogram. 

Beibei: (responded to Lily’s talk above) Is it a parallelogram if its two pairs of 

opposite sides are equal? 

Linlin: (responded to Lily’s talk above) We need to prove congruent triangles. … 

That’s the only way to prove it. 

The above classroom interactions show that while the teacher 

intended to draw students’ attention to the definition (D1) which was a 

means to develop the analytic thinking from ‘to prove’ to ‘the givens’, 

some students (exemplified by Linlin) thought about how to write the 

proof by first proving congruent triangles. Responses from students like 

Beibei also indicate that some students did not understand the 

relationship between definition and theorems in the axiomatic system of 

plane geometry. Noticeably, it was the teacher Lily who emphasized the 

use of the definition of a parallelogram to prove T2. A number of 

students appeared to be quite surprised and puzzled by the teacher’s 

instructional emphasis. This is evident from their responses as follows: 

Linlin:  Ah? (in a surprised tone) 

Liuliu: (talked to Beibei) See, the teacher said that we should use the definition to 

prove it. 

Beibei: (responded to Liuliu) What is the definition? 

Liuliu: (replied to Beibei) I don’t know. What is the definition? (asked others in the 

class) 

  Lily then went on to address the theorem of verifying parallel lines, 

which was again to lead students to develop analytic thinking from ‘what 

is the conclusion’ (parallel lines) to ‘what are the conditions’. Following 

this attention to developing students’ analytic thinking for writing the 

proof, Lily led the students to consider a girl’s proof on the blackboard, 

the main part of which (namely a proof that ∠ ∠ ∠ ∠1= 2, 3= 4) is shown 

in Figure 2.  

In sum, our analysis of the teaching episode of L1-T2 indicates that in 

using the “Shen Tou” method, Lily purposefully conducted three 

teaching steps to support students to practice skills of mutual-translation 

of GL and analytic thinking in writing a proof, as shown in Table 2. The  
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three steps shown in Table 2 are the word-symbol (W-S) strategy, the use 

of definition and theorems, and the word-figure-symbol (W-F-S) strategy. 

 
Figure 2. The main body of the proof of L1-T2 written by a student on the blackboard 

Table 2. An analysis of the “Shen Tou” method in L1-T2 

Teacher’s instruction in each teaching steps Students’ difficulties and feedbacks 

Step 1. used the W-S strategy to enable 

students to practice skills of making the 

translation from word language to 

diagram and symbol language. 

• some students were unable to transfer 

the proposition to its inverse. 

• some confused the proposition with the 

definition. 

• some were unable to distinguish ‘the 

givens’ and “to prove” of the theorem. 

Step 2. addressed the use of definition and 

theorems to train the analytic thinking 

from ‘what to prove’ to ‘what are 

givens’. 

• students did not understand the 

relationship between definition and 

theorems in the axiomatic system of 

plane geometry. 

• students were unawareness of the 

function of definition and theorem in 

proving. 

• students’ thinking naturally focused on 

moving from ‘what are givens’ to ‘what 

to prove’. 

Step 3.  used the W-F-S  strategy to  enable 

students to talk freely about the 

properties of the diagram and then to use 

geometrical symbols and language to 

prove the theorem. 
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4.2 Teaching Episode Two: Reviewing T2 in L2 

At the beginning of the next lesson (L2), the approach used by teacher 

Lily could appear to be a repeat of her teaching of T2 in L1. Yet a closer 

analysis of her teaching illustrates the important role of the teacher in  

using the “Shen Tou” method to enable students simultaneously to 

practice the skills of the mutual-translation of GL and two key forms of 

thinking (analytic and logical) in proof writing. In so teaching, Lily first 

guided students to translate the simple sentence of the proposition (T2) 

into a compound sentence in the form of “if … then …”. The teacher’s 

instructional intention in using the word-to-word (W-W) translation was 

to deepen the students’ understanding of the structure of the proposition 

and to help them to distinguish “the givens” and “to prove” for writing 

the proof. Noticeably, Lily corrected students’ W-W translation by 

highlighting the key word “two” that some students missed in 

representing the group of opposite sides of a parallelogram. Lily then 

directly drew a parallelogram on the blackboard and used letters and 

geometrical symbols to highlight ‘the givens’ (in quadrilateral ABCD, 

AB=CD, AD=BC) on the diagram (as illustrated in Figure 3(1)) and to 

represent ‘to prove’ (prove that quadrilateral ABCD is a parallelogram) 

on the blackboard (see Figure 3(4)). For convenience the whole teaching 

procedure of L2-T2 is illustrated in Figure 3. For the teacher’s work on 

the blackboard, see the left part of Figure 4. 

 

Noticeably, in the teaching process of L2-T2, Lily repeated the role of 

definition in proving the theorem. This is evident in the classroom 

interaction as follows: 

 
Figure 3. The teaching procedure of L2-T2 
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Lily:  So far, we have only known one way to prove a shape that is a 

parallelogram. (The teacher then waited students to respond to her talk.)  

Some students: Use the definition (D1).  

Such learning responses from the students show that they learned to 

think of the definition for proving this theorem. Lily further used two 

symbols “//” to represent the two pairs of parallel lines on the blackboard 

(see Figure 3(4)). Lily then led students to develop analytic thinking of 

the theorems from ‘what to prove’ to ‘what are given’ in proving the 

parallel lines. 

Lily: To prove two lines are parallel, what methods did we learn early at Grade 7? 

Some students: The alternate interior angles are equal. 

Lily:  The ‘three lines and eight angles’ (TLEA), right? (Three lines mean that two 

parallel lines are intersected by a transversal; eight angles mean that eight 

angles, less than 180º, are formed by the three lines.  

Teachers and students commonly use the TLEA in Chinese to 

represent the theorems of parallel lines; see Figure 3(2). 

Figure 3(2) was not drawn on the blackboard. It was a basic diagram 

that students learned at Grade 7 to prove parallel lines and the property 

 

Figure 4. Lily’s writing on the blackboard in L2-T2 
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of parallel lines. Some students then discussed about linking A and C, 

while others suggested B and D. The teacher listened to the class 

discussion and chose to link A and C as one of the ways to prove the 

problem (see Figure 3(3)). 

Our analysis of the classroom interaction above further shows the 

small but important difference between Lily’s and her students’ thinking. 

While Lily drew students’ attention to think first of the theorem which 

required the analytic thinking from ‘what to prove’ to ‘what are given’, 

students tended to think from ‘what are givens’ to ‘what to prove’ (e.g., 

if the alternate interior angles are equal, then two lines are parallel). As 

well as the development of analytic thinking, Lily also purposefully used 

the “Shen Tou” method to develop students’ logic thinking. Lily’s 

instructional intention is evident in the following classroom interactions. 

Lily: If to prove ∠1=∠2, what should we turn to prove first? (Some students 

answered congruent triangles. Then the teacher briefly guided students to 

prove two congruent triangles ABC and ACD in Figure 3(3)) 

While the teacher asked students these questions above, she gradually 

wrote down an analytic path of the proof on the blackboard (see Figure 

3(4)). The emphasis on writing such an analytic path is shown in Lily’s 

instruction as follows: 

Lily: So, from now on, we need gradually to cultivate a thinking habit in (plane) 

geometry. We have now learned (plane) geometry for over one year. As far as 

we are asked to prove a problem, we should first seek for an analytic path for 

solving it. Now good students start to learn to write the analytic path before 

writing the proof. An ordinary student still focuses on writing the logical 

paragraphs of a proof. You can certainly write so according to the analytic 

path. 

Lily’s instructional statement above shows that the teacher 

simultaneously developed the analytic thinking for writing the analytic 

path and the logic thinking for writing the multi-step proof. We also note 

that Lily took into account the need of different individual students in her 

instructional effort. Moreover, after the proof was discussed according to 

the analytic path on the blackboard, Lily led students to represent the 

theorem (T2) in two types of language: one is the word language, the 



 Teaching Geometrical Theorems in Grade 8 Using the “Shen Tou” Method  297 

other the geometrical symbol language (see the diagram and the 

geometrical symbols on the left part of Fig. 4).  

In sum, the analysis of the teaching episode of L2-T2 shows that Lily 

not only demonstrated to students about how to translate the multiple 

types of GL (e.g., the W-S and the W-F-S translations), but also 

addressed the practice of using both the analytic and the logic thinking 

for writing the proof. In so teaching, Lily skilfully used the “Shen Tou” 

method through the three teaching steps: word-to-word (W-W) strategy, 

questioning strategy, and word-to-symbol (W-S) strategy (see Table 3). 

4.3 Teaching Episode Three: Analyzing the Structure of D1, T2 and T3 

in L4 

When Lily began her instruction at the start of lesson L4, she began by 

providing the students with feedback on two common problems with 

Table 3. An analysis of the “Shen Tou” method in L2-T2 

Teacher’s  instruction in each teaching steps Students’ difficulties and feedbacks 

Step 1. used the W-W strategy to deepen 

students understanding of the structure of 

the proposition and to develop their skills to 

distinguish ‘the givens’ and ‘to prove’ for 

writing the proof. 

• students did not pay attention to the 

structure of the proposition. 

• some were unable to distinguish ‘the 

givens’ and ‘to prove’ for writing the 

proof. 

Step 2.  

• used questioning strategy to enable 

students to practice analytic thinking. For 

instance, “we have only known one way 

(definition/theorem) to prove …”, “To 

prove …, what methods did we learn …?”, 

“If to prove …, what should we turn to 

prove first?”, etc. 

• wrote the analytic path to develop logic 

thinking for writing the proof. 

• students did not understand the 

relationship between definition and 

theorems in the axiomatic system of 

plane geometry. 

• students were unaware of the 

function of definition and theorem in 

proving. 

• students’ thinking naturally focused 

not on moving from ‘what to prove’ to 

‘what are givens’, but on moving from 

‘what are givens’ to ‘what to prove’. 

Step 3. used both the W-W and the W-S 

strategies to develop students’ skills to 

represent the newly learned theorem. 

• students learned to represent the new 

theorem in two types of language: 

word language and geometry symbol 

language. 
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proof writing that was evident in their homework. First, in writing a 

proof, a few students were not able to use directly the theorem of parallel 

lines (the distances between two parallel lines are always equal) but 

reproved this theorem. Secondly, a considerable number of students did 

not prove a true proposition (when two triangles are on the same side 

with a common height, the rate of the areas of these two triangles is the 

rate of their two bottom sides) that was requested to prove, but used it as 

a theorem. Such a feedback shows that these students had not yet 

understood the relation between theorems and propositions in the 

axiomatic system of plane geometry. 

According to Lily’s feedback of students’ homework, some students 

also mixed the theorems of verifying a parallelogram with those of 

describing its properties. Thus, she used questions to draw their attention 

to the role of definition and theorems in proving a parallelogram. 

Lily: Yesterday, we talked about how to verify a parallelogram. Up to now, how 

many methods are available? 

Youyou: (responded to the teacher with some other students in the class) Three 

methods. 

Lily: Which three? 

Youyou: (responded to the teacher with some other students in the class) The 

definition (D1), the first theorem (of verifying a parallelogram) (T2) and the 

second theorem (of verifying a parallelogram) (T3: if one group of opposite 

side is parallel and equal, then it is a parallelogram). 

Here, students like Youyou were able to think about the definition and 

theorems (D1, T2, T3) they had learned as the methods to prove a 

parallelogram.  

Moreover, Lily’s feedback about the students’ homework indicates 

that many students wrote only a brief statement to describe T2 in their 

proving. Noticeably, it was the teacher who addressed the rigor of the 

word language of the definition and the theorems, and the need to add the 

words “two group” to represent the theorem T2 precisely. She further 

drew students’ awareness to the rigor of the word “two” by a question of 

whether one group of equal opposite sides would ensure a parallelogram.  

Next, Lily led students to develop further their understanding of the 

structure of the definition and theorems of verifying a parallelogram by 

questions as follows. 
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Lily: Usually, how many conditions are requested for proving a parallelogram? 

(Lily invited one student to answer the question. Yet it appeared hard for the 

student to answer. Then, Lily invited another student to talk about her idea.) 

S: Two. 

Lily: Two. There are two conditions in each of the theorems (T2 and T3). There 

are two conditions in the definition (D1) as well. It does not like the theorems 

of verifying congruent triangles. To prove congruent triangles, three 

conditions are needed. To prove a parallelogram, two conditions are needed. 

Lily: So, to prove a parallelogram, what should we actually turn to prove? 

(Students’ voices were low in the audio recorder. According to their responses, 

they were engaged in thinking of Lily’s questions.) 

Lily: To turn to prove equal or parallel line segments. (Students’ voices like “En” 

indicated that they agreed with Lily’s thought.)  

Lily: We already learned the general methods to prove equal line segments at 

Grade 7. To prove parallel lines, we learned the TLEA. In fact, if we know 

how to prove parallel or equal line segments, we know how to prove a 

parallelogram.  

  The classroom interactions above show the important role of the 

teacher in ensuring students develop an insight into the role of theorems 

in writing proofs. It is unlikely that students would automatically think of 

the connections of the learned theorems and compare the structure of 

these theorems when writing proofs. Moreover, it was Lily who 

purposefully drew students’ attention to the function of the theorems of 

verifying a parallelogram.  

  Lily: It (meant the theorem like T2 and T3) provides an alternative for proving 

parallel or equal line segments. Early, we had to turn to prove congruent 

triangles or an isosceles triangle in order to get equal line segments. Now if 

two pairs of straight lines are parallel or equal, and they are in a quadrilateral, 

we can try to firstly prove a parallelogram. 

In sum, Lily carefully used the “Shen Tou” method through three 

teaching steps over this teaching process of L4-D1, T2 & T3, as shown 

in Table 4.  
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Table 4. An analysis of the “Shen Tou” method in L4-D1, T2&T3 

Teacher’s instruction in each teaching step Students’ difficulties and feedbacks 

Step 1. used questioning strategy to draw 

students’ attention to the role of definition 

and theorems in proving. 

• in writing a proof, a few students were 

not able to use directly a theorem but 

reproved the theorem. 

• many did not prove a proposition, but 

used it as a theorem. 

• these students had not yet understood 

the relation between theorems and 

propositions in the axiomatic system of 

plane geometry. 

• some also mixed the theorems of 

verifying a parallelogram with those of 

describing its properties. 

• many did not use the rigor of the word 

language when stating the definition 

and the theorems. 

• some were able to think about the 

definition and theorems learned as the 

methods to prove a parallelogram. 

Step 2.  

• used the  W-F-S  strategy at a higher level  
to deepen understanding of the structure of 

the theorems, and to use geometrical 

symbols to represent the sub-structure of 

the conditions of the theorems. 

• made an analogical thinking between the 

theorems of verifying a parallelogram with 

those of congruent triangles when 

comparing the structure of these theorems. 

It was to deepen students’ insights into the 

relation of theorems. 

• used questioning strategy like “If to prove 

…, what should we turn to prove first?” to 

simultaneously train students’ analytic and 

logic thinking in writing proofs. 

• although some students in the class 

could recite the theorems (e.g., T2, T3) 

as requested by the teacher, they did not 

go any further to think of the structure 

of a theorem. It was not natural for 

students to analyze the structure of a 

theorem when proving a parallelogram. 

• It was not natural for students to think 

the connections of theorems in their 

proving. 

Step 3. drew students’ attention to the 

function of learning the theorems of 

verifying a parallelogram. 

• same to the difficulties and feedbacks in 

Step 1.  
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4.4 Teaching Episode Four: Teaching T8 in L5 

In L5 Lily’s focus when teaching a new theorem of rectangle (T8) was 

not so much on the development of students’ skills of translation from 

word language to figure and symbol language (the W-S form). She only 

briefly drew the proof diagram on the blackboard and orally 

demonstrated about ‘the given’ (rectangle ABCD) and ‘to prove’ 

(AC=BD) in the class, as shown in Figure 5. 

Students almost simultaneously discussed in the class of the key ideas 

of proving this theorem. Noticeably different from their early learning 

responses (e.g., see L1-T2), some students (such as Linlin, Youyou and 

Liuliu) learned to use theorems to demonstrate their own logic and 

analytic thinking of the proof. 

Linlin, Youyou and Liuliu: We can use congruent triangles to prove it. 

Liuliu: SAS (meant the theorem of two sides with an included angle to prove 

congruent triangles). 

Lily then invited one of these students to stand up in the class to demonstrate his 

thinking of the proof. 

Lily: The given is a rectangle ABCD. We need to prove AC=BD. Who can prove it?  

The boy: (invited by Lily and stood up in the class) Because this quadrilateral is a 

rectangle. … (interrupted by Lily as follows) 

Lily: Please tell us what should we turn to prove first, to prove these two equal 

sides? 

The boy: To prove congruent triangles. 

Lily: Which two (triangles)? 

The boy: Triangles ABC and ABD. 

Lily: To prove these two congruent triangles, what conditions are already given?  

The boy: The common side (meant AB), the opposite sides (meant AD, BC), and 

two angles 90º (while the student talked about the three conditions, Lily wrote 

AB=AB, AD=BC, angle DAB = angle ABC as the analytic path on the 

blackboard).  

 
Figure 5. L5-T8 
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Lily’s interventions in this boy’s presentation of the proof above show 

that her instructional intention was tightly-focused on leading the 

students in the class firstly to think of the analytic path of the proof and 

then to prove it. Lily then used questions to develop the logic thinking of 

students in the class as follows: 

Lily: AB=AB. It’s the common side. We do not need to prove it. How to prove 

AD=BC? What reason will you give? How do you write the proof here? 

(Students’ voices were low in the audio-recorder. As Lily appeared to address 

some of the students’ talk, we use Lily’s voice to show the classroom 

interactions as follows.)  

Lily: You can write that in rectangle ABCD, AD=BC. You can write the reason 

that the opposite sides of a rectangle are equal.  

Lily: Next, angle DAB = angle ABC. What reason will you give? 

The boy: Each angle of a rectangle is 90º. 

Lily: Next, we need to write the congruent triangles and then get AC=BD. So we 

get the property that the diagonals of a rectangle are equal. 

In this teaching episode, we note that some students learned to think 

of the proof according to the theorems. We consider it as an outcome of 

Lily’s sophisticated teaching in the use of the “Shen Tou” method over 

through her early instructions (e.g., L1-T2, L2-T2, L4-D1, T2&T3).  

In sum, our analysis on Lily’s instruction in this episode of L5-T8 

indicates that Lily made a shift of emphasis from the W-S form to the W-

F-S form of GL. Moreover, in the W-F-S strategy, Lily paved the path 

for developing students’ deeper thinking through two steps of teaching. 

This is shown in Table 5.  

5. The Multiple-Layered Teaching of Geometrical Theorems in the 

“Shen Tou” Method 

At first glance, many of the Grade 8 students in Lily’s class appeared to 

have no problem in making a one-step proof by thinking from ‘what is 

given’ to ‘what to prove’. What is more, some capable students showed 

no problem in writing a relatively complex multiple-step proof (as 

captured in Figure 2). Yet a closer analysis of teacher Lily’s homework 

feedback and instructional interventions in the class shows that many of 

these students encountered various sorts of difficulties in the process of 
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teaching/learning geometrical theorems in the classroom. Here, we list 

some of these from our data analysis: 

1) unable to represent precisely the theorems in rigorous word 

language;  

2) unable to transfer correctly the proposition to its inverse 

proposition; 

3) unable to recognize the structure of the definitions and 

theorems even if able to recite theorems/definitions;  

4) unable to understand the role and relation of definitions and 

theorems in the axiomatic system of deductive geometry. 

Table 5. An analysis of the “Shen Tou” method in L5-T8 

Teacher’s instruction in each teaching step   Students’ difficulties and feedbacks 

Step 1. made a shift of emphasis from the 

W-S strategy to the W-F-S strategy.  

• students almost simultaneously 

discussed in the class of the key 

ideas of proving the theorem. 

Step 2.  

• used the questioning strategy like “If to 

prove …, what should we turn to prove 

first?” to simultaneously develop 

students’ analytic and logic thinking in 

writing proofs. 

• used the W-F-S strategy to emphasize on 

using geometrical symbols to write the 

analytic path for the proof. 

• addressed the analytic thinking of a 

particular kind, namely “to make a 

reasoning according to the givens (e.g., 

the premise, the definitions, the axioms, 

and the theorems)” (Yang, 1988, p. 92). 

• some students learned to use 

theorems to demonstrate their own 

logic and analytic thinking of the 

proof. 

Step 3. drew students’ attention to the 

rigorous form of proof writing (e.g., 

condition-conclusion-

theorem/definition). 
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  Yang (1988) points out that a small-step teaching procedure is 

essential to enable students to gradually make progress at the ISofPG. 

Our overall analysis of the teacher’s use of the “Shen Tou” method 

demonstrates that Lily carefully paved the teaching steps for individual 

students to overcome their difficulties and to lead them constantly to 

practice various kinds of skills in geometry to a higher level. Here, we 

identify two types of the multiple-layered instruction over these teaching 

steps: one is the longitudinal multiple-layered teaching of a single 

theorem (e.g., L1-T2, L2-T2, L4-D1, T2&T3), the other the transverse 

multiple-layered teaching of a set of theorems (e.g., L1-T2, L5-T8). 

The longitudinal multiple-layered teaching of a single theorem (e.g., 

T2) can be seen as follows: 

The first teaching layer: When teaching a new theorem (e.g., L1-T2), 

the W-S strategy (Yang, 1988) can be used to engage students in 

practising how to correctly translate the word language of the theorem 

into the symbol language with diagrams. Students could also be 

encouraged to prove the theorem by correctly use geometrical 

diagrams/symbol language. 

The second teaching layer: After the new theorem is taught (e.g., L2-

T2), teacher could address the translation from the simple sentence of the 

proposition (e.g., T2) into the compound sentence in the form of “if … 

then …”. This W-W form of translation is to deepen students’ 

understanding of the structure of the theorem and to enhance their skills 

to distinguish “the conditions” and “the conclusion” of the theorem. 

Teacher also needs to use the W-F-S strategy (Yang, 1988) to help 

students correctly to represent the newly learned theorem (e.g., T2) in 

both the rigorous word language and geometrical diagram/symbol 

language. 

The third teaching layer: In analyzing the structure of the new 

theorem in writing proof, the teacher could help students to see the 

connection of the new theorem with other learned definition/theorems 

(e.g., L4-D1, T2&T3). Through comparing and understanding the 

connections of the different theorems/definition, students are given 

opportunity to develop an insight into the relation of definitions and 

theorems in the axiomatic system of plane geometry. 
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The transverse multiple-layered teaching of a set of theorems (e.g., 

L1-T2, L5-T8) is mainly to emphasize the mutual development of 

various kinds of geometrical thinking, apart from the development of GL 

skills. Such transverse multiple-layered teaching for the development of 

the analytic and logical thinking can be summarized as follows: 

The first teaching layer: in teaching the first a few theorems of a set 

of theorems, teacher needs to purposefully address the development of 

analytic thinking from ‘what to prove’ to ‘what are given’ in proving the 

theorem. Teacher could use a sequence of questions to assist students to 

write down an analytic path of the proof. For instance, “we have only 

known one way (definition/theorem) to prove …”, “To prove …, what 

methods did we learn …?”, “If to prove …, what should we turn to prove 

first?”, etc. 

The second teaching layer: gradually, teacher needs to develop 

students’ insights into the role of theorems in writing proofs. In particular, 

students need to be guided “to make a reasoning according to the givens 

(e.g., the premise, the definitions, the axioms, and the theorems)” (Yang, 

1988, p. 92). Teacher could also draw students’ awareness to the role of 

the theorems and the connections between the theorems/definitions in 

writing proofs. 

The third teaching layer: in addition to the emphasis on the use of 

geometrical symbol language to write the analytic path for the proof, the 

teacher needs to draw students’ attention to the rigorous form of proof 

writing (e.g., condition-conclusion-theorem/definition). 

We conclude from the analysis of Lily’s Grade 8 class that the 

teacher purposefully set up two types of instructional procedure when 

using the “Shen Tou” method to teach geometrical theorems: one is of 

the longitudinal multiple-layered teaching of a single theorem for 

training the GL, the other the transverse multiple-layered teaching of a 

set of theorems for enhancing the mutual development of various kinds 

of geometrical thinking.  

It is also noted that the longitudinal and the transverse multiple-

layered teaching procedures correspond to the hierarchical ordered skills 

and the systematical connections of knowledge in plane geometry. For 

instance, across the longitudinal layers of teaching of the single theorem 

(e.g., T2), the skills were ordered as follows: translating the word 
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language of the proposition into the symbol language with diagrams and 

proving the proposition � analyzing the structure of the theorem and 

representing the theorem in both the rigor word language and 

geometrical diagram/symbol language � seeing the relation of 

definitions and theorems in the axiomatic system of deductive geometry. 

Across the transverse layers of teaching of a set of theorems (e.g., T2, T3, 

and T8), the skills were ordered as follows: developing the analytic 

thinking from ‘what to prove’ to ‘what are given’ in proving the theorem 

� seeing the role of the theorems and the connections between the 

theorems/definitions in writing proofs � seeing the rigor form of proof 

writing. 

6. Conclusion 

In this chapter, our aim has been made to provide insight into the 

repetition and accumulation of practices in the SH expert teacher’s use of 

the ‘Shen Tou” method in Grade 8 geometry class. We identify two key 

features of this expert teacher’s instruction on geometrical theorems: one 

is the complex learning support structure established by the longitudinal 

and the transverse multiple-layered teaching procedures, the other the 

repetition and accumulation of practices of the hierarchically-ordered 

skills and gradual understanding the systematical connections of 

knowledge within the multiple-layered teaching procedures. At the 

ISofPG, Yang (1988) suggests that teachers use the “Shen Tou” method 

to enhance a range of skills such as to appreciate, draw, and make 

geometrical diagrams; to understand, represent and translate geometrical 

language; and to write proofs. Furthermore, when using the “Shen Tou” 

method, Yang suggests that a teacher should first establish a whole 

structure in which the different skills to be developed are carefully 

ordered. On this basis the teacher can then develop students’ skills 

through well-designed and hierarchical layers of instruction. The two key 

features of this expert teacher’s instructional practice on geometrical 

theorems in our study substantiates Yang’s (1988) didactical ideas in an 

authentic classroom setting. Our study further supports the hypothesis by 

Martin et al. (2005, p. 122) that students can, with the appropriate 
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instructional strategies, become more skilled in how to construct proofs 

on a multi-tiered procedure. 

The data analysis presented in this chapter further substantiates our 

recent work with other researchers on the role of expert teacher and 

teaching in Chinese mathematics classrooms. For instance, Mok and 

Ding (in press) show that the Chinese expert teacher is able to see ahead 

of the cognitive capacity of the students and then provide expert 

scaffolding (Holton & Clarke, 2006) for helping the students to reach a 

higher level of development in mathematics. Ding, Jones and Pepin 

(2013) use the term “Hypothetical Learning Structure” (HLS) to 

distinguish the Chinese expert teacher’s concept of “Hypothetical 

Learning Trajectory” (HLT) from Simon’s (1995) notion of HLT. That is, 

in the Chinese expert teacher’s view, pupil learning could be more 

‘efficient’ (in the sense of ‘whole class learning’), if they are engaged in 

the teacher’s well-designed mathematical tasks. Cao, He and Ding (in 

press) show that in the two LPS (Learner’s Perspective Study) Shanghai 

classes, classroom interactions were largely initiated by the teachers. 

Interaction between a teacher and a class is intertwined with teacher and 

individual student interaction. Our analysis of the teacher-student 

interactions in this SH expert teachers’ day-to-day instructional practice, 

in particular the teacher’s part in the teacher-student interactions 

highlights the significant role of the teacher in designing and conducting 

the hierarchical and sophisticated instructional procedures to develop 

rigorous GL, to develop students’ analytic thinking, and to help them to 

see the structure and the role of theorems, as well as the relation of 

theorems/definitions in axiomatic system of plane geometry. In the on-

going studies, we go further into examining the relationship of the 

hypothetical scheme of the Chinese expert teachers’ instructional 

path/structure with the most fundamental cognitive conflicts of students 

in the process of solving the geometrical proof problems in axiomatic 

system. 

As this chapter focuses on the teacher, we are not able to delve 

further into understanding the development of students’ independent and 

creative thinking in plane geometry within the multiple-layered 

instructional procedures. Nevertheless, we consider that the two 

multiple-layered teaching procedures identified from the micro 
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perspective of our study reveal some part of the whole picture of the 

“Shen Tou” method from the macro perspective of teaching plane 

geometry across the different grade curricula. We also consider that the 

two multiple-layered teaching procedures underly the fundamental 

Chinese teaching principle of “Xun Xu Jian Jin”, which addresses on 

gradually deepening learning through an orderly-layered teaching 

procedure.  

In analyzing this SH expert teacher’s dynamic approach to leading 

students to make certain explorations and discoveries in proof problem 

solving activities, we (Ding, Jones, & Zheng, 2009) highlighted what 

Zheng called the “indoor flying” approach (in Chinese “大框架下小自由”) — it is like flying, but it is like flying indoors as it is constrained in 

certain ways. We (Ding, Jones, & Zheng, 2009) did not consider that the 

‘indoor flying’ approach as a truly heuristic approach because students’ 

freedom to explore and think through the problem remained under the 

control of the teacher’s instruction. In the next step of our work, we aim 

to pursue an understanding of the distinction between the “Shen Tou” 

method and the ‘indoor flying’ approach in teaching proofs in geometry. 

In particular, we wish to develop understanding of the relation between 

the “Shen Tou” method practiced in this expert teacher’s mathematics 

classes and Gu’s (2012) recent lecture on the “potential distance” in “Pu 

Dian” (scaffolding). In so doing, we wish to develop a new insight into 

the fundamental Chinese teaching principle of “Xun Xu Jian Jin”, 

together with a deeper understanding of the complex classroom learning 

space varied across the multiple-layered teaching procedures towards the 

goal of developing students’ independent and creative thinking in 

mathematics. 

Acknowledgments 

We would like to acknowledge the support by the UK Overseas Research 

Students Awards Scheme (Reference number: 2005037007) and the 

award of a University of Southampton Scholarship. The opinions 

expressed do not necessarily reflect the views of the organization and 

university. We thank Professor GU Lingyuan for his insightful talks with 



 Teaching Geometrical Theorems in Grade 8 Using the “Shen Tou” Method  309 

us in the field study in Shanghai. We also thank the teachers in Shanghai 

who greatly supported the field study of this research.  

References 

Arsac, G., Balacheff, N., & Mante, M. (1992). Teacher’s role and reproducibility of 

didactical situations. Educational Studies in Mathematics, 23, 5-29. 

Cai, C. H. (2005, March 16). Jiang Boju: What is missed in mathematics classroom by 

the new curriculum standards? Guangming Daily. Retrieved from 

http://www.gmw.cn/01gmrb/2005-03/16/content_196927.htm 

Cao, Y., He, C., & Ding, L. (in press). Characterizing classroom interaction in Shanghai 

mathematics lessons: An exploratory video study. In B. Sriraman, J. Cai, K. H. Lee, 

L. Fan, Y. Shimuzu, L. C. Sam, & K. Subramanium (Eds.), The first sourcebook on 

Asian research in mathematics education: China, Korea, Singapore, Japan, Malaysia 

and India. Scottsdale, AZ: Information Age Publishing. 

Ding, L. (2008). Developing insight into teachers’ didactical practice in geometric proof 

problem solving. Unpublished PhD thesis, University of Southampton, Southampton, 

UK. 

Ding, L., Jones, K., & Pepin, B. (2013). Task design through a school-based professional 

development programme. Proceedings of the ICMI Study 22: Task design in 

mathematics education. Oxford, UK: University of Oxford. 

Ding, L., & Jones, K. (2009). Instructional strategies in explicating the discovery function 

of proof for lower secondary school students. Proceedings of the ICMI study 19, Vol. 

1, 136-141. 

Ding, L., Jones, K., & Zheng, Y. (2009, May). Teaching geometrical proof problem 

solving in China: a case analysis from the perspective of the dynamic approach of the 

teacher. Paper presented at the 3rd International Symposium on the History and 

Pedagogy of Mathematics, Beijing, China. 

Ding, L., & Jones, K. (2007). Using the van Hiele theory to analyse the teaching of 

geometrical proof at Grade 8 in Shanghai. European Research in Mathematics 

Education V, 612-621. Larnaca, Cyprus: ERME. 

Geddes, D., Fuys, D., & Tischler, R. (1984). English Translation of Selected Writings of 

Dina van Hiele-Geldof and Pierre M. van Hiele. Washington, DC: Research in 

Science Education (RISE) Program of the NSF. 

Gu, L. (2012). Lecture on research of teaching with variation in mathematics teaching 

and learning [in Chinese]. Qingpu district, Shanghai. 

Qingpu County Teaching Reform Experiment (1991). Learning to teach: An experiment 

of mathematics teaching reform in Qingpu County [in Chinese]. Beijing: People 

Education Press.  



310  L. Ding, K. Jones, & D. Zhang 

Gu, L. (1981). The visual effect and psychological implication of transformation of 

figures in geometry teaching [in Chinese]. Paper presented at the annual conference 

of Shanghai Mathematics Association. 

Gu, L., Huang, R., & Marton, F. (2004). Teaching with variation: a Chinese way of 

promoting effective mathematics learning. In L. Fan, N. Y. Wong, J. Cai, & S. Li 

(Eds.), How Chinese learn mathematics: Perspectives from insiders (pp. 309-347). 

Singapore: World Scientific. 

Heinze, A. & Reiss, K. (2004). The teaching of proof at the lower secondary level–a 

video study. ZDM–The International Journal on Mathematics Education, 36(3), 98-

104. 

Heinze, A., Cheng, Y. -H., Ufer, S., Lin, F. -L., & Reiss, M. K. (2008). Strategies to 

foster students’ competencies in constructing multi-steps geometric proofs: teaching 

experiments in Taiwan and Germany. ZDM–The International Journal on 

Mathematics Education, 40(3), 443-453. 

Herbst, P. (2002). Engaging students in proving: A double bind on the teacher. Journal 

for Research in Mathematics Education, 33, 176-203. 

Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry 

classes: What is it that is going on for students? Cognition and Instruciton, 24(1), 73-

122. 

Herbst, P. G., Chen, C., Weiss, M., Gonzales, G., Nachieli, T., Hamlin, M., & Brach, C. 

(2009). “Doing proofs” in geometry classrooms. In D. A. Stylianou, M. L. Blanton, & 

E. Knuth (Eds.), Teaching and learning proof across the grades: K-16 perspective 

(pp. 250-268). New York: Routledge. 

Holton, D. & Clarke, D. J. (2006). Scaffolding and Metacognition. International Journal 

of Mathematical Education in Science and Technology, 37(2), 127-143. 

Huang, R., Mok, I., & Leung, F. (2006). Repetition or variation: Practising in the 

mathematics classrooms in China. In D. Clarke, C. Keitel, & Y. Shimizu (Eds.), 

Mathematics classrooms in twelve countries: The insider’s perspective. (pp. 263-273). 

Rotterdam, The Netherlands: Sense Publishers. 

Jones, K. (2000). Critical issues in the design of the school geometry curriculum. In B. 

Barton (Ed.), Readings in mathematics education (pp. 75-91). Auckland, New 

Zealand: University of Auckland. 

Jones, K., & Herbst, P. (2012). Proof, proving, and teacher-student interaction: Theories 

and context. In G. Hanna, & M. De Villiers (Eds.), Proof and proving in mathematics 

education: The 19th ICMI study (pp. 261-277). London: Springer. 

Knuth, E. (2002). Secondary school mathematics teachers’ conceptions of proof. Journal 

for Research in Mathematics Education, 33, 379-405. 

Lampert, M. (1993). Teacher’s thinking about students’ thinking about geometry: The 

effects of new teaching tools. In J. L. Schwartz, M. Yerushalmy, & B. Wilson (Eds.), 

The geometric supposer: What is it a case of (pp.1430-177). Hillsdale, NJ: Lawrence 

Erlbaum Associates. 



 Teaching Geometrical Theorems in Grade 8 Using the “Shen Tou” Method  311 

Li, H. (2005). A record of the interview with Mr. Xingshen Chen [in Chinese]. Shuxue 

Tongbao (Bulletin of Mathematics), 44(3), 1-3. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding 

of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence 

Erlbaum Associates. 

Martin, T., McCrone, S., Bower, M., & Dindyal, J. (2005). The interplay of teacher and 

student actions in the teaching and learning of geometric proof. Educational Studies 

in Mathematics, 60(1), 95-124. 

Ministry of Education of People’s Republic of China. (Ed.). (2011). Mathematics 

curriculum standards of the compulsory education (2011 Version) [in Chinese]. 

Beijing: Beijing Normal University Press. 

Ministry of Education of People’s Republic of China. (Ed.). (2001). Mathematics 

curriculum standards of the compulsory education (Experimental Version) [in 

Chinese]. Beijing: Beijing Normal University Press.  

Mok, I., & Ding, L. (in press). Reaching higher ground by scaffolding: An example from 

shanghai lessons. In D. Clarke, I. Mok, & G. Williams (Eds.), The LPS Book Six: 

Coherence in the mathematics classroom: The teaching of a topic in mathematics 

classrooms around the world. Rotterdam, The Netherlands: Sense Publishers. 

Paine, L. W. (1990). The teacher as virtuoso: A Chinese model for teaching. Teachers 

College Record, 92(1), 49-81. 

Schoenfeld, A. (1994). What do you know about mathematics curricula. Journal of 

mathematical behaviour, 13(1), 55-80. 

Schoenfeld, A. (1989). Explorations of students’ mathematical beliefs and behavior. 

Journal for Research in Mathematics Education, 20(4), 338-355. 

Schoenfeld, A. (1988). When good teaching leads to bad results: The disasters of “well-

taught” mathematics courses. Educational Psychologist, 23(2), 145-166. 

Senk, S. L. (1989). Van Hiele levels and achievement in writing geometry proofs. 

Journal for Research in Mathematics Education, 20, 309-321. 

Senk, S. L. (1985). How well do students write geometry proofs? Mathematics Teacher, 

78(6), 448-456. 

Shao, G., Fan, Y., Huang, R., Ding, E., & Li, Y. (2013). Mathematics classroom 

instruction in China viewed from a historical perspective. In Y. Li, & R. Huang 

(Eds.), How Chinese teach mathematics and improve teaching. New York: 

Routledge. 

Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist 

perspective. Journal for Research in Mathematics Education, 26, 114-145. 

Sun, X. (2011). “Variation problems” and their roles in the topic of fraction division in 

Chinese mathematics textbook examples. Education Study in Mathematics, 76, 65-85. 

The Editorial Board. (Ed.). (1992). Master teachers’ lessons records: Secondary 

mathematics (Lower secondary edition) [in Chinese]. Shanghai: Shanghai Education 

Press.  



312  L. Ding, K. Jones, & D. Zhang 

Tian, W. (1990). A survey on the quality of teaching and learning of mathematics at the 

lower secondary school level across the country [in Chinese]. Shanghai: East China 

Normal University Press.  

Tian, Z. (2001). The generation of Chinese version of “Euclid’s Elements” [in Chinese]. 

Shuxue Tongbao (Bulletin of Mathematics), 40(1), 33-35.  

Usiskin, S. (1982). van Hiele levels and achievement in secondary school geometry. 

Final Report, Cognitive Development and Achievement in Secondary School 

Geometry Project. Chicago: The University of Chicago. 

Xie, A., & Tan, S. (Eds.). (1997). A survey of the quality of students’ learning in the 

compulsory education of the country [in Chinese]. Shanghai: East China Normal 

University Press.  

Yang, Y. (1988). Teaching and learning of initial stages of plane geometry [in Chinese]. 

Nanjing, Jiangsu: Jiangsu Education Press.  

Yang, Z. (2000).  The Chinese culture and science [in Chinese]. Shuxue Tongbao 

(Bulletin of Mathematics), 39(6), Cover II-4.  

Zhang, D. (2005). A review and perspective of plane geometry teaching and learning [in 

Chinese]. Shuxue Tongbao (Bulletin of Mathematics), 44(5), cover II-7.  

Zhang, D., Li, S., & Tang, R. (2004) The “two basics”: mathematics teaching and 

learning in mainland China. In L. Fan, N. Y. Wong, J. Cai, & S. Li (Eds.), How 

Chinese learn mathematics: Perspectives from insiders (pp. 189-207). Singapore: 

World Scientific. 

Zhang, Y. (2006). The axiomatic system of Euclidean geometry and the development of 

plane geometry textbook in China [in Chinese]. Shuxue Tongbao (Bulletin of 

Mathematics), 45(1), 4-9. 

Zhang, Y. (2005). Record of the expanded meeting of the 2005 meeting of the 

educational working committee of the Chinese mathematics association [in Chinese]. 

Shuxue Tongbao (Bulletin of Mathematics), 44(4), 1-12.  

Zhao, Y. (2005). Increasing math and science achievement: the best and the worst of the 

east and the west. Phi Delta Kappan, 87(3), 219-222. 

Zheng, Y. (2006). Mathematics education in China: from a cultural perspective. In F. K. 

S. Leung, K. -D. Graf, & F. J. Lopez-Real (Eds.), Mathematics education in different 

cultural traditions: A comparative study of East Asia and the West (pp. 381-390). 

New York: Springer. 



 

313 

Chapter 10 

 Implementation of Objectives Based on the 

Curriculum Standards: A Case of Teaching  

Using Letter to Represent Number at a Chinese 

Primary School in Chinese Mainland 

      HUANG Xingfeng YANG Jinglei   LI Shiqi   

 
To study the implementation of new mathematics curriculum in 

primary schools, we focused on how teachers use letter to represent 

number, an important content in algebra. Three experienced teachers 

were selected from three primary schools in China (mainland). Four 

lessons of each teacher were observed, and interviews with teachers 

and students were recorded after each lesson. Based on the objectives 

of curriculum standards, classroom teaching was examined in four 

strands (knowledge and skills, mathematical thinking, solving problem, 

and affect and attitude). It was found that these teachers’ teaching 

showed great similarities in the four strands. They intended to enhance 

students’ abilities of using letter to represent quantitative relation in 

realistic situations, and improve students’ deductive reasoning, and 

encourage them to explore and explain different ways in solving 

problem. However, some aspects in the four strands were overlooked in 

their classroom practice.  

 

Keywords: curriculum innovation, classroom teaching, use of letter to 

represent number 

1.    Introduction 

Teachers’ classroom teaching reflects their understanding of the 

curriculum and shows how they implement it (Huang & Fan, 

2009). Goodlad and Su (1982)
 
claimed that classroom teaching is an 
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internalized and personalized curriculum by students, and also is the 

ultimate examination of curriculum innovation. Therefore, in order to 

explore the gain and loss of curriculum implementation, it is necessary 

for researchers and educators to focus on classrooms in practice. 

In the past ten years, many researchers conducted detailed 

observation and analysis on Chinese mathematics teaching. For example, 

Gu, Huang, and Marton (2004) summarized that variance and 

foreshadowing are characteristics of Chinese mathematics teaching. 

Huang and Leung (2004) pointed that Chinese teachers highlight 

students’ exploring, and encourage students to participate in mathematics 

classroom. Mok (2006) in learner’s perspective (LPS) found that the 

mathematics teachers in China (mainland) often promote students to 

explore, and encourage student to learn at groups. Lopez et al. (2004) 

identified a teaching model which can describe Chinese teaching style. 

Grounded on the new curriculum innovation, what features did 

Chinese mathematics teaching have? What happened and changed in 

Chinese classrooms? Xu, Kong, and Su (2009) claimed that mathematics 

classroom teaching in China kept the traditional features, such as 

emphasis on review and introduction, advance gradually in due order, 

analysis of typical examples, consolidated exercises and classroom 

feedback. On the other hand, classroom teaching has made some 

changes, such as use of information technology, setup scenarios for 

students’ exploration and so on. We have launched a series of studies on 

Chinese mathematics classroom. For example, a comparative study was 

conducted on mathematics classrooms across three decades (Huang, 

Pang, & Li, 2009). It revealed that teacher questioning, classroom 

organization were different in different eras.  In several excellent 

mathematics lessons, some common features of classroom activities were 

found, such as fast rhythm, frequent change, and abundant content 

(Huang, 2009). 

The Mathematics Curriculum Standards (later referred to as the 

Standards) indicated that developing students' symbol sense is an 

important content for learning at the stage of compulsory education. The 

Standards also claimed that making use of letters to represent 

quantitative relations and patterns abstracted from the specific contexts is 

a main way to develop students' symbol sense (Ministry of Education, 
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2001). In the content of Number and Algebra, The Standards put forward 

specific objectives as following: “At the second school stage, students 

can use letter to represent number in specific situation. At the third stage, 

students can further understand the significance of using letter to 

represent number in real situation. They can use algebraic expression to 

represent quantitative relation in the real world.” 

In fact, the usage of letter has multiple meanings including: (a) 

Representing unknown number, which can be operated directly. For 

example, the letter x in the equation of x+3=5 represents a certain but 

unknown number. (b) Representing general number, which is a 

generalized number. For example, letter can be used to represent the 

commutative law of addition (a+b=b+a), in which the letter can 

represent a real number. (c) Representing variation, which can describe 

the relation between two quantities. For example, the letters of x and y in 

the linear function y=2x+1 represent the relation between the two 

quantities. (d) Representing parameter. In the elliptic parameter equation 

x=3cost, y=4sint, the letter t represents a parameter (Kieran, 2006). 

Many studies showed that students had many difficulties in 

understanding use of letter to represent number (Bills, 1997, 2001; Fujii, 

1993；Trigueros & Ursini, 1999; Ursini, 1990; Ursini & Trigueros, 

1997). For instance, the well-known CSMS (Concept in Secondary 

Mathematics and Science) study found that students endowed letters with 

six different meanings at four levels, which are correspond to four 

development stages described in Piaget's theory (Kuchemann, 1981). 

Usiskin (1988) argued that teachers how to teach use of letter to 

represent number is originated from their understanding of algebra. If 

algebra is regarded as the generalization of arithmetic, then letter is the 

generalization of number. If algebra is regarded as a tool of solving 

problem, then letter stands for an unknown or constant. If algebra is 

regarded to exploring quantitative relation, then letter stands for a 

variation or parameter. If algebra is regarded to studying structure, then 

letter is a conventional sign. Wagner (1983) argued that teachers should 

be aware of various use of letter and its meaning in different contexts, 

and tell students the difference and connection among letter, number, and 

word, if they want to help students understand the meaning of letter. 

Especially, he suggested that if they want to help their students have 
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comprehensive understanding of the meaning of letter, they should 

permeate it gradually in mathematics curriculum, rather than depend on 

tedious sermon. Ursini and Trigueros (2001) proposed a theoretical 

model for teaching usage of letter in algebra. They believed usage of 

letter mainly including three dimensions (as unknown, general number, 

and variation) in elementary algebra course, and established teaching 

goals for each dimension. Through the teaching experiment, they found 

that students’ understanding of usage of letter would be promoted if 

three-dimension teaching goals were integrated in the course (Ursini & 

Trigueros, 2002). However, few empirical studies in China explored how 

to teach usage of letter in algebra. 

Grounded on Chinese new curriculum innovation, two research 

questions were posed: (a) How did teachers implement The Standards 

when they taught usage of letter to represent number at primary 

mathematics classrooms? (b) What was difference or similarity when 

The Standards were implemented in classrooms by different teachers? 

2.    Methodology 

2.1 Conceptual Framework 

The Standards set up four strands curriculum objectives including 

knowledge and skills, mathematical thinking, solving problem and affect 

and attitude. It also gave brief explanation for the four strands in each 

school stage. The concept framework in this study is constructed on the 

four strands of The Standards. The Standards claimed that knowledge 

and skills is important for students learning mathematics. The stand is a 

four-level hierarchy involving knowing, understanding, mastering and 

flexible applying (Table 1). Knowing refers to give relative examples for 

interpreting a concept, and identify an object in different contexts. 

Understanding means describing difference and relationship between 

different objects. Mastering refers to transferring current knowledge to 

new contexts. Flexible applying means synthesizing knowledge and 

selecting reasonable methods to complete specific mathematics tasks 

(Ministry of Education, 2001). According to the four-level hierarchy 
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definition, the sub-objectives on the topic of using number to represent 

number were listed in Table 1. The second strand is mathematical 

thinking, which refers to students could discover mathematical 

phenomenon within various problems which they are face with, and 

could apply mathematics knowledge and method to solve it (Ministry of 

Education, 2002). The Standards further constructed sub-objectives for 

the strand in the second school stage. Specially, in the topic of using 

letter to represent number, three sub-objectives were set up in this study, 

including use of number and letter to describe real problem, plausible 

reasoning, and deductive reasoning. The third strand is solving problem. 

Problem should not be defined as pure mathematics problem. Solving 

problem is not an action as recognizing problem type, recalling problem 

solution, or imitating closed example. It also should be distinguished 

from practicing exercise. Solving problem requires student mathematics 

thinking as conjecture, discourse, reasoning, and so on (Ministry of 

Education, 2002). The Standards set up sub-objectives based on Pólya 

(1945)
 
how to solving problem. Five sub-objectives of this topic are 

shown in Table 1. The Standards stated that student’s affect and attitude 

could be fostered by mathematics teaching. For instance, teacher could 

encourage students to see world on the perspective of mathematics so as 

to foster their intellectual curiosity and thirst for knowledge. Teacher 

could improve student’s engagement through designing various 

classroom activities. Teacher could set some obstacles for students when 

they solve problems, then encourage them to overcome these obstacles, 

so that students could gain successful experience after getting over 

difficulties. In classroom, teacher could encourage students to 

communicate ideas, and pose questions so as to improve their 

independent and creative thinking (Ministry of Education, 2002). Based 

on the above mentioned causes, six sub-objectives were set up in this 

study according to curriculum objectives (Table 1). 

2.2 Participants 

Because of limited research funding, classrooms were just selected from 

three primary schools in Changshu, located in south-east China, and 

affiliated to Suzhou. Changshu has 1, 266 square kilometres, 1.04 million 
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population, and 11 towns. According to the location, teaching quality, 

and school size, three primary schools S, Y, and L were chosen. School S 

is the best local primary school, located in the city centre. The school 

history can date back to Qing Dynasty (1636-1912), and it has formed a 

unique educational tradition. School Y was established before 1949, and 

has just moved to a new campus at eastern city three years ago because 

of school expansion. School L is a town primary school at 20 kilometres 

west of the city, which was founded in the 1950s. As the study was to 

understand the implementation of the curriculum innovation, each 

teacher, who has witnessed the whole curriculum innovation, was chosen 

from each school.  

2.3 Data Collection and Analysis 

In May 2011, three teachers’ lessons were observed and videoed. Each 

teacher taught the same topic of using letter to represent number. They 

used the same version textbook and teaching reference book published 

by Jiangsu Education Publishing House. The textbook divides this topic 

into three sections. In the first section, the textbook content includes use 

of letter to represent quantitative relation with single operational sign 

(e.g., 5+a, 3a), and writing rules of algebraic expression with 

multiplication sign. The section content includes use of letter to represent 

quantitative relation with two operational signs (e.g., 5+2a), and finding 

the value of an expression. The third section requires students to use 

letter to represent a sum of two products with same factor (e.g., 

5a+2a=7a). Each teacher spent same lessons (four lessons) on teach this 

topic. Each lesson spent about 40 minutes. In each classroom, two video 

cameras were prepared. One aimed at teacher, the other one focused on a 

group of students. After lessons, teacher and students in that group were 

semi-structured interviewed. The video-lessons and audio-interviews 

were transcribed into scripts.  

In classroom teaching study, each lesson could be divided into several 

episodes or units according to the change of classroom elements, such as 

classroom organization, teaching content, and student activity and so on 

(Doyle, 1986). The intention of this study is to explore how curriculum 
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Table 1. The framework for episode analysis 

Knowledge 

and skills 

Knowing 

Knowing different means of letter in life and 

mathematics. 

Knowing use of letter to represent number. 

Knowing expression means 

Distinguishing multiplication from addition 

Understanding 

Understanding use of letter to represent number 

Understanding square meaning 

Understanding operational law 

Understanding the basis of combining like terms 

Mastering 

Using letter to represent quantitative relation in 

realistic situation 

Using letter to represent pattern 

Finding expression value 

Mastering the rule of writing algebraic expression  

Mastering the rule of combining like term 

Mastering the rule of expression multiplication 

Flexible 

applying 

Flexible use of letter to represent quantitative 

relation in realistic situation 

Mathematics 

thinking 

Use of number and letter to describe quantity in the real world 

Plausible reasoning  

Deductive reasoning 

Solving 

problem 

Finding and posing simple problems from real life  

Exploring effective ways to solve problem, and try to find other 

way 

Learning to cooperate with peers in problem solving 

Expressing problem solving process, and explaining result 

Reviewing and analyzing the process of problem solving 

Affect & 

Attitude 

Engaging to discuss mathematical problem  

perceiving connection between mathematics and life  

Experiencing successfulness after overcoming difficulties in 

problem solving 

Experiencing exploration and challenge in problem solving  

Perceiving logicality of mathematical thinking, and certainty 

of mathematical result  

Having consciousness of questioning 
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objectives were carried out in classrooms. In fact, curriculum objectives 

were realized in the classroom teaching steps (e.g., review & 

introduction, teacher-students interaction, classroom practice, group 

discussion). In general, each teaching step involves several activities. For 

example, the introduction of SL1 (lesson 1 at S primary school) could be 

divided into three episodes by the change of student activity. The first 

one that students played a game named counting 24 points with cards 

could be encoded as SL1-1. The second one that teacher required 

students to look for letters in real life could be encoded as SL1-2. The 

last one that students played magic box game could be encoded as SL1-

2. Like this, 96 episodes in 12 lessons were obtained (Table 2). Then the 

framework was employed to encode lesson episodes. Each lesson 

episode was encoded by two researchers. The consistencies of coding 

episode were between70% and 85%. The code system was constructed 

for the classroom analysis. 

Table 2. Episodes in lessons from three primary schools 

Primary School L1 L2 L3 L4 Total 

S 8 7 10 7 32 

Y 11 8 7 6 32 

L 10 6 7 9 32 

3. Results 

3.1 Knowledge and Skills 

(1) Knowing use of letter to represent number. Using letter to represent 

number has four hierarchy levels in classroom teaching. Knowing use of 

letter to represent number is the primary level. In order to provide 

opportunities for their students to appreciate letter used to represent 

number, the three teachers set up different situations at the beginning of 

the classrooms. S school teacher designed a game named 

counting 24 points with playing cards (SL1-1). She showed “5, 2, 8 and 

A” four cards, and ask her students to count with 24 points. When they 

calculated with numbers, students naturally used the letter A to 
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a 

m

n 

m

n 

b 

a 

b 

1 2 3 4 

represent the number 1. She then asked her students: “which letter can 
represent number in playing cards?”  Differently, the other two teachers  
posed mathematical problems in their classrooms (YL1-2, LL1-2). For 
example, which number does the letter represent in the pattern 2, 4, 6, m, 
10? It is well know that using letter to represent specific number is a 
foundation for student learning equation. 

(2) Understanding use of letter to represent variation. Using letter to 
represent variation should be understood by students. S school teacher 
designed a magic box game (SL1-3). She said: “This is a magic box. If 
I put a number into the box, another number will come out.  The number 
2 enters, and then the number 12 comes out. …Who can 
find the secret of the magic box? ” After several minutes, Students used 
words to generalize   the pattern that coming-out number plus 10 equals 
entering number. Then, they tried to use letter n to represent the entering 
number, and using n+10 to represent the coming-out number.  In fact, 
using letter to represent variation is a preparation for students to learn 
important mathematical concept, such as function. 

(3) Mastering using letter to represent quantitative relation in 
realistic situations. Students should master how to use letters to represent 
quantity relations in realistic situations. For example, the three teachers 
employed the same problem from their textbook (SL4-5，YL4-6，LL4-
5): A theatre has rows of seats upstairs, and each row has 22 seats. There 
are b seats totally downstairs. How many seats are there at this theatre?  

(4) Flexible use of letter to represent quantitative relation. Teacher 
required students to use letter flexibly to represent quantitative relation. 
For example, S school teacher and L school teacher implemented the task 
from their textbook: In the following shapes (Figure 1), select two or 
more and make up a rectangle. Can you use letters to present length, 
width and area of the rectangle? 
 
 
 
 
 
 

Figure 1. Rectangle problem 
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Table 3 shows the high frequencies occurred at the first three hierarchy 

levels. When the three teachers carried out objectives on knowledge and 

skills, there was no significant difference in their classroom (2(6)=9.341, 

p=0.155). It indicates that teachers emphasized on developing students’ 

knowledge and skills in their classrooms. Moreover, each teacher 

consistently preferred to teach at the mastering level (2(3) = 42.925, 

p<0.001; 2(2)=73.524, p<0.001; 2(3)=63.090, p<0.001). It means that 

teachers focused on high cognitive level when they implemented 

objectives on knowledge and skills in mathematics classrooms. 

Specifically, teachers intended to enhance student’s ability to use letter to 

represent quantitative relation in realistic situations. In contrast with The 

Standards, teachers’ requirement was higher than curriculum objectives.  

Table 3. Knowledge and skills: curriculum objectives carried out in three schools 

Knowledge and skills S(32) Y(32) L(32) 

Knowing 

Knowing different means of letter in life and 

mathematic 
  1            1           1 

Knowing use of letter to represent number   1            1           1 

Knowing expression means   2            1           2 

Distinguishing multiplication from addition   5            0           7 

Understanding 

Understanding use of letter to represent 

number 
  3            2           4 

Understanding square meaning 1 1 3 

Understanding operational law 1 1 2 

Understanding the basis of combining like 

terms 
5 3 2 

Mastering 

Using letter to represent quantitative relation 

in realistic situation 
13 21 20 

Using letter to represent pattern 3 3 2 

Finding expression value 2 5 4 

Mastering the rule of writing algebraic 

expression  
6 14 11 

Mastering the rule of combining like term 8 10 7 

Mastering the rule of expression 

multiplication 
1 0 0 

Flexible 

applying 

Flexible use of letter to represent quantitative 

relation in realistic situation 
1 0 1 
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In China, that the principle of “basic knowledge and basic skills” was 

explicitly put forward for the teaching of mathematics has a long 

tradition. Most Chinese teachers believe that knowledge and skills are a 

foundation for learning mathematics. Without a solid foundation it is 

impossible to realize student’s creativity, and ultimately let alone 

students’ individual development (Zhang, Li, & Tang, 2004).  

In China, examination is an important part of school mathematics 

teaching and learning. In fact, examination achievement is one of 

important evaluative indexes for teachers and students’ work. In order to 

help their students overcome different items and gain high performance 

in examinations, teachers usually increased requirement for students 

learning when they implemented The Standards in their classrooms. 

Teachers believe that difficult and deep content is beneficial for students’ 

learning. Even if they could not reach the level, students also could 

develop their inspiration from the learning process. Teacher’ belief 

maybe originated from ancient philosophy. Ancient Chinese 

philosophers believed that only when a high goal was set, a satisfying 

achievement could be gained (取乎其上, 得乎其中；取乎其中，得乎其下; 取乎其下，则无所得矣). 

3.2 Mathematical Thinking 

(1) Using number and letter to describe quantity in the real world. 

Mathematical thinking involves three aspects. The first one is using 

number and letter to describe quantities in the real world. The textbook 

highlights this aspect and supplies a large number of exercises for 

student practice. These textbook exercises were totally employed by the 

three teachers in their classrooms (Table 4).  

Furthermore, the L school teacher selected a problem from other 

material in her classroom (LL1-5). She said: “Let us play a game now. 

Look at this picture. There are three figures. There are three expressions 

of y-25, y, and y+21. If we use them to express ages, which expression 

can present grandmother, mother, or girl’s age?”  When students solved 

the problem, they should connect figure’s age and appearance, and 

compare the quantities represented by expressions (see the pictures 

shown in Figure 2). 
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Table 4. Textbook exercises on using number and letter to describe quantity in the real 

world 

Column in  

the 

textbook 

Page 

No. of exercises 

on using number 

and letter to 

describe quantity 

in the real world 

Example 

Thinking 

and doing  
107 4(80%) 

4. Fill in formula containing the letters in 

parentheses. 

   (1) A coat costs x dollar(s), a pair of trousers 

is 12 dollars cheaper than the coat. The pair of 

trousers is (    ) dollar(s). 

   (2) Xiao Gang reads 15 pages of book every 

day, (    ) pages are read totally in x days. 

   (3) There were 35 people in a bus, x people 

got off the bus at Xinjie station while y people 

got on. Now there are (    ) people in the bus. 

Thinking 

and doing  
109 3(60%) 

3. Fill in formula containing the letters in 

parentheses. 

  (1) Xiao Ling bought 1 pen and 4 notebooks in 

a shop, a pen was 7 dollars, a notebook was x 

dollar(s). She paid (    ) dollars in total. 

   (2) Canteen imported x bags of rice, one bag 

of rice weighed 50kg. It had been eaten y kg, 

there were still (    ) kg remaining. 

    (3) Young Pioneers play mass games. There 

are x boys and y girls in a line, standing 8 lines, 

(    ) people take part in it totally. 

Thinking 

and doing  
110 4(80%) 

1. There are (    ) kg of apples and (    ) kg of 

pears, apples and pears are (    ) kg in total.       

 
apple is (    ) kg heavier than pear. 

Exercise 9 112 3(50%) 

3. Fill in the appropriate formula of the blanks 

in the table below. 
 

Speed 

(km/h) 

Time (h) Distance 

(km) 

80 t  

  v  s 

 t s 
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     grandmother                             mother                                 girl 

Figure 2. Pictures of grandmother, mother, or girl 

 

(2) Plausible reasoning. Developing student plausible reasoning 

through experiment, induction, and analogy is the second aspect of this 

strand. In the textbook, three exemplars (totally six exemplars) were 

designed for students exploring geometric patterns. The textbook authors 

believed that geometric patterns are valuable materials for improving 

students’ plausible reasoning. Teachers should require students to make 

generalization based on numerical sentences in list when they employed 

these exemplars in practice (Sun & Wang, 2011). The following pattern 

is the first exemplar in the textbook (Figure 3).  

  

 
 

Figure 3. Triangle pattern 

 

(3) Deductive reasoning. Developing students’ deductive reasoning in 

problem solving is the third one. One case is from S school teacher 

classroom (SL3-1). She required students to explain why 3a +4a equal to 

7a. She asked: “why do you say the two expressions are equivalent?” 

One student answered: “7a is the result of distributive multiplication. 

You know 3 plus 4 multiplied by a.” In this episode, the teacher required 

students to not only know how to operate, but also know the rule of 

operation. 

 Put a triangle with three small 

sticks: 

After adding a triangle, the number 

of total sticks: 3+2; 

After adding two triangles,the 

number of total sticks:3+2×2; 

After adding three triangles,the 

number of total sticks:3+2×(  ); 
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Another case is from L school classroom (LL4-1). In the textbook, 
there is a question whether 2x equals x2. It’s an easy question. Students 
answered correctly. The teacher asked: “can you let the two expressions 
equal?” She let the easy question become an interesting question. The 
equal in the former means the two expressions are identically equal, but 
the meaning of the equal in the latter means is different. It means that the 
values of the two expressions could be equal if special number was 
selected. When students answered the question, the teacher asked: 
“what’s the relation between them?” 

T：which one is bigger? Let us try! 

S23：x=1，2x=2，x2=1，2x>x2. 

S24：x=3，2x=6，x2=9，2x<x2. 

…… 

In fact, there exists logical relation among the three questions. When the 
teacher elicited her students to think step by step, they should consider 
the condition of statement, and make it classification. Therefore, the 
teacher provided a good opportunity for students to improving their 
deductive reasoning. 

Table 5. Mathematical thinking: curriculum objectives carried out in three schools 

Mathematical thinking S(32) Y(32) L(32) 
Use of number and letter to describe quantity in the real 
world 

9 15 13 

Plausible reasoning  3 2 3 
Deductive reasoning  6 6 5 

 

Table 5 data shows that there was no significant difference among the 
three teachers, when they implemented the curriculum objective on 
mathematical thinking (2(4)=1.307, p=0.860). Table 5 also shows that 
the frequencies occurred in three aspects are different. It was found that 
Y and L school teachers emphasized that students should learn to use 
number and symbol to describe quantity in the real world (2(2)=11.565, 
p=0.002;� 2(2)=8.000，p=0.018). Although there were no significant 
difference, the frequencies varied widely, when the S school teacher 
implemented the three aspects of the strand (2(2)=3.000, p=0.223). 
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It indicated that when the three teachers carried out the objectives on 

mathematical thinking, their attention on the three aspects maybe was 

different. It was also found that each teacher paid more attention to use 

of letter to represent quantity in real life, but overlook improvement of 

plausible reasoning. Although, The Standards did not explain how to 

deal with the three aspects in classroom practice, the used textbook gave 

teachers a hint in their practice, because a large number of exercises on 

the first aspect were designed in the textbook. As was natural, under the 

guidance of the textbook, teachers spent more time on using letter to 

represent quantity in the real world when they implemented The 

Standards. In fact, using number and letter to describe quantity in the 

real world could be seem as a preliminary modeling, which was list as 

one of core concepts in revised Standards published in 2012 (later 

referred to as The Standards 2011, Ministry of Education, 2012).  

However, to a surprising extent, teachers ignored the second aspect, 

even if the textbook provided 50% examples on plausible reasoning. In 

contrast, teachers did not overlook improving student’s deductive 

reasoning, even if the textbook gives only one example (Figure 4). It was 

well known that the two kinds of reasoning have distinctive roles in 

solving problem. They complete each other. In plausible reasoning the 

principle thing is to explore solution and discovery conclusion. In 

deductive reasoning the principle thing is to proof conclusion (Ministry 

of Education, 2012). Furthermore, it was state clearly that in the first and 

second school stage plausible reasoning students should be provided 

more opportunities to learning plausible reasoning and in the third school 

stage deductive reasoning should be highlighted (Ministry of Education, 

2012). Therefore, in primary school teachers should pay more attention 

to plausible reasoning than the other in their classroom practice. 

Unfortunately, they did nott do so.  

In the teachers’ interview, they presented mathematics as a well-

considered and close-knit science. In their eyes, deductive reasoning had 

more important role than plausible reasoning for students learning 

mathematics. In fact, Chinese traditional mathematics education 

emphasizes on “logical and formal expressions of mathematical 

concepts, an awareness of logical accuracy of categorization and 

mathematics propositions and conformity of reasoning in solution 
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process to rigorous logical rules with sufficient reason and being 

expressed in a clear and formal way” (Zhang, Li, & Tang, 2004).  

 

  
 

Figure 4. Why is the equation 3a+4a=7a true? 

3.3 Solving Problem 

There were five aspects in the curriculum objectives of solving problem. 

However, Table 6 shows S school teacher just carried out two of the five 

aspects in this strand. Y school teacher and L school teacher carried out 

three aspects of it. However they just emphasized on the two aspects.  

(1) Exploring effective ways to solve problem, and try to find other 

way. They usually required their students to explore effective ways to 

solve problems. For example, the three teachers carried out a same task 

provided by their textbook: Hua constructed a triangle with toothpicks, 

and Fang constructed a square with toothpicks. How many toothpicks did 

Fang use more than Hua? Two ways were explored and explained by 

students in the three schools. When students used 4a-3a to present the 

answer, teachers encouraged them to employ (4−3)×a=a to present it 

again, and elicit them to construct the equation 4a−3a=(4−3)×a=a. 

Xiaohua put a triangle(s) with small 

sticks, Xiaofang put a square(s) with 

small sticks,how many sticks they 

take in all? 

 
Xiaohua takes 

3a sticks, 

Xiaofang takes 

4a sticks, the 

number of total 

small sticks are 

(3a+4a). 

 

3a+4a=7a 

 

 

Seven sticks are 

taken to put a 

triangle and a 

square, thus 

they take 7a 

sticks in all. 

 

 

What operation 

has applied in 

fact ? 
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(2) Expressing problem solving process, and explaining the result. 

Sometimes, when students got a correct result, teachers would give some 

wrong answers, and ask students to judge and explain. One case was 

observed from Y school when the teacher asked her students to use 

expression to represent an angle (∠3) degree in a triangle. The two 

angles in the triangle were given, which are ∠ ∠1=a°, and 2=b°. After a 

student answered correctly, the teacher said: “I also find two other 

answers from the class. One is 180°−a°b°, and the other is 180°− a°+b°. 

What do you think?” 

Table 6. Solving problem: curriculum objectives carried out in three schools 

Solving Problem  S(32) Y(32) L(32) 

Finding and posing simple problems from real life 0 0 0 

Exploring effective ways to solve problem, and try to find 

other way 

5 8 6 

Learning to cooperate with peers in problem solving 0 1 2 

Expressing problem solving process, and explaining result 9 7 8 

Reviewing and analyzing the process of problem solving 0 0 0 

It indicated that in classrooms students lacked opportunities to pose 

mathematics problems from real life, and review in problem solving. 

Students had a few opportunities to cooperate with peers in classrooms. 

On the other hand, students were provided so many opportunities to 

exploration, explanation, and discussions in classrooms. In other words, 

the classroom formed a special accountability structure (Schoenfeld, 

2007). Teachers posed all problems for students, elicited students to 

explore multiple ways to solve problems, and encourage them to provide 

explanation in public. Students solved all problems followed their 

teachers. It means that teachers controlled content which was taught in 

classroom, but they opened solving problem space for students. This 

phenomenon reflected a special classroom culture that student learning is 

an autonomic learning under teacher’s leading. However, the classroom 

environment should be seemed as a productive learning environment. 

Engle and Conant argued that highly productive learning environments 

have substantial consistencies. Common characteristics of those 

environments are that students are encouraged to take on intellectual 
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problems, and given authority in addressing such problems (Engle & 

Conant, 2002). 

However, The Standards also claim that classroom practice should 

emphasize on students posing problem, peer cooperation, and solving 

review (Ministry of Education, 2001). Why were these aspects 

overlooked in classrooms? In fact, in China, the textbook used by teacher 

is unified by local educational bureau. In order to supervise teaching, 

local Educational Bureau set up Teaching and Research Department to 

carry out academic activities, teaching evaluation, and achievement 

examination. The education system leads local different schools to keep 

substantial consistencies on content taught, learning requirement, and 

teaching schedule. In each school, Lesson Preparation Group of grade 

(LPG) also is set up. The mathematics LPG consists of all mathematics 

teachers in a grade. Teachers in group discuss and determine term 

teaching plan, unit teaching plan, and week teaching plan. They also 

unified teaching objectives, homework, and examination in the group. In 

this environment, any teacher has to keep consistency with other 

colleagues. The effective way to do this was to control what is taught in 

classroom, and determine teaching pace by prepared lesson plan. In fact, 

these classroom activities, such as students posing problem, peer 

cooperation, and solving review can easily disarrange lesson plan unless 

a teacher have good pedagogical content knowledge. Moreover, in 

China, there are about forty students in each classroom more than in 

western developed county. In such classroom environment, it is difficult 

for teachers to organize and manage students to discuss and cooperate in 

groups. These factors lead to the result that teachers did not want to run 

any risk in their classrooms. 

3.4 Affect and Attitude 

Table 7 indicates that there was no significant difference in the three 

schools, when the three teachers carried out the objectives on affect and 

attitude (2(10)=7.334, p=0.694). However, there existed significant 

differences among the six aspects in the strand (2(5)=74.889, 

p<0.001;� 2(4)=59.179, p<0.001; 2(3)=39.604, p<0.001). Table 7 shows 

that classroom teaching in the three schools improved students to engage 
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in classroom activities, and encourage them to discourse in public. In 

students’ interviews, we also can feel it. For example, Lin (a boy from S 

school) said: “my teacher always gives us so much time to explore and 

discuss difficult problems.” Jun (a girl from L school) said: “we like to 

discuss with my teacher and classmates.” 

Table 7. Affect and attitude: curriculum objectives carried out in three schools 

Affect & Attitude S(32) Y(32) L(32) 

Engaging to discuss mathematical problem  32 32 32 

Perceiving connection between mathematics and life  9 15 13 

Experiencing successfulness after overcoming difficulties 

in problem solving 

1 0 0 

Experiencing exploration and challenge in problem 

solving 

3 2 3 

Perceiving logicality of mathematical thinking, and 

certainty of mathematical result 

6 6 5 

Having consciousness of questioning 3 1 0 

 

However, students had few opportunities to experience 

successfulness after overcoming difficulties in classrooms. In fact, when 

a student gave a wrong answer, teachers usually asked other students to 

resolve it other than gave him or her one more opportunity to correct it.  

Moreover, Teacher should provide adequate opportunities for 

students to question peer ideas. In the following episode (YL1-3), we can 

find that student’s question is valuable for mathematics teaching. 

T: There are 3a toothpicks. Do you know what the letter a represents? 

S9: Any number. 

T: Any number? 

S10: Except zero. 

S11: Zero is Ok! Construct zero triangles with zero toothpicks. 

S12: Any natural number. Because a can not represent decimal fraction,  

    such as 1.3, 4.5. 

In fact, as The Standards claim, the four strands of curriculum objectives 

are integrated into an organic whole. Curriculum objectives could be 

achieved in diverse mathematics activities. The four strands complement 

and reinforce each other (Ministry of Education, 2001). For example, as 
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above mentioned, teachers emphasized on how to use number and letter 

to represent quantitative relation in real life, therefore, students could 

perceive connection between mathematics and life.  

As the three teachers highlighted some aspects of other strands, 

students could have more opportunities to foster related affect and 

attitude.  

4.    Conclusion 

In the context of curriculum innovation, the three teachers’ lessons 

showed great similarities. They developed students’ knowledge and 

skills of using letter to represent quantitative relations beyond suggested 

in The Standards. In the strand of mathematical thinking, classroom 

focused on using of number and letter to describe quantity in the real 

world. Teachers made light of developing students' deductive reasoning 

in comparison with plausible reasoning. When students solved problem, 

teachers improved students to use multiple-way and provide 

explanations. However, they provided students few opportunities to pose 

questions from realistic context. Students lack opportunities to reflect on 

problem solving. These implemented objectives influenced on students’ 

affect and attitude. It indicated that curriculum objectives were 

unbalanced carried out in classrooms, although curriculum innovation 

had carried out for about ten years. Moreover, the implemented 

unbalance is a common characteristic in mathematics classrooms.  

In fact, characteristics of curriculum innovation itself will affect the 

process of implementation (Fullan & Stiegelbauer, 1991). Curriculum 

innovation is complexity which reflects the amount of new skills, altered 

beliefs and different materials and so on required by innovation. A 

crucial factor is the innovation's clarity (about goals and means). Even if 

teachers have unanimously agreed to implement an innovation, and 

intend to make changes in their practice, they are not clear about what 

they are expected to do differently when they face with curriculum 

research unearthed examples. Teachers expect that teaching strategies are 

clearly described, and material is well-thought of. Perhaps, The 

Standards lacked adequate examples and cases, and was short of specific 
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suggestions and strategies for practice for teachers’ use. Fortunately, 

some changes have been made in The Standards 2011. 

Any national curriculum innovation is immersed in its cultural 

tradition and national policies. In Chinese tradition, teachers are required 

to shoulder main responsibility for students’ learning. It was written in an 

ancient classic that to teach without severity is the teacher’s laziness (教不严，师之惰). Therefore, it is no wonder that teachers’ requirements 

are often beyond The Standards, and they usually teach for test, in order 

to help their students get good grades in unified examinations. They 

believe that preparation for examination is more important than teaching 

reform. Moreover, in teaching practice, teachers are often required to 

keep unified schedule, and complete the textbook contents. In such 

circumstance constraints, few teachers dare to open up their own 

classroom. They intend to take control of their classrooms, so as to 

ensure to carry out lesson plans successfully. On the other hand, however 

classroom discourse and cooperation in groups were highlighted by The 

Standards. In fact, these ideas originated from western curriculum 

innovation (see, e.g., Principles and Standards for School Mathematics 

by the National Council of Teachers of Mathematics (2000) and 

Common Core State Standards by the National Governors Association 

Center for Best Practices and the Council of Chief State School Officers 

(2010)). Now it seems difficult to actualize them in classrooms. 

Recently, a large-scale assessment found that teacher demonstration is 

also a main teaching approach in classrooms (Ren, 2012). In China, a 

story is very popular. It said that oranges grown south of the Huaihe 

River are true oranges; once transplanted to the north of the river, they 

become trifoliate oranges (橘生淮南则为橘，生于淮北则为枳 ). 

Although they resemble the shape of leaves, yet they differ widely in 

taste. What accounts for it? The difference is in water and soil. It means 

that the same thing, because of different factors, will show different 

results. From this point of view, curriculum innovation can not be 

separated from particular cultural tradition and national policies. 

Otherwise it is meaningless. 
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Chapter 11 

Chinese Project-Based Classroom Practices: 

Promoting Students’ Engagement in 

Mathematical Activities 

XU Binyan  ZHU Guangtian 

We explore two cases of project-based instruction in Chinese Mainland 

which reflect the trend of change in current mathematics classroom 

teaching. The first case is to guide high school students in conducting 

statistical investigations. The second involves the mathematical activity 

of searching linear functions in real life. We evaluate students’ 

engagement in the project-based classroom practices through multiple 

aspects. By analyzing the classroom practice reports, we find that 

teachers can guide students to incorporate their previous experience as 

well as innovative ideas in mathematical activities. The findings also 

suggest that Chinese teachers emphasize the collaborative learning 

process, which intensively involves the teamwork in the classroom 

practices. We also administer quizzes to the secondary school students 

participating in the classroom practice. The result indicates that the 

teachers can apply project-based learning activities to help students 

master the fundamental mathematical concepts and principles. Further 

survey feedback shows that these project-based classroom practices can 

improve students’ engagement in mathematical activities.  

   

Keywords: mathematics classroom practices, mathematical activities, 

students’ engagement in mathematics classroom 

1. Introduction 

In the last decades, many studies have explored students’ engagement in 

mathematics activities from different perspectives. For instance, Filloy, 

Puig and Rojano (2008) studied the nature of mathematical activities 
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from the perspective of mathematical phenomena. They recognized that 

“mathematical objects are incorporated into the world of our experience, 

which they enter as phenomena in a new relation of phenomena/means of 

organization in which new mathematical concepts are created, and this 

process is repeated again and again” (p. 42). The authors emphasized that 

mathematics developed as the phenomena growing with each product of 

mathematical activities. Štech (2008) pointed out that mathematics 

activities in school mathematics should contribute to the development of 

thinking, motivation and identity from novice to expert. In order to 

clarify the contribution of mathematical activities, the author used a 

theoretical framework to analyze the features of school mathematics 

activities which have great potential for further development.  

Some researchers explored the components of mathematical activities 

in classroom, such as classroom communication, collaboration, 

re-creation, learning motivation and appreciation of mathematics. Alrǿ 

and Skovsmose (2003) investigated the relation between the qualities of 

communication in the classroom and the qualities of learning 

mathematics. They stated that “qualities of communication can be 

expressed in terms of interpersonal relationships, learning is rooted in the 

act of communicating itself, not just in the information conveyed from 

one part to another.” (pp.1-2). Steinbring (2005) investigated how new 

mathematical knowledge was interactively constructed in a typical 

instructional communication between students and teachers. The author 

claimed that true mathematical communications should be emphasized in 

classroom and “require the maintenance of a balance between 

situatedness and intended generality in the instruction, as well as the 

communication of given facts and properties with the intention of an 

interpretation and construction of relations” (p. 220). Middleton and 

Spanias (1999) reviewed researches about motivation for achievement in 

mathematics. They concluded that achievement motivation in 

mathematics can be affected through careful instructional design.  

There are amount of studies which focused on designing effective 

teaching and learning environment to promote students’ engagement in 

mathematical activities. For example, Bransford and his collaborators 

(1988) created problems situated with the useful applications of 

mathematics to stimulate students’ imaginations. However, Štech (2008) 



 Chinese Project-based Classroom Practices  339 

discussed some limitation of such situated approach to mathematics 

learning. Hoek and Gravemeijer (2011) investigated the influence on 

students’ mathematical activity manner due to teachers’ instructional 

skills such as the group-oriented coaching style. Students gradually 

developed a more exploratory way of collaboration, which indicated 

improved collaborative learning outcome. Focusing on project-based 

classroom practices, Meyer, Turner and Spencer (1997) studied students’ 

challenge during project-based mathematics instruction and illustrated 

how to support students in challenging academic work, such as a 

project-based learning. Boaler (1998) reported that students who learned 

mathematics in an open, project-based environment developed a 

conceptual understanding and project students had been “apprenticed” 

into a system of thinking and using mathematics in both school and 

non-school settings. Puntambekar (2005) discussed the important 

features of scaffolding theory such as on-going diagnosis, calibrated 

support and fading, etc. He also investigated how to apply scaffolding 

tools to support student learning in project-based and design-based 

classrooms. 

Since the year of 2000, Chinese researchers started to pay more 

attention to mathematical activities. A major research area is to 

investigate the characteristics of mathematical activities (e.g., Deng, 

2009; Huang & Tong, 2008; Li & Shi, 2012; Wang & Xia, 2012). Deng 

(2009), for example, pointed out that mathematics activities can help 

students to recreate mathematical concepts and solve mathematical 

problems based on their previous knowledge and experience. Wang 

(2012) emphasized that mathematics activity in classroom should be 

based on “designing problem clusters” which facilitates students to 

experience and engage in problem solving process. Such mathematical 

activities can also enhance students’ self-motivation on learning 

mathematics.  

The mathematics education researchers in China also focus on how to 

design effective mathematical activities from different angles (e.g., Li, 

2004; RGCCT, 2012; Zhong, 2009). For instance, Zhong (2009) 

conducted case studies on the teaching process of several expertise 

mathematics teachers and analyzed how the carefully designed learning 

environment in classroom encouraged students to gain experiences of 
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inquiring, reflecting and concluding mathematical problems in 

challenging mathematical activities. The Research Group of Core 

Contents and the Teaching in Primary and Secondary Schools (RGCCT) 

(2012) investigated the significance of information technology as a 

learning platform and pointed out that IT-based tools can be used as a 

basic mathematical activity.  

Comparing with the research from other countries or economics, the 

Chinese researchers basically explore the ideas, features and roles of 

mathematics activities. However, the Chinese mathematics curriculum 

standards have been developed and modified since 2000, which affected 

the Chinese mathematics teaching and learning to a certain extent. The 

mathematics classroom has gradually changed with more emphasis on 

mathematics activities. In this chapter, we conduct two case studies to 

investigate whether these project-based classroom practices are effective 

in promoting students’ engagement in mathematical activities. We also 

analyze the teachers’ instructional method and students’ feedbacks to 

probe which pedagogical strategies are effective in this project-based 

classroom practices.  

2. General Characteristics of Mathematics Classroom Teaching 

In the last decades, some studies explored mathematics classroom 

teaching in China and described several basic characteristics of 

mathematics classroom practices. Leung (2001) pointed out that the 

emphasis in Chinese mathematics classroom was on the mathematics 

content and the procedures or skills in dealing with the content. 

Moreover, Chinese teachers devoted great efforts in designing exercises 

with variation to develop students’ mathematical abilities or enhance 

their understanding of mathematics knowledge (Gu, Huang & Marton, 

2004; Huang & Leung, 2004; Ma, 1999; Xu et al., 2012). In addition, 

some studies pointed out that Chinese teachers also emphasized building 

up new knowledge on the stock of prior knowledge. An (2004) has 

investigated a Chinese teaching procedure in which the prior knowledge 

was reviewed and then connected to new knowledge in order to reinforce 

understanding of mathematics concepts. Also, Mok and Morris (2001) 
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studied that the major form of interaction in classroom between 

individual pupils and the teacher was explication of text upon the 

teacher’s request. The teachers raised questions to review materials, 

inspected students’ comprehension and improved their presentation 

skills. However, these questions did not directly target at determining 

how the pupil came to a particular understanding or misunderstanding of 

certain mathematical concepts.  

Such mathematics classroom teaching plays an important role in 

laying a solid foundation and building fundamental skills for the Chinese 

students. Li (1999, 2006) argued that the motto “practice makes perfect” 

was one underlying belief in mathematics class since many math teachers 

believed that through repeated imitation and practice, students would 

become highly skilled in solving mathematical problems. Some 

international assessments of mathematics education such as IAEP 1992, 

TIMSS and IMO exhibited high achievements of Chinese students who 

had taken large amount of routine practice and frequent tests. Li (2000) 

pointed out that the mechanism of routine practice should not be simply 

interpreted as mechanical imitation and memorization of mathematical 

rules and skills. He mentioned that the routine practice provided students 

with a necessary condition of concept formation and formed the first step 

of mathematical comprehension (Li, 2006). 

The traditional Chinese culture also emphasizes on students’ basic 

knowledge and basic skills of mathematics. Zhang, Li and Tang (2004) 

pointed out that the strong cultural backgrounds of mathematics 

education include the long-lasting agricultural culture, Confucianism 

learning culture, and the strict and unified examination systems. Base on 

such cultural traditions, the following general characteristics of 

mathematics classroom teaching can be identified (Xu et al., 2013): 

• Emphasis on introducing new knowledge step-by-step 

• Emphasis on the analysis of sample questions 

• Emphasis on consolidation of knowledge by revision 

• Emphasis on exercises and feedbacks 

The general characteristics above indicate that the Chinese 

mathematics classroom practices are well structured. Teachers often use 

several mathematical teaching models in the mathematics classroom, 
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e.g., the trial-instruction and feedback-regulation to achieve overall 

improvement in teaching quality (Gu, 1997a; Gu, 1997b), or the GX 

(Gao Xiao, Chinese phonetic symbol for “High Effectiveness”) 

mathematical classroom teaching experiment to increase the 

effectiveness and reduce learning difficulties (Li & Wei, 1999). 

3. Current Changes of Mathematics Classroom Teaching in China 

Several international studies revealed the relation between the 

mathematical achievements and the Chinese culture (Fan & Zhu, 2004). 

When entering the 21st century, the Chinese government endowed 

education with tasks to deepen education reform, optimize education 

structure and push forward the implementation of quality education (Pan, 

2005). Hence, the mathematics curriculum in China needs innovation to 

face the new challenges such as how to meet the needs for young talents 

who should not only build a solid foundation but also be capable in 

resolving complex situations. The new Chinese mathematics curriculum 

standards (MOE, 2001; MOE, 2012) were published for the first time, 

instead of revising the previous version of Chinese mathematics syllabus, 

which indicated an essential policy change. Unlike the traditional classes 

that focus on course content, the reformed Chinese mathematics 

curriculum emphasizes on student individual development. This 

standards-based reform has been studied from international points of 

view (e.g., Kulm & Li, 2009; Li et al., 2009) as well as Chinese 

perspectives (e.g., Cao, 2005; Jiang, 2005; Sun, 2005).   

One debate among the Chinese mathematics education researchers 

and teachers is about the value and goals of the mathematics curriculum. 

The trial version of mathematics curriculum standards (MOE, 2001) 

announced a goal of “mathematics for all”. The debate argued that the 

original mechanism of “mathematics for the elite” should be adjusted 

(Sun, 2005). The revised standard states that “every student must receive 

well-grounded mathematics education, while different students should 

have the opportunity to develop themselves in mathematics differently” 

(MOE, 2012, p. 2). The revised standard (MOE, 2012) promotes the 

general objective of mathematics education to be basic knowledge, basic 
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skills, basic thoughts and basic experiences. It outlines students’ skills as 

discovering, raising, analyzing and solving problem and emphasizes on 

students’ ability to raise questions and find solutions.  

Different voices have emerged regarding the structure and revision of 

curriculum content. For example, a heated dispute arose on the reform of 

geometry. The trial version (MOE, 2001) changed the traditional 

geometrical reasoning system by combining plausible reasoning with 

deductive reasoning. Jiang, a mathematician, expressed alternate views, 

“Plane geometry is thought to be too difficult for junior secondary school 

students. However, without including it in the junior secondary school 

curriculum, students will lack scientific spirit and competencies in 

generalizing, summarizing, and abstracting …” (Jiang, 2005). 

Based on the standards, the inquiry learning mode of “understanding 

situations, creating models, finding solutions, making applications, and 

invoking reflection and generalization” was advocated. But in reality, 

teachers found that although the classrooms became more active with the 

new method, teaching results were often less satisfactory. Sometimes, 

students rarely learned anything in one teaching period as they took part 

in more activities but thought less about the knowledge behind these 

activities. Some students joined in activities for fun and experience little 

intellectual involvement (Cao, 2005). It seemed that teachers wanted to 

give up using new teaching methods. In fact, the reform of teaching 

methods brought changes into the classroom. Students are encouraged to 

participate in more activities to be more active and independent in the 

learning process (Ma et al., 2013). Meanwhile, teachers are facing more 

challenges. They need to think about how to engage students in the 

exploration activities, and how to balance the independent exploration 

and mastery of knowledge.  

Currently there are few research-based works which investigate the 

characteristics of mathematics classrooms other than the general features 

(Huang, 2008). In the following section, we use case study to exhibit 

how teacher design classroom practice to promote engagement in 

mathematics activities. The goal of these mathematical activities is to 

develop effective teaching models within which students can actively 

work, think, understand, and reflect on mathematics. In addition, students 

are motivated in these reformed classroom practices to communicate 
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more with their classmates. We will also analyze the limitation and 

difficulties in the classroom practice.  

4. Project-based Classroom Practices Promoting Students’ 

Engagement in Mathematical Activities 

Below we describe teachers’ pedagogical methods for two project-based 

mathematics classroom practices that attempt to promote students’ 

engagement in mathematical activities. One practice was administered in 

high school and the other was conducted in middle school. Both practices 

were integrated in the teachers’ syllabus as regular projects for their 

curriculum. To investigate the effectiveness of the project-based 

classroom practice in promoting students’ engagement in mathematical 

activities, we first recorded and analyzed the design of the classroom 

practices. Then we explored the learning outcomes of the students who 

have participated into the project-based classroom practice. We also 

summarized the common difficulties that the teacher and students may 

encounter in the teaching and learning process of mathematical activities. 

Qualitative and quantitative evaluations of students’ engagement were 

administered at the end of the project-based classroom practice.      

4.1 Project-Based Classroom Practice Case 1: Engaging Statistical 

Investigation in Class 

4.1.1 Design of the Project-Based Classroom Practice 

The first project-based classroom practice was administered to the 

first-year high school students (10th grade) in the spring semester. When 

teaching the content about statistics (a mandatory topic of 10th grade 

mathematics), the teacher required the students to form several study 

groups. A study group usually consisted of four to six members and the 

students can freely choose their group partners. The teacher guided each 

group to first brainstorm together and pick out the investigation topic of 

their group. In the period of project-based classroom practice, the teacher 

taught students the statistical concepts and principles through traditional 
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lectures. At the same time, the teacher monitored each study group to 

apply the knowledge they learnt in class and conduct in-depth 

investigation of the topic they selected. Students needed to complete a 

studying report and submit it to the teacher. At the end of the regular 

lecturing period of this chapter about statistics, the teacher would 

observe and evaluate students’ presentation of their projects. In Table 1 

below, we use the timeline of one class carrying out the classroom 

practice in 2012 to illustrate a typical investigating process. 

Table 1. The timeline of the classroom practice for the study groups investigating the 

topics about statistics  

May 10th – May 13th  

(one 45-min class) 

Brainstorm and confirm the investigating topic of each 

group. Design the corresponding surveys and 

questionnaires (before learning the chapter of statistics). 

May 14th – May 20th  

(two 45-min classes) 

Collect data and conduct preliminary analysis (when 

learning the topics about random sampling).  

May 21st – May 25th  

(two 45-min classes) 

Draw statistical conclusion based on the data analysis 

(when learning the topics of estimating population 

behavior from sample data). 

May 26th – May 28th  

(weekend, no class) 

Complete the report and make posters of the 

investigating topics (when learning the topics of 

correlation of variables and reviewing the chapter of 

statistics). 

May 29th 

(one 45-min class) 

Present the outcome of each study group. 

 

The group members collaborated to complete the tasks of selecting 

topics, making surveys, collecting data, conducting statistical analysis 

and presenting their works. This project-based classroom practice can be 

divided into three stages as described below. 

Stage 1. Design survey questions and make investigation plan. At the 

beginning of the classroom practice, students should clarify the research 

questions in their investigation and write the corresponding surveys or 

questionnaires. Each group needed to send the draft of their 

questionnaire to the teacher and modify the survey questions according 

to the teacher’s feedback. Some groups would collect data from medium 

such as books or internet instead of distributed surveys. Then for these 
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groups, they needed to submit a detailed plan about the original source of 

their data, the method of collecting data and the principle of filtering 

data.  

In this stage, the teacher’s major role is to guide the students in 

brainstorming and help them organize ideas in a statistical viewpoint. 

The teacher would give specific suggestions about each group’s 

investigation plan to make sure they started the classroom practice on the 

right track. The students selected the following topics to conduct 

statistical investigation: 

• the nutritional components and target users for different drinks  

• the market size of the low-investment movies in local Chinese movie industry 

• the factors influencing the tendency of studying abroad for high school students 

in Beijing 

• the factors influencing the attendance of after-school academy for high school 

students in Beijing 

• the evaluation of different teams attending the 2012 Euro Cup and their 

supporting rate from Chinese high school students 

• the coverage and targeted users of WIFI hot-spots in Zhong Guan Cun area 

• the factors influencing the studying motivation for high school students 

• the factors influencing the choice between science and social science majors for 

freshmen in high school 

• the statistical analysis and prediction of NBA (National Basketball Association) 

final champions 

• the average lifetime for people in different occupations 

• the statistical analysis and prediction of gold medals won by China in 2012 

London Olympics 

• Chinese citizen’s awareness of the history and political situation about Huang 

Yan Island  

• the factors influencing the attendance of different sports for high school 

students 

• students’ expectation of “happiness” and the analysis of “happiness index” 

• statistics about the academic degree received by basketball players and the 

influence of academic degree on players’ career development in NBA 

• the factors influencing the reading situation of high school students 

• the situation about students’ network usage and the corresponding guidance of 

public voice 

• the trend of change in cell phones used by students 

• the market size of different lotteries and students’ opinions about lottery 

• etc. 
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Stage 2. Data collection and analysis. The teacher first needed to help 
each group to decide how to select the samples from population 
corresponding to their investigation questions. Then the students would 
distribute the questionnaires and collect data from the selected samples. 
The teacher would also provide materials about how to use Microsoft 
Excel or SPSS for the students to analyze the raw data and generate the 
statistical diagrams. Based on the statistical diagrams, the teacher would 
examine the preliminary conclusion on the investigation of each group.  

Stage 2 is the most challenging part in this investigating project. 
Students may encounter various difficulties when distributing surveys, 
organizing data or sketching diagrams. In this stage, the teacher would 
recommend suitable materials for students to learn and discuss. The 
teacher would also provide necessary guidance and suggestions 
according to the practical situation of each group. 

Stage 3. Write analysis reports and present works of the investigation. 

The investigating works should be presented in three ways: reports, 
posters and powerpoint slides. Each group would write report based on 
the statistical result of their investigation. Students also need to make 
posters to introduce their investigating process. In this editing process, 
the teacher offered the students with specific requirement on the format 
of reports and posters. The teacher also provided suggestions for each 
group to improve and finalize their manuscript. 

In the presentation day, the teacher would raise questions and 
comments according to students’ presentation. After all groups had 
presented their works, the teacher would summarize and evaluate the 
effect of the classroom practice based on the overall performance of 
different groups. 

This practice is a student-centered learning process. In this process, 
the teacher’s major role is to instruct, participate in and coordinate the 
group activities. The relation between the students’ activities and the 
teacher’s responsibility in different stages are shown in Figure 1.  

To facilitate the engagement in the classroom practice, the teacher 
needs to design suitable learning activities based on the target 
mathematical concepts and principles. The learning goals and 
requirements should be clarified to the students at the beginning of the 
project so that they can integrate these learning goals into their 
investigation appropriately. During the learning process, the teacher 
scaffolds the related mathematical knowledge to match the students’ zone 
of proximal development. The teacher’s duties also include participating 
in each group’s investigation to monitor the project progress and 
providing necessary support to help students overcome their learning 
difficulties. At the end of the classroom practice, the teacher should  
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Figure 1. The relation between the students’ activities and the teacher’s responsibility in 

different stages of the classroom activity 

 

summarize learning goals and comment on the outcome of each group in 

order to improve students’ understanding of mathematics. 

4.1.2 Learning Outcome in the Project-based Classroom Practice 

The classroom practice of statistical investigation covers the major 

statistics contents required in the Chinese mathematics curriculum 

standards. The teacher would differentiate the statistical features of the 

concepts such as mean, median and mode. The teacher also guided the 

students in retrieving information from statistical diagrams (bar graph, 

line graph, pie graph, etc.) and denoting the frequency distribution with 

histogram. Moreover, students were expected to understand the 

characteristic of discrete and continuous data distribution. They also need 

to learn the appropriate sampling method to test different hypothesis of 
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the population. These learning goals were carefully monitored by the 

teacher through the whole process of classroom practice.       

While participating in the classroom practice about statistics, students 

were engaged with the learning process from multiple aspects. Below we 

selected several excerpts from students’ investigation reports in 2012 to 

illustrate how the teacher conducted the project-based classroom 

practices that involved students’ life experience, teamwork, and 

creativity. 

A. Life experience reflected in the statistical investigation 

At the beginning of the project-based classroom practice, the teacher 

guided the students to pay more attention to the topics which were direct 

reflections of the hotspots or the issues existed in their lives. For example, 

since the students are going to decide whether to choose science or social 

science as their high school major, the teacher encouraged a group of 

freshmen to investigate “the factors influencing the choice between 

science and social science majors for freshmen in high school”. Another 

group of students carried out an investigation about “the factors 

influencing the attendance of after-school academy for high school 

students in Beijing” since many students and parents had the demand of 

tutoring. Through such investigations, students not only learned the 

statistical knowledge but also acquired a better interpretation of the 

issues they concerned about in life.  

Moreover, the investigating project can even help some students to 

make important decisions in their life. There was one boy in the class 

whose parents wanted him to apply to the universities overseas. However, 

when discussing with the teacher, this boy expressed unwillingness to 

leave Beijing and go abroad. Therefore, in this project-based classroom 

practice, the teacher suggested him to conduct an investigation about 

“the factors influencing the tendency of studying abroad for high school 

students in Beijing”. By processing and analyzing the collected data, the 

boy wrote the following conclusion in the investigation report: 

“… by surveying the intention of studying abroad, we conclude that the majority of 

the high school students in Beijing Haidian district prefer to study oversea. The main 

factors affecting their choice include the occupation and oversea experience of their 

parents, the strong need of self-enhancement of the students, the academic level and 
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educational quality of the universities in North America and Europe, etc. Meanwhile, 

we also find that there are some difficulties impeding the plan of studying abroad, 

such as the conflict between studying English and other subjects, the deprived 

sleeping time, etc.”  

From the result of the investigation, this student realized that studying in 

an abroad university might be a promising development path. He started 

to seriously reconsider the suggestion of his parents. One week after his 

group submitted the investigation report, this boy came to the teacher and 

said he was going to study TOEFL (the Test of English as Foreign 

Language, required for applying the universities in the United States) in 

the summer and try to apply the universities abroad in the future. The 

statistical investigation helped him to plan his future academic and career 

path from a new perspective, which reflected the positive influence of 

various mathematical studying activities on students’ life experiences. 

Hence, teachers can keep an eye on students’ life experience and use the 

project-based classroom practice as a chance to help students make 

decisions about their doubts or confusions.   

B. Teamwork involved in the collaborative study  

In the collaborative studying process, the teamwork of the group is of 

great significance. To complete the project, the teacher must illustrate the 

students about how to coordinate their works in an organized way. Also, 

the teacher needed to discuss with the students to make sure the 

characteristic and personality of each group member were respected. 

Otherwise, any uncooperative behavior may cause large obstacle for the 

whole project. The team members also need to communicate well with 

each other and properly utilize everyone’s specialty to accomplish the 

project efficiently. One group recorded their experience about teamwork 

in the investigation report as below. 

“… In this statistical investigation, we have learned a lot and experienced a lot. 

We find that there is uncertainty in statistics since the result somehow depends on 

our subjective ideas (e.g., the choices listed in the survey). We have also acquired 

new skills such as how to use the software (e.g., Excel and SPSS). Furthermore, 

the most important thing we learned from this project is teamwork and 

responsibility. Our team had frequent discussion and everyone contributed their 

ideas about how to improve our project. We tried to divide the works according to 
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each member’s specialty. For instance, Charlie (pseudonym of the student) has 

good logical thoughts so he wrote the draft about our survey questions based on 

the group discussion. The enthusiastic Ella distributed our questionnaires to many 

students in the school. The duty of making poster was assigned to Alice and Bob 

who are talent in art and design. The collaboration between our team members 

improves gradually through the process of investigation and presentation. We 

now understand that we must take responsibility to ourselves, to others, and to the 

decisions we made. We also appreciate all the help and support provided by our 

teacher and classmates. ” 

Such valuable learning experience about teamwork and collaboration 

can be hardly achieved from traditional lectures in the mathematics class. 

However, some groups did not performed well in the investigation and 

presentation although the group members had talents and capabilities. 

These groups failed to conduct a perfect project due to the unorganized 

collaboration and the lack of responsibilities. The teacher would use this 

chance to guide the students to realize the problems in their team and 

help them to behave more collaborative and responsible.       

 

C. Innovation appeared in the learning process 

In the project-based classroom practice, the teacher can elicit students’ 

innovation and creativity while they were engaged in their learning 

process. Specifically, the teacher provided the students with broad views 

about the topic selection as well as sharp opinions in some of the 

investigating questions. For example, based on the survey to 150 middle 

school and high school students, a study group developed a mathematical 

model to describe the “happiness index” of secondary school students. 

They concluded that in general the girls were happier than boys and the 

middle school students were happier than high school students. Another 

group of students provided feasible advice about how to choose 

after-school academy for the different levels of students after they had 

analyzed the data of relevant factors. These inspiring performances of the 

students can rarely be observed by the teacher from traditional lectures 

and homework.  

Moreover, through the project-based classroom practice, the teacher 

can promote students’ epistemology and help them realize the 

significance of general learning activities. A study group described their 
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experience in the investigation process as follows. 

“We tried to use computer to process our data and group the data into different 

categories. However, certain difficulties arose when we were doing statistics in 

Excel. There was a mismatch when we input the data into Excel, which caused a 

chaos in the output diagram. To solve this problem, we sought help from the teacher 

and searched the relevant forum on internet. Finally we fixed the problem and 

created the correct diagram. From this experience, we learned that deep thoughts 

would raise questions. Once a question was answered, new questions would arise. 

However, in this seemingly repeated cycle, these questions evoked us to think 

independently and to learn from each other. Such cycle of 

“thinking→questioning→learning→answering” reveals the goal and significance of 

the general learning activities.” 

4.1.3 Difficulties in the Project-based Classroom Practice 

Although the teachers carefully designed the project-based classroom 

practice so that students were actively engaged and endeavored to 

improve their investigation and presentations, the students may still 

encounter certain difficulties in the learning process. Below we describe 

the common difficulties which students have experienced in the statistical 

investigation. The teachers can emphasize on these aspects in the 

project-based classroom practice to facilitate students’ learning process. 

(a) Difficulties with designing survey questions. The textbooks used 

in Chinese middle school and high school had little discussion about how 

to design surveys. Therefore, there were many problems in the 

questionnaires created by the students. For example, many questionnaires 

just started asking questions in the first line without collecting the 

respondents’ information. Some questionnaires did not even have a title.  

Some problems also existed in the structure of the survey questions. 

Specifically, some questionnaires had scattered questions and the theme 

of the survey appeared vague; some surveys only reflected facial feature 

of the investigating topic and differentiation rate of the questions were 

low; the options in the questions were incomplete so that certain 

situations were not covered in the survey, etc.  

To improve the quality of the survey questions, the teacher could first 

give a brief introduction of the standards for good surveys. After the 

introduction, the teacher can provide the students with several sample 



 Chinese Project-based Classroom Practices  353 

questionnaires and lead discussion about the defects of each question. 

Hence students would be aware of the elements that should be included 

in their surveys. They would also be able to avoid the potential 

misunderstanding of the investigation questions.  

(b) Difficulties with data procession. Students had common 

difficulties about how to process the collected data. When organizing the 

raw data, students needed to categorize the data into appropriate groups 

and count the frequency of the data falling in each group. Although some 

groups created multiple choice questions to quantitatively categorize the 

survey data, the interval of the options may not be properly set up. Hence 

the frequency distribution cannot properly reflect the nature of the 

investigated topic. Moreover, in the high school textbook of mathematics, 

the chapter of statistics did not introduce the application of statistical 

software. Hence some groups with little experience in using Excel or 

SPSS encountered great difficulties in processing data, especially after 

they had collected a large amount of survey feedback.  

Since high school students are usually proficient in using multimedia 

and internet, the teacher can search the related multimedia materials 

online about the basic operation of Excel and SPSS. Students can refer to 

these online materials when they are learning how to use the statistical 

software. Moreover, the teacher can also prepare manuals or video 

tutorials with concrete examples selected from students’ projects. Hence 

students can follow the steps of processing the sample data when they 

conduct statistical analysis of their own data with Excel or SPSS. 

(c) Difficulties with investigation report. In the traditional learning 

process, the students usually submit written materials as homework or 

test papers. They seldom had chance to present their interpretation of 

mathematics in the form of academic report. Therefore, there were many 

problems existed in the statistical reports written by the students. For 

example, a draft report from a study group cited a poem (shown below in 

underlined italic) as the introduction part and then directly started 

discussing the statistical result.  

“Sewing threads in my kind Mother's hand was shuttling through a coat for me a 

wayward boy. She sewed them before seeing me off neatly closed for fearing that I 

might return much too lately. Oh , how can I believe a human being's gifts can 

repay the blessings of the god in any way. A meaningful investigation successfully 
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ends and we obtained the results as expected…” 

There was no description in the report about the background of the 

investigation, how to select the sample and how to analyze the collected 

data. Such problems of missing necessary introduction and elaboration 

existed in the reports from many groups (though most groups did not cite 

an irrelevant poem as above). 

Besides the introduction part, students also had difficulties with 

deriving reasonable conclusion from their statistical results. Some groups’ 

conclusions were weakly or hardly supported by the investigation data. 

For example, a group conducted a survey about the use of cellphones in 

high school campus. The survey included ten questions about the 

cellphones such as the price, color, function, brand, usage, etc. After the 

group summarized the statistical result of these ten questions, they wrote 

the following conclusion in the report. 

“Through the investigation, we conclude that high school students’ purchasing 

behavior depends on the financial support from their family and most of the 

purchasing behavior is rational consuming. In the trend of economic globalization 

and political multi-polarization, we high school students are endowed with new 

responsibility. We should actively absorb knowledge and cultivate correct 

consuming habit. We can pursue distinct personality but not blindly follow the 

fashion. We should also oppose extravagance and waste…” 

In the report above, there was little statistical data that supported the 

conclusion. Their comments and discussion about the investigation went 

off-topic about the theme of the survey. To help students write reports 

with acceptable academic standards, the teacher can ask students to read 

several research papers published in academic journals. The teacher can 

further lead group discussions about the common features in the format 

of academic papers so that the students could follow the similar 

structures in writing their own investigation reports. 

4.1.4 Evaluation of Students’ Engagement in the Classroom Practice of  

Statistical Investigation 

We administered a quiz to the 34 students engaged in the classroom 

practice of statistical investigation. The quiz was designed based on the 
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framework of statistical literacy (Gal, 2002). Unlike the traditional tests 

that focused on quantitative calculation, the quiz used for evaluation of 

the classroom practice emphasized on students’ qualitative understanding 

of statistics. The two questions in this quiz were adapted from real-life 

situations. The full score for this quiz was 50 points. All of the 

sub-questions in the quiz required the students to explicitly explain their 

answers or choices and partial credits were assigned to incomplete 

answers. In this chapter we elaborate two questions to illustrate students’ 

understanding of statistics after their classroom practice.  

Question 1 in the quiz required the students to analyze an 

investigation plan as shown below in italic. 

• To investigate the satisfaction of tourists visiting the twelve free 

parks in the city, the surveyor makes the following plan: He is 

going to interview tourists randomly in the three parks near his 

home from 9am to 5pm through Monday to Wednesday every week. 

The sample will contain 300 interviewees with a 50-50 gender 

ratio. The satisfaction rate can be estimated from the data of the 

300 tourists.  

(a) What is the sampling method used in this investigation? 

(b) Is there any deficiency with the investigation plan? Explain. 

(c) Suppose you are going to take charge of this investigation. 

Please make an outline of your investigation plan and create a 

questionnaire for distribution.  

The first sub-question (a) asked about the sampling method used in 

this investigation. Only 10 out of 34 students provided the correct answer 

of stratified sampling (full score of 5 points) while other students wrote 

incomplete answers such as random sampling (partial credits assigned). 

The next sub-question (b) asked the students to find out the possible 

faults in this investigation plan, e.g., location, time, gender, sample size, 

etc. Among the 34 students taking the quiz, 7 of them found three faults 

(full score of 6 points), 14 students found two faults (4 points), 8 students 

found only one fault (2 points) and 5 students cannot find any potential 

faults in the plan. Then students needed to create surveying questions and 

write their own plan to investigate the satisfaction rate of tourists visiting 
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the twelve free parks. The full score of this plan-designing sub-question 

(c) was 25 and students’ performance was graded from multiple aspects 

such as the validity of survey questions, feasibility of data collection, 

time arrangement and workload distribution, etc. About 1/3 of the 

students got a score above 20 (out of 25) in this sub-question and half of 

the students had a score around 15. The result of this question indicated 

that the project-based classroom practice were effective in teaching 

students how to apply their statistical knowledge in solving practical 

problems.  

Question 2 in the quiz showed two graphs to the students and tested 

their ability of interpreting statistical diagrams. A line graph (Figure 2) 

represented the pollution of a river in a town through 1990 to 2000. 

Students needed to judge whether the river had been polluted and explain 

their answer. Two points were assigned to the students who gave both 

correct answers and reasonable explanations. 33 out of 34 students got 

two points in this sub-question and only one student had one point 

deduced for incomplete explanation.  

 

 

Figure 2. Line graph used in the quiz to probe students’ understanding of statistics after 

classroom practice 

Another bar graph (Figure 3) in question 2 displayed the traffic flow 

of the town through 1990 to 2000 and students needed to describe and 
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explain the change of traffic flow. Similar to the previous sub-question of 

line graph, most students obtained full credits and only 2 out of 34 

students got 1 point in this sub-question for incomplete answers.  

 

Figure 3. Bar graph used in the quiz to probe students’ understanding of statistics after 

classroom practice 

After the students had answered the two sub-questions based on 

analysis of the two graphs, a third question challenged them to draw a 

conclusion about whether the town was urbanized through 1990 to 2000. 

Students should realize that although there was correlation between 

urbanization and increased pollution or heavy traffic, pollution and 

traffic are not causal factors of urbanization processes. Hence we cannot 

assert that the town was urbanized simply from the given graphs. 

Compared with the previous two sub-questions (each had a full score of 

2 points), the third sub-question weighed more credits in evaluating 

students’ understanding of statistics so the students were awarded 10 

points if they made correct conclusion and proposed potential factors that 

may indicate urbanization. Partial credits were assigned for incomplete 

answers or insufficient explanations. The rubric for this sub-question and 

the distribution of students’ scores are listed in Table 2. Twenty out of 
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thirty-four students made correct conclusion. But fifteen of them only 

claimed that the factors of pollution and traffic were not sufficient 

evidence for urbanization without further explain the possible standard of 

urbanization. The average score for 34 students in this sub-question is 6 

(out of 10). The result indicated that further instruction on interpreting 

statistical data was still required in the project-based classroom practice 

to help students build a hierarchical knowledge structure of statistics. 

Table 2. Rubric for the question of urbanization and distribution of students’ scores. 

Type of Answers Score Number of Students 

Give correct conclusion and provide other reasonable 

factors that may indicate urbanization 

10 5 

Give correct conclusion without providing other 

urbanization factors 

7.5 15 

Give wrong conclusion but provide a logical 

discussion about the factors of pollution and traffic 

flow 

5 2 

Give wrong conclusion and provide some discussions 

irrelevant to the graphs in this question 

2.5 12 

4.2 Classroom Practice Case 2: Search Linear Functions in Life 

4.2.1 Design of the Classroom Practice 

The second classroom practice was administered to the 8th grade middle 

school students. When teaching the content about linear functions, the 

teacher organized students into several study groups to investigate the 

application of linear functions in real life. The students were encouraged 

to brainstorm and select their own investigation topic though the teacher 

provided sample topics that were manageable by middle school students. 

The topics used include: 

• What is the relation between the weight of an object and the 

reading on the beam scale?  

• What factors determines the taxi fare? What is the relation 

between the taxi fare and these factors? 

• What factors determines the monthly cost of utilities such as 
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electricity, water and gas? How much money does your family 

pay for these bills? 

• Which shopping mall should the customers choose if the rules 

of discount are different?  

The teacher guided students to propose an investigation after they had 

selected their investigation topics. The teacher would clarify the 

requirements of the classroom practice and discuss the investigation plan 

with each group. Then students started to (1) organize the concepts and 

principles of linear functions in the textbook, (2) search for the relevant 

data and materials online or from library, (3) observe or measure the 

practical application of linear functions in real life, and (4) discuss and 

create the corresponding mathematical model. At the end of the 

project-based classroom practice, the teacher needed to evaluate students’ 

performance based on their written reports and PowerPoint presentation. 

The entire classroom practice took about 3 to 4 class hours in a 10-day 

period. Part of the classroom practice was arranged at the extracurricular 

time, e.g., math and science clubs in the afternoon, instead of the regular 

lecture time in the morning. Table 3 illustrated the schedule arrangement 

in the investigation plan submitted by one study group in 2012.  

Table 3. The timeline of the classroom practice for the study groups investigating the 

application of linear functions in real life  

Apr. 3rd – Apr. 4th  Brainstorm and confirm the investigating topic of each group. 

Divide the work for each group member. 

Apr. 5th – Apr. 9th  Search evidence and materials about the application of linear 

functions in real life. Share and discuss the materials in group.  

Apr. 10th – Apr. 11th  Complete the report and make PowerPoint slides of the 

investigating topics 

Apr. 12th  Present the outcomes of each study group. 

In this classroom practice, the most challenging part is to observe the 

application of linear functions in real life and construct the corresponding 

mathematical model. On the one hand, students should explicitly express 

the linear function describing a practical situation and evaluate whether 

the linear function they found is reasonable. On the other hand, students 

need to analyze the advantages and disadvantages of different 

mathematical models and propose possible methods of solving practical 
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problems. Hence the teacher participated in each group’s investigation to 

help students realize the relation between the abstract mathematical 

concepts and the concrete real-life themes. At the end of the classroom 

practice, the teacher also summarized and evaluated the learning 

outcomes of each group so that the students can better understand the 

contents about linear functions.   

4.2.2 Learning Outcome in the Classroom Practice 

In the classroom practice of “searching linear functions in life”, the 

teacher helped the students to understand the similarity and difference 

between direct proportion functions and linear functions. For example, 

students learned the properties of linear functions such as increasing and 

decreasing trend through the investigation of the linear relation in daily 

life. The teacher also used the classroom practice as an opportunity to 

review the previous knowledge about the corresponding relation of 

functions, i.e., the independent variables and dependent variables. During 

the investigation process, students in some group also had chance to 

discover new contents, e.g., piecewise functions, constant functions or 

inverse proportions, and the teacher would guide the students to study the 

connection between these new functions and the linear function.  

The middle school students were actively engaged in this 

project-based classroom practice. The teacher led a class discussion so 

that each group can exchange ideas about what type of real-life situation 

they can observe, how to conduct investigation, and where to find the 

required materials, etc. In the previous case about statistical investigation, 

we illustrated high school students’ engagement from the aspects of life 

experience, teamwork and creativity (Section 4.1.2). Below we would 

describe the middle school students’ engagement in their classroom 

activity from the same perspectives in order to compare the effect of the 

project-based classroom practice in different grades of secondary school. 

1. Life experience reflected in the investigation. Since the theme of 

this middle school project-based classroom practice is to “search linear 

functions in life”, students had greatly enriched their life experience in 

the investigation process. The teacher helped a group of students to probe 

the linear relation between the mass of an object and the reading on a 
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beam scale. Before the classroom practice, students had rarely used any 

scales other than bathroom scale and none of them knew how to read a 

beam scale. In the investigation process, the teacher provided students 

with a real beam scale and demonstrated how to use it. Hence, students 

observed that the weight on the scale needed to be moved further when 

heavier object was measured. Through discussion with the group 

members, the teacher helped the students to create the mathematical 

model of real beam scale in a graphical representation as shown in  

Figure 4. 

 

Figure 4. Graphical representation of a beam scale 

Students realized that reading on the scale depend on the distance 

between the zero line and the ring (l0). The linear relation between the 

mass of the object (G) and the reading on the scale (l2) can be expressed 

as Gl1=F(l0+l2), where F is the mass of the balance weight and l1 is the 

distance between the ring and the measured object. The teacher provided 

clues to the students so that they can figure out the secret of some 

vendors who gave short measurement by using lighter balance weight. 

When F decreases, the length of l2 would increase to keep the equation 

balanced. Hence the reading on the beam scale appeared larger than the 

actual mass of the measured object. 

The teacher helped another group of students to investigate the 

purchasing strategies at different shopping malls with different sale 

discounts. For instance, suppose the shopping mall A had 100 yuan 

discount for any purchase above 199 and another shopping mall B had  

40% off on any purchase. The discount rate with the model of linear 

functions can be described as below. ����	�: �� = 
 − 100	(
 > 199)	
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����	�: �� = 0.6
 

When yA<yB, the values of x satisfy that 
 − 100 < 0.6
 , i.e., 
 < 250. Hence, students realized that it was worth purchasing from the 

mall A only if the origin price was between 199 and 249 yuan. While 

analyzing the investigation result, the teacher suggested the students to 

further discuss about rational consumption or extend their mathematical 

models of discounting sale to other purchasing behaviors such as 

installment payment and cashback.      

2. Teamwork involved in the collaborative study. The middle school 

students previously had limited experience in collaborative study. Hence 

the teacher can enhance students’ collaboration and teamwork in their 

learning process of the project-based classroom practice. At the 

beginning of the classroom practice, each group first needed to divide the 

investigating work appropriately among the group members. Here we 

take the study group of the topic about “linear function in public 

transportation” as an example. In their investigation plan, the students 

described the task of each group member as follows (Table 4). 

Table 4. Division of the work for each group member in the collaborative study of the 

topic “linear function in public transportation” 

Name (pseudonym) Task 

Alice  Search the information online about ticket price of public 

transportation (bus, train, taxi) in the city of Wenzhou 

Bob Collect the receipts of taxi and analyze the relation between the 

distance travelled and the price of the taxi 

Charles Collect the tickets of bus and trains and analyze the relation 

between the distance travelled and the price of the bus or the train 

David Organize the materials collected by others and write the draft of 

the investigation report 

The teacher asked the members in the group not only finished their 

individual tasks but also helped each other to collect relevant information 

and materials. Students exchanged these materials in their group meeting 

and discussed the collected information together. Through the discussion, 

the teacher guided the students in the study group to form integrated 

understanding about the investigation topic from different perspectives. 

For example, in the investigation of “linear function in public 
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transportation”, the student Bob took charge of collecting taxi receipts. 

His major collection was made at the city of Wenzhou. However, another 

student in that group just travelled to a nearby city, Taizhou, on the 

weekend during the investigation process. So he brought back some taxi 

receipts from the Taizhou city. In the group meeting, the teacher 

reminded the students to notice that the taxi fare in different cities were 

different. In Wenzhou, the initial flat rate was 10 yuan within 4 km, 2 

yuan/km for extra distance between 4 to 10 km, and 2.5 yuan/km for 

extra distance above 10 km. The additional gas charge is 2 yuan for each 

service. In Taizhou, the initial flat rate was 6 yuan within 1.5km and each 

additional kilometer cost 1.9 yuan. While investigating the different taxi 

charge in different cities, students proposed a question about whether it is 

cheaper to take taxi in Taizhou than in Wenzhou. The teacher discussed 

this question together with the students and analyzed the elements that 

can be described by mathematical models. Hence, students modified this 

question as “within what distance is the taxi fare in Taizhou cheaper than 

in Wenzhou”, which reflected an improved understanding of applying the 

knowledge of linear functions.   

3. Innovation appeared in the learning process. In the project-based 

classroom practice, the teacher observed students’ creativities in 

extending their knowledge of linear function to explain the real life 

situations. Although the teacher had not taught the chapter of piecewise 

function in class, the students searched and self-studied the related 

knowledge when investigating the mathematical model of taxi fare. They 

successfully applied their new knowledge about piecewise function to 

build a mathematical model of taxi fare in Wenzhou city as below (the 

taxi fare rate was discussed in section 4.2.2.B).  

� = �10 + 2																																																		(0 < 
 ≤ 4)10 + 2 + 2(
 − 4)																									(4 < 
 ≤ 10)10 + 2 + 2 × 6 + 2.5(
 − 10)												(
 > 10)	 
In the function, y is the taxi fare and x is the distance travelled (in the 

unit of kilometer). The piecewise function can be simplified with 

combined constant, i.e.,  
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� = �12														(0 < 
 ≤ 4)2
 + 4			(4 < 
 ≤ 10)2.5
 − 1							(
 > 10)  

The first part of the piecewise function is a constant 12. To convert 

the constant function into the standard format of linear function y=kx+b, 

the teacher led the group members to discuss about the meaning of the 

slope of a linear function. Such discussion helped students to better 

understand the nature of linear functions so they expressed the function 

in the linear form as y=0x+12. They further used the zero slope to 

describe the bus ticket price as y=0x+2 (fixed price of 2 yuan for buses). 

The teacher also helped the students to relate the mathematical 

knowledge with other scientific subjects. When the students were 

investigating the linear relation of the beam scale, the teacher 

recommended them to search for relevant information from textbooks of 

other disciplines. As a result, students found that the application of beam 

scale can be explained by the lever principle introduced in the physics 

textbooks. Hence the students successfully build the mathematical model 

of beam scales by using linear functions to describe the lever principle. 

With the material provided by the teacher, the students can make a 

simple beam scale to illustrate their understanding of the lever principle 

in the presentation day. Through this project-based classroom practice, 

the teacher not only enhanced students’ understanding of mathematical 

theories but also improved their practical skills of applying math and 

science knowledge in real life. 

4.2.3 Difficulties in the Classroom Practice 

As described in case study 1 (Section 4.1.3), high school students 

engaged in the project-based classroom practice of statistical 

investigation may encounter difficulties in designing survey questions, 

using software to process data, generating statistical diagram and writing 

report with suitable structure. In case 2, since the theme of the classroom 

practice was about linear functions which did not explicitly involved the 

statistical survey, the middle school students did not experience 

difficulties in designing survey questions or processing a large sample of 
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data. However, they showed similar problems as the high school students 

when dealing with diagrams and reports. Besides, the teacher noticed that 

the middle school students had additional difficulties in their learning 

process such as interpreting and applying the graphs of linear functions. 

When the students were preparing their investigation reports, the 

teacher asked them to describe the mathematical model through various 

representations, i.e., algebraic expression, word expression or graphical 

expression. The students showed a good grasp of handling algebra 

equations as well as verbally expressing the mathematical models. 

However, they had certain difficulties with graphical representation of 

linear functions. Many students did not realize the connection between 

the algebraic and graphical representation, e.g., the relationship between 

the coefficient of the independent variable and the slope of the graph, 

and that between the constant item in the function and the intercept on 

the y-axis, etc. Hence when sketching the graph of linear functions, the 

students preferred to first mark down four or five points in the coordinate 

by plugging values of x and then connect these dots into a straight line. 

Therefore, to help students improve their capability of applying 

mathematical knowledge about linear functions, the teacher can 

demonstrate how to draw the straight line by observing the slope and 

intercepts of the linear function when leading the project-based 

classroom practice. 

4.2.4 Evaluation of Students’ Engagement in the Project-based 

Classroom Practice 

To evaluate the middle school students’ engagement in the project-based 

classroom practice, we distributed a questionnaire to 24 students who 

had finished their project of “searching linear functions in life”. The 

survey questions were designed in a five-point Likert scale (5-strongly 

agree, 4-agree, 3-neutral, 2-disagree, 1-strongly disagree). Three 

questions in this survey probed how students thought about the relation 

between the classroom practice and the corresponding mathematical 

knowledge.  
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• Q1. The classroom practice strengthened my impression on the 

related mathematical contents. 

• Q4. The classroom practice increased my interest in learning 

mathematics. 

• Q7. The project I have done in the classroom practice can improve my 

score in mathematics exams. 

Twenty-three out of the twenty-four students agreed or strongly 

agreed the statement in Q1 that the classroom practice strengthened their 

impression about linear functions. Twenty out of twenty-four students 

agreed that they had more interest in learning mathematics as stated in 

Q4. The average scores for Q1 and Q4 were 4.6 and 4.3 respectively. 

However, there was an even distribution for students’ answers to Q7. 

One third of the students believed that the project-based classroom 

practice would improve their score in the math tests. One third of the 

students thought that the project had no effects on their test scores while 

the other students’ responses were neutral. Such neutral and negative 

response to Q7 was majorly due to the fact that the students had rarely 

seen project-based questions in their quizzes or exams. The average 

score for Q7 was only 3.1 out of 5. Hence, the teacher can add contents 

related to the mathematical projects into the quizzes and exams in order 

to emphasize the significance of the project-based classroom practice. 

Two questions in this survey examined students’ achievement from 

the classroom practice besides mathematical knowledge.  

• Q3. The project-based classroom practice provided me more 

opportunities to discuss the relevant topics with my classmates. 

• Q5. The classroom practice was beneficial to other subjects such as 

sciences or arts. 

All twenty-four students agreed or strongly agreed that they had more 

chance to discuss with their classmates while working on the project 

together. About 70% of the students believed that the mathematical 

project also helped them to practice the related subjects of sciences or 

arts. Two out of twenty-four students disagreed that the classroom 

practice was beneficial to other subjects while five students hold a 

neutral position about this statement in Q5. The average scores for Q3 

and Q5 were 4.6 and 4.0 respectively. 
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Another two questions in this questionnaire asked about students’ 

overall experience with the project-based classroom practice.  

• Q2. I am NOT used to studying math through the project-based 

classroom practice.  

• Q6.I feel the project-based classroom practice is a waste of time and 

unnecessary. 

Only one student chose neutral and all other twenty-three students 

disagreed or strongly disagreed with that statement in Q2. No student 

considered the classroom practice was a waste of time as claimed in Q6. 

These results showed that students can accommodate to the project-based 

learning and had an overall positive opinion about their experience in the 

classroom practice. The average scores for Q2 and Q6 were 1.5 and 1.3 

respectively (disagree with the negative attitude toward the project-based 

classroom practice). The results showed that the project-based classroom 

practice was an effective teaching method that can improve students’ 

engagement in mathematical activities. 

In the survey we listed five potential improvements that the students 

can achieve from the classroom practice.  

A. improved the understanding of mathematical concepts 

B. changed the attitude about mathematics 

C. elicited interest in learning mathematics 

D. enhanced thinking skills in mathematics 

E. understood the relation between mathematics and other subjects 

Students need to list all the achievements they obtained in the 

project-based classroom activities and arrange these possible 

improvements in the sequence from the most important (5) to the least 

(1). If a student did not write down a particular factor in his/her list, that 

questions would be assigned zero point. According to the feedback of 24 

students, we calculated the total points for each of the factors (Table 5).  

Table 5. The sum of students’ evaluation of the importance for different factors they may 

achieved from the classroom practice 

Factor A. concepts B. attitude C. interest D. skills E. other subjects 

Total Points 71 59 83 86 42 
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Two most important factors were C (83 points) and D (86 points) 

while the least important factor was E (42 points). Therefore, when 

conducting the project-based classroom practice, the teacher could 

emphasize on the cognitive function of the mathematical project to 

enhance students’ interest and skills in mathematics.  

We further interviewed the middle school students about their general 

comments for the classroom practice. Students felt that the mathematical 

projects were interesting and they enjoyed the fun of thinking in 

mathematics. When investigating the topic of “searching linear function 

in life”, students improved their ability of observation and found that 

mathematics was widely applied in their daily life. Some students said 

that they experienced certain pressure in the classroom practice when 

approaching the deadline and they felt nervous when giving presentation 

in front of the whole class. However, these students were also excited 

about the fact that they complete the project on time and presented their 

works successfully.  

Students provided valuable suggestions to their teacher on improving 

the classroom practice. They hoped to participate in developing the 

schema of classroom practice and collaborate with the teacher in 

selecting the research project. They also wanted to have some instruction 

manuals to guide them in designing investigation plan and distributing 

workload for team members. Some also suggested creating an effective 

rubric to rank the difficulty level of different projects and fairly evaluate 

the work for each group. The winning group should be rewarded so that 

they would be more enthusiastic about this classroom practice. Most 

students were willing to have more project-based study when learning 

mathematics and they suggested the teacher to use five or ten minutes in 

each math lesson to discuss the interesting application of mathematics.  

5. Summary and Conclusion 

In traditional classrooms, the teachers act as information providers and 

lead the educational process in the format of lectures and presentations. 

Students receive information in classroom and review the relevant 

knowledge through recitation and homework. However, in the 



 Chinese Project-based Classroom Practices  369 

project-based classroom practice, students need to gather information by 

themselves and select useful information through group discussion. Then 

the teacher helps the students to organize the selected information into a 

hierarchical knowledge structure when they are preparing the 

investigation report. The students lead their learning process while the 

instructor’s role is to assist the learners achieving their goals. Hence, the 

learning outcome of the project-based classroom practice largely depends 

on whether the teacher can improve students’ engagement in their 

learning process.  

The evaluation results indicate that the teacher properly conducted the 

project-based classroom practice so that the students were actively 

engaged in the mathematical activities. The teacher carefully 

incorporated the course requirement of the national mathematics 

curriculum standards into the project-based classroom practice. Hence, 

students had a solid grasp of the fundamental concepts and principles in 

middle school or high school mathematics. Meanwhile, the teacher 

helped the students to generate innovative ideas in the learning process 

of applying mathematical knowledge to solve practical problems. During 

the investigation, students closely collaborated with each other and 

learned the importance of teamwork in collaborative study. In the 

surveys and interviews, most students appreciated the learning 

experience in mathematical activities and expressed interest in having 

more opportunities to study mathematics through classroom practice.     
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Chapter 12 

A Large-Scale Video Survey on Taiwanese 
Fourth-Grade Classrooms of Mathematical 

Teaching Behaviors 

LEE Yuan-Shun  LIN Fou-Lai 

This study is to investigate the fourth grade teachers’ mathematics 

teaching behaviors in Taiwan. A large scale of two-staged stratified 

cluster sampling of fourth-grade math teacher teaching in the whole 

Taiwan was conducted. Video survey was applied, and the videos were 

taped within one semester. Usually, it took one day to tape one 

teacher’s instruction in one school; altogether, 60 teachers’ instructions 

in the participating schools were recorded. Instructional videos were 

recorded and digitized, coded and analyzed. The results showed that in 

the fourth-grade mathematics classroom teaching, concept statements, 

problem statements and solving questions each took about 30%, 20% 

and 50% of the time, respectively. In Content strand, the mathematics 

problems teachers taught were mostly of low complexity and repetition 

problems. In Mathematical ability, stating concepts and using 

procedures were the majority. In Mathematical power, connections 

with real-life were the majority.  

Keywords: Taiwanese classrooms, national sampling, video study, 

mathematics teaching 

1. Introduction 

In recent years, the results of Trends in International Mathematics and 

Science Study (TIMSS) (Olson, Martin, Mullis, 2008) and Programme 

for International Student Assessment (PISA) (Organisation for Economic 

Co-operation and Development (OECD), 2007) showed that in East 

Asian countries, the fourth grade and eighth grade students performed 

well in mathematics, ranking top throughout the world. Many scholars 

tried to analyze the factors that affect students’ achievement. Lin (2010) 
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states that the Ambiguity of Factors Contributing to Students 

Performance can be expressed as aX + bY + cZ, where X represents 

school lessons, Y represents out-of-school lessons, and Z represents the 

others, e.g., Societal, Cultural ..., and a, b, c is their weight. In the 

variable X, the teacher's teaching is a very important factor. Therefore, 

we are interested in mathematics teachers’ teaching methods, as the basis 

for the characterization of Students Performance.  

In 1999, seven countries including the United States and Japan 

participated in Third International Mathematics and Science Study 1999 

Video Study (TIMSS VS 1999) (Jacobs et al., 2003a). The aim was to 

compare eighth-grade teachers’ mathematics teaching behavior of 

various countries. Taiwan did not participate in the study. With the 

technique of TIMSS VS 1999, Lee et al. (2010) has studied Taiwan's 

fourth-grade teachers in their general behaviors of mathematics teaching.  

Although the TIMSS VS 1999 (Jacobs et al., 2003a) reported and 

compared the mathematical teaching behaviors of eighth-grade teachers 

in various countries, it did not offer a good analytical framework. Thus, 

we will probe into literatures and propose a framework on teachers’ 

mathematical teaching behaviors as the basis for analysis. The purpose of 

this study is to analyze Taiwanese fourth-grade teachers’ mathematical 

teaching behaviors. We took analyzing the teaching behaviors of 

Taiwanese mathematics teachers as a basis to find out what X represents 

in aX + bY + cZ and also to understand the possible causes of Taiwanese 

students’ internationally top-ranking mathematical performance. 

2. Theoretical Framework 

Taiwan's national mathematical curriculum guidelines (Ministry of 

Education, 2003) stress not only students’ learning of mathematical 

content knowledge, but also that students should acquire the ability to 

use what they have learned, so it advocates that students should be the 

pivot of teachers’ teaching, keeping the students’ development of 

mathematical abilities in mind. Students’ capabilities of problem solving, 

reasoning, communication, connection were emphasized in learning.   

Literature reviews found that the NAEP (NAGB, 2002) assessments 

of mathematics from 1996 to the years 2000 and 2003 came up with a 
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three dimensional assessment framework of Content strands, 

Mathematical ability, Mathematical power. This content of assessment 

framework is consistent with the Taiwanese national mathematical 

curriculum guidelines structure and the concept of NCTM (2000). In 

NAEP (NAGB, 2002), Content strands are divided into number sense, 

properties and operations, measurement, geometry and spatial sense, data 

analysis, statistics and probability, and algebra and functions; 

mathematical ability is divided into conceptual understanding, procedural 

knowledge and problem solving; mathematical power is divided into 

reasoning, connections, and communication. Chinese literary reformer 

and philosopher Hu Shi once said, “As you sow, so shall you reap.” If we 

wish to cultivate the inner ability of students on some dimensions, we 

must first make sure that the teacher is capable of teaching those 

dimensions. Suppose a teacher can’t pass certain abilities on to his/her 

students, but the students can still acquire such capabilities, then the 

importance of School Teaching (X) will decline, and the impact of Out 

of School Lessons (Y) and Social Factors (Z) will increase on students’ 

achievements. Therefore, we find that this assessment framework is 

fairly suitable to be used to describe the teachers’ mathematical teaching 

behaviors and can be used as a basis for analyzing School Teaching. In 

this paper, we will modify this framework to analyze the teachers’ 

mathematical teaching behaviors.  

3. Related Research 

About the teachers’ mathematics teaching research, we found that there 

are two similar studies, TIMSS video study and Learner’s Perspective 

Study (LPS) (Clarke & Novotná, 2008). We first analyzed the two 

related studies for this research. 

3.1 TIMSS Video Study 

TIMSS VS 1995 (Stigler, Gonzales, Kawanaka, Knoll, & Serrano,1999) 

is a video study of teachers’ mathematics teaching aimed at eighth-grade 

mathematics classrooms in the United States, Japan and Germany, it is 

actually the pilot study of TIMSS VS 1999. Participating countries 
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increased to seven countries including the United States, the Netherlands, 

Japan, Australia, Czech Republic, Hong Kong, and Switzerland in 

TIMSS VS 1999 (Jacobs et al., 2003a；Jacobs, et al., 2003b; Jacobs et 

al., 2003c). TIMSS VS 1999 sampled in a similar way as the TIMSS 

achievement test, adopting two-staged stratified cluster sampling design, 

and sampled representative teachers. It collects and analyzes data 

including sampled classroom teaching videos and teacher questionnaires. 

In the video analysis of classroom teachers, TIMSS VS 1999 developed 

two sets of coding systems; the first set of encoding is more of a general 

teaching behavior, the second set of coding systems mainly focuses on 

the mathematical teaching behavior. Nevertheless, no relevant theoretical 

frameworks were pointed out. "Teaching Mathematics in Seven 

Countries: Results From the TIMSS 1999 Video Study" (Hiebert et al., 

2003) has a complete report on TIMSS VS 1999 results.  

Due to the fact that Hong Kong and Japanese students’ achievements 

are similar to Taiwanese students’ achievement, for example in 1999, 

their 8 grade students’ came in third and fifth place respectively, which is 

not  remarkably different from Taiwanese students, therefore we were 

interested in their teaching, and we gave two examples of results. Figure 

1 describes the number of percentage that national math teachers use 

connections from real-life when presenting problems.  

 

Figure 1.  TIMSS video study of problem statement in frequency coding 
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Japan and Hong Kong each have the ratio of up to 89% and 83% 

using of mathematical language or symbolic representation to problem 

statements. Next graph presents the percentage of teachers who hope that 

students using procedures, stating concepts, or making connections to 

answer problems, when presenting problems. Japan has the highest need 

for making connections, at 54%, while in Hong Kong, requiring the 

procedural knowledge is the highest, at 84%. Interestingly, students from 

Japan and Hong Kong have similar achievements, but their teachers have 

great differences when using procedures and making connections in their 

teaching. This means that teachers’ teaching has great cultural 

differences. What about the teaching of Taiwanese teachers? We are very 

interested about the answer.   

Since the TIMSS VS 1999 results were published, as a follow-up, 

some scholars have explored the beliefs, knowledge and professional 

development of mathematics teachers, and compared the characteristics 

of the textbooks to see if it is similar to actual teaching. Kuntze and Reiss 

(2005) used two tapes of video of TIMSS VS 1999, one which was 

identified as having discussions and arguments between teacher and 

students, another was a teacher-centered geometry proof video led by 

teachers. The survey investigated beliefs and professional knowledge of 

42 Swiss and German in-service teachers. Kuntze and Reiss (2006) use 

the video of TIMSS VS 1999 and worked on 32 high school math 

teachers for in-service training program. Vincent and Stacey (2008) 

discovered that in the TIMSS VS 1999 research, Australian eighth-grade 

mathematics teaching had a high ratio of low-complexity and repetitive 

problems, and a very low ratio of making connections. They analyzed 

nine eighth-grade textbooks used in 2006 in four states and found that the 

characteristics of the questions in textbook are very similar to the results 

of TIMSS VS 1999.  

If such a national study were available in Taiwan, then we would 

have sufficient data to conduct similar follow-up study, for instance 

research on teachers’ professional development, the relation between 

textbooks and teachers; teaching, etc. Therefore, it is necessary for us to 

conduct a national video study.   
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3.2 LPS Project 

LPS is another important international classroom teaching video research 

program. It is initiated by Clarke (Clarke & Novotná, 2008) from 

Australia, and the program is useful to help us understand the eighth-

grade mathematics classrooms and the classroom context of teaching and 

other practical situations. Participating countries include Australia, 

Germany, Japan, the United States, China, Czech Republic, Israel, 

Korea, Philippines, Singapore, South Africa, and Sweden, 16 countries 

or regions in total. LPS required each country or region to select at least 

three excellent eighth-grade mathematics teachers, the excellent teachers 

were identified by local education authorities and the research team, who 

are considered capable teachers of mathematics teaching. The LPS 

project has two distinct characteristics; one is using three cameras on 

each teacher for 10~15 classes for recording mathematics teaching 

materials, rather than a single classroom. The other is that they study 

from the viewpoint of the learner. LPS thinks that the student activities, 

attitudes, beliefs and knowledge may constitute a specific teaching 

culture. Therefore, after school they play videos to re-construct teaching, 

in order to interview teachers and students.  

LPS (Clarke & Novotná, 2008) mainly focuses on qualitative 

comparison on mathematics teaching in different countries (or regions), 

not on defining the teachings of the country or culture, nor to quantify 

inter-country comparison of teachers teaching methods. For example, the 

Singapore team to focus on the use of textbooks and homework; the 

China Team (including Shanghai, Hong Kong and Macau) placed the 

focus on whether teaching is teacher-centered or student-centered; and 

the Japan team stressed on seatwork.  

In recent years, Taiwanese curriculum has undergone many reforms, 

from being subject-oriented in 1975 to becoming student-oriented in 

1995, and to finally being ability-oriented in 2005 (Zhong, 2005). What 

are Taiwanese teachers’ main focuses on now? We can get some answers 

from research of teachers across the nation.   

Some follow-up research is still being done for the LPS plan, such as 

analysis of important moments in the classroom or mathematics lessons 

which students consider to be good by using LPS data.  Fujii (2009) used 
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video stimulated interviews to let the Japanese students and teachers 

become involved in LPS, they watched their own videos of the 

classrooms, to identify students’ discussions and important moments in 

the classroom. Shimizu (2009) studied 60 eighth-grade Japanese students 

involved in the LPS project, using the stimulation interview method after 

the video-taping of the classroom, trying to build the essence of a good 

mathematics classroom from the student's eyes. Ding, Anthony, and 

Walshaw (2009) used LPS method to explore the teaching experiment of 

eighth-grade equivalent fractions in New Zealand, to see how teachers 

chose and used examples to develop students’ mathematical thinking. 

This teaching experiment is the Secondary Numeracy Project (SDP) in 

New Zealand secondary schools.  

The researchers found that TIMSS VS 1999 aims to analyze teaching 

activities which affect students’ learning. LPS research focuses on 

exploring mathematics teaching of outstanding teachers, not on 

comparing similarities and differences between teaching methods of 

participating countries. Because the aim of the TIMSS 1999 video study 

is more in line with the aim of this study, which is to describe the 

teaching appearance of mathematics teachers in Taiwan, therefore, we 

used the TIMSS 1999 video study as a basis of analyzing teachers’ 

mathematical teaching behavior.  

4. Methods 

4.1 Methodology 

This study uses the video survey (Hiebert et al., 2003a) and the 

questionnaire method. Traditionally, if you want to measure a large 

sample of classroom teaching, it is usually done through questionnaires. 

However, classroom teaching is very complex, because it is hard for 

teachers to reflect and narrate incidents that happen or that are said 

instantly. So in addition to teacher questionnaires, we should be looking 

for other research methods. Video survey (Jacobs et al., 2003a) allow 

researchers to examine complex teaching and learning activities from 

different perspectives. The classroom activities preserved through videos 

can allow many people, even professionals of various fields, to repeatedly 
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observe teaching at a low speed, giving us a chance to make an in-depth 

study of classroom activity, allowing us to describe teaching with 

internal consistency, allowing us to use new methods of analysis to 

analyze teaching, at the same time enabling us to use more convenient 

ways to communicate results from the analysis. Therefore, video survey 

(Jacobs et al., 2003a) enable researchers to repeatedly examine and 

analyze classroom teaching giving us a chance to make an in-depth study 

of the teaching and learning inside the classroom.  

4.2 Research Process  

The first step of the research process is to explore relevant literature, and 

then begin a national systematic sampling, determining the sampling of 

schools and classes. A group of 3 filming crew were trained to certify 

good video quality, and another crew started designing surveys and the 

video coding system of classroom videos. During the first semester in 

2007, video taping and collection of related data of sampled classroom 

teaching officially took place, and when it was complete, digitizing of 

videos, transcribing classroom teaching, analysis of surveys and coding 

analysis of classroom videotaping were done.  

4.3 Subject of Study  

The national fourth grade teacher population was studied. When 

determining the number of classrooms to be video-taped, the team 

consulted with researchers responsible for the TIMSS project in Taiwan, 

thinking that since only 50 classes in Japan participated in TIMSS VS 

(50 classes, one lesson each class) and that since Taiwan has a much 

lower population than that of Japan, so sampling 50 to 60 classes would 

be sufficient to characterize the teaching appearance of the country. 

Therefore, for this study, we decided to sample 60 classes.  

The sampling method is based on the TIMSS two-staged stratified 

cluster design, using the data of national primary schools provided by the 

Department of Statistics, Ministry of Education (2007), on Feb. 9, 2007. 

Using probabilities-proportional-to-size (PPS) systematic sampling 

method, and arranging classes according to school districts, student 

population, and the size of classes. The first phase of sampling is 
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determining (the number of) the schools. First of all, Taiwan is divided 

into five regions: the North, Midst, South, East and Islands. Take the 

North as an example:  the total number of students is 127287 (44.3% of 

all students), the original classroom number for sampling is 60, so 44.3% 

of 60 should be sampled, rounded up to 27 classes. 127287÷27＝4714.3, 

so the range is 4714 students. We select a random number between 1 and 

4714, then every 4714 people as a range select the students of number to 

select schools for sampling (the school to which the randomly picked 

student attends will be sampled). Also, simultaneously selecting 

replacement schools (the successive school of the sampled school) in 

case the sampled school is unwilling to be video-taped. The numbers of 

participating schools in the North, Midst, South, and East of Taiwan are 

27, 16, 16, and 1. The numbers of sampling large-sized schools, medium-

sized schools, and small-sized schools are shown in Table 1. 

Table 1. Distribution of 60 participating schools from nationwide sampling 

 Large-sized school Medium-sized school Small-sized school Subtotal 

North 17 8 2 27 

Midst 6 7 3 16 

South 7 6 3 16 

East 0 0 1 1 

Subtotal 30 21 9 60 

*According to the definition of TIMSS 2007: Large-sized school contains at least 8 

fourth-grade classes, medium-sized school contains 3 to 7 fourth-grade classes, and 

small-sized school contain no more than 2 fourth-grade classes. 

The second phase of the sampling unit is the classrooms within the 

sampled school. After determining the schools to be sampled, a random 

number is used to randomly select the classes from sampled schools. 

After the two stages of sampling have been finished, we then contacted 

to schools and teachers. If a school does not agree to be video-taped, then 

we replace it with a replacement school. After the school chosen agrees 

to be video-taped, we ask teachers of the chosen class for approval. 

When the teacher does not agree to be video-taped, we ask the school to 

select another teacher who had similar teaching methods, teaching 

experience and qualifications. This research completed 60 classroom 

video-tapings in total, with 18 of them being from replacement schools 
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or classrooms in total, two of them due to school factors, the reason 

being that those schools had never allowed visitors visiting the school, 

and does not agree to be video-taped. 14 classrooms did not agree to be 

video-taped due to teachers’ factors including that they felt pressured, 

nervous, being close to retirement, job transfers, or they thought their 

teaching methods were not special. Two classrooms did not agree due to 

students’ factor, for there were students requiring special education in the 

classes, and parents wanted to protect the students’ right to privacy.  

The average teaching experience of 60 teachers is about 10 years, 

including 9 years of mathematics teaching. In terms of qualification, all 

of them are university graduates and have received teacher training 

courses, with 75% graduating from Normal systems, about 25% 

graduating from post-baccalaureate teacher courses, and 15% with a 

Master degree. Around 50% of the teachers majored in education in 

university, which is a non-mathematics subject. Around 15% of 

participating teachers majored in mathematics or mathematics education, 

about 35% majored in subjects other than the two previously-mentioned 

(they majored in subjects from classes like Postgraduate teacher courses). 

In a 40 minute video lesson, about 38 minutes 36 seconds were spent on 

teaching, which includes 37 min. 16 sec. of work related to mathematics. 

Only a short period of time was spent on work unrelated to mathematics, 

for instance classroom management or wiping the board, etc.   

All classes of sampling were video-taped in the first semester of 2007 

school year, videoing a class every day from Monday to Friday in 

principle, until all assignments were completed at the end of the semester, 

which totals to about 4 months of videoing time. Because we did a two-

stage stratified cluster national sampling, we video-taped a class from all 

classes every day during the whole semester, as shown in Figure 2. We 

can imagine our approach is that we found a theoretical national 

representative teacher to represent teachers nationwide, and video-taped 

this representative teacher’s classroom teaching almost every day.   

4.4 Data Collection  

When we were collecting data of classroom videoing, to ensure better 

quality of recording and analysis, we used three video recorders (similar  
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Figure 2.  Representation of theoretical national representative teacher 

 

 

to LPS method). The first camera focused on the whole students; the 

second focused on the teachers’ teachings, the students in front of the 

blackboard and all contents of the blackboard; and the third focused on a 

group (usually the group that performs ordinarily) or the students’ micro 

sounds and actions. Viewing the three screens simultaneously and 

selecting suitable scenes (The screen will be switched to the one that can 

capture whoever the main character was at that point. For instance, when 

a student is speaking, the scene will be adjusted so that it can be captured, 

or when a teacher writes on the board, then the focus will be altered to 

view the things written on the board.), We store the teaching in two 

machines, one is the three video screens simultaneously and the other is 

selecting suitable video scenes, to enable analysis of teaching.  

To enable recording results show the real status of the teachers’ 

teaching of mathematics, we required teachers to teach in the normal way 

thrice, and also gave teachers and students to time adapt to classroom 

recording. First, in the second semester of the 2006 school year, at the 

same time the teachers were invited to participate in the study, teachers 

were informed verbally and in paper that they were required to teach in  

Day 

Math Teacher 
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accordance with the daily progress of teaching, and not to make any 

alterations. Second, before the beginning of the first semester of the 2007 

school year, after teachers had confirmed school time tables, researcher 

contacted teachers once again, on the one hand to confirm the time of 

video-taping, on the other hand to request again that the teacher should 

teach with usual teaching methods, based on the usual progress of 

teaching. Third, one week before the video-taping, reconfirmed the time 

and place of shooting with the teacher, and asked the teacher to teach in 

accordance with the daily progress of teaching and with usual teaching 

methods, and not to make any alterations. In addition, one lesson before 

the formal recording of a class, camera personnel entered the teaching 

field to simulate videoing to let teachers and students become familiar to 

shooting conditions, and began formal shooting at the next lesson time. 

Our experience with the survey results (Lee et al., 2010) tells us that after 

the first warm-up class with simulation of videoing, teachers and 

students to adapt to it and can behave as they would do originally.  

4.5 Data Analysis  

For the classroom video coding, we mainly referred to NAEP 2003 

(NAGB, 2002) mathematics assessment framework and divided it into 

three dimensions, Content strands, Mathematical ability and 

Mathematical power, as shown in Figure 3.  

Before analyzing the three dimensions, we referred to TIMSS VS 

1999 (Jacobs et al., 2003a) coding system and divided the classroom 

instructional activities into segments of Concept Statement (CS), 

Problem Statement (PS), and Solving Problem (SP). CS referred to 

teachers’ explaining of mathematic concepts, including introducing new 

concepts and reviewing already-learned ones. PS referred to the process 

of teachers’ posing problems. SP meant the time that teachers spent on 

answering some questions. The reason we divided teachers’ classroom 

teaching activities into 3 segments is mainly that conceptual teaching 

segments and problem solving segments are different. Problem statement 

segments is mainly used to understand the properties of the questions 

asked by the teachers, similar to when we assess students’ learning 

through giving tests. 
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Figure 3.  Analysis framework of mathematical teaching behaviors 

The first dimension is Content strands, referring to TIMSS VS 1999 

(Jacobs et al., 2003a) and the NAEP 2003 coding systems, it can be 

divided into topic, complexity and relationship. The topic is taken from a 

questionnaire survey and divided into five themes, number, measurement, 

geometry, statistics and algebra. Complexity and relationship mainly 

analyze the properties and relationships of questions in PS. Complexity 

divided mathematic problems into Low Complexity (LC), Moderate 

Complexity (MC) and High Complexity (HC). Relationship mainly 

divides the relationship between problems into Repetition (R), 

Dependent (D), Extension (EX), Simplification (SI), Elaboration (E), and 

Unrelated (U).   

The second dimension is Mathematical ability, referring to TIMSS 

VS 1999 (Jacobs et al., 2003a) and the NAEP 2003 (NAGB, 2002) 

coding systems and contents, we divide Concept Statement into Using 

Procedures (CUP) and Stating Concepts (CSC). Problem Statement is 

divided into Using Procedures (PUP), Stating Concepts (PSC) and 

Problem Solving (PPS). Solving Problem is divided into Only Giving 

Results (SOR), Using Procedures (SUP), Stating Concepts (SSC) and 

Problem Solving (SPS).  

The third dimension is Mathematical power, referring to NAEP 2003 

(NAGB, 2002) and NCTM (2000) contents, analyzes teachers to see if in 
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CS, PS and SP, they underwent Reasoning (RS), Communication (CU) 

and Connection (CN).  

As for content and structure of the three dimensions, see Table 2. For 

its definitions and examples, please see analysis of the results.  

When coding took place, we referred to the coding method of TIMSS 

VS 1999, dividing it into time coding, frequency coding and class coding. 

Time coding uses time as the unit, each range of coding mutually 

exclusive to one another. Frequency coding records the number of 

specific events that happened in the classroom. Class coding records 

whether a particular event occurred in classrooms. All events are coded 

according to frequency coding as a basis, and the number of occurrences 

is recorded.  In addition, complexity coding, relationship coding and 

mathematic ability coding occur in every class, therefore we only 

conduct time coding and frequency coding.  

In terms of coding of Mathematical power, it doesn’t occur in every 

class, therefore class coding is meaningful; at the same time not every 

teacher conducts reasoning, connection and communication in every 

event, therefore comparing the time code is not needed.  

Analysis and weight of data was entered into Excel spreadsheets for 

quantitative analysis after we had completed coding of classroom video-

taping and teaching surveys. In order to explain the sample design which 

resulted in different probabilities of the selection of samples, we must 

calculate the sampling weight of the entire sampling process: the first 

step is to calculate the weight of the school, and the second step is to 

calculate the weight of the class, to reflect the correct information of the 

sampling population. The Base Weight (BWi) of each classroom video is 

the reciprocal number of the product of the School Selection 

Probabilities (Pi) multiply the probability that a class might be picked (Ci, 

representing the number of classes). The formula is as follows: 

BWi＝
P
C

i

i  

The final weight of classroom videos (FWi) is the product of 

multiplying BWi by NRFi. NRFi representing the no-response 

adjustment factor of the location of school i. 

FWi =BWi × NRFi 
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Table 2. Classroom video coding system 

 Concept Statement (CS)  Problem Statement (PS) Solving Problem (SP) 

Content 

Strands 

Topic (T): Number, Measurement, Geometry, Statistics, Algebra 

 

Complexity (C) 

• Low Complexity (LC) 

• Moderate Complexity 

(MC) 

• High Complexity (HC) 

      Relationship (RE) 

• Repetition (R) 

• Dependent (D) 

• Extension (EX) 

• Simplification (SI) 

• Elaboration (E) 

• Unrelated (U) 

 

 

 

 

 

 

Math 

Abilities 

Using Procedures 

(CUP) 

Stating Concepts (CSC) 

Using Procedures (PUP) 

Stating Concepts (PSC) 

Problem Solving (PPS) 

Only Giving Results 

(SOR) 

Using Procedures (SUP) 

Stating Concepts (SSC) 

Problem Solving (SPS) 

Math 

Power 

Reasoning (RS) 

Communication (CU) 

Connection (CN)  

• Connection of Real 

Life Situation (CRLS) 

• Connection Within 

Mathematics (CWM) 

• Connection Among 

Other Disciplines 

(CAOD) 

Reasoning (RS) 

Communication (CU) 

Connection (CN)  

• Connection of Real Life 

Situation (CRLS) 

• Connection Within 

Mathematics (CWM) 

• Connection Among 

Other Disciplines 

(CAOD) 

Reasoning (RS) 

Communication (CU) 

Connection (CN)  

• Connection of Real 

Life Situation (CRLS) 

• Connection Within 

Mathematics (CWM) 

• Connection Among 

Other Disciplines 

(CAOD) 

As all sampled schools were successfully videotaped, the no-response 

adjustment factor NRFi =1. The weight for each classroom video is:  

FWi=
P
C

i

i
 

4.6 Reliability and Validity  

The reliability and validity is based on the sampling methods of TIMSS 

VS 1999 (Jacobs et al., 2003a) and TIMSS 2007 (Olson, Martin, Mullis, 
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2008), sampling was conducted, therefore this there has nationally 

representative. For the method and coding of data analysis, we 

referenced the definitions of school mathematics principles and contents 

of TIMSS VS 1999, NAEP 2003 (NAGB, 2002) and NCTM (2000), they 

have undergone discussion and coding done by multi-country experts 

and scholars in mathematics education, so there is content validity and 

expert validity. Four members of the research team were responsible for 

the classification of classroom video coding. At first these four members 

used the same coding for four video tapes and did in-depth discussion for 

different items to establish concurring perceptions of classroom coding. 

If one of the members did not concur with others, the whole group would 

discuss with an expert and the expert would make decision. After that, 

members of the research team paired up and each pair took 14 videos (28 

in total) for coding, each group comparing results after coding to 

establish reliability. The calculation of reliability is as follows: 

Reliability of Time Coding = The sum of time with same coding ÷ (sum of time 

with same coding + sum of time with different coding) 

Reliability of Frequency coding = Total frequency of same coding ÷ (total 

frequency of same coding + total frequency of different coding)  

Reliability of Class coding = Total Class of same coding ÷ (total class of same 

coding + total class of different coding) 

This research aggregated reliability of coding, and results were 

between 89%~100%, which meets the requirements of TIMSS VS 1999 

that states the reliability should be above 85%.  

After the reliability of coding measured up, four members proceeded 

to code the remaining 28 tapes individually.  

5. Analysis of Results 

In this study, the three dimensions Content strands, Mathematical ability 

and Mathematical power were used to analyze fourth-grade teachers’ 

mathematical teaching behaviors. 

5.1 Classroom Segments 

The average teaching time of a math class is 37 minutes 16 seconds, 
deducting 6 minutes and 30 seconds which involved individual or group 
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activities for students that cannot be properly classified, leaves 30 

minutes and 46 seconds in remaining. This can be divided into three 

teaching segments: Concept Statement (CS), Problem Statement (PS) 

and Solving Problem (SP). From Figure 4, that the total teaching time of 

the three segments of accounted for 33%, 15% and 52% respectively; 

and the frequency of them accounted for 10% (2.11 concepts), 47% 

(10.08 problems) and 44% (9.46 solving Problems). This shows that 

teachers spend about 3/10 of the time explaining concepts, the average 

time describing a concept is 4 minutes 49 seconds; the teachers spends 

about 1/10 of the time on problem statement, spending 27 seconds on 

each question in average; the teachers spend about 1/2 of the time on 

Solving Problems, each problems taking about 1 minute 43 seconds. 

Study shows that the ratio of time spent on problem teaching and non-

problem teaching are 2/3:1/3, respectively, demonstrating the fact that 

teachers’ teaching mainly focus on problem teaching.   

 

Figure 4.  Ratio of mathematical abilities 

5.2 Content Strands  

Content strands were divided into 3 stages, topic, complexity and 

relationship. In the Content strands of fourth-grade mathematics 

classrooms, the number and measurement are covered the most. 

Research on classroom videos reveals that the percentages of time spent 

in number, measurement, geometry, statistics and algebra were 43%, 

39%, 15%, 3%, 1%, respectively.  This study compared teaching units of 

3 main textbooks of the year of the video study, and found that the 
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number of units found were 13 (41%), 14 (44%), 4 (13%), 1 (3%), 0 (0%) 

units, respectively.   

Complexity coding is mainly used to understand the complexity of 

the mathematical problems presented in segments of Problem Statement 

which is sorted into Low Complexity, Moderate Complexity and High 

Complexity. Low Complexity problems expect students to recall or 

recognize concepts or procedures specified in the framework. Items 

typically specify what the student is to do, which is often to carry out 

some procedure that can be performed mechanically. For example, 

"Teachers asked students to measure the length of red or blue line 

segments, and then fill in the brackets." The Moderate Complexity 

problems required involve more flexibility of thinking and choice among 

alternatives than do those in the low-complexity category. The student is 

expected to decide what to do and how to do it, bringing together 

concepts and processes from various domains. For instance, "Teacher 

asked for students to read high-speed rail fare table, and calculated how 

much will be left if taking two thousand dollars to buy two tickets from 

Taoyuan to Chiayi?" High Complexity problems were heavy demands on 

students, because they are expected to use reasoning, planning, analysis, 

judgment, and creative thought. Students may be expected to justify 

mathematical statements or construct a mathematical argument. In Figure 

5, Low Complexity problems (LC) and Moderate Complexity problems 

(MC) take up 79% and 21% of teaching time, respectively, and the ratio 

of the number of problems (i.e., the proportion of events) were 88% and 

12% respectively. High Complexity problems (HC) were not found in 

this research.  

  Relationship coding is to understand the relationship between 

mathematical problems taught in segments of Problem Statement, 

divided into Repetition (R), Dependent (D), Extension (EX), 

Simplification (SI), Elaboration (E) and Unrelated U).  According to the 

definition in TIMSS VS 1999 (Jacobs et al., 2003a), Repetition referred 

to the problem was exactly or mostly the same as the preceding problem. 

The numbers or algebraic expressions may have been different, but the 

procedures were the same. For example, "Teachers has already taught 

that how much cake one could get if there’re four pies given to three 

people. So, how much cake could one get if there’re five pies given to 
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Figure 5.  Proportion of types of mathematical problems 

 

three individuals?" Dependent referred to the solution to one of the 

previous problems in the lessons was necessary to solve the current 

problem. For example, "Teachers had the children measure the bulletin 

and works boards to know how big a column plate was needed. So, 

which board would be bigger?" Extension referred to the problem 

required many of the same operations as the preceding problem plus 

some important additional operations. It also includes cases where the 

problem was a generalization of previous problems. For instance, 

"Teachers had asked children to calculate three days and six hours are 

equivalent to how many hours? (To fill in: greater, equal or less) 6 days 

and 18 hours (   ) 200 hours." unrelated meant the problem required 

operations much different than other problems in the lessons and neither 

of the thematic codes applied. For example, "Teachers were teaching 

time unit conversion. Please select the wrong options: (1) lunch time at 

school is about 40 minutes; (2) climbing the stairs to the second floor 

from the first takes about 30 seconds; (3) the sleeping time of pupils is 

about 8 minutes; (4) a boy rides a bicycle every day for about 30 

minutes." Simplification referred to was assigned when the problem 

illustrated a simpler example of the previous problem or was used to 

provide emphasis. Elaboration were similar to the previous problem but 

used a different set of operations (e.g., solving the problem another way). 

Simplified and Elaboration problems were not found in this study. As 

seen in Figure 5, We found that Repetition, Dependent, Extension, 

Simplification, Elaboration, as well as Unrelated accounted for 71%, 1%, 
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27%, 0%, 0%, 1%, respectively, of the teaching time in math problems; 

moreover, for 84%, 0%, 15%, 0%, 0%, 1% of the frequency of them.  

5.3 Mathematical Ability  

Mathematical abilities were divided into Concept Statement, Problem 

Statement, and Solving Problem. Concept Statement was divided into 

Using Procedures (CUP) and Stating Concepts (CSC). Using Procedures 

referred to the procedural knowledge used to let students learn 

mathematical concepts by teachers. Routine operation, symbol 

manipulation or formula introduction was all included to be applied to 

problem-solving by students. For example, “Teachers asked what the 

area of a rectangle is. Students answered that its length multiplied by 

width, and without asking what the area formula’s origin is.” Stating 

Concepts referred to the basic concept-explaining by teachers in the 

classroom to make students get conceptual understanding. For instance, 

“Teachers used two straight lines intersecting at right angles (90°) to 

introduce the concept of being perpendicular to one another.”  In Figure 

6, the results showed that the teaching time of Using Procedures and 

Stating Concepts accounted for 26% and 74% of Concept Statement, and 

the frequency of them were 26% and 74%, respectively. This shows the 

teachers spent about 3/4 of time and frequency on describing concepts 

during conceptual teaching, this is far more than time and frequency 

spent when conducting procedural teaching only. This is reasonable that 

the teachers use more conceptual knowledge when teaching concepts.  

 

 

Figure 6. Breakdown of the percentage of mathematics ability 
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Problem Statement was divided into Using Procedures (PUP), Stating 

Concepts (PSC) and Problem Solving (PPS). Using Procedures was 

those typically associated with routine algorithms such as calculations, 

symbol manipulation, and practicing of formulae. These problems are 

generally associated with following a routine process or set of “steps”. 

This category did not imply that there were no mathematical decisions to 

be made, but rather that the decisions assumed a set path - such as in a 

computer decision-making scheme. For example, “How many hours and 

minutes will be equal to 110 minutes?” Stating Concepts asked students 

to recall information regarding a mathematical definition, formula, or 

property. These problems typically had one step in which the recall of 

such information was needed to fit the example to a definition or 

property. For example, “Teacher asked students to classify some plane 

figures and explain the reasons.” Problem Solving meant students were 

asked to do some mathematical reasoning, such as deduction, induction 

and proving. This kind of problems wanted students to think about 

mathematical concepts, to develop mathematical ideas or to expand those 

concepts and ideas. For example, “Students were asked to compare and 

find the law of 16 ÷ 8 = 2, 160 ÷ 8 = 20, 1600 ÷ 8 = 200.” As seen in 

Figure 6, Using Procedures, Stating Concepts and Problem Solving 

accounted for 75%, 25% and 0% of Problem Statement, while the 

frequency of them accounted for 69%, 31% and 0%, respectively.  

Solving Problem was divided into Giving Results Only (SRO), Using 

Procedures (SUP), Stating Concepts (SSC) and Problem Solving (SPS). 

Giving Results Only means the public talk about the problem centered 

solely on the statement of the final result. Using Procedures mean the 

routine execution of an algorithm was used to work on and complete a 

problem. Generally speaking, in this type of problem students and 

teacher talked only about how to progress to find the answer, such as 

stating the steps taken along the way. For example, “Teachers simply 

demonstrated the process of a three-digit number divided by two-digit 

number without explaining the concept of them.” Stating Concepts mean 

the class alluded to a mathematical concept but did not provide any 

descriptions of mathematical relationships or note why the concept was 

appropriate for the given situation. For example, “Teachers asked how  
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many millimeters is equal to five-tenths centimeters? Students answered 

not only five millimeters but telling the concept of five-tenths just being 

the fifth grid among the ten grids from zero to one.” Problem Solving 

referred to recognizing and formulating problems; determining the 

sufficiency and consistency of data; using strategies, data, models, and 

relevant mathematics; generating, extending, and modifying procedures; 

using reasoning in new settings; and judging the reasonableness and 

correctness of solutions. For example, “Students were asked to compare 

16 ÷ 8 = 2, 160 ÷ 8 = 20, 1600 ÷ 8 = 200 and then to discuss the results 

and reasons.” As seen in Figure 6, Giving Results Only, Using 

Procedures, Stating Concepts and Problem Solving accounted for 7%, 

49%, 43% and 0% of teaching time, while the frequency of them was 

26%, 46%, 28% and 0%, respectively.  

We integrated them and divided them into Using Procedures (TOP), 

Stating Concepts (TOC) and Problem Solving (TOS) and found that the 

ratio of time is about 5:5:0, showing that fourth grade teachers spent half 

the time in their mathematics classrooms each on using procedures and 

stating concepts. 

5.4 Mathematical Power  

5.4.1 Reasoning 

About the Reasoning, according to the definition in NCTM (2000), it 

means that the students can make and investigate mathematical 

conjectures, can develop and evaluate mathematical arguments and 

proofs. For example, “Teachers encourage students to discuss if the 

weight of pineapple and watermelon is equal, and ask them to use 

different ways to explain why.” As seen in Figure 7, the frequency of 

Reasoning among Concept Statement, Problem Statement and Solving 

Problem are 23%, 4%, and 14% respectively, while taking up 32%, 18% 

and 60% of total classes.   

We integrated the data and discovered that about 1/10 of frequency 

was spent on mathematics reasoning, and about 7/10 of classes had ever 

done reasoning in teaching.  
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Figure 7.  Proportion of reasoning in teaching 

        Note: Only showing the percentage of classes actually conducting Reasoning, so 

the sum will not be 100%.  

5.4.2 Communication  

Communication means students can communicate about the mathematics 

they are studying−to justify their reasoning to a classmate or to formulate 

a question about something that is puzzling−they gain insights into their 

thinking. In order to communicate their thinking to others, students 

naturally reflect on their learning and organize and consolidate their 

thinking about mathematics. For example: “Teachers encourage students 

to explain the definition of fraction, and ask students to give some 

examples to illustrate it.” As seen in Figure 8, the frequency of 

Communication among teachers in Concept Statement, Problem 

Statement and Solving Problem are 22%, 0% and 19%, while taking up 

29%, 0% and 64% of total classes.    

We integrated the data and discovered that similar to whether 

teachers have conducted reasoning, the ratio of communication during 

teaching was only about 1/10 of frequency, and less than 7/10 of classes 

had ever conducted communication in teaching.   

5.4.3 Connection 

Connection means teachers can see and experience the rich interplay 

among mathematical topics, between mathematics and other subjects, 

and between mathematics and their own interests. As seen in Figure 9, 

the frequency of Connection among teachers in Concept Statement,  
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Figure 8. Proportion of communication in teaching 

  Note: Only showing the percentage of classes actually conducting Communication, 

so the sum will not be 100%.  

 

Problem Statement and Solving Problem are 63%, 44% and 37%, which 

is 75%, 84% and 76% of total classes, respectively.  

 

 

                Figure 9.  Proportion of connection in teaching 

Note: Only showing the percentage of classes actually conducting Connection, 

so the sum will not be 100%.  

We can relate the coding of connections with Life Situation, Inner 

Mathematics and Other Subject. When we say Life Situations, we mean 

the teaching activity that can connect to what a student may or have 

experienced in life which teachers perform. For example, “The teacher 

introduces the concept of length-unit a few days after measuring the 

students’ height in class.”  Inner Mathematics means the mathematical 

concepts or questions which the teachers have taught is connected to the 

mathematical concepts the students have already learned. For example, 

“Teacher reviewed the meaning of hour taught in second grade, and 

introduces the content of how many minutes and hour.” Other Subject 



             A Large-scale Video Survey on Taiwanese Fourth-grade Classrooms             397 

means students can recognize and apply mathematics in other subject. 

For example, “The teacher tells the students the pole-vaulting record of 

the world and the record of Taiwan, to teach about both pole-vaulting 

and compare with lengths at the same time.” In Concept Statement, as 

seen in Figure 10, the frequency of connections with Life Situation, Inner 

Mathematics and Other Subject are 46 %, 22% and 2%, which is 68%, 

37% and 3% of total classes, respectively. In Problem Statement, the 

frequency of connections with Life Situation, Inner Mathematics and 

Other Subject are 44%, 1% and 0%, which is 84%, 4% and 0% of total 

classes. In Solving Problem, the frequency of connections with Life 

Situation, Inner Mathematics and Other Subject are 35%, 2% and 0%, 

which is 72%, 18% and 5% of all classes, respectively.  

We integrated the data and found that most of the connections were 

on Life Situation, which is about 2/5 of the frequency, and 19/20 of the 

classes. Inner Mathematics connections were scarce, but about, 1/2 of the 

classes had conducted inner mathematics connections. Connections with 

Other Subjects were fairly scarce.  

Because the connections of Life Situation mentioned above include 

connections with students’ life experience, it has a broader definition. 

Therefore, this study sorts connections with Life Situation into 1) the 

situations designed from textbooks, 2) the situations the teachers 

designed and 3) the situations the students experience in real life. As 

seen in Figure 11, it was found the frequencies are 68%, 12% and 19%, 

which is 76%, 33% and 49% of total classes that have connections with 

daily situation, respectively.  

6. Discussion and Recommendations 

Taiwanese teachers’ mathematics teaching in fourth-grade classrooms 

spent 3.5:1.5:5 of the time on concept statement (CS), problem statement 

(PS) and solving problem (PS), each lesson teaches about 2 concepts, 

states about 10 problems and solves about 9.5 problems. This shows that 

teachers spends more time on setting and solving problems, asking more 

questions, and spending less time on conceptual teaching, which means 

that teachers’ teaching tends to be more focused on problem solving.  
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Figure 10.  Breakdown of proportion of connection in teaching 

Note: The sum is over 100% because connections of life situation, inner mathematics 

and other subject connections may happen at the same time during teaching.  

 

 

Figure 11.  Proportion of connections with life situations. 

 

In terms of Content strands, fourth-grade mathematics teaching is 

more number and measurement based, with about 40% each, following 

by geometry with about 15%, which is consistent with features of 

Taiwan's elementary mathematics curriculum. Low complexity problems 

and moderate complexity problems were 9:1. Repetition and extension 

problems were about 8.5:1.5 It shows that fourth grade teachers’ teaching 

tend to be more focused on low-complexity and repetitive problems.  

Researchers think that fourth-graders are only beginning to make the 

transition from Piaget’s concrete operation stage into the formal 

operation stage, therefore it is reasonable that low-complexity and 

repetitive problems are used more often, but the appropriateness of this 

ratio needs further investigation. Also, it is a pity that high-complexity 

and elaboration problems did not appear in classrooms. If by the end of a 
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lesson, a teacher occasionally poses one or two high complexity 

problems for the students to think about at home, to increase students’ 

opportunities of learning outside the classroom, it may help to enhance 

students’ achievements. Therefore, whether Taiwanese fourth-grade 

teachers have the ability to pose elaboration and high complexity 

problems, or whether they have the ability but presume that students are 

not suitable for learning in this way, are questions worthy of exploration.  

In terms of Mathematic ability, the time spent on concept statement 

by using procedures and stating concepts is about 2.5:7.5. In problem 

statement, the frequency the students spent on using procedures, stating 

concepts and problem solving is 7:3:0. Integrating the data, we see that 

the ratio of time spent on using procedures, stating concepts and problem 

solving is about 5:5:0. About solving problems, the frequency that 

teachers are giving results only, using procedures, stating concepts and 

problem solving is 2.5:4.5:3:0. It showed that teachers spent about the 

same time on concept statement and using procedures, and when fourth-

grade teachers are teaching, they can describe the concept fairly well, but 

when teaching problems, teachers tend to be using problems of using 

procedures and giving procedural solutions.   

Teachers’ teaching should first allow a certain percentage of students 

to understand the conceptual knowledge, and then transfer into teaching 

procedural problems. What the actual percentage of fourth grade students 

that already knew about conceptual knowledge when it is presented in 

teachers’ teaching, and in scientific theory should be the proportion of 

students who understand conceptual knowledge when it is presented in 

teachers’ teachings.  Only after clarifying these two issues, will we have 

a way to answer whether such a proportion of the teaching of 

mathematical ability is appropriate. In addition, the researchers believe 

that teachers in the classroom should pose some problem-solving 

questions, this way, students will have the chance to learn how to answer 

some non-routine problems, but this seldom appeared in Taiwanese 

mathematical classrooms. The researchers also found through practical 

experience that some of the of teachers think that as long as students can 

solve problems, the establishment of mathematical concepts can wait 

until the students grow up, emphasize it when they have better 

comprehension ability, after they go to junior high school. But whether 
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this view is correct remains to be elucidated. Do teachers actually not 

have time to pose problem-solving questions? Do they not have the 

ability to pose problem-solving questions? Or do they think that it isn’t 

necessary? Maybe there are other reasons? It is worthy to make in-depth 

discussion on this topic.  

About the Mathematical power, the frequency of reasoning appearing 

among concept statement, problem statement, and solving problem is 

about 2.5:0.5:1.5, the proportion of school classes is about 3:2:6.  In total, 

only 10% of the frequency and 70% on the classes have conducted 

reasoning. The frequency of communication is 2:0:2, the proportion of 

school classes is 3:0:6.5, respectively. In total, only 10% of the 

frequency and 70% on the classes have conducted communicating. The 

frequency of connection is about 6.5:4.5:3.5, the proportion of school 

classes is 7.5:8.5:7.5, respectively. In total, only 40% of the frequency 

and 80% on the classes have made connection. The majority of 

connection is with life situation, inner mathematics connections were 

only found more in concept statement, which was 20%. It shows that 

fourth-grade students are exposed to connection with daily situations, 

and that reasoning, communication and internal mathematic connections 

were scarcely found.   

Students in primary school, they are in the concrete operation stage. 

The fourth graders should gradually be exposed to reasoning, 

communication and connections within their mathematics learning. It is 

still required that we do further relevant studies to see if the proportion 

and frequency of such classes can help provide optimal opportunity of 

learning. About connections, more connections with daily situation can 

provide students with a more concrete sense, but if we wish that students 

can understand the inner-connections of mathematics, have a more 

mathematical sense, then we must conduct internal-mathematics 

connections. In this respect, whether inner-connections of mathematics 

are enough to fourth-grade students also requires further study. Also, 

when teachers do not use reasoning, communication and connections in 

teaching, is it because they think it is not necessary, or is it a matter of 

professional knowledge? This is worth exploring. Integrating analysis of 

all dimensions, we find that teachers’ teaching of fourth-grade 

mathematics is partial to using low-complexity and repetitive problems, 
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using procedure to solve problems, at the same time lacking in 

communication and reasoning. To understand why the math performance 

of Taiwanese students rank top internationally, we did further 

preliminary study on the contents of TIMSS 2007 assessment on fourth-

graders, and discovered that knowing, applying, and reasoning items 

were 40%, 40% and 20% of questions, respectively.  Therefore, in 

Taiwanese fourth-grade teachers’ teaching, the frequency of reasoning in 

concept statement is 25%, the frequency of reasoning in problem solving 

is 15%, it seems to be in accordance with TIMSS 2007 assessment. Only 

the proportion of problems needing students’ reasoning is relatively low, 

at 5%. Teachers’ teaching perhaps has something to do with Taiwanese 

students ranking top internationally, but the real relation between 

teachers’ teaching and students’ performances still need further 

investigation, we still need to consider students’ out-of-school learning 

(X) and others (Z).  

7. Implications for Further Studies 

Because fourth-grade and eighth-grade mathematics content varies 

greatly, and students’ way of thinking has great characteristic differences, 

we did not compare the results with TIMSS VS 1999 assessment of 

eighth-graders. Readers interested may make comparisons on your own. 

Nevertheless, fourth-grade mathematics teaching classroom video 

analysis let us see the mathematical teaching behavior of teachers, at the 

same time triggering issues worthy of further investigation.  

7.1 Research on Influencing Factors of Student Achievement 

The frequency of Taiwanese fourth-grader teachers using reasoning 

when stating concepts and solving problems seems to be consistent with 

TIMSS reasoning assessment problems, but it is somewhat lower in 

problem statement.  Therefore, it is still not directly evident to explain 

Taiwanese students’ achievements being among the best, because out-of-

school lessons (Y) and societal, cultural, and other factors (Z) will also 

affect students’ achievements. Perhaps we may use national sampling, 

focusing on sample student's school learning, out-of-school learning and 
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other factors, conform to carry out a systematic large-scale research, 

perhaps we can find the direct evidence that explains Taiwan student 

achievement being among the best, and to find the weight of a, b and c.  

7.2  Video Study on Real Classroom Teaching of Teachers at Each 

Grade  

The fourth-grade mathematics classroom video study found that 

teachers’ teaching seems to be contrary to the Taiwanese curriculum 

guideline which requires teachers to emphasize communication, 

reasoning, connecting and problem solving. Whether it conforms to the 

learning characteristics of fourth-graders making the transition from the 

concrete operation stage into the formal operation stage still requires 

further study. Thus, we can try mathematics classroom video study on 

second, sixth and eighth grade students to understand general teaching 

behavior and mathematical teaching behavior, from the diversification 

we can make appropriate inferences on whether the proportion of fourth-

grade teachers’ teaching is suitable, at the same time see whether the 

results correspond to TIMSS VS 1999 eighth-grade assessment. And 

only be doing so can we truly understand the meaning of X (school 

lessons) of aX+bY+cZ (Lin, 2010). We need to find out Y (out-of-school 

lessons) and Z (others, e.g., Societal, Cultural…) to find the weight of     

a, b and c.  

7.3 Study on Teachers’ Problem-posing and Teaching Ability, Belief 

and Knowledge 

Kuntze and Reiss (2005, 2006) inquired into teacher's belief and 

knowledge using the TIMSS VS material. In Taiwan, the mathematics 

problems fourth-grade mathematics teachers taught were mostly of low 

complexity, repetitive issues and using procedure to find solutions. 

Moderate complexity, high complexity, extension, and elaborate 

problems were seldom or almost never found. Whether Taiwanese 

fourth-grade teachers have the ability to pose elaboration and high 

complexity problems, or do they think that it isn’t necessary? Reasoning, 

communicating, internal and external links were seldom found in concept 

statement and problem solving. Is this due to the teachers’ lack in 
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teaching ability? Or are the teachers capable, but believe that fourth-

graders do not need to be taught too much, or even that they will fail to 

learn so much? We may also refer to Kuntze and Reiss (2005, 2006) 

research, conducting a study on teachers’ problem-posing and teaching 

ability, belief and knowledge; it may even be worthy of conducting a 

nationwide investigation.  

7.4 Research on Relationship of Teachers’ Teaching and Students’ 

Interest and Confidence 

The fourth-grade teacher's mathematics problems tend to require 

students’ usage of procedure in order to respond, so the probability that 

the solution itself is answered by simply giving the solution or using 

procedures is also very high, the teaching proportion of reasoning, 

communication and internal-mathematics connections is very low. The 

mathematics rankings of fourth grade students in Taiwan in TIMSS 2003 

(Mullis, Martin, Gonzalez, & Chrostowski, 2004) and in TIMSS 2007 

(Mullis et al., 2008) are fourth place and third place respectively. 

However, their attitude of learning mathematics and their self-confidence 

are both almost at the bottom of the rankings. Are they connected? 

Perhaps we may aim a study at student's learning interest and their self-

confidence and whether the teachers emphasized conceptual 

understanding, reasoning, communication, and internal-mathematics 

connections.  

7.5 Research on Comparison of Textbooks and Teachers’ Teaching  

Vincent and Stacey’s (2008) comparative study on the TIMSS VS issues 

found that there are many similar places with the topics of local 

textbooks, in addition, our survey also found that teachers are very 

dependent on textbooks. But aside from similar topics, textbooks 

basically are inanimate while the teaching is dynamic, thus whether 

teachers’ interpretation of textbooks and actual teaching are the same, 

and if they are not the same then the reason of this, is also a topic worthy 

of a national study.  
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7.6 Study on Expert Teachers’ Problem Posing and Teaching Abilities 

The main purpose of the LPS (Clarke & Novotná, 2008) plan is to 

investigate good mathematics teaching. So in scientific theory when 

teachers are teaching the fourth-grade mathematics, what should the 

proportion of Complexity problems, the proportion of Relationship 

problems, the proportions of conceptual problem and problem solving 

questions be posing?  In problem teaching, to how many percentages 

should the teacher conduct reasoning, communication, and the internal 

connections, to enable the student to obtain suitable development, to 

fully maximize the students’ zone of Proximal Development (ZPD), 

which is what we all consider as good mathematics teaching. Perhaps in 

this aspect, we can refer to the LPS plan, pursue a group of expert 

teachers of high teaching-quality who can help students to develop fully, 

carry out a one-semester or one-year video study, then analyze their 

teachings to understand what general teachers must achieve to have 

expert-teacher quality, understand what kind of teaching a teacher must 

carry out in scientific theory. In addition we may also refer to the 

Shimizu (2009) research, see from the students’ angle what 

characteristics they consider to be good teaching.  
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Chapter 13 

Features of Exemplary Lessons under the 

Curriculum Reform in Chinese Mainland:  

A Study of Thirteen Elementary  

Mathematics Lessons  

  MA Yunpeng     ZHAO Dongchen   

 

Dramatic changes in mathematics education in Chinese mainland have taken 

place since the new mathematics curriculum standard was implemented in 

2001. What new features do exemplary lessons appear under the context of 

the curriculum reform? This chapter will answer this question by presenting a 

case study of 13 elementary mathematics lessons that were evaluated as 

excellent exemplary lessons by mathematics educators in China (mainland). 

It finds that, consistent with the ideas advocated by the new curriculum, the 

selected lessons demonstrated the features of emphasizing on student’s 

overall development, connecting mathematics to real-life, providing students 

the opportunities for inquiring and collaborating, and teachers’ exploiting 

various  resources for teaching. Meanwhile, the selected lessons also shared 

other common features in the lesson structure, interaction between the teacher 

and students, and classroom discourse. The results reveal that the exemplary 

lessons have practiced the advocated ideas of the current reform, while they 

also embodied some elements that might be the stable characteristics of 

Chinese mathematics education. 

 

Keywords: Chinese mathematics classroom, teaching practice reform, 

exemplary lesson, elementary mathematics 

 



 Features of Exemplary Lessons in Chinese Mainland   409 

 

  

1. Introduction  

In the past decades, investigating and understanding Chinese mathematics 

education, especially the mathematics classroom in China, has been of 

interest to many educators and researchers (e.g., Gu, Huang, & Marton, 

2004;  Huang & Leung, 2004; Huang, Mok, & Leung, 2006; Leung, 1995; 

Ma, Zhao, & Tuo, 2004; Stevenson & Stigler, 1992). Recently, efforts to 

improve the quality of classroom instruction have led to ever-increased 

interests in research on excellent lessons (e.g., Huang, Pang, & Li, 2009; 

Li & Shimizu, 2009; Li & Yang, 2003; Zhao & Ma, 2012). From different 

perspectives, the existent studies have deepened the understanding of 

Chinese mathematics classroom. Yet, the picture of Chinese mathematics 

classroom is not clear enough. More investigations and studies on Chinese 

mathematics classroom are needed.  

In pursuit of knowing and understanding the characteristics of Chinese 

mathematics classroom, we should be aware that some changes might be 

taking place in Chinese mathematics classroom with the global change 

and the development of Chinese society. At the turn of the 21st century, 

with the aim of  preparing younger generations for an age in which the 

economy is globalized, and the society is information-rich and 

“knowledge-based”, mathematics curriculum in many education systems 

around the world have undergone dramatic changes (Wong, Han, & Lee, 

2004). In such a situation, the mathematics curriculum in China is no 

exception. In September, 2001, China initiated and implemented the new 

round of curriculum reform of compulsory education (Ministry of 

Education, 2001). According to some reports, changes have taken place in 

the classroom as a result of the current curriculum reform (Li, 2002; Song, 

2003). If the reform could be implemented deeply and continuously, we 

may expect that the practice of China's mathematics classroom will 

demonstrate many differences from that of the classroom in past decades. 

While as a cultural activity, teaching has its relative stability. In some 

comparative studies, both differences and similarities were found in the 

exemplary mathematics lessons in different decades (Huang, Pang, & Li, 

2009; Li & Yang, 2003; Zhao & Ma, 2012). 
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What characteristics do the “excellent” lessons have in the current 

curriculum reform? Or, how mathematics is taught and learned in the 

exemplary lessons in the context of reform? How are the ideas advocated 

by the new curriculum embodied in these exemplary lessons? Are there 

any other common features shown in these lessons? Much remains 

unknown about these questions. This chapter will attempt to answer these 

questions by presenting a study, in which 13 elementary mathematics 

lessons valued as the excellent exemplary lessons under the new 

curriculum reform were analysed.  

This chapter is structured with four parts: firstly, the background and 

main changes of the mathematics curriculum will be briefly introduced; 

secondly, the background of the lessons analysed in this study and the 

analysis method will be described; thirdly, we will present the results of 

this study in two aspects: one is the lessons’ features that were consistent 

with the ideas advocated by the curriculum reform; the other one is other 

common features embodied in the lessons; and at last, we will give a short 

summary and discussion on the results. Based on the discussion, some 

implications are drawn from this study. 

2. Background: Current Curriculum Reform in China 

Mathematics curriculum in China has experienced several waves of 

changes since the founding of People’s Republic of China in 1949 (Su & 

Xie, 2007). The current new round of mathematics curriculum reform of 

compulsory education
[1]

 was initiated and implemented under the 

guidance of Mathematics Curriculum Standard for Full-time Compulsory 

Education (Manuscript for consultation) (hereafter Standards) in 

September, 2001 (Ministry of Education, 2001). Since September, 2005, 

all the students in the first academic year of primary school and junior high 

school have used the new curriculum. Now, the new curriculum has 

spread out nationwide.  

Before the implementation of the new curriculum, the latest 

mathematics curriculum was developed under the guidance of 

Mathematics Syllabus for Elementary School of Nine-year Compulsory 

Education and Mathematics Syllabus for Junior High School of Nine-year 
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Compulsory Education issued in 1992. The mathematics curriculum 

guided by the above-mentioned two syllabi was suitable for social 

development at that time, but there are still some problems left to be 

solved. For example, the syllabi issued in 1992 over-emphasizes “two 

basics” (basic knowledge and basic skill) and did not take into account 

students’ development of affection and attitude, and this resulted in 

student’s unbalanced development. Some contents of the curriculum were 

too difficult and narrow, and were not related to the students’ real life (Ma, 

2001; Zhang, 2002). Furthermore, the teaching method was monotonous; 

teachers used textbooks as the only reference for their teaching, and 

perceived teaching as transferring knowledge from textbook to students 

(Ma, 2001). In order to solve these problems and make the mathematics 

curriculum more responsive to the need of the development of both 

students and society, the Ministry of Education (MOE) of China initiated 

the mathematics curriculum reform. 

The new mathematics curriculum at the stage of compulsory education 

aims at providing a solid foundation for students’ full, sustainable and 

harmonious development, and to provide mathematics education for all 

students (MOE, 2001, p. 1). Students’ over-all development has been the 

most important goal of China’s education especially because 

quality-oriented education was advocated by Chinese government since 

the 1990s (CCCPC & the State Council, 1999). The Standards takes 

student’s affection and attitude as one important dimension of their 

over-all development, and takes students’ learning “process” as important 

as “outcome”. For example, the Standards emphasize students’ full 

development by focusing curriculum objectives on four aspects: 

knowledge and skill, mathematical thinking, problem solving, as well as 

affection and attitude. The curriculum contents consist of four dimensions: 

Number & Algebra, Space & Graph, Statistics & Probability, and 

Integration & Practice. Nine-year Compulsory education is divided into 

three phases: the first is for Grade 1 to 3; the second is for Grade 4 to 6; 

and the third is for Grade 7 to 9. For each phase, objectives for knowledge 

and skills, mathematical thinking, problem solving, and affect & attitude 

are elaborated in the Standards. Some contents in the former mathematics 

curriculum was trimmed down, meanwhile, some new contents was added 
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to the new curriculum. Calculating and solving problem in multiple ways 

and strategies are encouraged.  

The new curriculum also proposes some new ideas for improving 

mathematics classroom practice. It suggests that teaching should be 

closely related to students’ daily life so that students can connect 

mathematics with real world (MOE, 2001, p. 51). It emphasizes that 

mathematics teaching and learning should “begin from student’s primary 

experience of real life, and encourage student to experience the process of 

abstracting mathematics model from real-life problem, and the process of 

interpreting and applying.” (MOE, 2001, p. 1) “Contents of mathematics 

learning for school children ought to be realistic, meaningful and 

challenging. These contents should facilitate school children to engage 

actively in mathematical activities, such as observation, experimentation, 

guessing, hypothesis testing, inference making, and communication.” 

(MOE, 2001, p. 2) It is also claimed that “effective mathematics learning 

activities cannot simply rely on imitation and memorization. Instead, 

hands-on practical work, autonomous investigation and cooperative 

exchanges are important modes of mathematics learning.” (MOE, 2001, p. 

2) Besides, the mathematics standards also encourage teachers to design 

and enact their lessons creatively rather than to perceive teaching as 

transferring knowledge from textbook to students mechanically (MOE, 

2001, p.51). 

In a word, dramatic changes have taken place in the mathematics 

curriculum in China since 2001. The ideas advocated by the new 

curriculum bring both opportunities and challenges for mathematics 

teachers. How to implement the new ideas in the classroom? And what 

should an excellent mathematics lesson be like? Mathematics educators 

have been thinking about these questions and putting their understanding 

into their classroom practice. It is also of interest to researchers to identify 

and examine the features of the excellent lessons in this reform context. 
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3. Methodology 

3.1 Research Questions 

The analyzed lessons in this study were the prized exemplary lessons at 

the national level in the current context of curriculum reform. This study 

aims at answering the following two questions:  

1) How the ideas advocated by the Standards are implemented in the 

exemplary lessons?  

2) What other common features could be found in the exemplary 

lessons? 

3.2 The Selected Lessons 

In China, the institutions responsible for administrating educational 

research at the national or provincial levels often organize teaching 

contests and teaching exhibitions (see Li & Li, 2009). In 2008, the NCCT 

(National Centre for School Curriculum and Textbook Development) of 

the Ministry of Education organized the 1st National Contest in 

Exemplary Lessons of Elementary Mathematics in the new curriculum 

reform context. Elementary mathematics teachers were encouraged to 

design and implement mathematics lessons to show how the new 

curriculum was taught and learned in their classrooms. The teachers had 

many choices in the teaching topic, grades, mathematics content fields, 

and lesson types. They had their lessons video-taped and submitted the 

lessons to the NCCT. About 820 video-taped lessons were called up from 

each province (municipality and autonomous region) in China, which 

covered grade 1-6, four fields of content (Number & Algebra, Space & 

Graph, Statistics & Probability, and Integration & Practice), and 3 types 

of lesson (XinShou Ke−Teaching and learning new content, FuXi 

Ke−Reviewing the previously learned content, and ZongHe ShiJian 

Ke−Integrated using knowledge to solve problems). Then, these lessons 

were evaluated by an Expert Evaluating Group which was constituted of 

Mathematics educators and researchers with prepared evaluation criteria. 
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The criteria include (a) lesson plan, (b) enacted lesson (i.e., the process of 

teaching and learning), (c) outcome of the lesson, and (d) teacher’s 

reflection on the lesson. Under each aspect, sub-criteria and its 

descriptions were also provided. For example, the enacted lesson were 

evaluated on the ways of teaching and learning, classroom management, 

interaction between teacher and student, assessment and feedback, usage 

of facility or media, and teacher’s personal style of teaching. For the 

“usage of facility or media”, it was described as “appropriately use a 

variety of media and resources to facilitate teaching and learning”. Based 

on the Experts Group’s judgement and grading, 55 lessons were finally 

selected and honoured as the First Prize.  

In this study, we focused on the lessons in type of “Number & 

Algebra” and “XinShou Ke”, and selected lessons only from those in grade 

3 or 4. Thirteen lessons in total were selected for analysis. Their topics of 

teaching and learning, grades of students’, and their codes in this study are 

shown in Table 1. 

Table 1. General background information about the selected lessons 

Lessons taught in grade 3 Lessons taught in grade 4 

Code Topic of teaching and learning Code Topic of teaching and learning 

A Knowing and understanding 

second (time unit) 

H Countermeasure  

B Knowing and understanding 

fractions 

I Multiplication: 3-digit by 2-digit  

C Division with remainder J Using letters to present numbers  

D Year, month, and day K Multiples and factors 

E Year, month, and day L Solving the problems of planting trees 

F Year, month, and day M Solving the problems of planting trees 

N Solving the problems of planting trees 

Note: Lesson D, E, and F focused on the same topic, and lesson L, M, and N focused on 

another same topic. This is coincidental.  

In addition, the textbooks used or referred by these lessons and the 

lesson plans of eleven lessons were also collected for analysis. 
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3.3 Method of Analyzing 

The lesson analysis in this study was mainly based on the videotapes and 

the plans of the selected 13 lessons. The method of analysing are decided 

according to the research questions. Two different analysis strategies were 

used for answering the two questions.  

3.3.1 “Up-Down” Strategy  

For the first research question, an “up-down” strategy was used. We 

extracted the advocated ideas relevant to mathematics teaching and 

learning from the Standards and selected four ideas that  were suitable for 

video analysis and lesson plan analysis. Then the analysis focused on 

whether these ideas embodied in the lessons videos or lesson plans and 

how they were implemented.  

  As introduced in the part of “Background” in this chapter, many ideas 

relevant to mathematics teaching and learning were proposed in the 

Standards. However, some of them are difficult to be examined and 

identified in a lesson by video analysis. For example, in the “Suggestion 

for teaching” in the Standards, it is suggested that teachers should create 

contexts and guide students learning in the contexts (MOE of China, 2001, 

p. 51, p. 64). What is context? The Standards does not give a definition. 

Instead, it gives some suggestions for creating contexts for the phase one 

(Grade 1-3) and phase two (Grade 4-6) as following. 

Design the lively, interesting, and visual mathematical activities, such as the use of 

storytelling, games, visual demonstration, and scenario performance, to stimulate 

students' interest in learning, so that it can help the students know and understand 

the mathematics knowledge in a vivid and specific context (p. 51). (Suggestions for 

the phase one) 

Create the contexts relevant to students’ living situation and knowledge 

background in which the students are interested (p. 64). (Suggestions for the phase 

one) 

From the suggestions we can infer that the purpose of creating contexts 

is to make mathematics lively, interesting, and relevant to real-life, so that 

it can provide motivation and experience foundation for students’ 
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learning. Even so, only from researcher’s perspective without consulting 

the concerning students’ opinions, it is difficult to judge whether teaching 

and learning are lively and interesting. By contrast, it is practicable to 

judge whether the teaching and learning are related to real-life.  

Due to the limitation of the method used in the study, finally, only four 

ideas about teaching were identified for examining the selected lessons. 

They are: (1) taking students’ over-all development into consideration; (2) 

connecting mathematics to real-life; (3) providing opportunity for student 

to inquire and collaborate; and (4) exploiting resources for teaching rather 

than just following the textbook. The first idea was examined by analyzing 

the objectives listed in the lesson plans. The second and the third were 

examined by analyzing the lesson videos. And the fourth was examined by 

contrasting the actual taught content and the content in the textbook.  

3.3.2 “Down-Up” Strategy 

For the second research question, we adopted an open method for 

analysing rather than determined any analytical framework. The “constant 

comparison method” (Glaser & Strauss, 1967) was used for analyzing the 

selected lessons. We watched the lesson videos and read the transcripts of 

the lessons several times until some themes came to our attention. Then 

these themes were further examined until they were found to represent the 

common features of all the 13 selected lessons. In other words, common 

features were gradually summarized. Finally, six common features were 

found in the lessons. More details will be reported in the next section.  

All the selected lessons were analyzed by two researchers. The results 

were tested and discussed to obtain consistency between the researchers 

4. Results: Features of Exemplary Lessons  

4.1 Features Consistent with the Ideas Advocated by Curriculum 

Reform 
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4.1.1 Students’ Overall Development Was Emphasized 

By analyzing the instructional objectives in the lesson plans, we found that 

students’ overall development was paid attention to in all the lessons. Both 

objectives about the results of learning and the process of learning were all 

shown in the lesson plans. Students’ mathematical development and the 

non-mathematical-relevant development all could be found in the lesson 

plans. The objectives of two lessons were shown as follows: 

Help students (1) estimate the range of the product of 2-digit by 3 digit 

multiplication in a specific context, and calculate the 2-digit by 3 digit 

multiplication by listing vertical formula; (2) explore the methods of 2-digit by 3 

digit multiplication, compute correctly, and be willing to exchange the methods 

with others; (3) develop the interests in calculating and a good habit, and improve 

the ability to use multiplication to solve practical problems; and stimulate students 

enthusiasm to love science by introducing current events. (Extracted from the plan 

of lesson I “2-digit by 3 digit multiplication”) 

 

Help students (1) construct the preliminary concept of fractions based on their 

exploring and discussing the things in their real-life and geometric figures,  

correctly read and write simple fractions, and explain the meaning of a fraction by 

using geometric figures; (2)  compare two fractions whose numerators are 1 by 

using geometric figures; (3) develop students’ awareness of collaboration with 

others, and their ability of observation and analysis, hands-on skills and language 

skills, and develop students’ mathematics thinking. (Extracted from the plan of 

lesson B “Knowing and understanding fractions”) 

The traditional mathematics teaching has been criticized for its 

over-emphasis on the results of learning (mathematical knowledge and 

skills) and neglecting the learning process. According to the objectives 

listed in the lesson plans, we found the learning results as long as the 

learning process was taken into consideration by teachers. Furthermore, 

some non-mathematics-relevant skills, such as the awareness of 

cooperation, communication, and interests, also were covered in the 

instruction objectives. It should be noted that the teaching plans do not 

necessarily become the reality of classrooms. However, the broader scope 

of the instructional objectives outlined in the lesson plans did indicate that 

students’ over-all development was considered by teachers. 



418 Y. Ma & D. Zhao  

  

  

4.1.2 Mathematics Was Connected with Real-Life 

By analyzing the lesson videos, it was found that all the lessons contained 

the real-life contexts during which mathematics was taught and learned. 

Three strategies were found in these lessons to create such a context. One 

is to begin a lesson with a real-life event or problem. All the lessons used 

this kind of strategy. The contexts created in these lessons were 

summarized as shown in Table 2. 

The second strategy is to use real-life tasks or problems during 

teaching and learning the new content. The third strategy is to provide 

opportunity for students to apply the learned new content to the real-life.  
 

Table 2. The context of teaching and learning at the beginning of each lesson 

Lesson The context 

A Watched video: Opening ceremony of Olympic Games. Felt the scene of 

countdown. Led to the time unit “Second”. Then students gave examples that 

they used “Second” in daily lives. 

B Students allotted several types of learning tools equally with their deskmates, 

and recorded the numbers of each type of learning tool that each student 

received. They finally found that a half could not expressed by any whole 

number. So 1/2 was introduced. 

C Students played the game of splicing flowers with 12 petals. Two results 

emerged: one is all the petals were used; the other is one or several petals 

was/were left. These lead to the "divisible division" and the “division with 

divisor”. 

D Watched video: Opening ceremony of Olympic Games. Felt the scene at the 

time, recalled the date of the Olympic Games, lead to the topic of “Year, Month, 

and Day”. 

E Watched the pictures of history events and holidays, students answered the dates 

of these events and holidays, and then the topic of “Year, Month, and Day” was 

introduced. 

F Students interchanged the memories about the Olympic Games, introduced the 

topic of “Year, Month, and Day” from the date of Olympic Games 

H Teacher played cards with the class. The teacher always won the game by using 

countermeasure. Students felt curious. Then the topic of “countermeasure” was 

introduced. 

I Students watched a simulative animation in which a satellite was running around 

the Earth. After having known the circumference of the orbit, students were 

asked to raise mathematical problems from this event. 

J Students sorted 13 pieces of playing cards (2 to 10, and J to A). Students looked 

J, Q, K, and A as the number of 11, 12, 13, and 14. Then the topic “Using letters 

to present numbers” was introduced. 
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K Students made up a big rectangle with 12 small squares, and then expressed the 

length and width of the rectangle with a multiplication formula. They found, 

with the different splicing method, the multiplication formula was different. This 

led to multiples and factors. 

L Students observed their finger spacing, gave examples of spacing in daily life, 

and then raised the problem of planting trees. 

M Appreciated the picture of the urban landscape, led to the topic of urban 

greening, and then raised the problem of planting trees. 

N Began from a riddle: “Two trees have 10 branches, but they have not leaves and 

do not flower” (The answer is two hands). Students observed finger spacing, and 

then gave examples of spacing in daily life, which led to the problem of planting 

trees. 

4.1.3 Inquiry Learning and Collaborative Learning during Lessons 

It was found that inquiry learning and collaborative learning existed in all 

of the lessons. The students had the opportunities of exploring knowledge 

and methods by themselves and communicating or discussing their 

opinions or findings with desk-mates or group members. The inquiry 

learning and collaborative learning in these lessons were summarized as 

shown in Table 3. 

Table 3. Overview of the inquiry learning and collaborative learning in selected lessons 

Lesson Summary of the inquiry learning or collaborative learning 

A Groups studied how to prove one minute was equal to 60 seconds.  

B Students communicated how they got the fractions that they wanted to learn by 

folding square papers. Students divided a square paper into 8 equal parts with 

different methods. Then they were asked to discuss in pairs whether two parts in 

different shapes were in the same size. 

C Groups played the game of splicing 5-petal flowers to investigate the relationship 

between the remainder and the dividend.  

Students discussed the problem of planning a schedule for cleaning. 

D Students observed the calendar independently, and then shared their findings with 

deskmates. 

E Students observed calendar in groups and collected the data about year, month, 

and day. Then the whole class compared and analysed the data to investigate the 

relationship between year, month, and day. 

Students discussed the methods of calculating the days of a common year. 

Students communicated the methods of calculating the days of a leap year. 

F Students observed the calendar independently. Then they found there were 12 

months in a year, and the number of days varied in the 12 months. 

H Groups designed the program of horse racing with the method of countermeasure. 
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Pairs played a game to apply the method of countermeasure. 

I Pairs communicated the methods of estimating. 

Groups compared two different methods of calculation. 

J Groups discussed how to present the relationship of two persons’ ages that were 

increasing simultaneously.  

K Groups communicated the methods of enumerating the factors of a number.  

L Groups studied the different methods of planting trees and recorded the number of 

trees and corresponding spacing. Then students analysed the data to find the 

relationship between the numbers of trees and spacing. 

M Groups discussed why the number of planted trees was one more than the number 

of spacing. 

N Groups studied the relationship between the number of spacing and the number of 

trees. Groups discussed the relationship between the number of spacing and the 

number of trees in two different situations (planting trees from one end to another 

end of a line, and planting trees in a line without planting at the two ends. 

4.1.4 Teacher Adapted the Textbook and Used Other Resources for 

Teaching 

By contrasting the curriculum resources used in the lessons with the 

resources listed in the corresponding textbook, it was found that none of 

the 13 lessons completely conform to the textbook. In these lessons, the 

teachers selected some resources, such as the pictures, examples and 

exercises, from the textbook for their teaching and also exploited various 

resources by themselves. These results reveal that the teachers have made 

their adaption and creation while they designed and implemented their 

lessons. This is consistent with the ideas advocated by the new curriculum 

that the teachers should actively utilize various teaching resources and 

creatively use the textbook. However, a further analysis showed that, 

although the adaptations on the textbooks and the development of new 

resources were made in all of the lessons, the content of teaching and 

learning in the lessons do not show differences from the content in the 

textbooks regarding of the coverage on mathematical knowledge and 

skills. Therefore, from the ways in which teachers used textbooks, we can 

see the teachers in the selected lessons did not depend on the resources in 

the textbook, but intended to follow the mathematical objectives 

embodied in the textbook. 
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4.2 Other Common Features 

In addition to the features reported above, some other common features 

were also found existing in the selected lessons. 

4.2.1 Features of Lesson Structure 

Seven types of teaching activities with different purposes for student’s 

learning were found in the selected lessons. The purposes of each type of 

activities and their frequencies in the total 13 lessons are presented in 

Table 4. 

Table 4. Seven types of teaching activities and their purposes 

Type  Purpose  Frequency 

Introducing topic To arouse students’ interests or to activate students’ 

previous experience relevant to the topic of current 

lesson (including reviewing previous lesson), and then 

introduce the topic. 

13 

Teaching and 

learning new 

content 

To acquire knowledge, concepts, skills, or procedures 

that have not been learned in earlier lessons. 

63 

Practicing the new 

content 

To consolidate the new content or to apply it in a new 

situation, including solving routine exercise and 

non-routine problems. 

56 

Summary To help students get an overall view on the previously 

learned new content or previous teaching activity in the 

current lesson 

17 

Homework 

assignment 

To give students assignment for them to accomplish at 

home. 

3 

Extended learning 

on 

non-mathematical 

content 

To have a relaxation or celebration, or to introduce a 

current social event. The content or activity is 

irrelevant to mathematics.  

3 

Proposing 

problems for 

future study 

To invite students raise questions or problems for 

studying in future lessons. 

1 

 

The “Extended learning on non-mathematical content” only existed in 

three lessons. For example, in the lesson N “solving the problem of 
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planting trees”, students sung a “Tree-planting Song” to celebrate their 

accomplishment of previous learning. Taking another example, at the end 

of the lesson I (Multiplication: 3-digit by 2-digit), the teacher introduced a 

current affair of the manned space rocket. Only lesson L had the 

“Proposing problems for future study”. Lesson D, E, and J had 

“Homework assignment”. By contrast with these three types of activities, 

the other four types of activities were very popular in all of the 13 lessons. 

Figure 1 shows a picture of the lesson structure, in which each type of 

activity was presented according to its location in the teaching process and 

the percentage of its duration to the whole lesson. As it is shown in this 

figure, in all of the lessons, it started with introducing the topic of current 

lesson, during which the students’ interests were aroused and their 

previous experience was activated. After introducing the topic, the new 

content was taught and learned. The new content was divided into several 

parts and each part was taught and learned gradually. Practices were set 

following some parts (not all) of the new content or were set after all of the 

new contents were finished. One or more summaries were given during 

the lesson or at the end of the lesson. Overall, all the lessons showed three 

features as following: (1) introducing topic; (2) teaching and learning new 

content accompanied by practicing; (3) summarizing during the lesson or 

near to the end of the lesson. 
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Figure 1. Lesson structure 

4.2.2 Teaching and Learning New Content Accompanied by Practicing 

Practices were found in all of the lessons. The type of these lessons is 

“Xinshou Ke”, which means that teaching and learning the new content is 

the main purpose of these lessons. However, most of the lesson time was 

not only spent on teaching and learning new content but on both teaching 

and learning new content and practicing the new content. The percentages 

of time spent on teaching and learning new content and practicing in each 

lesson are shown in Figure 2. As far as the percentages of time spent on 

“practicing” is concerned, the highest one is lesson J (48.3%), and the 

lowest one is lesson A (10.5%). Nine lessons spent more than 30% of their 

lesson time on practicing. In some lessons (H, J, and N), the total time 

spent on practicing was nearly as much as the time spent on teaching and 

learning new content. Therefore, the selected lessons showed an obvious 
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feature that teaching and learning new content was accompanied by 

practicing. 

A further analysis found that two strategies were used for 

accompanying practicing with teaching and learning new content. One is 

to arrange the practice after all of the new content was taught and learned 

(e.g., lesson H, L, M, and N, see Figure 1). Another one is to place one or 

more practice between the sections of teaching and learning new content 

(e.g., lesson B, D, K, et al.; see Figure 1). 

0.0%10.0%20.0%30.0%40.0%50.0%60.0%70.0%80.0%
A B C D E F H I J K L M NTeaching & learning new content Practicing

 

Figure 2. The percentages of time spent on teaching and learning new content and 

practicing 

4.2.3 Most Lessons Included Summary, and Some Were Made By Students 

Except lesson I and lesson L, the other 11 lessons all contained at least one 

section of summary. There were two types of summary: (1) it took place 

during the process of teaching and learning and intended to review the key 

points of the just learned content or the just accomplished activity; (2) it 

occurred near to the end of a lesson and intended to review the whole 

lessons. From Figure 1, we can conclude that lessons A, B, D, H, J, and M 

used the first type of summary, while lessons C, E, F, K, and N used both 
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types of summary. A further analysis found that the teachers always 

invited students to give summary during the second type of summary. In 

this occasion, several students reflect what they had acquired in the lesson, 

including the knowledge and skills, as well as their experience and 

affection. 

4.2.4 Public Interaction Dominated the Lessons 

It was found that, although the students had opportunities to explore 

mathematics knowledge by themselves or to discuss and cooperate with 

their classmates, most of lesson time was spent on the whole-class work. 

By referring to the TIMSS 1999 Video Study (Hiebert et al., 2003), two 

categories of classroom work patterns were used in this study. One is 

public interaction, in which the teacher and students interact publicly, with 

the intent that all students give their attention to the presentation by the 

teacher or one or more students. Another category is private interaction, in 

which students complete assignments either individually, in pairs, or in 

small groups. An analysis of the different types of interaction showed that 

more than 70% of lesson time in the selected lessons was spent in public 

interaction. The percentage of private interaction in most of lessons was 

not more than 20%. It was under 10% in seven lessons. This indicates that 

all these lessons were dominated by public interaction (more details see 

Figure 3). 

The private interaction in the 13 lessons included the students 

discussing or communicating in pairs or groups, working with tasks 

individually or collaboratively, doing exercise at seat, and reading 

textbook. The public interaction included presenting information by 

teachers (such as explaining, questioning, and blackboard writing) and by 

students (such as answering questions, reporting findings, demonstrating 

personal or group work). Most of the public interaction took place in the 

form of dialogue between teacher and students. 
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Figure 3. Percentage of time duration of private interaction 

4.2.5  Teacher Had More Opportunities to Talk, and Students’ Talking in 

Chorus Was Evident 

It has found that most of the public interactions were in form of dialogue 

between teacher and students. The discourse of teacher’s and students’ 

was analyzed for further examining the dialogue between teacher and 

students. By watching lesson videos, we found there were four types of 

talking during the public interaction. They were: (1) the teacher talking 

individually; (2) single student talking; (3) students talking in chorus 

without teacher’s participation, in which two or more students talked 

together; and (4) teacher and students talking in chorus, in which the talk 

made by two or more students accompanied their teacher. In this study, the 

teacher talking includes both (1) and (4), while the student talking refers to 

all of the (2), (3), and (4). The examples of each type of talking are shown 

in the episode bellow. In this chapter, the “talking in chorus” is defined as 

more than one person talking simultaneously, such as the talking 

numbered 4, 6 and 8 in the following episode. 
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No. Discourse Type of talking 

1 Teacher: What is twenty multiplied by four? You answer. (1) 

2 One student: Eighty. (2) 

3 Teacher: Is this answer right? (1) 

4 Most of students: Yes, right. (3) 

5 Teacher: Then we add seven to eighty. We get— (1) 

6 Teacher and most of students: Eighty-seven. (4) 

7 Teacher: It this question easy? (1) 

8 All of students: Easy. (3) 

All of the discourses during the public interaction in the 13 lessons were 

transcribed verbatim. Then the frequency of teacher talking (FT), 

frequency of student talking (FS), ratio of FT to FS, number of teacher’s 

words (TW), number of students’ words (SW), ratio of TW to SW, 

frequency of students talking in chorus (FSC), and the ratio of FSC to FS 

were analysed quantitatively.  

Table 5. The results of quantitative analysis in dialogue during public interaction 

 A B C D E F H I J K L M N 

FT 214 215 239 184 197 245 147 158 259 396 149 137 154 
FS 223 164 217 155 181 210 149 135 205 325 139 118 142 

FT:FS 1.0 1.3 1.1 1.2 1.1 1.2 1.0 1.2 1.3 1.2 1.1 1.2 1.1 
TW 3336 3921 5007 3596 3915 5739 3525 3456 4030 5238 4080 3218 3985 
SW 1753 2015 1629 1842 2130 1621 1451 2125 1834 2114 1587 1656 1433 

TW:SW 1.9 1.9 3.1 2.0 1.8 3.5 2.4 1.6 2.2 2.5 2.6 1.9 2.8 
FSC 79 86 93 64 119 109 45 76 119 180 56 42 75 

FSC:FS 35% 52% 43% 41% 66% 52% 30% 56% 58% 55% 40% 36% 53% 

As shown in Table 5, the ratios of FT to FS ranged from 1.0 to 1.3, 

indicating the FT is not much more than the FS. Moreover, the frequencies 

of student talking in the 13 lessons are all more than 100. This reveals that 

the students in these lessons were not the passive, quiet listeners.  

Regarding the spoken words during the public interaction, it could be 

seen in Table 5 that the ratios of TW to SW in the 13 lessons are different 

to some extent, among which the highest one is 3.5:1 and the lowest one is 

1.6:1. However, the feature that the teachers talked more than their 

students was shared by all of the lessons. The ratio of average TW to 

average SW is 2.3:1.  

A further analysis in the amount of student talking found that the 

student talking in chorus (including the chorus with teacher’s 

participation) was frequent. As shown in Table 5, at least 30% of student 
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talking was in chorus in each of the selected lessons. The highest 

percentage of FSC to ST was found in lesson E, which reached 66%. 

4.2.6 Questioning-responding Occurred Frequently, but Students Rarely 

Asked Questions 

We found that many dialogues between the teacher and students appeared 

in the way of teacher’s asking questions and the students’ responding. The 

frequency of mathematical questioning (not including the questioning for 

lesson management) during each lesson is all more than 40. The 

questioning and responding took place not only during teaching and 

learning new content, but also occurred in other sections of a lesson.  

However, nearly all mathematical questions were raised by the 

teachers. Students’ asking question on their own initiative (not including 

the questioning motivated by teacher’s invitation) was found only in three 

lessons (once in lesson B, once in lesson J, 5 times in lesson A). No 

student presented any questions in any of the other ten lessons.  

5. Conclusion and Discussion 

5.1 Conclusion  

By analyzing 13 elementary lessons, we found some features of the 

exemplary lessons under the curriculum reform in China. On the one hand, 

some of the features were consistent with the ideas advocated by the new 

curriculum, such as emphasizing on student’s overall development, 

connecting mathematics to real-life, providing students opportunities of 

inquiring and collaborating, and exploiting various resources for teaching. 

These features have demonstrated an attempt to reform the practice of 

mathematics classroom in China. If the current curriculum reform could 

be implemented efficiently and continuously, we may expect that China's 

mathematics classroom will show many differences from that of the 

classroom in past decades.  
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On the other hand, the selected lessons in this study also shared many 

other common features. All of the exemplary lessons in this study began 

with introducing topic, during which the teacher aroused the students’ 

interests or activated students’ previous experience. After introducing 

topic, new contents were taught and learned gradually. Some of the new 

contents were accompanied by practice. Most of lessons (9 of 13) spent 

more than 30% of their lesson time on practicing the new content. In 

addition, in most lessons, at least one summary was set during or at the end 

of the lessons. It also found that all the selected lessons were dominated by 

public interaction and most of the public interaction took place in the form 

of dialogue between teacher and students. By contrast, the percentage of 

private interaction in most lessons was no more than 20%. In all the 

lessons, teachers talked more than their students. Student talking in chorus 

was very frequent. Many dialogues between the teacher and students 

appeared in the way of teacher’s asking questions and students’ 

responding. However, nearly all mathematical questions were raised by 

the teachers. Students rarely asked questions on their own initiative. 

5.2 Discussion  

The lessons in this study were all selected from a national contest in 

exemplary lessons in the new curriculum reform context, so it is not 

surprisingly that these lessons have practiced the advocated ideas of the 

current reform. Relatively speaking, other common features found in these 

lessons are more interesting and worth discussing. Some of these common 

features are consistent with the findings of other studies on Chinese 

mathematics classroom.  

Regarding the lesson structure, all the selected lessons began with 

introducing topic, accompanied teaching and learning new content by 

practicing, and summarized during the lesson or near to the end of the 

lesson. This is consistent with the findings of Zhao and Ma (2012)’s 

comparative analysis of four exemplary lessons in different decades in 

China. Chen and Li (2010)’s study on a Chinese competent teacher’s four 

consecutive lessons also found that the teacher tended to structure the 

lesson into reviewing previous lesson, teaching and learning new content, 
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and summary, which resulted in an instructional coherence. Other studies 

reveal the instructional coherence seems be a characteristics of Asian 

mathematics classroom. For example, Shimizu (2007) found the summary 

also played an important role in Japanese mathematics classroom. 

The selected lessons in this study also showed a feature that teaching 

and learning new content was accompanied by practicing. This feature 

also was found in Zhao and Ma (2012)’s study. It is well known that the 

Chinese mathematics classroom in the last half of 20th century, had been 

predominated by the belief that “students should have sufficient exercises 

in order to consolidate the learned knowledge” (Zhang, Li, & Tang, 2004) 

and that “practice makes perfect” (Li, 2006). We could not conclude 

whether the practice in the lessons in this study was emphasized as much 

as it was in traditional classrooms, but it is evident that none of the lessons 

in this study neglected the role of practice.  

It was also found that all the lessons in this study were dominated by 

public interaction, and teachers talked more than their students. These two 

features are consistent with the findings of TIMSS 1999 Video Study 

(Hiebert et al., 2003) on eighth-grade mathematics lessons in seven 

countries. However, it should be noted that the ratio of teacher’s words to 

students’ words in this study is 2.3:1, which is much less than the ratio 

found in TIMSS 1999 Video Study
[2]

. Based on the data of Learner’s 

Perspective Study (LPS) (Clarke, Emanuelsson, Jablonka, & Mok, 2006), 

Cao, Wang and Wang (2008) analysed the discourse in Chinese competent 

mathematics teachers’ lessons.  It was found the ratio of average teacher 

words to average students’ words is 6.6:1. Taking these findings as a 

whole, we may hypothesize that the differences might exist in the 

discourse between classrooms in different stage of schooling.  

In addition, the phenomenon of students’ talking in chorus found in 

this study is similar to the findings of Wang (2010)’s study on two 

elementary mathematics classrooms in China. And the feature of frequent 

questioning-responding in the lessons in this study also was found in other 

studies on Chinese exemplary mathematics lessons in different decades 

(Huang, Pang, & Li, 2009; Zhao & Ma, 2012). 

By reviewing the existing studies and comparing their findings with 

the features found in this study, we may find the lessons in this study 



 Features of Exemplary Lessons in Chinese Mainland   431 

 

  

embodied some elements that might be the stable characteristics of 

Chinese mathematics education. Stigler and Hiebert (1999, p. 86) pointed 

out that the teaching is a cultural activity. As a cultural activity, teaching 

has its relative stability. Therefore, it is understandable that both 

differences and similarities exist in mathematics lessons of different 

periods of time.  

In this chapter, we have reported the features of 13 exemplary lessons 

under the curriculum reform in China. We hope our findings could help 

you understand the current changes in elementary mathematics classroom. 

In addition, as noted above, the classroom under the reform not only 

reveals the new ideas advocated by the reform, it also contains some stable 

elements that might be inherited from the traditional classroom. This 

reminds us that the classroom under the reform and traditional classroom 

are not completely conflicting and exclusive. We should not ignore 

reflecting upon the tradition while implementing the new ideas. The 

traditional mathematics classroom may contain the asset that is worth 

preserving and carrying forward, and may also hide the drawbacks to be 

discovered. From this point, the teaching reform is a successive and 

gradual changing process, during which the reflection on present and 

history is always needed. This is the implication drawn from a case study. 

Perhaps it also could be a reference for mathematics educators in a reform. 
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word per eighth-grade mathematics lesson in six countries/regions was reported. They 
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Chapter 14 

Qingpu Mathematics Teaching Reform and  

Its Impact on Student Learning 

GU Lingyuan        YANG Yudong        HE Zhenzhen 

 

This chapter highlights findings from the recent progress of the latest 

version of the Qingpu Experiment (New Actions of the Qingpu 

Experiment in the 21st Century) which investigates the impacts of 

Qingpu mathematics teaching reform on eighth-grade students’ cognitive 

level and learning ability using factor analysis. We conducted different 

levels of tests for all grade eight students in the Qingpu school district of 

Shanghai, China. Our study revealed the limitation of Bloom’s taxonomy 

to describe cognitive levels; we propose a four-level taxonomy based on 

our empirical results. Furthermore, comparison of the cognitive levels of 

students based on data from 1990 and 2007 indicated a gradual increase 

in the “analysis” level.” Other details such as differences between male 

and female, and between urban and rural areas, are also discussed. 

 

Keywords: mathematics education objectives, Bloom’s taxonomy, 

Qingpu Experiment, cognitive levels, comparative study 

1. Introduction 

The Qingpu Experiment in Qingpu school district of Shanghai, China is a 

landmark in Chinese mathematics teaching reform; starting in the late 

1970s, the Qingpu Experiment tested ideas about how to improve 

mathematics teaching quality locally and then to share the ideas globally 

(Gu, 1996). The successful experiences of Qingpu mathematics teaching 

reform were first promoted in Shanghai and then eventually to the whole 
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China (mainland) from 1986 to 1992. In the last 12 years, the basic 

education quality of the Qingpu school district continuously developed to 

reach the top level of the nineteen districts in Shanghai. In 2001, the 

Qingpu Experiment Research Institute of Shanghai cooperated with 

Teachers Development Research Center of Shanghai Academy of 

Educational Sciences in starting a new project called the New Actions of 

the Qingpu Experiment in the 21st Century. In 2002, as a result of the 

first stage of this project, an innovative model of promoting teacher 

professional development was widely used in school-based teaching 

research activities in mainland China. Same as with other parts of China, 

curriculum reform has been running in Shanghai for more than 10 years. 

The second stage of this project focused on the changes of classroom 

teaching reform and the behavior of teachers and students at the end of 

2006. Later, in order to know whether there was any change in students’ 

learning ability, a third stage of the project started. A large-scale research 

on objectives of students’ learning was finished in 2007, which was 

compared with the performance of the 8th grade students in 1990. This 

chapter discusses an empirical study on the mathematics educational 

objectives of this project, and some important conclusions of the third 

stage. 

In the modern theoretical research of education, the role of 

educational objectives becomes more and more important. And 

mathematics educational objectives become the basis of all instructional 

design. The attempts at establishing a taxonomy of educational 

objectives were proposed at the Annual Conference of the American 

Psychological Association in Boston in 1948. Bloom and his colleagues 

published a taxonomy of the cognitive domain and affective domain in 

1956 and 1964, respectively. Later, other researchers published a 

taxonomy of psychomotor domain. The 1956 version—the Taxonomy of 

Educational Objectives, or colloquially known as Bloom’s Taxonomy  

defined six levels of cognitive domain: knowledge, comprehension, 

application, analysis, synthesis and evaluation, each with several 

subcategories (Bloom et al., 1956). In 1989, Wilson proposed four 

categories of cognitive objectives in mathematics education, including 

calculation, comprehension, application and analysis. Wilson’s  
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calculation level incorporated Bloom’s knowledge level, and Wilson’s 

analysis level incorporated Bloom’s analysis, synthesis and evaluation 

levels. 

For decades, several researchers pointed out that there were some 

limitations in Bloom’s Taxonomy of cognitive objectives (Wang, 2000; 

Han, 2001; Pi & Cai, 2006). In 2001, Anderson and other experts revised 

Bloom’s taxonomy (Anderson et al., 2001).  The new taxonomy has two 

dimensions: knowledge and cognition processes. The knowledge 

dimension includes four categories: factual knowledge, conceptual 

knowledge, procedural knowledge, and metacognitive knowledge, each 

with several subcategories. The cognitive process dimension includes 

(according to their complexity) six categories: remember, understand, 

apply, analyze, evaluate, and create, each with their subcategories. 

Much related taxonomy research following Bloom’s framework has 

been carried out in China. In the Qingpu Experiment, two large-scale 

studies attempting to measurement the impact on students learning were 

carried out in 1990 and 2007. In this chapter, we introduce the results of 

the large-scale measurement in 2007 of the Qingpu Experiment and 

explore the students’ performance of cognitive level in mathematical 

learning based on the revised Bloom taxonomy theory (Anderson et al., 

2001). 

2. Background of Qingpu Experiment 

In 1990, we began the data analysis of the Qingpu Experiment. We spent 

one year in formulating the assessment and assessment items, and the 

next year testing 3,000 students in Grade 8. The research was conducted 

utilizing the framework of Bloom’s taxonomy. Considering the fact that 

in mathematics education knowledge and calculation are treated as two 

domains in China, Wilson’s notion of “calculation including knowledge” 

was not adopted. Wilson’s calculation was added in the Qingpu 

Experiment test (Wilson, 1989). Therefore, there were seven tests in the 

overall experiment, namely, knowledge, calculation, comprehension, 

application, analysis, synthesis and evaluation. There were fifty 

assessment items total, a hundred and six assessment points, 56% of 
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which were algebra and 44% were geometry (Qingpu Experimental 

Group of Mathematics Teaching Reform, 1991).  

Factor analysis was used as the statistical method to deal with the 

multivariable data. From this method we summarized and concluded a 

few common unobservable variables (recessive variables or common 

factors), which revealed the inner link and key role of dominance 

variables by observing a great number of original variables. After the test 

and data analysis, we obtained the common factors load matrix (see 

Table 1).The result of the factor analysis showed that instructional 

objectives of the cognitive field were determined by the even more basic 

latent factors inside, which (listed sequentially) are: F1—mainly as 

memorization, F2—mainly as comprehension, F3—mainly as judgment 

and criticism.  The proportion of variance of these three factors was 

56.17%, 3.49% and 1.42% (together totaling 61.08% of the total 

variance). 

Table 1. Load matrix of common factors in the 1990 tests 

Tests F1 F2 F3 h2 

1 0.788 0.204 0.154 0.686 

2 0.792 0.166 0.178 0.687 

3 0.671 0.453 0.048 0.658 

4 0.641 0.474 0.104 0.647 

5 0.472 0.533 0.161 0.533 

6 0.487 0.558 0.065 0.553 

7 0.428 0.410 0.400 0.512 

Note: Tests 1, 2, 3, 4, 5, 6, 7 measure in turn: knowledge, calculation, comprehension, 

application, analysis, synthesis and evaluation.  

Drawing the six assessment variables (knowledge, calculation, 

comprehension, application, analysis and synthesis) in a two-

dimensional space defined by F1 and F2 (Figure 1), suggests that 

synthesis and analysis belong to the same level of cognition, despite the 

difference between these two tests. Similarly, application and 

comprehension can be combined. Calculation and knowledge (because 

memorization of the textbook content is emphasized) can also be put 

together as a similar objective. Thus, we believe that these original six 
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mathematics educational objectives could be summed up with only three 

levels: memorization (originally called knowledge and calculation), 

explaining comprehension (originally called application and 

comprehension), and exploring comprehension (originally called 

synthesis and analysis). The results indicate a positive experience of the 

Qingpu mathematics teaching reform on students’ learning and a 

refinement of the relevant mathematics learning theory. 

 

 

Figure 1. Six assessment variables in the two-factor vector plane 

3. Research Method 

In the beginning of 2007, we decided to conduct a large sample study of 

the mathematics educational objectives with the eighth grade students for 

a second time in the Qingpu district. In consideration of the 

comparability with the study in 1990, we did some revision of the 

research framework. Knowledge in the 1990 study was changed to 

knowing-about ,  which was listed after calculation.  And then 

comprehension and application were kept in their sequence since there 

was no controversy. Actually, we distinguished Wilson’s calculation 

from Bloom’s knowledge in 1990 study. The former meant just by 
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memorizing the examples in textbooks or procedural step of exercises, 

students could give the answer to a question which was at the operational 

level, and there was difference from knowledge in cognitive level. For 

the higher cognitive levels (analysis, synthesis, and evaluation in 

Bloom’s 1956 version, though they were changed to analysis, evaluation, 

and creation in later versions), we still concluded them in one level: 

analysis. The result in 1990 study showed that analysis and synthesis 

belonged to same cognitive level, which was consistent with the research 

of Wilson (1989). Our study in 2007 emphasized non-routine problem 

solving, and in the process of problem solving, there was no separation 

between analysis and synthesis, and the evaluation of the solving process 

was included. 

Based on the taxonomy of objectives shown in Table 2, we designed 

the research questions and problems. 

Table 2. Mathematics educational objectives and explanations 

Objective Explanation 

A. Calculation 

Simple exercises including memorization, requiring students to do basic 

calculation according to the requirements from the textbooks and 

assessing their routine operation of basic elements on the items, 

including basic construction of geometric figures. 

B. Knowing-

about 

Students can recall or recite definitions, concepts, propositions, rules, 

formulas and facts about mathematics, or can present facts, terms, and 

basic concepts of mathematics. 

B1 Knowledge of facts and terms (ability to memorize or present) 

B2 Knowing about basic concepts (ability to recall or present) 

C. Compre-

hension 

Referring to the understanding of concepts, principles, rules and the 

meanings of mathematical structures beyond mere recitation; the ability 

to convert between different forms, to understand the logical reasoning, 

and to understand the meanings of assessment items. 

C1 Understanding of concepts, principles, rules and the meanings of 

mathematical structures (ability to understand rather than recite 

meanings) 

C2  Conversion of problems (ability to convert problems from one form 

to another) 

C3 Continuation of reasoning (ability to understand and continue the 

reasoning process) 

C4 Read and interpret problems (ability to understand and interpret 

problems) 

 



 Qingpu Mathematics Teaching Reform   441 

Table 2. (Continued) 

D. Application 

Referring to solving of routine problems following the examples in the 

textbooks, including comparing the difference between problems’ 

conditions and types. 

D1 Solving routine problems following examples (ability to follow 

examples) 

D2 Identifying types (ability to solve a problem by matching it to the 

type practiced) 

D3 Making comparison (ability to solve a problem by comparing it 

with the type practiced) 

E. Analysis 

Referring to overall analysis of non-routine problems which the 

students have no prior experience with the solving process/methods of 

the problem. 

E1 Finding the mathematical factors and relationships (ability to 

analyze the   relationship between conditions and conclusions and the 

major steps of problem-solving)  

E2 Synthesizing the process of analysis (ability to synthesize a 

complete solution to the problem) 

E3 Finding and proving general rules (ability to come to and prove 

general rules) 

E4 Judging according to logical reasoning (ability to find the truth), 

judging according to criteria (ability to decide better and simpler 

solutions to problems), evaluating (ability to reflect on the contents and 

solving process of the problem)  

 

Given that this study involved all the eighth grade students in the 

Qingpu district, in which some schools were using new mathematical 

materials and others were not, assessment items of the study covered 

only the common parts of these two different materials. Therefore, items 

in this test mainly contained algebra and geometry. This would facilitate 

comparison with the 1990 study.  The distributions of assessment items 

within the categories and subcategories of our 2007 objectives are shown 

in Table 3. 

Three principles were followed while we were setting and revising 

the assessment items. First, the assessment items would be as consistent 

with the objectives as much possible. In fact, successful solving of any 

mathematics problem was the combination of several abilities and thus 

each item should reflect mainly the primary objective that played the key 

role in the solution process. Second, all the assessment items on the same 
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test should be of identical quality, i.e. they should be at the same level of 

difficulty. Third, the grading criteria for a certain item was also set 

according to the degree to which it reflected the objective that set the 

item itself. Traditionally, the grading was in accordance with the 

difficulty of the item, and sometimes certain items were weighted more 

than others for the sake of getting higher passing percentages. Though 

the objectives of the assessment were quite specific, the assessment items 

were set in the forms where test-takers were familiar with multiple 

choice, fill-in-the-blank, simple answer, constructing graphs, etc. to 

avoid interference with the test results. Examples of assessment items of 

the five tests are as follows. 

Table 3. Distribution of assessment items in objectives and contents 

  A 

Calculation 

B 

Knowin

g-about 

C 

Understanding 

D 

Application 

E 

Analysis 

   B1 B2 C1 C2 C3 C4 D1 D2 D3 E1 E2 E3 E4 

A
L

G
E

B
R

A
 

Real number 2 3 2 2     1 1 1    

Algebraic 

Expression 

5 2 1     1  1     

Factoriza-

tion 

1      1        

Radical 

Expression 

1              

Inequalities 3  1   1         

Equation 4   2          1 

Function 3 1 1    1 1  1     

G
E

O
M

E
T

R
Y

 

Symmetry   2     1 1  1    

Lines 1 2 1           

Triangles   2  1 1   1    1 1 

Circles            1   

Coordinates  1  1           
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Test One consisted of twenty items. A sample problem was: 

“Calculate =−
2

)53( _____”; the primary objective would be 

calculation, i.e., the item is a routine problem requiring the test-taker to 

calculate. 

Test Two also consisted of twenty items. A sample problem was: 

“The relationship between the absolute value of x and absolute value of  

–x is ____” with multiple choice options: (a) they are equal, (b) they are 

opposite numbers, (d) the former is bigger than the latter, and (d) the 

former is smaller than the latter. The objective was “Knowing-about: B2 

Knowing about the basic concepts,” that is, to evaluate the test-taker’s 

ability to recall the concept of absolute value. 

Test Three consisted of ten items. A sample problem was: “Of the 

following statements, the correct one is ____”, with options: (a) The 

square root of a positive number is also a positive number, (b) Only 

positive numbers have a square root, (c) The cube root of a negative 

number is also a negative number, and (d) Only negative numbers have a 

cube root. The objective was “Comprehension: C1 Understanding of 

concepts, principles, rules and the meanings of mathematical structures.”  

The question requires test-takerss to understand the relationship between 

different concepts, which is more complex than knowing about the 

concepts. 

Test Four consisted of nine items. A sample problem was: 

In ABCRt∆ , if 90 , 20 ,C A D∠ = ° ∠ = °  is the mid-point of AB , 

then the measure of BCD∠  is _____. The objective was “Application: 

D2 Identifying types,” that is, the test-takers should be able to connect 

the problem with what they have practiced (which in the given example 

means to have dealt with the central line in a right-angle triangle and to 

correctly solve the problem according to the characteristics of the central 

line on the hypotenuse). 

Test Five, different from Tests Three and Four, consisted of six non-

routine problems which the test-takers had never encountered before. A 

sample problem was: “Ferry I and Ferry II started from Island A for 

Island B at noon. The speed of Ferry I was 10 km per hour and that of 

Ferry II was 8 km per hour. The two ferries traveled directly from Island 

A to Island B and returned to Island A at the same time, noon the next 

day. Find the distance between Island A and Island B.” The objective 
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was “Analysis: E1 Finding the mathematical factors/relationships,” that 

is, the key to the problems lies in the realization of the relationship 

between the distance Ferry I traveled more than Ferry II and the distance 

between Island A and Island B, which is of a much higher level than the 

questions on the previous four tests. 

On 13 April 2007, 4,349 students in eighth grade from the Qingpu 

district were paper-tested. Tests of calculation, knowing-about, 

comprehension and application lasted for thirty minutes each and were 

held in two sessions in the morning with a twenty-minute break in 

between. Tests of analysis lasted for one hundred minutes each and were 

held in the afternoon in one session without any break. 

We used factor analysis to analyze the data; factor analysis is a 

statistical method to deal with multivariable data. From this method we 

could summarize a few common unobservable variables (recessive 

variables or common factors), which would reveal the inner link between 

variables and the key role of dominant variables by factor analyzing the 

greater number of original variables. The purpose of factor analysis was 

to determine hidden factors, which were the keys of students’ 

performance on mathematics. Further, a developed framework of these 

hidden factors could be used to evaluate students’ learning and analyze 

educational progress. 

In order to compare the results of 1990 with those of 2007, the seven 

cognitive levels at the early stage in 1990 had been merged into five 

levels by 2007. One third of the original assessment items remained, 

while the level of difficulty had been increased for the remaining two-

thirds of the items. But by linking items, we could statically adjust to 

compare scores. 

4. Main Results and Discussion 

4.1 Outcome of Common Factors Analysis 

After testing and data analysis, we obtained the matrix of the correlated 

coefficient of the testing results for the five levels (see Table 4). With  
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factor analysis we obtained the common factors and the load matrix of 

the common factors (see Table 5). Similar to our summarization and 

inference of the 1990’s factor analysis experiment, F1 signified the factor 

of memorization (with 75.78% of the total variance), and F2 signified the 

factor of comprehension (with 9.37% of the total variance). Their 

combined total was 85.14% of the total variance. The common factors 

became two, while the ratio of the load of common factors raised to 24%. 

Table 4. The matrix of the correlated coefficient of the testing results of the five tests 

Tests 1 2 3 4 5 

1 1     

2 0.7555 1    

3 0.6722 0.7390 1   

4 0.6892 0.7409 0.7390 1  

5 0.5597 0.6515 0.7001 0.7165 1 

Note: Tests 1, 2, 3, 4, 5 measure in turn: calculation, knowing-about, comprehension, 

application and analysis.  

Table 5. Load matrix of common factors in the 2007 tests 

Tests F1 F2 h2 

1 0.9099 0.2753 0.9037 

2 0.7795 0.4826 0.8405 

3 0.5738 0.6809 0.7929 

4 0.5800 0.6866 0.8078 

5 0.2661 0.9173 0.9123 

Note: Tests 1, 2, 3, 4, 5 measure in turn: calculation, knowing-about, comprehension, 

application and analysis.  

 

In the two-dimensional system of coordinates (memorization-

comprehension), the load vector of the five assessment variables 

becomes spread out as illustrated in Figure 2. 

The results of factor analysis revealed the limitation of Bloom’s 

Taxonomy, especially the problems of its continuity and equidistance.  
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Figure 2. Five assessment variables in two-factor vector plane  

The objectives of comprehension and application could be merged 

together for their similar cognitive level, despite their apparent 

superficial characteristics. 

The objective of mathematical knowledge mentioned in Bloom’s 

Taxonomy, which was defined as “knowing about the concept”, manifest 

a disparity between “knowing about the concept” and “knowing how 

tocalculate” at the cognitive level, because the later was operational 

memorization-oriented, while the former had the factors of 

comprehension. 

These two points mentioned above revealed the connections and 

disparities between the cognitive levels and the superficial characteristics 

of mathematics educational objectives. So these two common factors 

could be explained as F1: memorization and F2: comprehension. The 

taxonomy of educational objectives could be divided into a four-level 

framework with equal distance in the memorization-comprehension two-

dimensional plane (see Table 6).  

Table 6. Four-level framework of mathematics educational objectives 

Relatively Low Cognitive Level Relatively High Cognitive Level 

1. Calculation: operational memorization 
3. Comprehension: explaining 

comprehension 

2. Knowing-about: conceptual 

memorization 
4. Analysis: exploring comprehension 
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4.2 Significant Changes to Students’ Learning from 1990 to 2007  

The original assessment results of the 1990 and 2007 tests are displayed 

in Table 7. Although the overall difficulty of the tests had increased from 

1990 to 2007, student performance on each of the assessment items and 

their total overall score had also increased, suggesting educational reform 

progress over the past two decades. For further comparison, in the 

framework of the four levels mentioned above, we combined 

comprehension and application together, analysis, synthesis and 

evaluation together, and then converted these combined objectives into a 

percentile system (Figure 3), on which the estimated score of 2007 was 

adjusted according to the difficulty of the assessment items of for 

evaluation. 

Table 7. The comparison of the original results in the 1990 and 2007 assessments 

 N Cal’n 

Knowledge: 

Knowing 

about 

Compreh’n. Appl’n. Analysis Synthesis Eval’n 
Scoring 

Rate(%) 

1990 3000 67.19 63.96 47.11 41.33 23.84 44.28 29.17 45.27 

2007 4349 84.07 75.28 54.82 51.00 28.96 58.83 

Note:  The total possible is 100 points. The numbers shown indicate average points. The 

scoring rates of 1990 and 2007 reflect the total for seven or five assessment levels, 

respectively. 

 

The profound changes of the mathematics teaching philosophy had 

rolled out among the teachers in the Qingpu district. Although the tests’ 

difficulties increased, we can clearly see that the classroom teaching 

efficiency had been improving greatly from a total mean score of 45.27% 

in 1990 in 58.83% in 2007. 

From the framework using only four levels of mathematics 

educational objectives, the memorization-oriented level as calculation 

and knowing-about had been improving greatly since 1990. The 

objective of the explaining comprehension level (comprehension and 

application) had been reached. But the exploring comprehension level 

(especially the ability of analysis) stayed the same as 17 years previous. 
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This phenomenon was probably due to the excessive pressure students 

felt for the senior high school entrance examinations. Because of this, we 

recommend that how to enhance students’ exploring comprehension 

level should become a major focus of mathematics teaching reform for 

the future.  
 

 

Figure 3.  The comparison of the mathematics educational objectives in the 1990 and 

2007 assessments. 

4.3 Difference Comparisons in terms of Area, School and Gender 

In order to compare the location changes (such as area differences or 

school differences) from 1990 to 2007, two different approaches were 

used for data analysis. The first way was to compute the original scores 

under the framework of the four levels. The other way was to divide 

students into three groups according to their aptitude inclination by using 

factor analysis. 
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Before 1990, most schools in the Qingpu district were terrible in 

mathematics education except a few schools that were participating in 

educational reform. Therefore, a big gap existed between the 

experimental classes and normal classes (see Table 8). By 2007, all of 

the schools in Qingpu had taken part in mathematics teaching reform. In 

order to compare with 1990, the schools were divided into two parts. 

Some schools were called experimental schools, which had joined the 

educational reform in 1990. The others were called normal schools. A 

comparison of these schools, based on their length of time using the 

reform, is given in Table 9. Obviously, the difference between schools 

became smaller. 

Table 8. The comparison between experimental schools and normal schools in 1990 

 
Calculation 

Knowing-
about 

Comprehension Analysis 

Experimental 
Schools (249 

students) 
77.36 69.14 56.29 45.56 

Normal Schools 
(2751 students) 

66.27 63.49 43.13 31.24 

Mean Score 
Difference 

11.09 5.65 13.16 14.32 

Note: The total score of each assessment is 100 points and the data in the table is the 

mean score.  

Table 9. The comparison between experimental schools and normal schools in 2007 

 
Calculation Knowing-about Comprehension Analysis 

Experimental 
Schools (1645 

students) 
84.61 76.38 54.93 30.79 

Normal Schools 
(2704 students) 

83.72 74.53 51.64 27.85 

Mean Score 
Difference 

0.89 1.86 3.30 2.94 

Note: The total score of each assessment is 100 points and the data in the table is the 

mean score. 

The comparison of the students’ aptitude inclination is shown in 

Table 10. The distributions of students’ aptitude inclination were quite 



450     L. Gu, Y. Yang, & Z. He  

different between experimental schools and normal schools, both in 

1990—χ
2
 (2, N=3000) =80.550, p<.001—and in 2007—χ

2
 (2, N=4349) 

=47.716, p<.001. According to the data in Table 10, the changes in the 

normal schools on the structural ratio of the students’ inclination types 

was not significant—χ
2
(2, N=5455)=1.793, p=.408—during the 

intervening ten years. Then the tendency of the students’ aptitude 

inclination in the experimental schools showed the shift from exploration 

to memorization—χ
2 

(2, N=1894) =34.997, p<.001, which meant a 

higher proportion of students belonged to memorization category while a 

lower proportion of students belonged to the exploration category.  

Table 10. Percent of students’ aptitude inclination (%) 

 1990 2007 

 Memorizat’n Compreh’n Explorat ’n Memorizat’n Compreh’n Explorat’n 

Experimental 

Schools 
12.05 47.39 40.65 26.81 47.05 26.14 

Normal 

Schools 
32.13 48.75 19.12 32.69 49.59 17.71 

Note: The total score of each assessment is 100 points and the data in the table is the 

mean score. 

We also investigated the difference of students’ performance between 

males and females. In the 1990 assessment, the mean scores of all four 

levels of the males were higher than the females except for the level of 

calculation (see Table 11). The situation changed in the 2007 assessment. 

The result showed that all the mean scores of the females were higher 

than the males (see Table 12). 

The aptitude inclination analysis (see Table 13) showed that the 

males’ proportion of comprehension and exploration were higher than 

the females’, while the females’ proportion of memorization was higher 

than the males’ in the 1990 assessment—χ
2
(2, N=3000)=33.111, p<.001). 

However, the females made significant progress over seventeen years. The 

distributions of the aptitude inclination between males and females 
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were not significantly difference—χ
2
(2, N=4349)=3.150, p=.207—on 

the 2007 assessment. 
 

Table 11. The comparison between males and females in 1990 

 Calculation 
Knowing-

about 
Comprehension Analysis 

Male students （N=1416） 
67.04 64.75 46.69 33.71 

Female 

students （N=1584） 

67.33 63.25 42.02 31.33 

Mean Score 

Difference 
-0.29 1.50 4.67 2.38 

Note: The total score of each assessment is 100 points and the data in the table is the 

mean score. 

Table 12. The comparison between boys and girls in 2007 

 Calculation 
Knowing-

about 
Comprehension Analysis 

Male students （N=2213） 
82.50 74.32 51.54 27.49 

Female 

students （N=2136） 

85.66 76.17 54.27 30.48 

Mean Score 

Difference 
-3.16 -1.85 -2.73 -2.99 

Note: The total score of each assessment is 100 points and the data is the mean score. 

 

Table 13. Percent of aptitude inclination of males and females (%) 

 1990 2007 

 Memorizat’n Compreh’n Explorat’n Memorizat’n Compreh’n Explorat’n 

Male 

students 
25.44 51.37 23.19 29.53 50.17 20.30 

Female 

students 
34.98 46.17 18.85 28.01 49.63 22.37 

Note: The total possible score is 100 points for each assessment. The data is the mean 

score. 
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5. Summary 

Two large-scale experiments were conducted and factor analysis was 

used to analyze data in 1990 and 2007 in the Qingpu school district. This 

research showed that there were problems on the continuity and the 

equidistance inherent in the framework of Bloom’s Taxonomy. Based on 

this, we proposed and experimented with a four-level framework of 

mathematics educational objectives, i.e., calculation (operational 

memorization and knowing-about), conceptual memorization, 

comprehension (explaining comprehension and analysis), and exploring 

comprehension. The first two levels were categorized as lower-level 

cognition, and the latter two were classified as higher-level cognition. 

Comparisons between the eighth grade students in 1990 and the same 

grade-level students in 2007 on their academic achievements were also 

made. The results of the level tests showed that despite the increase in 

assessment items’ difficulty, the scores were much higher. Among them, 

the students’ levels of calculation and knowing-about increased 

substantially. The students’ level of comprehension reached the basic 

requirements. But the students’ level of analysis (the ability of problem 

analyzing and problem solving), remained the same. So we 

recommended that mathematics teaching reform should focus on 

improving students’ ability to analyze in the future.  

An equitable and balanced education across locales was also an 

important topic in the Qingpu district because of its regional 

characteristic. Results of this research indicated that the gap among 

different schools became smaller and many more students obtained a 

balanced education. By using factor analysis, we depicted the ability 

types of students’ mathematical thinking. The distribution of students’ 

aptitude inclination type had significant changes. More students 

belonged to the memorization type while less students belonged to the 

exploration type after 17 years. The improvement of females was also 

more significant than that of males. The mean scores of females were 

lower than that of males in 1990. On the contrary, the mean scores of 

females were higher than that of males after 17 years. Changes like these 

will be worth studying further in the future. 
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Chapter 15 

Beliefs, Knowledge and Teaching: A Series of 

Studies About Chinese Mathematics Teachers 

  ZHANG Qiaoping              WONG Ngai-Ying 

 

In the past few decades, research on teaching has significantly shifted 

its focus from seeking effective teaching behavior to exploring 

teachers’ knowledge, beliefs, and thinking behind their actions. 

Numerous empirical studies have revealed that teachers’ beliefs about 

mathematics and mathematics learning are strong influences on their 

views of effective mathematics teaching, which in turn influence 

students’ learning. These beliefs come into play when teachers shape 

students’ learning experience and affect their learning outcomes. 

Although extensive research studies have been conducted on how 

Chinese learn and teach mathematics, much more needs to be done to 

explore how beliefs and knowledge influence teaching among 

mathematics teachers in the Chinese context. This chapter first reviews 

the literature that concerns how beliefs and knowledge influence 

teaching among mathematics teachers, with a particular focus on 

studies conducted in the Chinese regions. We then describe a series of 

our studies on how beliefs and knowledge affect teaching. Finally we 

suggest inspirations and directions for future research. 

 

Keywords: beliefs about mathematics, mathematical knowledge, 

pedagogical content knowledge, mathematics teaching 

1. Introduction 

The Chinese learner phenomenon has, especially in the subject of 

mathematics, attracted a lot of attention in the past few decades (Watkins 

& Biggs, 1996, 2001; Wong, 2013). This has been extensively 

investigated in our previous book How Chinese learn mathematics (Fan, 
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Wong, Cai, & Li, 2004). To enhance mathematics learning, the quality of 

the teacher naturally plays a crucial role. This is precisely the theme of 

the present book How Chinese teach mathematics. In the past few 

decades, research on teaching has significantly shifted in focus from 

seeking effective teaching behavior to exploring teachers’ knowledge, 

beliefs, and thinking behind their actions. How mathematics should be 

effectively taught does not only concern teachers’ professional 

knowledge, but also their beliefs about mathematics.  

Knowledge and beliefs are not segregated (Bromme, 1994; Holm & 

Kajander, 2012) and some even see beliefs as a kind of knowledge 

(Furinghetti, 1998; Furinghetti & Pehkonen, 2002). Together, they have 

many influences on teachers’ teaching (Fennema & Franke, 1992). While 

further empirical studies are expected on the investigations on how these 

influences actually occur in the Chinese regions, over the past fifteen 

years, Wong and his colleagues have conducted a series of studies based 

on the notion of lived space which arose from phenomenography. In 

brief, students’ outcome space can be seen as a result of the space 

(learning environment) they live in and it is the teacher who shapes the 

lived space, and teacher’s beliefs are inevitably one of the major driving 

forces behind this process (Wong, Marton, Wong, & Lam, 2002). In its 

initial phase, a number of studies were conducted investigating the 

beliefs among students and teachers about mathematics and mathematics 

learning. The conceptual framework is depicted in Figure 1. 

We began by examining beliefs held by both students and teachers in 

Hong Kong. We later extended the study to the other Chinese regions. 

The team then turned their focus on students’ and teachers’ beliefs   

Teachers’ 

beliefs about 

mathematics/ 

mathematics 

learning 

 

Students’ lived 

space 

Students’ 

beliefs/ 

learning 

outcomes 

Figure 1. The lived space of mathematics learning 
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about effective mathematics teaching. Admittedly, the teacher’s belief is 

but one factor that shapes students’ lived space. The teacher’s knowledge 

would also affect how the shape the lived space (Phillip, 2007). As such, 

we included teachers’ knowledge into our framework (Figure 2). Before 

reporting details of these studies (in Section 4), we will first discuss the 

notions behind our studies and review related studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Teachers’ Beliefs and Teaching 

2.1 Beliefs and Beliefs about Mathematics  

Before a teacher enters the classroom, s/he already possesses a set of 

beliefs about teaching and learning. On top of these, they may also 

harbour some common myths regarding mathematics (Kogelman & 

Warren, 1978; Paulos, 1992). These beliefs may come from different 

sources and Richardson (1996) identified three major ones. They are 

personal experience, experience with schooling and instruction, and 

experience with formal knowledge — both school subjects and 

pedagogical knowledge. By the use of meta-analysis, Kagan (1992) 

concluded that pre-service teachers entered teacher education 

Teachers’ 

beliefs about 

mathematics/

mathematics 

learning 

Teachers’ 

professional 

knowledge 

Students’ lived 

space 

Students’ 

beliefs/ 

learning 

outcomes 

Figure 2. Teachers’ beliefs, knowledge and the lived space of mathematics learning 
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programmes with personal beliefs about images of good teachers, images 

of themselves as teachers, and memories of themselves as students. 

Indeed, teachers’ beliefs represented a complex concept internally 

associated with their attitudes, expectations and personal experience.  

Although beliefs, including those of mathematics teachers, have 

become a central theme in mathematics education (Leder, Pehkonen, & 

Törner, 2002; Pehkonen & Törner, 1996), the notion remains not well 

defined. As Thompson (1992) remarked “for the most part, researchers 

have assumed that readers know what beliefs are” (p. 129). Terms like 

‘conception,’ ‘belief,’ ‘view,’ ‘image,’ were used quite loosely in 

literature (Furinghetti, 1994; Pehkonen, 1998a, 1998b; Philip, 2007). 

Furinghetti (1997) attempted a comprehensive review of all such terms 

used by scholars but the intention to come to a unified definition cannot 

be considered as successful. In this chapter, we regard beliefs as 

“psychologically held understandings, premises, or propositions about 

the world that are thought to be true. Beliefs might be thought of as 

lenses that could affect one’s view of some aspect of the world or as 

dispositions toward action” (Phillip, 2007, p.259). 

What we find as more important is the identification of various 

dimensions of mathematics related beliefs. Such a categorization 

initiated from McLeod (1992), where the following four dimensions 

were proposed: beliefs about mathematics, beliefs about mathematics 

teaching, beliefs about self, and beliefs about the contexts in which 

mathematics education takes place. Among them, beliefs about self 

mainly refer to self-concept, confidence, causal attribution and 

motivation of students. Hannula (2012) updated McLeod’s framework 

above. However, with reference to mathematics-related beliefs among 

teachers, how teachers see mathematics and how they view mathematics 

should be learnt and taught are together considered as teachers’ belief 

system on mathematics education (Beswick, 2005; Thompson, 1992).  

Literature repeatedly confirms that teachers’ views or conceptions 

play a role in their teaching but how these views appear in practice may 

not be apparent. Furinghetti (1997) even likened this as a ‘ghost’ which 

creeps in ‘quietly’. Individuals are not always conscious of their beliefs, 

since some are conscious and some unconscious which nevertheless 

generate subtle effects on classroom teaching (Furinghetti & Pehkonen, 
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2002, p. 53). Having thus said, much effort was paid to delineate the 

relationships between teachers’ beliefs, in the subject of mathematics in 

particular, and their classroom practices (e.g., Beswick, 2012; Raymond, 

1997), though the justified suspicion (that the two are associated) 

remains not entirely certain. Both consistency (e.g., Stipek, Givvin, 

Salmon, & MacGyvers, 2001; Thompson, 1984; Wilkins, 2008) and 

inconsistency (e.g., Cooney, 1985; Cross, 2009; Shield, 1999) between 

teachers’ beliefs and practice were found in empirical studies. Some 

began to turn to other (mediating) factors influencing how teachers 

perceive and enact their roles in the classroom. These factors included 

internal psychological constructs, such as goals, emotions, teacher 

identity, and teacher efficacy and also external factors, such as school 

and department culture, curriculum mandate and class size (Clarke & 

Hollingsworth, 2002; Raymond, 1997). Schoenfeld (2002) further 

reminded us that much more needed to be taken into account in order to 

establish reasonable links between belief systems and behavior. Before 

we proceed to discuss the impact of teacher’s knowledge, we will give a 

brief account of the two major facets on teachers’ mathematics related 

beliefs: beliefs about the nature of mathematics as well as the beliefs 

about mathematics teaching and learning. 

2.1.1 Teachers’ Beliefs about the Nature Of Mathematics 

In simplistic terms, the belief about the nature of mathematics is the 

answer to the question “mathematics is …”. In his seminal work, Ernest 

(1989) established the classification of teachers holding different beliefs 

about this question on different philosophies of mathematics. They are 

the instrumentalist, the Platonist and the problem-solving. Although there 

are other categorizations in literature, in general, teachers’ beliefs about 

the nature of mathematics range from viewing mathematics as a static, 

procedure-driven body of facts and formulas, to a dynamic domain of 

knowledge based on sense-making and pattern-seeking (Cross, 2009). As 

mentioned in Liljedahl (2009), though different literature might carry 

different labels, there are in fact correspondences among them. This is 

summarized in Table 1. 

 



Q. Zhang & N. Y. Wong 462

Table 1. Beliefs about the nature of mathematics 

2.1.2 Teachers’ Beliefs about Mathematics Learning and Teaching  

Similarly, there is a number of categorizations of teachers’ beliefs about 

mathematics learning and teaching in literature. Some see mathematics 

teaching as a transmission of knowledge while others see it as the 

facilitation of students’ construction of their own mathematical 

knowledge (Burton, 1993). In addition to the transmission–

constructivism dimension, Perry, Tracey, and Howard (1998) identified 

yet another dimension of child–teacher centeredness, inferring that 

teacher centeredness and constructivism may not be conflicting. Besides 

the major distinctions between the transmitter and facilitator, there are 

other mathematics specific categorizations by Beswick (2005), Kuhs and 

Ball (1986), Van Zoest, Jones, and Thorntor (1994) and others. The 

resulting categorizations that emerged from empirical studies are 

basically in line with Ernest (1989)’s theoretical framework. The 

variations are probably due to difference in context. The situation under 

the Chinese context will be discussed in Section 4. 

2.2 Teachers’ Beliefs and Teaching Behavior 

As mentioned above, it is the teacher who shapes students’ lived space 

and teacher’s beliefs would inevitably have much impact in the process 

of shaping such lived space. For instance, a teacher with a problem-

solving view will incorporate progressive constructivist teaching 

methodologies into their teaching in order to have their students 
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experience the ‘doing’ of mathematics, and s/he will be a facilitator to 

students’ learning. A mathematics teacher with a Platonist view will 

make extensive use of definitions and proofs both as a pedagogical 

strategy and as content to be acquired, and her/his teaching will be 

expository. Further, Liljedahl (2009) proposed that a teacher with a view 

of mathematics as a toolbox (instrumentalist) will teach with an emphasis 

on rules, formula, and procedures with an abundance of practice to 

enforce memorization and mastery, and s/he guides the students to 

follow her/his procedures.  

However, the relationship between teachers’ beliefs and their 

behaviours, those on teaching in particular, has never been simple 

(Schoenfeld, 2002). On the one hand, we cannot simply conclude that 

teacher’s beliefs influence his/her teaching behavior. Sometimes change 

in beliefs either precedes or occurs simultaneously with changes in 

teacher behaviour/practice (Cooney, 2001; Jaworski, 1998). Conversely, 

teachers’ instructional practice might influence his/her beliefs (Buzeika, 

1996). In Guesky’s (1986) model, changes in teachers’ classroom 

practice may result in changes in student learning outcomes, and 

subsequently bring about changes in teachers’ beliefs. The relationship 

between beliefs and practice appears to be a more reciprocal or circular 

one with each influencing the other (Cobb, Wood, & Yackel, 1990). On 

the other hand, as mentioned above, both consistencies and 

inconsistencies were found between teachers’ beliefs and their practices 

(Cross, 2009; Raymond 1997; Thompson, 1992; Wilkins, 2008). As 

Fang (1996) suggested, the inconsistencies might be due to the 

complexities of classroom life, which may constrain teachers’ abilities to 

follow their personal beliefs and provide instruction that is aligned with 

their theoretical beliefs. Teachers’ theoretical beliefs could be situational 

and manifested in instructional practices only in relation to the 

complexities of the classroom.  

So far, researches on teachers’ beliefs are mainly conducted in the 

Western regions (Leder, Pehkonen, & Törner, 2002; Philipp, 2007; 

Pohkonen & Törner, 1998). Other non-Chinese Eastern regions are not 

the focus of this book and we expect more studies on such research 

among Chinese communities. Since beliefs are cultural dependent, it 

would be of interest to know what beliefs about the nature of  
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mathematics and mathematics teaching the Chinese hold and how these 

beliefs influence their teaching? Investigations into such issues would 

also contribute to unfolding the Chinese learner phenomenon.  

In this, there are a few empirical studies in literature. By the use of a 

questionnaire, Chang (2001) found that Taiwanese in-service junior high 

school mathematics teachers are more inclined to Platonism, while Chen 

and Chou (1999) and Juang (2002) revealed that most elementary school 

teachers who participated in the studies hold a constructivist view. 

Whether such a difference is attributable to the difference in the 

grade/level is subject to further investigations (see below). Nevertheless, 

the majority of the teachers in Juang’s (2002) study believed that 

mathematics instruction should be organized to facilitate children’s 

construction of mathematics knowledge and those who held a traditional 

view opted for direct instruction (Juang, 2002). This echoed with another 

study of Chen and Chou (1999) in which it was found that those teachers 

holding a constructivist belief preferred to pose more open-ended 

problems, were more willing to apply different teaching approaches, and 

preferred to use group discussions to assist students learning 

mathematics  (Chen & Chou, 1999).  

The beliefs among three levels (elementary, junior high and senior 

high school) of mathematics teachers were compared in Leu and Wen 

(2001) in Taiwan. It showed that the constructivist perspective was more 

accepted by elementary mathematics teachers. The teachers believed that 

the purpose of learning mathematics was to enable students to solve 

problems in daily life. They believed mathematics learning activities 

should be aligned with real life experience. On the contrary, junior and 

senior high school mathematical teachers believed that the purpose of 

students’ mathematical learning was to develop their logic thinking.  

Besides questionnaires, qualitative methods like interviews were also 

employed in other studies. In the study of Chin and Lin (1998), three 

socially shared views of mathematics teaching were identified among 

pre-service teachers, which concern learning, instruction, and the 

classroom atmosphere. The data also revealed that pre-service teachers’ 

preconceptions of mathematics teaching were strongly related to and 

enhanced by their previous school mathematics learning experience, 
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which is consistent with the earlier findings of Kagan (1992) and 

Richardson (1996) among others.  

These studies focused mainly on teachers’ beliefs alone but Su and 

Chan (2005) moved a step forward to investigate how such beliefs 

influenced teacher behaviour. Wen and Leu (2004) further explored the 

consistencies and inconsistencies between beliefs and teaching practice 

among mathematics teachers. It was found that a crucial factor leading to 

consistency is teachers’ strong will. A strong view would reinforce the 

teacher’s belief in implementing his/her teaching strategies. 

Besides the intrinsic nature of the issue, the lack of sensitive 

measurements also affects these empirical results. After all, beliefs are a 

sensitive issue and social desirability could affect the accuracy of these 

measurements (Pajares, 1992). A number of methods, including 

quantitative and qualitative ones, were used to measure beliefs by 

researchers, which included questionnaires, interviews, and observations, 

but these tools have faced scepticism from researchers (Lester, 2002; 

Schoenfeld, 2002). Indeed, Mason (1997) has stated that an absence of 

evidence of behavior does not necessarily translate to an absence of 

evidence of conception. In our previous studies, we adapted the idea 

from Kouba and McDonald (1991) in using hypothetical situations. The 

details will be discussed in Section 4. 

The studies reviewed above are based in Taiwan. As for studies 

conducted in the Chinese mainland, Zhang, Wong, and Lam (2009) 

reviewed the literature related to beliefs among mathematics teachers in 

the Chinese mainland in the past twenty years and found that most of the 

publications were only descriptive discussions in nature. Although some 

studies concerned mathematics related beliefs of either pre-service or in-

service mathematics teachers, no empirical researches on the relationship 

between teachers’ beliefs and practice have come to our attention. In sum, 

a number of studies on the relationship between beliefs and their 

teaching behavior among mathematics teachers in the Chinese 

communities were conducted, especially in Hong Kong and Taiwan. The 

picture needs further examination when teachers’ knowledge is put into 

consideration.  
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3. Research on Teachers’ Knowledge and Teaching 

3.1 Teacher’s Professional Knowledge 

Teachers’ beliefs undoubtedly impact their teaching. However, it is not 

so much what they say but what they do that demonstrates teachers’ 

beliefs in their teaching (Schoenfeld, 2011, p. 458). Besides beliefs, 

teachers’ knowledge is also a focus in educational studies (Schoenfeld, 

2002).  There are many studies on teachers’ professional knowledge and 

quite a few on mathematics teachers in particular. 

However, most previous studies concerned the kinds of knowledge 

teachers had and should have, as well as the source of such professional 

knowledge (Ball, 1991; Ball, Thames, & Phelps, 2008; Grossman, 1990; 

Shulman, 1986, 1987). Numerous studies have consistently revealed that 

many mathematics teachers do not possess sufficient knowledge for 

effective mathematics teaching (e.g., Carpenter, Fennema, Peterson, & 

Carey, 1988; Even, 1990; Fan, 1998, 2014; Ma, 1999). Obviously, 

knowledge of mathematical content for teachers goes beyond simply 

being able to solve mathematical problems (Holm & Kajander, 2012). 

Naturally, this would depend on what aspects of problem solving one is 

referring to. Ma (1999) noted that teachers need to have a “profound 

understanding of fundamental mathematics [which] goes beyond being 

able to compute correctly and to give a rationale for computational 

algorithms” (p. xxiv). This brought about different approaches of 

defining teacher’s knowledge (e.g., Begle, 1979; Brown & Borko, 1992; 

Hill, Rowan, & Ball, 2005; Monk, 1994). There are quite a number of 

related terminologies found in the literature (Ball, Thames, & Phelps, 

2008; Ma, 1999; Rowland, 2005; Rowland, Huckstep, & Thwaites, 2003; 

Rowland, Turner, Thwaites, & Huckstep, 2009), the most famous of 

which are the notions of pedagogical knowledge, subject content 

knowledge (SK)
a
, pedagogical content knowledge (PCK) laid down in 

                                                 
a  There are many terminologies like CK (Content Knowledge), SK (Subject-matter 

Knowledge), SMK (Subject Matter knowledge) and MCK (Mathematical Content 

Knowledge) used by different authors, carrying slightly different meanings. In this 

chapter, we will treat them as interchangeable and use SK or (Mathematics) SK whenever 

appropriate.  
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the seminal work by Shulman and his colleagues (Grossman,1990; 

Shulman, 1986, 1987). Subsequently, different scholars have updated 

these terms (Ball, Thames, & Phelps, 2008; Grossman, 1990; Marks, 

1990; Rowland, Huckstep, & Thwaites, 2003).  

Decades of research reveal that SK, PCK and beliefs are the three 

most crucial factors that directly affect the teaching of teachers (Bromme, 

1994; Tatto, Schwille, Senk, Ingvarson, Peck, & Rowley, 2008). 

Research also showed a close relationship between teachers’ SK and 

PCK (Ball, 2000; Bromme, 1994; Even, 1993; Krauss, Baumert, & Blum, 

2008; Li, 2004). The lack of teacher’s SK might result in the lack of 

teacher’s PCK. Teachers with a solid SK would demonstrate strong PCK, 

which allowed them to flexibly adapt the reform-oriented teaching 

methods (Rollnick, Bennett, Rhemtula, Dharsey, & Ndlovu, 2008). In the 

Chinese context, investigations of teacher knowledge have been 

attracting increasing interest, especially in the Chinese mainland. In her 

doctoral study, Han (2005) found that one of the distinguishing features 

in SK among expert teachers is their problem schema. Subsequently, 

three kinds of practical knowledge were identified, which were practical 

experiential knowledge in using propositions, knowledge on problem 

solving strategies and problem schema. Together with other collaborators, 

Han proceeded to conduct a number of investigations in the North-

eastern part of China by means of questionnaires. These studies included 

the sources of teachers’ knowledge (Han, Ma, Zhao, & Wong, 2011) and 

knowledge structures among mathematics teachers (Han, Wong, Ma, & 

Lo, 2011). The SK among mathematics teachers in Hong Kong and 

Changchun (a large city in Northeast China) was also studied. It was 

found that both groups of teachers tended to simply search and apply 

routines when solving mathematics problems (Wong, Rowland, Chan, 

Cheung, & Han, 2010). 

Another cluster of studies have been on PCK in the Chinese mainland, 

which mainly appears in several unpublished doctoral theses (Dong, 

2008; Jing, 2006; Liu, 2011; Ma, 2011; Tong, 2008), in addition to Han’s 

(2005) mentioned above. They investigated the characteristics and 

development of PCK among secondary school mathematics teachers. 

Expert-novice comparison was a methodology commonly used in these 

studies. By contrasting between expert and novice teachers, Li (2004) 

found significant differences in both SK and PCK among these two 
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groups. In addition, expert teachers tended to hold a problem-solving 

view of mathematics and mathematics learning, while non-expert teachers 

tended to hold an instrumental view (Li, Ni, & Siu, 2005, 2006, 2007).   

Besides expert-novice differences in professional knowledge, there 

also exists regional differences. There are differences in five aspects of 

SK and PCK between elementary mathematics teachers in Hong Kong 

and the Chinese mainland (Shanghai in this case) (Lao, 2008). They are 

correctness of concepts, connecters of concepts, understanding of basic 

principles, handling with mathematics representations, handling with 

feedback, which in turn reflect teachers’ different beliefs about 

mathematics, mathematics teaching and learning in these two regions. 

Similarity was also found in these five aspects. In addition, East-West 

comparisons were conducted. By researching on mathematics teachers in 

the Chinese mainland and the United States, An, Kulm, and Wu (2004) 

found teachers’ PCK did have a deep impact on their teaching in both 

regions, although there were different demands on PCK. The Chinese 

teachers emphasized developing procedure and conceptual knowledge 

through reliance on rational, more rigid practices, while the American 

teachers emphasized a variety of activities designed to promote creativity 

and inquiry to develop students’ concept mastery. 

A newly emerging area is the notion of Mathematical Knowledge for 

Teaching (Ball, Thames, & Phelps, 2008). Some related studies in the 

Chinese context include Li, Wan, and Yang (2012), Pang (2011), and 

Tong (2010). By the use of questionnaire, Pang (2011) investigated 

nearly 400 pre-service mathematics teachers in the Chinese mainland on 

their Mathematical Knowledge for Teaching. Results showed that pre-

service teachers, in general, did not have a strong mathematical 

knowledge for teaching. In particular, their specialized content 

knowledge, knowledge of content and student, and knowledge of content 

and teaching were very limited. In contrast, the level of their 

(Mathematics) SK was significantly higher than their PCK (Pang, 2011).  

The topic was also researched in Taiwan. Both Huang (2000a) and 

Lin (2002) found that teachers’ competency was restricted by a weak 

understanding of mathematics, a limited understanding of students’ 

thinking and learning processes, and a limited knowledge of pedagogical 

alternatives in mathematics classrooms. In order to enhance teachers’ 
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professional knowledge for teaching, PCK in particular, Lin (2002) 

employed case analyses to stimulate teachers’ reflection on their practice, 

arriving at promising results. 

The above studies focussed basically on the knowledge teachers 

possess, yet how teachers’ knowledge influences their teaching and 

consequently student learning should be a greater concern. In Li’s (2004) 

research, results showed the difference in SK and PCK among expert 

teachers and non-expert teachers both had an effect on their teaching 

behavior. Compared to non-expert teachers, expert teachers had profound 

understanding of mathematical knowledge with an explicit and well-

organized knowledge package. Expert teachers could maintain high-level 

cognitive demands of tasks in their teaching, while non-expert teachers 

tended to reduce the tasks to the mere utility for procedure acquisition 

without making use of the tasks to enhance students’ understanding. 

Different classroom discourses were also found between these two 

groups. In expert teachers’ classrooms, the discourse showed a pattern of 

student statement – teacher questioning – student explaining (student – 

teacher – student). In contrast, in the non-expert teachers’ classrooms, 

the discourse was typically showed to be a pattern of teacher initiation-

student response-teacher evaluation (teacher-student-teacher). While we 

have studies on the relationship between teachers’ knowledge and 

students’ learning in the West (Hill, Rowan, & Ball, 2005), the 

relationships between teachers’ SK, PCK and the knowledge of 

children’s cognition in mathematics were also investigated in Taiwan. 

Huang (2000b) identified three types of teachers’ PCK which involves 

the oral explanation and demonstration by teachers, providing children 

with mathematical exercise to master learning, and the collaborative 

learning and discussion in mathematical problem solving. However, 

although teachers’ PCK and knowledge of children’s cognition in 

mathematics were positively correlated, relationships between teachers’ 

SK and the children’s cognition did not reach statistical significance.  

In sum, professional knowledge among mathematics teachers has 

attracted increasing attention in the Chinese communities. However, 

more investigation is needed on the relationships between knowledge 

and teaching. Before we elaborate on our studies in this aspect (Section 
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4), we will discuss how knowledge potentially interacts with beliefs and 

affects teacher’s teaching.  

3.2 The Beliefs, Knowledge and Teaching ‘Triad’ 

It is generally accepted that both beliefs and knowledge influence 

teaching but how they translate into practice can be further scrutinized 

(Cooney & Wilson, 1993). Ernest (1989) suggested that beliefs are a 

primary regulator between knowledge and behavior. Furthermore, he 

suggested that there is a cycle between subjective and objective 

knowledge, in which each contributes to the renewal of the other (Ernest, 

1991). Several empirical studies were conducted under such a premise 

that beliefs and knowledge influence teaching interactively (An, Kulm, 

& Wu, 2004; Fennema & Franke, 1992). There is also a recent trend of 

including both teachers’ professional knowledge and their beliefs as parts 

of teachers’ professional competence (Blömeke, Felbrich, Müller, Kaiser, 

& Lehmann, 2008; Weiner, 2001).  

The interaction among beliefs, knowledge and teaching can be 

understood in the following way: what teachers believe as crucial about 

teaching or learning would guide their classroom practices (or, the 

shaping of students’ lived space), and how teachers enacted these beliefs 

would be constrained by their professional knowledge (Fennema & 

Franke, 1992).  

Aside from these theoretical considerations, a number of empirical 

studies have been conducted. For instance, Wilkins (2008) found that 

teachers with higher levels of mathematical content knowledge tended to 

use less inquiry-based methods in their classroom. These teachers 

thought that conventional methods worked for them, they did not see the 

need to try something new. Wilkins further argued that “increasing the 

level of mathematical content knowledge without also helping teachers 

develop positive beliefs and attitudes related to mathematics within the 

context of teaching and learning will in the end limit the value of 

learning the content” (p. 157). Holm and Kajander (2012) found that by 

enhancing the mathematical knowledge of pre-service teachers, they 

became more confident in themselves as an effective mathematics 

teacher, especially with the new teaching methods. They concluded that 
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addressing either the beliefs or the knowledge of prospective teachers is 

not enough to support their professional growth. Both beliefs and 

knowledge need to be targeted together in order to potentially support 

lasting changes in classroom practices. 

There are but a few such empirical studies at present, and much more 

investigation is needed not just to confirm such an interaction exists to 

influence teaching behaviour but how beliefs, knowledge and teaching 

interact in practice. As far as we are aware, our study (reported below) is 

the only one of this nature in the Chinese region. 

4. Series of Studies on Teachers’ Beliefs, Knowledge and Their 

Teaching 

As mentioned above, there have been only a few empirical studies 

conducted among the Chinese community on how teachers’ beliefs or 

knowledge affect their teaching. Even fewer investigations have been 

conducted taking into account teachers’ beliefs and knowledge together. 

In this section, we will report on what we have researched in this area so 

far. The series of studies is listed below: 

1) Initial attempts: classroom environment and perception of 

mathematical understanding 

2) Students’ beliefs about mathematics 

3) Teachers’ beliefs about mathematics 

4) Teachers’ beliefs about effective mathematics teaching. 

5) Teachers’ beliefs and teaching 

6) Teachers’ beliefs, knowledge and teaching 

Although this book focuses on the teacher, when we launched our 

studies in the mid-1990s, we began from the students’ perspectives. The 

results among the students inspired our methods of research into the 

teachers’ perspectives. As such, from a chronological viewpoint, we 

deem it appropriate to present our initial research among the students.  
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4.1 Classroom Environment and Perception of Mathematical 

Understanding 

How students considered themselves to understanding (some) 

mathematics and their perceptions of the classroom environment were 

investigated. First, it was found that students generally see the ability to 

solve mathematical problems as being able to understand the 

mathematics (Wong & Watkins, 2001). As for the psychosocial 

environments of the mathematics classroom, how both students and 

teachers preferred as well as perceived classroom atmospheres were 

investigated in depth, both in Hong Kong and in Changchun. Generally, 

the classroom atmosphere appeared more favorable to the teachers than 

to the students. Details are referred to in Ding and Wong (2012). 

4.2 Students’ and Teachers’ Beliefs about Mathematics 

As mentioned above, since beliefs pertain to personal opinions or 

convictions, a variety of methods were used in the above studies such as 

open-ended questions (‘Mathematics is …’; ‘Mathematics classroom 

is …’) and episode writing. It was also the first time we employed 

hypothetical situations in our studies on students’ and teachers’ beliefs 

about mathematics. Some examples are,  

Are they considered as doing mathematics in the following situations?  

• One day the classmate sitting next to you took out a ruler and 

measured his/her desk; 

• One day Siu Wan made a Valentine card in the shape of a heart by 

paper folding,  

Fruitful results were obtained. Briefly, the students generally identified 

mathematics with its terminology and content, and that mathematics was 

often perceived as a set of rules. To them, mathematics is a subject of 

calculables. With such a perception, they tended to tackle mathematical 

problems by the search for routines. In order to do so, they would look 

for clues embedded in the questions including the given information, 

what is being asked, the context (or, the topic) and the format of the 

question (Wong, Marton, Wong, & Lam, 2002).  
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For the teachers, we altered the questions slightly by asking, “What 

would you expect your students’ reactions when they are asked whether 

the following situations are considered as doing mathematics and what 

would your responses be to your students?” Although the beliefs among 

teachers appeared more refined than those of the students, the 

conceptions of mathematics among the teachers basically resemble those 

of the students. Nevertheless, it was found that the conception of 

mathematics among the teachers is broader, among which, ‘mathematics 

involves thinking’ was unanimously agreed. Other facets of mathematics, 

as reflected by the teachers, include ‘Mathematics is a subject of number 

and shapes’, ‘Mathematics is closely related to manipulation’, 

‘Mathematics is precise and rigorous’, ‘Mathematics is beautiful’ and 

‘Mathematics is applicable’ (see, e.g., Lam et al., 1999; Wong, 2000, 

2002;  Wong et al., 2002; Wong, Lam, & Wong, 1998; Wong, Lam, 

Wong, Ma, & Han, 2002).  

4.3 Teachers’ Beliefs about Effective Mathematics Teaching 

The above focused on the nature of mathematics rather than beliefs about 

mathematics teaching. We then proceeded to investigate views on 

effective mathematics teaching among expert teachers (Wong, 2007). A 

cross-regional comparison was conducted in this study in which 

Australia, the Chinese mainland, Hong Kong and the United States were 

involved (Cai, Kaiser, Perry, & Wong, 2009). We found that the Chinese 

teachers’ (Hong Kong and Chinese mainland inclusive)views on a 

teachers with effective mathematics teaching is one who can set a path of 

mathematization for the students that goes from the concrete to the 

abstract, that enhances understanding and that students can acquire a 

flexible use of rules. To this end, well-organized practices (repetition 

with variation) may serve as a scaffolding that leads from the basics to 

higher-order thinking skills. To actualize such a ‘teacher-led, student-

centred’ teaching, in which the teachers are believed to be most effective, 

teacher professionalism comes first place. Teachers must have a strong 

professional knowledge, including the mastery of teaching skills and the 

ability to understand the students.  
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In this connection, there has been a recent project entitled the Third 

Wave Study in which both students’ and teachers’ beliefs about effective 

teaching were considered in a single study. Please refer to Seah and 

Wong (2012) for details. 

4.4 Teachers’ Beliefs and Teaching 

The systematic study of Wong (2003) is yet another empirical study that 

involved Chinese mathematics teachers in Hong Kong. In it, 

questionnaires, interviews and classroom observations were involved. In 

addition to the above-mentioned hypothetical situations, hypothetical 

situations which involved the teaching context were used. Here are some 

examples of these situations:  

• Consider the following question: “Siu Fong spent $75 on dolls and 

snacks. Each doll sells for $59. How much did Siu Fong spend on 

snacks?” Which of the following expressions are acceptable to you? 

(a) x = 75 – 59; (b) 75 – x = 59; (c) 59 + x = 75; (d) 75 – 59 = x. 

• Each apple costs $3. The total price of 2 apples should be expressed 

as $3 × 2, $ (3 × 2) or $ (2 × 3)? 

Wong, Wong, Lam, and Zhang (2009) provide details of both the 

study and of these hypothetical situations in particular. In this study, 

teachers’ beliefs about effective mathematics teaching in relation to their 

beliefs about mathematics and mathematics learning were investigated. 

Seven elementary mathematics teachers in Hong Kong were interviewed 

through two interview guides, which were based on Thompson (1991) 

and Wong, Lam and Wong (1998). The former included a set of 

hypothetical situations that helped to focus the interview on what 

mathematics is (see the examples above). The latter covered not only 

what mathematics is but also what mathematics learning and what 

effective mathematics teaching is. Some sample interview questions are: 

1) What does it mean to teach/learn mathematics? 

2) What should be taught/learned when you are teaching/learning 

mathematics? 
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3) What is the aim of teaching/learning mathematics? 

4) If you were observing a mathematics lesson, what rules would you 

use to evaluate it? 

5) What should the roles of the teacher and the students be? 

6) What are the characteristics of an effective mathematics teacher? 

7) What do you think an ideal mathematics teacher should be? 

Results showed that teachers’ beliefs did make a difference in their 

teaching. Three types of teachers were further identified, namely the 

pragmatic-oriented, the understanding-oriented, and the thinking-

development-oriented. Different types of teachers exhibit different views 

on effective mathematics teaching. For the pragmatic-oriented 

mathematics teacher, they possess, to a certain extent, an absolutistic 

view of mathematics. Conformity is emphasized and thus learning 

mathematics is essentially ‘copying’ what the teacher does and (re-) 

producing what is ‘correct’ mathematically. For the understanding-

oriented mathematics teacher, mathematics is seen as a way of thought. 

Thus, their view of effective mathematics teaching is that understanding, 

instead of getting the correct answer, is the main learning outcome, and 

every means should be employed to enhance students’ understanding. 

The thinking-development-oriented category may overlap with the 

understanding-oriented category. However, for the thinking-

development-oriented category, the knowledge structure of mathematics 

and mathematical rigor are repeatedly stressed. Their picture of the 

ultimate outcome of mathematics teaching is the acquisition of a 

‘mathematical way of thought’ and the construction of an ‘objective’ 

mathematical knowledge structure in the students’ mind. 

Our series of studies mentioned above are basically the main one 

involving empirical data. Ding and Wong (2006) conducted another 

empirical study on how beliefs affect teaching among Chinese 

mathematics teachers. Their results revealed that, among elementary 

teachers in the Chinese mainland, those who emphasized the precision 

and rigidity of mathematics resulted in their students focusing on the 

superficial features of mathematics like the accuracy of the answers. For 

instance, though the teacher might touch upon notions like estimation, 
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due to such a confined lived space set by the teacher, the students only 

focused on the calculable aspect of it, disregarding non-paper-and-pencil 

methods like estimation by eyeballing or body measurement. In contrast, 

for teachers holding a broader conception of mathematics, the teaching 

context is much richer, incorporating more realistic examples and their 

students were found to be more interested in mathematics.  

4.5 Teachers’ Beliefs, Knowledge and Teaching 

From the literature reviews above, we see that with strong mathematics 

knowledge and the skills for effectively presenting the knowledge to 

students, together with professional beliefs that were conducive to 

student learning, the mathematics teacher would approach a lesson in a 

professional way. This would result in effective mathematics teaching. 

Desirable learning outcomes may not come about otherwise. However, 

not many research studies have drawn attention to how teachers’ beliefs 

translate into their teaching practice. As far as we are aware, there are no 

such studies carried out in the Chinese context. As mentioned above, this 

worth pursuing since beliefs are culturally dependent. Zhang (2010) fills 

the research gap by extending the above research model (Figure 2) by 

including teachers’ approach to teaching (Figure 3). Professional 

knowledge in this context is referred to as both (Mathematics) SK and 

PCK. In the study, the relationship between beliefs and knowledge was 

deliberately left open. 
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Both quantitative and qualitative methods were used in the study, 

which also included the use of hypothetical situations. The study had two 

phases. In phase one, ninety two mathematics secondary teachers from 

Wuhan, a large industrial city located in central China, were invited to 

participate in a questionnaire survey. The survey aimed at getting a 

general picture of the teachers’ beliefs about mathematics, their SK and 

PCK. The second phase was case study, which aimed at delineating how 

beliefs and knowledge influenced teachers’ teaching approach.  

The questionnaire survey in the first phase comprised two parts: 

Beliefs about Mathematics Scale and The Mathematical Knowledge 

Questionnaire. The former was adopted from Tatto et al. (2008) and Lam, 

Wong and Wong (1999). It contained 40 items put across a 5-point scale. 

There are three subscales: Beliefs about the Nature of Mathematics 

subscale (10 items), Beliefs about Mathematics Learning (14 items), and 

Beliefs about Mathematics Teaching (16 items). The Mathematical 

Knowledge Questionnaire assessed teachers’ SK and PCK under the 

context of mathematics function. There were 5 items on SK and 5 items 

on PCK. Items for both types of knowledge were based on students’ 

misconceptions or mistakes in the area of mathematics function as 

described in the literature or known from teacher’s teaching experiences 

(Even,1993; Even & Markovits, 1993; Llinares, 2000). The questionnaire 

was based on Zhang and Wong (2010).  

Results revealed that the participating teachers fell into the three 

categories: instrumentalist, Platonist, and problem-solver, consistent with 

Ernest’s (1989) classification. With the help of a mathematical 

knowledge test, six secondary mathematics teachers (2 females and 4 

males) were identified for further classroom observations and in depth 

semi-structured interviews in the second phase. For each of the three 

categories, one participant possessed limited knowledge while the other 

had strong knowledge. The notion of function was used as the underlying 

topic of investigation. Hypothetical situations that concerned teaching in 

general as well as the teaching of that particular topic of function were 

used in the interview (Wong et al., 2009; Zhang & Wong, 2010). 

Analyses of the case study revealed that beliefs and knowledge 

impacted teachers’ teaching strategies. Teachers with different depths of 
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professional knowledge would have different teaching arrangements and 

different understandings of students and their mathematics learning. Also, 

teachers who hold similar professional knowledge might have different 

interpretations of students’ mathematics learning due to differences in 

their beliefs about mathematics.  

Those teachers holding instrumental beliefs on mathematics tended to 

design their teaching to help students memorize, understand the contents 

and avoid making mistakes. To them, the ultimate teaching goal was to 

help students solve problems. Teachers possessing such a belief, but with 

limited professional knowledge, would follow the textbook when 

organizing their teaching. They focused on understanding mathematical 

concepts. Consequently, these teachers emphasized the clear definitions 

of concepts, and the grasping the key words and core elements of the 

concepts. Further, with weak PCK, these teachers lacked variations in 

their teaching methods. In contrast, teachers with stronger professional 

knowledge were able to use textbooks flexibly according on students’ 

situations. Their teaching design were based on practical considerations, 

and focused on the operation without special emphasis on the 

understanding of the concept. When coupled with a rich PCK, these 

teachers tended to use a lot of metaphors and analogies in their classroom 

teaching. 

Similar to the ‘instrumental teacher’, Platonic teachers also focused 

on content in their lesson. However, their teaching aimed to promote 

students’ understanding of mathematics. Here, the scope of 

understanding included facts, rules, procedures and principles in 

mathematics. They thought that students’ understanding was an ever-

deepening process. Teachers with strong professional knowledge 

organized their teaching by the spiral approach. Much attention was 

given to present the content progressively. Those teachers with limited 

professional knowledge focused on the systematic structure of 

mathematics knowledge. To them, each lesson should be self-contained 

and standardized. Specifically, to teach a concept, teachers had to help 

students understand the context of the particular concept and the 

connection between this concept and others in order to give students a 

clear impression. These teachers would then consolidate students’ 

understanding through exercises. 
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As for the problem-solving oriented teachers, their classroom 

teaching design was more student-centered. They emphasized students’ 

exploration in the classroom. Specifically, teachers with rich professional 

knowledge used realistic examples to design their teaching. They 

encouraged students to engage in classroom activities, thus allowing 

them to present their thinking and to explore new knowledge. These 

teachers would give counter-examples based on students’ own mistakes, 

so as to deepen students’ understanding. As for teachers with limited 

professional knowledge, they too organized their teaching from the 

students’ perspectives. New knowledge was introduced through students’ 

problem-solving experiences and the application of mathematics in real 

life. The students were requested to come up with the concept and with 

the pattern behind the concept. However, due to limited professional 

knowledge, such teachers were unable to provide adequate examples to 

illustrate important issues. In such cases, the teachers eventually resorted 

to instructing students directly on mathematical results or principles. 

While Zhang (2010) provides further details in this regard, it is clear 

from these results that both beliefs and knowledge impact how teachers 

approach a lesson. 

5. Discussions 

We have reviewed research studies involving beliefs and knowledge 

among mathematics teachers, and in particular empirical studies 

conducted in the Chinese communities. With this backdrop, we presented 

our series of studies on this topic. Through our series, the conceptions of 

mathematics among both students and teachers were first identified. In 

general, both groups hold a relatively narrow belief about mathematics 

which, from the students’ perspective, affects their problem solving 

performances. Such a confined outcome space might be the result of the 

lived space shaped by teachers. In this aspect, both teachers’ beliefs and 

knowledge contributed to their teaching methods.  

Although the above may generally be taken as obvious, the picture 

painted by Chinese teachers appears to be slightly different. The Eastern 

educational regions, in particular the Chinese ones, have a long tradition 

of having a centrally designed curriculum and textbooks (Wong, Han, & 
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Lee, 2004). With such well-designed curriculum documents, together 

with rigorous teacher preparation systems, teachers would normally 

deliver the curriculum as designed. Indeed, generic skills and process 

abilities are very much emphasized in the current mathematics 

curriculum reform taking place in the Chinese regions (Lam, Wong, 

Ding, Li, & Ma, in press). It is only in situations where teachers are faced 

with the choice of gearing students for public examinations or to 

cultivate students’ interest in mathematics via activities that we see the 

effects of teachers’ beliefs. In terms of research, it justifies our use of 

hypothetical situations, which we believe have a high research potential. 

These include hypothetical situations on mathematics and mathematics 

teaching. In this, the hypothetical situations on mathematics teaching 

mentioned above are mainly derived from actual ‘frequently asked 

questions’ in the classroom. Present day classrooms can be quite unlike 

the ‘one-way’ teaching of the past, where students listen as teachers talk.   

Where teachers attempt to address students’ queries during a lesson, 

which is important to ensure students’ understanding, the teachers’ 

beliefs clearly affect their response to students. In this regard, it is also 

imperative that teachers have a strong mathematical background (SK) to 

respond to such questions and indeed a strong PCK to transform SKs into 

something that is comprehensible to students. 

During discussions in the Topic Study Group on pre-service teachers 

at the 12th Congress on Mathematics Education, we concluded that PCK 

is student dependent. In other words, for a single SK, we may need 

several PCKs to address different target student groups. That makes the 

training of PCK particularly difficult. Some have suggested asking 

student teachers or pre-service teachers whether, when faced with 

mathematical queries from students, they are equipped with alternative 

methods/ answers (see Berliner, 1986; Cai & Wong, 2012). By having 

thus, they become reflective practitioners (Shön, 1983). This is one of the 

research foci in the project ‘Knowledge competency among Hong Kong 

mathematics teachers: Their readiness, strength, and weakness during the 

reform of New Senior Secondary school curriculum’ (with Prof I. K. C. 

Leung as principal investigator). This project recently earned support 

from the Hong Kong Research Grant Council. 
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It is found that mathematics teachers in the Chinese regions generally 

possess a strong foundation in subject knowledge (Ma, 1999). However, 

if they hold relatively narrow beliefs (on mathematics, mathematics 

learning and teaching), these beliefs would not only affect their teaching 

but would impose their beliefs onto their students. The similarities on 

beliefs among students and teachers have already been shown in previous 

studies. This could constitute a vicious circle. We realize that students’ 

beliefs are not only influenced by the teachers. Both are potentially 

affected by the ‘collective Anshuaang’ (collective worldview) of the 

public (Lam & Ernest, 2000; Siu, 1995; Zheng, 1994). In this regard, the 

teacher is an important contributor to such a ‘collective Anshuaang’ as, is 

it not true that one of the core goals of education is to effect positive 

change in society? To reverse such a circle, it is suggested that a new 

breed of teachers, or ‘scholar teachers’, is needed (Siu, Siu, & Wong, 

1993). 

As for methodology issues for future research, ‘expert-novice’ 

contrasts used in earlier research yielded fruitful results. Mixed methods 

(quantitative and qualitative) were utilized. The use of hypothetical 

situations proved promising and possessed high potential. These 

situations included those on what is mathematics, on mathematics 

teaching and how one approaches teaching. As it has already been 

established that teachers’ beliefs and knowledge have an impact on their 

teaching, we can proceed to ask how the impact takes effect. 

Furthermore, there has been criticism that research on teaching 

approaches had often relied on participants’ stated response (Gregory & 

Jones, 2009; Kane, Sandretto, & Heath, 2002). Indeed, it is suggested 

that one should go beyond how teachers approach a lesson (planning 

stage) to how teachers actually deliver their lesson. Classroom 

observation should be the most direct and valid way to tap into how a 

teacher is in practice. How beliefs, SK and PCK interplay and how other 

mediating factors like self-willingness, gender, and teaching experiences 

enter into the scene are all worth further investigation. To answer the 

‘how question’ above, conventional large scale quantitative studies can 

be conducted and sophisticated statistical methods like structural 

equation modeling, or, alternatively, in-depth ethnographic investigations 

might reveal how such influences take place and how deficiency of 
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knowledge and confined beliefs would restrict their teaching in 

mathematics.  
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Chapter 16 

What Makes a Master Teacher? A Study of 

Thirty-One Mathematics Master Teachers  

in Chinese Mainland 

FAN Lianghuo  ZHU Yan  TANG Caibin  

 

This chapter presents a study investigating the reasons behind the 

success of mathematics master teachers in their acclaimed teaching 

career in the Chinese mainland. Data were collected from 31 

mathematics master teachers in four provinces and three municipalities 

through questionnaires and interviews. The results revealed that the 

master teachers valued internal factors more than external ones in their 

professional growth. In particular, dedication to education, inner 

quality, and true professional care towards students appear to be three 

most important factors. In contrast, capability in dealing with 

interpersonal relationship was rated as less crucial by the master 

teachers. The chapter also documented those master teachers’ 

experiences, reflections, and suggestions concerning teachers’ 

professional development. Implications and interpretations of the 

findings are discussed. 

 

Keywords: mathematics teachers, master teachers, teacher education, 

teacher professional development, primary education 

1. Background and Introduction 

‘Master teacher’ as an honorary title has been used to recognize teachers’ 

outstanding performance in the Chinese mainland since 1978 when the 

system was initiated. This title does not belong to the official career rank 

system for teachers, which was not established until the mid-1980s. The 

official teacher career rank system, which is rather unique in the Chinese 

mainland, consists of three grade levels, i.e., “Second Grade” (or junior 
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grade), “First Grade” (or middle grade), and “Senior Grade” (or higher 

grade). Although it is only an honorary title, “master teacher” is widely 

believed to be above the level of senior grade teacher, as virtually all 

master teachers are also senior grade teachers.  

Master teachers in the Chinese mainland, as in some other countries, 

are usually regarded as models for other teachers, experts in teaching, 

and having great reputations and accomplishment in their subject 

domains. Regarding their teaching, master teachers are expected to have 

“a distinctive personal style in classroom teaching”, which exemplifies 

“practicality, innovation, flexibility, and teaching as an art”. Furthermore, 

they are expected to craft their own ideas about teaching materials and 

teaching strategies. Specifically in the subject of mathematics, master 

teachers are believed to have a systematic understanding of mathematics, 

know how to integrate mathematics education theories and psychology 

into classroom teaching, pay attention to mathematics as a culture, and 

be able to analyze textbooks with deep understanding (e.g., see Ferreras, 

Olson, & Sztein, 2010). 

Generally speaking, the evaluation and selection process of master 

teachers in the Chinese mainland is very strict. Consequently, the number 

of master teachers is very low. In fact, according to the regulation issued 

by the central government in 1993, the ratio of master teachers to all the 

teachers should be controlled at no more than 0.15% (Source: the official 

website of the Ministry of Education at http://www.moe.edu.cn). 

Wu and Kong’s (2010) analysis of the group of master teachers in the 

city of Tianjin provides another look at the situation of master teachers in 

the Chinese mainland. According to them, the city has run the selection 

of master teachers seven times during the period from 1978 to 2009. 

There were 11 teachers selected in 1978 and 121 in 2009, and a total of 

609 teachers were awarded with this honorable title during the whole 

period. Wu and Kong found that the gender distribution tended to be 

more balanced nowadays. More and more younger teachers were 

awarded the title. However, there was also a tendency that a great 

proportion of selected teachers were at the secondary school level. For 

example, in 2009 only 15% of the master teachers selected were from 

primary schools and 5% from kindergartens. 
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In fact, master teachers as a recognized group of school teachers of 

highest quality is a term that is also used in some other countries, such as 

Singapore and the USA. Increasing attention from education 

policymakers, researchers, and school practitioners has been paid to the 

group of teachers, which is particularly evident in the last 10 years (e.g., 

see Fan & Shen, 2008; Ferreras, Olson, & Sztein, 2010; Gong, 2008; Li, 

2010; Lim, 2010).  

In Singapore, since the government established the system of “master 

teachers” in 2001, there have been a total of 5 master teachers in 

mathematics, 20 in languages, 5 in science, and 4 in other school subjects 

(Source: the official website of the Academy of Singapore Teachers at 

http://www.academyofsingaporeteachers.moe.gov.sg). These teachers 

have been recognized on the basis of their invaluable contribution in 

their field of teaching, and are deemed to be at the pinnacle of their 

career. They are providing leadership in the teaching and learning of 

corresponding subjects across schools in different zones (Fan & Shen, 

2008; Lim, 2010). 

In the United States, many important aspects and issues have been 

attached to the concept of “master teachers”, such as what its advantages 

and disadvantages are, whether it should be tied to merit pay, what 

“master” should mean, who should be master teachers, and how they 

should be selected, among others (Klein, 1985). Recognizing master 

teachers’ significant role, in 2012 the US government announced a $1 

billion program to support up to 10,000 master teachers in science, 

technology, engineering and mathematics (STEM) education within the 

next four years. These teachers are expected to be an elite group of 

teachers leading their communities, professional development, and 

mentorship activities, and contributing new lesson plans and strategies to 

transform and improve science and mathematics teaching (Koebler, 

2012). 

Related to the small size and the strict selection process of master 

teachers, it seems reasonable to assume that master teachers provide not 

only exemplary teaching practice, but also a role model for teachers’ 

professional development. In this regard, the study presented herein is 

intended to investigate the reasons behind the successful stories of 

mathematics master teachers in their acclaimed teaching career in the 
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Chinese mainland, and by doing so, to shed light on how to effectively 

seek teachers’ professional development.  

2. Review of Relevant Literature 

Although the master teacher system was established in the Chinese 

mainland in the late 1970s, research with clear research questions and 

methods on master teachers has been few and scattered for a long period 

of time. The situation has gradually changed since around 2000, and over 

the recent years, researchers have shown increasing interest in the study 

of master teachers, from different angles with main focus on their 

characteristics, beliefs and perceptions, and their teaching practices. 

Many studies about master teachers were carried out in comparison 

with other non-master teachers or, in a more convenient term, ordinary 

teachers. It appears that questionnaire survey is a most commonly used 

method in these comparisons.  

A notable study in this area was completed by Zhang and his 

colleagues, who conducted a province-wide survey study to investigate 

the differences between 111 master teachers and 160 ordinary teachers, 

covering primary, junior secondary, senior secondary levels and all 

school subjects, from a variety of perspectives, including teachers’ job 

psychograph (Zhang, 2009a), job pressure and working condition (Zhang, 

2009b), growth environment (Zhang, 2009c), self-evaluation about their 

own teaching ability (Zhang, 2009d), didactical reflection (Zhang, 

2009e), conducting education research (Zhang, 2010), and career identity 

(Zhang, 2011). 

There are also some other aspects about the differences between 

master teachers and ordinary teachers being investigated through 

questionnaire surveys. For instance, Xu, Cao, and Lan (2010) did their 

comparison about teachers’ lesson preparations. Wang and Zhang (2010) 

looked into the issues related to teachers’ reading. Zhao, Tao and Zhou 

(2010) focused on teachers’ observing others’ lessons and conducting 

their own lessons.  

Most of these survey studies revealed significant differences between 

the two groups of teachers. In most cases, the responses received from  
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master teachers are closer to the ideal ones, such as being less stressful, 

demonstrating more positive working attitudes, showing more 

confidence, being more self-motivated in participating in research 

activities, etc. There are also some aspects in which more similarities 

were revealed between master teachers and ordinary teachers. For 

instance, Zhang (2009c) found that there were no significant differences 

between the two groups of teachers in terms of school environment and 

society environment. If all teachers generally grew in a similar 

environment, what made some teachers become master teachers? It is the 

central question for the present study. While no differences were found 

between master teachers and ordinary teachers in their understanding of 

observing others’ lessons and the following sharing and evaluation of the 

lessons observed, Zhao et al. (2010) found that the two groups of 

teachers had different purposes for observing others’ lessons to some 

extent and further master teachers spent significantly more time in the 

relevant activities. One question here is what made these differences 

occur while both groups hold a similar understanding.  

There have also been studies exclusively on the master teachers, 

without a comparison with other teachers. For instance, Li (2010) 

surveyed 72 school master teachers followed by interviews with 10 

selected ones in Guangxi Province, with the purpose to identify master 

teachers’ needs for their professional training in six dimensions, 

including knowledge, capacity, instructional ability, training methods, 

training types, and trainers. The study found that the master teachers had 

strong passion for further learning and development, and particularly for 

research of teaching and learning, and they prefer specific training over 

general training, and have diverse needs for further training. Also 

focusing on teacher training, Cai (2011) studied the impact of in-service 

training on master teachers’ professional development. The results 

showed that the biggest impact were on the changing of their ideas, 

innovation of their methods, uplifting of their experiences, and the 

gaining of opportunities.   

While the majority of the studies about master teachers are not 

subject-specific, there have been a small number of studies particularly 

focusing on mathematics master teachers, with some being as master 
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dissertation studies, which were often single case studies, focusing on a 

particular master teacher (e.g., Xu, 2010; Yu, 2012; Zhang, 2007).  

Using video-stimulated interviews, Huang and Li (2009) investigated 

Chinese mathematics master teachers’ beliefs about effective 

mathematics teaching. Through analyzing 10 master teachers’ evaluation 

of video-taped lessons, the researchers revealed that Chinese master 

teachers focused on the following five aspects in their evaluating 

mathematics lessons: instructional objectives, instructional design, 

teaching procedure, learning environment and the teacher’s quality, 

though the emphasis placed on different aspects are varied. The study 

indicated that the ways in which these teachers evaluate specific lessons 

might not be closely related to their beliefs about effective lessons in 

general. 

Focusing on how to improve mathematics teachers’ expertise, Li, Cai 

and Gong (2011) studied master teachers’ perception about instruction 

through a different angle. The researchers investigated a master teacher’s 

work station about its focuses and approaches used to help in teachers’ 

professional development. It is found that the master teacher emphasized 

on a deeper understanding of mathematics content as well as its structure 

through intensive studies of textbooks. Furthermore, the trainees’ 

thinking and instruction showed dramatic changes through the learning 

procedures.  

Fan and Shen (2008) conducted a comparative study of one Chinese 

and one Singapore master teachers in the primary schools. Mainly using 

interview, they found that the two master teachers showed more 

similarities and fewer differences in their perceptions of effective 

mathematics learning and their designing of teaching specific 

mathematics topics. The researchers believe that the similarities might 

reflect the nature of mathematics and mathematics education, while the 

differences might reflect the cultural and teaching philosophy between 

the two countries and personal experiences of the two master teachers.    

In a review of research about master teachers, Qiao, Zhang, Cui and 

Liu (2009) summarized five main research themes, including (1) case 

studies of master teachers, for example, evaluation and analysis of 

teaching, interviews on special topics, or experience-sharing, (2) studies 

of master teachers’ characteristics, focusing on, for example, their social 
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class, social expectation, self-requirement, interpersonal relationship, and 

teaching style, (3) studies of master teachers’ professional development 

in areas of such as academic, instruction, practice, and management, (4) 

studies of reasonable deployment of master teachers, and (5) studies of 

master teacher selection system, including factors such as the ratio of 

master teachers being selected, their qualification, the transparency of 

selection, etc.  

A similar review was carried out by Wu (2010), who provided a 

summary of the features of research on master teachers in different 

periods in the Chinese mainland. According to her, the relevant research 

starting from 1977 mainly targeted at publicizing the exemplary deeds of 

master teachers in the 1970s. Research during the period from the end of 

1980s to early 1990s focused on the patterns and commonalities of 

master teachers’ successful experiences. From 2001, individual master 

teachers, master teacher groups, and master teacher systems became 

three main research topics. Regarding the research themes, Wu identified 

three major types, including personal introduction with exemplary deeds, 

descriptions and analyses of master teachers’ teaching methods, and 

master teachers’ looking-back at and reflection of their own experiences. 

Based on the review, Qiao et al. (2009) pointed out the problems 

existing in the available studies. These problems include that the scope of 

the available research was limited, the research methods were 

oversimplified, the quality of research was low, the research findings 

were superficial, and the number of researchers was small, among others. 

Consistently, Wang and Cai’s (2005) earlier report also suggested that 

the main problems in the existing research in the Chinese mainland as 

insufficient attention being paid and the domain of research being too 

narrow. Meng (2008) criticized that the prevailing research about master 

teachers’ professional growth was usually simply mixed with some 

experience-sharing or articulation. Strictly speaking, due to being lacking 

in theoretical support, such research cannot be counted as real research. 

Moreover, the issue on how master teachers become master teachers was 

seldom studied. 

It appears to us that the problems in the available studies on general 

master teachers as revealed above also exist in the studies on 

mathematics master teachers, and it is clear that overall, both the scope 
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and methods of research in this area needs to be further expanded and 

improved. The present study tends to delve into the causes. 

3. Research Design and Procedures 

As mentioned earlier, this study aims to investigate the reasons behind 

the successful stories of mathematics master teachers in their acclaimed 

teaching career, or in other words, to examine, from the perspectives of 

mathematics master teachers themselves, what are the important factors 

that make them master teachers.  

More specifically, the investigation intended to mainly address the 

following questions: 

(1) What are mathematics master teachers’ views about the importance 

of various factors to their own professional development? 

(2) What are mathematics master teachers’ views about the importance 

of various factors to general teachers’ professional development? 

(3) What are mathematics master teachers’ views about the importance 

of various conditions or traits for being a master teacher? 

(4) What are mathematics master teachers’ views about the importance 

of various pathways for teachers’ professional development?   

Furthermore, the researchers are also interested in examining whether 

these views would vary among master teachers with different 

background characteristics. This section is devoted to the methodological 

matters of the study. 

3.1 Participants 

Thirty-one mathematics master teachers participated in this study. All but 

two are teaching at the primary school level. They were from different 

schools in four provinces: Guangxi, Hubei, Jiangsu, and Zhejiang, and 

three municipalities: Beijing, Shanghai, and Tianjin. Most of the 

participants were selected from Jiangsu Province (18) and Zhejiang 

Province (5) due to practical reasons, as it was more feasible for the 

researchers to reach and gather information about the master teachers in  
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the two provinces, which obviously is a limitation of this study due to its 

scope.   

Table 1 presents the background information about these 31 

participating teachers, including their gender, highest education level, 

and experience of mathematics teaching in terms of the length of their 

teaching (years). All the information was gathered from the first six 

questions in the questionnaire. 

Table 1. Profile of participating teachers 

 Provinces (4) Municipalities (3) Total 

Gender of teachers 

Male 

Female 

 

17 

8 

 

5 

1 

 

22 

9 

Age 

35-40 

40-45 

45-50 

50-55 

55-60 

 

5 

17 

0 

2 

1 

 

0 

3 

0 

2 

1 

 

5 

20 

0 

4 

2 

Experience of teaching 

mathematics 

15-20 

20-25 

25-30 

Above 30 

 

 

2 

13 

7 

3 

 

 

0 

1 

3 

2 

 

 

2 

14 

10 

5 

Highest level of education 

Junior College 

Bachelor 

Master 

 

1 

20 

4 

 

0 

4 

2 

 

1 

24 

6 

School Location 

Cities 

Villages and Towns 

Rural areas 

 

25 

0 

0 

 

5 

1 

0 

 

30 

1 

0 

School level of teaching 

Primary 

Junior Secondary 

Others 

 

24 

0 

1 

 

5 

0 

1 

 

29 

0 

2 

As we can notice from the table, most participants were aged from 40 

to 45 with about 20-25 years of mathematics teaching experiences. All 

but one of the teachers obtained at least a bachelor degree for their 

formal education. All but one school where these teachers were working 

were located in cities rather than towns or rural areas.  
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3.2 Instruments and Data Collection 

To collect data, two instruments were designed for the study: 

self-designed questionnaire and follow-up interview. 

3.2.1 Questionnaire 

The questionnaire consists of six parts. Questions 1 to 6 in Part One are 

set to collect teachers’ background information, which is reported in 

Table 1. The information is helpful to understand and analyze teachers’ 

responses to the questions in the questionnaire.  

Questions in Part Two are about teachers’ views on the importance of 

various factors to their own professional development. They were first 

conceptualized into two broad categories: internal (or personal) factors 

and external (or non-personal) factors. The latter is further classified into 

two sub-categories: school factors and beyond-the-school factors. Under 

this framework, there are five personal factors (e.g., knowledge level and 

desire for improvement), five school factors (e.g., school support for 

professional development and school working environment), and five 

beyond-the-school factors (e.g., societal respect for outstanding teachers 

and the government policy about teachers). Open spaces are also 

provided in the questionnaire for the master teachers to list factors not 

identified in the questionnaire but they think are important, and to tell 

how important these factors are.  

Part Three is about these mathematics master teachers’ views about 

the importance of various factors to general teachers’ professional 

development. Eight factors, such as teachers’ own quality and 

professional background and teachers’ sustained efforts, were listed.  

Part Four focuses on these teachers’ views about the importance of 

various conditions or traits for being a master teacher. Eight items were 

listed, and they include, for instance, professional dedication and good 

personality. 

Different from the previous parts, Part Five of the questionnaire looks 

into the importance of various pathways for teachers’ professional 

development. The pathways listed in this part include, for example, 
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self-learning and reflections, attending specialists’ talks, and exchanges 

with peers.  

All the questions in Part Two to Part Five require the participating 

teachers to evaluate the importance of various factors to the 

corresponding domains with a 4-point Likert scale from the highest “very 

important” (4) to the lowest “not important” (1). In addition, an “N” is 

given as a choice if teachers feel “difficult to answer” regarding an item. 

Like Part Two, besides these multiple selections on the scale of 

importance for the listed factors, open spaces are also provided in Part 

Three to Part Five for the master teachers to list factors that they think 

are relevant but are not listed in these parts, and to tell the corresponding 

scale of importance. 

The last part, Part Six, consists of three multiple-choice questions and 

two open-ended ones. Question 6.1 asks the teachers to identify the key 

developmental period for a teacher to become a master teacher after 

he/she starts the teaching career, whereas Question 6.2 asks about a 

period in which they needed help most based on their own professional 

growth experience. Question 6.3 asks the teachers to evaluate the 

importance of teacher training to their success, using a 5-point Likert 

scale from “very important” to “not importance at all”. Finally, the last 

two questions in Part Six ask the teachers to write down up to three areas 

in which they want to seek further improvement in their profession and 

up to three advices if a novice teacher aims to become a master teacher in 

future. 

3.2.2 Interviews 

The study also employed structured-interviews for data collection. 

Besides the purpose of data triangulation, the interviews with a selected 

group of master teachers is also intended to get more in-depth 

information about the professional development of master teachers. 

Eleven questions were pre-designed to guide the actual interviews. 

The construction of these interview questions was mainly based on the 

structure of the questionnaire, therefore all the interview questions, 

except for Question 6, can find their corresponding ones in the 

questionnaire. These questions further ask teachers to explain their 
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responses in the questionnaire with one or two examples being required 

to illustrate and/or supplement their views. Question 6 asks teachers to 

reflect on their own development experience and identify favorable 

factors and adverse factors in promoting teachers’ professional 

development as well as the most efficient ways and training forms for 

this purpose.  

 Eight teachers were first selected after the review of all the 

participating teachers’ responses to the questionnaire. The selection was 

intended to reflect teachers’ demographic characteristics and 

geographical location. 

After we selected the eight teachers, six teachers responded positively 

and therefore participated in the interview. The other two did not 

participate due to unforeseen reasons. The six master teachers who 

accepted our interview are from both provinces (3) and municipalities (3), 

different age groups and genders (5 male, 1 female), and teaching 

experiences of different years (3 less than 25 years and 3 having 25 or 

more years). As the six teachers are working in different parts of the 

Chinese mainland, all the interviews were conducted through telephone 

conversations, which were audio-recorded and took about 40-45 minutes, 

or written responses via emails.  

The questionnaire survey took place in March of 2013, with 100% 

response rate from the participating teachers, which is likely related to 

the fact that researchers know these participating teachers, 

communicated with them effectively via phone or email, and the 

responses were through online methods. The follow-up interviews with 

six master teachers took place from April to May of 2013.  

3.3 Data Processing and Analysis 

The data in tape-recorded form obtained from interviews were first 

transcribed verbatim. Together the transcripts (as collected data) were 

translated from Chinese into English for the purpose of analysis. The 

data from the questionnaire were stored, processed, and analyzed using 

SPSS mainly by quantitative methods. The analysis is intended to get an 

overall portrait about how the mathematics master teachers view the 

roles of various factors in their professional development. Mean rating 
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for each factor has been calculated followed by a series of Wilcoxon 

signed ranks tests with all factors within respective dimensions to 

examine whether there are significant differences among factors in terms 

of their importance to the relevant issues.  

To detect the factors that might affect the master teachers’ beliefs 

about their own growth experience, the participating teachers were 

further classified into the different groups for comparison: 

1. Region: Provincial cities vs. Municipalities 

2. Gender: Male vs. Female 

3. Age: Young vs. Mid-aged 

4. Teaching experience: Experienced vs. Senior 

In the study, “Young teachers” refer to the teachers who are 

45-year-old or younger and the remaining teachers are defined as 

“mid-aged teachers”. Regarding teaching experience, researchers usually 

used “ten years” as a criterion to classify teachers into novice group or 

experienced group of teachers, which is however not applicable in the 

study, for it is expected that all the master teachers have many years of 

experiences in teaching mathematics and as Table 1 shows, all the 

participating teachers have at least 15 years of teaching experience. After 

reviewing the participating teachers’ profiles, we used “25 years” as a 

classification criterion for the analysis, mainly because that it separated 

nicely the 31 participants into two groups (Experienced vs. Senior) with 

nearly an even of number in each.  

As listed in Table 1, there are six pieces of personal information 

collected in the first part of the questionnaire, about which the 

researchers initially tended to explore their possible influences on the 

master teachers’ views about professional development. However, the 

data showed that these 31 teachers were quite homogenous in some 

dimensions. In particular, all but one were university graduates or master 

degree holders,
 1

 all but one came from city schools, and all but two 

were teaching at the primary school level.
 2

 As a result, it is difficult for 

                                                             
1 To be noted that most school mathematics teachers at both the primary and secondary 

levels in the Chinese mainland are subject specialists. It implies, in most cases, that for 

their undergraduate majors they specialized in mathematics. 
2 Though there were two teachers not teaching at primary schools when the study was 
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us to detect whether these demographic characteristics would have 

impacts on teachers’ views so that the three variables were not used for 

classification. Correspondingly, four sets of Mann-Whitney U tests were 

used to identify the possible differences related to teachers’ background 

characteristics within each dimension. 

The data from the interviews were analyzed mainly by qualitative 

methods. It is used for the researchers to understand better the 

interviewees’ responses in the questionnaire and to get more in-depth 

information about the professional development of master teachers. For 

both anonymity and convenience, the six teachers interviewed are 

denoted by T1, T2, T3, T4, T5 and T6 respectively. 

3.4 Limitations of Research Methods  

Due to the fact that the main purpose of this study is to understand 

master teachers’ perceptions about teachers’ professional development, 

questionnaire surveys and follow-up interviews are believed to be 

appropriate. However, the researchers are also aware of the limitations of 

the two instruments, particularly in investigating teachers’ actual 

practices. In fact, researchers have found that the ways teachers did 

certain things might not be closely related to their beliefs on the same 

issues (e.g., Huang & Li, 2009). Therefore, more research efforts with a 

variety of research methods are needed to gain a better and more 

intensive understanding about what actually occurred in the domain.  

4. Results and Discussions 

The main results of the study are reported in the following sequence: 

important factors in master teachers’ professional development, 

important factors in general teachers’ professional development, 

important conditions (or traits) for being a master teacher, important 

pathways for professional development, and some other issues (e.g., key 

stage in professional development and professional advices for novice 

                                                                                                                                        

conducted, they both earned the title “master teacher” because of their excellent teaching 

performance as primary school mathematics teachers earlier. In this sense, their data were 

equivalently valuable as those from the other master teachers in the present study. 
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teachers). The sequence is the same as that of the questions provided in 

the questionnaires as well as in the follow-up interviews. 

4.1 Important Factors in Master Teachers’ Professional Development 

As mentioned earlier, to explore the importance of various factors that 

contribute to master teachers’ professional development, the study 

classified them into three general types, including personal factors, 

school factors, and beyond-the-school factors.  

4.1.1 Personal Factors 

Among the five personal factors suggested in the questionnaire, the 

participating master teachers gave the highest rating to the factor “A3: 

actively engaging in self-reflection and looking-back” about their own 

work (M = 3.97). In fact, 30 out of 31 teachers viewed this factor as 

“very important” while the remaining one considered it “relatively 

important”.  

The factor “A2: strong desire for improvement” also received very 

high rating (M = 3.94), with 29 teachers viewing it “very important”. A 

Wilcoxon signed ranks test showed that there was no significant 

difference in these mastter teachers’ views about the importance of the 

two factors in their professional development, Z = 0.577, p = .564. 

The third most important factor is “A1: having high level of knowledge”. 

All the teachers viewed the role of the factor in their professional 

development at least “relatively important”, with the average rating being 

M= 3.35. 

In comparsion, the two factors receiving the lowest ratings are related to 

getting helps from others, that is, “A4: receiving helps and guidances from 

leaders” (M =3.16) and “A5: learning from colleagues” (M = 3.29), though  

the absolute value of the ratings are still both larger than 3, which is 

relatively important. While the majority of the teachers (58.1%) viewed the 

two factors in their own professional development as “relatively important”, 

some regarded them as “not so important” (A4: 12.9%; A5: 6.5%).  

Wilcoxon signed ranks tests revealed that factors A2 and A3 were 

significantly more important than the other three factors, A1, A4, and A5, 

at .001 level, while the participants’ views about the importance of these 

three factors showed no significant difference. 
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It should be pointed out that, to detect the possible differences in the 

views of the master teachers in different groups about different factors, we 

conducted a series of Mann-Whitney U tests on each paired groups of 

teachers in terms of teachers’ geographical locations (provincial cities vs. 

municipalities), genders (male vs. female), ages (young vs. mid-aged), and 

teaching experience (experienced vs. senior). The results showed that there 

are overall no significant differences in these master teachers’ views about 

the importance of the various personal factors to their own professional 

development. The only exception is that male teachers valued more about 

“A2: strong desire for improvement” than their female colleagues (U = 77.0, 

p < .05, r = .40)
3
. The teachers from municipalities tended to have 

considerably more positive perspective about “A1: having high level of 

knowledge” than those from provincial cities (U = 46.0, p = .080). In general, 

the results indicate that all the master teachers have an overall similar view 

about this issue. To us, this finding is to a degree not only surprising and but 

also enlightening, indicating a strong communality of master teachers.     

The results of interview with all the six teachers are consistent with the 

findings from the questionnaire survey. They were further asked during the 

interviews to elaborate their views about the five factors with concrete 

examples. T1 gave a synoptic description about the functions of these factors 

in his professional growth; that is, “having high level of knowledge” makes 

teachers feel confident, having “strong desire for improvement” greatly 

motivates teachers, “actively engaging in self-reflection and looking-back” 

enables teachers to get a great sense of accomplishment, and “receiving help 

and guidance from leaders” may shorten the pathways of professional 

development. About his own practices on actively engaging himself in 

self-reflection and looking-back, the teacher pointed out that he has 

published three monographs on primary school mathematics teaching based 

on his regular reflections and research and that he had also worked with 

colleagues and had jointly published more than twenty teaching guidebooks. 

Both T2 and T5 highlighted the importance of strong passion for the 

profession. T2 emphasized that as long as one regards education as a career 

for life, the teacher will then possess strong desire for improvement, pay 

close attention to his/her own behaviors, and consistently make necessary 

adjustment so as not to departure from the right pathway. Also because of 

the same reason, one would be humble and willing to accept all kinds of 

help from various parties. T5 emphasized that that without passion, a teacher’s 

effort in seeking improvement on the job will not be sustained for long.  

                                                             
3 Effect sizes for Wilcoxon signed rank tests and Mann-Whitney U tests are expressed by 

r with 0.1 being small, 0.3 being medium, and 0.5 being large. 
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Besides the five factors given in the questionnaires, the participants 

were also invited to suggest other personal factors which they believed have 

certain importance in their growth to become a master teacher. As a result, 

these teachers proposed 30 different factors from a variety of perspectives. 

Some are related to their learning habits (e.g., learning from students, the 

ability in persistent learning, and professional reading), some are about their 

personalities (e.g., personal interests, personal characters, and rich in 

practical experiences), and others referred to views about the profession (e.g., 

educational ideals, sense of professional responsibility, and enthusiasim to 

the profession). The result suggests that besides the commonality about the 

five factors reported above, the teachers have also their own unique personal 

factors that have played an important role in their professional development.  

Interestingly, both T2 and T4 also pointed out the their family 

environment is also an important factor in their teaching career. T4 

mentioned that he has 10 family members and close relatives who are 

teachers, and among them his father has the biggest influence on himself in 

becoming a master teacher.    

T6 in the interview further commented her gains from consistent 

academic writing. From her growth experience, she summarized three 

writing-related factors which made her feel successful, that is, self-sustained 

passion in writing, adequate motivations and attitudes toward academic 

writing. T3 also mentioned that writing is a good way of promoting 

self-reflection, though he recalled that his self-reflection and looking back 

was more passive at the early stage in his career.  

4.1.2 School Factors 

Compared to the importance of personal factors in the master teachers’ 

professional development, the ratings on the suggested school factors 

were generally lower. The teachers gave the highest rating to the factor 

“B1: School support for professional development” (M = 3.39, higher 

than “relatively important) and lowest to the factor “B3: Help gained 

from the school-wide mentoring program” (M = 2.83, lower than 

“relatively important), with two teachers considering factor B3 “not 

important” to their professional growth. In addition, on all the five 

factors indicated, there were a number of teachers giving “not so 

important” ratings. On factors B3 and B4 (“Help received from school 

colleagues”), one teacher indicated that he/she is unable to rate them. 
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Wilcoxon Signed Ranks Tests showed that factor B1 was viewed 

significantly more important than both factors B3 and B4 (for B3: Z = 

3.532, p < .001, r = .64, and for B4: Z = 2.828, p < .005, r = .52). 

Furthermore, factors B3 and B4 were also found to be significantly less 

important than the factor “B2: Good working environment in school” (M 

= 3.29; for B3: Z = -2.977, p < .005, r = .54 and for B4: Z = -2.179, p 

< .05, r = .40) and factor B3 was further viewed significantly less 

important than the factor “B5: School leaders offering clear helps and 

encouragements” (M = 3.20; Z = -2.598, p < .01, r = .47). 

Similar to the findings on teachers’ perceptions about the importance 

of different personal factors, these master teachers demonstrated a 

similar view on the importance of school factors. No significant 

difference was found between different groups as classified earlier 

except that male teachers tended to value considerably more about “B3: 

Help gained from the school-wide mentoring program” than female 

teachers (U = 54.5, p < .050).  

Based on the responses provided in the questionnaires, the 

interviewees were asked to elaborate on their ratings. T1 commented on 

the importance of school support, as he said “it is difficult for teachers, 

even more capable ones, to get proper development if their school 

leaders did not offer the teachers opportunities”. He shared in detail with 

the researcher an example of a school principal he knows. He observed 

that the principal was willing to appoint her teachers based on their 

merits, value teachers’ talents, spend money to train novice teachers (e.g., 

sending young teachers to attend various national conferences), and 

provide platforms for teachers to show their abilities and achievements. 

As a result, many teachers in the school have become excellent ones. In 

contrast, he also observed that another school’s principal was envious of 

her teachers’ ability, only loved words of praise from teachers, expected 

teachers to be docile and obedient, and could not permit the existence of 

teachers who had better abilities than herself. Eventually, many 

outstanding teachers had to leave for other schools. T4 explained that the 

trust his principal gave him in his earlier days as a teacher was very 

helpful in his professional development. Similarly, T6 expressed her 

appreciation about what her principal offered her. She was impressed 

from her principal’s in-depth understanding about teaching materials, 
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distinctive views about instruction, and subtle and refined warmth in 

dealing with people. She benefitted greatly from her principal’s support, 

understanding and encouragement, which she described as “humanistic 

power”, along the way of her professional growth.   

T2 shared in detail with the researcher his understanding of the 

importance of school working environment and colleagues’ help. He 

stressed that the collegiality he enjoyed in the first school he worked was 

very helpful for him to form the value of “helping others”. He also 

commented that school’s nurturing excellent characters for teachers is 

much more important than providing good physical facilities. T5 offered 

a similar view and emphasized that a supportive and understanding 

environment is very important, and schools should also make necessary 

arrangement for young teachers to learn from experienced teachers. On 

the other hand, T3 candidly explained in the interview that he missed one 

developmental opportunity in the early 1990s because a leading teacher 

who was already a master teacher did not provide an equal opportunity 

for all junior teachers in favor of these who were his own students.  

Beyond the five suggested school factors, the participating teachers 

listed another fifteen relevant factors which they believed having 

contributed to their professional development. While some were an 

extension of those listed in the questionnaires (e.g., specialists’ guidance, 

good interpersonal relationship, and relaxing working environment), 

others were related to school leaders’ philosophy for running a school, 

school culture and tradition, and working atmosphere, as well as school 

policy for teachers’ development, personnel evaluation, and recognition 

of teachers’ personalities, etc. It seems clear that school factors played a 

reasonably important role, though not as important as personal factors, in 

these master teachers’ professional development.   

4.1.3 Beyond-the-school Factors 

Regarding the importance of beyond-the-school factors, the 31 master 

teachers viewed all the five factors listed in the questionnaire as 

important ones, to a greater or lesser degree. The highest rating was on 

“C4: Family members’ understanding and support” (M = 3.48), whereas 

the factors “C1: Societal respect for outstanding teachers” (M = 3.07) 
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and “C2: Government’s policies on teachers” (M = 3.03) were given the 

lowest rating. Furthermore, one teacher noted that he had difficulty in 

rating the importance of factor C1 (hence not rated) and another female 

teacher viewed factor C2 as “not important” in her professional growth.  

In the questionnaire, T1 offered a low rating on factor C1 and C2. 

During the interview, T1 explained that the motivation for professional 

development should be from inside. In his view, the present society has 

not paid enough attention to education and the respect given to the 

teachers were merely on words but not in substance. However, he 

believed that many outstanding teachers were not affected too much by 

such a situation, as they viewed the profession as their career and not 

merely a job. Though not highly paid, these teachers could find it joy 

amid challenges. When a teacher regarded the job as a pleasure, external 

factors would then not have a great impact on him. T3 and T5 also 

indicated that external factors only have a certain level of importance.  

In contrast, T2 and T4 viewed society-related and government-related 

factors important to their personal development. T2 also emphasized the 

importance of the family-related and friend-related factors. In his words, 

the first two factors would play a role for positive direction of 

development. Regarding the support from family, T2 commented that 

with family members’ understanding and support, teachers could devote 

themselves more to teaching. On the contrary, family members’ 

complains will affect one’s mood as well as passion for the career. He 

described friends’ influence as “one takes on the color of one’s 

company”, and believed that friends’ value has direct impact on one’s 

mentality. On the other hand, T4 highlighted the support he received 

from the education administration when he was a young teacher, and 

believed it was important. 

Similarly, T6 also appreciated the values of friend-related and 

government-related factors in her professional growth experience. She 

particularly described how a teaching and research fellow has influenced 

her professional development. According to her, the teaching and 

research fellow’s rigorous scholarship and profound understanding about 

mathematics helped improve her ways of thinking. Furthermore, the 

fellow also offered many development opportunities for her, such as 

working together in developing resource booklets and encouraging her to 
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take part in open evaluations about others teachers’ classroom teaching 

and to conduct lessons of high quality for others to observe. In short, T6 

regarded the teaching and research fellow in the government as an 

“important factor” in her career life. 

The comparison of the relative importance of the suggested 

beyond-the-school factors in these master teachers’ professional growth 

showed that “understanding and support from family” (C4) was 

significantly more important than “government’s policy on teachers” (C2: 

Z = 2.568, p < .05, r = .46) and “societal respect for outstanding teachers” 

(C1: Z = 3.153, p < .001, r = .58). Further, this factor was also 

considerably more important than “colleagues’ and friends’ influences” 

(C5: Z = 1.767, p = .077). The second highest rated beyond-the-school 

factor (C3: “education administrative department’s encouragement and 

support”, M = 3.29) was found significantly more important than factors 

C1 and C2 at the .05 level (for C1: Z = -2.111, p < .05, r = .39 and for C2: 

Z = -2.309, p < .05, r = .41). No significant differences were found 

among the remaining three factors. 

It was again noted that all the master teachers’ views about the 

importance of beyond-the-school factors in their professional growth 

experiences were generally the same. Except compared with the 

mid-aged teachers, young ones tended to value colleagues’ and friends’ 

influences (C5) considerably more important (U = 41.0, p < .067). 

Further, female teachers seems to value about government’s policy on 

teachers (C2) considerably more important (U = 62.0, p < .082). 

Compared to personal factors and school factors, the number of 

additional beyond-the-school factors suggested by the participating 

teachers was smaller, with six in total. Two of them were related to 

students’ parents. There was one teacher particularly mentioning about 

the importance of participating in teaching competition at various levels. 

4.1.4 Comparisons of the Importance of Personal Factors, School 

Factors, and Beyond-The-School Factors in Professional Growth 

Table 2 listed the descriptive statistics of teachers’ rating on all the 

fifteen factors by types of factors. Personal factors are found to be 

overall more important than the other two types of factors and the 
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corresponding differences were statistically significant at the .001 level, 

whereas the teachers’ perceptions about the importance of both school 

and beyond-the-school factors were not much different. Moreover, it is 

worth noticing that the ratings of factors B1 (school supports) and C4 

(colleagues’ helps) were particularly high within each type of factors, 

while that of factor A4 (school leaders’ guidance) was particularly low 

compared to the other four personal factors. 
 
Table 2. Teachers’ perceptions about the importance of various factors in their master 

teachers’ growth experiences 

Level of Importance M SD Rank 

Personal factors 

(M = 3.54, SD = .26) 

A1 3.35 .49 5 

A2 3.94 .25 2 

A3 3.97 .18 1 

A4 3.16 .64 11 

A5 3.29 .59 6 

School factors 

(M = 3.14, SD = .57) 

B1 3.39 .67 4 

B2 3.29 .78 8 

B3 2.83 .83 15 

B4 3.00 .64 14 

B5 3.19 .65 10 

Beyond-the-school factors 

(M = 3.21, SD = .49) 

C1 3.07 .64 12 

C2 3.03 .80 13 

C3 3.29 .64 7 

C4 3.48 .57 3 

C5 3.19 .75 9 

4.2 Important Factors for General Teachers’ Professional 

Development 

As said earlier, Part Three of the questionnaire asks the participants to 

evaluate the importance of eight factors for general teachers’ 

professional development, based on their own experience. The result 

showed that these master teachers all believe that the factor “3b: 

Teachers’ sustained efforts” (M =3.97) is the most important factor, 

followed by the factor “3a: Teachers’ own quality and professional 

background” (M = 3.73). In fact, all but one teacher believed that factor 

3b is “very important” to teachers’ professional development. 

Comparatively, the factor “3e: mutual helps from colleagues” received 
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the lowest rating (M = 3.00) with only four teachers viewing it “very 

important”.  

In the questionnaire, T1 gave a rating of 4 (“very important”) for both 

factors 3b and 3d (expert’s professional guidance). During interview, he 

enumerated several important people at various levels in his professional 

development, including school principal, director of teaching, and 

teaching and research fellows. Furthermore, he gave a specific comment 

on one teaching and research fellow, who guided him to take part in a 

variety of teaching competitions, eventually at the national level. As T1 

said, “the influence was profound, and it was the preparation procedure 

for those competitions that made me to set my affection on mathematics 

teaching, get onto the road of research, and eventually become a master 

teacher”. In the interview, T3 also agreed that real experts’ professional 

guidance is indeed important, but he also cautioned that sometimes the 

so-called “experts” might only be able to offer some general principles 

and not very practical theories. In this case, teachers’ own experience 

and reflection is more important.      

Besides factors 3a and 3b, T2 also highlighted the important role of 

mentors (3c) and family members (3h). He indicated that it is not easy 

and also not necessary to find out the solutions to all problems by oneself. 

One can always learn from his predecessors’ well-established 

experiences. In this sense, getting a wise mentor, who does not 

necessarily need to be a famous one, is important, as a wise mentor’s 

advices can help in avoiding many detours.  

T6 also emphasized the significant impact of experts on her own 

professional development. She elaborated what she learnt from an invited 

master teacher’s lesson demonstration, including integrating daily life 

examples into teaching (getting out of classrooms), enlightening students 

in mathematics ideas and methods (getting out of knowledge), and 

self-developing teaching materials creatively (getting out of textbooks). 

From that lesson, T6 had a sudden feeling of being enlightened and 

refreshed. After that lesson, she searched for many materials about that 

master teacher and started to “imitate” what that master teacher did and 

later tried to form her own way of teaching. She said she experienced the 

procedure from being similar in form to being similar in spirit. 
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Table 3 displays a comparison of these master teachers’ perception 

about the eight factors in terms of their importance to teachers’ 

professional development. It can be observed that the importance of 

factor 3b is significantly higher than all the other factors. In the opposite 

direction, the participants viewed factor 3e significantly less important 

than all the other seven factors. 

 
Table 3. Wilcoxon signed ranks test results on master teachers’ perceptions of the 

importance of various factors for teachers’ professional development 

 3a 3b 3c 3d 3e 3f 3g 3h 

3a (2) - -2.333* 3.638*** 2.840** 4.234*** 3.357*** 3.771*** 2.138* 

3b (1)  - 4.413*** 4.359*** 4.817*** 4.264*** 4.707*** 3.873*** 

3c (6)    - -1.414 2.111* -.905 .302 -2.000* 

3d (4)    - 2.668** .302 1.897†
 

-.943 

3e (8)     - -3.162** -2.121* -3.441*** 

3f (5)      - 1.134 -1.291 

3g (7)       - -2.183* 

3h (3)        - 

Note: 3a: Teachers’ inner quality; 3b: Teachers’ persistent efforts; 3c: Mentor’s guidance 

on instruction; 3d: experts’ professional guidance; 3e: Colleagues’ mutual help; 3f: 

Colleagues’ influence and encouragement; 3g: Leaders’ caring and encouragements; 3h: 

Family members’ understanding and support; † p < .1, * p < .05, ** p < .01, *** p < 

.001; The numbers in the brackets represent the ranking of the factors in terms of 

importance in ordinary teachers’ professional development. 

Besides the eight factors listed in the questionnaire, the participants 

further suggested another eight factors that they believe have importance 

in general teachers’ professional development. These suggested factors, 

such as obtaining school’s recognition, getting students’ support and trust, 

teachers’ motivations to work, and pleasant working atmosphere, reflect 

a variety of these teachers’ perspectives. Also there was one teacher 

highlighting the importance of getting parents’ trust and another teacher 

appreciating the value of opportunities. Interestingly, one teacher 

proposed a unique point of view, that is, accumulating (knowledge) from 

reading books. 

A series of comparisons of the views of the master teachers in 

different groups, as aforementioned, revealed that, in general, the 31 

master teachers held similar views about the importance of various 

factors for mathematics teacher’s professional development, though 

some significant differences were found. More specifically, female 

teachers rated the importance of leaders’ caring and encouragements (3g: 

U = 49.0, p < .01, r = .49) as well as colleagues’ mutual help (3e: U = 
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58.5, p < .05, r = .41) significantly higher than their male colleagues. 

Furthermore, the female group also gave considerably higher rating to 

the factors of teachers’ own quality and professional background (3a: U 

= 56.0, p < .050) and persistent efforts and colleagues’ influence and 

encouragements (3f: U = 66.5, p < .081). In addition, the analysis 

showed that the teachers from provincial cities gave significantly higher 

rating to teachers’ persistent effort (3b), with U = 62.5, p < .05, r = .37, 

and considerably higher rating to mentor’s guidance on instruction (3c) 

than their peers from the municipalities, U = 46.5, p < .090.  

4.3 Teachers’ Own Conditions for Being a Master Teacher  

To explore how important teachers’ own conditions or traits are for them 

to be a master teacher, Part Four of the questionnaire lists eight related 

factors.  

The result shows that all the 31 master teachers consistently 

considered the factor “4.1, professional dedication” to be “very important” 

(i.e., M = 4.00), followed by the factor “4.5, good classroom teaching 

ability”, with 27 out of the 31 teachers’ ratings being “very important” 

(M = 3.87). Factor “4.7, strong leadership and coordination ability” was 

viewed to be least important (M = 2.96) with one perceiving it “not 

important” and two “not so important”. Factor “4.8, strong 

communication ability” is another one on which there is one teacher 

giving a rating as “not so important” (M = 3.36). In fact, all the three 

factors related to abilities in dealing with interpersonal relationships 

received significantly lower ratings than the other factors (see Table 4). 

On the contrary, teachers’ “professional dedication” (4.1) was viewed 

significantly more important than all the other seven factors. In addition, 

little difference was found among teachers’ personal attainments (i.e., 

factor 4.2 to factor 4.5) in terms of their importance for being a master 

teacher. Table 4 summarizes the results.  

Significant differences were observed among teachers with different 

comparison groups as mentioned earlier in their views about the 

importance of factor “4.7, strong leadership and coordination abilities” 

for being a master teacher. One case occurred between the teachers from  
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Table 4. Wilcoxon signed ranks test results on teachers’ perceptions of the importance of 

teachers’ own conditions for being a master teacher 

 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 

4.1(1) - 2.449* 2.449* 2.646** 2.000* 4.359*** 4.772*** 4.025*** 

4.2(4)  - .000 -.447 1.000 3.606*** 4.234*** 3.207** 

4.3(3)   - .577 -1.414 3.357*** 4.234*** 3.207** 

4.4(5)    - -1.732† 3.207** 4.119*** 3.207** 

4.5(2)     - 3.638*** 4.456*** 3.500** 

4.6(6)      - 2.972*** .816 

4.7(8)       - -2.887** 

4.8(7)        - 

Note: 4.1: Professional dedication; 4.2: Personality charisma; 4.3: Pedagogical 

knowledge; 4.4: Subject knowledge; 4.5: Classroom teaching ability; 4.6: Handling 

interpersonal relationship ability; 4.7: Leadership and coordination ability; 4.8: 

Communication ability; † p < .1, * p < .05, ** p < .01, *** p < .001; The numbers in the 

brackets represent the ranking of the factors in terms of importance in ordinary teachers’ 

professional development. 

municipalities and those from provincial cities with the former group 

giving significantly higher rating, U = 28.5, p < .005, r = .55. The other 

difference was found between young and mid-aged master teachers 

which was more appreciated by the mid-aged teachers, U = -32.5, p < .05, 

r = .40.  

During the interview, most of the teachers expressed their agreement 

with the results collated in the questionnaire. Two teachers (T4 and T5) 

particularly elaborated the importance of personality charisma of 

teachers. According to T5, the influence of teachers on students as 

individuals is a most important thing, and mathematics teachers are first 

teachers, and then are teachers of “mathematics”; teachers need to win 

students’ hearts so students can like them, to establish equal and friendly 

relationship with students (not always use the so-called “absolute 

authority of the teachers”), to build up trust with students, and from time 

to time, to show a young heart to mingle with them.      

By the way, in the questionnaire, the participants also put forward 

another five abilities/attainments which they perceived to be important. 

They include passion and ability of self-learning, ability in doing 

research on teaching, good thinking ability and methods, good ability in 

expressing, and good background in philosophy. The result shows both 

the width and depth of these master teachers’ thinking about the issues.  
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4.4 Pathways for Teachers’ Professional Development 

Items in Part Five of the questionnaire focus on the pathways for 

teachers’ professional development. Six types of pathways were 

provided for these master teachers to share their views about the 

importance of those different pathways.  

The result revealed that 28 out of the 31 master teachers considered 

pathway “5.1, self-learning and reflection” to be “very important” (M = 

3.90), whose rating is significantly higher than the other five pathways in 

these teachers’ views at the .001 level. In contrast, there are six and 

thirteen teachers considering pathway “5.6, various training for degree or 

formal certificate” to be “not important” and “not so important”, 

respectively, and only one chose “very important” one (M = 2.23). The 

importance of this pathway was rated significantly lower than all the 

other pathways at the .005 or .001 level.  

Consistently, another training-related pathway “5.5, various 

short-term training” was the next lowest rated one (M = 2.87). 

Nevertheless, no teacher claimed that it is “not important”, while eight 

considered it “not so important” and four “very important”. For the other 

three types of pathways, master teachers’ average ratings were all above 

3.00 but lower than 3.30 (5.2, experts’ lectures: M = 3.07; 5.3, seniors’ 

(mentors’) guidance: M = 3.29; 5.4, communications and discussions 

with colleagues: M = 3.23). 

T1 was one of the respondents who perceived pathway 5.6 as “not 

important” one in the questionnaire survey. During the interview, he 

mentioned that the main purpose of such training was often merely for 

earning money and too commercial. He also elaborated other problems in 

these training programs, which were echoed by T3, T4 and T5, including 

that the participants were more for getting the certification so it could be 

used for future promotion, the contents of training were often alienated 

from the present classroom realities and irrelevant to the curriculum 

reform, and the materials provided were often out of date and in some 

cases, the examples provided were used 30 years ago, which cannot meet 

present teachers’ needs. Both T1 and T4 explicitly pointed out that the 

current teacher education lagged far behind the curriculum reform and 

needs change and improvement, a challenge to teacher educators. 
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T2 rated the both types of trainings (pathway 5.5 and 5.6) “not so 

important”. In the interview, he illustrated that the effectiveness of such 

trainings was determined by the learner’s intrinsic needs. If one has a 

strong need about the training contents, the effect of the relevant lectures 

and trainings would be good. Otherwise, it will go to the opposite. On the 

other hand, T2 also stressed the importance of practices for “digesting” 

what have been learnt.  

During the interview, T2 also pointed out that learners would 

encounter many difficulties during their practices; and while short-term 

trainings cannot do much on these, exchange with more experienced 

colleagues can offer good help. Consequently, T2 rated both pathways 

“self-learning and reflection” and “seniors’ (mentors’) guidance” as 

“very important” ones. Similarly, T6 also rated highly the pathway 

“self-learning and reflection”. She quoted that “the master teaches the 

trade, but apprentice’s skill is self-made”.  

A relevant question in Part Six of the questionnaire asked the master 

teachers to evaluate the relationship between their career success and 

teacher training they have received, according to their own professional 

growth experience. With a 5-point Likert scale, the result showed that, 

while no teacher claimed there is “no relation” (scale: 0) between the two, 

one teacher viewed it as “not so important” (scale: 1) and eight rated it 

“relatively important” (scale: 4) with an average rating being 3.97. 

Overall, the result shows that teacher training only has moderately 

importance, which is lower than we expected. No significant differences 

between different groups of teachers were identified, indicating the 

consistency of teachers’ views on this issue. 

All the six interviewees were asked how their career success is related 

to the training they have received. T1 maintained that some high-level 

professional conferences and activities were important to his 

development, such as competitions on teaching skills and annual 

meetings of teaching. T6 believed that what an individual can reach in 

his own ability is limited so that teacher training was “utmost important”. 

According to her, the training can help teachers broaden their vision, 

make friends with other teachers, and sometimes give on-stage 

demonstrations of teaching personally. From the training received, T6 

gained encouragement from the group she belonged to and received help 



 What Makes a Master Teacher in Chinese Mainland?  521 

 

from her master (mentor). As she mentioned, when one gets tired, friends 

will provide reminders; more importantly, there will be a group of people 

sharing the same ambitions and purposes and moving ahead together, “if 

one wants to travel fast, he/she should move alone; if one wants to travel 

far, he/she should move in a group”. T3 offered another angle to view 

this issue. He reported that training was very important to him at the 

beginning, then became not so important after a period of time, and then 

again became very important in a later stage; the key factor here is that 

teachers need to have a period of accumulation and reflection on their 

own, and only when they have questions before they participate in the 

training, can then training be really important. In addition, T5 mentioned 

that the training is not very important for master teachers, though it could 

have importance for general teachers due to the different background and 

needs of these teachers.  

During the interview, T1 also pointed out that the institutionalization 

of teacher training is a most effective training form for teachers’ 

professional development, as outstanding teachers can be released from 

their regular work for additional studies in institutions of education or 

normal universities. On the other hand, T2 believed that the form of 

apprentice training was a most effective training form, and he also 

highlighted the important role of being engaged in self-reflection in one’s 

development and further commented that everyone has great inner 

potential ability. 

Regarding the importance of various pathways for teachers’ 

professional development, the 31 participating master teachers gave an 

overall consistent view. An exception is that the female teachers valued 

the pathway “various short-term training” significantly more important 

than male teachers, U = 56.5 p < .05, r = .36, which might be related to 

Chinese cultural and societal factors, as females often play more direct 

and essential roles in taking care of their children and families, and hence 

participating in short-term training is easier for them. Nevertheless, 

further research evidence is needed about this issue, which is beyond the 

scope of this study.    

By the way, four additional pathways were also suggested by the 

respondents concerning teachers’ professional development, which 

include teachers’ conducting educational research project with the 
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guidance from experts, first-hand practical experiences and training 

opportunities, demonstrations of lesson study, and systematic study on 

textbooks.  

4.5 Some Other Issues  

Finally, we report and discuss findings from questionnaire and/or 

interview on some other issues related to teachers’ professional 

development.  

4.5.1 Key Periods of Time in the Development of Master Teachers 

In the last part of questionnaire, two questions were designed to ask 

about the key period of time in the professional development of these 

master teachers. One is about the most important stage during their 

professional growth and other is about the key period when these 

teachers felt that they needed help most.  

The result showed that about three fourths of the teachers considered 

“5-15 years (after they started their teaching career)” as the most 

important stage in their own development. More specifically, 48.4% of 

the teachers considered “5-10 years” and another 26.7% of teachers 

chose “10-15 years” as the most important stage.  

Different from the majority of the teachers, in the interviews T1, T4 

and T6 all stressed the importance of the first five years. T1 argued if one 

can start his/her teaching career in a school with good teaching and 

research environment and have an excellent teacher as his/her mentor, 

the teacher could professionally grow up in a fast pace. T4 added that the 

first two years is a period for teachers to be familiar with the classroom 

teaching, and hence the next 3 years is actually more important. T6 

suggested that the period of the first five years may determine the 

working direction for a novice teacher, which, in her words, will “set the 

tone” (either “being full of enthusiasm” or “being slack in one’s work”). 

Interestingly, T2 did not pick any particular period of time but 

commented that only when one knows clearly about his/her 

responsibilities and missions, he/she would then really start to grow. 

From his point of view, different people would need different length of 
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time to reach this stage. In fact, the questionnaire survey showed that 

there were two other teachers having similar responses. One of them 

believed that the any period of time is important, while the other claimed 

that different time periods had different focuses. Overall, no statistically 

significant difference was found among different groups except that 

teachers from municipalities valued significantly more important about 

the role of an earlier period in a master teacher’s development than those 

from provincial cities, U = -36.5, p < .05, r = .36. 

Regarding which period these teachers hoped to get help most, more 

than 80% of the master teachers selected either “first 5 years” (45.2%) or 

“5-10 years” (35.5%). T1 in the interview stressed the importance of 

both the periods of time, while T2, T3 and T5 all selected the period of 

“5-10 years”, as they believe that first five years of teaching is more for 

teachers to gain initial experience and get familiar with the school and 

classroom realities. The statistical analyses on group comparisons 

showed that the teachers in the young group suggested a significantly 

later period on this item than their mid-aged colleagues, z = 24.0, p 

< .005. r = .49, which, in our view, might be related to the fact that 

younger teachers received better pre-service teacher training. A similar 

difference was also observed between experienced teachers and those 

senior ones, U = 53.0, p < .005, r = .51. No significant difference was 

found for other group comparisons. 

4.5.2 What Do Master Teachers Hope to Develop Further 

In both the questionnaire and interview, these master teachers were asked 

what they hoped to further improve as a master teacher.  

In the questionnaire, each teacher was requested to list at most three 

aspects they hoped for further improvement. As a result, 18 teachers 

listed three desired aspects and 8 listed two. Those responses could be 

summarized into the following five areas: 

� To establish their own distinctive classroom teaching style/model/viewpoint; 

� To further improve their knowledge in wider areas such as philosophy, subject 

knowledge, psychology, etc.; 

� To study further, and in a more systematic way, to deepen their understanding 

of education theories. Relevant to this aspect, some master teachers asked for 
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high-end advanced studies; in particular, they hope to have training programs 

specifically designed for master teachers. 

� To set up research teams including young teachers; 

� To have more communications with colleagues locally, nationally and abroad. 

 

In the interviews, T1 expressed his strong desire to have chance to 

take a three-year university program, as he felt regretful that he did not 

have a chance to study in a Normal (i.e. teacher education) university and 

he hopes that he could have opportunities to do so with his rich 

experience. T2 responded that it is important to plan one’s professional 

development based on what his/her students need, and what he felt 

lacking most in mathematics classrooms was the guidance by a sense of 

worth. He believed that without establishing a good sense of worth, it 

cannot bring children a happy life no matter how much knowledge and 

skill they have learnt and how many abilities they have developed. T3 

hoped to “keep (his) profession but go beyond profession”, that is, to 

further expand his perspectives and establish a wider and 

interdisciplinary knowledge base. Both T4 and T5 expressed their desire 

to learn more about students and children’s psychology (T5 also hope to 

learn more about brain science), while T6 hoped to seek further 

improvement in relation to the role of master teacher’s working studio as 

well as the publication of her own articles and monographs. It is evident 

that these master teachers have diverse, but clear visions about what they 

hoped to seek further in their own professional development. 

4.5.3 Advice for Novice Teachers 

In the study, we also invited the master teachers to provide at most three 

advices to novice teachers for professional development. The result was 

somehow beyond our expectation. As many as 82 pieces of advice were 

noted down in the questionnaire from various perspectives. Several 

keywords can be summarized from these teachers’ responses, including 

persistence, dedication, determination, earnest, entreprenant, diligence, 

endurance, enthusiasm and passion, being creative and fearless, 

individuation, observant, cooperation, extensive reading, being planned 

and organized, good at seizing opportunities, and strong research ability.  

The master teachers interviewed further illustrated their advices. T1 
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highlighted the importance of professional care for students and teaching 

as a profession from one’s heart. He believes that teachers should think 

of how to make students like their mathematics classroom every day. T2 

stressed that teachers should give true professional care to students, as it 

could produce endless power. T3 suggested that a teacher should view all 

experiences and difficulties as opportunities for learning and 

development, and he/she must read many books, and learn from different 

books. T4 emphasized that a teacher must devote himself/herself to 

teaching wholeheartedly and be humble to learn unknowns. Both T5 and 

T6 also emphasized the importance of loving students heartily, and T5 

further suggested that a teacher should always actively identify problems 

and look for solutions to solve them in their career, while T6 further 

remarked about the role of writing, the significance of having friends 

who shared same ambitions and objectives, the importance of having 

good personality and mentality, and the belief of life-long learning. 

Overall, we think these advices are highly relevant and valuable.  

5. Summary and Conclusions 

As mentioned earlier, “master teachers” as a special group of teachers 

have received increasing attention in international education community 

over the last decade or so. The purpose of this study was mainly to 

investigate the reasons behind the success of master teachers in their 

acclaimed teaching career in the Chinese mainland, and by doing so, we 

also hope to shed light on relevant issues concerning teachers’ 

professional development. The data were collected from 31 mathematics 

master teachers in four provinces and three municipalities through 

questionnaires and interviews. It should also be noted that almost all of 

the participants are master teachers at the primary school level.  

From the results discussed earlier, we can see that, although the 

participating teachers came from different regions and have different 

background, their views on teachers’ professional development were 

generally consistent with only a few significant differences found 

between teachers of different genders and different age groups. Overall, 

from the study, we can obtain the following main conclusions. 

Firstly, a most important finding of the study is that, compared to 

external factors including both school and beyond-the-school factors, 
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teachers’ internal or personal factors are the most important ones to the 

master teachers’ professional growth. In particular, wholehearted 

dedication to education, one’s inner quality, and true professional care to 

students appear to be the most important factors. The result suggests the 

importance of recruiting people of high internal quality (such as having 

genuine passion for education) into teaching forces.  

Secondly, although these master teachers in general appreciated 

greatly school support for their professional development, it was found 

that school mentoring programs did not receive much attention from 

them. The result is somehow surprising and indicates a need for us to 

rethink the issues concerning mentoring programs.  

Thirdly, it is interesting but can be easily understood that, regarding 

beyond-the-school factors, the master teachers perceived family’s 

understanding and support as the most important factor to their 

professional growth. Other factors such as societal respect for 

outstanding teachers and governmental policies are also viewed 

positively, but to a lesser degree.  

Fourthly, concerning general teachers’ professional development, the 

master teachers emphasized the importance of teachers’ own sustained 

efforts and their own quality and professional background, while the role 

of getting help from colleagues was considered much less significant. 

Fifthly, from their own successful experience, the master teachers 

suggested that professional dedication and good teaching ability are two 

most important requisites for them to be master teachers. On the other 

hand, they valued less about the ability in dealing with interpersonal 

relationships. Consistently, they believe that self-learning and reflection 

were the most important pathways for teachers to seek professional 

development, while various formal training and short-term training was 

considered to be less effective. The result is consistent with what many 

other studies have found on teachers’ professional development (e.g., see 

Fan, 2014).  

Finally, while these master teachers think that current teacher 

training programs are often not so effective and hence need change and 

improvement, they also expressed a strong desire to receive advanced or 

so-called “high-end” teacher training that is specifically designed to cater 

to their needs in further professional development, which is now largely 

not available, an issue meriting more attention for policy makers and 

teacher educators, and researchers.   



 What Makes a Master Teacher in Chinese Mainland?  527 

 

References  

Cai, W. (2011). The impact of in-service training on special-grade teachers’ growth [In 

Chinese]. Journal of Zhejiang Education Institute, Issue No. 1, 1-7.  

Fan, L. (2014). Investigating the pedagogy of mathematics: How do teachers develop 

their knowledge? London: Imperial College Press. 

Fan, L., & Shen, D. (2008). A comparative case study of master teachers in primary 

mathematics between Mainland China and Singapore. Taiwanese Journal of 

Mathematics Teachers, 14, 1-12. 

Ferreras, A., Olson, S., & Sztein, A. E. (Eds.). (2010). The teacher development 

continuum in the United States and China: Summary of a workshop. Washington, 

DC: National Academic Press. 

Gong, H. (2008). Research on master teacher and teacher education reform [in Chinese]. 

Beijing Education, Issue No. 10, 29-30.  

Huang, R., & Li, Y. (2009). Examining the nature of effective teaching through master 

teachers’ lesson evaluation in China. In J. Cai, G. Kaiser, B. Perry, & N. Y. Wong 

(Eds.), Effective mathematics teaching from teachers’ perspectives: National and 

cross-national studies (pp. 163-182). Rotterdam, The Netherlands: Sense. 

Klein, M. F. (1985). The master teacher as curriculum leader. The Elementary School 

Journal, 86(1), 34-43. 

Koebler, J. (2012, July 18). White House announces $1 billion 'master teacher' program. 

U.S. News and World Report. Retrieved from http://www.usnews.com 

Li, H. (2010a). A survey study on school master teachers’ training needs [in Chinese]. 

Contemporary Teacher Education, 3(1), 71-74. 

Li, H. (2010b). A survey study on school mater teachers’ classroom teaching [in Chinese]. 

Shanghai Research on Education, Issue No. 2, 48-49. 

Li, Y., Tang, C., & Gong, Z. (2011). Improving teacher expertise through master teacher 

work stations: A case study. ZDM−International Journal on Mathematics Education, 

43, 763-776.  

Lim, L. (2010). Developing teachers at the pinnacle of profession: The Singapore 

practice. New Horizons in Education, 58(2), 121-127. 

Meng, Q. (2008). Some remarkable problems in research of master teachers [in Chinese]. 

Digest of Education Science, Issue No. 1, 72. 

Qiao, J., Zhang, P., Cui, Y., & Liu, S. (2009). A review of research on master teachers in 

China [in Chinese]. Jiangsu Education Research, Issue No. 1(C), 62-64. 

Ragina, V. S., & Rani, B. S. S. (2006). Job psychograph of library and information 

science professional in higher education institutions of Tamil Nadu. Annals of 

Library and Information Studies, 53(1), 7-14. 

Wang, F., & Cai, Y. (2005). Review and reflection on superfine teacher system and 

superfine teacher research in China [in Chinese]. Teacher Education Research, 17(6), 

41-46.  

Wang, Y., & Zhang, S. (2010). A comparative study on reading status of master teachers 



528  L. Fan, Y. Zhu, & C. Tang 

 

and ordinary teachers [in Chinese]. Instructional Management (Secondary), Issue 

No. 9, 13-15.  

Wu, Y. (2010). Some problems in research of master teachers [in Chinese]. Educational 

Review, Issue No. 4, 51-53.  

Wu, Y., & Kong, X. (2010). A structure analysis and elaboration of master teacher group 

in Tianjin [in Chinese]. Journal of Tianjin Academy of Educational Science, Issue 

No. 4, 22-24.  

Xu, X., Cao, A., & Lan, G. (2010). A comparative study on lesson preparations by master 

teachers and ordinary teachers [in Chinese]. Instructional Management (Secondary), 

Issue No. 9, 10-12.  

Xu, Z. (2010). A case study of mathematics master teacher’s pedagogical content 

knowledge [in Chinese]. Journal of Jiangxi Normal University (Social Sciences), 

43(6), 122-126.  

Yu, G. (2012). A case study of mathematics master teacher’s professional development 

[In Chinese]. Unpublished master degree dissertation, Shanxi University, Taiyuan, 

Shanxi, China.  

Zhang, S. (2009a). A survey analysis on job psychograph of master teachers and ordinary 

teachers [in Chinese]. Journal of Instruction and Management, Issue No. 1, 19-20.  

Zhang, S. (2009b). A comparative study on job pressure and working condition of master 

teachers and ordinary teachers [in Chinese]. Contemporary Education Science, Issue 

No. 23, 35-37.  

Zhang, S. (2009c). A comparative study on growth environment and key period of master 

teachers and ordinary teachers [in Chinese]. Teacher Development and Management, 

Issue No. 5, 38-40.  

Zhang, S. (2009d). A comparative study on the improvement of teaching ability and 

related to confusions of master teachers and ordinary teachers [in Chinese]. 

Shanghai Research on Education, Issue No. 6, 47-49.  

Zhang, S. (2009e). A study of master teachers’ didactical reflections [in Chinese]. Journal 

of Teaching and Management, Issue No. 4, 19-21.  

Zhang, S. (2010). A comparative study on education research by master teachers and 

ordinary teachers [in Chinese]. Instructional Management (Secondary), Issue No. 9, 

3-6.  

Zhang, S. (2011). A comparative study on career identity of master teachers and ordinary 

teachers [in Chinese]. Theory and Practice of Education, Issue No. 4, 34-36.  

Zhang, Y. (2007). A case study of mathematics master teacher Li Yu Nan’s professional 

growth [in Chinese]. Unpublished master dissertation, Soochow University, Jiangsu, 

China.  

Zhao, L., Tao, J., & Zhou, D. (2010). A comparative study on the status of attending 

lessons and conducting lessons between master teachers and ordinary teachers [in 

Chinese]. Instructional Management (Secondary), Issue No. 9, 6-9.  

 

 



 

529 

Chapter 17 

Chinese Teachers’ Mathematics Beliefs in the  

Context of Curriculum Reform 

  CHEN Qian         LEUNG Koon Shing Frederick  

 

This chapter reports case studies of three Chinese teachers’ 

mathematics beliefs, espoused as well as enacted, in the context of a 

constructivism-oriented curriculum reform. Ernest’s and Kuhs and 

Ball’s theoretical frameworks of mathematics beliefs were used to 

guide the design of the instruments and subsequent characterization of 

the teachers’ mathematics beliefs. Semi-structured interview and 

videotaped classroom observation were used to collect the data. The 

interview transcripts were analysed through content analysis, and the 

classroom videos were examined according to a scheme covering three 

dimensions: mathematical tasks, learning environment and classroom 

discourse. Based on the data analysis, it was found that among the three 

teachers, two teachers’ mathematics beliefs were quite traditional, but 

the third teacher’s beliefs were reform-oriented or constructivist. 

Discussions of findings and implications are presented at the end of this 

chapter. 

 

Keywords: Chinese curriculum reform, Chinese mathematics teachers, 

teachers’ mathematics belief 

1.  Introduction 

Teachers’ beliefs play a crucial role in their classroom practices, and thus 

affect their students’ learning processes as well as outcomes (Beswick, 

2007; Thompson, 1992). In the past few decades, teachers’ beliefs have 

gained much attention from many researchers and educators. However, 

in the broad research literature, empirical studies on Chinese teachers’ 
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mathematics beliefs are limited. Most of the existing studies (e.g. Wong, 

2002; Wong, Lam, Wong, Ma, & Han, 2002) are confined to analysis of 

teachers’ espoused beliefs, with their enacted beliefs largely neglected. 

Moreover, since the constructivism-oriented curriculum reform was 

implemented in China in 2001, only a few studies have examined 

teachers’ mathematics beliefs, typically espoused beliefs. In view of 

these, a more comprehensive investigation into Chinese teacher’ 

mathematics beliefs is deemed essential and significant. The authors 

believe that such investigation would help answer questions like how 

Chinese teach mathematics, and hopefully would provide valuable 

information for the reform advocates as well. The two major research 

questions for this study can be described as the following: 

1) What are the Chinese teachers’ mathematics beliefs in the context 

of constructivism-oriented curriculum reform? 

2) What are the implications for teacher educators and reform 

advocates in China? 

2.  Literature Review 

2.1 Mathematics Beliefs 

The term ‘beliefs’ and ‘mathematics beliefs’ have been defined in 

various ways by researchers (Leder & Forgasz, 2002; Pajares, 1992). 

This study adopts Raymond’s (1997) definition of ‘mathematics beliefs’ 

as “personal judgments about mathematics formulated from experiences 

in mathematics, including beliefs about the nature of mathematics, 

learning mathematics, and teaching mathematics” (p. 552). Therefore, 

teacher’s mathematics beliefs, including beliefs about the nature of 

mathematics, learning mathematics, and teaching mathematics, are his or 

her personal judgments about mathematics formulated from experiences 

in mathematics. It is noteworthy that the three dimensions contained in 

this definition have been generally regarded as the core of belief systems 

of mathematics teachers and thus received great attention (Ernest, 1989a; 

Thompson, 1992).  
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Mathematics beliefs have been categorized in different ways (Ernest, 

1989a; Kuhs & Ball, 1986; Lerman, 1990). Among these schemes, the 

work of Ernest (1989a) and Kuhs and Ball (1986) are particularly 

influential. Ernest (1989a) distinguished three conceptions of the nature 

of mathematics.  

First of all, there is the instrumentalist view that mathematics is an 

accumulation of facts, rules and skills to be used in the pursuance of some 

external end. Thus mathematics is a set of unrelated but utilitarian rules and 

facts. Secondly, there is the Platonist view of mathematics as a static but 

unified body of certain knowledge. Mathematics is discovered, not created. 

Thirdly, there is the problem-solving view of mathematics as a dynamic, 

continually expanding field of human creation and invention, a cultural product. 

Mathematics is a process of inquiry and coming to know, not a finished product, 

for its results remain open to revision (p. 250).  

The problem-solving view is also referred to as social constructivist 

view by Ernest (1998) elsewhere. Thompson (1992) points out that 

Ernest’s Platonist and problem-solving view parallel Lerman’s (1990) 

absolutist and fallibilist view respectively. Roulet (1998) agrees with 

Thompson and further argues that the Platonist and instrumentalist views 

are within the domain of absolutism whereas the problem-solving view is 

in accordance with fallibilist position. 

In terms of mathematics learning, Ernest (1989a) proposed three 

views, i.e. learning as reception of knowledge, as mastery of skills and as 

active (social) construction of understanding, which correspond to the 

Platonist, instrumentalist and problem-solving (social constructivist) 

view respectively. 

With regard to how mathematics should be taught, Kuhs and Ball 

(1986) identified the following four dominant and distinctive views: 

1) Learner-focused: mathematics teaching that focuses on the learner’s 

personal construction of mathematical knowledge; 

2) Content-focused with an emphasis on conceptual understanding: 

mathematics teaching that is driven by the content itself but emphasizes 

conceptual understanding; 

3) Content-focused with an emphasis on performance: mathematics teaching 

that emphasizes student performance and mastery of mathematical rules 

and procedures; and  

4) Classroom focused: mathematics teaching based on knowledge about 

effective classrooms (p. 2). 
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Among these, the first three models have been allied to Ernest’s 

(1989a) three conceptions of mathematics, i.e. the problem-solving 

(social constructivist), the Platonist and the instrumentalist views 

respectively whilst the fourth assumes that the content to be covered is 

outside the control of the teacher whose only task is to present the 

material in ways found to be effective by process-product research 

studies (Thompson, 1992). 

It is important to note that Ernest’s problem-solving (social 

constructivist) view and Kuhs and Ball’s learner-focused view are the 

ones which have been strongly advocated by the current education 

reformers and researchers, as opposed to the Platonist, instrumentalist 

and content-focused (or teacher-centred) views (Chen, 2010). In view of 

the wide use of the frameworks by Ernest (1989a), Kuhs and Ball (1986), 

as well as the close relationships between them and other frameworks 

(e.g. Lerman, 1990), this study used their frameworks to characterize the 

teachers’ mathematics beliefs. 

2.2 Relationship between Beliefs and Practices 

Based on an extensive review of studies on teachers’ beliefs, Thompson 

(1992) concludes that the relationship between beliefs and practice is not 

a simple cause-and-effect one, but dialectical in nature. Many models 

have been proposed to examine the relationship between teachers’ beliefs 

and practice (e.g. Ernest, 1989a; Raymond, 1997), these models have 

illustrated that this relationship is mediated by numerous factors.  

Studies on the relationship between beliefs and instructional 

behaviours have continuously reported different degrees of consistency 

(Handal, 2003; Thompson, 1992). On the one hand, high degrees of 

consistency have been found by some researchers (e.g. Stipek, Givvin, 

Salmon, & MacGyvers, 2001). On the other hand, the inconsistencies 

between teachers’ beliefs and their practices have been found by more 

researchers (e.g. Raymond, 1997). 

Researchers have explored the possible reasons for the 

inconsistencies between teachers’ professed beliefs and observed 

practice, such as the social context of teaching situation, teachers’ level 

of thought processes and reflection (Ernest, 1989b), mismatches between 
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the contexts in which teachers provide beliefs data and the contexts in 

which their practices are observed or described (Beswick, 2005, 2007), 

teachers’ lack of skills and knowledge necessary to implement espoused 

teaching ideals (Thompson, 1992), etc. Besides, it is suggested that in 

order to accurately characterize a teacher’s beliefs, researchers should 

examine the teacher’s both verbal and observational data (Thompson, 

1992). 

2.3 Studies on Chinese Teachers’ Mathematics Beliefs 

Since 1990s, Chinese teachers’ mathematics beliefs have aroused 

growing attention. Interestingly, most of research findings are revealed in 

cross-cultural or cross-country comparative studies where Chinese 

teachers are compared with teachers in other contexts (e.g. Leung, 1992). 

One major concern of these researchers is the cultural differences in 

teachers’ beliefs. 

Leung (1992) adopted a quantitative approach to investigate teachers’ 

attitudes towards mathematics and mathematics teaching and learning in 

Beijing, Hong Kong and London. It was indicated that the teachers in 

Beijing tended to treat mathematics as a rule-oriented and fixed 

discipline, while the teachers in London regarded mathematics as more 

heuristic and changing. The teachers in Hong Kong fell between the two 

extremes. In addition, the teachers in Hong Kong and Beijing regarded 

mathematics as a tool for training the mind while the teachers in London 

treated mathematics as a tool for communication and application. 

Starting from 1996, Wong and his colleagues (Wong, 2002; Wong et 

al., 2002) carried out a series of studies on conceptions of mathematics, 

quantitatively as well as qualitatively, involving students and teachers at 

primary and secondary levels in different places. According to Wong 

(2002), in a quantitative study, 369 primary and 275 secondary teachers 

in Hong Kong, 156 primary teachers in Taiwan and 105 in Changchun, a 

city in Northeast China were surveyed by a questionnaire developed by 

Australian researchers based on two factors—‘child-centeredness’ and 

‘transmission’ (Perry, Tracey, & Howard, 1998). It was found that 

Taiwan teachers were least “transmission-oriented” and most “student-

centered”, in contrast, Hong Kong secondary teachers were most 
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“transmission-oriented” and Changchun teachers were least “student-

centered”. 

On the other hand, in a qualitative study reported by Wong et al. 

(2002), data analysis on the interviews with 15 secondary teachers in 

Changchun revealed the following conceptions of mathematics:  

1) Mathematics is a subject of numbers and shapes; 2) Mathematics is 

closely related to computation; 3) Mathematics is precise and rigorous;  

4) Mathematics is beautiful; 5) Mathematics is applicable;  

6) Mathematics involves thinking. It was further concluded that the 

secondary school teachers in the Chinese mainland held Ernest’s 

Platonist view of mathematics. 

More recently, a series of studies (e.g. Cai, 2007; Wang & Cai, 2007) 

investigated the views of effective mathematics teaching and learning 

held by teachers in the Chinese mainland, Hong Kong, Australia and U.S. 

through semi-structured interviews. In particular, based on the interviews 

with 9 experienced mathematics teachers (ranging from 19 to 30 years of 

teaching experience), Wang and Cai (2007) found that in general, 

Chinese (mainland) teachers tended to view mathematics as an abstract 

and coherent knowledge system that is refined from real life 

mathematical problems. It was concluded that Chinese (mainland) 

teachers’ beliefs about the nature of mathematics were close to the 

Platonist view, which is in accord with the argument by previous 

researchers (Wong et al., 2002). Moreover, it was found that consistent 

with their view on the nature of mathematics, Chinese (mainland) 

teachers saw constructing a coherent knowledge system as the key to 

mathematics understanding. They emphasized that both learning and 

teaching should help students to understand abstract mathematics 

knowledge in a rational and coherent way. They were also found to 

believe that practice and memorizing are indispensable for mathematics 

learning. On the other hand, it was found that Chinese (mainland) 

teachers realized the importance of “student-centered” teaching, but they 

often considered the general needs of students instead of particular needs 

of individual students, due to the large class size and broad coverage of 

content required by the national curriculum. 
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To sum up, the available empirical studies have consistently provided 

evidence that mathematics teachers in the Chinese mainland, even in the 

climate of curriculum reforms, often hold traditional mathematics beliefs. 

These evidences seem to imply that the reform has not brought about 

changes in teachers’ beliefs. The review of these studies provides a 

backdrop for the present investigation into mathematics beliefs of 

teachers in the Chinese mainland. Through comparing the findings of 

these studies with those to be revealed in the present study, the extent of 

change in teachers’ mathematics beliefs during the implementation of the 

reform-oriented curriculum can be measured to a certain degree.  

Nevertheless, it must be pointed out that the existing studies can only 

provide a partial picture of Chinese teachers’ mathematics beliefs, 

because in these studies, the analysis of teachers’ beliefs was basically 

limited to their self-report in questionnaire survey and/or interview. 

Beliefs elicited in such way are defined as espoused beliefs, and they are 

differentiated from enacted beliefs which are inferred based on 

observation of teachers’ classroom practice (Lerman, 2002). The existing 

studies on Chinese teachers’ mathematics beliefs have been largely 

concerned with teachers’ espoused beliefs, and teachers’ enacted beliefs 

have not been paid due attention. It is cautioned that in order to gain a 

full understanding of teachers’ beliefs, both what they say (espoused 

beliefs) and what they do (enacted beliefs) should be examined 

(Thompson, 1992). Therefore, a more comprehensive understanding of 

Chinese teachers’ mathematics beliefs deserves to be achieved, 

particularly in the context of curriculum reform given that teachers may 

easily talk about the rhetoric of reform, but meanwhile think and teach in 

a traditional way (Cohen & Ball, 1990). Besides, it is noteworthy that 

some researchers have used Ernest’s (1989a) three views of the nature of 

mathematics as a framework to characterize the (espoused) beliefs of 

Chinese mathematics teachers, which provided an important reference to 

the present study. 
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3.  Methodology 

3.1 Participants 

Three teachers who taught junior secondary mathematics (Grade 7 to 9) 

in Chongqing, the Chinese mainland were studied as cases, including 

Anna, Simon and Mandy (pseudonyms). Their mathematics beliefs were 

elicited through videotaped classroom observation (enacted beliefs) and 

semi-structured interview (espoused beliefs). The three case teachers 

were selected based on three criteria: (1) use of the reform-oriented 

mathematics curriculum; (2) diversity of demographic characteristics, 

such as gender, teaching experience, etc.; (3) their willingness to 

participate in this research. The details about the three case teachers are 

described later. 

3.2 Data Collection 

Semi-structured interview and videotaped classroom observation were 

used to collect the data regarding teachers’ mathematics beliefs. An 

interview schedule was framed based on relevant literature and National 

Mathematics Curriculum Standards at the Compulsory Education Level 

(Draft for Consultation) (National Ministry of Education, 2001). The 

interview questions were mainly divided into two categories:  

(1) mathematics beliefs, aimed at eliciting the teachers’ mathematics 

beliefs, including beliefs about the nature of mathematics, beliefs about 

learning mathematics, and beliefs about teaching mathematics; and  

(2) teachers’ opinions about the reform-oriented mathematics curriculum 

and its implementation, aimed at inferring the extent to which the 

teachers were receptive to the reform ideas and suggestions. The 

interview schedule was piloted for improvement before its use in the 

formal data collection.  

During the formal data collection, the three case teachers were 

required to arrange their schedule so that videotaped classroom 

observation and interview can be conducted on the same day. It was 

basically up to the teachers themselves to select the lesson topic, time 
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and venue. Nevertheless, two basic requirements were conveyed to them. 

Firstly, the lesson(s) to be observed should deal with a completely new 

mathematical topic, instead of being a review or exercise-oriented. It was 

believed that through analysing how a teacher developed teaching around 

a new topic, his or her beliefs were easier to be captured. Furthermore, 

the interviews need to be carried out as soon as possible after the 

classroom observation. It was expected that both the teacher and the 

researcher could have a vivid memory of the videotaped lesson so that 

they could make points based on the events just happened in the 

classroom teaching, if necessary. All the interviews were audiotaped 

with the permission of the teachers. 

3.3 Data Analysis 

All the audiotaped data from the interviews were transcribed verbatim. 

The three teachers’ espoused mathematics beliefs were inferred from the 

transcripts and then characterized in accordance with the frameworks by 

Ernest (1989a), Kuhs and Ball (1986). All the videos were also 

transcribed verbatim. During the process of data analysis, the lesson 

transcripts composed the major data, although the videos were also 

referred back to from time to time to ensure that the description 

represented the reality as closely as possible. The teaching suggestions in 

National Mathematics Curriculum Standards at the Compulsory 

Education Level (Draft for Consultation) (National Ministry of 

Education, 2001) were used as important reference for data analysis, but 

they were too general. In order to analyse the teachers’ behaviours and 

then deduce their enacted mathematics beliefs, a more operable 

analytical framework was developed based on relevant research literature 

(Artzt & Armour-Thomas, 2002; Grant & Kline, 2001; Hiebert et al., 

1997; Stein & Smith, 1998). The analytical framework consisted of three 

key dimensions: (1) mathematical tasks, (2) learning environment, and (3) 

classroom discourse. Each of the three dimensions included several 

aspects respectively. Overall, if a teacher’s mathematics beliefs are 

highly consistent with the reform ideas, then his or her mathematics 

classroom could be characterized by the framework in Table 1.  
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Table 1. Lesson dimensions and dimension indicators of a reform-oriented classroom 

Dimension Indicator Description of Dimension Indicators 

Mathematical 

Tasks 

Task features 

Contexts: The tasks have real-life contexts. 

Solution strategies: The tasks are solved in multiple ways. 

Representations: The tasks include the use of multiple 

representations, e.g. words, diagrams, manipulatives, 

computers, or calculators. 

Communication: The tasks enable students to produce 

mathematical explanations or justifications. 

Collaboration: The tasks enable students work in a 

collaborative way. 

Cognitive 

demand 

The tasks require the students to engage in high-level 

cognitive process—either the active “doing of 

mathematics” or the use of procedures with connection to 

concepts, meaning, or understanding. 

Learning 

Environment 

Social and 

intellectual 

climate 

The teacher establishes and maintains a positive rapport 

with and among students by showing respect for and 

valuing students’ ideas and ways of thinking. The teacher 

does not play a role of authority of knowledge. 

Modes of 

instruction 

The teacher uses instructional strategies that encourage and 

support student involvement and facilitate goal attainment. 

He or she provides time necessary for students to express 

themselves and explore mathematical ideas and problems. 

Classroom 

Discourse 

Teacher-

student 

interactions 

The teacher communicates with students in a 

nonjudgmental manner and encourages the participation of 

each student. He or she requires students to give full 

explanations and justifications or demonstrations orally 

and/or in writing. He or she listens carefully to students’ 

ideas and makes appropriate decisions regarding when to 

offer information, provide clarification, model, lead, and 

let students grapple with difficulties. 

Student-

student 

interactions 

The teacher encourages students to listen to, respond to, 

and question each other so that they can evaluate and, if 

necessary, discard or revise ideas and take full 

responsibility for arriving at mathematical conjectures 

and/or conclusions. 

Questioning 
The teacher poses a variety of levels of questions that 

elicit, engage, and challenge students’ thinking, and the 

students give a variety of types of responses. 

Note: Adapted from the framework by Artzt & Armour-Thomas (2002). 
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Specifically, in analyzing the teaching videos, both quantitative  

(e.g. number of kinds of instructional strategies) and qualitative  

(e.g. description of teacher’s role) measures were used in the hope that 

the analysis could best reflect the classroom reality in a meaningful way.  

4.  Chinese Teachers’ Mathematics Beliefs  

This section presents case studies of the three Chongqing teachers. Due 

to limit of page space and great similarities between two of the three 

teachers, their stories are described together. This section is composed of 

three parts: (1) background of the three teachers, their schools and 

students; (2) their espoused mathematics beliefs inferred from the 

interview transcripts; (3) their enacted mathematics beliefs inferred from 

classroom practices.  

4.1 Background 

Anna obtained a Bachelor degree in mathematics from a normal 

university in Chongqing more than two decades ago. After graduation, 

she taught mathematics in a middle school attached to a factory for more 

than ten years during which she attended a graduate-level advanced 

program in the same normal university. Seven years ago, she joined the 

current school through an open-recruitment examination. It was her sixth 

year of implementing the new mathematics curriculum when she joined 

this research. She had attended some in-service training programs 

regarding the new curriculum. Anna’s school was coeducational. It was 

one of most prestigious secondary schools in Chongqing due to its 

success in producing high achievers in a variety of exams and 

competitions. Students there generally had relatively good family 

background. Particularly, Anna told the researcher that her students were 

quite active and cooperative in classroom teaching.  

Simon also graduated from a normal university in Chongqing with a 

Bachelor degree in mathematics. He had been teaching mathematics for 

six years. It was his fourth year of implementing the new mathematics 

curriculum when he was involved in this research. He had attended a few  
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in-service training programs regarding the new curriculum. Simon’s 

school was coeducational. It was one of the key schools in Chongqing. 

The students there had diverse levels of achievement and family 

background. According to Simon, his students generally took studies 

seriously. 

Mandy graduated from an education college in Chongqing with a 

Bachelor degree in mathematics education. She had been teaching 

mathematics in a junior secondary school for sixteen years, and assumed 

the Head of Mathematics Department for three years. It was her seventh 

year of implementing the new mathematics curriculum when she took 

part in this research. She had attended various in-service training 

programs regarding the new curriculum. Mandy’s school was 

coeducational. It was one of the key schools in Chongqing, and the 

students there had a variety of levels of achievement and family 

background. She told the researcher that generally, her students were 

attentive and interested in mathematics lessons. 

4.2 Espoused Mathematics Beliefs 

4.2.1 Beliefs about the Nature of Mathematics  

All the three case teachers held that mathematics is a fixed body of 

certain knowledge. For example, Anna said: 

I like mathematics, particularly its rigorous thinking and reasoning. 

Furthermore, I think that mathematics is not subject to people’s opinions…. It 

is good that in mathematics, one is one, two is two.  

Particularly, concerning the ‘absolutely true’ property of 

mathematical knowledge, Simon and Mandy expressed similar opinions: 

Mathematics is not necessarily absolute truth. However, it is impossible to 

disprove something well-accepted. (Simon) 

The content is basically true. It seems unlikely to disprove what we accept as 

true today, because many people have been researching mathematics for long. 

(Mandy) 

In addition, all the three teachers recognized that mathematical 

knowledge is usually interrelated and that mathematics is closely related 

to real life. Finally, they all agreed that mathematical problems often can 

be solved through multiple approaches. 
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4.2.2 Beliefs about Learning Mathematics 

Anna and Simon both emphasized that students should learn 

mathematics through listening to teacher’s teaching and doing enough 

exercises. For example, Anna said: 

I think that classroom teaching is most important to students’ mathematics 

learning. Take today’s lesson as an example, I repeatedly explained the 

definition of linear function, because they cannot master if you only teach once. 

If the students can grasp the main points and do enough exercises, then the 

goals of this lesson are achieved. 

Anna’s words also suggested that teacher should play a role of 

explainer in classroom teaching.  

Unlike Anna and Simon, Mandy seemed to believe that students 

should be active constructors rather than passive recipients of knowledge. 

She said: 

There are many ways of learning mathematics. Listening attentively to teacher 

is not necessarily the most effective one. I think that a more effective way is to 

let students explore and conclude by themselves. 

With respect to learning approaches, all the three teachers claimed 

that mathematics cannot be learnt by rote. Particularly, both Anna and 

Simon stressed the importance of memorization and imitation to 

mathematics learning. For example, Simon said: 

Memorization and imitation are important to mathematics learning, I require 

my students to memorize some formulae and theorems to solve problems. 

Understanding and memorization are related to each other, teacher should teach 

the students diverse ways of memorizing things more rapidly, for instance, 

associative memorization….I also demand my students to imitate some 

solutions used by the textbooks or myself, because they need to cope with the 

exams. Many formats or solutions are not introduced in the textbooks, as a 

result, teacher should teach the students so that they can write correctly. 

Otherwise, they will lose points in exams. 

Simon pointed out that teaching the students how to memorize things 

should be the teacher’s responsibility. It was also suggested that his 

teaching was heavily influenced by the exams. In order to cope with the 

exams, his students had to imitate what he did in the classroom. 

On the other hand, Mandy argued that in learning mathematics, 

understanding is more important than memorization. Agreeing with 
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Anna and Simon on the importance of imitation, Mandy considered that 

imitation is the basis of learning, and understanding may follow imitation: 

Imitation is important! At the beginning, learning is actually a kind of imitation, 

especially in the primary school. When the teacher gives you a formula, you 

imitate it first and then understand why. In fact, when students learn something 

new, whether I require them to imitate or not, the first thing is to imitate. 

Students cannot understand, especially when they are in lower grades, so I 

often write the procedures [of solving problems] clearly on the blackboard, then 

they do exercises step by step according to my format. In doing so, they can 

gradually understand why they need to do in that way. 

Furthermore, all three teachers expressed their views about the 

reform-oriented approaches, i.e. independent inquiry, mathematical 

communication and collaborative learning. Generally, they all 

acknowledged that these approaches are important to learning 

mathematics. However, Anna and Simon considered them impractical, 

and even admitted that they rarely adopted these approaches in their 

classrooms. For example, Simon said: 

Independent inquiry is important, but it is only suitable for able students and 

difficult topics. … Mathematical communication among students is certainly 

helpful to their mathematics learning, but I don’t dare to say that everyone can 

benefit from the discussions, because all students are not at the same level after 

all. … The idea about collaborative learning is reasonable, but it is unrealistic. I 

think it can be only performed at public lesson. 

In contrast, Mandy showed more acceptances of these approaches and 

claimed that independent inquiry and mathematical communication were 

common in her classroom. She stated: 

Independent inquiry is important. The students can make some discoveries 

when they explore mathematics themselves.… I often ask my students to make 

some inquiries. I think they are interested to do this.… Mathematical 

communication is important. For example, when I teach lessons, especially 

when I revisit their exam papers, I always let the students explain, that is 

actually a kind of communication. Sometimes when students explain a problem, 

they are more likely to think about the problem from their peer’s perspective, 

which is quite different from the teacher’s. They may get the right answer 

through communication, discussion even debate. I would like to allow them to 

communicate, because it is very helpful to their mathematics learning. I think it 

is very necessary to enable students to learn how to communicate…. 

Collaborative learning enables students’ joint involvement. It is important  
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because anyone in our society will have to cooperate with others in future. 

[Furthermore] It is helpful to mathematics learning itself because through 

cooperation, you can realize the difference between you and others in terms of 

thinking and consequently improve your thinking.  

In spite of her recognition of the merits of collaborative learning, 

Mandy did admit that she seldom allowed students to collaborate in her 

teaching. 

[Collaborative learning] is not common practice [in my classroom]. I don’t 

really know when cooperation is needed. In some topics, like probability and 

statistics, many activities can be carried out. … but I don’t know about 

collaborative learning, Is communication a kind of collaborative learning? 

Her statements suggested that she did not know what collaborative 

learning is, and she lacked the necessary knowledge and skills to 

implement it in her classroom.  

4.2.3 Beliefs about Teaching Mathematics 

Both Anna and Simon seemed to believe that mathematics should be 

taught by direct instruction, and teacher should play a role of explainer in 

classroom teaching. For example, Simon said: 

[To me], the most important thing in a lesson is to enable the students to clearly 

know what the essential points and difficult points of this lesson are, and 

understand these points through [my] explanation. 

His statements showed that identifying the essential points and 

difficult points of a lesson, and explaining these points to the students 

were his duties as a teacher, whereas his students tended to be the 

listeners of his lecture. In a word, Simon was unlikely to believe that 

students should be active knowledge constructors.  

Unlike Anna and Simon, Mandy argued that teacher should not teach 

mathematics directly. She further talked about the role of teacher in 

mathematics instruction: 

Students don’t like a teacher who tells them all knowledge in the textbook. 

Teacher only plays a role of guiding the discussion. As a matter of fact, teacher 

is the one who asks questions. When new problem emerges, teacher points it 

out and guides students to think in certain direction, just like scaffolding. 

Whatever mathematics I teach, I won’t tell the answer directly. Instead, I will 

let the students to discuss and argue if they can present powerful proof. 
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According to her statements, in the teaching process, the teacher 

should play the role of guide instead of transmitter of knowledge, and 

students should be active constructors rather than passive recipients of 

knowledge.  

In particular, Mandy stressed two aspects in the instruction. Firstly, 

she pointed out that the teacher should teach new knowledge based on 

what students already know. Secondly, consistent with her view that 

mathematical knowledge is usually interrelated, she suggested that the 

teacher should make the (implicit) inter-relationships of knowledge 

explicit to the students. 

4.2.4 Summary  

Anna and Simon seemed to hold quite similar espoused beliefs about the 

nature of mathematics, learning mathematics and teaching mathematics. 

Their beliefs can be summarized as follows: 1) Mathematics is a fixed, 

coherent body of certain knowledge; 2) Mathematics is closely related to 

real life; 3) There are often multiple ways to solve mathematical 

problems; 4) Listening attentively to the teacher and doing enough 

exercises are most important for students to learn mathematics;  

5) Mathematics cannot be learnt by rote, but memorization and imitation 

are important approaches to learning mathematics; 6) The reform-

oriented learning approaches, including independent inquiry, 

mathematical communication and collaborative learning are important 

but impractical; 7) Mathematics should be taught by direct instruction. In 

teaching, Teacher should play a role of explainer, and students should be 

recipients rather than constructors of knowledge. 

Generally, Anna’s and Simon’s espoused beliefs about the nature of 

mathematics seemed to be mostly close to the Platonist view. Their 

espoused beliefs about learning mathematics seemed to be close to the 

reception view of learning, and espoused beliefs about teaching 

mathematics seemed to incline towards the teacher-centred view of 

teaching.  

As compared to Anna and Simon, Mandy’s espoused beliefs about 

the nature of mathematics seemed to be quite similar to theirs, and can be  
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summarized as the following: 1) Mathematical knowledge is basically 

fixed, infallible, and interrelated; 2) Mathematics is closely related to real 

life; 3) Mathematical problem solving allows for multiple approaches. 

Nevertheless, Mandy’s espoused beliefs about learning mathematics 

and teaching mathematics were markedly different from Anna’s and 

Simon’s, despite a few similarities. Her beliefs could be summarized as 

follows: 1) Listening attentively to the teacher is not necessarily the most 

effective way of learning mathematics; 2) Mathematics cannot be learnt 

by rote, understanding is more important than memorization. Imitation is 

the basis of learning, and understanding may follow imitation; 3) The 

reform-oriented learning approaches are important and practical;  

4) Mathematics should not be taught by direct instruction. In the teaching 

process, teacher should mainly play a role of guide rather than 

knowledge transmitter, and students should be active constructors rather 

than passive recipients of knowledge; 5) Teacher should teach new 

knowledge based on students’ prior knowledge and experience;  

6) Teacher should make the (implicit) interrelationships among the 

knowledge explicit to the students. 

Overall, Mandy’s espoused beliefs about the nature of mathematics 

seemed to be relatively similar to the Platonist view. Her espoused 

beliefs about learning mathematics seemed to be greatly consistent with 

the social constructivist view of learning, and her beliefs about teaching 

mathematics seemed to be very consistent with the learner-focused view 

of teaching.  

4.3 Enacted Mathematics Beliefs 

Anna’s and Simon’s classes were both at grade 8, and the class sizes 

were 56 and 53 respectively. Anna’s lesson was about linear function and 

direct proportional function, and Simon’s lesson was about squares. 

Mandy’s class was at grade 9, and the class size was 36. The topic of her 

lesson was the positional relationships between two circles. All the three 

lessons lasted about 40 minutes, and all the time were used for teaching.  
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4.3.1 Mathematical Tasks 

The mathematical tasks used in the three teachers’ lessons are 

summarized in Tables 2 to 4. 

Table 2. Mathematical tasks in Anna’s lesson 

Task A  

Determine if the following algebraic expressions are linear function. In linear functions, 

find k and b . 

(1) 32 +≡ xy  (2) 1−−≡ xy  (3) xy 3≡  (4) kxy ≡  (5)
x

y
2

3
−≡  

(6) ( )( )312
+−−≡ xxxy  (7) xy 25 −≡ (8) 4

5
+≡

x
y  (9) ,y kx b= + bk, is 

constant   (10) 23 +≡ xy . 

Task B 

Find the unknowns. 

(1) Given that ( ) 123 +−+≡ mxmy is direct proportional function, find m . 

(2) Given that ( ) 42
2

−+−= kxky is direct proportional function, find k . 

(3) Given that ( ) 24
3

+−≡
−k

xky  is linear function, find k . 

(4) If ( ) 22 32

−++=
−

mxmy
m

 is linear function, find m . 

(5) If 92
22

−+=
−

kxy
k

 is direct proportional function, find k . 

(6) If ( ) 543 12
−++=

+
xxmy

m
is linear function, find m . 

Table 3.  Mathematical tasks in Simon’s lesson 

Task A 

Fill in the following blanks: 

(1) Rectangle that ___________ is square.    

(2) Rhombus that ___________ is square. 

(3) Parallelogram that ________is square. 

Task B 

(1) Summarize the properties of square in terms of side, angle and diagonal; 

(2) Describe these properties in geometric language.  
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Task C 

(1) Fill in the table with ‘Yes’ to indicate whether parallelogram, rectangle, rhombus, 

and square have each of the properties respectively. 

 
Parallelogram Rectangle Rhombus Square 

Both pairs of opposite sides are 

parallel and equal in length. 

    

The four sides are equal in length.     

Opposite angles are congruent     

The four angles are all right angle.     

The diagonals bisect each other.     

The diagonals are Perpendicular.     

The diagonals are equal in length.     

The diagonals bisect a pair of 

opposite angle. 

    

(2) Based on table above, draw a diagram to represent the relationships among 

parallelogram, rectangle, rhombus, and square. 

Task D 

Prove that the two diagonals cut a square into four congruent isosceles right triangles. 

Task E 

Quadrilateral ABCD is square, and the two diagonals 

intersect at pointO . 

(1) Find OABAOB ∠∠ , . 

(2) If 4=AC , then the length of side is ______, the 

area is_______.  

(3) If the area of the square is 64
2cm , then the 

distance from point O  to one side of the square is 

_______ cm .   
 

Table 4. Mathematical tasks in Mandy’s lesson 

Task A 

Use physical objects with circle shape to explore the possible relationships between 

two circles, and draw the conclusion based on demonstration and discussion. 

Task B 

Construct the graphs representing the five positional relationships between two circles. 
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Task C 

Explore the methods of determining the positional relationship between two circles. 

Task D (Textbook) 

Given that the radius of two circles is 3 and 4 respectively, determine the positional 

relationship between the two circles according to the distance between the two centers 

of circles O1O2: (1) O1O2=8; (2) O1O2=7; (3) O1O2=5; (4) O1O2=1; (5) O1O2=0.5; (6) 

O1O2=0. 

Task E (Workbook) 

Given that the radius of two circles is r1 and r2 respectively and the distance between 

the two centers of circles is d, fill in the table below. 

Positional relationship between Two 

Circles 
Formula for Determining the Relationship 

Separation d > r1 + r2 

Externally tangent  

Intersection  

Internally tangent  

Inclusion  
 

(1) Task features 

Context 

All the mathematical tasks had no real-life contexts, and they were 

situated completely in the abstract world of mathematics.  

Solution strategies 

In Anna’s and Simon’s class, all the tasks were solved by using single-

solution strategy. For example, both Task A and B in Anna’s lessons 

were solved by applying the rule ‘exponent should be 1 and coefficient 

should not be 0’, or ‘exponent should be 1, coefficient should not be 0, 

and constant is 0’. Differently, in Mandy’s class, two of the five tasks, i.e. 

Task A and C involved use of multiple solution strategies. There was no 

obvious solution to the two tasks. The students were allowed to use a 

variety of solution strategies to complete the two tasks. The remaining 

three tasks, i.e. Task B, D and E were solved by using single-solution 

strategy. 
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Representation 

In Anna’s lesson, only single representation, i.e. mathematical symbols 

was used in the two tasks. In Simon’s lesson, only single representation, 

i.e. words was used for Task A while multiple representations, including 

mathematical symbols and diagrams were used for other four tasks, i.e. 

Task B, C, D and E. In Mandy’s lesson, multiple representations were 

used for all the five tasks. Task A required the students to make use of 

their physical objects with circle shape (manipulatives) to explore the 

possible positional relationships between two circles, and then use the 

circle models prepared by the teacher to demonstrate and discuss their 

findings. Task B, C, D and E involved the use of mathematical symbols, 

diagrams and words. 

Communication 

In Anna’s and Simon’s lesson, all the tasks did not enable the students to 

produce any explanations or justifications. In contrast, in Mandy’s lesson, 

four out of the five tasks, i.e. Task A, C, D and E enabled the students to 

produce explanations and justifications. 

Collaboration 

All the tasks in the three teachers’ lesson did not enable the students to 

work in a collaborative way. 

(2) Cognitive demand 

In Anna’s class, all the two tasks were procedures with connection tasks 

(high level). They focused the students’ attention on the use of 

procedures for the purpose of developing deeper level of understanding 

of the definition of linear function and direct proportional function. 

Starting from the two definitions, Anna summarized two rules: ‘exponent 

should be 1 and coefficient should not be 0’ and ‘exponent should be 1, 

coefficient should not be 0, and constant should be 0’. The two tasks 

required the students to apply the procedures based on their 

understanding of the two rules. Specifically, Task A required the students 

to determine if algebraic expressions are linear function according to the  
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first rule and then identify the coefficient and constant. Task B required 

the students to apply the two rules to find the unknown so that algebraic 

expressions can be linear function or direct proportional function. The 

two tasks demanded certain degree of cognitive effort. In order to 

successfully complete the two tasks, the students had to engage with the 

conceptual ideas that underlie the procedures, particularly the concept 

‘exponent’, ‘coefficient’ and ‘constant’ in function. Particularly, in Task 

B, the students had to make connection to their prior knowledge about 

equation to find the unknowns. 

In Simon’s class, among the five tasks, Task A and B were 

memorization tasks (low level) while Task C, D and E were procedures 

with connection tasks (high level). Task A and B only required the 

students to reproduce the newly learned knowledge, i.e. the three 

definitions and the properties of square. The other three tasks required 

some degree of cognitive effort. In Task C, in order to do Question (1), 

the students just need to recall their prior knowledge, i.e. the properties 

of parallelogram, rectangle, and rhombus and new knowledge, i.e. the 

properties of square; in order to do Question (2), the students must make 

use of the information in the table to identify the relationships among the 

four concepts: parallelogram, rectangle, rhombus, and square, and then 

construct the diagram based on their accurate understanding of these 

relationships. Task D required the students to connect their new 

knowledge, i.e. the properties of square with previous knowledge, i.e. 

method of determining congruent triangles to write out the proof. Task E 

required the students to apply the properties of a square to find the 

unknowns. The students needed to engage with the conceptual ideas that 

underline the procedures in order to successfully complete this Task. 

In Mandy’s class, all the five tasks involved high-level cognitive 

demand, among these, Task A, B and C were doing mathematics tasks 

while Task D and E were procedures with connection tasks. The five 

tasks were connected in a coherent way. Task A required the students to 

explore and make conclusion about the possible positional relationships 

between two circles through a variety of activities, including hands-on 

experience, observation, complex thinking and discussion. It required  
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considerable cognitive effort and may involve some level of anxiety for 

the students due to unpredictable nature of the solution process required. 

The students needed to figure out the appropriate method of classifying 

the relationships. Task B required the students to use geometric graphs to 

represent the five relationships found in Task A based on their 

understanding of the method. Task C required the students to access 

relevant knowledge, i.e. algebraic expressions and then make 

connections between the algebraic and geometrical representations of the 

five positional relationships between two circles. Task D required the 

students to apply the algebraic expressions obtained in Task C to 

determine the positional relationships between two known circles so that 

they could better understand and master the algebraic decision method. 

Task E required the students to formulate the algebraic method of 

determining the five positional relationships between two circles. In 

order to complete this task successfully, the students needed to make use 

of the relevant knowledge, such as absolute value etc. 

4.3.2 Learning Environment 

(1) Social and intellectual climate 

Anna established and maintained a positive rapport with students. 

Generally speaking, the students were very supportive and cooperative 

by answering her questions actively. However, students’ contributions of 

ideas were fairly limited. Anna dominated in the classroom and acted as 

the authority of mathematical knowledge. She almost told the students 

everything about the topic. The whole lesson flowed as a chain of 

teacher’s questions and students’ short answers. When dealing with the 

mathematical tasks, she told the students how to analyze and solve the 

problems. She was also the one who judged the correctness of students’ 

work.  

Simon did not establish a positive rapport with and among the 

students by showing respect for and valuing students’ ideas and ways of 

thinking. As a matter of fact, he provided few opportunities for the  
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students to express their ideas. He seemed to press for only right answers. 

Besides, for some students, the learning environment did not seem to be 

psychologically safe. When a student failed to supply a right response, 

Simon allowed other students to laugh at him or her. Like Anna, Simon 

dominated in the classroom and acted as the authority of mathematical 

knowledge. He almost taught the students everything about this topic, 

including the definitions of square, the meanings of the definitions, the 

properties of square and relevant problem solving skills. He also required 

the students to strictly follow his instruction to describe the properties of 

square in mathematical language in order of side, angle and diagonal. 

Mandy established and maintained a very positive rapport with and 

among the students by showing respect for and valuing students’ ideas 

and ways of thinking. Generally, the students were very supportive and 

cooperative by actively doing the tasks, voluntarily contributing their 

ideas for public discussion, etc. Different from Anna’s and Simon’s 

students, in the instructional process, Mandy’s students behaved like 

active knowledge constructors while she played a role of organizer, 

guide and facilitator. She organized the students to carry out independent 

inquiry, posed some significant questions to elicit, engage and challenge 

their thinking, provided them with adequate opportunities to express, 

communicate even debate, and facilitated their activities by offering 

suggestions, providing models etc. In a word, Mandy did not act as the 

authority of knowledge, like Anna and Simon did. 

(2) Modes of instruction 

Anna and Simon both used two kinds of instructional strategies in the 

class, i.e. student individual seatwork and teacher lecture/demonstration. 

Mandy employed five kinds of instructional strategies, i.e. student 

individual seatwork, teacher lecture/demonstration, student inquiry, 

student demonstration and discussion. The percentages of instructional 

time devoted to each kind of instructional strategy in the three teachers’ 

class are shown in Figure 1. 
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Figure 1. Percentages of instructional time devoted to different teaching strategies 

 

As indicated by Figure 1, both Anna and Simon spent a considerable 

amount of the instructional time on giving lectures and demonstrations to 

the class.  Also, a very small amount of time was provided for the 

students to do the tasks individually. Little time was allowed for the 

students to express themselves and explore the mathematical ideas. 

Generally, teacher-centered direct instruction was the dominant mode of 

instruction in Anna’s and Simon’s class. In contrast, Mandy spent less 

than half of the instructional time on giving lectures and demonstrations 

to the class. She provided certain amount of time for the students to 

express themselves and explore mathematical ideas and problems. The 

students took main responsibilities for their mathematics learning. 

Generally, teacher-centered direct instruction was not the main mode of 

instruction. Rather, student-centered teaching approach dominated in the 

classroom. 

4.3.3 Classroom Discourse 

(1) Teacher-student interaction  

Anna and Simon communicated with the students mostly in a judgmental 

manner. When the students provided right answers, they tended to give 

positive feedback and then move on. However, when the students  
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supplied wrong answers, they reacted in different ways. Anna did not 

directly point out that the answer was wrong. She seemed to encourage 

the students to explain or justify their thinking, but she could hardly wait 

to give a clear and right direction. Unlike Anna, when some student 

failed to provide desirable answer, Simon immediately turned to another 

one. The student who failed to give right response seemed to feel 

ashamed and sat down quickly while the classmates were laughing at 

him or her. 

Throughout the lesson, Anna and Simon did not really require the 

students to give full explanations or justifications. They provided little 

time for the students to express their ideas. Therefore, they did not have 

opportunity to listen carefully to the students’ ideas. Take the following 

episode of Simon’s lesson as an example: 

(The teacher was going to teach the symmetrical property of the square.)  

T: How many axes of symmetry does rhombus have? 

Whole class: Two! 

T: The axes of symmetry of rhombus are the lines where the diagonals lie, right? 

Whole class: Yes! 

 T: How many axes of symmetry does rectangle have? 

Whole class: Two! 

T: The axes of symmetry of rectangle are also the lines where the diagonals lie, 

right? 

Whole class: No! 

T: Then are the perpendicular bisectors of the sides, right? 

Whole class: Yes! 

T: Rhombus has two, and rectangle has two. How about square? 

Whole class: Four! 

T: Which four? 

Whole class: The lines where the diagonals lie and the perpendicular bisectors 

of the sides. 

T:  First, is square rhombus? 

Whole class: Yes! 

T: So the axes of symmetry of rhombus are also the axes of symmetry of square.  

Second, is square rectangle? 

Whole class: Yes! 

T: The axes of symmetry of rectangle are the perpendicular bisectors of the 

sides. Therefore, if we put all the axes of symmetry of the rhombus and those 

of the rectangle into one figure, we can get the axes of symmetry of square. 

How many? 
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Whole class: Four! 

T:  Yes, two for rhombus plus two for rectangle is equal to four! 

… 

It is clear from above that what the students did was just supplying 

short answers to Simon’s simple questions, mostly ‘Yes’ or ‘No’.  

Different from Anna and Simon, Mandy communicated with the 

students in a non-judgmental manner and encouraged the participation of 

each student. Look at the following episode: 

(Task A was presented to the class. After the majority of the students had finished their 

exploration of the possible positional relationships between two circles by using their 

physical objects, the teacher encouraged the students to voluntarily report their findings.) 

T: Well, who is willing to tell us your finding? How many kinds of 

relationships between two circles have you found? 

A: The two circles can be intersecting, and … 

T: I have two circles (models) here, please use them to show us what you have 

found. 

(A went up to the platform, stood close to the teacher and in front of the rest of 

class) 

A (demonstrating): This is being separated, and this is being intersecting, 

another situation is that the smaller circle is inside the bigger one, being 

contained. 

T: Well, he found three kinds of relationships. Is there more?  

B (stood up): When there is only one point of intersection. 

T:  When there is only one point of intersection? Could you come up and 

demonstrate to us? 

(B went up to the platform and showed the situation of two circles being 

externally tangent to each other.) 

T: Now we have four kinds, is there more? 

(Several seconds of wait) 

T: Only four types? Have you found any other different? 

C (stood up): Yes! 

T: What else have you found? Show us! 

(C went up to the platform and showed the situation of two circles being 

internally tangent to each other.) 

T: C found another kind. Now we have five kinds, right? Do you have any 

other? 

(No response was given.) 

T: Let us summarize their findings. A found three kinds, B added one kind, and 

then C added one more kind. Is there more? 

(A went up to the platform again and showed the situation of two circles being 

concentric circles.) 

T (facing A): Do you think it is different from what you just said? 

A: Yes. 

T: Why? 
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A: Because in other cases, the centres do not coincide. 

T: So you mean that there are two situations, one is coincide and the other is 

not coincide?  

A: Yes. 

T: What is your criterion for judgment? Is that whether the centres coincide or 

not? 

A: Yes. 

T: Then I want to ask, are being intersecting and internally tangent the same 

situation? 

A: No. 

T: But according to what you said just now, they should be the same situation. 

A: No. One is inside the circle, but the other is outside the circle. 

T: Oh, you mean, one situation is that the centre (of one circle) is inside the 

(second) circle, the other is that the centre of (one circle) is outside the (second) 

circle? 

A: Yes. 

T (demonstrating): Then, according to what you just said, being intersecting 

and internally tangent should be the same situation, right? 

A (puzzled): Oh, almost… 

(At this moment, A realized that he was probably wrong and smiled with a little 

shame, the teacher also smiled and the rest of class laughed.) 

T: Well, now we encounter a problem. That is about how to classify the 

relationships. If we follow what A just said, i.e. according to the position of the 

centers to classify, he got three kinds of situations: outside, inside and coincide. 

Furthermore, he felt that being coincident and inside may be the same. Do you 

agree to his method? 

Some students: No. 

T: Why?  

Some students: Because it is not clear. 

T: Do you have other better method? 

… 

As the above episode indicated, the students were very active to 

display their findings, and the teacher was also very democratic and 

supportive. She knew that student A’s solution was problematic, but she 

did not hasten to give her own judgment by simply saying right or wrong. 

Instead, she engaged and challenged the students’ thinking by asking 

probing questions. Later on, she summarized student A’s solution in a 

neutral tone and encouraged the rest of class to give their opinions. 

Clearly, the students’ ideas and ways of thinking were respected and 

valued.  

Throughout the lesson, Mandy required the students to give full 

explanations and justifications five times, and give demonstrations six 

times. The above episode involved two full explanations and four 
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demonstrations. Mandy listened carefully to the students’ ideas. Taking 

the above episode as an example, she paid attention to student A’s 

thoughts, and then identified the flaws of his method and accordingly 

challenged his thinking through questioning. 

Particularly, Anna and Simon both required their students to 

memorize the newly learned knowledge, but Mandy did not do so. Anna 

required the students to memorize the two rules: ‘exponent should be 1 

and coefficient should not be 0’ and ‘exponent should be 1, coefficient 

should not be 0, and constant should be 0’. This happened four times in 

total. Simon required the students to memorize mathematical knowledge 

twice. One time was for the relationships among parallelogram, rectangle, 

rhombus and square, and the other was for the formula of area of square: 

S=l2×1/2 (l denotes diagonal of square). Besides, Anna required the class 

to imitate her solution once, but Simon and Mandy did not do so. 

(2) Student-student interaction  

Anna and Simon did not encourage their students to listen to, and 

respond to each other’s ideas. When the students responded to her 

questions, Anna gave feedback, but other students did not give any 

opinions. In Simon’s class, when some student gave wrong answer to the 

teacher’s question, other students laughed at him or her, but did not give 

other feedback. Generally, there was no student-student interaction in 

Anna’s and Simon’s classroom.  

Unlike Anna and Simon, Mandy encouraged students to listen to, 

respond to and even question each other so that they could evaluate and 

if necessary, discard or revise the ideas and take full responsibility for 

arriving at conclusions. Take the above episode as one example, she 

encouraged the students to listen to student A and give opinions about his 

method. Generally, student-student interaction was quite active during 

the lesson. 

(3) Questioning 

Throughout the lesson, Anna asked a total of 221 questions, Simon asked 

a total of 117 questions, and Mandy asked a total of 95 questions. The  
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questions included both closed questions inviting short answers like 

basic facts, Yes or No, and open questions inviting explanations from the 

students, as shown by Figure 2. 

From Figure 2, it can be seen that the vast majority of the questions 

asked by the three teachers were closed questions. These questions 

demanded low-level cognitive efforts, thus could not challenge the 

students’ thinking. In Anna’s lesson, some open questions were aimed at 

eliciting the students’ explanations, but they were answered by Anna 

herself. In Simon’s class, a few open questions were asked. However, as 

shown by the earlier episode, Simon greatly reduced the level of 

difficulty of all potential complex questions, even some simple factual 

questions. For example, he changed a simple question “what are the axes 

of symmetry of the rhombus?” to “the axes of symmetry of rhombus are 

the lines where the diagonals lie, right?” so that the students just gave 

answer ‘Yes’ or ‘No’.  In Mandy’s class, a larger amount of open 

questions were posed and they did challenge the students’ thinking. 

 

 

Figure  2.  Percentages of different types of questions 

 

On the other hand, a total of 202, 102 and 81 responses were elicited 

from the students in Anna’s, Simon’s and Mandy’s class respectively, 

these responses could be classified into three categories. The details are 

shown in Figure 3. 
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Figure 3. Percentages of different types of responses 

 

It is noticeable from Figure 3 that in all the three teachers’ class, 

chorus responses accounted for more than 50%; particularly in Mandy’s 

class, volunteered responses took up 44%, much more than those in 

Anna’s and Simon’s class. That is, the students in all the three class 

mainly answered questions collectively rather than individually. 

However, Mandy’s students were far more willing to contribute their 

responses voluntarily, as compared to Anna’s and Simon’s.  

Furthermore, in Anna’s and Simon’s class, the students’ responses 

were limited to basic facts, or Yes or No, few explanations were actually 

sought. In contrast, Mandy’s students gave more explanations and 

justifications. 

4.3.4 Summary 

As in the case with espoused mathematics beliefs, Anna’s enacted 

mathematics beliefs seemed to be quite similar to Simon’s (despite some 

small differences), but substantially different from Mandy’s. According 

to their teaching practices, both Anna and Simon seemed to believe in 

the following views: 1) Mathematics is independent of real life;  

2) Mathematics is a static united body of knowledge, and mathematical 

knowledge is interrelated; 3) Mathematics is not just a collection of rules, 

formulas and procedures, but it stresses using certain rules or procedures 

to solve problems; 4) Mathematical problems can only be solved by 

single approach; 5) Students should learn mathematics mainly through  
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listening attentively to teacher’s lecture and doing enough exercises;  

6) Memorization and/or imitation are important approaches to learning 

mathematics; 7) Students do not need to engage in independent inquiry 

to learn mathematics. In other words, independent inquiry is not 

important approach to learning mathematics; 8) Students do not need to 

communicate their mathematical ideas; In other words, mathematical 

communication is not important approach to learning mathematics; 9) 

Students do not need to learn mathematics in a collaborative way. In 

other words, collaborative learning is not important approach to learning 

mathematics; 10) Mathematics should be mainly taught by direct 

instruction. In teaching process, students should be recipients of 

knowledge while teacher should be transmitter of knowledge; 11) 

Teacher should play a role of the authority of knowledge. 

Overall, Anna’s and Simon’s enacted beliefs about the nature of 

mathematics seemed to be basically similar to the Platonist view. Their 

enacted beliefs about learning mathematics seemed to be relatively close 

to the reception view of learning, and enacted beliefs about teaching 

mathematics seemed to be relatively close to the teacher-centered, 

content-focused with an emphasis on conceptual understanding view of 

teaching.  

On the other hand, judging from her classroom teaching, Mandy 

seemed to believe in the following views: 1) Mathematics is independent 

of real life; 2) Mathematics is dynamic and expanding; 3) Mathematical 

knowledge is interrelated; 4) Mathematical problem solving allows for 

multiple approaches; 5) Memorization and imitation are not important 

approach to learning mathematics; 6) Students need to engage in 

independent inquiry to learn mathematics; in other words, independent 

inquiry is important approach to learning mathematics; 7) Students need 

to express, explain, justify and communicate their ideas; in other words, 

mathematical communication is important approach to learning 

mathematics; 8) Student do not need to learn mathematics in 

collaborative way; in other words, collaborative learning is not important 

approach to learning mathematics; 9) Mathematics should not be taught 

by direct instruction; rather, mathematics teaching should be student-

centered; 10) In teaching process, teacher should be a facilitator of  
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students’ learning rather than a knowledge deliver; students should and 

can be active constructors of knowledge; 11) Teachers should not play a 

role of the authority of knowledge. 

Overall, Mandy’s enacted beliefs about the nature of mathematics 

seemed to be basically similar to the social constructivist view. Her 

enacted beliefs about learning mathematics seemed to be relatively close 

to the social constructivist view of learning, and enacted beliefs about 

teaching mathematics seemed to be close to the learner-focused view of 

teaching.  

5.  Findings and Discussion 

In this study, three Chinese teachers’ espoused as well as enacted 

mathematics beliefs were investigated in depth. The findings from the 

case studies are summarized in Table 5. According to the table, among 

the three teachers, two i.e. Anna and Simon seemed to hold traditional 

mathematics beliefs while the third one, Mandy seemed to have 

mathematics beliefs that were basically consistent with the reform ideas.  

In the case studies, great similarities in terms of both espoused and 

enacted mathematics beliefs were identified between Anna and Simon, 

and the differences between them and Mandy were found to be evident. 

Particularly, the traditional Platonist view of the nature of mathematics, 

the reception view of learning and the teacher-centered view of teaching 

seemed to be shared by Anna and Simon. On the other hand, Mandy 

seemed to hold the reform-oriented social constructivist view of the 

nature of mathematics, the social constructivist view of learning, and the 

learner-focused view of teaching. Therefore, this finding is not fully 

consistent with those from previous studies, in which teachers in the 

Chinese mainland unanimously held the Platonist view of the nature of 

mathematics (e.g. Wong et al., 2002) and emphasized the teacher-

centered teaching method (e.g. An, Kulm, Wu, Ma, & Wang, 2006). It 

seemed that among the three teachers, substantial changes had only 

occurred to the mathematics beliefs of Mandy, during the 

implementation of the reform-oriented mathematics curriculum.  
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Table 5.  Summary of the Mathematics Beliefs of the Three Teachers 

  

Beliefs about the 

Nature of 

Mathematics 

Beliefs about 

Learning 

Mathematics 

Beliefs about 

Teaching 

Mathematics 

Anna 

Espoused Platonist Reception Teacher-centered 

Enacted Platonist Reception 

Teacher-centered, 

content-focused 

with an emphasis 

on conceptual 

understanding 

Simon 

Espoused Platonist Reception Teacher-centered 

Enacted Platonist Reception 

Teacher-centered, 

content-focused 

with an emphasis 

on conceptual 

understanding 

Mandy 

Espoused Platonist 
Social 

constructivist* 
Learner-focused* 

Enacted 
Social 

constructivist* 

Social 

constructivist* 
Learner-focused* 

Note: * means that the beliefs were consistent with the reform ideas. 

 

Furthermore, both consistencies and inconsistencies between the 

teachers’ espoused beliefs and enacted beliefs were found. Specifically, 

the former were reflected in the teachers’ beliefs about learning and 

teaching mathematics while the latter were in their beliefs about the 

nature of mathematics. Therefore, these findings do not completely agree 

with those from previous studies that only identified either consistencies 

(e.g. Stipek, et al., 2001) or inconsistencies (e.g. Raymond, 1997) 

between teachers’ beliefs and practice (enacted beliefs). Research 

literature suggests that teachers’ beliefs about mathematics teaching and 

learning appear to be related to their beliefs about mathematics 

(Thompson, 1992). It is also suggested that Kuhs and Ball’s (1986) three 

views of teaching (Content-focused with an emphasis on conceptual 

understanding, Content-focused with an emphasis on performance, 

Learner-focused) are underpinned by or logically follow from Ernest’s 

(1989a) three views of the nature of mathematics (Platonist,  
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Instrumentalist, Social constructivist) respectively (Thompson, 1992). 

According to Table 5, such logical relationship was only established in 

the teachers’ enacted beliefs. It seems that there is no logical necessity 

between teachers’ espoused beliefs about the nature of mathematics and 

their espoused beliefs about learning and teaching mathematics. 

However, the close connections between teachers’ beliefs about learning 

mathematics and their beliefs about teaching mathematics are confirmed. 

Generally, this study has contributed to the body of research literature 

on teacher beliefs, particularly on Chinese teachers’ mathematics beliefs 

in two ways. Firstly, unlike the conventional studies where only teachers’ 

espoused beliefs are examined, this study has provided us a more 

comprehensive understanding of three Chinese teachers’ mathematics 

beliefs by focusing on their espoused as well as enacted beliefs. Secondly, 

this study has added a new perspective to the extant research on Chinese 

teachers’ mathematics beliefs through investigating the three teachers 

who responded differently to China’s recent constructivism-oriented 

curriculum reform. Besides, this study sheds some light on the query 

about how Chinese teach mathematics. It seems encouraging to observe 

that some Chinese teachers have adopted the reform-oriented, learner-

focused (student-centered) teaching approaches in their mathematics 

classrooms. However, it is noted that this study has two limitations. 

Firstly, only three teachers were involved in this study, thus the findings 

have limited generalizability. Secondly, due to the teachers’ busy 

schedule, only one lesson was observed for each teacher so as to infer his 

or her enacted beliefs, which may threaten the validity of research to a 

certain extent. Extending the period of data collection could help reduce 

this threat. 

6.  Implication 

A few specific findings from this study provide important implications 

for teacher educators and reform advocates in China. Firstly, two of the 

three teachers, i.e. Anna and Simon showed strong commitment to the 

traditional ideas and approaches (e.g. memorization and imitation, drill  
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and practice, direct instruction, the role of teacher as the authority of 

knowledge) which are rooted in the cultural values of Chinese societies 

for long (Fan, Wong, Cai, & Li, 2004). To challenge and transform these 

deep-rooted ideas and practices, revolutionary interventions by teacher 

educators are indispensable. Such interventions should provide the 

teachers with opportunities to reflect on their taken-for-granted mindset 

and behaviors from a critical perspective, and thereby appreciate the 

need for reform-oriented change. On the other hand, Anna and Simon 

both contended that the reform-oriented approaches are important but 

impractical. Therefore, if teachers like them are expected to teach in a 

reform-oriented way, they need to get convinced of the practical values 

of these approaches. To prove such values is an important task for 

teachers, teacher educators and reform advocates. 

Secondly, all the three teachers argued that mathematics is closely 

related to real life. However, none of them used mathematical tasks with 

real life context in classroom teaching. This is probably because that they 

had difficulty in designing appropriate tasks to illustrate the connections 

between real life and mathematics. Besides, Mandy showed more 

acceptances to the reform ideas and approaches, in words as well as 

actions. However, she did not have accurate understanding of the 

‘collaborative learning’ approach, she also seldom used this approach in 

her class. All these indicated that teachers, even those who support the 

reform, may lack of necessary knowledge and skills to implement the 

reform ideas and suggestions. Therefore, teacher educators should equip 

the teachers with essential knowledge and skills to actualize their reform 

ideals. 
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Chapter 18 

“Same Content Different Designs” Activities  

and Their Impact on Prospective Mathematics 

Teachers’ Professional Development：：：： 

The Case of Nadine
 
 

YUAN Zhiqiang         LI Xuhui
 

As a new form of Teaching Research Group (TRG) activity, Same 

Content Different Designs (SCDD, or Tong Ke Yi Gou in Chinese) 

activities have gradually become popular among teacher preparation 

and professional development programs in Chinese mainland at the 

beginning of the 21st century. To explore their impact on the 

professional development of prospective mathematics teachers, we 

organized two SCDD activities before and during the educational field 

work of a group of prospective teachers in China. Data was collected 

through clinic interviews, classroom teaching observations and 

videotaping, and cross-referenced with teaching related documents and 

artifacts. A case analysis reveals the SCDD activities’ impact on 

Nadine, one of the prospective teachers’ professional development. 

Based on the activities and the results, we propose and discuss a model 

that characterizes the key components and stages of SCDD activities. 

 

Keywords: Same Content Different Designs (SCDD), prospective 

mathematics teachers, professional development, logarithmic functions 
1. Introduction 

Since the early 1950s, Teaching Research Group (TRG) activities have 

been a mandatory component of continued professional development for 

practicing mathematics teachers in China. Teachers in the same TRG 

collaboratively examine curriculum materials, design lesson plans, share 

teaching experiences, and observe and comment on each other’s lessons. 
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Among other factors, researchers have attributed Chinese mathematics 

teachers’ profound mathematical knowledge for teaching and effective 

instructional practices to teachers’ constant involvement in TRG 

activities (Ma, 1999; Paine & Ma, 1993; Sun, 2009; Yang, 2009; Yang, 

Li, Gao, & Xu, 2009; Yang & Ricks, 2012). The objectives, structure, 

and content of TRG activities have evolved considerably in the past 

decade to meet the ever-changing demands from mathematics curriculum 

reforms (Yang et al., 2009). Same Content Different Designs (SCDD, or 

Tong Ke Yi Gou in Chinese) activities emerged as one of the new and 

popular types of mathematics TRG activities in schools all across China 

(Yuan, 2012; Yuan & Liu, 2011; Yuan & Ricks, 2011). 

During a typical SCDD activity, two or more teachers teach a 

common topic to different groups of students with distinct lesson designs, 

while their fellow teacher participants observe each of these lessons. 

After all lessons are completed, all teachers involved gather to discuss 

the lesson designs and classroom teaching practices, make comments and 

suggestions for future revisions and improvements. An alternative 

process begins with a teacher designing and teaching a lesson on a 

certain topic. Based on her/his own reflections on the classroom teaching 

practices, results of formative assessment of student learning, and 

feedbacks from fellow teacher observers in the same TRG, the teacher 

then redesigns the lesson and teaches it again to a different group of 

students. Afterward all teachers involved go through a second cycle of 

reflection, comparison, and discussion. 

With the keyword “Tong Ke Yi Gou” (in Chinese), the authors 

searched in one of the largest online database for academic periodicals in 

China, Chongqing WeiPu Information (www.cqvip.com), and found 

more than 700 articles on SCDD activities that were published between 

2005 and 2013. Most of these articles appear as an observation and 

description of two lessons taught by two teachers on the same topic 

during an SCDD activity, followed by the article author(s)’ reflections 

and comments specifically on the lessons, or on SCDD activities in 

general. Almost all of these SCDD activities involve only practicing 

mathematics teachers, with only one exception which is a research 

conducted by the first author of this chapter and his collaborator on an 

SCDD activity involving both practicing and prospective teachers. Some 
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of these articles are general discussions on the nature, roles, goals, 

principles, processes and strategies of SCDD activities. They either 

briefly mention two SCDD lessons as examples, or do not refer to any 

specific lessons or relevant data at all. To better understand the nature 

and dynamics of SCDD activities as well as their impact on mathematics 

teachers’ professional development, we believe it is necessary to extend 

the existing studies in two ways: (1) carrying out more systematic studies 

based on multiple points and sources of data and more rigorous and 

in-depth analysis; (2) including teacher participants at various stages of 

their teaching careers, especially, prospective mathematics teachers.  

In designing the current research study, we are interested in finding 

out how prospective mathematics teachers learn and grow as novice 

educators through their SCDD activities experiences. Specifically, we 

tried to investigate the following research question through a case study: 

When prospective mathematics teachers are engaged in SCDD activities 

together with experienced teachers, how would such activities influence 

these prospective teachers’ professional development, mainly, their 

classroom teaching practices? 

Underlying the above research question is our main assumption that 

prospective teachers would potentially benefit from well-designed SCDD 

activities which also involve experienced practicing teachers. When 

prospective teachers first design and practice teaching SCDD lessons 

among themselves, they develop initial experiences with different lesson 

designs for the same topic. Comments from fellow student teachers and 

supervising teachers help them see the strengths and weaknesses of the 

various designs and practices, and improve those of their own. Later 

when prospective teachers and practicing teachers teach SCDD lessons 

simultaneously in authentic classroom environment, prospective teachers 

learn directly from practicing teachers, not only through the comments 

and suggestions they make, but also by observing and discussing lessons 

taught by practicing teachers on the same topic. Throughout this process, 

prospective teachers are exposed to multiple ways of designing and 

teaching the same topic, understand why and how each way works well 

or not through reflections, comparisons, and discussions, which may lay 

both broad and solid foundation for the growth in prospective teachers’ 

practices. We hope to verify these assumptions through this research. 
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2. Theoretical Framework 

SCDD activities groups, or TRGs in general, can be organized or 

analyzed through the notion of teachers’ learning communities (Jaworski, 

2004; Lin & Ponte, 2008; Roth & Lee, 2006) which are essentially a 

special form of communities of practice (Lave & Wenger, 1991; Wenger, 

1998). A learning community demonstrates four main characteristics: 

  (1) The community is built within general and specific teaching and 

learning contexts, such as cultural, social, and school environments, 

national and local educational policy, curriculum and assessment 

standards, and teacher and student characteristics (Stigler & Hiebert, 

1998, 1999). 

  (2) Members of the learning community follow common norms and 

routines and share common language and sensibilities. All of these 

common features are shaped by the contextual settings of the community. 

Teachers’ practices in such a community are bounded by both the 

contexts and the established norms and routines, whereas growths in 

teachers’ knowledge and changes in teachers’ beliefs and practices 

would in turn reshape the interactions between teachers and those 

contexts and norms.  

  These imply that the dynamics of a learning community consisting 

mainly of prospective teachers would be in many ways different from 

those of a practicing teachers’ learning community, and both would also 

somewhat differ from those of a learning community that includes both 

prospective and practicing teachers. Hence, researchers must explicitly 

pay attention to and address the membership of each community when 

designing, analyzing, and reporting results from studies related to 

learning communities.    

  (3) Members of the community learn from each other. Lin and Ponte 

(2008) believe that “the most important feature of a learning community 

is that its members learn from one another” (p.112). A team of teachers 

can form a learning community only if all teachers in the team realize 

and value the fact that they can learn from each other (Jaworski, 2004). 

Jaworski (2005, 2008) also characterized teachers’ learning communities 

as inquiry communities. In an inquiry community, teachers are not 

satisfied with the status quo. They frequently question and examine their 
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daily, normal practices, and look for alternatives ways of teaching 

(Jaworski, 2005, 2008).  

  (4) Members of the community are reflective practitioners, which 

echo the reflective nature of a community of practice (Lave & Wenger, 

1991; Wenger, 1998). Teachers in the community must constantly dwell 

on their current and past practices in order to fully understand their 

context, norms, and complexities, and to potentially improve future 

practices. Reflections can be in many forms, e.g., journal writing, 

watching and discussing videos of teaching, or discussing observations 

on lessons taught by fellow teachers.  

The above four features determine an individual-collective duality of 

a teachers’ learning community. On the one hand, individual members of 

the community have distinct knowledge, experiences, viewpoints, beliefs, 

goals, expertise, and preferences, which may make it difficult for 

members to communicate and collaborate. On the other hand, all 

teachers’ practices are framed by the same contexts and norms, and 

reframed through daily reflections, sharing, comparisons, and co-learning 

among members of the community. Through such a process, an 

individual teacher’s knowledge and expertise could be significantly 

improved, and also be integrated into the collective knowledge and 

expertise shared by the community. Such a duality seems to be well 

reflected in prospective teachers’ SCDD activities which start with 

individual teachers designing and implementing lessons relatively 

independently then followed by collective sharing of observations, 

comments, and suggestions. 

We use the above characterization of SCDD activities in designing 

our research and in data analysis. 

3. Methods 

3.1 Participants 

Twelve (3 males, 9 females) prospective mathematics teachers and one 

practicing teacher with 5-year teaching experience participated in this 

study on SCDD activities. The prospective mathematics teachers came 
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from a mathematics teacher preparation program at a teachers’ university 

on the south-east coast of China, and chose to fulfill their educational 

field work requirement as a team in the same local high school, Gulou 

High School (pseudonym). The practicing teacher, Linda, has been 

teaching at Gulou High School for 5 years. The first author of this 

chapter was appointed field work supervisor of this team. Two of these 

prospective teachers, Nadine and Howard, previously participated in a 

SCDD activity in a teacher development experiment (Yuan, 2012). For 

that SCDD activity, Howard taught a lesson in an authentic high school 

classroom environment. All other prospective teachers (for example, 

Yolanda) didn’t have any formal classroom teaching experience prior to 

the first SCDD activity. Even before the second SCDD activity, these 

prospective teachers only had taught 3 to 5 lessons during their 8-week 

educational field work. The leader of the team, Nadine, was chosen as 

the focus participant since she was very reliable and agreed to try her 

best to finish all research procedures. 

3.2 A Six-step Model of SCDD Activities 

Based on the theoretical framework introduced earlier, the first author’s 

previous study (Yuan, 2012), and a few related discussions (He, 2007; Li, 

2010; Tong, 2010), we propose a generic model for SCDD activities for 

prospective teachers. During a typical SCDD activity, prospective 

teachers are expected to undertake six major steps: (1) preparing for and 

writing lesson plans individually; (2) having open lessons (i.e., lessons 

observed by other teachers) and peer observations; (3) explaining and 

evaluating lessons; (4) interviewing students; (5) observing 

self-videotapes and writing reflective journals; (6) revising lesson plans. 

3.2.1 Preparing for and Writing Lesson Plans Individually 

During teaching preparation, each teacher who will teach an open lesson 

ponders on and prepares for the lesson carefully. Such a teacher is 

expected to write the first draft of a lesson plan independently without 

discussing it with anyone else, but can refer to any existing curriculum 

resources, including curriculum standards, textbooks, teachers’ guide 
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books, lesson plans and courseware developed by other teachers, and 

videotapes of classroom teaching. After the lesson plan is completed, the 

teacher can discuss it with a brain trust (such as a mentor and/or a TRG 

leader). He or she can also have a simulation teaching (i.e., in front of 

other student teachers) or authentic teaching in front of a group of school 

students. Based on these discussions and experimentations, the teacher 

will generate a new draft of the lesson plan together with a written 

explanation on which and why certain revisions are made.  

3.2.2 Having Open Lessons and Peers Observations 

In implementing the lessons, two or more teachers teach the same topic 

to different groups of students with distinct lesson designs, while other 

teacher participants observe each of these lessons. The teachers who 

teach one of the open lessons are encouraged to observe the lessons 

taught by others and be willing to tell honestly any changes they plan to 

make to their own lesson plans as the result of observing the other 

teachers’ teaching. The other teacher participants should document the 

noticeable events happened in the open lessons so that they can later 

evaluate the lessons based on solid evidence.  

3.2.3 Explaining and Evaluating Lessons 

On-site explanations and evaluations will be held immediately after all 

open lessons are completed. Teachers who taught these lessons will take 

turns to explain their lesson designs and thinking and actions during 

classroom teaching. The main topics for explaining the lessons include 

the preparation process, the lesson design, reflections on teaching, and 

reflections on the peer observations. After lesson explaining, the other 

participants will provide their evaluations of the lessons one by one.  

3.2.4 Interviewing Students 

Through teaching and explaining open lessons as well as peer 

evaluations, those teachers who taught the open lessons are supposed to 

share experiences with their fellow observers and receive many valuable 
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suggestions. However, what are the effects of the lessons on students 
learning? Among other possible measures, we believe conducting 
clinical interviews with students is an effective way to qualitatively 
evaluate student learning outcomes. Especially, teachers can receive 
more detailed feedbacks from the students if a good interview protocol is 
prepared ahead of time. 

3.2.5 Observing Self-Videotapes and Writing Reflective Journals 

John Dewey (1933) ever said that “Experience plus reflection equals 
growth”. After communicating with the other participants, the teacher 
who taught an open lesson need reflect thoroughly. Watching videotapes 
of classroom teaching and discussion provide good opportunities for 
reflection. The teacher can replay the videotapes repeatedly to examine 
his or her classroom teaching practices. A formal reflective journal helps 
to consolidate and document the reflections.  

3.2.6 Revising Lesson Plans 

After going through the five steps described above, teacher’s knowledge, 
beliefs and practices are expected to undergo considerable changes. One 
way to cumulate evidence for such changes and for the teachers to apply 
everything they learned in the five steps is to further revise the lesson 
plans. The new lesson plans can be used in future teaching.  

3.3 Process 

This study included two SCDD activities organized in two phases. The 
first SCDD activity was held in the phase of simulation teaching training 
for prospective teachers before their educational field work. Twelve 
prospective mathematics teachers participated in this activity. The 
second SCDD activity was held in Gulou High School classrooms 
towards the end of their educational field work. Two of these prospective 
teachers, Nadine and Howard, and a practicing teacher from Gulou High 
School, Linda, each taught an open lesson observed by practicing 
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teachers and other prospective teachers. All of the other 10 prospective 

teachers observed these open lessons.  

3.3.1 First SCDD Activity 

As a tradition, prospective mathematics teachers from the teacher’s 

university would form teams and practice simulation teaching before 

their actual educational field work. As the supervisor of one group of 

prospective teachers, the first author of this chapter was in charge of this 

simulation teaching training. The following training procedure was used. 

Each prospective teacher had simulation teaching twice in a week. The 

first simulation teaching was held in the form of a SCDD activity in 

August 2011. The same topic, Logarithmic Functions and Their 

Properties, was taught by all 12 prospective teachers. This lesson topic 

was adopted from the first volume of the textbooks for senior high 

schools, which was a required topic for educational field work. In the 

process of this SCDD activity, each prospective teacher went through 

five steps: (1) preparing for and writing lesson plans individually; (2) 

simulation teaching and peer observations; (3) explaining and evaluating 

lessons; (4) observing self-videotapes and writing reflective journals; (5) 

revising lesson plans. In the second simulation teaching, different lesson 

topics (such as the concept of functions, the monotonic property of 

functions, exponential functions and their properties) from the same 

textbook were taught by different participants.  

3.3.2 Second SCDD Activity 

The second SCDD activity was held towards the end of the prospective 

teachers’ educational field work, on October 20-21, 2011, at Gulou High 

School. Two of the prospective teachers, Nadine and Howard, and the 

practicing teacher, Linda, each taught an open lesson one after another in 

the morning of October 20. A lesson explaining and evaluating activity 

was held immediately after the last lesson ended. In the afternoon of 

October 21, the first author interviewed these three teachers one by one. 

Then Nadine and Howard, each interviewed three students selected from 

the class she or he is student teaching. Since the focus of this study was 
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prospective teachers’ professional development, we didn’t arrange for 

Linda to interview her own students. Instead, another prospective teacher, 

Yolanda, interviewed three students from Linda’s class.  

The mathematics topic of the second SCDD activity was the same as 

that of the first activity, Logarithmic Functions and Their Properties. But 

there are several differences between these two activities: (1) the first 

activity was held in a simulated school classroom environment where 

peer student teachers acted as “students”, but the second activity was 

held in an actual high school classroom with more than fifty students; (2) 

twelve prospective teachers participated in the first SCDD activity, but 

only two of these prospective teachers and one practicing teacher took 

part in the second activity because of the restriction of conditions; (3) the 

first SCDD activity only involved prospective teachers and their 

supervisor, but the second SCDD activity involved many “outsiders”, 

such as the college administrator who are in charge of educational field 

work, some practicing teachers from other local high schools and 16 

junior college students; (4) More interviews were conducted after the 

second SCDD activity compared to the first SCDD activity. Detailed 

information is shown in Table 1. 

Table 1. Schedule for the second SCDD activity 

Date Time Content Key Person Observer 

Thur., 

Oct. 20, 

2011 

7:55-8:40 open lesson Nadine 
1st author, 

prospective 

& school 

teachers 

8:50-9:35 open lesson Howard 

10:00-10:45 open lesson Linda 

10:55-12:00 assessing lessons 1st author 

Fri., 

Oct. 21, 

2011 

 

13:40-16:30 

Interview with Nadine 

1st author 

No 

Interview with Howard 

Interview with Linda 

16:50-17:50 

Interview with student S1, S2, S3 Nadine 

Interview with student S4, S5, S6 Howard 

Interview with student S7, S8, S9 Yolanda 



 “Same Content Different Designs” and Professional Development  577 

3.4 Data Collection 

Multiple types of data were collected through in-depth interviews, 

classroom observations and videotaping, and artifact collection (See 

Table 2).  

Table 2. Data collection during the SCDD activities 

Process Data Sources Data Types Date 

First  

SCDD 

activity 

Nadine, Howard and 

other 10 prospective 

teachers  

Classroom teaching videotapes； 

post-lesson interview videotapes; 

teaching reflective journals;  

lesson plans and courseware 

2011/08/25 

2011/08/26 

Second  

SCDD 

activity 

Nadine, Howard, and 

Linda 

Classroom teaching videotapes； 

post-lesson interview videotapes; 

teaching reflective journals;  

lesson plans and courseware 

2011/10/20 

2011/10/21 

9 senior high school 

students S1-S9 

Interview videotapes or 

audiotapes 
2011/10/21 

Writing 

bachelor 

thesis  

Nadine Thesis 2012/03 

 

In the first SCDD activity, we used one camera to videotape the 

prospective teachers’ entire simulation teaching lessons as well as the 

follow-up explanation and evaluation activities. In the second SCDD 

activity, we used three cameras to videotape the entire open lessons: the 

first camera focused on the teacher, the second one focused on the 

students, and the third one videotaped the whole class. Then two cameras 

were used in the explanation and evaluation sessions: one of them was 

used for videotaping the whole meeting room and the other one focused 

on the teacher who was speaking. One camera was used in interviewing 

teachers and students. Besides those videotapes, we also collected a lot 

of teaching related documents and artifacts, including lesson plans, 

courseware, and reflective journals. We also used Nadine’s bachelor 

thesis as one of data sources since her thesis was related to this study. In 

the process of data collection, we followed three principles for a case 

study: (1) using multiple, not just single, sources of evidence; (2) 
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creating a case study database; and (3) maintaining a chain of evidence 

(Yin, 2003, p.85).  

3.5 Data Analysis 

Since this study focused on the professional development of one of the 

prospective mathematics teachers, Nadine, we mainly analyzed her data. 

At the initial stage of data analysis, we put together and looked through 

all data collected from Nadine. We wrote down all noticeable events in 

this step for further detailed analysis. Then, we divided each lesson 

taught by Nadine in the two SCDD activities into seven episodes. The 

main instructional strategies were identified from each episode. By 

analyzing the critical events and critical persons during the SCDD 

activities, we identified evidence for the influences that the SCDD 

activities had on her classroom teaching practices. 

4. Results and Analysis 

Nadine was still a prospective teacher whose educational field work was 

just over a month. We wouldn’t expect her to teach a perfect lesson in 

the second SCDD activity. However, we do hope SCDD activities could 

facilitate her professional development to a certain extent. The changes 

in Nadine’s classroom teaching practices in the two SCDD activities are 

described below. Some possible explanations for these changes are also 

discussed. 

4.1 Changes in Nadine’s Teaching Practice in the Two SCDD 

Activities 

By analyzing Nadine’s lessons in the two SCDD activities, we see that 

the instructional structures of the two lessons are identical. Both lessons 

can be divided into the following seven consecutive episodes: (1) 

introducing the definition of logarithmic functions; (2) graphing the 

functions xy 2log=  and xy 2/1log= ; (3) exploring the graphs 

and properties of logarithmic functions xy alog= ; (4) giving Type I 
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examples: finding the domains of functions; (5) giving Type II examples: 

comparing two logarithmic quantities; (6) summarizing; (7) assigning 

homework. The time spent in each episode was shown in Table 3. 

Table 3. Time spent in each episode in the two SCDD activities 

Episode 

First Second 

Time（second） Percent（%） Time（second） Percent（%） 

1 204 9.4 590 21.4 

2 216 9.9 683 24.8 

3 1050 48.2 732 26.6 

4 130 6 159 5.8 

5 505 23.2 321 11.7 

6 58 2.7 221 8 

7 15 0.7 48 1.7 

Total 2178 100 2754 100 

  By comparing the percentages of time spent on each episode in the 

two activities (Table 3), we can see that Nadine spent greater portions of 

time on the 1st, 2nd, 6th and 7th episodes and spent less portions of time 

on the 3rd and 5th episodes in the second SCDD activity. She spent 

almost equal percentages of time on the 4th episode in the two activities. 

Why did she change her classroom time allocations? More fine-grained, 

detailed analysis is needed to understand the changes of time spent in 

each episode in the two SCDD activities. For this purpose, we identified 

the instructional strategies used in each episode (See Table 4). 

Table 4. Instructional strategies used in each episode 

Teaching 

Episode 

Instructional Strategies 

First SCDD Activity Second SCDD Activity 

1 

Directly show the definition of 

logarithmic functions 

xy alog= , then analyze its 

structure and three core 

elements: domain, range and 

corresponding rule. 

Review the relationship between the 

number of times a cell divides (x) and 

the total number of cells (y) after x 

divisions, )(2
*

Nxy
x

∈= , then ask a 

question: If we know the total number 

of cells y, how can we know the 

number of divisions x? Based on this 

real life problem, show and analyze the 

definition of logarithmic functions 

xy alog= . 
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Table 4. (Continued) 

2 

Show two functions xy 2log=  

and xy 2/1log=  on the screen, 

then tell the students how to select 

a set of points on the graph and 

show the coordinates of these 

points in a table on the screen. Ask 

students to graph these two 

functions in the same coordinate 

system. After a while, show 

answers using Geometer’s 

Sketchpad (GSP). 

 

Show two functions xy 2log=  and  

xy 2/1log=  on the screen, then  

spend 4.5 minutes to explain how to 

select a set of points on the graph. Then 

divide students into two groups and ask 

them to graph one of two functions on 

their coordinate paper. After a while, 

ask two students to graph these two 

functions respectively on the 

blackboard. Finally, summarize the 

trend of change of graphs of two 

functions. 

3 

Explore the following four 

properties of logarithmic functions 

xy alog=  using Geometer’s  

Sketchpad: (1) all graphs pass 

through the point (1,0); (2) the 

monotonic properties of 

logarithmic functions; (3) the 

graphs of the two functions 

xy alog= and  

xy a/1log= have x-axis  

symmetry; (4)  the effects of 

changes in the base a on the graphs 

of the logarithmic functions 

xy alog= . Different GSP 

documents were used in exploring 

these properties. A main line to 

explore the properties of functions 

was lack. 

GSP was used only in showing the 

impact of base a to the graph of 

logarithmic functions xy alog= .  

After all students observed GSP 

demonstration, a student was asked to 

come to the front of the classroom and 

summarize the properties of logarithmic 

functions. In this process, the students 

were reminded to recall the method for 

exploring functions: (1) observing their 

structure, domains, ranges and so on; (2) 

exploring their common properties, for 

example, properties of monotonic 

functions, properties of even and odd 

functions (3) exploring their special 

properties, for example, passing through 

the same point (1,0). Finally, show these 

properties in a table on the screen. 

 

4 

Give three problems on finding the 

domains of functions and ask 

students to answer orally. （1） )3(log xy a −= ； （2） )1(log 2
+= xy a
； （3） )3(log )2/1( xy x −=

−
. 

Give two problems on finding the 

domains of functions and ask students to 

answer orally. （1） )3(log2 xy −= ； （2） 3log )2( −
= xy . 
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Table 4. (Continued) 

5 

Give five problems on comparing 

two numbers and ask students to 

answer orally, there is no 

blackboard writing. （1） 4.3log2
 and 5.8log2

; （2） 8.1log 3.0
and 7.2log 3.0

; （3） 1.5loga and 9.5loga
; （4） 8log6

and 8log7
; （5） 5log3

and 4log6
. 

Give one problem on comparing two 

numbers and ask students to answer 

orally, and write the solution on the 

blackboard. Finally, suggest the students 

solve the problem from the point of view 

of functions. （1） 4.3log2
 and 5.8log2

 

6 

Summarize the knowledge points 

according to the blackboard 

writing. 

Summarize the knowledge points and 

mathematical thoughts and methods 

using PPT. 

7 
Give a series of problems using 

PPT 

Write a problem on the blackboard. 

 

  According to Table 4, we argue that Nadine did much better in her 

second SCDD classroom teaching activity compared to her teaching in 

the first activity. In the second activity, she paid much more attention to 

creating real life contexts and facilitating student initiated inquiries. She 

used a clearer framework to guide her students in exploring the graphs 

and properties of logarithmic functions. She also selected more 

appropriate mathematics problems for her students. The use of GSP was 

more reasonable because she integrated all explorations into one GSP 

document and demonstrated it more clearly.  

To determine whether the instructional strategies adopted by Nadine 

in the two SCDD activities are appropriate, we referred to some official 

documents. According to the Standards for Senior High School 

Mathematics Curriculum (Ministry of Education of China, 2003), the 

expected student learning outcomes in studying logarithmic functions 

include: (1) through concrete examples, visually understanding the 

numerical relationship a logarithmic function describes, preliminarily 

understanding the concept of logarithmic functions, and experiencing 

logarithmic functions as an important type of function; (2) graphing 

specific logarithmic functions with calculators or computers, exploring 

and understanding the monotonic property and special points of 
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logarithmic functions (p.15). From the first episode in Table 4, we can 

see that instructional strategies used in the second SCDD activity were 

more reasonable than that of in the first SCDD activity from the 

Standards’ perspective. Especially, we noticed that the specific example 

cell division was mentioned in the second SCDD activity. 

A popular teachers’ guide book (Institute of Curriculum and 

Textbook Research, 2004) makes the following suggestions on teaching 

logarithmic functions: (1) the graphs and properties of logarithmic 

functions are the important and difficult knowledge points. Teachers 

should engage students in actively exploring the properties, especially, 

recognizing the effects of changes in the base a on the logarithmic 

functions xy alog= ; (2) Teachers should use information technology to 

explore the properties of logarithmic functions as much as they can. 

Since this popular teacher’ guide book was written by a group of expert 

teachers, we assumed the above two suggestions are indeed effective 

instructional strategies. From the second and third episodes in Table 4, 

we can see that instructional strategies used in the second SCDD activity 

were more reasonable than that of in the first SCDD activity. 

This teachers’ guide book also makes suggestions on the use of 

sample problems: (1) the purpose of demonstrating sample problems on 

finding the domains of functions is to make students better understand 

logarithmic functions. Teacher should not give students too many 

difficult problems; (2) the purpose of giving sample problems on 

comparing two quantities in logarithmic forms is for students to fully 

understand the monotonic properties of logarithmic functions and apply 

them to solving problems. Teacher should remind students to solve 

problems from the point of view of functions. From the fourth and fifth 

episode in Table 4, we can see that instructional strategies used in the 

second SCDD activity were more reasonable than that of in the first 

SCDD activity. 

Overall, we believe Nadine improved her classroom teaching 

practices in her second SCDD activity. However, we also notice that not 

all instructional strategies are necessarily appropriate in her second 

SCDD activity. For example, in the second episode, she spent 4.5 

minutes in explaining how to select a set of points on the graph before 
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students plotted the functions. She could have spent less time and be 

more efficient. 

When comparing Nadine’s instructional strategies in the two SCDD 

activities, we do notice that the classroom environments were different. 

The first SCDD activity was in a simulation classroom where the other 

prospective teachers in Nadine’s team acted as students. The second 

SCDD activity was in an actual classroom where she interacted with a 

group of high school students. Nonetheless, since the instructional 

strategies listed in Table 4 were prepared by Nadine before the classes, 

we assumed they were independent of whether real students were in the 

classroom. Hence we conclude that it must be the changes in Nadine’s 

knowledge and beliefs that led to the changes in her classroom teaching 

practices. Next we will analyze what events have enabled changes in 

Nadine’s teaching. 

4.2 Factors Influencing Nadine’s Classroom Teaching Practices 

4.2.1 Learning from the First SCDD Activity 

Nadine was a prospective teacher who never taught in an actual 

classroom environment before her first SCDD activity. Undoubtedly, it 

was very difficult for her to prepare for and implement a simulation 

lesson. But it provided a good opportunity for her to thoroughly analyze 

the lesson and carefully prepare for it.  

In her first post-lesson interview (2011/08/25), Nadine mentioned 

that she spent a lot of time in studying textbooks, curriculum standards, 

and lesson plans and courseware created by some experienced teachers. 

She practiced at least five times before her first SCDD activity. 

However, Nadine still had a lot of perplexities. She felt that: (1) the 

textbook content was too easy for students; (2) one lesson would be 

enough to cover all the content that she would teach in three lessons; (3) 

it was too complicated to introduce the concept of logarithmic functions 

by using real-world problems; (4) the requirements in the curriculum 

standards were too low. We argue that the perplexities that Nadine faced 

in preparing for teaching were typical for most prospective teachers.  
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Through the first SCDD activity, prospective teachers developed a 

deeper understanding of this lesson by communicating with peers and the 

supervisor. For example, in evaluating Nadine’s lesson (2011/08/25), one 

prospective teacher commented, “it was disorganized when you 

discussed the properties of the graphs”. Another prospective teacher 

commented that Nadine showed the table “too quickly” before asking 

students to graph the functions xy 2log=  and xy 2/1log= . These 

comments helped Nadine to make revisions in designing the lesson for 

the second SCDD activity. 

After observing and discussing the other prospective teachers’ 

simulation teaching, Nadine wrote in her reflective journal (2011/08/25): 

“When I was a senior high school student, I was impressed by how 

changes in the base a of logarithmic functions would affect their graphs. 

Although this property is not mentioned in textbooks, it is a key 

knowledge point for students. So I spent a lot of time in exploring this 

property. However, most prospective teachers didn’t mention this 

property in their lessons. ”  

After noticing the above situation, Nadine decided to not explore this 

property in her second SCDD activity. It’s right for her to make this 

change since there is too much content in the first lesson of Logarithmic 

Functions and Their Properties. 

In Nadine’s bachelor thesis (2012/03), she commented on her first 

SCDD activity: “By participating in this SCDD activity,…, I gradually 

changed my conceptions of teaching. I recognized that student leaning 

was a step-by-step process. The purpose of classroom teaching was not 

to transfer all knowledge to students like force-feeding ducks in a lesson, 

but to teach students how to learn through classroom interactions.” We 

will see that these conceptions of teaching were clearly reflected later in 

her second SCDD activity. 

4.2.2 Learning from the Educational Field Work 

Educational field work also had major influences on Nadine’s classroom 

teaching practices. During the second post-lesson interview (2011/10/21), 

Nadine said she had already taught three mathematics lessons in her 

educational field work. The topics of the lessons were representations of 
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functions and exponential functions and their properties. Besides 

teaching these three lessons, Nadine also observed several practicing 

teachers’ classroom teaching and evaluated student homework. 

Consequently, two critical events happened before the second SCDD 

activity may have also influenced Nadine’s classroom teaching practices. 

The first event was collectively preparing for the lessons three days 

before the second SCDD activity (2011/10/17). During this TRG activity, 

one experienced teacher introduced a few key points for teaching 

logarithm and logarithmic functions. Several teachers gave some 

complements. Nadine stated some teaching principles (such as, seeking 

common ground while reserving differences) as the result of this activity.  

The second critical event was communicating with her school mentor 

one day before the second SCDD activity. Nadine mentioned the mentor 

“took a look at my lesson plan, suggested several minor revisions, and 

basically approved my lesson plan” (post-lesson interview, 2011/10/21). 

On the one hand, we see that the educational field work provided 

possibility for Nadine to improve classroom teaching practices. On the 

other hand, because she basically designed the lesson for the second 

SCDD activity all by herself without major influence from her mentor, 

any changes in her teaching would be the result of her own reflections 

and realizations. 

4.2.3 Learning from the Second SCDD Activity 

Nadine was the first teacher who taught in the second SCDD activity; 

therefore she didn’t have opportunity to revise her instructional contents 

and strategies by observing the other teachers’ teaching (especially the 

practicing teacher, Linda). However, a series of events in the second 

SCDD activity may have influenced profoundly on Nadine’s professional 

development. Although we didn’t measure such influence directly, we 

did find some evidence from the post-lesson interview. For example, 

when the first author questioned one of her instructional strategies 

(spending 4.5 minutes explaining how to select a set of points on the 

graph before students plotted the functions in the second episode), 

Nadine said, “I have reflected on this strategy, especially after I observed 

Linda’s lesson. I felt it was not necessary to teach students how to graph 
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before they tried to do this” (post-lesson interview, 2011/10/21). Since 

Nadine had thought carefully and taught this lesson before she observed 

Linda’s lesson, she was able to observe it more purposefully. In the 

process of collectively evaluating the lessons, Nadine received some 

comments from teachers and experts, which were further confirmed by 

her interviews with students. These events may help to reinforce her 

beliefs and preferences on certain instructional strategies. 

5. Discussion and Conclusion  

We analyzed the influence of SCDD activities on the professional 

development of a prospective mathematics teacher, Nadine. By 

comparing two lessons she taught in the first and second SCDD activities, 

we found that she was able to improve her classroom teaching practices. 

Some factors that have possibly influenced her lesson designs and 

implementations were discussed.  

We argue that the Teaching Research Group consisting of Nadine and 

her prospective mathematics teacher peers, supervisor, school mentor, 

and other practicing teachers formed a learning community. This 

community existed in very positive teaching and learning contexts: both 

the teacher preparation program Nadine and her peers enrolled in and the 

administrators, practicing teachers, and students at Gulou High School 

were very supportive of the prospective teachers’ educational field work; 

the new mathematics curriculum and assessment brought both 

opportunities and challenges to the field work. Members of this 

community followed common norms and routines, such as university and 

school policies regulating prospective teachers’ field work, the calendar 

and organization of the field work, and the six-step model of SCDD 

activities that prospective teachers must go through. The prospective 

teachers learned from their mentor teachers and other practicing teachers 

by observing the classroom teaching and explaining and evaluating 

lessons while participating in SCDD activities, and they kept on 

reflecting by observing self-videotapes and writing reflective journals.  

We believe that prospective teachers’ learning in such a community is 

“both an individual and a social process. People learn as they interact 
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with the physical and social world and as they reflect on what they do.” 

(Lin & Ponte, p. 111). Based on this assumption as well as our 

characterization of learning communities, we proposed a six-step model 

of SCDD activity: (1) preparing for and writing lesson plans individually; 

(2) having open lessons and peer observations; (3) explaining and 

evaluating lessons; (4) interviewing students; (5) observing 

self-videotapes and writing reflective journals; and (6) revising lesson 

plans. As an individual learning process, prospective teachers must 

“prepare for and writing lesson plans individually” in the first step of the 

entire SCDD activities. They have to adapt existing lesson plans, and 

refer to curriculum standards and teachers’ guide books. As a social 

learning process, prospective teachers need to interact with their peers, 

supervisor, school mentor, other practicing teachers and school students. 

Individual preferences and differences are revealed and discussed, which 

becomes a natural motivation for teachers to reflect on their prior lesson 

design and implementation, and seeks realistic and effective ways to 

improve. The second, third and fourth steps provide the opportunity to do 

so. The fifth step makes prospective teachers “reflect on what they do”, 

while the last step is a great opportunity for prospective teachers to 

cumulate all their achievements during SCDCL activities.  

In an empirical study aiming at developing prospective mathematics 

teachers’ technological pedagogical content knowledge, the first author 

(Yuan, 2012) designed and carried out SCDD activities based on the 

above six-step model. Many positive changes occurred. For instance, 

three prospective teachers’ overarching conceptions about the purposes 

of integrating information technology into mathematics teaching changed 

significantly. Teacher 1 changed from focusing on interest to 

understanding. Teacher 2 changed from focusing on teachers to both 

teachers and students. Teacher 3 changed from vaguely paying attention 

to interest and understanding to clearly focusing on interest and 

understanding.  

We believe that SCDD activities are effective ways to promote 

prospective teachers’ professional development. Especially, the six-step 

model of SCDD activities involving both prospective and practicing 

teachers is quite effective since it embodies that learning is both an 

individual and a social process. It also guarantees that teacher learning in 
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and through this model is both collaborative and reflective, which has 

been proven to be essential features of productive professional 

development for teachers (Chazan et al., 1998; Roth & Tobin, 2004). 
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Chapter 19 

Exploration into Chinese Mathematics  

Teachers' Perceptions of Concept Map 

JIN Haiyue        LU Jun        ZHONG Zhihua 

Concept map has been advocated as an effective tool for teaching, 

learning, and assessment of conceptual understanding in science 

education. Although the term "concept map" might not be new to many 

Chinese mathematics teachers, few of them are familiar with its uses 

and fewer apply it in educational environments. How Chinese 

mathematics teachers feel about concept map and how they would use 

and incorporate it in teaching are issues of interest. This study 

investigated Chinese mathematics teachers’ perceptions of concept 

map, and their incorporation of concept map in mathematics teaching 

through lesson plans and practical teaching. With brief introduction, 

both the prospective and in-service teachers were positive with the use 

of concept map and indicated a willingness to try it in their classroom 

teaching. But to actually apply concept map in practice, the teachers, 

especially the in-service teachers, were to a degree hesitant due to some 

practical reasons, such as curriculum schedule and pressure from exam. 

They needed more operational training on concept map to guide their 

trial and solid evidences to convince them the effectiveness of concept 

map. Successful initial experience seemed to be a key for teachers’ 

willingness to use concept map in future teaching. 

 

Keywords: Chinese prospective and in-service mathematics teachers, 

teacher perception, concept map, survey, mathematics lesson plan 

1.   Introduction 

Concept maps (Novak & Gowin, 1984) are graphic representations that 

use nodes representing concepts and labeled links denoting relationships 
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among nodes. Over the last three decades, educational researchers have 

devoted significant interest to the use of concept map as instructional 

tools (see Jegede, Alayemola, & Okebukola, 1990; Hortons, etc, 1993). 

Concept map has also been used by school teacher as advance organizers, 

as aids for lesson display and course development, and as a means to 

integrate information (e.g., Ollerton, 2001; Malone & Dekkers, 1984). In 

China, however, not much attention has been given to the uses of concept 

map in school settings as well as in research. There are literature reviews 

concerning the applications of concept maps in general (e.g., Zhu, 2002) 

and analyses of the feasibilities (e.g., Wang & Tang, 2004). But we can 

hardly find published works on the practical uses of concept map 

especially in the domain of mathematics education. The term concept 

map might not be new to many Chinese mathematics teachers, but few of 

them are familiar with its uses and fewer apply it in practice.  

For many years, Chinese mathematics teachers have their own ways 

of organizing lessons and teaching. For example, for the teaching of new 

concepts or knowledge, the “standard” steps are review relevant 

knowledge, specify goals of the lesson, present the new content, and 

foster understanding of the new content.  In classroom teaching, Chinese 

teachers are used to clearly and concisely write the focal points, difficult 

points, and hinges of the lessons on blackboard line by line. Such 

teaching writing on blackboard is called “banshu (板书 )”, which is 

recognized as one of the basic teaching skills required for teachers in 

China (Nan & Yin, 2003). On the other hand, Chinese students were 

among the top performers in a number of international comparative 

studies such as the Third International Mathematics and Science Study 

(TIMSS) and the International Assessment of Educational Progress 

(IAEP) studies (Fan & Zhu, 2004). Without external pressure, it does not 

seem necessary for Chinese teachers to adopt unfamiliar techniques since 

their traditional ways of teaching have shown to be “successful” in some 

sense.  

The traditional teaching methods have limitations as well as strengths. 

Taking conceptual variation, which has proved to be an effective way of 

promoting mathematics learning (Gu, Huang, & Marton, 2004), as an 

example. It is an important method through which students can learn 

mathematical concepts from multiple perspectives. Traditionally, it 
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employs varying instances to highlight the essence of a mathematical 

concept and clarify its invariant and variant features. However, it usually 

deals with individual concepts or at most a very limited number of 

concepts at a time. Students may have difficulty seeing the big picture 

about how the concepts are organized together. Such difficulty might be 

addressed by using concept map. Concept map deals with a relatively 

large number of concepts by presenting the relations among the concepts. 

In other words, if conceptual variation takes care of the depth of 

knowledge of individual concepts, concept map contributes to the 

breadth of knowledge of concepts by showing how they connected with 

other concepts within a domain. Seeing connections among pieces of 

information is essential to the ability to use knowledge flexibly and 

appropriately in different settings (e.g., Bransford, Brown & Cocking, 

1999; Kilpatrick, Swafford & Findell, 2001). By specifying the 

connections using concept map, teachers can help students organize the 

knowledge learned in a more effective manner.  

Another reason that may account for the unpopularization of concept 

map is teachers' lack of access to concept map. We cannot assume that 

school teachers can read research papers as researchers did, nor can we 

expect teachers to be enthusiastic about trying new techniques by 

themselves in practice. One way to systematically introduce concept map 

to school teachers is through educational authorities. However, this is not 

presently possible for our project. Besides, it is often the case in practice 

that teachers, due to time and energy constraints, are only likely to learn 

new technique in a brief manner. That is why the present study decided 

to introduce concept map briefly rather than comprehensively to the 

prospective and in-service mathematics teachers.  

Researchers have reported their investigations into students' 

perceptions toward the use of concept map in science education (e.g., 

Kankkunen, 2001; Mohamed, 1992; Wang, 2005). Their findings were 

mostly positive. The students, including primary students, middle school 

students, and university students, expressed moderate to high levels of 

agreement on the usefulness of concept map as a teaching method, as a 

learning strategy, and/or an assessment device. Some students even 

indicated their preference for their teachers to use concept map in 

classroom (Wang, 2005). Few studies have examined teachers', 
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especially mathematics teachers' perceptions of concept map. How 

mathematics teachers appreciate the uses of concept map and whether 

they are willing to use it for educational purposes in the future is a 

subject worthy of study. As an exploration, in this chapter, we set out to 

answer two fundamental key research questions:  

•   What is mathematics teachers' perception of concept map after a 

brief introduction? 

•   How do mathematics teachers incorporate concept map in teaching? 

2.  Methods 

In order to answer the above research questions, a survey study and a 

case study were conducted. In the survey study, both prospective and in-

service teachers' perceptions of concept map were examined. These 

participants were first prepared with basic knowledge about what a 

concept map is, how to construct a concept map, and its uses as a 

teaching/learning strategy and/or an assessment device. Their perceptions 

of concept map were then collected through a questionnaire which was 

self-designed by referring to the existing literature.  

After the questionnaire, randomly selected prospective and in-service 

teachers were interviewed so as to obtain detailed information about their 

views on the use of concept map in mathematics in general. The 

interviews were one-to-one and were tape-recorded.  

Concerning on the second research question, eleven randomly 

selected prospective teachers were required to select a topic from the 

primary, secondary, or high-school mathematics textbooks and design a 

lesson plan to incorporate concept map. The questions used in the 

interview were assigned to these eleven prospective teachers as open-

ended questions. With the experience in lesson plan design, they would 

have more insightful views toward concept map. Two in-service teachers 

were asked to use concept map in their classroom teaching and, after the 

trial, write a journal to describe their uses of concept map and their 

feelings with the experience.  
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2.1   Participants 

The participants of the survey study consisted of 173 normal school 

students, 176 master students who enrolled in mathematics education 

courses, and 55 in-service mathematics teachers from different schools in 

Jiangsu, China. Three normal school students and 10 master students did 

not respond to item 9 to 28, which were located on the back side of the 

paper, in the questionnaire. These 13 participants' responses to the 

questionnaire were removed from analysis. A few participants missed 

one or two items. Since the number of missing values was small, the 

missing values were replaced with the item means so that the sample size 

of the data would not be reduced (Little & Rubin, 1987). The normal 

school students and the master students are categorized as prospective 

teachers since they have declared to be a mathematics teacher. The in-

service teachers were receiving summer training courses from July to 

August 2012.  

Table 1 presents the background information of the participants, 

including their gender, age group, grade (for prospective teachers), and 

school (for in-service teachers).  

As shown in Table 1, the number of female prospective and in-

service teachers is more than twice the number of male prospective and 

in-service teachers. This is consistent with the general situation in China 

that there are obviously more female teachers than male teachers 

especially in kindergarten and primary schools (e.g., Wang & Tang, 2006; 

Li, 2005). The years of teaching experience of the in-service teachers 

ranged from 1 year to 24 years. Nearly half of the in-service teachers had 

6 to 10 years teaching experience.  

The two in-service teachers of the classroom trial did not participate 

in the survey study. One of the teachers was a secondary school 

mathematics teacher, female, aged 31. She was taking master courses in 

a normal university during the data collection period. Her master thesis 

proposal was about the use of concept map as an assessment technique in 

mathematics. She had some background knowledge about concept map. 

The other in-service teacher was the head of mathematics department of 

a high school, male, aged 43. He helped with the data collection of one 

of the first author’s studies on concept map. He had a general idea about  
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Table 1. Background information of the participants 

   No. of participants Percent 
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Gender 
Male 68 39.3% 

Female 105 60.7% 

Grade 
Year 2 36 20.8% 

Year 3 137 79.2% 

Age group Under 25 years old 173 100% 
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Gender 
Male 40 22.7% 

Female 136 77.3% 

Grade 

Year 1 72 40.9% 

Year 2 65 36.9% 

Year 3 39 22.2% 

Age group 
Under 25 years old 135 76.7% 

26 to 30 years old 41 23.3% 
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Gender 
Male 13 23.6% 

Female 42 76.4% 

School 

Primary 24 43.6% 

Secondary 13 23.6% 

High school 12 21.8% 

College or 

University 
6 10.9% 

Age group 

Under 25 years old 6 10.9% 

26 to 30 years old 40 72.7% 

31 to 35 years old 9 16.4% 

the definition and applications of concept map. He was positive with the 

uses of concept map in mathematics before the trial. Both teachers never 

used concept map in teaching. They were given one week time to apply 

concept map in at least one of their lessons. They decided on their own 

when and how to use concept map in class.  

2.2   Introduction of Concept Map 

Concept map is a two-dimensional map which using nodes representing 

concepts and lines denoting the relations between pairs of nodes. In 

Novak and Gowin’s (1984) definition, the nodes should be hierarchically 

arranged and the lines should be unidirectional and labelled with linking 

phrases. Their definition is later on modified by other researchers for 

different purposes. For example, researchers from the semantic-network 
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tradition prefer non-hierarchical concept maps such as “spider maps” 

(e.g., Harnisch, Sato, Zheng, Yamagi & Connell, 1994); the lines of the 

concept maps in Barenholz and Tamir’s study (1992) are non-directional. 

In the present study, concept map does not limit to its original definition 

given by Novak and Gowin (1984). The nodes can be mathematical 

concepts, examples and non-examples of the concepts, diagrams, 

symbols, and formulas; the lines can be labeled or unlabeled, directional 

or non-directional; and the structure can be either hierarchical or non-

hierarchical. In the introduction, we provided two examples of concept 

map (see Figure 1, translated from Chinese).  
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Figure 1. Examples of concept map (translated from Chinese) 
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The first example is a concept map with top-down hierarchy and 

labeled links. The second example is similar to a knowledge framework 

given at the end of the chapter of quadrilaterals in the Chinese Secondary 

2 mathematics textbook (People’s Education Press) summarizing the 

relations between the key concepts taught in the chapter. It has a 

hierarchy that goes from left to right and its links are unlabeled. This 

second example helps the participants to understand this western term 

concept map by linking it with what they are familiar with. Broadly 

defined, the framework in the textbook can be classified as a type of 

concept map.  

Concept map can be used for teaching/learning and/or assessment 

purposes. Before the implementation of the questionnaire, we briefly 

introduced the uses of concept map as follows: 

• When used for teaching, concept map can serve as an advance organizer 

providing students with a context to incorporate new knowledge; it can be used 

as aids for lesson display; it can be used to summarize the newly learned 

knowledge at the end of a lesson; and it can also be used as an aid in review to 

organize what have been learned and to optimize students' knowledge structure. 

• When used as a learning strategy, concept map can make students to build 

connections between prior and new knowledge; it can provide an overview of 

knowledge learned; and it can also serve as a meta-cognitive strategy to help 

with students' self-learning and self-reflection. 

• When used as an assessment technique, concept map can serve as an external 

representation of students' knowledge structure; it can specialize students' 

understanding of connections among concepts of a certain topic; and students 

can even learn in the concept mapping process. 

The introduction took about 10 minutes. It tried to provide the 

participants a brief view of the attributes and uses of concept map. The 

introduction did not specify the steps for constructing a concept map and 

allow much time for practice. Instead, it illustrated how to incorporate 

the concept kite into the quadrilateral concept maps in Figure 1. This can 

provide the participants with a general impression on how concept map 

is constructed.  

In summary, the participants may have different thoughts about 

concept map before this study. This introduction would prepare the 

participants with a unified conception of concept map before they 

answered the questionnaire. 
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2.3   Perceptions of Concept Map Questionnaire 

Information about the participants' prior experiences with concept map 

was gathered through the following three multiple choice questions. Such 

information could help us better understand the participants' responses.   

• Do you know concept map before this instruction?    

Yes/No 

• Have you ever tried concept map in your teaching/learning? 

Never/Once/Sometimes/Often 

• Have you ever tried similar knowledge structure(s) in your teaching/learning?        

Never/Once/Sometimes/Often 

Since there is no validated questionnaire in the literature concerning 

mathematics teachers' perceptions of concept map, the perceptions of 

concept map questionnaire in this study was designed by referring to 

Mohamed's (1992) attitude toward concept map questionnaire in science 

and Kankkunen's study (2001) which collected students' opinions about 

concept map through inquiry and interviews. The questionnaire consisted 

of three subscales: interest on concept map, appreciation of the 

usefulness of concept map, and willingness to use concept map. The face 

validity was checked by three mathematics educators in normal 

universities. It included 22 items among which 6 were negatively worded. 

It used a 5-point Likert Scale ranging from 1 (Strongly Disagree) to 5 

(Strongly Agree). Reverse scoring was applied to the negatively stated 

items. Table 2 provides an overview of the subscales and their 

corresponding Cronbach’s α (based on standardized items).  

Table 2. Aspects of the attitudes toward concept map questionnaire and its corresponding 

item numbers 

No. Aspects Cronbach’s α 

1 Interest on concept map 0.751 

2 Appreciation of the usefulness of concept map 0.713 

3 Willingness to use concept map 0.765 

The Cronbach’s alphas of the aspects interest on concept map, 

appreciation of the usefulness of concept map, and willingness to use 

concept map show that these aspects have acceptable internal 

consistency (Cronbach’s α >.70, see Hair, Anderson, Tatham & Black, 

1998, p. 730). 
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2.4   Informal Interview and Open-ended Questions 

After the questionnaire, four prospective teachers and four in-service 

teachers were randomly selected and interviewed informally. The 

interview concerned on the following six questions. These questions 

dealt with the teachers' perceptions of concept map in general. The first 

three are about the feasibility of using concept map in school settings; the 

fourth and fifth questions are relevant to the teachers' willingness to use 

concept map in classroom; and the sixth question is about students' 

feelings about concept map from teachers' perspective.  

(1) How do you prefer to introduce to you concept map in details? 

Concentrated training or providing reference materials for self-

study? 

(2) How do you find the feasibility of using concept map for 

mathematics education? 

(3) Which area do you think concept map is more suitable, for 

teaching, learning, or assessment? 

(4) Would you use concept map in teaching? 

(5) Would you like to introduce concept map to your students and 

encourage them to use it for learning mathematics? 

(6) From your point of view, how will the students think about 

concept map?  

The same questions were assigned to another eleven prospective 

teachers as open-ended task after they developed a lesson plan 

incorporating concept map in different stages of teaching. Their lesson 

plans and responses to the questions were sent back to the researchers 

through emails. 

3.   Results 

3.1   Perceptions of Concept Map Questionnaire 

The participants' experience with concept map before the introduction in 

this study is described in Table 3. A few participants did not respond to 

some of the questions. Hence, the sum of the percents for each question 

is not necessarily 100% in Table 3.   
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Table 3. Participants' experience with concept map before introduction 

   
Number of 
participants 

Percent 
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Do you know concept map 
before this introduction? 

Yes 143 82.7% 
No 30 17.3% 

Have you ever tried concept 
map in your teaching/ learning?  

Never 95 54.9% 
Once 41 23.7% 
Sometimes 32 18.5% 
Often 4 2.3% 

Have you ever tried similar 
framework(s) in your 
teaching/learning?  

Never 64 37.0% 
Once 55 31.8% 
Sometimes 46 26.6% 
Often 7 4.0% 
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Do you know concept map 
before this introduction? 

Yes 127 72.2% 
No 47 26.7% 

Have you ever tried concept 
map in your teaching/ learning? 

Never 70 39.8% 
Once 34 19.3% 
Sometimes 59 33.5% 
Often 12 6.8% 

Have you ever tried similar 
framework(s) in your 
teaching/learning?  
 

Never 34 19.3% 
Once 52 29.5% 
Sometimes 70 39.8% 
Often 19 10.8% 
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Do you know concept map 
before this introduction? 

Yes 49 89.1% 
No 6 10.9% 

Have you ever tried concept 
map in your teaching/ learning?  

Never 7 12.7% 
Once 12 21.8% 
Sometimes 27 49.1% 
Often 9 16.4% 

Have you ever tried similar 
framework(s) in your 
teaching/learning? 
 

Never 1 1.8% 
Once 6 10.9% 
Sometimes 38 69.1% 
Often 10 18.2% 

A
ll

 P
ar
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ci
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nt
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Do you know concept map 
before this introduction? 

Yes 319 79.0% 
No 83 20.5% 

Have you ever tried concept 
map in your teaching/ learning?  

Never 172 42.6% 
Once 87 21.5% 
Sometimes 118 29.2% 
Often 25 6.2% 

Have you ever tried similar 
framework(s) in your 
teaching/learning? 
 

Never 99 24.5% 
Once 113 28.0% 
Sometimes 154 38.1% 
Often 36 8.9% 

The result shows that most of the participants have heard of concept map 
before this study. The majority of the in-service teachers (over 70%), 
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however, have once or sometimes used concept map or similar 

frameworks in their teaching. Over 15% even indicated that they used 

concept map or similar knowledge structure often. The participants' 

familiarity with concept map was beyond our expectation. The finding 

suggests that concept map is not a brand new technique for the 

participants although it was not formally introduced in schools. This 

might be because, broadly defined, the knowledge frameworks (such as 

Figure 1(b)), which was called 知识结构图 in Chinese, is a type of 

concept map. On this basis, the participants may realize that they actually 

know concept map though they might hear this term for the first time. 

The master students' experience with concept map is similar to that of 

the normal university students, except that they seemed to have more 

experience trying concept map in teaching/learning. Almost all the 

master students did part time job in some tutorial schools or worked as 

private tutor. They had more teaching experience than the university 

students. Some of the master students indicated that they once drew 

diagrams similar to concept map to help their students to clarify 

relationships among concepts, formulas, and theorems. 

Since the participants had difference teaching experience and also 

different experience with concept map (see Table 3), the analysis 

considered the difference of the perception of concept map between pre-

service teachers and in-service teachers. 

Since the three aspects, i.e., interest on concept map, appreciation of 

the usefulness of concept map, and willingness to use concept map, had 

Cronbach’s alpha greater than 0.7 (see Table 2), a mean score was 

calculated by averaging the means of the items, with the scores of the 

negatively worded items being reversed. The mean scores and standard 

deviations of the three aspects for the prospective teachers (university 

students), prospective teachers (master students), and in-service teachers 

are shown separately in Table 4. Since a 5, 4, 3, 2, 1 scoring mode was 

adopted, the mean score of 3.0 was taken as a benchmark above which 

the participants is said to be in favor of concept map and below which 

the participants is categorized as not being in favor.  

The means reported in Table 4 indicated that the participants were 

generally positive with concept map. They were interested in concept 

map and agreed with the usefulness of concept map. They also indicated  
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Table 4. Mean scores and standard deviations of three aspects of attitudes toward concept 

map. 

Aspects 

All 

participants 

(n=391) 

Prospective 

teachers 

(university 

students) 

(n=173) 

Prospective 

teachers 

(master 

students) 

(n=163) 

In-service 

teachers 

(n=55) 

Interest on concept map 
3.80 

(0.43) 

3.75 

(0.45) 

3.83 

(0.42) 

3.85 

(0.38) 

Appreciation of the usefulness 

of concept map 

3.95 

(0.43) 

3.98 

(0.44) 

3.91 

(0.44) 

3.97 

(0.38) 

Willingness to use concept map 
3.76 

(0.39) 

3.75 

(0.42) 

3.75 

(0.38) 

3.80 

(0.32) 

their willingness to use concept map in the future. The in-service 

teachers showed slightly higher interest on concept map and stronger 

willingness to use concept than the prospective teachers, though the 

differences were not statistically significant as shown by one-way 

ANOVA. A possible reason for the differences might be that the in-

service teachers in this study were those who took training courses 

during summer vacations. They had shown a motivation to learning more 

for their teaching. Likewise, they were more willing to accept concept 

map than others. Besides, the in-service teachers were more experienced 

in teaching than the prospective teachers; they may know better about 

how concept map could contribute to mathematics education. 

3.2   Interview and Open-ended Questions 

The participants’ responses to the interview and the open-ended 

questions were analyzed together since the same questions were used and 

the findings were similar. The participants were encouraged to express 

their ideas in accordance with, but not restricted to, the questions. For 

example, for the question “would you use concept map in teaching?” 

they were told that it would be valuable if they could identify the factors 

that motivated them to adopt concept map or prevented them from using 

concept map. Their responses to the interview and open-ended questions 

provided additional information to the questionnaire. The findings were 

summarized below.  
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First, concerning on the introduction, both the prospective teachers 

and in-service teachers indicated that the 10-minute introduction did not 

give them substantial ideas about how to apply concept map in practice. 

They hoped that further training on concept map can show them model 

lessons or concrete examples of its applications. Both concentrated 

training and reference materials were welcomed to help them learn more 

about concept map.  

Second, the participants seemed to find using concept map as a 

teaching method more feasible than using it as a learning strategy or as 

an assessment technique. They indicated that, if teachers can use concept 

map appropriately to clarify the relationships among concepts in 

classroom teaching, their students would benefit from it in organizing 

knowledge in a more effective manner. At the same time, they admitted 

that concept map may be useful for teaching some, but definitely not all, 

mathematics topics. They were not yet sure which topics were more 

suitable for adopting concept map.  

Third, the participants listed following four factors that may prevent 

teachers from adopting concept map for mathematics education.  

(1) Access to concept map. They seldom had access to concept map 

systematically. Few teachers around used concept map in schools. They had 

no examples to follow. Comparing with trying this new technique, they 

preferred to use their traditional teaching methods. This is consistent with 

their claims that they needed model lessons or concrete examples to help 

them get started with concept map.  

(2) Research-based evidence. There is a lack of research-based 

evidence to convince them that concept map is useful for Chinese students 

as well as for students in western countries. Though there are experimental 

studies supporting the use of concept map for mathematics education, the 

studies are mostly conducted in western countries. They were not sure 

whether concept map is suitable for the situation in China.  

(3) Current evaluation system. The evaluation systems in China pay 

much attention to results rather than processes. The strength of concept map 

is to display a process of building connections; on the other hand, concept 

map is not a task type in large-scale examinations, e.g., the university 

entrance examination in China. Therefore, they could hardly see how 

concept map would contribute to students’ performance in examinations. 
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(4) Tight curriculum schedule. The strength of concept map is mainly 

embodied in students’ active involvement. Hence, presenting directly 

teacher-constructed concept map may not contribute much to students’ 

learning. But it would be time-consuming if asked students to construct 

concept map individual or cooperatively in class. The tight curriculum 

schedule does not allow much time for incorporating such activities in 

classroom teaching.  

Fourth, the participants were not sure whether they would like to 

introduce concept map to their students and encourage students to use it 

for learning mathematics since they themselves were not yet familiar 

with the applications of concept map. They mentioned that whether 

students would accept concept map may mainly depend on how they 

appreciate the usefulness of concept map at the initial stage. Hence, 

teachers needed to be careful when they introduced concept map in class.  

3.3   Lesson Plans 

Eleven prospective teachers were asked to develop a lesson plan to 

illustrate how he/she would incorporate concept map in the course of 

instruction. The topics they selected for the lesson plans and their grade 

levels are shown in Table 5, together with a brief description of the 

incorporation of concept map.  

For quadrilateral, three prospective teachers’ teaching procedure 

generally covered the following five steps: (1) review relevant concepts 

and construct concept map, (2) class/group discussion and polish concept 

map, (3) exercises and return to concept map, (4) knowledge transfer and 

expand concept map, and (5) summarize and review concept map. The 

three lesson plans were all well-organized and made good uses of 

concept map. On one hand, quadrilateral is a typical mathematical topic 

where clarifying relations among the special types of quadrilaterals and 

their properties is key for the study of this topic. Many studies (e.g., 

Mansfield & Happs, 1991) in the literature also used quadrilaterals as a 

carrier for the applications of concept map. On the other hand, in the 

introduction, we mentioned quadrilaterals as an example for illustrating 

the features of concept map. The participants may find it easier to start 

with this topic. In fact, their concept maps were quite similar to the one 
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Table 5. Incorporation of concept map in the lesson plans 

 Topic Incorporation of concept map 

1 

Quadrilateral 

(Grade 8) 

Three prospective teachers chose the same topic quadrilateral. 

They used concept map in the same manner for review lessons. 

Concept map was used as a classroom activity. They planned to 

ask students to work either individually or cooperatively to 

construct a concept map and then polish their concept maps after 

discussion. 

2 

3 

4 

Logarithm 

(Grade 10) 

Two concept maps were constructed in the lesson preparation. 

One was used as an aid to clarify the position of the section 

logarithm in the chapter; the other was used as a flow chart 

displaying the sequence of the lesson. The concept maps were not 

presented to students in class.  

5 

Concept map was used at the end of the lesson summarizing the 

new knowledge taught in class and clarifying the relationships 

between logarithm and other relevant concepts. 

6 

Judgment of 

parallelogram 

(Grade 8) 

Concept map was used at the end of the lesson helping students 

to clarify the connections between the properties of special types 

of parallelograms and the theorems. It was planned to be 

constructed by cooperation of teacher and students. 

7 

Rational numbers 

and irrational 

numbers 

(Grade 7) 

Concept map was used at the beginning of the lesson 

summarizing students’ prior knowledge of numbers. It was then 

presented at the end of the lesson assimilating the newly taught 

knowledge. New connections were added. 

8 

Four kinds of 

propositions 

(Grade 10) 

Concept map was used at the end of the lesson. It was assigned to 

students as a fill-in-the-blank task, helping them to clarifying the 

relations among the four kinds of propositions. 

9 

Positions 

between line  

and plane 

(Grade 11) 

The first concept map was teacher-constructed and was presented 

at the beginning for the introduction of the new lesson. The 

newly taught knowledge was assimilated into the concept map at 

the end of the lesson.  

10 
Plane vectors 

(Grade 11) 

This lesson plan was too general. The prospective teacher 

mentioned only that concept map was used to build connections 

among relevant concepts. 

11 
Area of circle 

(Grade 5) 

Concept map was used at the beginning of the lesson helping 

students to build connections among the area formulas of 

rectangle, square, parallelogram, triangle, and trapezium. With 

the concept map, the prospective teacher expected students to 

guess the derivation of the area formula of circle. The area 

formula of circle was assimilated into the concept map at the end 

of the lesson. 
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presented in Figure 1(b). 

Two prospective teachers chose the topic logarithm. One constructed 

concept maps for her own use in lesson preparation. One of her concept 

maps is presented in Figure 2. The nodes in the map were not limited to 

concepts; they included phrases or even sentences. Some of the links 

were labeled while some others were not. The prospective teacher even 

used different shapes to represent different types of nodes. The concept 

map severed as a flow chart indicating the sequence of the lesson, 

including the introduction to the new lesson, definition of the new 

operation, relation between logarithm and exponent, properties of 

logarithm, variations and examples. With the concept map, the teacher 

and the readers could quickly pick up the sequence of the lesson. The 

other prospective teacher mentioned concept map only at the end of the 

lesson plan. Her description of the incorporation of concept map was 

quite general. She repeated the ideas mentioned by the researchers in the 

introduction that concept map could be used for summarizing the new 

knowledge taught in class and clarifying the relationships between 

logarithm and other relevant concepts. No concept map was shown in the 

lesson plan.  

 

 

 

 

 

 

 

 

 

 

Figure 2. A concept map showing the sequence of a lesson of logarithm (translated from 

Chinese) 
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In the lesson plans of judgment of parallelogram, rational numbers 

and irrational numbers, positions between line and plane and area of 

circles, concept map was used as aids to help students build connections 

between prior knowledge and the new knowledge. At the beginning of 

the lesson, the prospective teachers used concept map as an advance 

organizer to introduce to the new topics. The concept maps were either 

teacher-constructed or constructed in class by cooperation of teacher and 

students. These maps were then revised after the new topic was taught to 

assimilate the new knowledge. New nodes or connections would be 

added.  In this process, students would see the connections between the 

new knowledge and what they already knew. For example, the revised 

concept map of rational numbers and irrational numbers is shown in 

Figure 3. Compared with the earlier version, the bi-directional links 

between integral numbers, fractions, and decimal numbers that can be 

transformed into fractions were newly added. The concept map helped 

students make clear the relations and build upon their existing 

knowledge. The prospective teachers also paid attention to students’ 

involvement in the construction of the concept maps.  

Concept map was used as an assessment task in the lesson plan of 

four types of propositions. The four types of propositions were original 

proposition, converse proposition, negative proposition, and converse-

negative proposition. After the propositions were introduced, the 

prospective teacher assigned a fill-in-the-blank concept map task to 

students. The task required students to fill in the blanks in a given 

concept map (see Figure 4). The prospective teacher pointed out that she 

sometimes used similar frameworks in her learning of mathematics, 

especially when she needed to figure out the relations among similar or 

relevant concepts. But she did not realize that it was what is referred as 

concept map.  

One prospective teacher chose the topic vector. After introducing the 

definition of vector, its representation, special vectors, and relations 

among vectors (e.g., parallel vectors, equal vectors, and collinear 

vectors), she asked students to work in groups and construct a concept 

map cooperatively. After that, they discussed the strengths and 

weaknesses of the student-constructed concept maps. After in-class 

exercises, she asked students to polish their concept maps and add 



Figure 3. An expanded concept map showing the connections among numbers (translated from Chinese

Numbers 

Categorized by signs Categorized by format 

inter- 

change 

inter- 

change 

Negative 

numbers 
Positive 

numbers 
Zero Integral 

numbers Fractions 
Decimals that can be 

transformed into fractions 

(repeating decimal, 

terminating decimal) 

Decimals that cannot be 

transformed into fractions 

(infinite non-terminating 

decimal) 

Nonnegative 

numbers 

natural numbers 

Decimals 

C
h

in
ese M

a
th

em
a

tics T
ea

ch
ers' P

ercep
tio

n
s o

f C
o
n

cep
t M

a
p

609
 



610 H. Jin, J. Lu, & Z. Zhong 

 

 

 

 

 

Figure 4. A concept map showing the connections among four types of propositions 

(translated from Chinese) 

 

connections between the concepts and other relevant concepts. However, 

the prospective teacher did not provide any concept map in the lesson 

plans and the descriptions were quite general. It seems that she 

mentioned concept map merely to meet the requirement of the task. 

Compared with the other participants’ responses in the interview, the 

prospective teachers who seriously considered the use of concept map in 

the lesson plans provided more detailed feedbacks. Particularly, 

concerning on the usefulness of concept map, they indicated that asking 

students to construct concept maps would get students more involved in 

the class. When students worked in groups, cognitive conflict may be 

caused; this could encourage students to reflect on their learning and 

learn from each other.  

3.4   Classroom Trials 

The researchers did not observe on their own the two in-service teachers’ 

classroom teaching. The information was mostly gathered through the 

teachers’ journals wrote after the trials and their responses to the open-

ended questions. The informal talks with the two teachers also helped to 

reveal their real thoughts about concept map. 
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3.4.1   Case of the Secondary School Mathematics Teacher 

The secondary school teacher used concept map to clarify the relations 

among a set of statistic concepts, i.e., population, sample, sample size, 

individual, median, mean, mode, and standard deviation, in class. She 

stated that concept map was useful to describe the relations; but it was a 

bit time-consuming to draw the map and describe the meaning of the 

links in the map. Compared with concept map, she found Venn diagram 

to be better in showing the relations among population, samples, and 

individuals since it was clear and straightforward for the students to get 

the set-subset relations. She preferred to employ formulas and concrete 

examples to explain the relations among mean, standard deviation, 

median, and mode. With concrete examples, the students could easily 

obtained the idea that mean, median, and mode were not the same thing 

though they may be equal in some special cases. Besides, they could 

apply the knowledge from the examples more directly in solving 

problems.  

The secondary school teacher indicated that her trial of concept map 

was not successful as expected; but she was still interested in concept 

map and agreed that concept map could be very useful for teaching and 

also helpful for students’ learning of some mathematics topics.  

Especially, since she had read a number of papers on the use of concept 

map as an assessment tool in science education, she believed that 

concept map could address students’ mathematical understanding that 

was not easily detected by traditional school tests.  

However, this secondary school teacher admitted that her passion on 

concept map may be mostly because of her master thesis. She needed to 

try concept map in her teaching to know better about it and also prepared 

her students with certain concept mapping skills for her data collection. 

With existing experience, she felt that it might be difficult for teachers 

and students to recognize its usefulness in the initial stage of using 

concept map. And since the mathematics curriculum was very tight, they 

did not have much time to try on concept map. Both teachers and 

students were more willing to accept a technique that can improve their 

performance or test scores within a relatively short period. If they felt the 

technique does not work, they would quickly drop it. From her point of 
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view, concept map did not have such quick effect that can be easily 

appreciated by teachers and students. Hence, if not demanded, it would 

be difficult to popularize concept map in schools. 

3.4.2   Case of the High School Mathematics Teacher 

The high school teacher used concept map as an aid in review. His 

students were preparing for the upcoming university entrance 

examination. They were at the general review stage which required them 

to integrate the knowledge they had learned for solving problems. To be 

specific, the teacher used concept map to make clear the relations among 

equations, inequalities, linear function, quadratic function, parabola, 

curves, and their properties. After reviewed the definitions and properties 

of the concepts separately, he drew on the blackboard a concept map 

showing the relations among the concepts. As he built each link, he 

explained its meaning and, sometimes, he employed diagrams and 

examples to help the students understand why and how the concepts 

were connected.  

The teacher said that he did not try this method for review before. He 

had once drawn similar links to show relations among three or no more 

than four concepts. The concept map he constructed this time involved 

about twelve concepts and also diagrams and examples. It was complex 

and time-consuming. He spent one hour preparing for the lesson, 

browsed through the textbooks, thought carefully about the possible 

connections, and considered how to explain the connections clearly to 

the students. And he spent another half an hour in class for the map 

drawing and the interpretation. He concluded that it was a rewarding 

experience. He himself could see much clearer the connections among 

the concepts. The concept map provided the students an integral picture 

about what they had learned about equations and functions; he believed 

that this teaching method was more efficient than providing the students 

isolated pieces of information.  

The students’ feedbacks after the lesson were positive. They seemed 

to find concept map new and interesting. The teacher indicated that he 

was willing to use concept map in the future; he would also like to 
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prepare a model lesson to show the use of concept map in the school and 

recommend it to other mathematics teachers.  

4.   Discussion and Conclusion 

Concept map is similar in form to the Chinese knowledge framework (知识结构图). Many of the participants had heard of concept map before 

this study but they had little knowledge about its applications in 

classroom teaching. After the brief introduction to concept map, they 

realized that the knowledge framework, which they were familiar with, 

could actually be seen a type of concept map. With the introduction, 

though brief, they got a more systematic view of the features and 

applications of concept map.  

The participants were generally positive with the use of concept map 

in mathematics education. This is consistent with the findings by 

Okebukola (1992) and Wang (2005). Okebukola (1992) investigated 141 

Australian teachers’ attitudes toward concept map and vee diagram as 

meta-learning tools in science and mathematics. The teachers responded 

to a questionnaire after a five-day workshop on strategies for improving 

teacher effectiveness. They showed favorable attitudes toward concept 

map in terms of its benefits in facilitating meaningful learning and 

reducing anxiety levels. Wang (2005) examined the attitudes toward 

concept map of Chinese normal university students who majored in 

chemistry. For one semester, the students were asked to constructed 

concept map after each chapter of their learning of physics. In the present 

study, the participants had relatively less experience with concept map; 

but with only brief introduction, they also appreciated that concept map 

would be a useful technique for teaching, learning, and assessment of 

mathematics. Comparatively, the prospective teachers seemed to be more 

positive than in-service teachers with the exploration of concept map in 

mathematics education. The former had not formally worked as a teacher 

in schools; hence, it might be easier for them to accept concept map 

since they are not yet bounded by the traditional ways of teaching, 

curriculum schedule, and exam pressure. If further study wants to 

explore the use of concept map in mathematics education, it may be 
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easier to start from prospective teachers since they are less-bounded and 

have more time to digest the information.  

The usefulness of concept map is a necessary but not a sufficient 

consideration for teachers to decide whether to adopt it in their classroom 

teaching; they need to take its feasibility and other real issues into 

account. Though the participants were generally interested in concept 

map, positive with its uses, and even indicated a wish to try it in the 

future in the questionnaire, their responses to the informal interview and 

the open-ended questions seemed to suggest that they hesitated to 

actually use concept map. They listed a few factors that prevented them 

from adopting it. The main reason behind might be that they were not yet 

confident with how concept map can be appropriately used in class and 

they doubted whether concept map can contribute to students’ exam 

performances. They needed more operational training so as to direct their 

practice. Besides, few experimental studies on the use of concept map in 

mathematics education were conducted in China. The teachers were not 

sure whether concept map was suitable for Chinese students as well as 

for students in other countries. They needed solid evidences to convince 

them the effectiveness of concept map.  

The 10-minute introduction on concept map might be too brief for 

some teachers to grasp the ideas about how to use concept map in 

practice. More concrete examples and evidence could be included to help 

them get more confident in practice. However, with this brief 

introduction, the participants seemed to know how to incorporate 

concept map in their teaching. As indicated by the prospective teachers' 

lesson plans, concept map had been used as aids for lesson preparation, 

as advance organizers, and as organizers for summarize or review 

learned knowledge.  Eight out of the eleven lesson plans illustrated in 

details about when and how to incorporate concept map in classroom 

teaching. This finding is encouraging for the further popularization of 

concept map.  

The classroom trials suggest that teachers’ preliminary experience 

with concept map is key to whether they would like to use concept map 

voluntarily in the future. Richardson (1994) indicated that, when teachers 

try new activities, they normally follow their sense of what students need 

and what is working. If they feel the activity does not work, they may 
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quickly drop or radically alter it. From this perspective, how concept 

map is introduced to the teachers plays an important role for the 

popularization of concept map since, without sufficient preparation, the 

chance for teachers to successfully practice concept map in classroom 

teaching may be reduced.  

This study has a limitation related to the design of the perception of 

concept map questionnaire. The questionnaire was designed by the 

authors particularly for this study. It was not piloted. Though the 

Cronbach’s α reported in Table 2 supported the internal consistency of 

the subscales, the questionnaire needs to be further modified to be a more 

reliable instrument for measuring teachers’ perception of concept map. 

For example, some of its items are not suitable for the prospective 

teachers, especially the university students, since they had no or little 

teaching experience. As a result, many of them were not sure whether 

their students will be interested in concept map and whether the students 

would appreciate their use of concept map in the teaching of 

mathematics. Besides, more than half of the participants indicated that 

they were not sure whether they would still prefer their old ways of 

teaching mathematics, instead of using concept map in classroom 

teaching,. But as an instrument for exploration, the questionnaire does 

provide insights about the Chinese mathematics teachers’ perceptions of 

concept map.  

In summary, the prospective and in-service mathematics teachers 

were generally positive with concept map. With limited knowledge of 

concept map, they seemed to have a general idea about how to 

incorporate concept map in classroom teaching. Other than the basic 

knowledge of concept map to get teachers prepared technologically, 

further introduction of concept map needs to include concrete examples 

showing them how concept map can be implemented in different stages 

of classroom teaching and how it can be integrated with mathematics 

curriculum.  

At the same time, it should make clear that different people may have 

different personalized way of organizing knowledge. The purpose of 

using concept map in classroom teaching is not to unify to a standard 

concept map and impose teachers' concept map on the students but to 
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encourage students to think about connections of different concepts and 

to organize knowledge in an effective manner. 
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Chapter 20 

Assisting Teachers in Maintaining High-Level 
Cognitive Demands of Mathematical Tasks  
in Classroom Practices: A Training Course  

in Taiwan 

  LIN Pi-Jen         TSAI Wen-Huan 

The study focuses on how training courses were designed and 

implemented by making the reflective use of research-based cases to 

assist in-service teachers in identifying and maintaining high-level 

cognitive demands of mathematics tasks in classroom teaching. Eight 

in-service teachers enrolling in a university course “Theory and 

Practice of Case Method (TPCM)” in summer M.A. program 

participated in the study.  Data were mainly collected from case 

analyses, reflective journals and video-tapes of classroom observation. 

It is found that the use of research-based cases enhanced the teachers’ 

awareness of differentiating levels of cognitive demand of tasks 

determining students thinking and their ability in maintaining high-

level cognitive demands of tasks in classroom instruction. The major 

factors associated with maintaining the high level of cognitive demands 

were related to teachers’ expertise of mathematics instruction, such as 

selecting and sequencing the tasks, selecting and sequencing students’ 

various solution for advancing students’ high-level thinking, and 

encouraging students to make mathematical connections between other  

student responses. The factors associated with the decline in the high 

level of cognitive demands were related to the tasks, teachers, students, 

and time to explore in classroom. 

Keywords: Taiwan mathematics education, research-based cases, 

teacher education, cognitive demand, mathematics tasks 

1. Introduction 

The superior performance of students from Asian countries in 

international studies in mathematics achievement such as The Trends in 



620   P. J. Lin & W. H. Tsai 

 

Mathematics and Science Study (TIMSS) (Mullis, Martin, & Foy, 2012) 

and Programme for International Student Assessment (PISA) (OECD, 

2010) has drawn much attention. There are many variables related to 

students’ achievement, but one of the most important and obvious factors 

which directly contribute to students’ achievement is the quality of 

mathematical instruction. This implies that the quality of mathematical 

instruction in East Asia might be different from that in other countries in 

the world. It is important for the high-achieving countries in East Asia to 

share ideas about teaching strategies and techniques in classroom 

contexts as well as ways employed for its development.   

There have been several published books that mainly focus on 

students’ learning, curriculum, teachers, and mathematical instruction 

valued in high-achieving education systems in East Asia. For instance, 

Fan, Wong, Cai and Li (2004) published a book that focuses on the 

Chinese way of learning mathematics from insiders. Li and Shimizu 

(2009) organized a special issue in ZDM which focuses on exemplary 

mathematics instruction in six countries (i.e., Chinese mainland, Hong 

Kong, Japan, Singapore, South Korea, and Taiwan). Leung and Li (2010) 

edited a book which contributes to sharing ideas on the changes and 

practices in mathematics curriculum and teacher education in the six 

countries in East Asia. Li and Kaiser (2011) edited a book which focuses 

on the nature of expertise, and how expertise is theoretically 

conceptualized and empirically measured from Eastern and Western 

perspectives. The chapters in the books reveal that there are increasing 

platforms for high-achieving countries in East Asia to share classroom 

practices with the western countries. However, there has not been 

adequate research to share the ideas and practices in mathematics 

education in Taiwan. Much remains to be understood about the ways that 

are utilized to shape the quality of mathematics instruction for improving 

students’ mathematics achievement in Taiwan. Thus, there is a need to 

have more studies to share the approaches and practices that are 

employed to develop teacher quality in mathematics instruction. This 

chapter focuses on the ideas of how a group of 8 teachers learn from a 

training course with the case-based method to identify the cognitive 

levels of instructional tasks and maintaining the high cognitive demands 

in classroom instruction.  
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  The article begins with a brief introduction of three curricular reforms 

in Taiwan in the last two decades. It is followed by describing the 

significance of the use of cases in which supports in-service teachers to 

align with the tenets of curricular reforms. Third, Stein, Smith, 

Henningsen and Silver’s (2000) Task Analysis Guide and the 

Mathematics Tasks Framework as the theoretical framework of the study 

are described in detail. The Task Analysis Guide is utilized as the guide 

for classifying the levels of cognitive demand required in mathematics 

tasks, while the Mathematics Tasks Framework (MTF) including three 

phases is employed as a framework of the study.  The MTF was utilized 

to examine if teachers maintained high cognitive demands when the 

mathematical tasks were carried out. The research design and research 

results are displayed in the fourth and the fifth sessions. Finally, the 

article ends with a session of conclusion and discussion to address the 

factors in the influence on the levels of cognitive demands when  

mathematics tasks are carried out. 

1.1  Curricular Reforms  of Mathematics in Taiwan 

The school mathematics of Taiwan has been undergone three major 

reforms in two decades (1990s-update). The first reform was from 1993 

to 2000. The reform was a milestone of mathematics education in 

Taiwan. The drastic changes under the reform were based on socio-

cultural and economical changes. Besides, the impact of constructivism 

in the realm of mathematics education was another reason (MOE, 1993). 

These changes included: (1) learning mathematics is viewed as an 

integrated set of intellectual tools of making sense of mathematical 

situations rather than as accumulating facts and procedures; (2) students 

are expected to attain mathematical power. Mathematical power involves 

the ability to explore, conjecture, and reason logically; to communicate 

about and through mathematics, and to connect ideas within mathematics 

and between mathematics; (3) instructional approach is student-centered 

instead of teacher-centered approach; (4) mathematics classroom is 

cultivated as mathematical communities rather than classroom as a 

collection of individuals; and (5) teacher is a problem poser instead of 

the sole authority for right answers (Lin, 2000; Tam, 2010). 



622   P. J. Lin & W. H. Tsai 

 

Shortly after the implementation of the 1993 version curriculum, a 

new curriculum under the second reform was launched for grade 1 to 9 

school mathematics in 2001. The curriculum under this reform was 

termed as "The Grades 1-9 Temporary Curriculum Guidelines" (MOE, 

2001) highlights acquiring basic mathematical competency rather than 

only learning mathematics knowledge. The 2001 version of curriculum 

highlights the transition from primary to junior high school mathematics. 

The other highlight is to encourage teachers to develop school-based 

curriculum that meets students’ needs in individual classroom (Chung, 

2005).  

In 1995, mathematicians expressed their worry and dissatisfaction 

with the curriculum on reducing important mathematics topics and 

decreasing the difficulty. Hence, they launched an innovation to revise 

the temporary guidelines by adding deeper and broader mathematics 

contents. As a result, the third curricular reform started in 2003. The 

Grade 1-9 Temporary Curriculum Guidelines was replaced by the Grade 

1-9 Formal Curriculum Guidelines (MOE, 2003). The 2003 version of 

curriculum is continuously replaced by 2008 version with minor revision. 

It is noticeable that through the three curricula reforms, mathematical 

power remains the highlight of the school mathematics curriculum.  

The change of mathematics teaching switches from traditional 

instruction approach to contemporary view of mathematics teaching. The 

contemporary view of mathematics teaching emphasizes mathematical 

power, conceptual understanding, and responding to individual students’ 

experiences and needs instead of treating all students alike. The reform 

documents define new roles for teachings related to the issues of 

knowledge constructing and supportive scaffolding. The contemporary 

mathematics instruction involves high quality of mathematics teaching, 

such as guiding students to evaluate each other’s thinking and promoting 

building of mathematical content over time.  

Helping teachers move toward a contemporary view of teaching 

seems to require new experience. One of the ways to acquire the new 

experience is based on others’ experiences. The use of cases that reflect 

aspects of classroom practice is one way to learn from others’ real 

experience. Thus, the use of research-based cases is considered as a learning 

strategy for in-service teachers to develop their perspectives on identifying 
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the cognitive levels of instructional tasks and improve their skill in 

maintaining high level of cognitive demands in classroom contexts. 

2.1 The Use of Cases in Teacher Education 

It is well accepted that curriculum reforms require teachers to have long-

term support and adequate resources. Preston and Lambdin (1995) 

suggest that “reformed curricula seem likely to succeed only to the extent 

that teachers are helped to become knowledgeable about mathematics 

content, and well supported in their efforts to use new methods of 

instruction” (p.173). Their suggestion indicates that teachers need to be 

assisted in understanding the reform-oriented instructional approach, but 

the assistance needs to involve more than imposed prescriptions. Castle 

and Aichele (1994) further assert that the knowledge of curricular reform 

can be constructed by each individual teacher bringing her lived 

experiences as a learner. One way to provide lived experiences is through 

the use of cases (Harrington, 1995; Lin, 2002). 

  With the growing interest in the use of cases, the purposes of the use 

of case-based pedagogy vary with various teacher education programs 

and staff development programs in many countries (Dolk & den Hertog, 

2001; Lin, 2005; Pang, 2011; Stein et al., 2000). For instance, cases can 

be dilemma-driven in which the cases portray problematic situations 

requiring problem identification, analysis, and decision-making 

(Kleinfeld, 1992). Such kind of cases aims to help teachers (1) to realize 

that teaching is an inherently dilemma-ridden enterprise and (2) to learn 

how to think about the trade-offs involved in selecting one course of 

action over another. Besides, cases can be exemplars to establish the best 

practice or to make the effective teaching more public and available for 

others to analyze and review (Merseth, 1996). Such kind of cases aims to 

assist teachers to develop (1) an understanding how the cognitive 

demands of mathematical tasks evolve during a lesson and (2) the skill of 

critical reflection on their own practice guided by reference to the 

Mathematics Tasks Framework (Stein et al., 2000).  

  The effects of the use of cases on teacher education include: (1) 

cases maintaining the cognitive demands and encouraging the generation 

of multiple pedagogical techniques. Cases are often seen as stimulants 
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for preservice and in-service teachers to examine and discuss alternative 

instructional strategies and to construct new ones; (2) cases often foster 

reflection (Richert, 1991). Once teachers begin to view cases of various 

patterns of instructional tasks, they can begin to reflect on their own 

practice through the lens of the cognitive demands of tasks; and (3) cases 

help to present a realistic picture of the complexities of teaching. Cases 

open a window to illustrate the complicated aspects of teaching. 

Teachers become sensitive to important cues in teaching episodes 

(Merseth, 1996; Stein et al., 2000).  

  Studies on cases used in teacher education revealed that cases can 

enhance teachers’ awareness of students’ learning and becoming more 

reflective practitioners (Dolk & den Hertog, 2001; Lin, 2005; Pang, 2011; 

Stein et al., 2000). These studies also show that cases are more effective 

than traditional expository approaches to teaching since cases reflect real 

situations and pose problems and challenges for teachers (Barnett, 1998). 

However, these studies do not indicate that how the use of cases 

increases teachers’ awareness of different levels of cognitive demands of 

mathematical tasks resulting in students’ different thinking. Thus, to help 

teachers learn to differentiate levels of cognitive demand of instructional 

tasks through the use of case becomes the purpose of the study. 

2. Theoretical Framework 

Why are cognitive demands of instructional tasks important for student 

learning? It is not simply creating the opportunity by putting students 

into groups or by placing teaching aids in front of them. Rather, it is the 

mathematics tasks in which students engage determines what they will 

learn. For instance, tasks that require students to perform a memorized 

procedure lead to low-level thinking, while tasks that stimulate students 

to make purposeful connections to meaning lead to high-level thinking.  

  Mathematical tasks are “not only the problems written in a textbook 

or a teacher’s lesson plan, but also the classroom activity that surrounds 

the way in which those problems are set up and actually carried out by 

teachers and students” (Stein et al., 2000, p. 24). According to this 

definition, mathematical task intertwines with the goals, intentions, 
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actions, and interactions of teachers and students. Thus, mathematical 

tasks play the role in determining what students will learn.  

  All tasks are not created equal, that is, different tasks require 

different levels of student thinking. Stein et al. (2000) differentiate four 

levels of cognitive demand of instructional tasks as memorization, 

procedures without connection, procedures with connection, and doing 

mathematics. They also provide task analysis guide served as a scoring 

rubric for each level of cognitive demand (as seen in Table 1). 

Table 1. The task analysis guide (Stein et al., 2000, p.16) 

 Level 1: Memorization Tasks 

L
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。Involving reproducing previous learned facts, rules, formula, or definitions. 。Cannot be solved using procedures because a procedure does not exist or because 

the time frame in which the task is being completed is too short to use a procedure. 。Are not ambiguous -such tasks involve what is to be reproduced is clearly and 

directly stated. 。No connection to the meaning that underlie the facts, rules, formula, or definitions 

being learned. 

Level 2: Procedures Without Connections Tasks 。Are algorithmic. Use of the procedure is either specifically called for or its use is 

evident based on prior instruction. 。 Require limited cognitive demand for successful completion. There is little 

ambiguity about what needs to be done and how to do it. 。No connection to the meaning that underlie the procedure being used. 。Require no explanation, or explanations that focus solely on describing the 

procedure that was used. 
H
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h
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d
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Level 3: Procedures with Connections Tasks 。Focus students’ attention on the use of procedures for the purpose of developing 

deeper understanding. 。Represented in multiple representations. Making connections among multiple 

representations help to develop meaning. 。Require some degree of cognitive effort. Students need to engage with the 

conceptual ideas that underlie the procedures in order to successfully complete the 

task and develop understanding. 

Level 4:Doing Mathematics Tasks 。Require complex thinking (there is not a predictable pathway explicitly suggested 

by the task or work-out example). 。Require students to access relevant knowledge and make appropriate use of them 

in working through the task. 。Require students to explore and understand the nature of mathematical concepts or 

relationships. 。Require considerable cognitive effort and may involve some level of anxiety for 

the student due to the unpredictable nature of the solution process required. 
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Although it is important to determine the level of cognitive demand 

of a task, it happens that low-level tasks to be identified as high-level, 

such as acquiring the use of manipulatives and real-world contexts. It is 

also possible for tasks to be designated low-level when in fact they 

should be considered high-level. Being aware of the cognitive demands 

of tasks is a central role in selecting or creating instructional tasks 

matching instructional objectives. For example, if a teacher wants 

students to learn how to justify or explain their solution, she should 

select a task that is deep and rich enough to afford such opportunities. 

The cognitive demands of tasks can be changed during a lesson. 

Although starting with high-level task does not guarantee student 

engagement at a high-level (Stein, Grover, & Henningsn, 1996). 

  As suggested in Stein et al.’s Mathematical Tasks Framework 

(2000), tasks are seen passing through three phases: First, as they appear 

in curricular or instructional materials or as created by teachers; Next, as 

they are set up or announced by the teachers in the classroom; and finally, 

as they are carried out by students. All of these, especially the third phase 

are viewed as important influences on what students actually learn. This 

framework indicates that simply selecting and beginning a lesson with a 

high level task did not guarantee that students would actually think and 

reason in cognitive complexity ways. Some factors would reduce the 

level of cognitive demand of a task once it is implemented into 

classroom. These factors involve a variety of teacher-, student-, and 

related conditions, actions, and norms (Stein et al., 2000). 

  Stein et al. (2000) suggest that one way to help teachers learn to 

differentiate levels of cognitive demand is through the use of task-sorting 

activity. They recommend that the use of cases not only enable teachers 

to develop an understanding of mathematics tasks but also how the 

cognitive demands evolve during a lesson (Stein et al., 2000). Their cases 

are research-based because the cases are developed from a research 

project that creates practice-based materials based on the Mathematical 

Task Framework for mathematics teacher professional development. 

Thus, each case they created can depict the events that unfold in the 

classroom as the instructor and students engaged with cognitively 

challenging mathematical tasks. Once teachers use the research-based 
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cases, they can begin to reflect on their own practice through the lens of 

the cognitive demands of tasks. This indicates that the use of cases is 

likely to be a tool for teachers maintaining high cognitive demands of 

mathematical tasks when they unfold during a lesson. The cases can be 

used as exemplars or problem situations (Markovits & Smith, 2008). 

  The use of cases includes reading cases and discussing cases. Cases 

alone are not efficient as a curriculum material contributing to users’ 

learning. Reading a case does not ensure that the users automatically 

engage with all the embedded ideas or spontaneously make connections 

to their own practice. Case discussion creates the users with the 

opportunity of discussing a case altogether. A facilitator of the case 

discussion may want users to interpret and analyze various students-

generated strategies in a classroom. The users in case discussion share 

and learn multiple pedagogical perspectives what occurred in a case. 

However, facilitating case discussion itself is a skill that facilitators need 

to learn. For instance, facilitators must listen intently to the users and 

learn how to steer the conversation in useful direction (Engle & Conant, 

2002; Stein, Engle, Smith, & Hughes, 2008). Toward this aim, it is 

important for the facilitators to have specific learning goals in mind for 

the case discussion. Given this importance, good facilitators should 

accept training about the cases to be used. It seems more likely that one 

who has been involved in the construction of the cases would be a good 

facilitator, since one knows well about the case background and the goals 

in a specific case. 

  This is not to suggest that all tasks used by a teacher should engage 

students in high-level cognitive demand. However, to meet the need of 

innovative curricula that emphasized on reasoning, problem solving, 

connection, and mathematical communication (MOE, 2003), students 

need to have the opportunities to engage with tasks that lead to deeper, 

more generative understanding with respect to the mathematical concepts. 

However, mathematics teachers often have the difficulty not only with 

creating high cognitive demand mathematical tasks but also with 

maintaining high cognitive demand of the tasks during instruction 

(Stigler & Hiebert, 2004). Therefore, teacher educators need to help in-

service teachers to provide such an opportunity to students engaging in 

instructional tasks that are indeed implemented in such a way that 
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students thought in complex and meaningful ways. The use of cases is 

considered to be used in a training course designed in the study to help 

teachers in identifying and maintaining high level cognitive demands of 

mathematical tasks in mathematics instruction. 

  The purpose of the study was to design and enact a training course 

by using research-based cases to assist in-service teachers to identify and 

maintain high-level cognitive demands of mathematics tasks in 

classroom teaching. Thus, there are two research questions to be 

answered. First, how the use of cases would increase teachers’ awareness 

of different levels of cognitive demands of mathematics tasks? Second, 

how the use of cases would help teachers maintain high-level cognitive 

demand as the tasks were carried out in classroom? The research-based 

cases referred to the study were successively created by a group of 

teachers with the authors of the articles participating in professional 

development programs that were designed to implement the three 

reform-oriented curricula from 1997 to 2011. The cases were research-

based due to the construction of the cases by going through the cycles of 

Japanese Lesson Study including working in a small group, teachers 

collaborated with one another, meeting to discuss learning goals, to plan 

an actual classroom lesson, to observe how it works in practice, and then 

to revise and report on the results so that other teachers can benefit from 

it (Isoda, 2007). The research-based cases under consideration were 

scenarios of problematic situations actually encountered by teachers as 

they worked toward implementing the new curricula.  

  The research-based are featured as follows: (1) they are authentic 

teaching, (2) they are constructed by classroom teachers and the 

researchers, (3) they are able to provide vicarious experience, (4) the 

instructor in each case can be invited to participate the case discussion 

for articulating the context of the case teaching, (5) they are based on 

valid research; and (6) they are potential to initiate critical discussion by 

users. The tasks adopted by this study are not only the problems written 

in a textbook or a teacher’s lesson plan, but also the classroom activity 

that surround the way in which those problems are set up and actually 

carried out by teachers and students (Stein et al., 2000). 
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3. Methodology 

3.1 Participants 

Eight teachers, selected from 15 teachers enrolling in a course called 

“Theory and Practices of Case-based Method (TPCM)” in summer 

Master Degree program at the University, participated in this study. All 

participants were in the first year study in the program. The selection of 

the teachers of the study was based on two reasons. First, they needed to 

teach mathematics subject matter in the following school years 

immediately after the TPCM course. Second, the location of the school 

where the teachers were teaching was not allowed to be long distance 

away from the university. Otherwise, it was inconvenient for the teachers 

to observe classroom teaching. 

  Three of the 15 teachers were administrators, and they did not teach 

mathematics in the following school year. The 3 teachers either became 

the consultants of mathematics teaching or the leaders of professional 

development group of mathematics in their own schools. The rest of the 

12 teachers were the room teachers who were teaching mathematics. 

However, four of the 12 teachers were too far away from the university. 

There were only 8 teachers matching the two requirements for 

participation in the study.  

  Three teachers (T1, T2, T3) had at least 10 years of teaching 

experience. Three teachers (T4, T5, T6) had 5 to 10 years of teaching 

experience and two teachers (T7, T8) had less than 5 years of teaching 

experience. T3 and T5 were teaching grade 3 and grade 4 respectively. T6 

and T8 were teaching grade 6. Four teachers (T1, T2, T4, T7) were teaching 

at grade 5 during the school year. T1 was first time to teach fifth-grade 

mathematics, although she has taught for 12 years in lower grade level.  

3.2 Settings 

The cases were presented in a video form in the TPCM course. The 

weekly two 3-hour TPCM course continuing for 48 hours consists of two 

parts. Part I consisting of 12 hours began by introducing the use of 

reflective mathematics journals, the Mathematical Tasks Framework and 
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the Task Analysis Guides (Stein et al., 2000), and empirical papers 
relevant with case-based pedagogy, to enrich teachers’ knowledge about 
cases. Part II contains 36 hours designed to help teachers learn to identify 
and provide students with increasing opportunities for constructing high-
order mathematical thinking. During this part, the teachers were offered 
with six research-based cases. After viewing a video case, each case was 
immediately discussed in small groups and immediately followed by 
whole-class discussion. Finally, eight teachers from the TPCM course 
took turns observing each other’s instruction during the school year after 
they ended up the summer course. Every teacher who enrolled in the 
TPCM course could voluntarily choose to participate in the final part, 
because some of the teachers did not teach mathematics during the 
school year.  

  These classroom observations aimed to examine how the use of 
research-based cases improved the teachers’ ability in designing high-
level instructional tasks and how the tasks were carried out in classrooms. 
Besides, the context of observation was for inspecting the eight teachers’ 
perspective of levels of cognitive demands for mathematical tasks 
implemented in classrooms. 

3.3 Video Cases 

Twelve video cases were utilized to share the discussion in the course, 
since videotapes allowed teachers to watch and re-watch a segment, to 
discern exactly what was going on as students working on a particular 
task. Six video cases were related to fractions and the rest of the cases 
were with respect to other mathematics topics, such as decimals, 
proportion, and measurements.  

3.4 Case Discussion Session  

Each case had its own focus in terms of different instructional 
approaches on a same topic, teacher’s questioning, students’ various 
strategies of solving a given problem, and etc. For the purpose of this 
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article, six cases related to fractions were described here. The main 
concept corresponding to each video case was summarized in Table 2.  

 
Table 2. The main concept of each case related to fractions 

Case # Main mathematics concept of each case 

1 2 units of 1/7 vs. 2 out of 7 parts. 

2 Distinction of fractions parts with one piece from more than one pieces 

3 Constructing improper and mix fractions through iterating of unit fraction  

4 Why should whole units be same as comparing fractions? 

5 Equivalent fraction by reducing form and extending form. 

6 3/4 of a box containing 20 bottles of drink vs. 3/4 box with 20 bottles of 
drink. 

  In one of the six videotapes, “Is 2 units of 
7

1
equals 

7

2
?”, was 

excerpted as an example to illustrate what a case looks like. The case has 
to do with third graders’ difficulty in understanding about “2 units of 

7

1 equals 
7

2 ”. The video case contains a fragment with 12 minutes in 

length. The focuses zoomed at the tasks, students’ various solutions, and 
dialogues between students and teachers, as shown in Figure 1. 

  The class regularly began by watching a video and was immediately 
followed by a one-hour case discussion with small groups of 4. It ended 
with a one-and-half hours whole-class discussion. T1, T2, T4, and T7 sit 
in the same group, while T3, T5, T6, and T8 sit in the same group. One 
of the authors of the article was the instructor of the TPCM and was the 
facilitator of the case discussion. The author was one of the members 
who generated the video cases. Thus, the instructor knew very well about 
the background of the case. However, the instructor did not provide the 
participants extra information such as guiding question, even though they 
asked about the students’ preconception or the case-teacher’s goals. The 
questions they asked in a small group became the central issues of the 
whole-class discussion. 

  The intention of each video case was to encourage the participants to 
identify how mathematical tasks differ with respect to levels of cognitive 
demand. In the case discussion, the participants were asked to answer the 
following questions: (1) what is the main mathematical idea in the case?  
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(2) Which level of cognitive demand of the instruction task would you 

like to place in? Why did you say so? (3) What evidence is there that the 

students learn these ideas or that the difficulties students have in this 

case? (4) What pedagogical issues would you like to address for sharing 

with your colleagues? To answer these questions, the participants learned 

to identify different tasks resulting in different levels of and kinds of 

students’ thinking. The answers to these questions will reveal the 

cognitive processes required in the complex tasks. Only responses to 

question (1) and (2) were used for the purpose of the study. 

.5. Data Collection 

Data collected from Part II for this study included case analysis of the 

video cases and teachers’ weekly reflective journals. The cases 

discussion was audio-taped and transcribed verbally. Teachers’ weekly 

reflective journals were one of the assignments of the course. The 

reflective journal was to help the participants to draw their attentions to 

the level of cognitive demand of the tasks used by the case-teachers and 

what case-students are actually doing. The four questions described 

previously discussed in the cases discussion and the evaluation of the 

level of cognitive demands was required to include in the reflective 

ournals.   

  The data collected from Part III in school semester included classroom 

observations and the participants’ evaluation sheets of the mathematical 

tasks carried out in the classrooms. The classroom observations provided  

 

 
Figure 1. An excerpt of a video case 

Case: Is 2 units of 
7

1
equal to

7

2
? 

Objectives:  To represent a proper fraction in which its denominator is no more than 

10. 

Tasks:  Each student was given a strip paper that has been marked into seven equal 

parts. Students were asked to shade 
7

2
of the strip and explain it.  

The following three drawings were given by three students in the class.   

 

 

 

 

 

 

 

 

 

 

 
Dialogues between the teacher and students: 

…. 

T: What is the fraction of the shaded by Uei-Shang? 

S: 
7

2
 

T: Is 
7

2
 equal to 2 units of 

7

1
?  

Uei-Shang: 2 units of 
7

1
is not equal to

7

2
, since 

7

1
adds

7

1
 is

14

2
. 

Sue-Ling: 2 units of 
7

1
is not equal to

7

2
, since their representations are distinct. 

2 units of
7

1
is represented as     

 

 

 

 

 

, and
7

2 is represented as  

 

 

 (The discussing is continuous) 
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(2) Which level of cognitive demand of the instruction task would you 

like to place in? Why did you say so? (3) What evidence is there that the 

students learn these ideas or that the difficulties students encountered in 

this case? (4) What pedagogical issues would you like to address for 

sharing with your colleagues? To answer these questions, the participants 

learned to identify different tasks resulting in different levels of and 

kinds of students’ thinking. The answers to these questions will reveal 

the cognitive processes required in the complex tasks. Only responses to 

question (1) and (2) were used for the purpose of the study. 

3.5 Data Collection 

Data collected from Part II for this study included case analysis of the 

video cases and teachers’ weekly reflective journals. The cases 

discussion was audio-taped and transcribed verbally. Teachers’ weekly 

reflective journals were one of the assignments of the course. The 

reflective journal was to help the participants to draw their attentions to 

the level of cognitive demand of the tasks used by the case-teachers and 

what case-students are actually doing. The four questions described 

previously discussed in the cases discussion and the evaluation of the 

level of cognitive demands was required to include in the reflective 

journals.   

  The data collected from Part III in school semester included 

classroom observations and the participants’ evaluation sheets of the 

mathematical tasks carried out in the classrooms. The classroom 

observations provided a measure how their ability in maintaining the 

level of cognitive demand in implementation phase has been changed as 

a result of the video case discussion. Besides, the evaluation was to 

improve and to measure the participants’ perspectives of identifying the 

cognitive levels of tasks. The components of the evaluation sheet for 

each task consisted of level of cognitive demand to be assigned, 

explanation of categorization, and features of the tasks.  

  Each lesson of the four teachers (T1, T2, T4, T7) who taught fifth 

grade was observed by the participants, since they taught at the same 

topic of unlike fraction comparison. The lesson was the first hour the unit 
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of equivalent fractions. There were 3-4 tasks in each lesson designed by 

each of the four teachers and were conducted in each lesson.  

  In addition, eight teachers’ perspectives of the cognitive level of 

mathematical tasks to the four teachers’ instruction were collected. Due 

to the space limitation, only one (T1) of the four teachers was analyzed 

to document how she maintained the level of cognitive demands of 

students thinking evolved in a classroom. T1 was selected to report here 

based on two reasons: (1) T1 is one of the four teachers teaching in the 

same grade; and (2) T1 is teaching mathematics at the fifth grade for the 

first time; there is no confounding factor of affecting T1 teaching except 

the effect of the course. The other three teachers (T2, T4, and T7) have 

taught fifth grade for at least one year. The classroom observations were 

videotaped and audio-taped and transcribed verbally.  

  In a nutshell, the various data collected for answering the research 

questions of the study were summarized in Table 3. The various data 

were triangulated together for better address research questions. 

Table 3. Various data for answering research questions 

Data collected 

from 

The tasks sourced 

from 

Evaluators Answering research questions 

During TPCM 

course 

Six video cases eight 

teachers 

RQ1: Understanding the eight 

teachers’ perspective of 

identifying the  cognitive level of 

mathematics tasks 

After TPCM 

course 

T1’s, T2’s, T4’s, 

T7’s lesson 

eight 

teachers 

RQ2: Understanding the skill of 

maintaining the high level of 

cognitive demands of the tasks 

implemented in the classroom  

T1 teaching 

3.5 Data Analysis 

This study employed case analyses and cross-case analyses to examine 

how the teachers learned about the cognitive demands from video 

research-based cases carried out in classrooms. Cross-case analyses for 

the data collected from case discussion were conducted to identify 

similarities across cases, differences among them, and overall patterns.  
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  Four levels of cognitive demand of instructional tasks suggested by 

Stein et al.’s (2000) Task Analysis Guide, was the framework of the data 

analysis for the eight teachers’ perspectives. The four levels consist of 

memorization, procedures without connection, procedures with 

connection, and doing mathematics. The analysis of implementation of 

mathematical tasks was rooted in the three phases of Mathematical Tasks 

Framework suggested by Stein et al. (2000). The three phases were 

composed of the curricular phase, the setup phase, and the 

implementation phase.  

  The factors of maintaining and declining the level of cognitive 

demands required the task in the implementation stage from where the 

setup stage were analyzed. The eight teachers were data analyzers for the 

level of cognitive demands in each task.  

4. Results 

The first part of the results included the responses the teachers made to 

the questions raised in the video discussion according to the tasks in the 

setup phase. The responses to the four teachers’ lessons of fraction 

comparisons according to the tasks in the setup phase and the 

implementation stage were the second part of the results. How a teacher 

maintained or declined the level of cognitive demands required in 

instructional tasks evolved in a lesson was the third part of the results.  

4.1 Teachers’ Perspectives of Cognitive Demands of the Tasks 

4.1.1 Under the Context of Video-cases Discussion during TPCM Course 

After engaging in each video case, the teachers working in small groups 

responded to the question “which level of cognitive demand would you 

place the instruction task in? Why did you say so?” Their responses to 

each video case collected from the eight teachers’ mathematical journals 

were summarized in Table 4.  
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Table 4. Teachers’ perspective of cognitive demands (CD) and features of the tasks under 

the context of video-cases discussion  

Case # Level 

of CD 

Explanation of 

categorization 

Features Teachers 

Case 1 4 
。The focus is on the 

connection between of two 

constructs: part-whole and 

iterating units. 

。requires an explanation 。involves multiple 

representations 。requires complex thinking 

Eight 

teachers 。The task displays students’ 

unexpected 

misconception. 

。activates students’ 

misconception 。makes connections between 

fraction meanings 

T3.T5.T6

T8 

Case 2 4 
。The tasks distinguish the 

size of each fraction part 

with more than one piece 

from exact one piece 

involving in discrete 

quantities. 

。activate students’ 

misconception 。emphasize the importance 

of language “parts” 。emphasize inappropriate 

fraction.  

Eight 

teachers 

Case 3 4 。The task focuses on the 

need of using proper and 

improper fractions. 

。has real-world context 。uses manipulative 。makes connection between 

proper and improper 

fractions.  

Eight 

teachers 

 

。emphasizes the importance 

of iterating units of 

fraction. 

T1.T2.T4 

T7 

Case 4 4 。The tasks focus on the 

requirement of same 

whole unit as comparing 

two fractions. 

。have real-world context 。use fraction boards 。display students’ 

misconceptions.  。distinguish discrete from 

continuous quantity 

Eight 

teachers 

Case 5 4 。The task focuses the 

differences between 

reducing form and 

extending form of 

equivalent fractions 

though partition and 

quotient divisions.  

。requires an explanation 。has real-world context 。uses a pictorial 

representation. 。requires to access relevant 

knowledge 。requires considerable 

cognitive effort 

T1.T2.T4 

T7 

3 。The task focuses attention 

on the procedure for 

finding equivalent 

fractions, but in a 

meaningful context. 

。has real-world context 。requires considerable 

cognitive efforts 

 

T3.T5.T6

T8 
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Table 4. (Continued) 

Case # Level 

of CD 

Explanation of 

categorization 

Features Teachers 

Case 6 4 。The tasks require making 

a distinction between two 

constructs of fractions: 

part-whole and operator. 

。require an explanation 。involve various constructs of 

fractions  

Eight 

teachers 。The tasks highlight  the 

importance of the size of 

multiplier of fraction 

multiplication                              

。have real-world contexts 。require to understand the 

nature of math concepts. 

T1.T2.T4 

T7 。The tasks focus on the 

significance of 

mathematical language. 

。make connections between 

representations to help to 

developing meaning 

T3.T5.T6. 

T8 

 

Through sorting the given tasks, they did not only simply complete 

the sorting but also have the opportunity for conversation that moved 

back and forth for putting the level of cognitive demand of the given 

tasks. They also negotiated the characteristics of each level.  It is found 

that the teachers did not always agree with each other on how tasks 

should be categorized. However, the agreement and disagreement were 

productive for them to understand the features of each level of cognitive 

demands. For instance, eight teachers consistently placed level 4 of 

cognitive demand with various features for the tasks involved in case 2 

and case 4. For other tasks, such as in case 1, 3, and 6, they put the tasks 

at the level 4 of cognitive demand with several same features and several 

different features.  T1, T2, T4, and T7 in one group placed the task in 

case 5 at the level 4, while T3, T5, T6, and T8 in another group placed at 

the level 3. They shared each other with different features for the task. 

Table 4 shows that the common features of the tasks involved in the 

video cases addressed by the eight teachers include: (1) the tasks 

involved in each case highlighted representations; (2) the tasks were 

contextualized real world, such as  case 3, 4, 5, and 6; (3) the tasks 

activated students’ misconceptions, such as case 1, 2, and 4; (4) the tasks 

required to explore, explain, and understand the meaning of the 

mathematics concepts, such as case 1, 5, and 6.  

Case 1 is an example for illustrating why the eight teachers assigned 

the tasks at the level 4 of cognitive demand as follows. The answers the 
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teachers responded to case 1 in case discussion in the TPCM course were 

classified into three categories: conceptualizing the meaning of fraction, 

transformation between representations of fraction, and linking the 

relationship between the iteration of unit fraction and part-whole model 

fraction.  

Regarding the category of the meaning of fraction, they elaborated 

that the students in the case (termed as case-students) did not recognize 

one construct with iterating unit fraction such as “2 units of 1/7” distinct 

from the other construct with part-whole model, such as 2 parts of 7 

equal-size parts. They learned from case 1 that the third graders had 

difficulty with making connection between the two constructs. 

With respect to transformation between representations of fraction 

and linking the relationship between the iteration of unit fraction and 

part-whole model fraction, they had an agreement to case 1 as a doing 

mathematics task. For example, the four teachers (T1, T2, T4, T7) in one 

group described that the task was featured as: (1) the task required 

students to explain why 2 units of 1/7 is equivalent to 2/7, but they had 

different representations; (2) the task was not textbook-like; (3) the task 

was involved in multiple representations including the transforms from 

verbal to manipulatives and to diagram; (4) the task of the case was an 

incidental rather than a predicable pathway; and (5) the task required 

students complex thinking. The other four teachers (T3, T5, T6, T8) in 

one group added two more features. The task activated students’ 

misconception of 1/7+1/7=2/14 and makes connections between iteration 

of unit fraction and a non-unit fraction with part-whole model (e.g., 2/7 

is equal to 1/7+1/7).  

The teachers stated that they have learned from the case-teacher in the 

case in creating the task for provoking students’ difficulties and 

misconceptions. The eight teachers perceived the impact of perceptual 

distracters, since they were surprised with students’ difficulty in deciding 

the fraction 2/7 while the partitioning line was missing in the diagram. 

The missing line represented significant perceptual distractors. It was 

hard for third graders mentally “put in” the partitioning line in the 

diagram. Besides, it went beyond their expectation that students’ 

difficulty with “2 units of 1/7 is equal to 2/7”, since the case-students 

agreed that “2 units of 1/7 is represented as (a), rather than as (b) below.     
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           (a)                                        (b) 

Through case discussion, some of the teachers were aware of the 

significance of consolidating fraction concept by shading in two separate 

areas instead of two successive areas in a rectangle. The two teachers (T3 

& T5) appreciated that the case-teacher has already partitioned 7 parts in 

a strip for third-graders. As a result, students were not necessary to attend 

to partition the 7 parts; they would rather attend to shade 2 parts out of 7 

parts. T4 made a reflection on her previous teaching that she spent too 

much time in partitioning a whole into odd parts. 

4.1.2 Under the Context of Classroom Observations After TPCM Course 

Table 5 and Table 6 display the data collected from the setup phase and 

the implementation phase of the tasks carried out by four teachers (T1, 

T2, T4, and T7) during the school year immediately after the TPCM 

course. The setup phase of the tasks was defined as the instructional 

tasks announced by teachers during teaching. Excepting one teacher as 

an instructor, seven teachers observed a classroom teaching altogether. 

The implementation phase was the tasks carried out in the classroom 

practices.  

4.1.2.1 The levels of tasks in the setup phase 

The data of Table 5 shows that there was often complete consensus 

among the eight teachers that the tasks created by T1 and T4 required the 

highest level of cognitive demand. The task created by T2 was classified 

at level 3 as procedure with connections and the task created by T7 was 

classified at level 2 as procedure without connections. The result 

indicates that the eight teachers improved their ability in classifying a 

given mathematical task into the level of cognitive demands. The 

teachers had a deeper analysis of the relationship between the tasks the  
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Table 5. Teachers’ perspective of cognitive demands (CD) and features of the tasks in the 

setup phase under the context of classroom observations  

Tasks 

(#) 

Levels  

of CD 

Explanation of 

categorization 

Features Evaluators 

T1’s 3 

tasks 

4,4,4,4 There is no pathway 

suggested by the tasks. The 

focus is on multiple 

methods to compare two 

unlike fractions. 

。activates students’ 

misconception 。provokes students’ 

multiple solutions 。requires an explanation 

T2, T3, T4, 

T5, T6, T7, 

T8 

T2’s   

3 tasks 

3,4,3 The task provides a 

procedure for finding a 

common denominator of 

two fractions but connects 

the procedure to meaning.  

。requires some degree  

of cognitive effort 。suggests procedure to 

follow implicitly  

T1, T2, T4, 

T5, T6, T7, 

T8 

T4’s  

3 tasks  

4,4,4 There is no predictable 

pathway suggested by the 

task and it requires 

complex thinking.  

。requires an explanation 。activates students’ 

misconception 。requires complex 

thinking 

T1, T2, T3, 

T5, T6, T7, 

T8 

T7’s   

4 tasks 

2,2,3,2 The task provides a 

procedure of finding a least 

common denominator for 

comparing two unlike 

fractions but requiring no 

connection to meaning. 

。requires limited 

cognitive effort 。explains on the 

procedure that was used 。is textbook-like 。are algorithm-oriented 

T1, T2, T3, 

T4, T5, T6, 

T8 

 

four teachers selected or created and the level of cognitive demand that 

were required of students. 

  Table 5 also suggests that some of the teachers did not achieve their 

tasks in the setup phase up to the high level of cognitive demands, since 

only the tasks created by T1, T2, and T4 reached to the level 4. The tasks 

T7 designed in the setup phase were still at the lower level of cognitive 

demands that did not require complex and deep thinking.  

  The finding shows that the effect of the research-based cases utilized 

in the TPCM course contributed to all teachers’ identification of the 

cognitive level of the tasks. The research-based cases improved three of 

the four teachers in designing the high-level of cognitive demands. 

However, one of the four teachers frequently designed the tasks at level 2 

of cognitive demand. 
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4.1.2.2 The levels of tasks in the implementation phase 

Table 6 displays the decline or maintenance of the level of the tasks from 

the setup phase to implantation phase and its associated factors.   

  The data of Table 6 shows that there was consistent agreement 

among the eight teachers on identification of the level of cognitive 

demands of the tasks unfolded instruction. On the other hand, 3 out of 

the 14 tasks enacted by the four teachers declined the cognitive levels 

and 11 tasks maintained the cognitive levels from the setup phase to 

implementation phase.  Four tasks  that were set up by the T1 to place at 

the level 4 of cognitive demand on students’ thinking were enacted in 

such a way that students reasoned in meaningful ways. For instance, T1’s 

students were given to order the first pair of fractions. Students started 

out by figuring out various solutions based on their prior knowledge. As 

T1 kept coming up with the following pairs of fractions for advancing 

students’ high level of thinking, the students realized they needed to keep 

track of the strategies they had already used. Students were invited to 

report their solutions and explaining the meaning of the solutions. During 

this time, T1 asked such questions as “How do you know?” “Can you 

make a distinction of your solution from others’?” “Why do you use the 

strategy for solving the problem but not for other problems?” This led the 

students to construct various strategies of ordering pair of fractions. T1 

sustained pressure for explaining and reasoning. 

  When the tasks were enacted, there were usually a large number of 

support factors affecting the level of cognitive demands. Throughout the 

data shown in Table 6, the factors associated with the maintenance of the 

level of cognitive demands from the setup phase to implementation phase 

included: the tasks built on students’ prior knowledge, well anticipating 

students’ solutions, sufficient time to explore, appropriately selecting and 

ordering  students’ various solutions, asking various types of questions 

for different purposes, making connections between mathematical 

concepts, as well as providing the opportunities of justifications, 

explanations through asking follow-up questions relied on students’ work. 

Most of the factors associated with the maintenance of the level of  
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cognitive demands from the setup phase to implementation phase were 

related to teacher’s expertise of mathematics instruction. 

  When the cognitive demands of the tasks declined in the 

implementation phase from the setup phase, a set of factors were 

operated in classrooms, as indicated in Table 6.  

Table 6. Teachers’ perspective of cognitive demands (CD) and factors associated with 

maintenance and decline of high-level CD from the setup phase to implementation phase  

Tasks 

(#) 

Levels  

of CD 

Maintenance 

or decline 
factors Evaluators 

T1’s 3 

tasks 

(4,4,4,4) 

4,4,4,4 

3 maintenances 。appropriately selecting and 

ordering  students’ various 

solutions 。providing the opportunities of 

justifications, explanations 

through asking follow-up 

questions relied on students’ work  。sufficient time to explore 

T2, T3, T4, 

T5, T6, T7, 

T8 

T2’s   

3 tasks 

(3,4,3) 

3,3,3 

2 maintenances 

 

 

 

 

 

 

1 decline 

。tasks built on students’ prior 

knowledge 。making connections between 

mathematical concepts 。asking various types of questions 

for different purposes 。task expectations not clear enough 

to put students in the right place   

T1, T2, T4, 

T5, T6, T7, 

T8 

T4’s  

3 tasks  

(4,4,4) 

4,4,2 

2 maintenance 

 

 

 

 

 

1 declines 

。providing the opportunities of 

explanations by questioning and 

comments. 。well anticipating students’ 

solutions 。telling students how to do the 

problem 。shifting the emphasis from 

conceptual understanding to the 

correctness of the answer 

T1, T2, T3, 

T5, T6, T7, 

T8 

T7’s   

4 tasks 

(2,2,3,2) 

2,2,3,1 

3 maintenances 

 

 

1 declines 

。students pressing the teacher to 

reduce the complexity of the task 

by specifying the explicit 

procedures and steps to perform.  。not enough time to explore 

T1, T2, T3, 

T4, T5, T6, 

T8 

Note: The number in (  ) level of CD of the tasks in the setup phase.  
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These factors were: task expectations not clear enough to put students in 

the right place, telling students how to do the problem, shifting the 

emphasis from conceptual understanding to the correctness of the answer, 

students pressing the teacher to reduce the complexity of the task by 

specifying the explicit procedures and steps to perform, and not enough 

time to explore. The factors associated with the decline of the level of 

cognitive demands from the setup phase to implementation phase were 

related to tasks, teacher, students, and time engaged in the classroom. 

4.2 Maintaining High-Level Cognitive Demand of the Tasks 

How mathematical tasks unfolded during classroom instruction was the 

other way for the study in order to document the effect of the training 

course on maintaining high level of cognitive demands of mathematical 

tasks. The implementation of mathematical tasks passed through three 

phases: the curricular phase, the setup phase, and the implementation 

phase. Due to the space limitation, the first lesson with respect to fraction 

comparison taught by T1 in the unit of equivalent fraction, as an expmple 

is discussed here.  

4.2.1 Phase I: The Curricular Phase 

The tasks at the first phase means the tasks were created by T1 or 

selected from curricular materials. T1 analyzed and reported the learning 

objectives of the lesson scheduled in the textbook she used. The 

objectives of the lesson included: (1) exploring equivalent fractions by 

ordering fractions, (2) naming a fraction in more than one way, (3) 

finding an equivalent fraction given its denominator, and (4) ordering 

general fractions (that is, neither numerators nor denominators are 

equal). 

T1 argued that the size of the set and the denominator and numerator 

of fraction given in the textbook should be a small number instead of a 

big number, in order to compare fractions determined by the amount of 

the given fraction. Thus, she changed the size of the whole set in 

problem 1 from 36 to 24 and in problem 2 from 60 to 36. The argument 

she stated in journal was: 
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−Because the size of the whole set involving in problem 1, 2, and 3 is 36, 60, and 

150 respectively, is too big for students to drawing a picture and being partitioned 

into a big number of parts, it is not only time consuming but also avoiding students 

of using the size of parts to determine the equivalence of fractions. Thus, I would 

revise the size of the set and the number of parts (T1, Journal). 

To provide students the opportunity of using various strategies to order 

fractions, T1 replaced the fractions 5/20 and 2/12 presented in problem 2 

in the textbook by 5/9 and 2/4, such that one fraction is larger than 1/2 

and the other is less than 1/2. T1’s rationale of designing tasks was 

revealed in the following reflective journal.  

−Problem 2 involves ordering fractions with unlike denominators. One way is 

through finding the length of the fraction of the rope and then to decide which of the 

lengths is longer. The other way as indicated in the textbook is to find the least 

common denominator. However, students did not learn the algorithm of finding the 

least common fraction yet. I should provide my students the opportunity of using 

reference point strategy as suggested in the literature. I purposely compared the 

fractions (4/9 and 8/12) instead of the given fractions (5/20 and 2/12) [as indicated in 

Table 7]. In the second pair, 8/12 is bigger than 4/9, since 8/12 is more than 1/2 but 

4/9 is less than 1/2 (T1, Journal). 

Table 7. The comparison between the tasks in textbook and T1 generated 

Objective: The size of a set is a multiple of denominators in which explores equivalent 

fractions by comparing fractions. 

Tasks of textbook Tasks created by T1 

1. A chocolate box contains 36 pieces. David 

ate 6/18 box, Chris ate 1/3 box, and Joe ate 

4/12 box of the chocolates.  

(1) Who ate more between David and Chris? 

(2) Who ate more between Chris and Joe? 

1. David ate 1/5 of a strawberry pie and 

Joe ate 1/7 of the same pie. Who ate 

more? 

2. Chris ate 5/9 of a strawberry pie and 

Sophie ate 5/16 of the same pie. Who 

ate more? 2. A rope has 60 meters in length. 

(1) Is 5/20 of the rope longer than 2/12 of the 

rope? 

(2) Is 4/15 of the rope longer than 5/20 of the 

rope? 

3. A rope has 36 meters in length. Is 4/9 

of the rope longer than 8/12 of the 

rope? 

3. Ben plans to build a house on a land with 150 

m2. Plan I uses 2/3 of the land, plan II uses 

4/5 of the land, and plan III uses 7/10 of the 

land. Which of the plans would use the 

biggest of the land? 

4. A rope has 120 meters in length. Is 

11/12of the rope longer than 14/15of 

the rope? 
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4.2.2 Phase II: The Setup Phase 

This phase referred to the tasks announced by the instructor T1 in the 

classroom. It contained T1’s communication to her fifth grade students 

regarding learning objectives. This session was relevant to ordering 

fractions with unlike denominators. Students had learned ordering 

fractions with like denominator. In lesson plan, T1 created four pairs of 

fractions to decide which fraction is greater. The four pairs were 

sequenced by the following order:  (1/5, 1/7), (5/16, 5/9), (4/9, 8/12), and  

(11/12, 14/15).  Here, 1/5 and 1/7 were unit fractions, 5/16 and 5/9 were 

the fractions with same numerator. 4/9 and 8/12 were different 

denominators and different numerators, but one is a multiple of the other. 

11/12 and 14/15 were the fractions with the difference of a unit fraction 

(1/12 and 1/15) away from 1. 

  In this lesson, each student worked individually and wrote 

individual solution on each whiteboard. Seven teachers identified the 

TI’s task with four pairs of fractions in setup phase as “doing 

mathematics”. T5 and T3 claimed that the task enable students to 

displayed students’ misconception of fractions.  T6 and T8 pointed out 

the task enable students to present multiple solutions in one pair of 

fractions. T7 claimed that the four pairs of fractions focused on 

developing mathematical understanding. Conversely, T4 suggested that 

T1 purposely changed the tasks with different types of fraction from the 

textbook for developing students’ multiple strategies, so that these tasks 

required high-level demands. T2 commented that T1 designed 

intentionally the numerals of numerator and denominator between two 

fractions for developing students’ various strategies rather than 

emphasizing on the algorithm.    

4.2.3 Phase III: The Implementation Phase 

In the study, the implementation phase starts from as the tasks were 

carried out or worked on by students in classroom. T1 gave students 

enough time to explore the tasks and think individually. She 

appropriately selected and put in order students’ various solutions after 

each task was explored. Seven teachers consistently agreed the tasks 

enacted by T1 maintained at the cognitive level of “doing mathematics”, 

since six different strategies were used by her students for the tasks. 
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They were valid strategies. For instance, students used two strategies to 

compare 1/5 and 1/7. One strategy used unit fraction. Students realized 

that there is an inverse relation between the number of parts into which 

the whole is divided and the resulting size of each part, so that 1/5 > 1/7 

(as Figure 2a). The other strategy was to find out a common denominator 

of two different denominators. For instance, the common denominator of 

5 and 7 was 35, 1/5 =1×7/5×7=7/35, 1/7 =1×5/7×5=5/35 as the first step, 

since7/35 is greater than 5/35, so that 1/5 >1/7 (as Figure 2b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

It was followed by the second task” comparing the size of 5/16 and 

5/9”. Most of the students still used two previous strategies, partitioning 

and finding a common denominator. They also developed a new strategy 

that used a reference point (usually 1/2 or 1) and were successfully in 

order the two given fractions. For instance, one of the students used “half 

of 16 is 8, bigger than 5 and half of 9 is 4.5, less than 5. Thus 5/16 is less 

than 1/2 and 5/9 is greater than 1/2, seen as Figure 3a. To this problem, 

TI attempted to reduce the use of common denominator, since the 

product of 16x5 is too big to getting correct answer. TI expected students 

to learn various strategies and each strategy can be applied in a suitable 

 
Figure 2a. 

English translation: 

A size of each part of 5 

parts is greater than 

that of each part of 7 

parts. 

 
Figure 2b. 

English translation: 

Making them have same 

denominator 35.Then, 

compare their 

numerators. 
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situation. She pointed to Su-Jing’s solution (as shown in Figure 3b) and 

had the following conversation with her. 

T1: How did you change the number
16

5
into

126

45
? 

       Su-Jing: I used the fraction
16

5
with denominator and numerator multiplying 

9 and got the answer
126

45
. 

T1: Why did 16 change into 126? 

        Su-Jing: I made a calculation error. It should be 144. 

T1: Did all of you think it is a good strategy to find the common 

denominator? 

        Students: No. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moving to the third task “Order the pair of 4/8 and 8/12”, the two 

fractions with different numerators and denominators were getting harder 

for students. In this case, students focused only on the numerator or only 

on the denominator and as a result made incorrect conclusions.  

  We found that T1 encouraged students to solve the problem 

successfully by either using reference point 1/2 (as shown in Figure 4a), 

or finding a common denominator requires finding 
49

44

x

x
equivalent 

Figure 3a. 

English translation: 

5 is greater than half of 

9. Half of 16 is 8. 5 is 

less than 8. 

  

Figure 3b. 

English translation: 

Finding a common 

denominator and their 

equivalent fractions are 

126

45
and

126

80
. 
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to
9

4
and 

312

38

x

x
equivalent to

12

8
with the same denominator 36 (as Figure 

4b) or finding the same numerator 4 requires finding 4/6 equivalent to 

8/12 and then ordering 4/6 and 4/9 (as shown in Figure 4c), or finding 

the same numerator 8 requires finding 8/18 equivalent to 4/9  and then 

ordering 8/18 and 8/12 (as shown in Figure 4d). 

 

 

 

 

 

 

 

 

These analyses indicated that during the implementation phase, both 

T1 and her students were viewed as important contributors to how tasks 

were carried out. T1 questioning to students or asking follow-up 

questions was relied on what her students worked on the task. This was 

the factor of the maintenance of the high-level of cognitive demands 

when the tasks were unfolded in instruction. The seven teachers 

consistently agree that the ways and the extent to which T1 supported 

students’ thinking was a crucial ingredient of maintaining high-level 

tasks. In this lesson, TI promoted deeper levels of understanding by 

consistently asking students to explain how they were doing about the 

problems. These tasks evolved in the instruction involved multiple 

strategies, required an explanation, and connected procedures to 

Figure 4a. 

 

Figure4b. 

 

 

Figure 4d. 

 

Figure 4c. 
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meaning. Thus, T1 maintained the high cognitive level when the 

mathematical tasks were carried out in the classroom. 

5. Conclusion and Discussion 

The study concluded that the training course designed and implemented 

by the use of research-based cases contributed to the teachers’ awareness 

of the importance of differentiating levels of cognitive demand of tasks 

determining students thinking. Besides, the use of research-based cases 

contributed to teachers’ skill in maintaining the high cognitive demands 

of the task enacted in classrooms. However, their awareness was 

gradually improved throughout the school year. During the case 

discussion in the TPCM course, eight teachers did not have consistent 

agreement with the level of cognitive demand to be placed in for a task.  

It is improved that there was a consensus when they were required to 

classify the tasks created by the teachers into the level of cognitive 

demands during the school year. This result indicates that the use of 

research-based cases created a good opportunity for teachers toward a 

deeper analysis of the relationship between the tasks they created and the 

level of cognitive demand determining students’ thinking. The result is 

consistent with Stein et al.’s claim (2000).  

  The effect of cases on maintaining a high level of cognitive demands 

of mathematical tasks can be rooted in the following possible explanation. 

Firstly, the cases used in the study were research-based, so that the 

mathematical tasks in the cases had been revised in advance to require 

high cognitive demand. When engaging in task-sorting activity, they 

have more opportunities to learn to differentiate levels of cognitive 

demand and have more opportunities to appreciate the high level 

mathematical tasks. When classifying the categorization of cognitive 

demands, the teachers reflected on the lesson and identified the levels of 

cognitive demand that the task placed on students during the setup and 

implementation phases. Thus, the classification of tasks made the 

teachers ultimately become more analytic and reflective about the role of 

tasks in instruction. 

  Secondly, the Task Analysis Guide provided explicit standards for 

viewing the research-based video cases and their own actual 
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mathematical instruction. This guide helped teachers scrutinize what 
their students were doing in classroom. 

  Finally, the case discussion initiated the teachers’ agreement or 
disagreement with the level of cognitive demands. Through the 
negotiation, the teachers began to consider how and why tasks differ and 
how these differences impacted opportunities for student learning. This 
made the teachers realize the significance of their role. However, 
achieving complete consensus on each task was not the intention of the 
case discussion of the study.  

  Despite having better understanding of the nature of the 
mathematical tasks, it was a challenge for some of the teachers to have 
implemented a task with high level of cognitive demands during 
instruction.  It is noted that the effect of the use of cases on the tasks 
designed by the teachers at high cognitive levels was not the same as the 
effect of the research-based cases on maintaining the cognitive levels in 
the implementation phase. Some of the teachers maintained the same 
level of cognitive demands from the setup phase to implementation phase, 
while some of the teachers declined the high level to lower level of 
cognitive demand.  

  It is found that there were usually many supportive factors present in 
the teachers’ classrooms. The major factor associated with the 
maintenance of high level cognitive demands was related to teachers’ 
expertise of mathematics instruction, such as selecting and sequencing 
the tasks, selecting and sequencing students’ various solution for 
advancing students’ high-level thinking. The factors associated with the 
decline of the high level of cognitive demands were related to the tasks, 
teachers, and students. Besides, not enough time to explore in classroom 
was against the maintenance of the high-level cognitive demand.  
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Chapter 21 

The Relationships Between Religious Beliefs and 
Teaching among Mathematics Teachers in 
Chinese Mainland, Taiwan and Hong Kong 

         LEU Yuh-Chyn      CHAN Yip-Cheung       WONG Ngai-Ying  

Despite the fact that the phenomenon of Confucian Heritage Culture 
Learners has become an educational focus in past decades, it would 
appear an over-simplification to think that Confucianism is the 
dominating Chinese school of thought. The Chinese hold various 
religious beliefs and philosophical thoughts and these thoughts in turn 
may have different impacts on mathematics teaching. Examining such 
links between religious beliefs and teaching is precisely the objective of 
the present chapter. Our focus includes the major religious beliefs of 
Confucianism, Buddhism and Christianity, and our scope covers three 
regions: the Chinese mainland, Taiwan and Hong Kong. We first 
provide an overview on beliefs about teaching among Chinese 
mathematics teachers, then briefly describe the religious situations in 
the three regions, and discuss ideological considerations and empirical 
studies on possible connections between religious beliefs and education 
in general and mathematics education in particular. Finally, we report 
on two empirical studies we conducted. The first study is a survey on 
beliefs about mathematics and mathematics teaching among 
mathematics teachers holding different religious beliefs in the Chinese 
mainland, Taiwan and Hong Kong. The second study is a comparative 
study on the values held in mathematics teaching by a Buddhist 
mathematics teacher and a Confucian mathematics teacher. Based on 
these two studies, how teachers' religious beliefs interplay with beliefs 
about and values in mathematics teaching will be discussed. 

 
Keywords：Chinese mathematics teachers, religious belief, beliefs 
about mathematics teaching 
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1. Beliefs about Teaching among Chinese Mathematics 

Teachers  

1.1 How the Chinese See Mathematics and Mathematics Teaching  

The traditional way of instructional practices and the outstanding 

academic success of the Asians, particularly those studying abroad, has 

caught the attention of sociologists and educationalists worldwide since 

the early 1990s. The Stevenson group attributed the academic success of 

Asians to Confucianism (Stevenson & Stigler, 1992). The term 

“Confucian heritage culture” was thus coined. A vast number of 

publications on Confucian heritage culture were generated thereafter like 

that of Stigler and Hiebert (1999), Watkins and Biggs (1996, 2001), and 

Zhang, Biggs, and Watkins (2010). As it stands, there are quite a number 

of such publications relating to mathematics education alone, including 

our earlier book How Chinese learn mathematics: Perspectives from 

insiders. Other publications on this topic include those by Kaiser, Luna, 

and Huntley (1999) and Leung, Graf and Lopez-Real (2006) (see Wong, 

2004 and Wong, 2013 for more details). Besides studying the 

sociological and cultural antecedents behind the academic success of 

Asians, academics began examining how beliefs affect such a 

phenomenon.  

It is common knowledge that mathematics is not value-free. Beliefs 

affect the teaching and learning of mathematics (Bishop, 1976; Bishop & 

Seah, 2008; Bishop, Seah, & Chin, 2003; Leder, Pehkonen, & Törner, 

2002). In particular, teachers’ beliefs about mathematics and 

mathematics teaching play a significant role in their instructional 

practices (Philipp, 2007; Thompson, 1984, 1992). All these can be 

conceptualized by the notion of lived space (Figure 1): the teachers shape 

the space students live in day-to-day classroom learning by teachers’ 

own beliefs about mathematics and mathematics teaching, which 

consequently result in students’ outcome space (Wong, Marton, Wong, 

& Lam 2002). This outcome space does not only include students’ 

affective and cognitive learning outcomes, but students’ beliefs are also 

developed throughout the entire learning process.  
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Teachers’ 
beliefs about 
mathematics/ 
mathematics 
teaching 

Students’ 
beliefs and 
learning 
outcomes 

Students’ 
lived space 

Based on this overall framework, a number of studies on students’ 
and teachers’ beliefs about mathematics and mathematics learning were 
conducted in the three Chinese regions: the Chinese mainland, Taiwan 
and Hong Kong (Wong, 2002). These empirical studies reinforced the 
above premise. On the one hand, it was found that students’ and 
teachers’ beliefs mirror each other: that they believe that mathematics 
involves thinking, is useful, but is more or less a subject of calculables. 
On the other hand, operational procedures, practices and memorization 
are found to be central in teaching and learning. We refer readers to 
relevant publications or a summary in Zhang and Wong (2015) for 
details. 

 
 
 
 
 
 
 
 
 

Figure 1. The lived space of mathematics learning 
 

The results of these studies (together with the on-going Third Wave 
project) showed a general picture of effective classroom learning and 
teaching in the eyes of the Chinese, both for student and teacher. An 
effective (mathematics) teacher is one who possesses rich mathematics 
knowledge and teaching experience, prepares well for the lesson and has 
a reflective and flexible mind. As for teaching, the teacher uses various 
methods to explain clearly the content and provides well-structured 
exercises. Though teaching is by and large teacher-led, the teacher will 
put effort into making lessons student-centered by facilitating teacher-
student interactions. Questioning solicit students feedback and not only 
informs teachers’ understanding of students, but also keeps students 
engaged and the class in order. From the teachers’ viewpoint, there are 
two facets in the goal of teaching: generic and specific. On the one hand, 
teachers are resolved to meet the requirements of the mathematics 
curriculum (and examinations). They aim to help students develop their 
mathematical concepts and problem-solving abilities. On the other hand, 
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they realize that non-mathematics-specific educational goals (e.g. being 

observant, equipped with analytical skills and creativity) have to be 

addressed. From the teaching perspective, besides practising 

mathematics itself, these goals can be accomplished by providing 

student-teacher interactive classroom activities such as those mentioned 

above. Students are brought up in such a lived space shaped by the 

teacher that it generates students’ learning outcomes, including students’ 

beliefs about mathematics and mathematics learning. One may refer to 

Zhang and Wong (2015) for a fuller account. 

1.2 Teachers’ Worldviews and Their Beliefs about Mathematics and 

Mathematics Teaching 

Factors influencing teachers’ beliefs about mathematics/mathematics 

teaching are numerous. Bishop (1996) proposed three (overlapping) 

kinds of values in mathematics teaching, that is mathematical, 

mathematics educational and general educational. Apart from these three 

kinds of values, teachers’ worldviews may also influence their beliefs 

about mathematics/mathematics teaching (and hence how they make 

decisions in their teaching). For instance, the aim to help students obtain 

high scores in public examinations may have conflict with students’ 

genuine understanding of mathematical concepts, and teachers’ 

worldviews might influence how they approach this dilemma. For 

example, in helping mentally challenged students, beliefs or values may 

support the teachers’ untiring efforts (Wong, Wong, & Wong, 2012). 

Heie (2002) defines worldview as “one’s comprehensive set of beliefs 

about the nature of reality and how one should live in the light of those 

beliefs” (p. 99). He further explains the multiple source of one’s 

worldview: 

As formidable as that sounds, everyone has a worldview, although it is often 

neither examined nor articulated. The source of one’s worldview beliefs are 

multiple, including knowledge gained from the academic disciplines, starting 

with one’s own disciplinary specialization, and including relevant connections, 

hopefully, with other academic disciplines. One’s worldview also includes 

beliefs emerging from one's faith commitment, be that religious or secular. (ibid) 

 



 Religious Beliefs and Teaching among Chinese Mathematics Teachers  657 

 

Teachers’ 

beliefs 

about 

maths and 

maths 

teaching 

Students’ 

beliefs and 

learning 

outcomes 

Students’ 

lived space 

Teachers’ 

worldviews, 

such as 

religious 

beliefs and 

philosophical 

thoughts 

? 

In short, as a non-negligible factor of one’s worldview, no matter how 

strong or subtle it may be, teachers’ religious beliefs and philosophical 

thoughts will have an impact (Figure 2). Some scholarly works about the 

relationship between religious beliefs and school education have been 

published in recent years. Brown (2008) describes an inspiring story of a 

teacher who “brings a Buddhist perspective into the classroom to explore 

the ethical quandaries, lived experiences and intimacy of teaching” (back 

cover). Wong and Canagarajah (2011) and Wong, Kristjánsson, and 

Dörnyei (2013) report a series of research studies on the interrelationship 

of Christian faith and English language teaching. Although religious-

related issues are addressed occasionally in mathematics education 

literatures which will be reviewed in later section, so far there are no 

systematic research studies specifically focusing on the relationship 

between teachers’ religious beliefs and mathematics teaching. The 

objective of the present chapter is to address this issue. 

 

 

Figure 2. Teachers’ worldviews and the lived space of mathematics learning 

2. Religions in the Chinese Mainland, Taiwan and Hong Kong  

As a start, we wish to emphasize to the readers that China is a 

multicultural country. The Chinese mainland alone is made up of 56 

ethnic groups with different cultural traditions. For example, there is a 

large contingent of Muslims residing in the North-western part (Xinjiang) 

of the country as well as a large number of Tibetans residing in the 

Western regions, the culture of the latter being influenced by Buddhism. 

Even within the ‘middle kingdom’, Confucianism is not the only school 

of thought, and the ideology of Confucianism itself has changed over 



658  Y. C. Leu, Y. C. Chan, & N. Y. Wong 

time. What we see as Confucianism today is a blend of ideas from both 

Confucianism and other schools of thought (and not ‘authentic’ 

Confucianism). This blending has also occurred in other schools of 

thought. There were also discussions whether Confucianism and 

Buddhism (or even Daoism) are actually religions and whether 

Buddhism, as imported from India, should be considered as Chinese. 

Emperors (and their high officials) in history also took part in 

manipulating (distorting) Confucianism, using it for a means of 

government control. Even in our own research data reported below, 

many so-called Confucian notions perceived by the respondents would, 

strictly speaking, appear to be mistaken Confucian. For the purpose of 

this study, we have termed this secular-Confucianism. More detailed 

discussions can be found in Wong, Wong, and Wong (2012). As 

mentioned above, we refrain from these debates and choose to use the 

terms ‘religion’ and ‘religious beliefs’ loosely and interchangeably, to 

embrace these concepts in a broader sense. Although some of the 

religions mentioned here do not have a Chinese origin, we include them 

because they have a considerable number of followers in China. 

Another point of interest is, as stated in Wong, Wong, and Wong 

(2012), “for the past two centuries, Western values have been largely 

imported into the Chinese region and traditional Chinese values have 

been denounced in the late Qing dynasty and the May Fourth movement, 

as well as in the Cultural Revolution. In these movements, ‘down with 

the Confucian Mansion’ was the refrain” (p. 17). It is difficult to judge 

how much ‘Chinese-ness’ there is for both mathematics and education. 

Contemporary Chinese (be they from the Chinese mainland, Taiwan or 

Hong Kong) are more likely to be learning ‘global’ mathematics in a 

Western educational system, though with some ingredients of traditional 

Chinese values. 

2.1 The Chinese Mainland  

In the Chinese mainland, Marxism, which implies atheism, is the official 

ideology since the establishment of the People’s Republic of China. Yet 

there are quite a number of followers of Buddhism, Daoism, Islam, 

Catholicism, and Protestantism (Chinese Academy of Social Sciences, 
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2007). In this regard, Buddhism is also considered an atheist religion. 

According to People’s Daily Online (http://english.people.com.cn/index 

.html), there are more than one hundred million believers of various 

religions in the Chinese mainland.  

Buddhism is one of the most influential religions in the Chinese 

mainland. In simple terms, there are three branches of Buddhism in 

China, namely Chinese Buddhism, Tibetan Buddhism, and Theravada 

Buddhism. According to People’s Daily Online, there are about 200 

thousand Buddhist monks and nuns, more than 13 thousand Buddhist 

temples, 33 Buddhist colleges, and nearly 50 types of Buddhist 

publications in the Chinese mainland. The Buddhist Association of China 

is the largest national Buddhist organization in China.  

As an indigenous traditional religion of China, Daoism is another 

influential religion in the Chinese mainland. According to the Chinese 

Daoist Association (http://www.taoist.org.cn), there are more than 1600 

temples, more than 25,000 Daoist priests and an uncountable number of 

followers of Daoism in the Chinese mainland. Whereas there are many 

regional Daoist organizations in China, the Chinese Daoist Association is 

the largest and leading one. 

Despite the fact that many people in the Chinese mainland are 

influenced by Confucianism, there are no Confucian organizations in 

China–probably because Confucianism is usually regarded as a 

philosophy rather than a religion.  

2.2  Taiwan 

In Taiwan, according to a recent survey, around 35% of people are 

Buddhists, while 33% are Daoists, though quite a proportion of them 

claim to be followers of both. A small percentage of the Taiwanese are 

Christian Protestants, Catholics or followers of I-Kwan-Tao
1
 (American 

Institute in Taiwan, 2010). There are six television channels preaching 

Buddhism, while there is only one channel each for Daoism and 

Christianity. From the numbers of followers and TV channels, we can 

                                                 
1 A new religion which is, in simplistic terms, a blend of Buddhism and Daoism 
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roughly understand the degree of influence from each religion in Taiwan 

(Hsieh, 2005; National Communications Commission, 2012).  

There are many Buddhist groups in Taiwan where the most 

influential ones include the Dharma Drum Mountain Monastery in the 

North, the Chung Tai Chan Monastery in the central region, the Fo 

Guang Shan Monastery in the South and the Tzu Chi Foundation in the 

East. Among them, the Tzu Chi Foundation and the Dharma Drum 

Mountain Monastery established their teachers’ associations in 1992 and 

1996 respectively. Though they are religious bodies, they treasure 

education heavily. This can be reflected in their goals. For the Tzu Chi 

Foundation, it is said that their goals are “to deliberate the humanity 

spirits of Tzu Chi and integrate them into teaching activities” and “to 

purify the campus and to harmonize the society” (Tzu Chi Foundation, 

2009). The goals for the Dharma Drum Mountain Monastery are “to 

integrate Buddhism and education as a devotion to elevate the humane 

quality” and “to establish Pure Land on Earth” (Teachers’ Association of 

the Dharma Drum Mountain Monastery, n.d.). These two Buddhist 

groups sponsor many meditation camps for teachers, principals and 

students, creating considerable impact on education in Taiwan. In 

contrast, even though there are many Daoist groups in Taiwan, they do 

not have similar teachers’ association and/or mediation camps targeted 

for educators in general.  

Although the debate on whether Confucianism is a religion or not still 

exists in Taiwan, we will not delve into the topic for the purpose of this 

study. Whether one regards Confucianism as a religion or not, its 

ideology undoubtedly has its influence in Taiwan and its impact in 

education. The Ministry of Education in Taiwan included the Four 

Sacred Books of Confucianism into the compulsory teaching materials of 

Chinese cultures for senior high school students. The curriculum goals 

include: “to develop consciousness for moral and ethics and to nurture 

spirits of humane and loving” and “to learn from the life wisdom from 

the ancestors so that one can distinguish the right and wrong and to 

practice it in the daily life” (Ministry of Education, 2011). However, 

there are opponents to the implementation and they argue against this for 

at least two reasons. First, they doubt that the teaching of the Four 

Sacred Books can really enhance students’ moral education. Second, they 
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insist that the government should not prohibit any religion nor advocate 

any religion (Hsieh, 2011). Nevertheless, Confucianism exhibits some 

degree of influence in education in Taiwan. 

As regards to religious bodies involved in education, there are 4 

primary schools, 6 junior high schools, 9 senior high schools, and 6 

universities run by Buddhist groups in Taiwan. Although Daoism is the 

second largest religion in Taiwan, it does not involve itself in education. 

In contrast, there are 8 primary schools, 21 junior high schools, 33 senior 

high schools, and 6 universities run by Catholic groups despite their 

smaller number of followers (List of religious schools in Taiwan, 2012). 

2.3  Hong Kong 

Ninety five percent of Hong Kong’s residents are Chinese. However, as 

Hong Kong has been ruled by Britain for a century, both Catholic and 

Protestant churches are influential (Wong & Tang, 2012). According to 

recent government census (Hong Kong Government, 2010), around 14 %, 

14%, 7%, 5%, 3% are Buddhists, Daoists, Protestants, Catholics, and 

Muslims respectively. There are also minority groups of Hindus, Sikhs 

and Jews.  

Buddhism is one of the largest religions in Hong Kong. After the 

return of Hong Kong to China, the Buddha’s birthday has become a 

public holiday in Hong Kong along with Christmas and Easter which 

have been public holidays for a long time. There are more than one 

million Buddhists and hundreds of Buddhist organizations in Hong Kong 

(Hong Kong Government, 2010). Among these organizations, the Hong 

Kong Buddhist Association (http://www.hkbuddhist.org/index.html) is 

the largest and leading one. It has over 10,000 members. It is actively 

engaged in activities and services such as promotion of Buddhism, 

medical services, education, child care services, youth activities, services 

for the elderly, charity welfare services and burial services. According to 

a database of Hong Kong school lists (Education Bureau, n.d.), there are
2
 

11 Buddhist kindergartens, 1 Buddhist nursery, 14 Buddhist primary 

                                                 
2 Not all the Buddhist schools are organized by the Hong Kong Buddhist Association. 
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schools, 20 Buddhist secondary schools, and 1 Buddhist private 

university in Hong Kong.  

Daoism is another popular religion in Hong Kong. There are about 

one million followers of Daoism and more than 300 Daoist abbeys and 

temples in Hong Kong. The Hong Kong Taoist Association 

(www.hktaoist.org.hk) organizes a wide range of activities to promote 

the beliefs of Daoism. The greatest event is the Hong Kong Daoist 

Festival which is held on the birthday of the Supreme Patriarch of 

Daoism. Daoism is also actively involved in community services 

including education. In Hong Kong, there are over 40 schools and 

kindergartens which have a Daoist background (Hong Kong Government, 

2010). 

Confucianism is not as popular as Buddhism and Christianity in Hong 

Kong, Confucian organizations such as the Confucian Academy has put 

much effort into promoting Confucianism as the nation’s major religion 

in order to enhance the cohesion of the Chinese nation and foster a 

community with moral betterment. The academy has organized different 

academic activities and published Confucian books and magazines to 

spread Confucianism (Hong Kong Government, 2010). According to a 

database of Hong Kong school lists (Education Bureau, n.d.), the 

Confucian Academy has set up 1 primary school and 1 secondary school 

in Hong Kong.  

3. Religions and Mathematics Learning and Teaching  

In the following sections, we will first discuss on how the religious 

ideologies view education and mathematics education in particular. Then, 

we will give an overview on empirical studies which involved religious-

related issues that are found in mathematics education literatures.  

3.1 Ideological Considerations  

One’s religious beliefs may affect daily routines especially during critical 

moments. For instance, whether one should order a fish at a wedding 

party when this would involve killing, or whether a Buddhist should 

celebrate Christmas involves religious considerations. Literature has 
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raised the possibility that religious beliefs influence teaching and 

learning. As early as the 1970s, the Time cover story ‘The New Whiz 

Kids’ (Brand, 1987) distinguished students with Confucian and Buddhist 

backgrounds. Wong, Wong, and Wong (2012) made an extensive 

discourse on how the three Chinese religious beliefs of Confucianism, 

Daoism and Buddhism influence education in general and mathematics 

education in particular. Although these three religions have major 

differences in their standpoints (even by what is meant by being 

‘educated’), they all fundamentally value education. Both Buddhism and 

Confucianism emphasize the educability of all human beings and 

Buddhist teachings even extend the course of nurturing beyond the 

earthly life. Although Daoism (and to some extent, Buddhism) despise 

worldly training, they believe human beings (sentient beings in the case 

of Buddhism) possess innate wisdom. Experiencing rather than 

indoctrination is particularly appreciated in Daoism and Buddhism. 

Blended with the examination culture, the educability of all human 

beings implied by these schools of thoughts make the Chinese learner 

hard working, achievement oriented and attributing success to effort 

(Watkins & Biggs, 1996, 2001). However the ancient Chinese had many 

more ways of nurturing rather than just teaching by rote. They have 

gradually developed a teaching course that goes from ‘entering the way’ 

to ‘transcending the way’ (Wong, 2004, 2006).  

In education, interestingly and first and foremost, mathematics did 

not earn particularly high regard in ancient China. Secondly, after the 

Westernisation movement in the post-medieval period, it is difficult to 

say how much of the mathematics taught in schools uses ancient Chinese 

methodology. Indeed, the educational model now existing in the Chinese 

regions appears to be a Western one. One can only argue that Chinese 

students are presently learning Western (or worldwide) mathematics in a 

Western educational system whilst having Chinese cultural values such 

as social-achievement orientation, diligence, attributing success to effort, 

and collectivism still coming into play (Wong, Wong, & Wong, 2012). 

The above concern the three ‘Chinese’ religions. As previously stated, 

though Christianity originates in the West, we find a considerable 

number of Christians in the Chinese regions. The core faith of 

Christianity lies on the relationship between humans and the creator God. 
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Christianity believes that God created the world, creatures and humans. 
As mentioned in Westminster Shorter Catechism (1647), “Man’s chief 
end is to glorify God and to enjoy him forever”. Christians also believe 
that every human is sinful and needs to restore the relationship with God 
via Jesus Christ. Therefore, applying these beliefs, the ultimate goal of 
education (including school education) is to bring students to Jesus and 
nurture them to have a good relationship with God (Proverbs 22:6). 
Following these beliefs, school education should be integrated with the 
Christian faiths as, in Christianity, and there is no distinction between 
religious knowledge and secular knowledge. All knowledge comes from 
God and humans’ ability to comprehend knowledge is limited and 
incomplete. This suggests that Christian teachers would guide their 
students to know God by means of school subjects, and that they may 
because of their faith, investigate possible connections between the 
school subjects and Christian faith, and verify all acquired knowledge 
with the teachings of the Bible, rejecting those which contradict the Bible.  

The Bible does not have explicit statements about God’s purposes for 
mathematics. However, it may be implied from God’s broader purposes 
as revealed in Bible, that mathematics is a tool for understanding nature 
and has a great impact on human culture. A Christian perspective may 
thus suggest that God has given some people the capacity and interest to 
study mathematics. “Ultimately mathematics is intended to enable us to 
serve God and other human beings” (Howell & Bradley, 2001, p. 372). 
The effective applicability of mathematics “is a marvellous gift of God 
and a reminder of the stewardship that he has entrusted to us” (Howell & 
Bradley, 2001, p. 376).   

3.2 Empirical Studies  

There are implications one can draw from various religions or schools of 
thought on teaching. In this, there are a number of empirical studies 
about the influences of religious beliefs (especially Christian faith) on 
education in general. These studies cover a variety of areas such as 
religious education, cultural conflict between religious values and school 
culture, and impact of religious beliefs on teachers’ identities. As they 
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are out of the reach of this chapter, interested readers may refer to papers 

scattered in journals such as Journal of Beliefs and Values, British 

Journal of Educational Studies, Journal of Education and Christian 

Belief, British Journal of Religious Education, Science and Education 

and many others. 

Apart from these, there are empirical studies about possible 

influences of religious beliefs on specific school subjects. A recent book 

edited by Wong, Kristjánsson and Dörnyei (2013) collates a series of 

research studies on the interrelationship of the Christian faith and English 

language teaching. The studies cover three main areas: (a) faith and 

language teacher identity; (b) faith and language learner identity; and (c) 

faith and language acquisition. There are even more empirical studies on 

the relationship between religious beliefs and science education. As early 

as the 1990s, Cobern (1991) applies worldview (in particular, religious 

beliefs) as an interpretative framework for the studies of science teaching 

and learning. BouJaoude, Wiles, Asghar and Alters (2011) investigated 

secondary students’ conception of evolution among Muslims in Egypt 

and Lebanon. Brem, Banney and Schindel (2003) investigated the 

college students’ perceived consequences of evolution. A continuum of 

perspectives ranging from strong creationist to strong evolutionist is 

identified. Varying opinions on the relationship between religious beliefs 

and science teaching are discussed. Martin-Hansen (2008) investigated 

how a group of first-year college students’ understanding on theory of 

evolution and creationism are changed as they progressed through a 

course on the Nature of Science. All these studies support that religious 

beliefs do indeed have impact on students’ scientific learning. 

Concerning teachers, Clément, Quessadam, Munoz, Laurent, Valente and 

Carvalho (2009) conducted an international comparison study on 

teachers' conceptions of the theories of evolution and creationism. The 

study involved 19 countries in Europe, Africa and Middle East. Using 

the qualitative approach, BoudJaoude, Asghar, Wiles, Jaber, Sarieddine 

and Alters (2009) investigated the views of Christian and Muslim 

biology secondary teachers and university professors on the theory of 

evolution, and Mansour (2008) investigated the influence of Muslim 

teachers’ personal religious beliefs on the teaching of controversial 

scientific issues. All these studies suggest that religion does indeed have 
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some influences on teachers' conceptions of scientific teaching. Lastly, 

religious priests' views on the relationship between religion and science 

education may have influence on teachers or students belonging to the 

religious groups. Dickerson, Dawkins, and Penick (2008) conducted an 

interesting study on 63 Christian church ministers’ views on the 

relationship between science and the Christian faith.  

Fewer studies have been conducted to explore the relationship 

between religion and mathematics education. Amir and Williams (1999) 

found that religious belief is the most influential factor on children’s 

probabilistic thinking. Some of the cases in the study of Sharma (2006) 

reflected that students were unable to predict the probability of the 

gender of a baby because they believed that gender is determined by God. 

It has also been shown that religious beliefs also influence mathematics 

teaching. In a study by Jett (2010), all the four African-American 

graduate students in mathematics or mathematics education connected 

their academic success with their personal religious and spiritual 

experiences. Norton (2002a, 2002b, 2003) found that university 

mathematics teachers who subscribed to Judaism, Christianity and 

Buddhism showed very different relationships between their religious 

beliefs and their mathematics research and teaching practices. More 

recently, Nokelainen and Tirri (2010) investigated the correlation 

between motivation and moral and religious judgments among 20 

mathematically gifted adolescents. However, they did not explain why 

people who are mathematically gifted individuals were chosen as their 

sample subjects.  

To date, the two series of studies conducted by the co-authors of this 

chapter are the only empirical studies focusing on how religious beliefs 

impact teaching among mathematics teachers in the Chinese regions. 

The first series of studies was led by Chan, the second co-author of this 

chapter. It aimed at extending the scope of religious impact to all the 

popular religions in the Chinese regions, that is Confucianism, Buddhism, 

Daoism, Catholicism, Protestantism, as well as those who do not 

subscribe to any religion. The second series of studies was led by Leu, 

one of the co-authors. Her (and her collaborators) studies unfolded how 

mathematics teachers possessing Buddhist and Confucian beliefs might 

demonstrate subtle differences in how they view learning and teaching 
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mathematics. While some earlier findings were reported in papers like 

Leu and Wu (2004) and Leu (2005), it is the first time that the value 

systems of the two teachers of different religious beliefs were compared 

comprehensively. 

In the remaining part of this chapter, we will provide an overview of 

these two series of empirical studies which are our preliminary attempt to 

fill the research gap, at least for the Chinese regions.  

4. Study One: A Survey on Beliefs about Mathematics Education 

among Teachers with Chinese Religious Beliefs, Christian Beliefs, 

and Those Not Subscribing to Any Religions 

4.1 Research Focus 

The focus of the first study was to compare the beliefs about 

mathematics and mathematics teaching and learning among teachers with 

different religions, including Chinese religious beliefs (Confucianism, 

Buddhism and Daoism), Christian beliefs (Catholicism and 

Protestantism), and those not subscribing to any religion. 

4.2 Participants and Procedures  

Six hundred and thirteen (613) mathematics teachers from the Chinese 

mainland, Taiwan and Hong Kong were invited to respond to a 

questionnaire on their religious involvement and beliefs about 

mathematics and mathematics teaching. The distribution of religions 

among these teachers is summarized in Table 1. As some religious 

groups had relatively few respondents, the religious groups were 

combined into three larger groups, namely, that 186 hold Chinese 

religious beliefs (Confucianism, Buddhism and Daoism), 137 hold 

Christian beliefs (Roman Catholicism and Protestantism) and 271 do not 

subscribe to any religion. The 14 teachers who left religion blank and the 

5 teachers who subscribe to other religions (Islam, Sikhism and 

Hinduism) were excluded from the analysis because there were too few 

respondents in these religious groups. 
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Table 1. Distribution of religions among the participants 

Religion Frequency 

Confucianism 29 

Buddhism 101 

Daoism 51 

More than one religion among Confucianism, 

Buddhism and Daoism 

5 

Roman Catholicism 24 

Protestantism 113 

Islam 3 

Sikhism 1 

Hinduism 1 
Do not subscribe to any religion 271 

Invalid (left religion blank) 14 

Total 613 

 

Besides demographic data, the questionnaire consists of two portions. 

The first portion comprises three parts: religious involvement, beliefs 

about mathematics, and beliefs about mathematics teaching.  

Firstly, the respondents were asked to select one religion that 

influences them most. Then, they were asked to complete a scale which 

measures their religious involvement. The scale was constructed by the 

authors. This scale consists of 9 items put against a 5 point scale 

(disagree, quite disagree, neutral, quite agree, and agree, with an 

additional choice of “not applicable” for those who do not possess a 

religious belief) in which the respondents were asked to indicate how 

often they attend religious activities, participate religious practices and 

read religious books. 

Teachers’ beliefs about mathematics were measured in 5 subscales by 

a 54 items questionnaire put against a 5 point scale (same options as 

above, only the option “not applicable” was removed). There were 12 

items in the subscale “Mathematics is a subject of calculables” (a sample 

item is “Mathematics is just mechanical computation”). The second 

subscale “Mathematics involves thinking” comprises 13 items (a sample 

item is “Mathematics is a subject that uses the brain”). The third subscale 

“Mathematics is useful” consists of 11 items (a sample item is “There are 

plenty of daily life applications of mathematics”). The fourth subscale 



 Religious Beliefs and Teaching among Chinese Mathematics Teachers  669 

 

“Mathematics is precise” consists of 10 items (a sample item is 

“Answers in mathematics should be very exact”) while the last subscale 

“Mathematics is logical” consists of 8 items (a sample item is “The most 

essential ingredient of mathematics is the proofs of theorems and 

formulae”). The first three subscales were developed through 

ethnographic research and were used several times, yielding satisfactory 

reliability indices (Wong, Chiu, Wong, & Lam, 2005; Wong, Kong, Lam, 

& Wong, 2010; Wong, Lam, & Wong, 1998) and the scale was now 

extended into 5 subscales according to the work of Leu and Wen (2001).  

A revised version (Capraro, 2001, 2005) of Fennema et al’s 

Mathematics Beliefs Scale (Fennema, Carpenter, & Loef, 1990) was used. 

It consists of 3 subscales (6 items each) put against the same 5 point 

scale as above. The first subscale related to how students learn 

mathematics (a sample item is “Time should be spent practicing 

computational procedures before students are expected to understand the 

procedures”). The second related to the role of the teacher in the 

sequencing of teaching both computational and application skills (a 

sample item is “Students need explicit instruction on how to solve word 

problems”). The third is about the relationships between teaching 

computational skills and problem solving skills (a sample item is “The 

goals of instruction in mathematics are best achieved when students find 

their own methods for solving problems”). Capraro (2005) further 

averaged the scores of all the items to form a score which reflects a 

constructivist belief.  

The second portion consists of five open-ended questions. They are: 

In your opinion, 

1）Mathematics is… 

2）Mathematics learning is… 

3）Mathematics teaching is… 

4）Education is… 

5）Religious belief is… 

Similar open-ended questions have been used in Wong (1993, 1996), 

which yielded fruitful results. 
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4.3 Results from the First Portion  

Preliminary analysis of the first portion of the questionnaire has been 

reported in Chan, Wong, and Leu (2012). Satisfactory internal 

consistency reliability indices were obtained. The Cronbach alpha of 

religious involvement was .97. The Cronbach alphas of the five subscales 

of beliefs about mathematics ranged from .70 to .88.  The Cronbach 

alphas of the three subscales of beliefs about mathematics teaching 

ranged from .66 to .82.  

Beliefs about mathematics among teachers of the three religious 

groups (Chinese religious beliefs, Christian beliefs, and having no 

religion) were compared. One-way ANOVA was conducted. The 

statistics are summarized in Table 2. Results reveal that respondents 

holding Christian beliefs (Catholicism and Protestantism) see 

mathematics as precise and as a subject of calculables more than their 

counterparts. Respondents holding Chinese religious beliefs 

(Confucianism, Buddhism and Daoism) consider that mathematics 

involve thinking more than those holding other beliefs.  

Table 2. Comparison of beliefs about mathematics among Groups 

Subscale Mean  

(standard deviation) 

F Scheffe Post-hoc 

comparisons 

Chin Christ NoRel   

Mathematics is a 

Subject of 

Calculables 

2.64 

(0.71) 

2.86 

(0.65) 

2.57 

(0.70) 

8.008*** Christ > Chin 

Christ > NoRel 

Mathematics 

Involves 

Thinking 

4.33 

(0.46) 

4.20 

(0.42) 

4.22 

(0.48) 

4.593* Chin > Christ 

Chin > NoRel 

Mathematics is 

Useful 

4.34 

(0.56) 

4.22 

(0.53) 

4.24 

(0.62) 

2.384 N.S. 

Mathematics is 

Precise 

2.50 

(0.72) 

2.69 

(0.61) 

2.49 

(0.72) 

4.205* Christ > Chin 

Christ > NoRel 

Mathematics is 

Logical 

3.56 

(0.58) 

3.54 

(0.56) 

3.42 

(0.57) 

3.799* Chin > NoRel 

 

* p < .05, **p < .01, *** p < .001. 

Chin: Chinese religious beliefs 

Christ: Christian beliefs 

NoRel: No religions 

N.S.: difference not reached statistical significance 
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Results reveal that in general Christians see that mathematics is 

precise and is a subject of calculables more than those holding other 

religions. Furthermore, those subscribing to the Chinese religions see 

that mathematics involves thinking more than those holding other 

religions, and view mathematics as logical more than those who do not 

subscribe to any religion. 

Beliefs about mathematics teaching among teachers of these three 

religious groups were also compared. One-way ANOVA was conducted. 

The statistics are summarized in Table 3. Results reveal that Christians 

possess relatively weaker constructivist view on mathematics teaching 

than others. 

Table 3. Comparison of beliefs about mathematics teaching among groups 

Subscale Mean  

(standard deviation) 

F Scheffe Post-hoc 

comparisons 

Chin Christ NoRel   

LERN 3.35 

(0.85) 

2.95 

(0.79) 

3.28 

(0.93) 

8.912*** Chin > Christ  

NoRel > Christ 

ROLE 2.99 

(0.75) 

2.93 

(0.72) 

3.09 

(0.77) 

2.045 N.S. 

RELT 4.11 

(0.60) 

3.90 

(0.47) 

4.03 

(0.56) 

4.952** Chin > Christ 

* p < .05, **p < .01, *** p < .001. 

 

Chin: Chinese religious beliefs 

Christ: Christian beliefs 

NoRel: No religions 

LERN: How Students Learn Mathematics 

ROLE: The Role of Teacher in Sequencing of Teaching Computational and Application 

Skills 

RELT: Relationships between Teaching Computational Skills and Problem Solving Skills 

N.S.: difference not reached statistical significance 

 

Results reveal that the Christians view that understanding should take 

place before computational practices when compared with mathematics 

teachers holding other religious beliefs. Yet they also considered that 

having students find their own methods to solve problems may not 

necessarily be the best way to achieve the goal of mathematics teaching. 

Correlational analyses further reveal that the degree of religious 

involvement is mildly correlated to some subscales of beliefs about 
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mathematics in the positive direction. The calculation of Pearson 

correlations reveals that the degree of religious involvement has a slight 

positive correlation to ‘mathematics is a subject of calculables’ (r =.206, 

p < .001), ‘mathematics is precise’ (r =.167, p < .001), and ‘mathematics 

is logical’ (r =.166, p < .001). On the other hand, the degree of religious 

involvement is mildly correlated to the constructivist view about 

mathematics teaching in the negative sense (r = -.222, p < .001).  

4.4 Results from Open-ended Questions 

Twenty six percent of respondents left the open-ended questions blank, 

and these were thus discarded. Content analyses were performed on valid 

responses and several themes emerged from these responses. Some of the 

responses may fall under more than one theme. Themes that contain 

responses by less than 5% in all the three groups were not reported 

because there were too few respondents. The themes were arranged in 

descending order of the total frequency. The responses to these questions 

are shown in Figures 3-7. In these figures, the percentages are checked 

over each religious group. Consider the first triple-bar in Figure 3, 16% 

among those holding a Chinese religious beliefs (and not of the entire 

sample) offered a response in the first theme, 27% among the Christians 

and 6% among those subscribing to no religions offered responses falling 

into the first theme. 

The response rate to the first question (‘mathematics is...’) of the 

groups of Chinese religious beliefs, of Christian beliefs, and of No 

religion were 74%, 72% and 69% respectively. The percentages of the 

responses to the first question are shown in Figure 3. Results reveal that 

‘thinking and inference’ was the most popular theme among respondents 

holding Chinese religious beliefs whereas ‘mathematics contents and 

methods’ was the most popular theme among respondents holding 

Christian beliefs. Furthermore, both the themes ‘mathematics contents 

and methods’ and ‘real life applications’ were relatively more popular 

among respondents holding Chinese religious beliefs and Christian 

beliefs. On the other hand, the themes of ‘thinking and inference’ and 

‘seeing mathematics as a discipline’ were also relatively popular among 

respondents holding Chinese religious beliefs but less popular among 
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16% 27% 16% 16% 14% 8%
27%

9% 9% 7% 8%6% 2% 3% 4% 1% 4%12%
0%5%10%15%20%25%30%

mathematicscontents andmethods thinking andinference real lifeapplication seeingmathematics asa discipline related to science affective aspect
Theme

Percentage Chinese religious beliefsChristian beliefsNo religion
respondents holding Christian beliefs. No obviously popular themes were 

found among respondents who claimed not to subscribe to any religion. 

Figure 3.  Percentages of various responses to ‘mathematics is…’ 

 

The response rate to the second question (‘mathematics learning is...’) 

of the groups of Chinese religious beliefs, of Christian beliefs, and of No 

religion were 74%, 72% and 70% respectively. The percentages of the 

responses to the second question are shown in Figure 4. Results reveal 

that ‘thinking and inference’ was the most popular theme in all the three 

groups. Yet, the percentage of respondents who do not have religion for 

this theme was not very high. ‘Feeling towards learning mathematics’ 

was also the most popular theme among respondents holding Christian 

beliefs and the group of respondents who claimed not to subscribe to any 

religion, and this theme was also relatively popular among respondents 

holding Chinese religious beliefs. Yet, the percentage of respondents 

who do not belong to any religion for this theme was not very high. 

Furthermore, the theme ‘methods to learn mathematics’ was relatively 

popular among the respondents holding Chinese religious beliefs but less 

popular among the other two groups. 



674  Y. C. Leu, Y. C. Chan, & N. Y. Wong 25% 12% 12% 9% 8% 6% 5%
21%

4% 6% 7% 9% 4%8% 8% 2% 2% 2% 1% 2%
21%

0%5%10%15%20%25%30%
thinking andinference feeling towardslearningmathematics methods tolearnmathematics real lifeapplication attitude to learnmathematicsand moralaspects problemsolving mathematicsknowledge,skills andconcepts Theme

Percentage Chinese religious beliefsChristian beliefsNo religion

Figure 4. Percentages of various responses to ‘mathematics learning is…’ 

 

The response rate to the third question (‘mathematics teaching is...’) 

of the groups of Chinese religious beliefs, of Christian beliefs, and of not 

subscribing to any religion were 73%, 69% and 67% respectively. The 

percentages of the responses to the third question are shown in Figure 5. 

Results reveal that ‘thinking and inference’ and ‘feeling towards teaching 

mathematics’ were the two most popular themes among all the three 

groups. However, regarding to the two themes, the percentages of 

respondents who do not subscribe to any religion were not very high. 

Furthermore, the theme ‘mathematics knowledge, skills and concepts’ 

was also relatively popular among the respondents holding Chinese 

religious beliefs and Christian beliefs, but less popular among the 

respondents who do not subscribe to any religion. The theme ‘guidance 

and interaction with students’ was also relatively popular among the 

respondents holding Chinese religious beliefs but less popular among the 

other two groups.  

The response rate to the fourth question (‘education is...’) of the 

groups of Chinese religious beliefs, of Christian beliefs, and of those not 

subscribing to any religion were 72%, 69% and 66% respectively. The 
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 22% 13% 13% 11% 5% 6% 7%17% 6% 7% 3% 3%6% 9% 3% 1% 1% 2% 1%
21% 12%0%5%10%15%20%25%

thinking andinference feeling towardsteachingmathematics mathematicsknowledge,skills andconcepts guidance andinteraction withstudents altitude to teachmathematics problem solving real lifeapplication
Theme

Percentage Chinese religious beliefsChristian beliefsNo religion
Figure 5. Percentages of various responses to ‘mathematics teaching is…’ 

 

percentages of the responses to the fourth question are shown in Figure 6. 

Results reveal that ‘nurturing the growth of a person’ was the most 

popular theme among all the three groups, and respondents holding 

Christian beliefs had the highest percentage for this theme among these 

three groups. Furthermore, the themes ‘knowledge transfer and heritage’ 

and ‘mind, spiritual and moral aspects’ were also relatively popular 

among the respondents holding Chinese religious beliefs and Christian 

beliefs but less popular among the respondents who claimed not to 

subscribe to any religion. 

The response rate to the fifth question (‘religious belief is...’) of the 

groups of Chinese religious beliefs, of Christian beliefs, and of not 

subscribing to any religion were 71%, 69% and 58% respectively. The 

percentages of the responses to the fifth question are shown in Figure 7. 

Results reveal that ‘mind and spiritual aspects’ was the most popular 

theme among the respondents holding Chinese religions whereas 

‘meaning of life’ was the most popular theme among the respondents 

holding Christian beliefs. Notably, this does not necessarily accord with 

the general perception that Chinese religions pay more attention to 

earthly life. The reason(s) behind this occurrence may be worth further 

exploration in future studies. Nevertheless, the percentages for these two 

themes were also relatively high among the respondents of these two 
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13% 11% 12% 4% 7% 5% 5% 6%
23% 13% 13% 5% 1% 5% 4% 1%10% 6% 5% 3% 1% 0% 1% 0%0%5%10%15%20%25%

nurturing thegrowth of aperson knowledgetransfer andheritage mind, spiritualand moralaspects important andmeaningful contribution tosociety andcountry relate to reallife guiding orinspiring thestudents undertaking ofconscience
Theme

Percentage Chinese religious beliefsChristian beliefsNo religion

35%
11% 8% 9% 6%16% 23% 15% 7% 3%7% 1% 1% 2% 0%0%5%10%15%20%25%30%35%40%

mind andspiritual aspects meaning of life faith moral aspect strength andencouragement Theme

Percentage Chinese religious beliefsChristian beliefsNo religion
 Figure 6. Percentages of various responses to ‘education is…’ 

Figure 7.  Percentages of various responses to ‘religious belief is…’ 

 

 

groups. Furthermore, ‘faith’ was also a relatively popular theme among 

the respondents holding Christian beliefs but less popular among the 

other two groups. No obviously popular theme was found among the 

respondents who claimed not to subscribe to any religion. 
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4.5 Summary  

Before we draw conclusions from our two-part study, we must point out 

that the study is explorative in nature. However, we assert that this may 

still be a step forward in research, no matter how small it may be. Our 

original intention was to compare the beliefs about mathematics and 

mathematics teaching among Chinese mathematics teachers who hold 

different religions. As the sample sizes of some religious groups were 

relatively small, we decided to combine the religious groups more 

generally into Chinese religious beliefs, Christian beliefs and those not 

subscribing to any religion. The drawback is, the group holding Chinese 

religious beliefs is a mixed one and consequently the results are not 

decidedly conclusive. The same is true for the combined Christian group, 

Catholicism and Protestantism. However, for the purpose of worthwhile 

analysis, we maintain the combinations of the three religious groups. The 

differences in beliefs about mathematics and mathematics teaching 

among teachers holding Chinese religious beliefs, Christian beliefs and 

those who do not subscribe to any religion may not be conclusive, yet 

our primary aim of exploring whether such religious differences exist at 

all, in their impact on mathematics education, is fundamentally achieved. 

What precisely these differences are, and how far such differences can be 

attributed to their religions as well as their religious engagements 

requires further investigation.  

Generally, our study was not lacking respondents. However, some 

religious beliefs like Confucianism do not have a formal ritual (like 

baptism in Christianity and taking refuge in Buddhism) for becoming a 

member of that religious group. In those cases, respondents may find 

difficulties in labelling themselves as followers of such religions. In this, 

we believe that advancement in methodology can overcome the issue. 

Concerning the beliefs about mathematics, the first portion of the 

questionnaire found that respondents holding Chinese religious beliefs 

consider that mathematics involves thinking more than those holding 

other beliefs. This was consistent with the finding that ‘thinking and 

inference’ was the most popular theme for the first open-ended question 

(‘mathematics is...’) among respondents holding Chinese religious 

beliefs. Furthermore, the first portion found that respondents holding 
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Christian beliefs see mathematics as precise and as a subject of 

calculables more than their counterparts. This may explain why 

‘mathematics contents and methods’ was the most popular theme for the 

first open-ended question among respondents holding Christian beliefs. 

Concerning the beliefs about mathematics teaching and learning, the 

first portion of the questionnaire found that the respondents holding 

Christian beliefs possess relatively weaker constructivist view on 

mathematics teaching than the other two groups of respondents and the 

degree of religious involvement is mildly correlated to the constructivist 

view about mathematics teaching in the negative sense. Whether this 

relates to Christian beliefs agrees to some aspects but disagrees to some 

other aspects of (radical) constructivism (Howell & Bradley, 2001), the 

mono-theistic nature may be one perspective worth consideration.  

The use of open-ended questions in the second portion of the 

questionnaire aimed to gain a deeper understanding of any differences 

among the groups. Although there were more similarities than 

differences between the respondents holding Chinese religious beliefs 

and Christian beliefs, subtle discrepancies were found. For instance, the 

most prominent ‘Christian theme’ on ‘what is mathematics’ is content 

and method, while the most prominent ‘Chinese theme’ is thinking and 

inference. This can be seen to echo the earlier questionnaire portion that 

the Christians see mathematics more as a subject of calculables. More 

discrepancies were found when those who do not subscribe to any 

religion were included in our comparison. In particular, the percentages 

of the most popular theme of responses among this group in the open-

ended question section were not very high compared with their 

counterparts. It implies that there was no obviously popular theme of 

responses to the open-ended questions from the group of respondents not 

subscribing to any religion. Inevitably, such surveys can only solicit 

respondents’ opinions in a snapshot and in a one-sided fashion. In this, 

more can be revealed through in-depth qualitative studies. 

Despite the fact that there is an imbalance between the sample sizes 

of teachers subscribing to Buddhism and of those subscribing to 

Confucianism, further analyses focusing on these two groups indicate 

traces of evidence that there are slight differences between these two 

groups. The difference shown in our study may be far from salient due to 
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sample size and insensitivity of instrument. In this area, we have 

conducted more in-depth research which we report below. 

5. Study Two: Comparison of Values in Mathematics Teaching 

between a Buddhist Teacher and a Confucian Teacher 

5.1 Research Focus 

The second study is an in-depth comparative case study which involves 

two primary mathematics teachers in Taiwan, one a devoted Buddhist 

and the other influenced by Confucianism. The study aims at 

investigating their values in mathematics teaching. Part of the results 

were reported in Leu (2005) and Leu and Wu (2004), though this is the 

first time that the value systems of the two teachers were combined for a 

comprehensive comparison. 

5.2 Participants 

Since this research aims at exploring the values in primary school 

mathematics, we tried to identify subject teachers with relatively stable 

mathematics pedagogical and personal values. Senior teachers are more 

likely to have stable mathematical pedagogical values. Therefore, senior 

teachers were selected for our research. There are two categories of 

primary teachers in Taiwan. One is the subject-specialized teacher, who 

provides instruction in a single subject, such as natural sciences, physical 

education or art. The other category of teachers is the homeroom teacher, 

who is responsible for a designated class and the instruction in several 

subjects, such as Mandarin
3
, writing, mathematics, social studies, and 

ethics. More importantly, the homeroom teacher is the primary mentor 

and counsellor for the students’ behaviour and social conduct at school. 

Therefore, homeroom teachers are selected as our research participants.  

It was not easy to find teachers willing to participate in our study 

because participation was time consuming and involved personal details 

                                                 
3 Official language in Taiwan, which is equivalent to Putonghua in the Chinese mainland. 
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which not everyone would wish to disclose. Two senior homeroom 

teachers, Ms. Chen and Ms. Lin, were finally recruited for our study.  

Ms. Chen and Ms. Lin have teaching experiences of 21 and 9 years 

respectively. Ms. Chen teaches at an affiliated primary school of a 

university. Most of the parents of the students at that school are civil 

servants or teachers, having middle to upper socioeconomic status. There 

are 36 students in her class (Grade 5).  Ms. Lin teaches at an ordinary 

primary school. Most of the parents of the students at that school run 

small businesses or are workers, their socioeconomic status being 

medium to low. There are 27 students in Ms. Lin’s class (Grade 6).  

Among the two participants, one is a Buddhist and the other is 

influenced by Confucism. Ms. Chen, a devoted Buddhist, commented 

that, “From Buddhism, I realized many different perspectives. Buddhism 

is actually an education, not a religion. My life opens up in Buddhism.” 

Further, her school principal commented that, “She [Ms. Chen] is a 

Buddhist. She likes to talk about Buddhism with her colleagues. […] She 

uses this power [the power from Buddhism] to pass her days and uses 

this power to work.” Ms. Chen stated that she is a follower of the 

Pureland sect. Ms. Lin however, considers herself as adopting a 

Confucian worldview as she repeatedly commented that she hopes her 

children and students will go on to attain higher academic qualifications. 

Such values are consistent with what was stated in Huang and Yore 

(2003), that: under the influence of Confucian thoughts, “Chinese parents 

usually have rather high exceptions for their children and their future 

success” (p. 427). Indeed, Ms. Lin also pointed out that she was 

influenced by the notion of gentry (shì dàfū) possessed by her parents.  

5.3 Method 

Bishop (2001) argued that teacher’s decision making is influenced by his 

or her value structure and current teaching situations. When a teacher 

makes decisions in a consistent way and then executes these decisions, 

we can observe his or her mathematics teaching behaviours and identify 

the intentions of these decisions through interviews. By means of 

identifying a teacher’s decision mechanism, we can trace back his or her 

structure of values and then his or her background culture. In view of this, 
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classroom observations and interviews were employed in this case 

study to understand the mathematics pedagogical values of two 

teachers. The objective of classroom observations was to search for 

recurrent behaviours which occurred in mathematics teaching, critical 

events, and scenarios of decision making or valuing. Different values 

may be displayed through the same teaching behaviour. For instance, 

many primary teachers in Taiwan like to ask students to read classics 

but their intentions can be very different. Some teachers want to 

foster the students’ attention abilities. Some teachers want to enhance 

the students’ language abilities. Some teachers want to promote moral 

education. Therefore, interviews were conducted to discover into the 

values behind such recurrent behaviours, critical events and scenarios. 

The respective classrooms of Ms. Chen and Ms. Lin have been 

observed for about one year. The number of lessons observed for Ms. 

Chen and Ms. Lin were twelve and ten respectively, while the number of 

interviews conducted were seventeen and eighteen, respectively. 

The data were collected by various methods over a variety of 

occasions and topics including once-a-week, whole-unit and unscheduled 

observations, and interviews to allow data triangulation. The regular 

once-a-week observation aimed at providing a full picture of the 

teachers’ instructional behaviours across different mathematics topics. 

The topics covered in Ms. Chen’s mathematics class include: area of a 

rectangle, equivalent fractions, multiplication and division of integers by 

place value, and the inverse relationship between multiplication and 

division. The topics covered in Ms. Lin’s mathematics class include: the 

area of a circle, direct proportion, inverse proportion, map scales, and the 

concept of probability. The teachings of entire topics were also observed. 

The teaching of Ms. Chen on the area of plane figures, and the teaching 

of Ms. Lin on formulas of circumference were followed.  

5.4 Data Analysis and Interpretation  

The observed lessons were videotaped while the interviews were audio 

taped and transcribed. They were all analysed under grounded theory and 

constant comparison (Creswell, 1998), under the following procedures: 

Repetitive teaching behaviours were identified and defined. 
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The rationale for the teaching behaviours was abstracted from the 

interviews. 

Teaching behaviours and rationales were compared and contrasted 

continuously throughout the analysis, leading to the classification of 

behaviours and rationales into categories. 

Informant checks were used to confirm data, analyses, and 

interpretations. Any disagreements were discussed, and consensus was 

reached among the researchers and informants. 

The relationships among these mathematics pedagogical values were 

determined for Ms. Chen/ Ms. Lin’s teaching actions and personal beliefs. 

Potential bias was addressed by having one Buddhist and two non-

Buddhists as research team members. All three team members 

participated in the classroom observations and interviews, as well as 

discussed the classroom observations and interpretations of interview 

data. The different perspectives were helpful during the classroom 

observations, follow-up interviews and data analyses, since the chief 

researcher is a Buddhist and the non-Buddhist members had limited 

preconceptions about Buddhism. The research team met monthly with an 

external panel of three researchers with expertise in mathematics 

pedagogical values of Taiwanese secondary school teachers. Research 

data and interpretations were shared with the panel and discussed to 

improve data analysis, interpretations, and research procedures.  

5.5 Results  

Under the above analytical procedure, the value systems of both Ms. 

Chen and Ms. Lin were revealed, including their views on the goals of 

education and of mathematics teaching itself. Results revealed that they 

demonstrated different perspectives on the goals of education and of 

mathematics teaching, as influenced by their religious beliefs. In the 

following, quotations from the interview are marked in italics. 

5.5.1 The Goal of Education 

For Ms. Chen, the primary goal of education is to unfold the students’ 

own nature of enlightenment; for Ms. Lin, the goal of education is for 
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achieving success and fame in life. The value systems of Ms. Chen and 

Ms. Lin on education are depicted in Figure 8 and Figure 9, respectively. 

In these figures, the two teachers’ ideologies in teaching are depicted in 

ovals. Although their teaching actions are not the focus of the study, they 

reflect the teachers’ beliefs so we have shown these in rectangular boxes. 

 

 

 
 

 represents the mathematics teaching behaviours of Ms. Chen  

 

 represents the teaching goals or values of Ms. Chen  

 
Figure 8. The value system regarding education of a devoted Buddhist teacher 

 

Although Ms. Chen and Ms. Lin possess different goals in education, 

their teaching methods have a lot in common. For instance, both require 

their students to be attentive in the class. However, the two teachers have 

different reasons for their methods (see below). There are also 

differences in their teaching behaviours, for instance, how they react 

when their students make mistakes in solving mathematics problems, in 

which the reasons behind their reactions also differ. Further, there are 

teaching behaviours which are particular to a teacher, such as the sharing 

of daily experiences for Ms. Chen.  
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Achieving success and 

winning recognition 
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higher education 
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 represents the mathematics teaching behaviours of Ms. Lin  

 

 represents the teaching goals or values of Ms. Lin  

Figure 9. The value system regarding education of a Confucian teacher 

 

 

As for requesting students to be attentive in class, Ms. Chen often 

encouraged her students to reiterate the problem and solution. She 

explained, “My purpose is to redraw absent-minded students’ 

attention. … I realize that if one can calm down and has a peaceful mind, 

he/she can learn things well and quickly.” Other than asking her students 

to be attentive in the class, she also asks them to recite the classics for 3  
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to 5 minutes before each lesson. She said, “When you focus on the 

Classics, you get morality, meditation and wisdom. As long as you can 

concentrate, your mind won’t wander. Then you get meditation. You can 

realize the meaning of the Classics and you will gain wisdom.” 

Ms. Chen’s rationale behind these classroom practices was that 

concentration can lead to calmness and meditation, which will then lead 

the way to wisdom and enlightenment. 

Like Ms. Chen, Ms. Lin would ask students to recite classics before a 

class and seeks their full attention during the class. She commented that, 

“My students recite classics. They would do that for 3 to 5 minutes before 

the class. I think the 5-minute classic recitation calms them down” and “I 

think if a child has other things on his/her mind and cannot settle down, 

his/her learning outcome would suffer. So no matter what subject I’m 

teaching, I would ask them to recite”. As we try to distinguish whether 

the purpose of Ms. Lin’s teaching behaviours is the same as Ms. Chen’s, 

we asked Ms. Lin the question, “Other than calming students down, is 

there any other purpose for the recitation?” She responded “I think the 

children nowadays have poor language abilities. I believe that by 

reciting these classics, they have more exposure to the language as 

practiced in olden times.” From her response, we can see that Ms. Lin 

places a great weight on students’ academic achievement. Contrastingly, 

Ms. Chen emphasized on the unfolding of enlightenment.  

When students make mistakes in solving mathematics problems, 

Ms. Chen would simply point out that they have made mistakes, but she 

would not explicitly tell students where/what their mistakes were. 

Ms. Chen’s rationale on developing students’ own awareness of mistakes 

is that the awareness of self mistakes would lead to reflection and 

consequently bring out the awareness of enlightenment. 

When Ms. Lin spots incorrect problem-solving strategies of students 

either during class instruction or in their homework, she never discusses 

them in front of the class. She explained that, “(in my Mandarin class) I 

used to write the wrong characters made by students on the blackboard 

and point out the mistakes, hoping that other students would not make 

the same mistakes. But the result was that many students copied the 

wrong writing.” 
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Ms. Lin did not realize the different characteristics in teaching 

Mandarin and Mathematics and used her experiences in teaching 

Mandarin to draw an analogy to the teaching of Mathematics. The 

statement of Ms. Lin is clear that she attaches more importance to the 

correct solution rather than to the problem-solving processes. 

As for the sharing of daily experiences, Ms. Chen would tell her 

students to “Write down a simple line in the communication book about 

what you’ve learned from what you’ve seen and heard today. …” She 

would ask her students to share daily experiences in the class. 

Ms. Chen’s educational rationale for the sharing of life experiences is 

that it will trigger students to reflect on the behaviours and attitudes in 

their life and finally lead students to unfold their own enlightenment. 

Ms. Chen and Ms. Lin have dramatically different goals of education. 

Ms. Chen understands the difference between Confucianism and 

Buddhism. She explained, “The teachings of Confucius and Mencius 

focus only on the present life. But Buddhism tells you about your past, 

present and future. We all have that innate ability. I want to help my 

students to restore that feeling, to restore their self-awareness. The word 

“Buddha” means awareness. Buddhism gives answers to life. Our 

knowledge (those in the textbooks) can’t set one’s mind free.” Therefore, 

the educational goal of Ms. Chen is to guide her students to unfold their 

own enlightenment.  

  Ms. Lin helped her students to master the knowledge in the 

textbooks by means of previewing and well-organized teaching plans so 

that the students can achieve high scores (please refer to the next section 

for further details). She would forbid her students to use calculators in 

school mathematics examinations because “calculators are not allowed 

in the public examination of Taiwan. I require my students to do 

mathematics without a calculator so that they can adapt to the public 

examination culture of Taiwan.” She said, “There is pressure of moving 

up the academic ladder in Taiwan. Mathematics, Science and English 

are determining subjects. And what primary teachers can help with this 

is the subject of Mathematics.” Ms. Lin’s concern on students’ academic 

performances is consistent with what Huang (2004) has said on the 

moving up the academic ladder as an educational goal. Huang stated, 

“Although there are many career choices, the most rewarding path is 



 Religious Beliefs and Teaching among Chinese Mathematics Teachers  687 

 

‘junior secondary – senior secondary – university’ which is achieved 

through examinations” (p. 214). This can be echoed by the comment in 

International Commission on Mathematical Instruction (2006) that “in East 

Asian societies, students, teachers, and parents view written tests and 

examinations as the most important thing in a students’ school life and as a 

key to the success of their future life” (p. 17). Ms. Lin further elaborated 

this point in her address at the graduation ceremony, “I wish you achieve 

success and win recognition (gōng chéng míng jiù) as early as possible, 

and come back to visit us.” It reflects that she strongly values 

achievement and recognition and regards them to be her goal of 

education. This idea is generally perceived as being influenced by 

Confucianism
 4
. 

5.5.2 The Goal of Mathematics Teaching  

Other than different goals of education, Ms. Chen and Ms. Lin also have 

different values on mathematics teaching. The goal of Ms. Lin’s 

mathematics teaching is to help students to master knowledge acquired 

through the textbooks and achieve high scores in tests and examinations. 

In contrasting, other than helping students understand mathematics 

knowledge, Ms. Chen places more emphasis on how to develop students’ 

problem-solving attitudes in life. Under these different goals of 

mathematics teaching, the teachers have demonstrated different 

behaviours in their mathematics teaching. Most of the primary teachers 

in Taiwan follow closely the contents in mathematics textbooks in their 

teaching. Ms. Lin requested her students to preview the textbook 

contents and questions before attending mathematics lessons. The 

purpose of previewing lessons is to “make students have a better 

understanding when [I] explain the solving strategy provided in the 

textbook.” The teaching behaviours of Ms. Lin’s mathematics instruction 

included designing a well-organized teaching plan and lecturing 

systematically about the solution provided in the textbook. Ms. Lin 

                                                 
4
 As mentioned above, there is a fine line between Confucianism proper and (secular-) 

Confucianism as perceived by the public. Again please refer to Wong, Wong, & Wong 

(2012) for details. 
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lectured on the textbook solutions most of the time and allowed little or 

no time for students to present their solutions. Ms. Lin said “I prefer the 

textbook solution because it is the solution proposed by the experts and 

should be the most appropriate solution for their age.” She further states, 

“There is a time limit on the test. If they don’t do the problems as quickly 

as they can, they may not have enough time to finish all the problems. 

Then their grade will suffer. So, I don’t encourage them to use their own 

solution if it’s not a better one.” From her answer, Ms. Lin’s viewpoint 

on student solutions is related to “how to get good grades on the test.” 

Besides the above teaching behaviours, Ms. Lin also required 

students to fully concentrate during her class, providing many review 

sheets for students after each lesson is complete, giving tests regularly 

and reviewing students’ work constantly. For Ms. Lin, the goal of all 

these teaching behaviours is to help students master the knowledge 

acquired in the textbook and attain high scores in tests. 

Ms. Lin cares about her students’ academic achievement to a great 

extent. The interviewers asked her, “Do you think getting higher 

education is students’ only choice? If one student didn’t get good grades 

at school but later achieves success in his/her career, do you feel any 

regrets for him/her?” She responded, “Yes, I do feel sorry for them. If my 

students can have good grades, their goal is clear: doing well in the 

college entrance exam and getting into a good university. But for those 

who don’t have good grades, they can’t go to the college and they have 

fewer choices.” This idea is similar to what is expressed in the popular 

poem, “All walks of life are inferior, only being an academic is the top 

rank”. Again, this notion is commonly perceived as being influenced by 

Confucianism. Putting this idea into mathematics instruction, one can 

postulate that “One who can learn mathematics well has a better chance 

of attaining higher education and it will be easier for those who attain 

higher education to achieve a respected social status and a successful 

life.” We clearly see that Ms. Lin attaches great importance on her 

students achieving high scores in mathematics examinations and 

acquiring high academic qualifications. This idea is consistent with Liu 

(1995), that “teenagers’ academic pressures come from the urge to move 

up the academic ladder, which is rooted in the notion of gentry (shì dàfū) 

which looks down upon the blue collar” (p. 29).  
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Separately, Ms. Chen would not only ask students to solve the 

questions on their own but also have them explain their problem-solving 

process. Ms. Chen would even tell her students’ parents, “In solving 

mathematics problems, getting the right answer is but one important 

goal. Nevertheless, understanding is essential.” 

Ms. Chen believes she was emphasizing another purpose of 

mathematics teaching. She remarked that, “Just like solving a problem in 

mathematics, we encounter many problems in our life and we should 

learn how to solve the problems. The attitudes are important. I think 

mathematics lessons teach more than mathematics knowledge. We need 

to teach the students to apply the spirit of solving mathematics problems 

in their lives. In other words, when encountering a problem in our life, 

we should try to solve the problem on our own and not get stuck simply 

because no one has taught us how to solve that life problem. 

Mathematics is not only in the textbooks but we should practice and 

integrate the spirit of solving mathematics problems in our life.” She 

adds, “Don’t keep on telling yourself that it is impossible to make it and 

give up, especially when you are solving problems. … Don’t be afraid to 

make mistakes. Just find out what is wrong, so you won’t repeat the same 

mistakes.” 

Further, Ms. Chen supplemented some other reasons to support her 

emphasis on developing students’ problem-solving attitudes. “No matter 

which subject you are teaching, I think students can learn the subject 

easily if their problem solving methods and attitudes can be fostered. If 

they are not equipped with such methods and attitudes, they would face a 

lot of learning difficulties.” She adds, “I think the purpose of education is 

to nurture human beings. The human part (the development of problem 

solving skills and disposition, together with the unfolding of one’s own 

nature of enlightenment) is more important. A teacher should teach both 

skills and knowledge. But I think if a teacher can set up good moral 

standards (which encompass problem solving methods and attitudes, as 

well as self awareness), his/her students won’t be far from attaining the 

knowledge.” The above two statements show how Ms. Chen’s purposes 

on mathematics teaching and education differ from Ms Lin’s above.    
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5.6 Summary 

The above in-depth case study using qualitative methods suggests that 

teachers influenced by Buddhism and Confucianism possess different 

value systems, including their views on the goals of education and of 

mathematics teaching. Results revealed that, the goal of education 

according to Ms. Chen, who is a devoted Buddhist, is to initiate students’ 

self awareness. Consequentially, the goal of mathematics teaching is the 

development students’ problem-solving dispositions for their future adult 

life. By contrast, the educational goal of Ms. Lin, who is influenced by 

Confucianism, is for her students to gain success and fame in life. In 

practice, her goal of mathematics teaching is to help students master the 

knowledge acquired in textbooks and attain high scores in tests. Though 

the various teacher behaviours of these teachers may have similarities as 

well as differences, these behaviours are all grounded on different 

premises, rooted in their own religious beliefs. Such differences might be 

attributed to the devotedness of these two teachers in their religions. 

Whether religious beliefs of more general followers of various religions 

will have an impact on their teaching would require further investigations. 

6. Conclusion  

6.1 Summary of the Studies 

First of all, it was found in Study One that those mathematics teachers 

who were influenced by Chinese religious beliefs, Christian beliefs and 

those who did not subscribe to any religions hold different beliefs about 

mathematics and about mathematics teaching, no matter how subtle these 

differences may be (Chan, Wong, & Leu, 2012). It is not our present aim 

to draw definite conclusions of precisely what these differences are and 

whether these differences can be clearly attributable to religious beliefs. 

However, careful inspection of the results affirms that the differences are 

present. Since data collected in Study One simply relies on a 

questionnaire survey, the results are not entirely conclusive. As such, we 
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supplemented the first study with Study Two in which thick data was 

collected. In Study Two, ethnographic observations were employed over 

a lengthy period of one year. Two cases, a Buddhist mathematics teacher 

and a Confucian mathematics teacher, were portrayed in detail. By 

comparing these two cases, it is clear that their religious beliefs affect 

their teaching behaviours. Though some of their teaching behaviours 

were similar, the rationale behind them were different and by-and-large 

supported by their religious convictions.  

Putting the results of the two studies together, we see a general 

picture that, although both Christians and those subscribing to the 

Chinese religions see that mathematics involves thinking, the Christians 

are relatively less constructivist and more Platonistic in their thinking. 

Focusing on the Confucians and the Buddhists, the former group appears 

to place higher attention on academic achievements whereas the latter  

group appears to place higher regards on the nurturing of students.  

We have repeatedly stressed that we should not take the above results 

as entirely conclusive. Further studies are needed to arrive at an 

affirmative result. Inevitably, there are a number of limitations in our two 

studies (which we will discuss below), and the relationship between 

religious beliefs and mathematics teaching deserves further exploration. 

However, we believe that we have opened up the door to meaningful 

research. 

6.2 Theoretical and Pedagogical Implications 

It is well established that both mathematics and mathematics teaching are 

not value-free (Zhang & Wong, 2015). As an important component of 

values and beliefs, it seems unlikely that religious beliefs have no 

influence on teaching, and on mathematics teaching in particular. 

Religious beliefs appear deeper than general values and we cannot expect 

to always see these beliefs manifest in day-to-day routines. When it 

comes to critical moments however, such as when one has to choose 

between drilling students for a better academic career and development 

of thinking habits which are not readily assessable in conventional 

examination, such beliefs, as pointed out by Furinghetti (1994), would 

creep in like a ‘ghost’, which would otherwise be hidden in a dark corner. 
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It would not be viable, ethical nor theoretically sound to suggest altering 

teachers’ religious beliefs in order to deliver a prescribed mode of 

teaching. However, we might suggest that both curriculum developers 

and advocates of certain instructional theories should be culturally and 

religiously sensitive to teachers’ underlying religious beliefs. Every way 

of teaching has its cultural assumptions (Wong, 2008), and teaching and 

learning traditions that work well in one culture may not necessarily 

work well in another (Biggs & Watkins, 2001). This is particularly true 

when one faces a multi-cultural and multi-religious setting. For teachers 

who hold various religious beliefs (including those who claim to possess 

no traditional religions), whether they are subscribing to rituals, engaging 

in various religious activities or possess a genuine understanding of the 

doctrine might be another point of study to examine teachers’ own 

reflections on how their beliefs impact on their teaching (Wong, Wong, 

& Wong, 2012). 

6.3 Directions of Further Research and a Glimpse of an On-going 

Research 

The two studies reported in this chapter have released a new research 

agenda, viz. possible connections between Chinese mathematics 

teachers’ religious beliefs and their teaching. The first study contrasted 

Chinese religious beliefs (rooted in ‘Eastern’ traditions) with Christian 

beliefs (rooted in ‘Western’ customs). The second study contrasted two 

Chinese religions, Buddhism and Confucianism whose ideologies are 

close to each other. Admittedly, the contrast revealed in the second study 

may not be generally applied. Indeed, throughout the ages, these two 

religions have evolved. One can expect that, as indicated in the first 

study, a bigger contrast can be found if we compared ‘Western’ religions 

with ‘Eastern’ ones. There is much room for exploration if one can 

include various other kinds of religious beliefs like Islam, Hinduism and 

Judaism.  

To facilitate such investigations, both quantitative and qualitative 

methods can be used. A validated instrument is a pre-requisite for a 

quantitative approach. To date, there are quite a number of well 

established instruments on spirituality and religiosity based on Western 
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religions. Hill (2005) provides a summary of measurements in the 

psychology of religion and spirituality of which most are based on 

Western religions. There is a need to develop such instruments for 

Eastern religions as well as for those who claim to belong to no religion 

(one can be spiritual even though one is not a follower of any religion). 

Adapting from existing Western instruments can be one possibility. 

However, there may be an even more earnest need to re-develop such 

instruments of measurement from grounded studies. With a validated 

instrument and larger samples, we can then conduct more sophisticated 

statistical analyses like t-test, correlation and regression analyses.  

To initiate a bigger body of related studies, there are several lines we 

can consider. As mentioned above, the delineation of the characteristics 

of a culture can often be done by contrasting with other cultures. This 

can be done by collecting data from other religions like Hinduism and 

Islam. Hopefully, this can be achieved through cross-regional 

collaborations. Another challenge we faced, especially in Study One, is 

that there are religions that do not have a clear ritual of subscribing to it 

(in contrast with baptism in Christianity). By translating various religions 

into their religious values and/or worldview, it is possible to identify 

those who are not formally Confucians (taking Confucianism as an 

example) but possess a Confucian oriented mindset. The first step 

appears to be to clarify what ‘Confucian orientation’ means. If this can 

be achieved, we would have a clearer delineation of those who had 

previously said to subscribe to no religion. This group of people may not 

be homogeneous but may be possessing different religious/philosophical 

orientations.  

Methodologically, the two studies involve two extremes. Study One 

relies on a one-way questionnaire which has the strength of having a 

larger sample though what is asked may not be sufficiently in-depth. For 

Study Two, data collected may be in-depth but it had proved too time 

consuming to attract volunteers to participate. Questionnaire and follow-

up interviews could be a ‘middle way’, where a mixed method (both 

quantitative and qualitative) is employed. This is the method of our on-

going research in this area.  

We acknowledge the complexity of religious worldviews. There are 

differences (sometimes rather substantial) in interpretations of doctrines 
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(and hence worldviews) within different branches of the same religion. 

Furthermore, one’s personal religious beliefs may have significance 

different from the orthodox beliefs of the (branch of) religion subscribed 

by him/her because the former is a result of interaction of the latter with 

one’s socio-cultural context and experiences in life history. (See for 

instance, Glennan, 2009.) To address this issue, a follow-up research in 

qualitative approach is conducted by the second and third authors of this 

chapter. It involves an interview study with fifteen mathematics teachers 

in Hong Kong (five Buddhists, five Christians, and five claiming not to 

subscribe to any religion) (Chan & Wong, 2014). The focus of this 

ongoing study is to investigate the possible similarities of teachers’ 

(personal) religious worldview and philosophical thoughts with their 

views on effective mathematics teaching and learning. The participants 

were asked to complete a questionnaire which consists of 7 open-ended 

questions on how they entered the profession, what kind of calibre they 

expect to nurture in their students and how their religious beliefs might 

influence their teaching. Then, an individual semi-structured interview 

about their views on mathematics education and religions, which lasted 

for 0.5 to 1 hour, was conducted. The interview questions were modified 

from the study of Cai, Perry, Wong, and Wang (2009) on teachers’ 

perspective of effective mathematics teaching, with additional questions 

about religious beliefs and its possible impact on mathematics teaching. 

A rather promising result has emerged. In brief, some alignments of the 

teachers’ personal religious beliefs and their beliefs about mathematics 

teaching/learning can be observed at least in some cases. For instance, a 

Buddhist teacher emphasised on “seeing wider” in order to look for the 

connection between different mathematics topics. At the same time, she 

also had a wide perspective in seeing the Buddhist perspective and 

claimed that “everything is [within] the Buddhist doctrine”. Interested 

readers may refer to a detailed report published in Chan and Wong (2014) 

and other forthcoming related papers. 

Last but not least, there may be discretions between teachers’ beliefs 

about teaching and their actual instructional practices although the 

former usually plays a strong role in determining the latter. On top of in-

depth interviews, class observations may be introduced so that the 

relationship among teachers’ religious beliefs and worldviews, beliefs 
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about mathematics teaching, and instructional practices in mathematics 

classrooms can be explored. This is precisely an ongoing research project 

currently conducted by the second and third authors of this chapter. The 

investigation on the relationship between religious beliefs and 

mathematics teaching and learning has a long way to go. But as the 

ancient Chinese philosopher Laozi once said, “a journey of a thousand 

miles starts from beneath one’s feet”, we need to investigate bit by bit to 

explore the potentials of this deep blue sea. 
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Epilogue  

Why the Interest in the Chinese Learner? 

FAN Lianghuo   WONG Ngai-Ying   CAI Jinfa   LI Shiqi 

 

1. Why the Chinese Learner Became a Learning Phenomenon? 

There is much that we can learn about and from any country. The 

Chinese region is a big and up-and-coming one that naturally is a focus 

of attention worldwide. However, there are reasons beyond its size and 

history. At a more macro level, the economic success of the four little 

dragons
1
, plus Japan, in the 1970s and 1980s has led to the conjecture 

that there are some common features among these Asian economies. This 

was reinforced by the fact that consistently these four little dragons, and 

Japan as well, occupied the top positions in the Third International 

Mathematics and Science Study (TIMSS)
2
 which commenced, on a 

four-year circle, in the early 1990s. The continuous stellar performance 

of the Chinese in various international comparisons such as the 1992 

International Assessment of Education Progress (IAEP) mathematics 

study, the Programme for International Student Assessment (PISA), the 

International Mathematical Olympiads and even the earlier 2nd IEA 

Mathematics Study (SIMS) conducted in the early 1980s not only raised 

the eyebrows of sociologists, psychologists and educationalists 

internationally but also confused them, as there had been a perception 

that Chinese learning and teaching relied on rote-memorization, drill and 

practice (Biggs, 1996). That is why when Western scholars first 

encountered this Chinese learner phenomenon, terms like ‘myth’ and 

‘paradox’ were coined (Wong, 2013). It is believed that cracking the 

                                                 
1
 Hong Kong, Taiwan, South Korea, and Singapore. 

2
 Later renamed “Trends in International Mathematics and Science Study”. 
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paradox would not only allow us to understand better the Chinese learner 

phenomenon, but also inform us about how learning and teaching can be 

improved. 

 

2. The Emergence of the Chinese Mathematics Education Circle 

Professor D. Zhang, one of the advisors for this book, raised the question 

whether an East Asian school of mathematics education has emerged 

(Zhang, 1992, 2009). Let us first look at criteria for a local or regional 

academic community to exist. Some have mentioned the following 

milestones of localization: having expatriates leading local research, 

local researchers getting doctoral degrees abroad by conducting local 

studies [“import”], local researchers getting local doctoral degrees, local 

academics nurturing their own doctoral students, and local academics 

producing doctoral graduates beyond the local territory [“export”]. These 

milestones may not be fully applicable to the Chinese region since it has 

its own long cultural tradition. Moreover, there has been increasing 

discussion that localization and globalization are not dichotomous. In 

particular, the notion of “glocalization” was put forth, starting in the 

business sector (e.g., see Robertson, 1994). Indeed there are several 

questions we can further pursue here. Do there exist particularly 

“Chinese” educational practices that are distinct from those elsewhere? 

Are there variations in practice within the Chinese regions, and are such 

within-region variations larger than between-region variations (Wong, 

2009)? Or, are we just looking for good “Chinese” practices that can 

benefit the world that were previously overlooked? Moreover, are such 

practices “transplantable” (Watkins & Biggs, 2001)? 

Certainly localization or local awareness does not necessarily infer a 

closed-door policy or self-centeredness. Otherwise, we would be 

endlessly searching for features in Chinese mathematics education that 

are distinct from, say, Korean and Japanese mathematics education, or 

focusing on whether there is a ‘Shanghai-style mathematics education’, 

etc., which does not really make much sense. Even as we search for a 

Chinese identity, we fully realize that the Chinese culture, like most other 

cultures, is an open system. It keeps absorbing elements from other 

cultures while at the same time exhibiting different color spectrums or 
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diversity across the country. As pointed out in Wong, Wong, and Wong 

(2012), we can even ponder how “Chinese” contemporary Chinese 

mathematics education really is. Not much traditional Chinese 

mathematics is still taught nowadays and mathematics is basically taught 

as it is in Western educational systems. It is precisely this unique blend 

of globalization that defines localness. 

 

3. The Motives for Publishing These Two Books 

As we indicated in the introduction of this book, the present book, How 

Chinese Teach Mathematics, is in a large sense a continuation of the 

previous one, How Chinese Learn Mathematics. The underlying theme 

for both has been “perspectives from insiders”. The issues about Chinese 

learners attracted the public’s attention early in the 1980s, when we had 

the 2nd IEA Mathematics Study (SIMS) which initiated the series of 

investigations by the Stevenson, Hiebert and Stigler’s group (Chen & 

Stevenson, 1995; Stevenson & Stigler, 1992; Stigler & Hiebert, 1999). At 

that time, China, such a big country, did not take part because it had only 

implemented its open door policy in the late 1970s and was not yet 

participating in too many international affairs. The 1992 IAEP 

mathematics study was the first international study in which students 

from Chinese mainland took part, and it placed first with Taiwan and 

Korea placing second (e.g., see Lapointe, Mead, & Askew, 1992).  

The Chinese learner phenomenon also aroused the interest of a group 

of Western scholars including Biggs, Watkins, Bond and Marton. Their 

interests were not confined to mathematics. They published a number of 

books, of which the most frequently cited include The Chinese Learner 

(Watkins & Biggs, 1996), Teaching the Chinese Learner (Watkins & 

Biggs, 2001), Revisiting the Chinese Learner (Chan & Rao, 2009), 

Psychology of the Chinese People (Bond, 1986), The Handbook of 

Chinese Psychology (Bond, 1996) and The Oxford Handbook of Chinese 

Psychology (Bond, 2010).  

Inspired by the advisors of our book series, and Professor D. Zhang in 

particular, we saw the need to publish a book focused particularly on 

Chinese mathematics education research. This is the origin of the two 

books that are before you. 
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We see these books serving at least the following unfolding purposes:  

(1) letting the researchers on Chinese mathematics education 

discuss their own views, experiences, and interested issues 

in mathematics education, 

(2) telling the world the ‘Chinese story’ and responding to their 

queries, and  

(3) having Chinese and non-Chinese, who also have interest and 

passion in Chinese mathematics education, join hands to 

discuss issues in mathematics education worldwide. 

 

Besides shifting the focus from learning to teaching (they are in fact 

two faces of the same coin), we incorporated more authors from the 

younger generation in the present book, to share with readers more recent 

developments concerning Chinese mathematics education. Most likely 

this will be the same spirit if one day we have a third book. Indeed, we 

will likely have a next generation to act as editors for such a book since 

the current editorial board sees itself as having accomplished its 

historical mission. 

 

4. Further Reflections and Outlook 

Coming back to the questions that the academic circle originally asked, 

are Chinese students really so smart in mathematics, or, do they just 

work harder (Wong, 1998)? A number of explanations have been offered 

in recent years (Morrison, 2006). The use of deep procedures (Star, 2005) 

as exemplified by bianshi teaching is one (Gu, Huang, & Marton, 2004; 

Huang & Leung, 2006; Wong, Lam, & Chan, 2012). Certainly the notion 

of deep procedures in relation to the Chinese learner is worth further 

exploration (Cai & Wong, 2012). With the strength of academic 

performance in recent years, Zhang once remarked that we should not get 

contented too fast. There are both strengths and limitations. First, too 

much focus has been put on traditional subjects like mathematics, 

obscuring the need for broad-based learning in the new era. Second, the 

examination culture is hampering creativity. Third, mathematics is 

presented in its abstract form without showing its connections with both 

the real world and other sciences (Zhang, 1993, p. 94). These words were 
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said over 2 decades ago, and they ring as true today as then, if not more 

so.  

Each educational region or system, no matter in the East or West, 

should build on its own strength and search for its own path of learning 

and teaching. The Chinese maxim that “Those stones from other hills can 

be used to polish the jade”3 suggests that practices in other countries can 

serve as food for the improvement of one’s own practice. There is no 

need to label such practices as “good” ones (let alone “best ones”), since 

whether it is good or not depends on how one uses it, and also on cultural 

backgrounds. By reflecting on the practices of these regions, one reflects 

on one’s own culture, understands oneself more, and forms a basis of 

moving forward in one’s own way. By doing so, it is possible to not just 

get the stones from the other hill, but to use these stones to polish our 

own jade. We hope that, through reading these two books, readers will 

not only know more about the Chinese mathematics education, but also 

gain and come up with insights (which are basically their own) about 

how to improve the teaching and learning of mathematics in their 

classrooms.  
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