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Preface to the Second Edition

More than a decade has passed since the publication of the first edition of
Numerical Analysis for Statisticians. During the interim, statistics rapidly
evolved as a discipline. In particular, Markov chain Monte Carlo methods,
data mining, and software resources all substantially improved. My own
understanding of several subjects also matured. I accordingly set out to
write a better book, trying to update topics and correct the errors and
omissions of the first edition. The result is certainly a longer book. Whether
it is a better book is probably best left to the judgment of readers.

One thing I learned from Springer’s stable of reviewers is that there is
no universally agreed-on environment for statistical computing. My own
preference for coding algorithms in Fortran was quickly dismissed as un-
workable. The suggestion of C or C++ might have garnered wider support,
but no doubt Java devotees would have objected. In fact, most statisti-
cians prefer higher-level environments such as SAS, R, or Matlab. Each of
these environments has its advantages, but none is dominant. For compu-
tationally intensive tasks, interpreted languages are at a disadvantage, so
compiled languages such as C, Fortran, and Java will survive. A more in-
teresting question is which environment will adapt most quickly to parallel
computing.

In any event, instructors will have to decide on their own computing poli-
cies. My choice of letting students submit homework in whatever language
they want is popular, but unfortunately it promotes superficial grading and
a tendency to proceed directly to output. There are many fine textbooks
on computing that instructors can recommend as supplementary reading
and spend class time covering. These are hardly substitutes for a theoretical
treatment emphasizing mathematical motivation and derivations. However,
students do need exposure to real computing and thoughtful numerical ex-
ercises. Mastery of theory is enhanced by the nitty gritty of coding, and in
my experience many attractive algorithms simply fail the test of practical-
ity. In response to users’ suggestions, I have scattered many new numerical
exercises throughout the text.

Some chapters of the text I hardly touched in revision. In contrast Chap-
ters 11 through 16, on optimization, have been almost completely rewritten.
There is now an entire chapter on the MM algorithm in addition to more
comprehensive treatments of constrained optimization, convergence anal-
ysis, and penalized estimation. The new material reflects the focus of my
recent teaching and to some extent my enduring research interests. An en-
tire semester-long course could be constructed from these chapters alone. In
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this regard note also the additions to Chapter 5 on univariate optimization.
In response to criticisms of my over-reliance on the sweep operator in

regression analysis, I have expanded Chapter 7 to include alternative meth-

more stable (Gram-Schmidt orthogonalization and the QR decomposition).
Chapter 8 contains a new section on finding a single eigenvalue, and the
entirely new Chapter 9 discusses the crucial singular value decomposition.
Chapter 17 now contains an introduction to reproducing kernel Hilbert
spaces. The importance of Hilbert spaces in computational statistics is
destined to grow.

Chapter 22, on generating random deviates, has been expanded. Chapter
23, on independent Monte Carlo, and Chapter 24, on permutation testing
and the bootstrap, now take a more practical approach that should enhance
their value to readers. Nothing better illustrates the interplay between com-
putational power and modern statistical inference than the bootstrap.

Chapter 25 contains new material on the EM algorithm in hidden Markov
chains, on finding the equilibrium distribution of a continuous-time chain,
and on stochastic simulation and τ -leaping. The latter topic comes up in the
dynamical models of systems biology. Chapter 26, on Markov chain Monte
Carlo (MCMC), features Gibbs and slice sampling and compares them on
some fresh examples. Finally, the new Chapter 27 is devoted to advanced
topics in MCMC, notably Markov random fields, reversible jump MCMC,
and a brief investigation of rates of convergence in Gibbs sampling. The
final sections on convergence combine subject matter from Hilbert spaces,
orthogonal expansions, and the singular value decomposition into a single
attractive package.

I have many people to thank in preparing this second edition. John Kim-
mel, my long-suffering editor, exhibited extraordinary patience in encour-
aging me to get on with this project. I was hosted by the Stanford Statistics
Department during my 2006-2007 sabbatical year. It was a pleasure to learn
from colleagues there such as Persi Diaconis, Brad Efron, Jerry Friedman,
Trevor Hastie, and Rob Tibshirani. Among my UCLA colleagues I would
like to single out Jan de Leeuw, Chiara Sabatti, Janet Sinsheimer, Eric
Sobel, and Marc Suchard for their kind assistance and advice. Several post-
docs and graduate students contributed as well. David Alexander, Kristin
Ayers, Lara Bauman, John Ranola, Mary Sehl, Tongtong Wu, and the many
other students in my graduate biomathematics classes helped enormously in
spotting errors and forcing me to explain things more clearly. Finally, Hua
Zhou contributed substantially to the content of Chapter 27 and taught
several classes in my absence. To these people and many others not named,
I owe a great debt. The faults of the book are, of course, solely mine. Some
of these may be amended in future printings, so I hope that readers will
send me corrections and suggested revisions at klange@ucla.edu.

I dedicated the first edition of Numerical Analysis for Statisticians to my
late brother, Charles. Just before sending the final version of the second

ods of regression that are faster (Cholesky decomposition) or numerically
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edition to Springer for editing, I read a copy of the UCLA Department of
Mathematics’ fall 2009 newsletter, The Common Denominator. I was de-
lighted to find that it contained a tribute to Charles from a former student,
Gordon Ellison. Here is what Mr. Ellison wrote:

In about 1969 I enrolled in an Applied Mathematics class offered
by UCLA extension and taught by Dr. Charles Lange. At that
time I was writing a FORTRAN program using a Fourier se-
ries/Green’s function solution for microelectronics applications.
Dr. Lange’s course included a portion on Green’s functions, a
subject I had studied rather extensively while pursuing my M.A.
degree. On the last evening of the course, after I turned in my
final exam, I asked Dr. Lange about a problem that slightly
resembled my application, telling him that I would not ask for
specific help, as I didn’t have consultation money. We talked
about the math and the simple example. It was the Memorial
Day weekend and I went home and solved the little problem.
On Monday Dr. Lange phoned me at home and explained that
he had gone to the card catalog containing student information
and obtained my phone number. During the phone conversa-
tion with him, he said he had a solution to the problem. We
compared solutions and he told me I knew what I was doing
and didn’t need a consultant. Using the math that I learned
from Dr. Lange, I discovered that my previous theory was not
quite correct, and in some cases would have resulted in very
large errors. I totally revised my code.

A year or so later, I published a paper wherein I acknowledged
Dr. Lange’s assistance [1]. I am not exaggerating when I say that
single problem launched a thirty-year career. I have related this
story many times over the years and can almost feel the fear
when considering what the outcome might have been had I not
taken Dr. Lange’s course and had he not taken the time to help
me.

The sad part is that in my youth I was not sufficiently clever or
perhaps generous to find Dr. Lange and express my thanks in an
appropriate manner. In the last several years I have performed
several Internet searches trying to find him. I feel quite stupid
that I never thought that he might still be at UCLA. For some
reason, I had the idea that he was working at a local company
and teaching his course as a side job.

In late August of this year, I was once again telling my wife
of my indebtedness to Dr. Lange, and that I have never found
him. Then I realized that a Google search on Charles Lange,
PhD might be productive, as it indeed was, but unfortunately I
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only found an obituary. That was an incredibly sad day for me.
My only consolation is that I can take the opportunity to tell
other professional educators that those little things they do for
even the least accomplished of their students sometimes have a
very great and positive impact on their lives.

0.1 References

[1] Ellison GN (1973) The effect of some composite structures on the
thermal resistance of substrates and integrated circuit chips. IEEE
Trans Electron Devices ED-20:233–238
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Preface to the First Edition

This book, like many books, was born in frustration. When in the fall of
1994 I set out to teach a second course in computational statistics to doc-
toral students at the University of Michigan, none of the existing texts
seemed exactly right. On the one hand, the many decent, even inspiring,
books on elementary computational statistics stress the nuts and bolts of
using packaged programs and emphasize model interpretation more than
numerical analysis. On the other hand, the many theoretical texts in nu-
merical analysis almost entirely neglect the issues of most importance to
statisticians. The closest book to my ideal was the classical text of Kennedy
and Gentle [2]. More than a decade and a half after its publication, this
book still has many valuable lessons to teach statisticians. However, upon
reflecting on the rapid evolution of computational statistics, I decided that
the time was ripe for an update.

The book you see before you represents a biased selection of those top-
ics in theoretical numerical analysis most relevant to statistics. By intent
this book is not a compendium of tried and trusted algorithms, is not a
consumer’s guide to existing statistical software, and is not an exposition
of computer graphics or exploratory data analysis. My focus on princi-
ples of numerical analysis is intended to equip students to craft their own
software and to understand the advantages and disadvantages of different
numerical methods. Issues of numerical stability, accurate approximation,
computational complexity, and mathematical modeling share the limelight
and take precedence over philosophical questions of statistical inference.
Accordingly, you must look elsewhere for a discussion of the merits of fre-
quentist versus Bayesian inference. My attitude is that good data deserve
inspection from a variety of perspectives. More often than not, these differ-
ent perspectives reinforce and clarify rather than contradict one another.

Having declared a truce on issues of inference, let me add that I have
little patience with the view that mathematics is irrelevant to statistics.
While it is demeaning to statistics to view it simply as a branch of mathe-
matics, it is also ridiculous to contend that statistics can prosper without
the continued influx of new mathematical ideas. Nowhere is this more evi-
dent than in computational statistics. Statisticians need to realize that the
tensions existing between statistics and mathematics mirror the tensions
between other disciplines and mathematics. If physicists and economists
can learn to live with mathematics, then so can statisticians. Theoreticians
in any science will be attracted to mathematics and practitioners repelled.
In the end, it really is just a matter of choosing the relevant parts of math-
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ematics and ignoring the rest. Of course, the hard part is deciding what is
irrelevant.

Each of the chapters of this book weaves a little mathematical tale with a
statistical moral. My hope is to acquaint students with the main principles
behind a numerical method without overwhelming them with detail. On
first reading, this assertion may seem debatable, but you only have to
delve a little more deeply to learn that many chapters have blossomed into
full books written by better-informed authors. In the process of writing,
I have had to educate myself about many topics. I am sure my ignorance
shows, and to the experts I apologize. If there is anything fresh here, it is
because my own struggles have made me more sensitive to the struggles of
my classroom students. Students deserve to have logical answers to logical
questions. I do not believe in pulling formulas out of thin air and expecting
students to be impressed. Of course, this attitude reflects my mathematical
bent and my willingness to slow the statistical discussion to attend to the
mathematics.

The mathematics in this book is a mix of old and new. One of the charms
of applying mathematics is that there is little guilt attached to resurrecting
venerable subjects such as continued fractions. If you feel that I pay too
much attention to these museum pieces, just move on to the next chap-
ter. Note that although there is a logical progression tying certain chapters
together—for instance, the chapters on optimization theory and the chap-
ters on numerical integration—many chapters can be read as independent
essays. At the opposite extreme of continued fractions, several chapters
highlight recent statistical developments such as wavelets, the bootstrap,
and Markov chain Monte Carlo methods. These modern topics were un-
thinkable to previous generations unacquainted with today’s computers.

Any instructor contemplating a one-semester course based on this book
will have to decide which chapters to cover and which to omit. It is difficult
for me to provide sound advice because the task of writing is still so fresh
in my mind. In reading the prepublication reviews of my second draft, I
was struck by the reviewers’ emphasis on the contents of Chapters 5, 7, 13,
14, 23, and 26. Instructors may want to cover material from Chapters 22
and 25 as a prelude to Chapters 23 and 26. Another option is to devote
the entire semester to a single topic such as optimization theory. Finally,
given the growing importance of computational statistics, a good case can
be made for a two-semester course. This book contains adequate material
for a rapidly paced yearlong course.

As with any textbook, the problems are nearly as important as the
main text. Most problems merely serve to strengthen intellectual muscles
strained by the introduction of new theory; some problems extend the the-
ory in significant ways. The majority of any theoretical and typographical
errors are apt to be found in the problems. I will be profoundly grateful to
readers who draw to my attention errors anywhere in the book, no matter
how small.
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I have several people to thank for their generous help. Robert Jennrich
taught me the rudiments of computational statistics many years ago. His
influence pervades the book. Let me also thank the students in my grad-
uate course at Michigan for enduring a mistake-ridden first draft. Ruzong
Fan, in particular, checked and corrected many of the exercises. Michael
Newton of the University of Wisconsin and Yingnian Wu of the University
of Michigan taught from a corrected second draft. Their comments have
been helpful in further revision. Robert Strawderman kindly brought to my
attention Example 20.4.2, shared his notes on the bootstrap, and critically
read Chapter 24. David Hunter prepared the index, drew several figures,
and contributed substantially to the content of Chapter 22. Last of all, I
thank John Kimmel of Springer for his patient encouragement and editorial
advice.

This book is dedicated to the memory of my brother Charles. His close
friend and colleague at UCLA, Nick Grossman, dedicated his recent book
on celestial mechanics to Charles with the following farewell comments:

His own work was notable for its devotion to real problems
arising from the real world, for the beauty of the mathematics
he invoked, and for the elegance of its exposition. Chuck died
in summer, 1993, at the age of 51, leaving much undone. Many
times since his death I have missed his counsel, and I know that
this text would be far less imperfect if I could have asked him
about a host of questions that vexed me. Reader, I hope that
you have such a friend [1].

It is impossible for me to express my own regrets more poetically.

0.2 References

[1] Grossman N (1996) The Sheer Joy of Celestial Mechanics. Birkhäuser,
Boston

[2] Kennedy WJ Jr, Gentle JE (1980) Statistical Computing. Marcel
Dekker, New York
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1

Recurrence Relations

1.1 Introduction

Recurrence relations are ubiquitous in computational statistics and proba-
bility. Devising good recurrence relations is both an art and a science. One
general theme is the alpha and omega principle; namely, most recurrences
are derived by considering either the first or last event in a chain of events.
The following examples illustrate this principle and some other commonly
employed techniques.

1.2 Binomial Coefficients

Let
(
n
k

)
be the number of subsets of size k from a set of size n. Pascal’s

triangle is the recurrence scheme specified by
(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
(1.1)

together with the boundary conditions
(
n
0

)
=
(
n
n

)
= 1. To derive (1.1) we

take a set of size n+ 1 and divide it into a set of size n and a set of size 1.
We can either choose k−1 elements from the n-set and combine them with
the single element from the 1-set or choose all k elements from the n-set.
The first choice can be made in

(
n
k−1

)
ways and the second in

(
n
k

)
ways.

As indicated by its name, we visualize Pascal’s triangle as an infinite
lower triangular matrix with n as row index and k as column index. The
boundary values specify the first column and the diagonal as the constant
1. The recurrence proceeds row by row. If one desires only the binomial
coefficients for a single final row, it is advantageous in coding Pascal’s
triangle to proceed from right to left along the current row. This minimizes
computer storage by making it possible to overwrite safely the contents
of the previous row with the contents of the current row. Pascal’s triangle
also avoids the danger of computer overflows caused by computing binomial
coefficients via factorials.

1.3 Number of Partitions of a Set

Let Bn be the number of partitions of a set with n elements. By a partition
we mean a division of the set into disjoint blocks. A partition induces an

1K. Lange, Numerical Analysis for Statisticians, Statistics and Computing,
DOI 10.1007/978-1-4419-5945-4_1, © Springer Science+Business Media, LLC 2010 



2 1. Recurrence Relations

equivalence relation on the set in the sense that two elements are equivalent
if and only if they belong to the same block. Two partitions are the same
if and only if they induce the same equivalence relation.

Starting with B0 = 1, the Bn satisfy the recurrence relation

Bn+1 =

n∑

k=0

(
n

k

)
Bn−k (1.2)

=

n∑

k=0

(
n

k

)
Bk.

The reasoning leading to (1.2) is basically the same as in our last example.
We divide our set with n+ 1 elements into an n-set and a 1-set. The 1-set
can form a block by itself, and the n-set can be partitioned in Bn ways.
Or we can choose k ≥ 1 elements from the n-set in

(
n
k

)
ways and form a

block consisting of these elements and the single element from the 1-set.
The remaining n−k elements of the n-set can be partitioned in Bn−k ways.

1.4 Horner’s Method

Suppose we desire to evaluate the polynomial

p(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an

for a particular value of x. If we proceed naively, then it takes n− 1 multi-
plications to form the powers xk = x ·xk−1 for 2 ≤ k ≤ n, n multiplications
to multiply each power xk by its coefficient an−k, and n additions to sum
the resulting terms. This amounts to 3n − 1 operations in all. Horner’s
method exploits the fact that p(x) can be expressed as

p(x) = x(a0x
n−1 + a1x

n−2 + · · ·+ an−1) + an

= xbn−1(x) + an.

Since the polynomial bn−1(x) of degree n − 1 can be similarly reduced, a
complete recursive scheme for evaluating p(x) is given by

b0(x) = a0

bk(x) = xbk−1(x) + ak, k = 1, . . . , n. (1.3)

This scheme, known as Horner’s method, requires only n multiplications
and n additions to compute p(x) = bn(x).

Interestingly enough, Horner’s method can be modified to produce the
derivative p′(x) as well as p(x). This modification is useful, for instance, in
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searching for a root of p(x) by Newton’s method. To discover the algorithm
for evaluating p′(x), we differentiate (1.3). This gives the amended Horner
scheme

b′1(x) = b0(x)

b′k(x) = xb′k−1(x) + bk−1(x), k = 2, . . . , n,

requiring an additional n−1 multiplications and n−1 additions to compute
p′(x) = b′n(x).

1.5 Sample Means and Variances

Consider a sequence x1, . . . , xn of n real numbers. After you have computed
the sample mean and variance

µn =
1

n

n∑

i=1

xi

σ2
n =

1

n

n∑

i=1

(xi − µn)2,

suppose you are presented with a new observation xn+1. It is possible to
adjust the sample mean and variance without revisiting all of the previous
observations. For example, it is obvious that

µn+1 =
1

n + 1
(nµn + xn+1).

Because

(n+ 1)σ2
n+1 =

n+1∑

i=1

(xi − µn+1)
2

=

n∑

i=1

(xi − µn+1)
2 + (xn+1 − µn+1)

2

=

n∑

i=1

(xi − µn)
2 + n(µn+1 − µn)2 + (xn+1 − µn+1)

2

and

n(µn+1 − µn)2 = n
(
µn+1 −

n+ 1

n
µn+1 +

1

n
xn+1

)2

=
1

n
(xn+1 − µn+1)

2,

it follows that

σ2
n+1 =

n

n+ 1
σ2
n +

1

n
(xn+1 − µn+1)

2.
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1.6 Expected Family Size

A married couple desires a family consisting of at least s sons and d daugh-
ters. At each birth the mother independently bears a son with probability
p and a daughter with probability q = 1−p. They will quit having children
when their objective is reached. Let Nsd be the random number of children
born to them. Suppose we wish to compute the expected value E(Nsd).
Two cases are trivial. If either s = 0 or d = 0, then Nsd follows a negative
binomial distribution. It follows that E(N0d) = d/q and E(Ns0) = s/p.
When both s and d are positive, the distribution of Nsd is not so obvious.
However, in this case we can condition on the outcome of the first birth
and compute

E(Nsd) = p[1 + E(Ns−1,d)] + q[1 + E(Ns,d−1)]

= 1 + pE(Ns−1,d) + qE(Ns,d−1).

There are many variations on this idea. For instance, suppose we wish to
compute the probability Rsd that the couple reaches its quota of s sons be-
fore its quota of d daughters. Then the Rsd satisfy the boundary conditions
R0d = 1 for d > 0 and Rs0 = 0 for s > 0. When s and d are both positive,
we have the recurrence relation

Rsd = pRs−1,d + qRs,d−1.

1.7 Poisson-Binomial Distribution

Let X1, . . . , Xn be independent Bernoulli random variables with a possibly
different success probability pk for each Xk. The sum Sn =

∑n
k=1Xk is said

to have a Poisson-binomial distribution. If all pk = p, then Sn has a bino-
mial distribution with n trials and success probability p. If each pi is small,
but the sum µ =

∑n
k=1 pk is moderate in size, then Sn is approximately

Poisson with mean µ. In many applications it is unnecessary to invoke this
approximation because the exact distribution qn(i) = Pr(Sn = i) can be
calculated recursively by incrementing the number of summands n. Note
first that q1(0) = 1 − p1 and q1(1) = p1. With these initial values, one can
proceed inductively via

qj(0) = (1 − pj)qj−1(0)

qj(i) = pjqj−1(i− 1) + (1 − pj)qj−1(i), 1 ≤ i ≤ j − 1 (1.4)

qj(j) = pjqj−1(j − 1)
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until reaching j = n. For the binomial distribution, this method can be
superior to calculating each term directly by the standard formula

qn(i) =

(
n

i

)
pi(1 − p)n−i.

Just as with Pascal’s triangle, it is preferable to proceed from right to left
along a row. Furthermore, if the values qn(i) are only needed for a limited
range 0 ≤ i ≤ k, then the recurrence (1.4) can be carried out with this
proviso.

1.8 A Multinomial Test Statistic

For relatively sparse multinomial data with known but unequal probabili-
ties per category, it is useful to have alternatives to the classical chi-square
test. For instance, the number of categories Wd with d or more observa-
tions can be a sensitive indicator of clustering. This statistic has mean
λ =

∑m
i=1 µi, where

µi =

n∑

k=d

(
n

k

)
pki (1 − pi)

n−k

is the probability that the count Ni of category i satisfies Ni ≥ d. Here we
assume n trials, m categories, and a probability pi attached to category i.
If the variance of Wd is close to λ, then Wd follows an approximate Poisson
distribution with mean λ [1, 3].

As a supplement to this approximation, it is possible to compute the
distribution function Pr(Wd ≤ j) recursively by adapting a technique of
Sandell [5]. Once this is done, the p-value of an experimental result wd can
be recovered via Pr(Wd ≥ wd) = 1−Pr(Wd ≤ wd−1). The recursive scheme
can be organized by defining tj,k,l to be the probability that Wd ≤ j given
k trials and l categories. The indices j, k, and l are confined to the ranges
0 ≤ j ≤ wd−1, 0 ≤ k ≤ n, and 1 ≤ l ≤ m. The l categories implicit in tj,k,l
refer to the first l of the overall m categories; the ith of these l categories
is assigned the conditional probability pi/(p1 + · · ·+ pl).

With these definitions in mind, note first the obvious initial values (a)
t0,k,1 = 1 for k < d, (b) t0,k,1 = 0 for k ≥ d, and (c) tj,k,1 = 1 for j > 0.
Now beginning with l = 1, compute tj,k,l recursively by conditioning on
how many observations fall in category l. Since at most d− 1 observations
can fall in category l without increasing Wd by 1, the recurrence relation
for j = 0 is

t0,k,l

=

min{d−1,k}∑

i=0

(
k

i

)(
pl

p1 + · · ·+ pl

)i (
1 − pl

p1 + · · ·+ pl

)k−i
t0,k−i,l−1,
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and the recurrence relation for j > 0 is

tj,k,l

=

min{d−1,k}∑

i=0

(
k

i

)(
pl

p1 + · · ·+ pl

)i (
1 − pl

p1 + · · ·+ pl

)k−i
tj,k−i,l−1

+
k∑

i=d

(
k

i

)(
pl

p1 + · · ·+ pl

)i(
1 − pl

p1 + · · ·+ pl

)k−i
tj−1,k−i,l−1.

These recurrence relations jointly permit replacing the matrix (tj,k,l−1) by
the matrix (tj,k,l). At the end of this recursive scheme on l = 2, . . . , m, we
extract the desired probability twd−1,n,m.

The binomial probabilities occurring in these formulas can be computed
by our previous algorithm for the Poisson-binomial distribution. It is note-
worthy that the Poisson-binomial recurrence increments the number of tri-
als, whereas the recurrence for the distribution function of Wd increments
the number of categories in the multinomial distribution.

1.9 An Unstable Recurrence

Not all recurrence relations are numerically stable. Henrici [2] dramatically
illustrates this point using the integrals

yn =

∫ 1

0

xn

x+ a
dx. (1.5)

The recurrence yn = 1/n− ayn−1 follows directly from the identity
∫ 1

0

xn−1(x+ a− a)

x+ a
dx =

∫ 1

0

xn−1dx− a

∫ 1

0

xn−1

x+ a
dx

=
1

n
− a

∫ 1

0

xn−1

x+ a
dx.

In theory this recurrence furnishes a convenient method for calculating
the yn starting with the initial value y0 = ln 1+a

a . Table 1.1 records the
results of our computations in single precision when a = 10. It is clear that
something has gone amiss. Computing in double precision only delays the
onset of the instability.

We can diagnose the source of the problem by noting that for n moder-
ately large most of the mass of the integral occurs near x = 1. Thus, to a
good approximation

yn−1 ≈ 1

1 + a

∫ 1

0

xn−1dx

=
1

(1 + a)n
.
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When a is large, the fraction a/(1 + a) in the difference

yn ≈ 1

n
− a

1

(1 + a)n

=
1

n

(
1 − a

1 + a

)

is close to 1. We lose precision whenever we subtract two numbers of the
same sign and comparable magnitude. The moral here is that we must exer-
cise caution in using recurrence relations involving subtraction. Fortunately,
many recurrences in probability theory arise by conditioning arguments
and consequently entail only addition and multiplication of nonnegative
numbers.

TABLE 1.1. Computed Values of the Integral yn

n yn n yn
0 0.095310 5 0.012960
1 0.046898 6 0.037064
2 0.031020 7 -0.227781
3 0.023130 8 2.402806
4 0.018704 9 -23.916945

1.10 Quick Sort

Statisticians sort lists of numbers to compute sample quantiles and plot
empirical distribution functions. It is a pleasant fact that the fastest sorting
algorithm can be explained by a probabilistic argument [6]. At the heart
of this argument is a recurrence relation specifying the average number
of operations encountered in sorting n numbers. In this problem, we can
explicitly solve the recurrence relation and estimate the rate of growth of
its solution as a function of n. The recurrence relation is not so much an end
in itself as a means to understanding the behavior of the sorting algorithm.

The quick sort algorithm is based on the idea of finding a splitting entry
xi of a sequence x1, . . . , xn of n distinct numbers in the sense that xj < xi
for j < i and xj > xi for j > i. In other words, a splitter xi is already
correctly ordered relative to the rest of the entries of the sequence. Finding
a splitter reduces the computational complexity of sorting because it is
easier to sort both of the subsequences x1, . . . , xi−1 and xi+1, . . . , xn than
it is to sort the original sequence. At this juncture, one can reasonably
object that no splitter need exist, and even if one does, it may be difficult
to locate. The quick sort algorithm avoids these difficulties by randomly
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selecting a splitting value and then slightly rearranging the sequence so
that this splitting value occupies the correct splitting location.

In the background of quick sort is the probabilistic assumption that all
n! permutations of the n values are equally likely. The algorithm begins
by randomly selecting one of the n values and moving it to the leftmost
or first position of the sequence. Through a sequence of exchanges, this
value is then promoted to its correct location. In the probabilistic setting
adopted, the correct location of the splitter is uniformly distributed over
the n positions of the sequence.

The promotion process works by exchanging or swapping entries to the
right of the randomly chosen splitter x1, which is kept in position 1 until
a final swap. Let j be the current position of the sequence as we examine
it from left to right. In the sequence up to position j, a candidate position
i for the insertion of x1 must satisfy the conditions xk < x1 for 1 < k ≤ i
and xk > x1 for i < k ≤ j. Clearly, the choice i = j works when j = 1
because then the set {k : 1 < k ≤ ior i < k ≤ j} is empty. Now suppose we
examine position j + 1. If xj+1 > x1, then we keep the current candidate
position i. If xj+1 < x1, then we swap xi+1 and xj+1 and replace i by i+1.
In either case, the two required conditions imposed on i continue to obtain.
Thus, we can inductively march from the left end to the right end of the
sequence, carrying out a few swaps in the process, so that when j = n, the
value i marks the correct position to insert x1. Once this insertion is made,
the subsequences x1, . . . , xi−1 and xi+1, . . . , xn can be sorted separately by
the same splitting procedure.

Now let en be the expected number of operations involved in quick sorting
a sequence of n numbers. By convention e0 = 0. If we base our analysis
only on how many positions j must be examined at each stage and not on
how many swaps are involved, then we can write the recurrence relation

en = n− 1 +
1

n

n∑

i=1

(ei−1 + en−i)

= n− 1 +
2

n

n∑

i=1

ei−1 (1.6)

by conditioning on the correct position i of the first splitter.
The recurrence relation (1.6) looks formidable, but a few algebraic ma-

neuvers render it solvable. Multiplying equation (1.6) by n produces

nen = n(n− 1) + 2

n∑

i=1

ei−1.

If we subtract from this the corresponding expression for (n−1)en−1, then
we get

nen − (n− 1)en−1 = 2n− 2 + 2en−1,
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which can be rearranged to give

en
n+ 1

=
2(n− 1)

n(n+ 1)
+
en−1

n
. (1.7)

Equation (1.7) can be iterated to yield

en
n+ 1

= 2

n∑

k=1

(k − 1)

k(k + 1)

= 2

n∑

k=1

( 2

k + 1
− 1

k

)

= 2

n∑

k=1

1

k
− 4n

n+ 1
.

Because
∑n

k=1
1
k

approximates
∫ n
1

1
x
dx = lnn, it follows that

lim
n→∞

en
2n lnn

= 1.

Quick sort is indeed a very efficient algorithm on average. Press et al. [4]
provide good computer code implementing it.

1.11 Problems

1. Let fn be the number of subsets of {1, . . . , n} that do not contain two
consecutive integers. Show that f1 = 2, f2 = 3, and fn = fn−1 +fn−2

for n > 2.

2. Suppose n, j, and r1, . . . , rj are positive integers with n = r1+· · ·+rj
and with r1 ≥ r2 ≥ · · · ≥ rj ≥ 1. Such a decomposition is called a
partition of n with largest part r1. For example, 6 = 4 + 1 + 1 is
a partition of 6 into three parts with largest part 4. Let qnk be the
number of partitions of n with largest part k. Show that

qnk = qn−1,k−1 + qn−k,k.

3. In Horner’s method suppose x0 is a root of p(x). Show that the num-
bers bk(x0) produced by (1.3) yield the deflated polynomial

b0(x0)x
n−1 + b1(x0)x

n−2 + · · ·+ bn−1(x0) =
p(x)

x− x0
.
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4. Prove that the characteristic polynomial pn(x) = det(M −xI) of the
n× n tridiagonal matrix

M =




b1 c2 0 · · · 0 0
a2 b2 c3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bn−1 cn
0 0 0 · · · an bn




can be computed recursively by defining

p0(x) = 1

p1(x) = (b1 − x)

pm(x) = (bm − x)pm−1(x) − amcmpm−2(x), m = 2, 3, . . . , n.

Why are the roots of pn(x) real in the symmetric case am = cm for
all m? Devise a related recurrence to calculate the derivative p′n(x).

5. Give a recursive method for computing the second moments E(N2
sd)

in the family-planning model.

6. In the family-planning model, suppose the couple has an upper limit
m on the number of children they can afford. Hence, they stop when-
ever they reach their goal of s sons and d daughters or m total chil-
dren, whichever comes first. Let Nsdm now be their random number
of children. Give a recursive method for computing E(Nsdm).

7. In the family-planning model, suppose the husband and wife are both
carriers of a recessive genetic disease. On average one quarter of their
children will be afflicted. If the parents want at least s normal sons
and at least d normal daughters, let Tsd be their random number of
children. Give a recursive method for computing E(Tsd).

8. Consider the multinomialmodel withm categories, n trials, and prob-
ability pi attached to the ith category. Express the distribution func-
tion of the maximum number of counts maxiNi observed in any cat-
egory in terms of the distribution functions of the Wd. How can the
algorithm for computing the distribution function ofWd be simplified
to give an algorithm for computing a p-value of maxiNi?

9. Define the statistic Ud to be the number of categories i with Ni < d.
Express the right-tail probability Pr(Ud ≥ j) in terms of the distri-
bution function of Wd. This gives a method for computing p-values of
the statistic Ud. In some circumstances Ud has an approximate Pois-
son distribution. What do you conjecture about these circumstances?
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10. Demonstrate that the integral yn defined by equation (1.5) can be
expanded in the infinite series

yn =

∞∑

k=0

(−1)k

(n+ k + 1)ak+1

when a > 1. This does provide a reasonably stable method of com-
puting yn for large a.

11. Show that the worst case of quick sort takes on the order of n2 oper-
ations.

12. Let p be the probability that a randomly chosen permutation of n
distinct numbers contains at least one pre-existing splitter. Show by
an inclusion-exclusion argument that

p =

n∑

i=1

(−1)i−1

i!

≈ 1 − e−1.

13. Continuing Problem 12, demonstrate that both the mean and vari-
ance of the number of pre-existing splitters equal 1.
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Power Series Expansions

2.1 Introduction

Power series expansions are old friends of all workers in the mathematical
sciences [4, 5, 10]. This chapter emphasizes special techniques for handling
and generating the power series encountered in computational statistics.
Most expansions can be phrased in terms of recurrence relations. Logarith-
mic differentiation is one powerful device for developing recurrences. Our
applications of logarithmic differentiation to problems such as the conver-
sion between moments and cumulants illustrate some of the interesting
possibilities.

Power series expansions are also available for many of the well-known
distribution functions of statistics. Although such expansions are usually
guaranteed to converge, roundoff error for an alternating series can be trou-
blesome. Thus, either high-precision arithmetic should be used in expanding
a distribution function, or the distribution function should be modified so
that only positive terms are encountered in the series defining the modi-
fied function. Our expansions are coordinated with the discussion of spe-
cial functions in Numerical Recipes [9]. We particularly stress connections
among the various distribution functions.

2.2 Expansion of P (s)n

Suppose P (s) =
∑∞

k=0 pks
k is a power series with p0 6= 0. If n is a positive

integer, then the recurrence relation of J.C.P. Miller [5] permits one to
compute the coefficients of Q(s) =

∑∞
k=0 qks

k = P (s)n from those of P (s).
This clever formula is derived by differentiating Q(s) and then multiplying
the result by P (s). By definition of Q(s), this yields

P (s)Q′(s) = nP ′(s)Q(s). (2.1)

If we equate the coefficients of sk−1 on both sides of (2.1), then it follows
that

k∑

j=1

pk−jjqj = n

k−1∑

j=0

(k − j)pk−jqj,

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 13
DOI 10.1007/978-1-4419-5945-4_2, © Springer Science+Business Media, LLC 2010 
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which can be solved for qk in the form

qk =
1

kp0

k−1∑

j=0

[n(k − j) − j]pk−jqj. (2.2)

The obvious initial condition is q0 = pn0 . Sometimes it is more natural to
compute q∗k, where q∗k/k! = qk and p∗k/k! = pk. Then the recurrence relation
(2.2) can be rewritten as

q∗k =
1

kp∗0

k−1∑

j=0

(
k

j

)
[n(k − j) − j]p∗k−jq

∗
j . (2.3)

2.2.1 Application to Moments

Suppose X1, . . . , Xn are independent, identically distributed random vari-
ables. Let µk be the kth moment of X1, and let ωk be the kth moment of
Sn =

∑n
i=1Xi. Applying the recurrence (2.3) to the moment generating

functions of X1 and Sn gives

ωk =
1

k

k−1∑

j=0

(
k

j

)
[n(k − j) − j]µk−jωj .

As a concrete example, suppose n = 10 and X1 has a uniform distribution
on [0, 1]. Then µk = 1/(k + 1). Table 2.1 records the first 10 moments ωk
of S10.

TABLE 2.1. The Moments ωk of the Sum of 10 Uniform Deviates

k ωk k ωk
1 .50000× 101 6 .24195× 105

2 .25833× 102 7 .14183× 106

3 .13750× 103 8 .84812× 106

4 .75100× 103 9 .51668× 107

5 .42167× 104 10 .32029× 108

2.3 Expansion of eP (s)

Again let P (s) be a power series, and put Q(s) = eP(s) [8]. If one equates
the coefficients of sk−1 in the obvious identity

Q′(s) = P ′(s)Q(s),
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then it follows that

qk =
1

k

k−1∑

j=0

(k − j)pk−jqj. (2.4)

Clearly, q0 = ep0 . When q∗k/k! = qk and p∗k/k! = pk, equation (2.4) becomes

q∗k =

k−1∑

j=0

(
k − 1

j

)
p∗k−jq

∗
j . (2.5)

2.3.1 Moments to Cumulants and Vice Versa

If Q(s) =
∑∞

k=0
mk

k! s
k = eP(s) is the moment generating function of a

random variable, then P (s) =
∑∞

k=0
ck

k!
sk is the corresponding cumulant

generating function. Clearly, m0 = 1 and c0 = 0. The recurrence (2.5) can
be rewritten as

mk =

k−1∑

j=0

(
k − 1

j

)
ck−jmj .

From this one can deduce the equally useful recurrence

ck = mk −
k−1∑

j=1

(
k − 1

j

)
ck−jmj

converting moments to cumulants.

2.3.2 Compound Poisson Distributions

Consider a random sum SN = X1 + · · ·+ XN of a random number N of
independent, identically distributed random variables Xk. If N is indepen-
dent of the Xk and has a Poisson distribution with mean λ, then SN is said
to have a compound Poisson distribution. If R(s) is the common moment
generating function of the Xk, then Q(s) = e−λ+λR(s) is the moment gen-
erating function of SN . Likewise, if the Xk assume only nonnegative integer
values, and if R(s) is their common probability generating function, then
Q(s) = e−λ+λR(s) is the probability generating function of SN . Thus, the
moments E(SiN ) and probabilities Pr(SN = i) can be recursively computed
from the corresponding quantities for the Xk.

2.3.3 Evaluation of Hermite Polynomials

The Hermite polynomialsHk(x) can be defined by the generating function

∞∑

k=0

Hk(x)

k!
sk = exs−

1
2 s

2

.
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From this definition it is clear that H0(x) = 1 and H1(x) = x. The recur-
rence (2.5) takes the form

Hk(x) = xHk−1(x) − (k − 1)Hk−2(x)

for k ≥ 2. In general, any sequence of orthogonal polynomials can be gen-
erated by a linear, two-term recurrence relation. We will meet the Hermite
polynomials later when we consider Gaussian quadrature and Edgeworth
expansions.

2.4 Standard Normal Distribution Function

Consider the standard normal distribution

F (x) =
1

2
+

1√
2π

∫ x

0

e−
y2

2 dy.

If we expand

e−
y2

2 =

∞∑

n=0

(−1)ny2n

2nn!

and integrate term by term, then it is clear that

F (x) =
1

2
+

1√
2π

∞∑

n=0

(−1)nx2n+1

2n(2n+ 1)n!
.

This is an alternating series that entails severe roundoff error even for x as
small as 4.

To derive a more stable expansion, let

g(x) = e
x2

2

∫ x

0

e−
y2

2 dy

=

∞∑

n=0

cnx
2n+1.

By inspection, g(x) satisfies the differential equation

g′(x) = xg(x) + 1. (2.6)

Now c0 = 1 because g′(0) = 0g(0) + 1. All subsequent coefficients are also
positive. Indeed, equating coefficients of x2n in (2.6) gives the recurrence
relation

cn =
1

2n+ 1
cn−1.
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Thus, the series for g(x) converges stably for all x > 0. Since g(x) is an
odd function, only positive x need be considered. In evaluating

F (x) − 1

2
=

1√
2π
e−

x2

2 g(x)

=

∞∑

n=0

an,

we put a0 = 1√
2π
e−

x2

2 x and an = an−1
x2

2n+1 . Then the partial sums
∑n

i=0 ai
are well scaled, and an = 0 gives a machine independent test for the con-
vergence of the series at its nth term.

2.5 Incomplete Gamma Function

The distribution function of a gamma random variable with parameters a
and b is defined by

P (a, bx) =
1

Γ(a)

∫ x

0

baya−1e−bydy

=
1

Γ(a)

∫ bx

0

za−1e−zdz. (2.7)

We can expand P (a, x) in a power series by repeated integration by parts.
In fact,

P (a, x) =
xa

aΓ(a)
e−x +

1

aΓ(a)

∫ x

0

zae−zdz

=
e−xxa

Γ(a+ 1)
+ P (a+ 1, x)

leads to the stable series

P (a, x) = e−xxa
∞∑

n=0

xn

Γ(a+ n + 1)
. (2.8)

For the expansion (2.8) to be practical, we must have some method for eval-
uating the ordinary gamma function. One option is to iterate the functional
identity

lnΓ(a) = lnΓ(a+ 1) − lna

until k is large enough so that ln Γ(a+k) is well approximated by Stirling’s
formula.
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2.6 Incomplete Beta Function

For a and b positive, the incomplete beta function is defined by

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ya−1(1 − y)b−1dy.

Suppose we attempt to expand this distribution function in the form

Ix(a, b) = xa(1 − x)b
∞∑

n=0

cnx
n

=

∞∑

n=0

cnx
n+a(1 − x)b. (2.9)

If we divide the derivative

d

dx
Ix(a, b) =

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−1

=

∞∑

n=0

cn[(n+ a)(1 − x) − bx]xn+a−1(1 − x)b−1

by xa−1(1 − x)b−1, then it follows that

Γ(a+ b)

Γ(a)Γ(b)
=

∞∑

n=0

cn[(n+ a)(1 − x) − bx]xn. (2.10)

Equating the coefficients of xn on both sides of (2.10) gives for n = 0

c0 =
Γ(a + b)

aΓ(a)Γ(b)
=

Γ(a+ b)

Γ(a + 1)Γ(b)

and for n > 0

cn(n+ a) − cn−1(n− 1 + a + b) = 0,

which collapses to the recurrence relation

cn =
n− 1 + a+ b

n+ a
cn−1.

Therefore, all coefficients cn are positive. The ratio test indicates that the
power series (2.9) converges for 0 ≤ x < 1. For x near 1, the symmetry
relation Ix(a, b) = 1 − I1−x(b, a) can be employed to get a more quickly
converging series.
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2.7 Connections to Other Distributions

Evaluation of many classical distribution functions reduces to the cases
already studied. Here are some examples.

2.7.1 Chi-square and Standard Normal

A chi-square random variable χ2
n with n degrees of freedom has a gamma

distribution with parameters a = n/2 and b = 1/2. Hence, in terms of
definition (2.7), we have Pr(χ2

n ≤ x) = P (n2 ,
x
2 ). If X has a standard

normal distribution, then X2 has a chi-square distribution with one degree
of freedom. Obvious symmetry arguments therefore imply for x ≥ 0 that

Pr(X ≤ x) = 1
2 + 1

2P (1
2 ,

x2

2 ).

2.7.2 Poisson

The distribution function of a Poisson random variableX with mean λ can
be expressed in terms of the incomplete gamma function (2.7) as

Pr(X ≤ k − 1) = 1 − P (k, λ).

The most illuminating proof of this result relies on constructing a Poisson
process of unit intensity on [0,∞). In this framework Pr(X ≤ k− 1) is the
probability of k−1 or fewer random points on [0, λ]. Since the waiting time
until the kth random point in the process follows a gamma distribution
with parameters a = k and b = 1, the probability of k− 1 or fewer random
points on [0, λ] coincides with the probability 1 − P (k, λ) that the kth
random point falls beyond λ.

2.7.3 Binomial and Negative Binomial

Let X be a binomially distributed random variable with n trials and success
probability p. We can express the distribution function of X in terms of
the incomplete beta function (2.9) as

Pr(X ≤ k − 1) = 1− Ip(k, n− k + 1). (2.11)

To validate this expression, imagine distributing n points randomly on
[0, 1]. The probability Pr(X ≤ k − 1) is just the probability that k − 1 or
fewer of the random points occur on [0, p]. This latter probability is also
the probability that the kth random point to the right of 0 falls on [p, 1].
But standard arguments from the theory of order statistics show that the
kth random point to the right of 0 has beta density n

(
n−1
k−1

)
yk−1(1−y)n−k .

Alternatively, if we drop random points indefinitely on [0, 1] and record
the trial Y at which the kth point falls to the left of p, then Y follows a
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negative binomial distribution. By the preceding argument,

Pr(Y > n) = Pr(X ≤ k − 1),

which clearly entails Pr(Y ≤ n) = Ip(k, n− k + 1). If we focus on failures
rather than total trials in the definition of the negative binomial, then the
random variable Z = Y − k is representative of this point of view. In this
case, Pr(Z ≤ m) = Ip(k,m+ 1).

2.7.4 F and Student’s t

An Fm,n random variable can be written as the ratio

Fm,n =
nχ2

m

mχ2
n

of two independent chi-square random variables scaled to have unit means.
Straightforward algebra gives

Pr(Fm,n ≤ x) = Pr
(χ2

m

χ2
n

≤ mx

n

)

= Pr
( χ2

n

χ2
m + χ2

n

≥ n

mx+ n

)
.

If p = n/2 is an integer, then χ2
n/2 = Wp is a gamma distributed random

variable that can be interpreted as the waiting time until the pth random
point in a Poisson process on [0,∞). Similarly, if q = m/2 is an integer, then
χ2
m/2 = Wq can be interpreted as the waiting time from the pth random

point until the (p+ q)th random point of the same Poisson process. In this
setting, the ratio

χ2
n

χ2
m + χ2

n

=
Wp

Wq +Wp

≥ u

if and only if the waiting time until the pth point is a fraction u or greater
of the waiting time until the (p+q)th point. Now conditional on the waiting
time Wp+Wq until random point p+q, the p+q−1 previous random points
are uniformly and independently distributed on the interval [0,Wp +Wq].
It follows from equation (2.11) that

Pr
( Wp

Wq +Wp
≥ u

)
=

p−1∑

j=0

(
p+ q − 1

j

)
uj(1 − u)p+q−1−j

= 1 − Iu(p, p+ q − 1 − p+ 1)

= I1−u(q, p).
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In general, regardless of whether n or m is even, the identity

Pr(Fm,n ≤ x) = I mx
mx+n

(m
2
,
n

2

)
(2.12)

holds, relating the F distribution to the incomplete beta function [1].
By definition a random variable tn follows Student’s t distribution with

n degrees of freedom if it is symmetric around 0 and its square t2n has an
F1,n distribution. Therefore, according to equation (2.12),

Pr(tn ≤ x) =
1

2
+

1

2
Pr(t2n ≤ x2)

=
1

2
+

1

2
Pr(F1,n ≤ x2)

=
1

2
+

1

2
I x2

x2+n

(1

2
,
n

2

)

for x ≥ 0.

2.7.5 Monotonic Transformations

Suppose X is a random variable with known distribution function F (x)
and h(x) is a strictly increasing, continuous function. Then the random
variable h(X) has distribution function

Pr[h(X) ≤ x] = F [h−1(x)],

where h−1(x) is the functional inverse of h(x). If h(x) is strictly decreasing
and continuous, then

Pr[h(X) < x] = Pr[X > h−1(x)]

= 1 − F [h−1(x)].

Many common distributions fit this paradigm. For instance, if X is normal,
then eX is lognormal. If X is chi-square, then 1/X, 1/

√
X, and lnX are

inverse chi-square, inverse chi, and log chi-square, respectively. If X has an
Fm,n distribution, then 1

2 lnX has Fisher’s z distribution. Calculating any
of these distributions therefore reduces to evaluating either an incomplete
beta or an incomplete gamma function.

2.8 Problems

1. A symmetric random walk on the integer lattice points of R
k starts at

the origin and at each epoch randomly chooses one of the 2k possible
coordinate directions and takes a unit step in that direction [3]. If
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u2n is the probability that the walk returns to the origin at epoch 2n,
then one can show that

∞∑

n=0

u2n

(2n)!
x2n =

[ ∞∑

n=0

1

(2k)2n(n!)2
x2n
]k
.

Derive a recurrence relation for computing u2n, and implement it
when k = 2. Check your numerical results against the exact formula

u2n =
[ 1

22n

(
2n

n

)]2
.

Discuss possible sources of numerical error in using the recurrence
relation.

2. Write recurrence relations for the Taylor coefficients of the functions(
1+s
1−s

)n
and exp(1+s

1−s).

3. Show that the coefficients of the exponential generating function

∞∑

n=0

Bn
n!
sn = ee

s−1

satisfy the recurrence relation (1.2) of Chapter 1. Check the initial
condition B0 = 1, and conclude that the coefficient Bn determines
the number of partitions of a set with n elements.

4. Suppose the coefficients of a power series
∑∞

n=0 bnx
n satisfy bn = p(n)

for some polynomial p. Find a power series
∑∞

n=0 anx
n such that

p
(
x
d

dx

) ∞∑

n=0

anx
n =

∞∑

n=0

bnx
n.

5. Show that
∑m
n=1 n

2 = m(m+ 1)(2m+ 1)/6 by evaluating

(
x
d

dx

)2 m∑

n=0

xn =
(
x
d

dx

)2 xm+1 − 1

x− 1

at x = 1.

6. A family of discrete density functions pn(θ) defined on {0, 1, . . .} and
indexed by a parameter θ > 0 is said to be a power series family if
for all n

pn(θ) =
cnθ

n

g(θ)
, (2.13)
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where cn ≥ 0, and where g(θ) =
∑∞

k=0 ckθ
k is the appropriate nor-

malizing constant. Show that the mean µ(θ) and variance σ2(θ) of
the pn(θ) reduce to

µ(θ) =
θg′(θ)

g(θ)

σ2(θ) = θµ′(θ).

7. Continuing Problem 6, suppose X1, . . . , Xm is a random sample from
the power series distribution (2.13). Show that Sm = X1 + · · ·+Xm
follows a power series distribution with

Pr(Sm = n) =
amnθ

n

g(θ)m
,

where amn is the coefficient of θn in g(θ)m . If amn = 0 for n < 0,
then also prove that am,Sm−r/am,Sm is an unbiased estimator of θr .
This estimator is, in fact, the uniformly minimum variance, unbiased
estimator of θr [6].

8. Suppose fn(x) and Fn(x) represent, respectively, the density and dis-
tribution functions of a chi-square random variable with n degrees
of freedom. The noncentral chi-square density [1] with noncentrality
parameter 2λ and degrees of freedom n can be written as the Poisson
mixture

fλ,n(x) =

∞∑

k=0

λk

k!
e−λfn+2k(x).

Show that

Fn+2(k+1)(x) = Fn+2k(x) −
e−

x
2

(
x
2

)n
2 +k

Γ(n
2

+ k + 1)
.

Hence, in evaluating the distribution function Fλ,n(x) of fλ,n(x), it
suffices to compute only the single incomplete gamma function Fn(x).
Prove the error estimate

0 ≤ Fλ,n(x) −
m∑

k=0

λk

k!
e−λFn+2k(x)

≤
(
1 −

m∑

k=0

λk

k!
e−λ

)
Fn+2(m+1)(x).

9. To generalize Problem 8, consider the sum SN =
∑N

i=1Xi, where
the summandsXi are independent, exponentially distributed random



24 2. Power Series Expansions

variables with common mean 1/ν , and the number of summands N
is a nonnegative, integer-valued random variable independent of the
Xi. By definition, SN = 0 when N = 0. If Pr(N = n) = pn, then
show that

Pr(SN ≤ x) =
∞∑

n=0

pnP (n, νx)

E(e−θSN ) =

∞∑

n=0

pn

(
ν

ν + θ

)n
,

where P (n, x) is the incomplete gamma function. In view of Prob-
lem 8, how would you proceed in evaluating the distribution func-
tion Pr(SN ≤ x)? Finally, demonstrate that E(SN ) = E(N)/ν and
Var(SN ) = [E(N) + Var(N)]/ν2.

10. Prove the incomplete beta function identities

Ix(a, b) =
Γ(a+ b)

Γ(a+ 1)Γ(b)
xa(1 − x)b−1 + Ix(a + 1, b− 1), b > 1

Ix(a, b) =
Γ(a+ b)

Γ(a+ 1)Γ(b)
xa(1 − x)b + Ix(a+ 1, b).

These two relations form the basis of a widely used algorithm [7] for
computing Ix(a, b). (Hints: For the first, integrate by parts, and for
the second, show that both sides have the same derivative.)

11. Suppose that Z has discrete density

Pr(Z = j) =

(
k + j − 1

j

)
pk(1 − p)j ,

where k > 0 and 0 < p < 1. In other words, Z follows a negative
binomial distribution counting failures, not total trials. Show that
Pr(Z ≤ m) = Ip(k,m + 1) regardless of whether k is an integer.
(Hint: Use one of the identities of the previous problem.)

12. Let X(k) be the kth order statistic from a finite sequence X1, . . . , Xn
of independent, identically distributed random variables with com-
mon distribution function F (x). Show thatX(k) has distribution func-
tion Pr(X(k) ≤ x) = IF (x)(k, n− k + 1).

13. Suppose the bivariate normal random vector (X1, X2)
t has means

E(Xi) = µi, variances Var(Xi) = σ2
i , and correlation ρ. Verify the

decomposition

X1 = σ1|ρ|
1
2Y + σ1(1 − |ρ|) 1

2Z1 + µ1

X2 = σ2 sgn(ρ)|ρ| 12Y + σ2(1 − |ρ|) 1
2Z2 + µ2,
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where Y , Z1, and Z2 are independent, standard normal random vari-
ables. Use this decomposition to deduce that

Pr(X1 ≤ x1, X2 ≤ x2)

=
1√
2π

∫ ∞

−∞
Φ

[
x1 − µ1 − σ1|ρ| 12 y
σ1(1 − |ρ|) 1

2

]

×Φ

[
x2 − µ2 − σ2 sgn(ρ)|ρ| 12 y

σ2(1 − |ρ|) 1
2

]
e−

y2

2 dy,

where Φ(x) is the standard normal distribution [2].
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Continued Fraction Expansions

3.1 Introduction

A continued fraction [2, 3, 4, 5] is a sequence of fractions

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·+ an

bn

(3.1)

formed from two sequences a1, a2, . . . and b0, b1, . . . of numbers. For typo-
graphical convenience, definition (3.1) is usually recast as

fn = b0 +
a1

b1+

a2

b2+

a3

b3+
· · · an

bn
.

In many practical examples, the approximant fn converges to a limit, which
is typically written as

lim
n→∞

fn = b0 +
a1

b1+

a2

b2+

a3

b3+
· · · .

Because the elements an and bn of the two defining sequences can depend
on a variable x, continued fractions offer an alternative to power series
in expanding functions such as distribution functions. In fact, continued
fractions can converge where power series diverge, and where both types of
expansions converge, continued fractions often converge faster.

A lovely little example of a continued fraction is furnished by

√
2 − 1 =

1

2 + (
√

2 − 1)

=
1

2 +
1

2 + (
√

2 − 1)

=
1

2 +
1

2 +
1

2 + (
√

2 − 1)

.

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing,
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One can easily check numerically that the limit

√
2 = 1 +

1

2+

1

2+

1

2+
· · ·

is correct. It is harder to prove this analytically. For the sake of brevity,
we will largely avoid questions of convergence. Readers interested in a full
treatment of continued fractions can consult the references [2, 3, 5]. Prob-
lems 7 through 10 prove convergence when the sequences an and bn are
positive.

Before giving more examples, it is helpful to consider how we might go
about evaluating the approximant fn. One obvious possibility is to work
from the bottom of the continued fraction (3.1) to the top. This obvious
approach can be formalized by defining fractional linear transformations
t0(x) = b0 + x and tn(x) = an/(bn + x) for n > 0. If the circle symbol ◦
denotes functional composition, then we take x = 0 and compute

tn(0) =
an
bn

tn−1 ◦ tn(0) =
an−1

bn−1 + tn(0)

...

t0 ◦ t1 ◦ · · · ◦ tn(0) = fn.

This turns out to be a rather inflexible way to proceed because if we want
the next approximant fn+1, we are forced to start all over again. In 1655 J.
Wallis [6] suggested an alternative strategy. (This is a venerable but often
neglected subject.)

3.2 Wallis’s Algorithm

According to Wallis,

t0 ◦ t1 ◦ · · · ◦ tn(x) =
An−1x+An
Bn−1x+Bn

(3.2)

for a certain pair of auxiliary sequences An and Bn. Taking x = 0 gives
the approximant fn = An/Bn. The sequences An and Bn satisfy the initial
conditions

(
A−1

B−1

)
=

(
1
0

) (
A0

B0

)
=

(
b0
1

)
(3.3)

and for n > 0 the recurrence relation
(
An
Bn

)
= bn

(
An−1

Bn−1

)
+ an

(
An−2

Bn−2

)
. (3.4)
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From the initial conditions (3.3), it is clear that

t0(x) = b0 + x =
A−1x+ A0

B−1x+ B0
.

The general case of (3.2) is proved by induction. Suppose the formula is
true for an arbitrary nonnegative integer n. Then the induction hypothesis
and the recurrence relation (3.4) together imply

t0 ◦ t1 ◦ · · · ◦ tn+1(x) = t0 ◦ t1 ◦ · · · ◦ tn
( an+1

bn+1 + x

)

=
An−1

an+1

bn+1+x
+An

Bn−1
an+1

bn+1+x
+Bn

=
Anx+ (bn+1An + an+1An−1)

Bnx+ (bn+1Bn + an+1Bn−1)

=
Anx+ An+1

Bnx+ Bn+1
.

3.3 Equivalence Transformations

The same continued fraction can be defined by more than one pair of se-
quences an and bn. For instance, if bn 6= 0 for all n > 0, then it is possible
to concoct an equivalent continued fraction given by a pair of sequences a′n
and b′n with b′0 = b0 and b′n = 1 for all n > 0. This can be demonstrated
most easily by defining the transformed auxiliary sequences

(
A′
n

B′
n

)
=

1∏n
k=1 bk

(
An
Bn

)
,

with the understanding that
∏n
k=1 bk = 1 when n = −1 or 0. From this

definition it follows that A′
n and B′

n satisfy the same initial conditions (3.3)
as An and Bn. Furthermore, the recurrence relation (3.4) becomes

(
A′

1

B′
1

)
=

(
A′

0

B′
0

)
+
a1

b1

(
A′

−1

B′
−1

)

(
A′
n

B′
n

)
=

(
A′
n−1

B′
n−1

)
+

an
bn−1bn

(
A′
n−2

B′
n−2

)
, n > 1

after division by
∏n
k=1 bk. Thus, the transformed auxiliary sequences cor-

respond to the choice a′1 = a1/b1 and a′n = an/(bn−1bn) for n > 1. By
definition, the approximants f ′n = A′

n/B
′
n and fn = An/Bn coincide.

Faster convergence can often be achieved by taking the even part of a
continued fraction. This is a new continued fraction whose approximant f ′n
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equals the approximant f2n of the original continued fraction. For the sake
of simplicity, suppose that we start with a transformed continued fraction
with all bn = 1 for n > 0. We can then view the approximant fn as the
value at x = 1 of the iterated composition

s1 ◦ · · · ◦ sn(x) = b0 +
a1

1 +
a2

1 +
a3

1 + · · ·+ an−1

1 + anx

of the n functions s1(x) = b0 + a1x and sk(x) = 1/(1 + akx) for 2 ≤ k ≤ n.
If we compose these functions rn(x) = s2n−1 ◦ s2n(x) two by two, we get

r1(x) = b0 +
a1

1 + a2x
,

rn(x) =
1

1 +
a2n−1

1 + a2nx

= 1 − a2n−1

1 + a2n−1 + a2nx
, n > 1.

The approximant f ′n of the new continued fraction is just

f ′n = r1 ◦ · · · ◦ rn(1)

= b0 +
a1

1 + a2 −
a2a3

1 + a3 + a4 − · · · − a2n−2a2n−1

1 + a2n−1 + a2n

.

From this expansion of the even part, we read off the sequences a′1 = a1,
a′n = −a2n−2a2n−1 for n > 1, b′0 = b0, b

′
1 = 1+a2, and b′n = 1+a2n−1 +a2n

for n > 1.

3.4 Gauss’s Expansion of Hypergeometric
Functions

The hypergeometric function 2F1(a, b, c; x) is given by the power series

2F1(a, b, c; x) =

∞∑

n=0

anbn

cn
xn

n!
, (3.5)

where an, bn, and cn are rising factorial powers defined by

an =

{
1 n = 0
a(a + 1) · · · (a + n− 1) n > 0,
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and so forth. To avoid division by 0, the constant c in (3.5) should be
neither 0 nor a negative integer. If either a or b is 0 or a negative integer,
then the power series reduces to a polynomial. The binomial series

1

(1 − x)a
=

∞∑

n=0

(
a+ n− 1

n

)
xn

=

∞∑

n=0

an
xn

n!

= 2F1(a, 1, 1; x)

and the incomplete beta function

Ix(a, b) =
Γ(a + b)

Γ(a+ 1)Γ(b)
xa(1 − x)b

∞∑

n=0

(a + b)n

(a+ 1)n
xn

=
Γ(a + b)

Γ(a+ 1)Γ(b)
xa(1 − x)b 2F1(a+ b, 1, a+ 1; x) (3.6)

involve typical hypergeometric expansions. Straightforward application of
the ratio test shows that the hypergeometric series (3.5) converges for all
|x| < 1. As the binomial series makes clear, convergence can easily fail for
|x| ≥ 1.

In 1812 Gauss [1] described a method of converting ratios of hypergeo-
metric functions into continued fractions. His point of departure was the
simple identity

an(b+ 1)n

(c+ 1)nn!
− anbn

cnn!
=

a(c− b)

c(c+ 1)

(a+ 1)n−1(b + 1)n−1

(c+ 2)n−1(n− 1)!
.

Multiplying this by xn and summing on n yields the hypergeometric func-
tion identity

2F 1(a, b+ 1, c+ 1; x)− 2F 1(a, b, c; x)

=
a(c− b)x

c(c + 1)
2F 1(a+ 1, b+ 1, c+ 2; x),

which can be rewritten as

2F 1(a, b+ 1, c+ 1; x)

2F 1(a, b, c; x)

=
1

1 − a(c− b)x
c(c+ 1)

· 2F 1(a+ 1, b+ 1, c+ 2; x)

2F 1(a, b+ 1, c+ 1; x)

. (3.7)

If in this derivation we interchange the roles of a and b and then replace b
by b+ 1 and c by c + 1, then we arrive at the similar identity
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2F 1(a + 1, b+ 1, c+ 2; x)

2F 1(a, b+ 1, c+ 1; x)

=
1

1 − (b+ 1)(c+ 1 − a)x
(c+ 1)(c+ 2)

· 2F 1(a + 1, b+ 2, c+ 3; x)

2F 1(a + 1, b+ 1, c+ 2; x)

. (3.8)

Now the ratio (3.8) can be substituted for the ratio appearing in the de-
nominator on the right of equation (3.7). Likewise, the ratio (3.7) with a, b,
and c replaced by a+1, b+1, and c+2, respectively, can be substituted for
the ratio appearing in the denominator on the right of equation (3.8). Alter-
nating these successive substitutions produces Gauss’s continued fraction
expansion

2F 1(a, b+ 1, c+ 1; x)

2F 1(a, b, c; x)
=

1

1+

d1x

1+

d2x

1+
· · · (3.9)

with

d2n+1 = − (a+ n)(c − b+ n)

(c + 2n)(c+ 2n+ 1)

d2n+2 = −(b + n+ 1)(c− a + n+ 1)

(c+ 2n+ 1)(c+ 2n+ 2)

for n ≥ 0.
Gauss’s expansion (3.9) is most useful when b = 0, for then

2F 1(a, b, c; x) = 1.

For instance, the hypergeometric expansion of (1 − x)−a has coefficients

d1 = −a

d2n+1 = − (a + n)

2(2n+ 1)
, n ≥ 1

d2n+2 = −(n + 1 − a)

2(2n+ 1)
, n ≥ 0.

In this example, note that the identity (3.7) continues to hold for b = c = 0,
provided 2F 1(a, 0, 0; x) and the ratio (c− b)/c are both interpreted as 1.

The hypergeometric function 2F1(a + b, 1, a+ 1; x) determining the in-
complete beta function (3.6) can be expanded with coefficients

d2n+1 = − (a+ b+ n)(a+ n)

(a+ 2n)(a+ 2n+ 1)

d2n+2 = − (n+ 1)(n+ 1 − b)

(a+ 2n+ 1)(a+ 2n+ 2)
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for n ≥ 0. Press et al. [4] claim that this continued fraction expansion for
the incomplete beta function is superior to the power series expansion (3.6)
for all values of the argument x, provided one switches to the expansion of
I1−x(b, a) = 1 − Ix(a, b) when x > (a + 1)/(a+ b+ 2).

3.5 Expansion of the Incomplete Gamma Function

To expand the incomplete gamma function as a continued fraction, we take
a detour and first examine the integral

Jx(a, b) =
1

Γ(a)

∫ ∞

0

e−yya−1

(1 + xy)b
dy

for a > 0 and x ≥ 0. This integral exhibits the surprising symmetry
Jx(a, b) = Jx(b, a). In fact, when both a and b are positive,

Jx(a, b) =
1

Γ(a)

∫ ∞

0

e−yya−1 1

Γ(b)

∫ ∞

0

e−z(1+xy)zb−1dzdy

=
1

Γ(b)

∫ ∞

0

e−zzb−1 1

Γ(a)

∫ ∞

0

e−y(1+xz)ya−1dydz

= Jx(b, a).

Because Jx(a, 0) = 1 by definition of the gamma function, this symmetry
relation yields lima→0 Jx(a, b) = lima→0 Jx(b, a) = 1. Thus, it is reasonable
to define Jx(0, b) = 1 for b > 0.

To forge a connection to the incomplete gamma function, we consider
Jx−1 (1, 1− a). An obvious change of variables then implies

Jx−1 (1, 1− a) =

∫ ∞

0

e−y
(
1 +

y

x

)a−1

dy

= x1−a
∫ ∞

0

e−y(x+ y)a−1dy

= x1−aex
∫ ∞

x

e−zza−1dz.

A final simple rearrangement gives

1

Γ(a)

∫ x

0

e−zza−1dz = 1 − e−xxa−1

Γ(a)
Jx−1(1, 1− a). (3.10)

The integral Jx(a, b) also satisfies identities similar to equations (3.7)
and (3.8) for the hypergeometric function. For instance,

Jx(a, b) =
1

Γ(a)

∫ ∞

0

e−yya−1(1 + xy)

(1 + xy)b+1
dy
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= Jx(a, b+ 1) +
ax

aΓ(a)

∫ ∞

0

e−yya

(1 + xy)b+1
dy

= Jx(a, b+ 1) + axJx(a+ 1, b+ 1) (3.11)

can be rearranged to give

Jx(a, b+ 1)

Jx(a, b)
=

1

1 + ax
Jx(a + 1, b+ 1)
Jx(a, b+ 1)

. (3.12)

Exploiting the symmetry Jx(a, b) = Jx(b, a) when b > 0 or integrating by
parts in general, we find

Jx(a, b+ 1) = Jx(a+ 1, b+ 1) + (b + 1)xJx(a+ 1, b+ 2).

This in turn yields

Jx(a+ 1, b+ 1)

Jx(a, b+ 1)
=

1

1 + (b+ 1)x
Jx(a+ 1, b+ 2)
Jx(a+ 1, b+ 1)

. (3.13)

Substituting equation (3.13) into equation (3.12) and vice versa in an
alternating fashion leads to a continued fraction expansion of the form
(3.9) for the ratio Jx(a, b + 1)/Jx(a, b). The coefficients of this expansion
can be expressed as

d2n+1 = a + n

d2n+2 = b+ n+ 1

for n ≥ 0. The special case b = 0 is important because Jx(a, 0) = 1.
If a = 0, then Jx(0, b) = 1, and it is advantageous to expand the contin-

ued fraction starting with identity (3.13) rather than identity (3.12). For
example, the function Jx−1 (1, 1− a) appearing in expression (3.10) for the
incomplete gamma function can be expanded with coefficients

d2n+1 = 1 − a+ n

d2n+2 = n+ 1,

provided we replace x in (3.9) by 1/x, commence the continued fraction
with identity (3.13), and take a = 0 and b+1 = 1−a. (See Problem 5.) Press
et al. [4] recommend this continued fraction expansion for the incomplete
gamma function on x > a + 1 and the previously discussed power series
expansion on x < a+ 1.

One subtle point in dealing with the case a = 0 is that we want the
limiting value Jx(0, b) = 1 to hold for all b, not just for b > 0. To prove
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this slight extension, observe that iterating recurrence (3.11) leads to the
representation

Jx(a, b) = Jx(a, b+ n) + ax

n∑

k=1

pk(x)Jx(a+ k, b+ n), (3.14)

where the pk(x) are polynomials. If n is so large that b+n > 0, then taking
limits in (3.14) again yields lima→0 Jx(a, b) = 1.

3.6 Problems

1. Suppose a continued fraction has all ak = x, b0 = 0, and all remaining
bk = 1−x for |x| 6= 1. Show that the nth approximant fn(x) satisfies

fn(x) =
x[1− (−x)n]

1 − (−x)n+1
.

Conclude that

lim
n→∞

fn(x) =

{
x |x| < 1
−1 |x| > 1.

Thus, the same continued fraction converges to two different analytic
functions on two different domains.

2. Verify the identities

ln(1 − x) = −x 2F 1(1, 1, 2; x)

arctan(x) = x 2F 1

(1

2
, 1,

3

2
;−x2

)

∫ ∞

1

e−xy

yn
dy =

e−x

x

∫ ∞

0

e−u(
1 + u

x

)n du.

3. Find continued fraction expansions for each of the functions in the
previous problem.

4. If 1F1(b, c; x) =
∑∞
n=0

bn

cn
xn

n! , then prove that

1F1(b, c; x) = lim
a→∞ 2F 1

(
a, b, c;

x

a

)
. (3.15)

Noting that ex = 1F 1(1, 1; x), demonstrate that ex has a continued
fraction expansion given by the right-hand side of equation (3.9) with
d2n+1 = −(4n + 2)−1 and d2n+2 = −(4n + 2)−1. (Hint: For the
expansion of ex, derive two recurrence relations by taking appropriate
limits in equations (3.7) and (3.8).)
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5. Check that the function Jx−1 (1, 1− a) appearing in our discussion of
the incomplete gamma function has the explicit expansion

Jx−1 (1, 1− a) = x
( 1

x+

1 − a

1+

1

x+

2 − a

1+

2

x+
· · ·
)
.

Show that the even part of this continued fraction expansion amounts
to

Jx−1 (1, 1− a) = x
( 1

x+ 1 − a−
1 · (1 − a)

x+ 3 − a−
2 · (2 − a)

x+ 5 − a− · · ·
)
.

6. Lentz’s method of evaluating the continued fraction (3.1) is based on
using the ratios Cn = An/An−1 and Dn = Bn−1/Bn and calculating
fn by fn = fn−1CnDn. This avoids underflows and overflows when
the An or Bn tend to very small or very large values. Show that the
ratios satisfy the recurrence relations

Cn = bn +
an
Cn−1

Dn =
1

bn + anDn−1
.

7. Prove the determinant formulas

det

(
An An−1

Bn Bn−1

)
= (−1)n−1

n∏

k=1

ak (3.16)

det

(
An+1 An−1

Bn+1 Bn−1

)
= (−1)n−1bn+1

n∏

k=1

ak (3.17)

in the notation of Wallis’ algorithm.

8. Suppose the two sequences an and bn generating a continued fraction
have all elements nonnegative. Show that the approximants fn satisfy
f1 ≥ f3 ≥ · · · ≥ f2n+1 ≥ f2n ≥ · · · ≥ f2 ≥ f0. It follows that
limn→∞ f2n and limn→∞ f2n+1 exist, but unless further assumptions
are made, there can be a gap between these two limits. (Hint: Use
equation (3.17) from the previous problem to prove f2n ≥ f2n−2 and
f2n+1 ≤ f2n−1. Use equation (3.16) to prove f2n+1 ≥ f2n.)

9. Provided all an 6= 0, prove that the continued fraction (3.1) is also

generated by the sequences a′n = 1 and b′n = bn
∏n
k=1 a

(−1)n−k+1

k .

10. Suppose that the sequences an and bn are positive. The Stern-Stolz
theorem [2] says that

∞∑

n=0

bn

n∏

k=1

a
(−1)n−k+1

k = ∞



3. Continued Fraction Expansions 37

is a necessary and sufficient condition for the convergence of the ap-
proximants fn to the continued fraction (3.1). To prove the sufficiency
of this condition, verify that:

(a) It is enough by the previous problem to take all an = 1.

(b) The approximants then satisfy

f2n+1 − f2n =
A2n+1

B2n+1
− A2n

B2n

=
A2n+1B2n −A2nB2n+1

B2nB2n+1

=
1

B2nB2n+1

by the determinant formula (3.16).

(c) Because Bn = bnBn−1 +Bn−2, the sequence Bn satisfies

B2n ≥ B0

= 1

B2n+1 ≥ b1.

(d) The recurrence Bn = bnBn−1+Bn−2 and part (c) together imply

B2n ≥ (b2n + b2n−2 + · · ·+ b2)b1 + 1

B2n+1 ≥ b2n+1 + b2n−1 + · · ·+ b1;

consequently, either limn→∞B2n = ∞, or limn→∞B2n+1 = ∞.

(e) The sufficiency part of the theorem now follows from parts (b)
and (d).

11. The Stieltjes function F (x) = F (0)
∫∞
0

1
1+xy

dG(y) plays an impor-

tant role in the theoretical development of continued fractions [5].
Here G(y) is an arbitrary probability distribution function concen-
trated on [0,∞) and F (0) > 0. In the region {x : x 6= 0, | arg(x)| < π}
of the complex plane C excluding the negative real axis and 0, show
that F (x) has the following properties:

(a) 1
xF ( 1

x ) = F (0)
∫∞
0

1
x+ydG(y),

(b) F (x) is an analytic function,

(c) limx→0 F (x) = F (0),

(d) The imaginary part of F (x) satisfies

ImF (x) =




< 0 Im(x) > 0
= 0 Im(x) = 0
> 0 Im(x) < 0 .
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4

Asymptotic Expansions

4.1 Introduction

Asymptotic analysis is a branch of mathematics dealing with the order
of magnitude and limiting behavior of functions, particularly at boundary
points of their domains of definition [1, 2, 4, 5, 7]. Consider, for instance,
the function

f(x) =
x2 + 1

x+ 1
.

It is obvious that f(x) resembles the function x as x → ∞. However, one
can be more precise. The expansion

f(x) =
x2 + 1

x(1 + 1
x )

=
(
x+

1

x

) ∞∑

k=0

(−1

x

)k

= x− 1 − 2

∞∑

k=1

(−1

x

)k

indicates that f(x) more closely resembles x − 1 for large x. Furthermore,
f(x) − x + 1 behaves like 2/x for large x. We can refine the precision of
the approximation by taking more terms in the infinite series. How far we
continue in this and other problems is usually dictated by the application
at hand.

4.2 Order Relations

Order relations are central to the development of asymptotic analysis. Sup-
pose we have two functions f(x) and g(x) defined on a common interval
I, which may extend to ∞ on the right or to −∞ on the left. Let x0 be
either an internal point or a boundary point of I with g(x) 6= 0 for x
close, but not equal, to x0. Then the function f(x) is said to be O(g(x))
if there exists a constant M such that |f(x)| ≤ M |g(x)| as x → x0. If
limx→x0

lation f(x) = o(g(x)) implies the weaker relation f(x) = O(g(x)). Finally,

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 39

f(x)/g(x) = 0, then f(x) is said to be o(g(x)). Obviously, the re-
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if limx→x0 f(x)/g(x) = 1, then f(x) is said to be asymptotic to g(x). This
is usually written f(x) � g(x). In many problems, the functions f(x) and
g(x) are defined on the integers {1, 2, . . .} instead of on an interval I, and
x0 is taken as ∞.

For example, on I = (1,∞) one has ex = O(sinhx) as x→ ∞ because

ex

ex − e−x

2

=
2

1 − e−2x

≤ 2

1 − e−2
.

On (0,∞) one has sin2 x = o(x) as x→ 0 because

lim
x→0

sin2 x

x
= lim

x→0
sinx lim

x→0

sinx

x
= 0 × 1.

On I = (0,∞), our initial example can be rephrased as (x2 +1)/(x+1) � x
as x → ∞.

If f(x) is bounded in a neighborhood of x0, then we write f(x) = O(1)
as x → x0, and if limx→x0 f(x) = 0, we write f(x) = o(1) as x → x0. The
notation f(x) = g(x)+O(h(x)) means f(x)−g(x) = O(h(x)) and similarly
for the o notation. For example,

x2 + 1

x+ 1
= x− 1 + O

(1

x

)
.

If f(x) is differentiable at point x0, then

f(x0 + h) − f(x0) = f ′(x0)h+ o(h).

There are a host of miniature theorems dealing with order relations. Among
these are

O(g) + O(g) = O(g)

o(g) + o(g) = o(g)

O(g1)O(g2) = O(g1g2)

o(g1)O(g2) = o(g1g2)

|O(g)|λ = O(|g|λ), λ > 0

|o(g)|λ = o(|g|λ), λ > 0.
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4.3 Finite Taylor Expansions

One easy way of generating approximations to a function is via finite Taylor
expansions. Suppose f(x) has n + 1 continuous derivatives near x0 = 0.
Then

f(x) =

n∑

k=0

1

k!
f(k)(0)xk + O(xn+1)

as x → 0. This order relation is validated by l’Hôpital’s rule applied n+ 1
times to the quotient

f(x) −∑n
k=0

1
k!f

(k)(0)xk

xn+1
.

Of course, it is more informative to write the Taylor expansion with an
explicit error term; for instance,

f(x) =

n∑

k=0

1

k!
f(k)(0)xk +

xn+1

n!

∫ 1

0

f(n+1)(tx)(1 − t)ndt. (4.1)

This integral x
n+1

n!

∫ 1

0
f(n+1)(tx)(1−t)ndt form of the remainder Rn(x) after

n terms can be derived by noting the recurrence relation

Rn(x) = −x
n

n!
f(n)(0) +Rn−1(x)

and the initial condition

R0(x) = f(x) − f(0),

both of which follow from integration by parts. One virtue of formula (4.1)
emerges when the derivatives of f(x) satisfy (−1)kf(k)(x) ≥ 0 for all k > 0.
If this condition holds, then

0 ≤ (−1)n+1Rn(x)

=
xn+1

n!

∫ 1

0

(−1)n+1f(n+1)(tx)(1 − t)ndt

≤ xn+1

n!
(−1)n+1f(n+1)(0)

∫ 1

0

(1 − t)ndt

=
xn+1

(n+ 1)!
(−1)n+1f(n+1)(0)

for any x > 0. In other words, the remainders Rn(x) alternate in sign
and are bounded in absolute value by the next term of the expansion.
As an example, the function f(x) = − ln(1 + x) satisfies the inequalities
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(−1)kf(k)(x) ≥ 0 and consequently also an infinity of Taylor expansion
inequalities beginning with 0 ≤ − ln(1 + x) + x ≤ x2/2.

In large sample theory, finite Taylor expansions are invoked to justify
asymptotic moment formulas for complicated random variables. The next
proposition [6] is one species of a genus of results.

Proposition 4.3.1 Let X1, X2, . . . be an i.i.d. sequence of random vari-
ables with common mean E(Xi) = µ and variance Var(Xi) = σ2. Suppose
that I is some interval with Pr(Xi ∈ I) = 1 and that m ≥ 4 is an even
integer such that the first m moments of Xi exist. If h(x) is any func-
tion whose mth derivative h(m)(x) is bounded on I, then the sample mean
An = 1

n

∑n
i=1Xi satisfies

E[h(An)] = h(µ) +
σ2

2n
h′′(µ) + O

( 1

n2

)
(4.2)

as n → ∞. If h(x)2 satisfies the same hypothesis as h(x) with a possibly
different m, then

Var[h(An)] =
σ2

n
h′(µ)2 +O

( 1

n2

)
(4.3)

as n → ∞.

Proof: Let us begin by finding the order of magnitude of the kth moment
µnk of the centered sum Sn =

∑n
i=1(Xi − µ). We claim that µnk is a

polynomial in n of degree bk2 c or less, where b·c is the least integer function.
This assertion is certainly true for k ≤ 2 because µn0 = 1, µn1 = 0,
and µn2 = nσ2. The general case can be verified by letting cj be the
jth cumulant of Xi − µ. Because a cumulant of a sum of independent
random variables is the sum of the cumulants, ncj is the jth cumulant of
Sn. According to our analysis in Chapter 2, we can convert cumulants to
moments via

µnk =

k−1∑

j=0

(
k − 1

j

)
nck−jµnj

=

k−2∑

j=0

(
k − 1

j

)
nck−jµnj,

where the fact c1 = 0 permits us to omit the last term in the sum. This for-
mula and mathematical induction evidently imply that µnk is a polynomial
in n whose degree satisfies

deg µnk ≤ 1 + max
0≤j≤k−2

degµnj

≤ 1 +

⌊
k − 2

2

⌋

=

⌊
k

2

⌋
.
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This calculation validates the claim.
Now consider the Taylor expansion

h(An) −
m−1∑

k=0

h(k)(µ)

k!
(An − µ)k =

h(m)(η)

m!
(An − µ)m (4.4)

for η between An and µ. In view of the fact that |h(m)(An)| ≤ b for some
constant b and all possible values of An, taking expectations in equation
(4.4) yields

∣∣∣∣∣E[h(An)] −
m−1∑

k=0

h(k)(µ)

k!

µnk
nk

∣∣∣∣∣ ≤ b

m!

µnm
nm

. (4.5)

Because µnk is a polynomial of degree at most bk/2c in n, the factor µnk/n
k

is O
(
n−k+bk/2c

)
. This fact in conjunction with inequality (4.5) clearly gives

the expansion (4.2).
If h(x)2 satisfies the same hypothesis as h(x), then

E[h(An)2] = h(µ)2 +
σ2

2n
2[h(µ)h′′(µ) + h′(µ)2] +O

( 1

n2

)
.

Straightforward algebra now indicates that the difference

Var[h(An)] = E[h(An)2] − E[h(An)]
2

takes the form (4.3).

The proposition is most easily applied if the Xi are bounded or h(x) is
a polynomial. For example, if the Xi are Bernoulli random variables with
success probability p, then h(An) = An(1−An) is the maximum likelihood
estimate of the Bernoulli variance σ2 = p(1 − p). Proposition 4.3.1 implies

E[An(1 −An)] = p(1 − p) − p(1 − p)2

2n

=
(
1 − 1

n

)
p(1 − p)

Var[An(1 −An)] =
p(1 − p)(1 − 2p)2

n
+O

( 1

n2

)
.

The expression for the mean E[An(1 − An)] is exact since the third and
higher derivatives of h(x) = x(1− x) vanish.

4.4 Expansions via Integration by Parts

Integration by parts often works well as a formal device for generating
asymptotic expansions. Here are three examples.
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4.4.1 Exponential Integral

Suppose Y has exponential density e−y with unit mean. Given Y , let a
point X be chosen uniformly from the interval [0, Y ]. Then it is easy to
show that X has density E1(x) =

∫∞
x
e−yy−1dy and distribution function

1− e−x +xE1(x). To generate an asymptotic expansion of the exponential
integral E1(x) as x → ∞, one can repeatedly integrate by parts. This gives

E1(x) = −e
−y

y

∣∣∣
∞

x
−
∫ ∞

x

e−y

y2
dy

=
e−x

x
+
e−y

y2

∣∣∣
∞

x
+ 2

∫ ∞

x

e−y

y3
dy

...

= e−x
n∑

k=1

(−1)k−1 (k − 1)!

xk
+ (−1)nn!

∫ ∞

x

e−y

yn+1
dy.

This is emphatically not a convergent series in powers of 1/x. In fact, for
any fixed x, we have limk→∞ |(−1)(k−1)(k − 1)!/xk| = ∞.

Fortunately, the remainders Rn(x) = (−1)nn!
∫∞
x e−yy−n−1dy alternate

in sign and are bounded in absolute value by

|Rn(x)| ≤ n!

xn+1

∫ ∞

x

e−ydy

=
n!

xn+1
e−x,

the absolute value of the next term of the expansion. This suggests that
we truncate the expansion when n is the largest integer with

n!

xn+1 e
−x

(n− 1)!

xn
e−x

≤ 1.

In other words, we should choose n ≈ x. If we include more terms, then
the approximation degrades. This is in striking contrast to what happens
with a convergent series.

Table 4.1 illustrates these remarks by tabulating a few representative
values of the functions

I(x) = xexE1(x)

Sn(x) =

n∑

k=1

(−1)k−1 (k − 1)!

xk−1
.

For larger values of x, the approximation noticeably improves. For instance,
I(10) = 0.91563 while S10(10) = 0.91544 and I(100) = 0.99019 = S4(100).
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TABLE 4.1. Asymptotic Approximation of the Exponential Integral

x I(x) S1(x) S2(x) S3(x) S4(x) S5(x) S6(x)

1 0.59634 1.0 0.0 2.0 -4.0
2 0.72266 1.0 0.5 1.0 0.25 1.75
3 0.78625 1.0 0.667 0.8999 0.6667 0.9626 0.4688
5 0.85212 1.0 0.8 0.88 0.8352 0.8736 0.8352

4.4.2 Incomplete Gamma Function

Repeated integration by parts of the right-tail probability of a gamma
distributed random variable produces in the same manner

1

Γ(a)

∫ ∞

x

ya−1e−ydy

= xae−x
n∑

k=1

1

xkΓ(a− k + 1)
+

1

Γ(a− n)

∫ ∞

x

ya−n−1e−ydy.

If a is a positive integer, then the expansion stops at n = a with remainder
0. Otherwise, if n is so large that a− n− 1 is negative, then the remainder
satisfies

∣∣∣∣
1

Γ(a− n)

∫ ∞

x

ya−n−1e−ydy

∣∣∣∣ ≤
∣∣∣∣

1

Γ(a− n)

∣∣∣∣ xa−n−1e−x.

Reasoning as above, we deduce that it is optimal to truncate the expansion
when |a− n|/x ≈ 1. The right-tail probability

1√
2π

∫ ∞

x

e−
y2

2 dy =
1

2Γ(1
2
)

∫ ∞

x2

2

z
1
2−1e−zdz

of the standard normal random variable is covered by the special case
a = 1/2 for x > 0; namely,

1√
2π

∫ ∞

x

e−
y2

2 dy =
e−

x2

2

x
√

2π

(
1 − 1

x2
+

3

x4
− 3 · 5

x6
+ · · ·

)
.

4.4.3 Laplace Transforms

The Laplace transform of a function f(x) is defined by

f̂(λ) =

∫ ∞

0

e−λxf(x)dx.
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Repeated integration by parts yields

f̂(λ) =
f(0)

λ
+

1

λ

∫ ∞

0

e−λxf ′(x)dx

...

=
n∑

k=0

f(k)(0)

λk+1
+

1

λn+1

∫ ∞

0

e−λxf(n+1)(x)dx,

provided f(x) is sufficiently well behaved that the required derivatives
f(k)(0) and integrals

∫∞
0
e−λx|f(k)(x)|dx exist. The remainder satisfies

λ−n−1

∫ ∞

0

e−λxf(n+1)(x)dx = o(λ−n−1)

as λ→ ∞. Watson’s lemma significantly generalizes this result [7].

4.5 General Definition of an Asymptotic Expansion

The previous examples suggest Poincaré’s definition of an asymptotic ex-
pansion. Let φn(x) be a sequence of functions such that φn+1(x) = o(φn(x))
as x → x0. Then

∑∞
k=1 ckφk(x) is an asymptotic expansion for f(x) if

f(x) =
∑n
k=1 ckφk(x) + o(φn(x)) holds as x → x0 for every n ≥ 1. The

constants cn are uniquely determined by the limits

cn = lim
x→x0

f(x) −∑n−1
k=1 ckφk(x)

φn(x)

taken recursively starting with c1 = limx→x0 f(x)/φ1(x). Implicit in this
definition is the assumption that φn(x) 6= 0 for x close, but not equal, to
x0.

4.6 Laplace’s Method

Laplace’s method gives asymptotic approximations for integrals

∫ d

c

f(y)e−xg(y)dy (4.6)

depending on a parameter x as x→ ∞. Here the boundary points c and d
can be finite or infinite. There are two cases of primary interest. If c is finite,
and the minimum of g(y) occurs at c, then the contributions to the integral
around c dominate as x→ ∞. Without loss of generality, let us take c = 0
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and d = ∞. (If d is finite, then we can extend the range of integration by
defining f(x) = 0 to the right of d.) Now the supposition that the dominant
contributions occur around 0 suggests that we can replace f(y) by f(0) and
g(y) by its first-order Taylor expansion g(y) ≈ g(0) + g′(0)y. Making these
substitutions leads us to conjecture that

∫ ∞

0

f(y)e−xg(y)dy � f(0)e−xg(0)

∫ ∞

0

e−xyg
′(0)dy

=
f(0)e−xg(0)

xg′(0)
. (4.7)

In essence, we have reduced the integral to integration against the ex-
ponential density with mean [xg′(0)]−1. As this mean approaches 0, the
approximation becomes better and better. Under the weaker assumption
that f(y) � ayb−1 as y → 0 for b > 0, the integral (4.6) can be replaced by
an integral involving a gamma density. In this situation,

∫ ∞

0

f(y)e−xg(y)dy � aΓ(b)e−xg(0)

[xg′(0)]b
(4.8)

as x → ∞.
The other case occurs when g(y) assumes its minimum at an interior

point, say 0, between, say, c = −∞ and d = ∞. Now we replace g(y) by its
second-order Taylor expansion g(y) = g(0) + 1

2
g′′(0)y2 + o(y2). Assuming

that the region around 0 dominates, we conjecture that
∫ ∞

−∞
f(y)e−xg(y)dy � f(0)e−xg(0)

∫ ∞

−∞
e−

xg′′(0)y2

2 dy

= f(0)e−xg(0)

√
2π

xg′′(0)
. (4.9)

In other words, we reduce the integral to integration against the normal
density with mean 0 and variance [xg′′(0)]−1. As this variance approaches
0, the approximation improves.

The asymptotic equivalences (4.8) and (4.9) and their generalizations
constitute Laplace’s method. Before rigorously stating and proving the sec-
ond of these conjectures, let us briefly consider some applications.

4.6.1 Moments of an Order Statistic

Our first application of Laplace’s method involves a problem in order statis-
tics. Let X1, . . . , Xn be i.i.d. positive, random variables with common dis-
tribution function F (x). We assume that F (x) � axb as x → 0. Now
consider the first order statistic X(1) = min1≤i≤nXi. One can express the
kth moment of X(1) in terms of its right-tail probability

Pr(X(1) > x) = [1 − F (x)]n
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as

E(Xk
(1)) = k

∫ ∞

0

xk−1[1 − F (x)]ndx

= k

∫ ∞

0

xk−1en ln[1−F (x)]dx

=
k

b

∫ ∞

0

u
k
b −1en ln[1−F (u

1
b )]du,

where the last integral arises from the change of variable u = xb. Now the
function g(u) = − ln[1 − F (u

1
b )] has its minimum at u = 0, and an easy

calculation invoking the assumption F (x) � axb yields g(u) � au as u→ 0.
Hence, the first form (4.8) of Laplace’s method implies

E(Xk
(1)) � kΓ(kb )

b(na)
k
b

. (4.10)

This asymptotic equivalence has an amusing consequence for a birthday
problem. Suppose that people are selected one by one from a large crowd
until two of the chosen people share a birthday. We would like to know how
many people are selected on average before a match occurs. One way of
conceptualizing this problem is to imagine drawing people at random times
dictated by a Poisson process with unit intensity. The expected time until
the first match then coincides with the expected number of people drawn
[3]. Since the choice of a birthday from the available n = 365 days of the
year is made independently for each random draw, we are in effect watching
the evolution of n independent Poisson processes, each with intensity 1/n.

LetXi be the time when the second random point happens in the ith pro-
cess. The time when the first birthday match occurs in the overall process
is X(1) = min1≤i≤nXi. Now Xi has right-tail probability

Pr(Xi > x) =
(
1 +

x

n

)
e−

x
n

because 0 or 1 random points must occur on [0, x] in order for Xi > x. It
follows that Xi has distribution function

Pr(Xi ≤ x) = 1 −
(
1 +

x

n

)
e−

x
n

� x2

2n2
,

and according to our calculation (4.10) with a = 1/(2n2), b = 2, and k = 1,

E(X(1)) � Γ(1
2)

2(n 1
2n2 )

1
2

=
1

2

√
2πn.

For n = 365 we get E(X(1)) ≈ 23.9, a reasonably close approximation to
the true value of 24.6.
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4.6.2 Stirling’s Formula

The behavior of the gamma function

Γ(λ) =

∫ ∞

0

yλ−1e−ydy

as λ → ∞ can be ascertained by Laplace’s method. If we define z = y/λ,
then

Γ(λ+ 1) = λλ+1

∫ ∞

0

e−λg(z)dz

for the function g(z) = z− ln z, which has its minimum at z = 1. Applying
Laplace’s second approximation (4.9) at z = 1 gives Stirling’s asymptotic
formula

Γ(λ+ 1) �
√

2πλλ+ 1
2 e−λ

as λ→ ∞.

4.6.3 Posterior Expectations

In Bayesian calculations one is often confronted with the need to evaluate
the posterior expectation

∫
eh(θ)eln(θ)+π(θ)dθ∫
eln(θ)+π(θ)dθ

(4.11)

of some function eh(θ) of the parameter θ. In formula (4.11), π(θ) is the
logprior and ln(θ) is the loglikelihood of n observations. If n is large and
the observations are independent, then usually the logposterior ln(θ)+π(θ)

is sharply peaked in the vicinity of the posterior mode θ̂.
In the spirit of Laplace’s method, this suggests that the denominator in

(4.11) can be approximated by
∫
eln(θ)+π(θ)dθ ≈ eln(θ̂)+π(θ̂)

∫
e

1
2 [l′′n(θ̂)+π′′(θ̂)](θ−θ̂)2dθ

= eln(θ̂)+π(θ̂)

√
2π

−[l′′n(θ̂) + π′′(θ̂)]
.

If we also approximate the numerator of (4.11) by expanding the sum
h(θ) + ln(θ) + π(θ) around its maximum point θ̃, then the ratio (4.11) can
be approximated by

∫
eh(θ)eln(θ)+π(θ)dθ∫
eln(θ)+π(θ)dθ

≈ e[h(θ̃)+ln(θ̃)+π(θ̃)−ln(θ̂)−π(θ̂)]

√
l′′n(θ̂) + π′′(θ̂)

h′′(θ̃) + l′′n(θ̃) + π′′(θ̃)
. (4.12)
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The major virtue of this approximation is that it substitutes optimization
for integration. The approximation extends naturally to multidimensional
settings, where the difficulty of integration is especially acute. Tierney and
Kadane [8] provide a detailed analysis of the order of magnitude of the
errors committed in using formula (4.12).

4.7 Validation of Laplace’s Method

Here we undertake a formal proof of the second Laplace asymptotic formula
(4.9). Proof of the first formula (4.7) is similar.

Proposition 4.7.1 If the conditions

(a) for every δ > 0 there exists a ρ > 0 with g(y) − g(0) ≥ ρ for |y| ≥ δ,

(b) g(y) is twice continuously differentiable in a neighborhood of 0 and
g′′(0) > 0,

(c) f(y) is continuous in a neighborhood of 0 and f(0) > 0,

(d) the integral
∫∞
−∞ f(y)e−xg(y)dy is absolutely convergent for x ≥ x1,

are satisfied, then the asymptotic relation (4.9) obtains.

Proof: By multiplying both sides of the asymptotic relation (4.9) by exg(0),
we can assume without loss of generality that g(0) = 0. Because g(y) has
its minimum at y = 0, l’Hôpital’s rule implies g(y) − 1

2g
′′(0)y2 = o(y2) as

y → 0. Now let a small ε > 0 be given, and choose δ > 0 sufficiently small
so that the inequalities

(1 − ε)f(0) ≤ f(y)

≤ (1 + ε)f(0)
∣∣∣g(y) − 1

2
g′′(0)y2

∣∣∣ ≤ εy2

hold for |y| ≤ δ. Assumption (a) guarantees the existence of a ρ > 0 with
g(y) ≥ ρ for |y| ≥ δ.

We next show that the contributions to the Laplace integral from the
region |y| ≥ δ are negligible as x→ ∞. Indeed, for x ≥ x1,

∣∣∣∣
∫ ∞

δ

f(y)e−xg(y)dy

∣∣∣∣ ≤
∫ ∞

δ

|f(y)|e−(x−x1)g(y)e−x1g(y)dy

≤ e−(x−x1)ρ

∫ ∞

δ

|f(y)|e−x1g(y)dy

= O(e−ρx).

Likewise,
∫−δ
−∞ f(y)e−xg(y)dy = O(e−ρx).
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Owing to our choice of δ, the central portion of the integral satisfies

∫ δ

−δ
f(y)e−xg(y)dy ≤ (1 + ε)f(0)

∫ δ

−δ
e−

x
2 [g′′(0)−2ε]y2

dy.

Duplicating the above reasoning,

∫ −δ

−∞
e−

x
2 [g′′(0)−2ε]y2

dy +

∫ ∞

δ

e−
x
2 [g′′(0)−2ε]y2

dy = O(e−ωx),

where ω = 1
2 [g′′(0) − 2ε]δ2. Thus,

(1 + ε)f(0)

∫ δ

−δ
e−

x
2 [g′′(0)−2ε]y2

dy

= (1 + ε)f(0)

∫ ∞

−∞
e−

x
2 [g′′(0)−2ε]y2

dy + O(e−ωx)

= (1 + ε)f(0)

√
2π

x[g′′(0) − 2ε]
+O(e−ωx).

Assembling all of the relevant pieces, we now conclude that

∫ ∞

−∞
f(y)e−xg(y)dy ≤ (1 + ε)f(0)

√
2π

x[g′′(0) − 2ε]

+O(e−ρx) +O(e−ωx).

Hence,

lim sup
x→∞

√
x

∫ ∞

−∞
f(y)e−xg(y)dy ≤ (1 + ε)f(0)

√
2π

[g′′(0) − 2ε]
,

and sending ε → 0 produces

lim sup
x→∞

√
x

∫ ∞

−∞
f(y)e−xg(y)dy ≤ f(0)

√
2π

g′′(0)
.

A similar argument gives

lim inf
x→∞

√
x

∫ ∞

−∞
f(y)e−xg(y)dy ≥ f(0)

√
2π

g′′(0)

and proves the proposition.



52 4. Asymptotic Expansions

4.8 Problems

1. Prove the following order relations:

a) 1 − cos2 x = O(x2) as x→ 0 ,

b) lnx = o(xα) as x→ ∞ for any α > 0 ,

c) x2

1+x3 + ln(1 + x2) = O(x2) as x → 0 ,

d) x2

1+x3 + ln(1 + x2) = O(lnx) as x→ ∞.

2. Show that f(x) � g(x) as x→ x0 does not entail the stronger relation
ef(x) � eg(x) as x→ x0. Argue that the condition f(x) = g(x) + o(1)
is sufficient to imply ef(x) � eg(x).

3. For two positive functions f(x) and g(x), prove that f(x) � g(x)
as x → x0 implies lnf(x) = lng(x) + o(1) as x → x0. Hence,
limx→x0 lnf(x) 6= 0 entails lnf(x) � ln g(x) as x→ x0.

4. Suppose in Proposition 4.3.1 we replace h(An) by h(cnAn), where the
sequence of constants cn = 1+an−1 +O(n−2). How does this change
the right hand sides of the asymptotic expressions (4.2) and (4.3)?

5. Continuing Problem 4, derive asymptotic expressions for the mean

and variance of Φ
[
(u − An)

√
n/(n− 1)

]
, where u is a constant, An

is the sample mean of a sequence X1, . . . , Xn of i.i.d. normal ran-
dom variables with mean µ and variance 1, and Φ(x) is the standard

normal distribution function. The statistic Φ
[
(u−An)

√
n/(n− 1)

]
is

the uniformly minimum variance unbiased estimator of the percentile
p = Φ(Xi ≤ u) [6].

6. Find an asymptotic expansion for
∫∞
x
e−y

4

dy as x→ ∞.

7. Suppose that 0 < c < ∞ and that f(x) is bounded and continuous
on [0, c]. If f(c) 6= 0, then show that

∫ c

0

xnf(x)dx � cn+1

n
f(c)

as n → ∞.

8. Let F (x) be a distribution function concentrated on [0,∞) with mo-
ments mk =

∫∞
0
ykdF (y). For x ≥ 0 define the Stieltjes function

f(x) =
∫∞
0

1
1+xydF (y). Show that

∑∞
k=0(−1)kmkx

k is an asymptotic

expansion for f(x) satisfying

f(x) −
n∑

k=0

(−1)kmkx
k = (−x)n+1

∫ ∞

0

yn+1

1 + xy
dF (y).
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Argue, therefore, that the remainders of the expansion alternate in
sign and are bounded in absolute value by the first omitted term.

9. Show that
∫∞
0

e−y

1+xydy � ln x
x as x→ ∞. (Hints: Write

∫ ∞

0

e−y

1 + xy
dy =

1

x

∫ ∞

0

d

dy
ln(1 + xy)e−ydy,

and use integration by parts and the dominated convergence theo-
rem.)

10. Prove that
∫ π

2

0

e−x tan ydy � 1

x
∫ π

2

−π
2

(y + 2)e−x cosydy � 4

x

as x→ ∞.

11. For 0 < λ < 1, demonstrate the asymptotic equivalence

n∑

k=0

(
n

k

)
k!n−kλk � 1

1 − λ

as n → ∞. (Hint: Use the identity k!n−k−1 =
∫∞
0
yke−nydy.)

12. Demonstrate the asymptotic equivalence

n∑

k=0

(
n

k

)
k!n−k �

√
πn

2

as n → ∞. (Hint: See Problem (11).)

13. The von Mises density

eκ cos(y−α)

2πI0(κ)
, −π < y ≤ π,

is used to model random variation on a circle. Here α is a location
parameter, κ > 0 is a concentration parameter, and the modified
Bessel function I0(κ) is the normalizing constant

I0(κ) =
1

2π

∫ π

−π
eκ cosydy.

Verify that Laplace’s method yields

I0(κ) � eκ√
2πκ

as κ → ∞. For large κ it is clear that the von Mises distribution is
approximately normal.
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14. Let φ(x) and Φ(x) be the standard normal density and distribution
functions. Demonstrate the bounds

x

1 + x2
φ(x) ≤ 1 − Φ(x) ≤ 1

x
φ(x)

for x > 0. (Hints: Exploit the derivatives

d

dx
e−x

2/2 = −xe−x2/2

d

dx

(
x−1e−x

2/2
)

= −
(
1 + x−2

)
e−x

2/2

and simple inequalities for the integral 1 − Φ(x).)
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5

Solution of Nonlinear
Equations

5.1 Introduction

Solving linear and nonlinear equations is a major preoccupation of applied
mathematics and statistics. For nonlinear equations, closed-form solutions
are the exception rather than the rule. Here we will concentrate on three
simple techniques—bisection, functional iteration, and Newton’s method—
for solving equations in one variable. Insight into how these methods oper-
ate can be gained by a combination of theory and examples. Since functional
iteration and Newton’s method generalize to higher-dimensional problems,
it is particularly important to develop intuition about their strengths and
weaknesses. Equipped with this intuition, we can tackle harder problems
with more confidence and understanding.

The last three sections of this chapter introduce the topics of mini-
mization by golden section search and cubic interpolation. These two one-
dimensional methods are also applicable as part of line-search algorithms
in multidimensional optimization. They are paired here because they il-
lustrate the tradeoffs in reliability and speed so commonly encountered in
numerical analysis.

5.2 Bisection

Bisection is a simple, robust method of finding solutions to the equation
g(x) = 0. In contrast to faster techniques such as Newton’s method, no
derivatives of g(x) are required. Furthermore, under minimal assumptions
on g(x), bisection is guaranteed to converge to some root. Suppose that
g(x) is continuous, and an interval [a, b] has been identified such that g(a)

value theorem implies that g(x) vanishes somewhere on [a, b]. Consider the
midpoint c = (a+b)/2 of [a, b]. If g(c) = 0, then we are done. Otherwise, ei-
ther g(a) and g(c) are of opposite sign, or g(b) and g(c) are of opposite sign.
In the former case, the interval [a, c] brackets a root; in the latter case,the
interval [c, b] does. In either case, we replace [a, b] by the corresponding
subinterval and continue. If we bisect [a, b] a total of n times, then the final
bracketing interval has length 2−n(b− a). For n large enough, we can stop
and approximate the bracketed root by the midpoint of the final bracketing
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and g(b) are of opposite sign. If g(x) is continuous, then the intermediate
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interval. If we want to locate nearly all of the roots of g(x) on [a, b], then we
can subdivide [a, b] into many small adjacent intervals and apply bisection
to each small interval in turn.

5.2.1 Computation of Quantiles by Bisection

Suppose we are given a continuous distribution function F (x) and desire to
find the α-quantile of F (x). This amounts to solving the equation g(x) = 0
for g(x) = F (x) − α. Bisection is applicable if we can find a bracketing
interval to start the process. One strategy exploiting the monotonicity of
g(x) is to take an arbitrary initial point a and examine g(a). If g(a) < 0,
then we look for the first positive integer k with g(a + k) > 0. When this
integer is found, the interval [a + k − 1, a+ k] brackets the α-quantile. If
g(a) > 0, then we look for the first negative integer k such that g(a+k) < 0.
In this case [a + k, a + k + 1] brackets the α-quantile. Once a bracketing
interval is found, bisection can begin. An obvious candidate for a is the
mean. Instead of incrementing or decrementing by 1 in finding the initial
bracketing interval, it usually is preferable to increment or decrement by
the standard deviation of F (x).

TABLE 5.1. Bracketing Intervals Given by Bisection

Iteration n Interval Iteration n Interval

0 [1.291,2.582] 6 [1.997,2.017]
1 [1.936,2.582] 7 [2.007,2.017]
2 [1.936,2.259] 8 [2.012,2.017]
3 [1.936,2.098] 9 [2.015,2.017]
4 [1.936,2.017] 10 [2.015,2.016]
5 [1.977,2.017] 11 [2.015,2.015]

As a numerical example, consider the problem of calculating the .95–
quantile of a t distribution with n = 5 degrees of freedom. A random vari-
able with this distribution has mean 0 and standard deviation

√
n/(n− 2).

Using the search tactic indicated above, we find an initial bracketing inter-
val of [1.291, 2.582]. This and the subsequent bracketing intervals produced
by bisection are noted in Table 5.1.

5.2.2 Shortest Confidence Interval

In forming a confidence interval or a Bayesian credible interval, it is natural
to ask for the shortest interval [a, b] with fixed content H(b) − H(a) = α
for some probability distribution H(x). This problem is not always well
posed. To avoid logical difficulties, let us assume that H(x) possesses a
density h(x) and ask for the region Sα of smallest Lebesgue measure µ(Sα)
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satisfying
∫
Sα
h(x)dx = α. If h(x) is unimodal, strictly increasing to the

left of its mode, and strictly decreasing to the right of its mode, then Sα is
a well-defined interval, and its Lebesgue measure is just its length.

In general, the reformulated problem makes sense inm-dimensional space
R
m [1]. Its solution is given by

Sα = {x : h(x) ≥ λ(α)}

for some number λ(α) depending on α. Such a number λ(α) exists if∫
{x:h(x)=λ} h(x)dx = 0 for all values of λ. In fact, if X is a random vec-

tor with density h(x), then this condition guarantees that the right-tail
probability

Pr(h(X) ≥ λ) =

∫

{x:h(x)≥λ}
h(x)dx

is continuous and decreasing as a function of λ. In view of the intermediate
value theorem, at least one λ must then qualify for each α ∈ (0, 1).

The solution set Sα is unique, but only up to a set of Lebesgue measure
0. This can be checked by supposing that T also satisfies

∫
T
h(x)dx = α.

Subtracting this equation from the same equation for Sα yields
∫

Sα\T
h(x)dx−

∫

T\Sα

h(x)dx = 0. (5.1)

Because h(x) ≥ λ(α) on Sα \ T , it follows that
∫

Sα\T
h(x)dx ≥ λ(α)µ(Sα \ T ). (5.2)

If µ(T \ Sα) > 0, it likewise follows that
∫

T\Sα

h(x)dx < λ(α)µ(T \ Sα). (5.3)

Now if µ(T ) ≤ µ(Sα), then

µ(T \ Sα) ≤ µ(Sα \ T ). (5.4)

The three inequalities (5.2), (5.3), and (5.4) are inconsistent with equality
(5.1) unless µ(T \ Sα) = 0. But if µ(T \ Sα) = 0, then

α =

∫

T

h(x)dx

=

∫

T∩Sα

h(x)dx

<

∫

Sα

h(x)dx
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unless µ(Sα \T ) = 0. Therefore, both µ(T \Sα) and µ(Sα \T ) equal 0, and
Sα and T differ by at most a set of measure 0.

As a concrete illustration of this principle, consider the problem of finding

the shortest interval [c, d] with a fixed probability
∫ d
c
h(x)dx = α for the

gamma density h(x) = Γ(a)−1baxa−1e−bx. Because

ba

Γ(a)

∫ d

c

xa−1e−bxdx =
1

Γ(a)

∫ bd

bc

za−1e−zdz,

it suffices to take the scale constant b = 1. If a ≤ 1, then the gamma density
h(x) is strictly decreasing in x, and the left endpoint of the shortest interval
is given by c = 0. The right endpoint d can be found by bisection using our
previously devised methods of evaluating the incomplete gamma function
P (a, x).

If the constant a > 1, h(x) first increases and then decreases. Its modal
value Γ(a)−1(a−1)a−1e−(a−1) occurs at x = a−1. One strategy for finding
the shortest interval is to consider for each λ satisfying

0 < λ <
1

Γ(a)
(a − 1)a−1e−(a−1)

the interval [cλ, dλ] where h(x) ≥ λ. The endpoints cλ and dλ are implicitly
defined by h(cλ) = h(dλ) = λ and can be found by bisection or Newton’s
method. Once [cλ, dλ] is determined, the corresponding probability

1

Γ(a)

∫ dλ

cλ

xa−1e−xdx = P (a, dλ) − P (a, cλ)

can be expressed in terms of the incomplete gamma function. Thus, the
original problem reduces to finding the particular λ satisfying

P (a, dλ) − P (a, cλ) = α. (5.5)

This λ can be straightforwardly computed by bisection. Note that this
iterative process involves inner iterations to find cλ and dλ within each
outer bisection iteration on λ.

Table 5.2 displays the endpoints cλ and dλ generated by the successive
midpoints λ in a bisection scheme to find the particular λ satisfying equa-
tion (5.5) for a = 2 and α = 0.95.

5.3 Functional Iteration

Suppose we are interested in finding a root of the equation g(x) = 0. If
we let f(x) = g(x) + x, then this equation is trivially equivalent to the
equation x = f(x). In many examples, the iterates xn = f(xn−1) converge
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TABLE 5.2. Bisection Iterates for the Shortest .95 Confidence Interval

Iteration n cλ dλ Iteration n cλ dλ
1 0.2290 2.6943 9 0.0423 4.7669
2 0.1007 3.7064 10 0.0427 4.7559
3 0.0478 4.6198 11 0.0425 4.7614
4 0.0233 5.4844 12 0.0424 4.7642
5 0.0354 4.9831 13 0.0423 4.7656
6 0.0415 4.7893 14 0.0424 4.7649
7 0.0446 4.7019 15 0.0424 4.7652
8 0.0431 4.7449

to a root of g(x) starting from any point x0 nearby. For obvious reasons, a
root of g(x) is said to be a fixed point of f(x). Precise sufficient conditions
for the existence of a unique fixed point of f(x) and convergence to it are
offered by the following proposition.

Proposition 5.3.1 Suppose the function f(x) defined on a closed interval
I satisfies the conditions

(a) f(x) ∈ I whenever x ∈ I,

(b) |f(y) − f(x)| ≤ λ|y − x| for any two points x and y in I.

Then, provided the Lipschitz constant λ is in [0, 1), f(x) has a unique fixed
point x∞ ∈ I, and the functional iterates xn = f(xn−1) converge to x∞
regardless of their starting point x0 ∈ I. Furthermore, we have the precise
error estimate

|xn − x∞| ≤ λn

1 − λ
|x1 − x0|. (5.6)

Proof: The inequality

|xk+1 − xk| = |f(xk) − f(xk−1)|
≤ λ|xk − xk−1|
...

≤ λk|x1 − x0|

implies for m > n the further inequality

|xn − xm| ≤
m−1∑

k=n

|xk − xk+1|

≤
m−1∑

k=n

λk|x1 − x0| (5.7)
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≤ λn

1 − λ
|x1 − x0|.

It follows from inequality (5.7) that xn is a Cauchy sequence. Because the
interval I is closed, the limit x∞ of the sequence xn exists in I. Invoking
the continuity of f(x) in the defining relation xn = f(xn−1) shows that x∞
is a fixed point. Existence of a fixed point y∞ 6= x∞ in I is incompatible
with the inequality

|x∞ − y∞| = |f(x∞) − f(y∞)|
≤ λ|x∞ − y∞|.

Finally, the explicit bound (5.6) follows from inequality (5.7) by sending m
to ∞.

A function f(x) having a Lipschitz constant λ < 1 is said to be contrac-
tive. In practice λ is taken to be any convenient upper bound of |f ′(x)| on
the interval I. Such a choice is valid because of the mean value equality
f(x) − f(y) = f ′(z)(x − y), where z is some number between x and y. In
the vicinity of a fixed point x∞ with |f ′(x∞)| < 1, we can usually find
a closed interval Id = [x∞ − d, x∞ + d] pertinent to the proposition. For
instance, if f(x) is continuously differentiable, then all sufficiently small,
positive constants d yield λ = supz∈Id

|f ′(z)| < 1. Furthermore, f(x) maps
Id into itself because

|f(x) − x∞| = |f(x) − f(x∞)|
≤ λ|x− x∞|
≤ d

for x ∈ Id.
A fixed point x∞ with |f ′(x∞)| < 1 is said to be attractive. If x∞ satisfies

f ′(x∞) ∈ (−1, 0), then iterates xn = f(xn−1) converging to x∞ eventually
oscillate from side to side of x∞. Convergence is eventually monotonic if
f ′(x∞) ∈ (0, 1). If the inequality |f ′(x∞)| > 1 holds, then the fixed point
x∞ is said to be repelling. Indeed, the mean value theorem implies in this
situation that

|f(x) − x∞| = |f ′(z)(x− x∞)|
> |x− x∞|

for all x sufficiently close to x∞. The case |f ′(x∞)| = 1 is indeterminate
and requires further investigation.

5.3.1 Fractional Linear Transformations

A fractional linear transformation f(x) = (ax+ b)/(cx+ d) maps the com-
plex plane into itself. For the sake of simplicity, let us assume that the
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complex constants a, b, c, and d are real and satisfy ad − bc 6= 0. Now
consider the possibility of finding a real root of x = f(x) by functional it-
eration. The solutions, if any, coincide with the two roots of the quadratic
equation cx2 + (d − a)x − b = 0. These roots can be expressed by the
standard quadratic formula as

r± =
−(d− a) ±

√
(d− a)2 + 4bc

2c

=
−(d− a) ±

√
(d+ a)2 − 4(ad− bc)

2c
.

Both roots are purely real if and only if (d + a)2 ≥ 4(ad − bc). Let us
assume that this discriminant condition holds. Either root r is then locally
attractive to the functional iterates, provided the derivative

f ′(r) =
a

cr + d
− (ar + b)c

(cr + d)2

=
ad− bc

(cr + d)2

satisfies |f ′(r)| < 1. It is locally repelling when |f ′(r)| > 1.
Consider the product (cr+ + d)(cr− + d) = ad− bc. One of three things

can happen. Either (a)

|cr+ + d| = |cr− + d|
=

√
|ad− bc|,

or (b)

|cr+ + d| >
√

|ad− bc|
|cr− + d| <

√
|ad− bc|,

or (c)

|cr+ + d| <
√

|ad− bc|
|cr− + d| >

√
|ad− bc|.

Case (a) is indeterminate because |f ′(r+)| = |f ′(r−)| = 1. It turns out that
functional iteration converges to the common root r+ = r− when it exists
[12]. Otherwise, case (a) leads to divergence unless the initial point is a
root to begin with. In case (b) functional iteration converges locally to r+
and diverges locally from r−. This local behavior, in fact, holds globally
[12]. In case (c), the opposite behavior relative to the two roots is observed.
This analysis explains, for instance, why the continued fraction generated
by the fractional linear transformation f(x) = 1/(2+x) converges to

√
2−1

rather than to −
√

2 − 1.
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FIGURE 5.1. Intersection Points for a Supercritical Branching Process

5.3.2 Extinction Probabilities by Functional Iteration

In a branching process [3], particles reproduce independently at the end
of each generation according to the same probabilistic law. Let pk be the
probability that a particle present at the current generation is replaced by k
daughter particles at the next generation. Starting with a single particle at
generation 0, we can ask for the probability s∞ that the process eventually
goes extinct. To characterize s∞, we condition on the number of daughter
particles k born to the initial particle. If extinction is to occur, then each
line of descent emanating from a daughter particle must die out. If there are
k daughter particles and consequently k lines of descent, then by indepen-
dence of reproduction, all k lines of descent go extinct with probability sk∞.
It follows that s∞ satisfies the functional equation s =

∑∞
k=0 pks

k = P (s),
where P (s) is the generating function of the progeny distribution.

One can find the extinction probability by functional iteration starting
at s = 0. Let sn be the probability that extinction occurs in the branching
process at or before generation n. Then s0 = 0, s1 = p0 = P (s0), and, in
general, sn+1 = P (sn). This recurrence relation can be deduced by again
conditioning on the number of daughter particles in the first generation.
If extinction is to occur at or before generation n + 1, then extinction
must occur in n additional generations or sooner for each line of descent
emanating from a daughter particle of the original particle.

On probabilistic grounds it is obvious that the sequence sn increases
monotonically to the extinction probability s∞. To understand what is
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happening numerically, we need to know the number of fixed points of s =
P (s) and which fixed point is s∞. Since P ′′(s) =

∑∞
k=2 k(k−1)pks

k−2 ≥ 0,
the curve P (s) is convex. It starts at P (0) = p0 > 0 above the diagonal
line t = s. (Note that if p0 = 0, then the process can never go extinct.) On
the interval [0, 1], the curve P (s) and the diagonal line t = s intersect in
either one or two points. Figure 5.1 depicts the situation of two intersection
points. The point s = 1 is certainly one intersection point because P (1) =∑∞

k=0 pk = 1. There is a second intersection point to the left of s = 1 if and
only if the slope of P (s) at s = 1 is strictly greater than 1. The curve P (s)
then intersects t = s at s = 1 from below. The slope P ′(1) =

∑
k=0 kpk

equals the mean number of particles of the progeny distribution. Extinction
is certain when the mean P ′(1) ≤ 1. When P ′(1) > 1, the point s = 1 repels
the iterates sn = P (sn−1). Hence, in this case the extinction probability is
the smaller of the two fixed points of s = P (s) on [0, 1], and extinction is
not certain.

TABLE 5.3. Functional Iteration for an Extinction Probability

Iteration n Iterate sn Iteration n Iterate sn
0 0.000 10 0.847
1 0.498 20 0.873
2 0.647 30 0.878
3 0.719 40 0.879
4 0.761 50 0.880
5 0.788

As a numerical example, consider the data of Lotka [6, 7] on the ex-
tinction of surnames among white males in the United States. Using 1920
census data, he computed the progeny generating function

P (s) = .4982 + .2103s+ .1270s2 + .0730s3 + .0418s4 + .0241s5

+ .0132s6 + .0069s7 + .0035s8 + .0015s9 + .0005s10.

Table 5.3 lists some representative functional iterates. Convergence to the
correct extinction probability 0.880 is relatively slow.

5.4 Newton’s Method

Newton’s method can be motivated by the mean value theorem. Let xn−1

approximate the root x∞ of the equation g(x) = 0. According to the mean
value theorem,

g(xn−1) = g(xn−1) − g(x∞)

= g′(z)(xn−1 − x∞)
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FIGURE 5.2. Newton’s Method Applied to g(x) = 1.95− e−2/x − 2e−x4

.

for some z on the interval between xn−1 and x∞. If we substitute xn−1 for z
and the next approximant xn for x∞, then this equality can be rearranged
to provide the definition

xn = xn−1 −
g(xn−1)

g′(xn−1)
(5.8)

of Newton’s method. From the perspective of functional iteration, Newton’s
method can be rephrased as xn = f(xn−1), where f(x) = x− g(x)/g′(x).
Figure 5.2 provides a geometric interpretation of Newton’s method applied
to a typical function g(x), starting from x0 = 1 and moving toward the
unique root of g(x) = 0 on (0,∞). The iterate xn is taken as the point of
intersection of the x-axis and the tangent drawn through [xn−1, g(xn−1)].
The method fails to converge if x0 is chosen too far to the left or right.

The local convergence properties of Newton’s method are determined by

f ′(x∞) = 1 − g′(x∞)

g′(x∞)
+
g(x∞)g′′(x∞)

g′(x∞)2

= 0.

If we let en = xn − x∞ be the current error in approximating x∞, then
executing a second-order Taylor expansion around x∞ yields

en = f(xn−1) − f(x∞)

= f ′(x∞)en−1 +
1

2
f ′′(z)e2n−1 (5.9)
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=
1

2
f ′′(z)e2n−1,

where z again lies between xn−1 and x∞. Provided f ′′(z) is continuous and
x0 is close enough to x∞, the error representation (5.9) makes it clear that
Newton’s method converges and that

lim
n→∞

en
e2n−1

=
1

2
f ′′(x∞).

This property is referred to as quadratic convergence. If an iteration func-
tion f(x) satisfies 0 < |f ′(x∞)| < 1, then a first-order Taylor expansion
implies limn→∞ en/en−1 = f ′(x∞), which is referred to as linear conver-
gence.

All else being equal, quadratic convergence is preferred to linear conver-
gence. In practice, Newton’s method can fail miserably if started too far
from a desired root x∞. Furthermore, it can be expensive to evaluate the
derivative g′(x). For these reasons, simpler, more robust methods such as
bisection are often employed instead of Newton’s method. The following two
examples highlight favorable circumstances ensuring global convergence of
Newton’s method on a properly defined domain.

5.4.1 Division without Dividing

Forming the reciprocal of a number a is equivalent to solving for a root of
the equation g(x) = a− x−1. Newton’s method (5.8) iterates according to

xn = xn−1 −
a− x−1

n−1

x−2
n−1

= xn−1(2 − axn−1),

which involves multiplication and subtraction but no division. If xn is to
be positive, then xn−1 must lie on the interval (0, 2/a). If xn−1 does indeed
reside there, then xn will reside on the shorter interval (0, 1/a) because the
quadratic x(2 − ax) attains its maximum of 1/a at x = 1/a. Furthermore,
xn > xn−1 if and only if 2−axn−1 > 1, and this latter inequality holds if and
only if xn−1 < 1/a. Thus, starting on (0, 1/a), the iterates xn monotonically
increase to their limit 1/a. Starting on [1/a, 2/a), the first iterate satisfies
x1 ≤ 1/a, and subsequent iterates monotonically increase to 1/a.

5.4.2 Extinction Probabilities by Newton’s Method

Newton’s method offers an alternative to functional iteration in computing
the extinction probability s∞ of a branching process. If P (s) is the progeny
generating function, then Newton’s method starts with x0 = 0 and iterates
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according to

xn = xn−1 +
P (xn−1) − xn−1

1 − P ′(xn−1)
. (5.10)

Because extinction is certain when P ′(1) ≤ 1, we will make the contrary
assumption P ′(1) > 1. For such a supercritical process, s∞ < 1. Because
the curve P (s) intersects the diagonal line h(s) = s from above at s∞, we
infer that P ′(s∞) < 1 in the supercritical case. This fact is important in
avoiding division by 0 in the Newton’s iterates (5.10).

It is useful to compare the sequence (5.10) to the sequence sn = P (sn−1)
generated by functional iteration. Both schemes start at 0. We will show
by induction that (a) xn ≤ s∞, (b) xn−1 ≤ xn, and (c) sn ≤ xn hold
for all n ≥ 0. Conditions (a) and (c) are true by definition when n = 0,
while condition (b) is vacuous. In our inductive proof, we use the fact that
condition (b) is logically equivalent to the condition xn−1 ≤ P (xn−1). With
this in mind, suppose all three conditions hold for an arbitrary n ≥ 0.

Because (a) is true for n and P ′(s) is increasing in s, the mean value
theorem implies

s∞ − P (xn) = P (s∞) − P (xn)

≥ P ′(xn)(s∞ − xn).

Adding xn − s∞ to this inequality leads to

xn − P (xn) ≥ [1 − P ′(xn)](xn − s∞),

which can be divided by 1 − P ′(xn) to yield

xn − P (xn)

1− P ′(xn)
≥ xn − s∞.

Simple rearrangement gives the desired inequality (a) for n+ 1.
Because xn−1 ≤ P (xn−1) and xn−1 ≤ xn both hold by the induction

hypothesis, it follows that the mean value theorem and definition (5.10)
imply

P (xn) − xn ≥ P (xn−1) + P ′(xn−1)(xn − xn−1) − xn

= P (xn−1) − xn−1 − [1 − P ′(xn−1)](xn − xn−1)

= P (xn−1) − xn−1 − [1 − P ′(xn−1)]
P (xn−1) − xn−1

1 − P ′(xn−1)

= 0.

This proves the alternate form P (xn) ≥ xn of (b) for n+ 1.
To prove condition (c), we note that condition (b) implies

−P (xn) ≤ −xn.
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Multiplying this inequality by P ′(xn) and then adding P (xn) yield

P (xn)[1− P ′(xn)] ≤ P (xn) − xnP
′(xn).

Finally, dividing by 1 − P ′(xn) gives

P (xn) ≤ P (xn) − xnP
′(xn)

1 − P ′(xn)

= xn +
P (xn) − xn
1 − P ′(xn)

= xn+1.

Since sn+1 = P (sn) ≤ P (xn) ≤ xn+1, this completes the proof of (c).

TABLE 5.4. Newton’s Method for an Extinction Probability

Iteration n Iterate xn Iteration n Iterate xn
0 0.000 3 0.860
1 0.631 4 0.878
2 0.800 5 0.880

Application of Newton’s method to the Lotka branching process data
produces the iterates displayed in Table 5.4. Comparison of this table
with Table 5.3 illustrates the much faster convergence of Newton’s method.
Properties (a), (b), and (c) are evident in these two tables. For those read-
ers acquainted with multitype branching processes, it is noteworthy that
all aspects of our comparison generalize if the differential dP (1) of the vec-
tor of progeny generating functions is primitive and possesses a dominant
eigenvalue strictly greater than 1.

5.5 Golden Section Search

We now turn to optimization of a function defined on an interval of the real
line. Elementary calculus is replete with examples where optimization can
be done analytically. Here we would like to focus on golden section search, a
simple numerical algorithm for minimization. Golden section search brack-
ets the minimum of a function much like bisection brackets the zero of a
function. Golden section search is reliable and applies to any continuous
function f(x). Balanced against these strengths are its failure to generalize
to higher dimensions and its relatively slow rate of convergence.

In golden section search we start with three points a < b < c satisfying

f(b) < min{f(a), f(c)}.
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Numerical Recipes [8] discusses a general strategy for choosing an initial
trio (a, b, c). If f(x) has domain [u, v] and limx→u f(x) = limx→v f(x) = ∞,
then it is natural to choose a close to u, c close to v, and b = 1

2 (u + v).
To replace the bracketing interval (a, c) by a shorter interval, we choose
d ∈ (a, c) so that d belongs to the longer of the two intervals (a, b) and
(b, c). Without loss of generality, suppose b < d < c. If f(d) < f(b), then
the three points b < d < c bracket a minimum. If f(d) > f(b), then the
three points a < b < d bracket a minimum. In the case of a tie, f(d) = f(b),
we choose b < d < c when f(c) < f(a) and a < b < d when f(a) < f(c).

These sensible rules do not address the problem of choosing d. Consider
the fractional distances

β = b−a
c−a , δ = d−b

c−a

along the interval (a, c). The next bracketing interval will have a fractional
length of either 1− β or β+ δ. To guard against the worst case, we should
take 1−β = β+δ. This determines δ = 1−2β and hence d. One could leave
matters as they now stand, but the argument is taken one step further in
golden section search. If we imagine repeatedly performing golden section
search, then scale similarity is expected to set in eventually in the sense
that

β =
b− a

c− a
=

d− b

c− b
=

δ

1 − β
.

Substituting δ = 1 − 2β in this identity and cross multiplying give the
quadratic β2 − 3β + 1 = 0 with solution

β =
3 −

√
5

2

equal to the golden mean of ancient Greek mathematics. Following this
reasoning, we should take δ =

√
5 − 2 = 0.2361.

Table 5.5 records the golden section search iterates for the binomial log-
likelihood f(x) = −7 lnx − 3 ln(1 − x) for the initial choices a = 0.01,
b = 0.50, and c = 0.99. Convergence is slow but sure to the global min-
imum. In problems with multiple local minima, it is possible for golden
section search to converge to a local minimum that is not the global mini-
mum.

5.6 Minimization by Cubic Interpolation

Cubic interpolation offers a faster but less reliable method of minimization
than golden section search. Suppose that the derivative f ′(x) is easy to
compute and that we have evaluated f(x) and f ′(x) at two points a < b.
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TABLE 5.5. Golden Section Iterates for f(x) = −7 lnx − 3 ln(1− x)

Iteration a b c f(b)

0 0.01000 0.50000 0.99000 6.93147
1 0.31284 0.50000 0.99000 6.93147
2 0.50000 0.68716 0.99000 6.11251
3 0.50000 0.68716 0.80284 6.11251
4 0.61567 0.68716 0.80284 6.11251
5 0.61567 0.68716 0.73135 6.11251
10 0.69361 0.69759 0.70404 6.10878
15 0.69970 0.70006 0.70064 6.10864
20 0.69997 0.70000 0.70006 6.10864
25 0.70000 0.70000 0.70000 6.10864

In cubic interpolation, we match the values of a cubic polynomial p(x) to
these four values and minimize p(x) on [a, b]. With luck this will lead to a
lower value of f(x). It simplifies matters to rescale the interval by setting
h(s) = f(a + sd) with d = b − a. Now s = 0 corresponds to a, and s = 1
corresponds to b. Furthermore, the chain rule implies h′(s) = f ′(a + sd)d.
Given these conventions, the theory of Hermite interpolation [4] suggests
approximating h(s) by the cubic polynomial

p(s) (5.11)

= (s− 1)2h0 + s2h1 + s(s− 1)[(s− 1)(h′0 + 2h0) + s(h′1 − 2h1)]

= (2h0 + h′0 − 2h1 + h′1)s
3 + (−3h0 − 2h′0 + 3h1 − h′1)s

2 + h′0s+ h0,

where h0 = h(0), h′0 = h′(0), h1 = h(1), and h′1 = h′(1). One can readily
verify that p(0) = h0, p

′(0) = h′0, p(1) = h1, and p′(1) = h′1.
The local minima and maxima of p(s) occur at the roots of the quadratic

p′(s) = 3(2h0 + h′0 − 2h1 + h′1)s
2 + 2(−3h0 − 2h′0 + 3h1 − h′1)s+ h′0

= c2s
2 + c1s+ c0.

The discriminant c21 − 4c2c0 determines whether p′(s) attains the value
0. If c21 − 4c2c0 < 0, then no real roots exist, and the minimum of p(s)
occurs at either 0 or 1. If c21−4c2c0 = 0, then one double root exists, and if
c21−4c2c0 > 0, then two separate roots exist. The pertinent root of p′(s) = 0
is determined by the sign of the coefficient 2h0 + h′0 − 2h1 + h′1 of s3 in
p(s). If this coefficient is positive, then the right root furnishes the local
minimum, and if this coefficient is negative, then the left root furnishes the
local minimum. The pertinent root r can be found by solving the quadratic
equation p′(s) = 0. If r falls outside the interval [0, 1], then the minimum
of p(s) occurs at either 0 or 1. Otherwise, y = a + rd is a good candidate
for an improved value of f(x) on [a, b].
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Our previous function f(x) = −7 lnx− 3 ln(1−x) is a good test case for
assessing the performance of minimization by cubic interpolation. If we take
a = .0.10 and b = 0.99, then the interpolating cubic has its minimum at b.
This lack of progress shows the method at its worst. On the other hand,
if we take a = 0.50 and b = 0.75, then the minimum of the interpolating
cubic occurs at 0.6962, which is very close to the minimum of f(x). Golden
section search is incapable of converging this quickly. The best programs
employ hybrid methods that balance reliability and speed.

5.7 Stopping Criteria

Deciding when to terminate an iterative method is more subtle than it
might seem. In solving a nonlinear equation g(x) = 0, there are basically
two tests. One can declare convergence when |g(xn)| is small or when xn
does not change much from one iteration to the next. Ideally, both tests
should be satisfied. However, there are questions of scale. Our notion of
small depends on the typical magnitudes of g(x) and x, and stopping cri-
teria should reflect these magnitudes [2]. Suppose a > 0 represents the
typical magnitude of g(x). Then a sensible criterion of the first kind is to
stop when |g(xn)| < εa for ε > 0 small. If b > 0 represents the typical
magnitude of x, then a sensible criterion of the second kind is to stop when

|xn − xn−1| ≤ εmax{|xn|, b}. (5.12)

To achieve p significant digits in the solution x∞, take ε = 10−p.
When we optimize a function f(x) with derivative g(x) = f ′(x), a third

test comes into play. Now it is desirable for f(x) to remain relatively con-
stant near convergence. If c > 0 represents the typical magnitude of f(x),
then our final stopping criterion is

|f(xn) − f(xn−1)| ≤ εmax{|f(xn)|, c}.

The second and third criteria generalize better than the first criterion to
higher-dimensional problems because solutions often occur on boundaries
or manifolds where the gradient ∇g(x) is not required to vanish. In higher
dimensions, one should apply the criterion (5.12) to each coordinate of x.
Choice of the typical magnitudes a, b, and c is problem specific, and some
optimization programs leave this up to the discretion of the user. Often
problems can be rescaled by an appropriate choice of units so that the choice
a = b = c = 1 is reasonable. When in doubt about typical magnitudes, take
this default and check whether the output of a preliminary computer run
justifies the assumption.
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5.8 Problems

1. Program any of the numerical examples discussed in this chapter and
check the tabulated results.

2. Consider the quadratic function x2 − 2Ax + B whose coefficients A
and B are independent, exponentially distributed random variables
with common mean 1/α. The probability p(α) that both roots of this
quadratic are real is given by the quantity

p(α) = 1 −√
παe

α
4

[
1 − Φ

(√
α

2

)]
,

where Φ(z) is the standard normal distribution function. Plot p(α) as
a function of α. Find via bisection the value of α for which p(α) = 1

2 .

3. Let f(x) be a probability density and g(x) a positive, measurable
function. To minimize

∫
Sα
g(x)dx subject to

∫
Sα
f(x)dx = α, show

that one should choose λ(α) and Sα = {x : f(x)/g(x) > λ(α)} so
that the constraint

∫
Sα
f(x)dx = α is satisfied. If f(x) and g(x) are

defined on an interval of the real line, and the ratio f(x)/g(x) is
increasing to the left and decreasing to the right of its mode, then Sα
will be an interval.

4. To apply the Neyman-Pearson lemma of Problem 3, let X1, . . . , Xn
be a random sample from a normal distribution with mean µ and
variance σ2. The statistic

(n − 1)S2

σ2
=

1

σ2

n∑

i=1

(Xi − X̄)2

is a pivot that follows a chi-square distribution with n− 1 degrees of
freedom. This pivot can be inverted to give a confidence interval for
σ2 of the form (S2/b, S2/a). Design and implement an algorithm for
computing the shortest confidence interval with a given confidence
level. (Hint: As suggested in [5], use Problem 3 with g(x) = x−2. You
can check your results against the tables in [11].)

5. Show that the map f(x) =
√

2 + x is contractive on [0,∞). What is
the smallest value of the Lipschitz constant? Identify the limit of the
functional iterates xn = f(xn−1) from any starting point x0.

6. Kepler’s problem of celestial mechanics involves finding the eccentric
anomaly E in terms of the mean anomaly M and the eccentricity
0 ≤ ε < 1 of an elliptical orbit. These three quantities are related by
the equation E = M + ε sinE. Demonstrate that the corresponding
function f(E) = M+ε sinE is contractive on (−∞,∞) with Lipschitz
constant ε. Hence, the solution can be found by functional iteration.
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7. Suppose f(x) = −x2 + x+ 1
4 . Prove that the iterates xn = f(xn−1)

diverge if x0 < −1
2

or x0 >
3
2
, converge to 1

2
if −1

2
< x0 <

3
2
, and

converge to −1
2 if x0 = −1

2 or x0 = 3
2 .

8. For 0 ≤ a ≤ 4, the function f(x) = ax(1 − x) maps the unit interval
[0, 1] onto itself. Show that:

(a) The point 0 is a fixed point that is globally attractive when
a ≤ 1 and locally repelling when a > 1. Note that the rate of
convergence to 0 is less than geometric when a = 1.

(b) The point 1−a−1 is a fixed point for a > 1. It is locally attractive
when 1 < a < 3 and locally repelling when 3 < a ≤ 4.

(c) For 1 < a ≤ 2, the fixed point r = 1 − a−1 is globally attractive
on (0, 1). (Hint: Write f(x) − r = (x− r)(1 − ax).)

For 2 < a ≤ 3, the fixed point 1 − a−1 continues to be globally
attractive on (0, 1), but the proof of this fact is harder. For a > 3, the
iterates xn = f(xn−1) no longer reliably converge. They periodically
oscillate between several cluster points until at a = 4 they behave
completely chaotically. See [10] for a nice intuitive discussion.

9. Functional iteration can often be accelerated. In searching for a fixed
point of x = f(x), consider the iteration scheme xn = fα(xn−1),
where α is some constant and fα(x) = (1 − α)x+ αf(x). Prove that
any fixed point x∞ of f(x) is also a fixed point of fα(x) and vice versa.
Since |f ′α(x∞)| determines the rate of convergence of xn = fα(xn−1)
to x∞, find the α that minimizes |f ′α(x∞)| when |f ′(x∞)| < 1. Un-
fortunately, neither x∞ nor f ′(x∞) is typically known in advance.

10. The last problem is relevant to the branching process example of the
text. Investigate numerically the behavior of the iterates

xn = (1 − α)xn−1 + αP (xn−1)

for the choice α = 1/[1 − P ′(0)] in the Lotka data. Is convergence
to the extinction probability s∞ faster than in ordinary functional
iteration?

11. In the context of Problems 9 and 10, assume that P ′(1) > 1. Show
that the choice α = 1/[1−P ′(0)] guarantees that the iterates increase
monotonically from x0 = 0 to the extinction probability s∞ < 1.

12. Suppose the function g(x) mapping a closed interval I into itself has
a k-fold composition f(x) = g ◦ · · · ◦ g(x) satisfying the assumptions
of Proposition 5.3.1. Prove that g(x) has a unique fixed point.
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13. What happens when you apply Newton’s method to the functions

f(x) =

{√
x x ≥ 0

−√−x x < 0

and g(x) = 3
√
x?

14. Newton’s method can be used to extract roots. Consider the function
g(x) = xm−c for some integer m > 1 and c > 0. Show that Newton’s
method is defined by

xn = xn−1

(
1 − 1

m
+

c

mxmn−1

)
.

Prove that xn ≥ c
1
m for all xn−1 > 0 and that xn ≤ xn−1 whenever

xn−1 ≥ c
1
m . Thus, if x0 ≥ c

1
m , then xn monotonically decreases to

c
1
m . If 0 < x0 < c

1
m , then x1 > c

1
m , but thereafter, xn monotonically

decreases to c
1
m .

15. Suppose the real-valued f(x) satisfies f ′(x) > 0 and f ′′(x) > 0 for all
x in its domain (d,∞). If f(x) = 0 has a root r, then demonstrate
that r is unique and that Newton’s method converges to r regardless
of its starting point. Further, prove that xn converges monotonically
to r from above when x0 > r and that x1 > r when x0 < r. How
are these results pertinent to Problem 14? Cite at least one other
example in the current chapter.

16. Problem 15 applies to polynomials p(x) having only real roots. Sup-
pose p(x) is a polynomial of degree m with roots r1 < r2 < · · · < rm
and leading coefficient cm > 0. Show that on the interval (rm,∞)
the functions p(x), p′(x), and p′′(x) are all positive. Hence, if we seek
rm by Newton’s method starting at x0 > rm, then the iterates xn
decrease monotonically to rm. (Hint: According to Rolle’s theorem,
what can we say about the roots of p′(x) and p′′(x)?)

17. Suppose that the polynomial p(x) has the known roots r1, . . . , rm.
Maehly’s algorithm [9] attempts to extract one additional root rm+1

by iterating via

xn+1 = xn − p(xn)

p′(xn) −
∑m

k=1
p(xn)

(xn−rk)

.

Show that this is just a disguised version of Newton’s method. It has
the virtue of being more numerically accurate than Newton’s method
applied to the deflated polynomial calculated from p(x) by synthetic
division. (Hint: Consider the polynomial q(x) = p(x)

∏m
k=1(x−rk)−1.)
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18. Apply Maehly’s algorithm as sketched in Problem 17 to find the roots
of the polynomial p(x) = x4 − 12x3 + 47x2 − 60x.

19. In Example 5.4.1 suppose x0 = 1 and a ∈ (0, 2). Demonstrate that

xn =
1 − (1 − a)2

n

a∣∣∣xn+1 −
1

a

∣∣∣ = a
∣∣∣xn − 1

a

∣∣∣
2

.

This shows very explicitly that xn converges to 1/a at a quadratic
rate.

20. In Problem 14 prove that

xn =
√
c+

2
√
c

[(
1 + 2

√
c

x0−
√
c

)2n

− 1
]

∣∣∣xn+1 −
√
c
∣∣∣ ≤ 1

2
√
c

∣∣∣xn −
√
c
∣∣∣
2

when m = 2 and x0 > 0. Thus, Newton’s method converges at a
quadratic rate. Use the first of these formulas or the iteration equation
directly to show that limn→∞ xn = −√

c for x0 < 0.

21. Consider a function f(x) = (x− r)kg(x) with a root r of multiplicity
k. If g′(x) is continuous at r, and the Newton iterates xn converge to
r, then show that the iterates satisfy

lim
n→∞

|xn+1 − r|
|xn − r| = 1 − 1

k
.

22. As an illustration of Problem 21, use Newton’s method to extract a
root of the polynomials p1(x) = x2−1 and p2(x) = x2−2x+1 starting
from x0 = 1. Notice how much more slowly convergence occurs for
p2(x) than for p1(x).

23. In minimization by cubic interpolation, show that the interpolating
polynomial (5.11) is convex on the interval [0, 1] if and only if

1
3
h′1 + 2

3
h′0 ≤ h1 − h0 ≤ 2

3
h′1 + 1

3
h′0. (5.13)

If h′0 < 0 and h′1 > 0, then argue further that p(s) achieves its
minimum on the open interval (0, 1).

24. Consider finding a root of the equation x2 = 0 by Newton’s method
starting from x0 = 1. Show that it is impossible to satisfy the con-
vergence criterion

|xn − xn−1| ≤ εmax{|xn|, |xn−1|}
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for ε = 10−7 [2]. This example favors the alternative stopping rule
(5.12).
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Vector and Matrix Norms

6.1 Introduction

In multidimensional calculus, vector and matrix norms quantify notions
of topology and convergence [2, 4, 5, 6, 8, 12]. Because norms are also
devices for deriving explicit bounds, theoretical developments in numerical
analysis rely heavily on norms. They are particularly useful in establishing
convergence and in estimating rates of convergence of iterative methods for
solving linear and nonlinear equations. Norms also arise in almost every
other branch of theoretical numerical analysis. Functional analysis, which
deals with infinite-dimensional vector spaces, uses norms on functions.

6.2 Elementary Properties of Vector Norms

In our exposition of norms, we will assume a nodding familiarity with the
Euclidean vector norm ||x||2 =

√∑m
i=1 x

2
i inm-dimensional space R

m. This
norm and others generalize the absolute value of a number on the real line.
A norm on R

m is formally defined by four properties:

(a) ||x|| ≥ 0,

(b) ||x|| = 0 if and only if x = 0,

(c) ||cx|| = |c| · ||x|| for every real number c,

(d) ||x+ y|| ≤ ||x||+ ||y||.
In property (b), 0 is the vector with all m components 0. Property (d) is
known as the triangle inequality. One immediate consequence of the triangle
inequality is the further inequality | ||x|| − ||y|| | ≤ ||x− y||.

Two other simple but helpful norms are

||x||1 =
m∑

i=1

|xi|

||x||∞ = max
1≤i≤m

|xi|.

For each of the norms ||x||p, p = 1, 2, and ∞, a sequence of vectors xn
converges to a vector y if and only if each component sequence xni con-
verges to yi. Thus, all three norms give the same topology on R

m. The next
proposition clarifies and generalizes this property.
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Proposition 6.2.1 Let ||x|| be any norm on R
m. Then there exist positive

constants kl and ku such that kl||x||1 ≤ ||x|| ≤ ku||x||1 holds for all x ∈ R
m.

Proof: Let e1, . . . , em be the standard basis vectors for R
m. Then the

conditions (c) and (d) defining a norm indicate that x =
∑

i xiei satisfies

||x|| ≤
∑

i

|xi| · ||ei||

≤
(

max
i

||ei||
)
||x||1.

This proves the upper bound with ku = maxi ||ei||.
To establish the lower bound, we note that property (c) of a norm allows

us to restrict attention to the set S = {x : ||x||1 = 1}. Now the function
x → ||x|| is uniformly continuous on R

m because

| ||x|| − ||y|| | ≤ ||x− y||
≤ ku||x− y||1

follows from the upper bound just demonstrated. Since the set S is compact
(closed and bounded), the function x→ ||x|| attains its lower bound kl on
S. Because of property (b), kl > 0.

Proposition 6.2.1 immediately implies that supx6=0 ||x||/||x||† is finite for

every pair of norms ||x|| and ||x||†. For instance, it is straightforward to
verify that

||x||q ≤ ||x||p (6.1)

||x||p ≤ m
1
p − 1

q ||x||q (6.2)

when p and q are chosen from {1, 2,∞} and p < q. These inequalities are
sharp. Equality holds in (6.1) when x = (1, 0, . . . , 0)t, and equality holds
in (6.2) when x = (1, 1, . . . , 1)t.

6.3 Elementary Properties of Matrix Norms

From one perspective an m×m matrix A = (aij) is simply a vector in R
m2

.
Accordingly, we can define many norms involving A. However, it is prof-
itable for a matrix norm also to be compatible with matrix multiplication.
Thus, to the list of properties (a) through (d) for a vector norm, we add
the requirement

(e) ||AB|| ≤ ||A|| · ||B||
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for any product of m×m matrices A and B. With this addition the Frobe-

nius norm ||A||F =
√∑m

i=1

∑m
j=1 a

2
ij =

√
tr(AAt) =

√
tr(AtA) qualifies

as a matrix norm. (Our reasons for writing ||A||F rather than ||A||2 will
soon be apparent.) Conditions (a) through (d) need no checking. Property
(e) is verified by invoking the Cauchy-Schwarz inequality in

||AB||2F =
∑

i,j

∣∣∣
∑

k

aikbkj

∣∣∣
2

≤
∑

i,j

(∑

k

a2
ik

)(∑

l

b2lj

)

=
(∑

i,k

a2
ik

)(∑

l,j

b2lj

)

= ||A||2F ||B||2F .

Corresponding to any vector norm ||x|| on R
m, there is an induced matrix

norm ||A|| on m×m matrices defined by

||A|| = sup
x6=0

||Ax||
||x|| = sup

||x||=1

||Ax||. (6.3)

Using the same symbol for both the vector and inherited matrix norm
ordinarily causes no confusion. All of the defining properties of a matrix
norm are trivial to check for definition (6.3). For instance, consider property
(e):

||AB|| = sup
||x||=1

||ABx||

≤ ||A|| sup
||x||=1

||Bx||

= ||A|| · ||B||.

Definition (6.3) also entails the equality ||I|| = 1, where I is the m × m
identity matrix. Because ||I||F =

√
m, the Frobenius norm ||A||F and the

induced matrix norm ||A||2 are definitely different. In infinite-dimensional
settings, induced matrix norms are called operator norms.

In the following proposition, ρ(C) denotes the absolute value of the dom-
inant eigenvalue of the matrix C. This quantity is called the spectral radius
of C.

Proposition 6.3.1 If A = (aij) is an m×m matrix, then

(a) ||A||1 = maxj
∑

i |aij|,

(b) ||A||2 =
√
ρ(AtA), which reduces to ρ(A) if A is symmetric,

(c) ||A||2 = max{‖u‖2=1,‖v‖2=1} utAv,
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(d) ||A||∞ = maxi
∑

j |aij| .

Proof: To prove (a) note that

||A||1 = sup
||x||1=1

∑

i

∣∣∣
∑

j

aijxj

∣∣∣

≤ sup
||x||1=1

∑

i

∑

j

|aij| · |xj|

= sup
||x||1=1

∑

j

|xj|
∑

i

|aij|

≤ sup
||x||1=1

(∑

j

|xj|
)(

max
k

∑

i

|aik|
)

= max
k

∑

i

|aik|.

Equality holds throughout for the standard basis vector x = ek whose index
k maximizes

∑
i |aik|.

To prove (b) choose an orthonormal basis of eigenvectors u1, . . . , um for
the symmetric matrix AtA with corresponding eigenvalues arranged so that
0 ≤ λ1 ≤ · · · ≤ λm. If x =

∑
i ciui is a unit vector, then

∑
i c

2
i = 1, and

||A||22 = sup
||x||2=1

xtAtAx

=
∑

i

λic
2
i

≤ λm.

Equality is achieved when cm = 1 and all other ci = 0. If A is symmetric
with eigenvalues µi arranged so that |µ1| ≤ · · · ≤ |µm|, then the ui can be
chosen to be the corresponding eigenvectors. In this case, clearly λi = µ2

i .
To prove (c) apply the Cauchy-Schwarz inequality and the definition of

the matrix norm to the bilinear form utAv with u and v unit vectors. This
gives the inequality

utAv ≤ ‖u‖2‖Av‖2 ≤ ‖u‖2‖A‖2‖v‖2 = ‖A‖2.

Equality actually holds for a special choice of u and v. According to part
(b), there is a unit vector v with AtAv = ‖A‖2

2v. If we let w = Av, then
‖w‖2

2 = vtAtAv = ‖A‖2
2. The unit vector u = ‖A‖−1

2 w now yields

utAv = ‖A‖−1
2 vtAtAv = ‖A‖2.

To prove (d) note that

||A||∞ = sup
||x||∞=1

max
i

∣∣∣
∑

j

aijxj

∣∣∣
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≤ sup
||x||∞=1

max
i

∑

j

|aij|
(

max
k

|xk|
)

= max
i

∑

j

|aij|.

Equality holds throughout for

xj =

{ akj

|akj| akj 6= 0

0 akj = 0

if k is an index with maximum row sum
∑

j |akj|.
For theoretical purposes, it is convenient to consider vector and matrix

norms defined over the complex vector space Cm. All of the properties
studied so far generalize naturally to this setting. One needs to exercise a
little care for the norm ||x||2 =

√∑m
i=1 |xi|2, where |xi|2 replaces x2

i . This
norm is induced by the complex inner product

〈x, y〉 =

m∑

i=1

xiy
∗
i ,

with y∗i denoting the complex conjugate of yi. Proposition 6.3.1 (b) now
refers to Hermitian matrices A = (aij) = (a∗ji) = A∗ rather than to sym-
metric matrices. One of the advantages of extending norms to Cm is the
following generalization of Proposition 6.3.1 (b) to arbitrary matrices.

Proposition 6.3.2 The spectral radius ρ(A) of a matrix A satisfies

ρ(A) ≤ ||A||

for any induced matrix norm. Furthermore, for any A and ε > 0, there
exists some induced matrix norm with ||A|| ≤ ρ(A) + ε.

Proof: If λ is an eigenvalue of A with nontrivial eigenvector u, then the
equality ||Au|| = |λ| · ||u|| for a vector norm entails the corresponding
inequality |λ| ≤ ||A|| for the induced matrix norm.

Suppose A and ε > 0 are given. There exists an invertible matrix S and an
upper triangular matrix T = (tij) such that A = STS−1. This fact follows
directly from the Jordan canonical form or the Schur decomposition of A
[7, 10, 8]. For δ > 0 consider the diagonal matrix D(δ) whose ith diagonal
entry is δi−1. It is straightforward to check that [SD(δ)]−1ASD(δ) = T (δ)
is upper triangular with entries (tijδ

j−i) and consequently that the upper
off-diagonal entries of T (δ) tend to 0 as δ → 0. It is also easy to check
that ||x||δ = ||[SD(δ)]−1x||∞ defines a vector norm whose induced matrix
norm is ||A||δ = ||[SD(δ)]−1ASD(δ)||∞ = ||T (δ)||∞. (See Problem 12.)
According to Proposition 6.3.1 (c),

||A||δ = max
i

∑

j

|tij|δj−i.
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Because the eigenvalues of A coincide with the diagonal entries of T , we
can take δ > 0 so small that

max
i

∑

j

|tij|δj−i ≤ ρ(A) + ε

Such a choice implies ||A||δ ≤ ρ(A) + ε.

6.4 Norm Preserving Linear Transformations

An orthogonal matrix O satisfies the identity OOt = I [10]. From this
definition, the further identities OtO = I and (detO)2 = detO detOt = 1
follow. One can obviously divide the orthogonal matrices into rotations with
detO = 1 and reflections with detO = −1. It is instructive to consider 2×2
matrices. A rotation through the angle θ has matrix representation

O =

(
cos θ − sin θ
sin θ cos θ

)
.

One can derive this result by introducing the complex variable z = x+ iy
and the complex exponential eiθ = cos θ + i sin θ. Rotation through the
angle θ corresponds to the complex multiplication

eiθz = cos θ x− sin θ y + i(sin θ x+ cos θ y).

The reflection of a point across the line at angle θ
2 with the x axis can be

achieved by rotating the point through the angle −θ
2 , reflecting the result

across the x axis by conjugation, and then rotating the reflected point back
through the angle θ

2 . This corresponds to replacing z = x+ iy by the point

eiθz∗ = eiθ/2
(
e−iθ/2z

)∗
.

The matrix executing this reflection boils down to

O =

(
cos θ sin θ
sin θ − cos θ

)
.

One can check that these prototype rotations and reflections satisfy the
required properties OOt = I and detO = ±1.

The set of orthogonal matrices forms a group under matrix multiplica-
tion. In other words, the product of two orthogonal matrices is orthogonal,
and the inverse of an orthogonal matrix is orthogonal. The identity matrix
is the unit of the group. The rotations constitute a subgroup of the orthog-
onal group, but the reflections do not since the product of two reflections
is a rotation.
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The trivial identity (Ou)tOv = utOtOv = utv shows that an orthogo-
nal transformation preserves inner products and Euclidean norms. Norm
invariance has some profound consequences. For example, suppose λ is a
real eigenvalue of O with real eigenvector v. Then |λ|‖v‖ = ‖Ov‖ = ‖v‖,
and |λ| = 1. These considerations carry over to complex eigenvalues and
force all eigenvalues of O to lie on the boundary of the unit circle. Norm
invariance for vectors also leads to norm invariance for matrices. For the
induced matrix norm ||A||2, invariance follows from Proposition 6.3.1 and
the identities

‖OA‖2
2 = ρ(AtOtOA) = ρ(AtA) = ‖A‖2

2

and

‖AO‖2 = max
{‖u‖2=1,‖v‖2=1}

utAOv = max
{‖u‖2=1,‖v‖2=1}

utAv = ‖A‖2.

If A has columns a1, . . . , am, then the Frobenius norm || · ||F satisfies

‖OA‖2
F =

m∑

k=1

‖Oak‖2 =

m∑

k=1

‖ak‖2 = ‖A‖2
F .

A similar calculation via the rows of A demonstrates that ‖AO‖F = ‖A‖F .
Given a unit vector u, the Householder matrix H = I−2uut represents a

reflection across the plane perpendicular to u. As we shall see later, House-
holder matrices play an important role in many areas of computational
statistics. The calculation

HHt = I − 4uut + 4u‖u‖2
2u
t = I

verifies that H is orthogonal; H is also symmetric. Algebraically, it is clear
that Hv = v whenever v lies in the plane perpendicular to u. The vector u
itself is taken into Hu = u− 2u‖u‖2

2 = −u. These facts imply that H has
one eigenvalue equal to −1 and all other eigenvalues equal to 1. Since the
determinant of H is the product of its eigenvalues, H is indeed a reflection.

The outer product representation of a Householder matrix facilitates
both theoretical understanding and practical numerical analysis. It is ad-
vantageous to write other matrices as sums of outer products. For instance,
the spectral decomposition of a symmetric matrix A can be summarized
by the formula

A =
∑

k

λkvkv
t
k,

where λk is a real eigenvalue with corresponding eigenvector vk. The vk
form an orthonormal basis spanning the underlying space. An orthogonal
projection matrix P can be represented by

P =
∑

k

vkv
t
k,
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where the vk form an orthonormal basis of the subspace fixed by P . This
representation is not unique, but it does make it easy to check that P 2 = P
and P t = P .

6.5 Iterative Solution of Linear Equations

Many numerical problems involve iterative schemes of the form

xn = Bxn−1 +w (6.4)

for solving the vector-matrix equation (I − B)x = w. Clearly, the map
f(x) = Bx+ w satisfies

||f(y) − f(x)|| = ||B(y − x)||
≤ ||B|| · ||y − x||

and therefore is contractive for a vector norm ||x|| if ||B|| < 1 holds for
the induced matrix norm. If we substitute norms for absolute values in our
convergence proof for one-dimensional functional iteration, then that proof
generalizes to this vector setting, and we find that the iterates xn converge
to the unique solution x of (I − B)x = w. In light of the fact that w is
arbitrary, it follows that I − B is invertible. These facts are incorporated
in the next proposition.

Proposition 6.5.1 Let B be an arbitrary matrix with spectral radius ρ(B).
Then ρ(B) < 1 if and only if ||B|| < 1 for some induced matrix norm. The
inequality ||B|| < 1 implies

(a) limn→∞ ||Bn|| = 0,

(b) (I −B)−1 =
∑∞

n=0B
n,

(c) 1
1+||B|| ≤ ||(I − B)−1|| ≤ 1

1−||B|| .

Proof: The first claim is an immediate consequence of Proposition 6.3.2.
Assertion (a) follows from ||Bn|| ≤ ||B||n. Assertion (b) follows if we let

x0 = 0 in the iteration scheme (6.4). Then xn =
∑n−1

i=0 B
iw, and

(I −B)−1w = lim
n→∞

xn

= lim
n→∞

n−1∑

i=0

Biw.

To prove the first inequality of assertion (c), note that taking norms in
I = (I − B)(I − B)−1 implies

1 ≤ ||I −B|| · ||(I −B)−1||
≤ (1 + ||B||)||(I − B)−1||.
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For the second inequality, use the identity (I − B)−1 = I + B(I − B)−1.
Taking norms now produces

||(I − B)−1|| ≤ 1 + ||B|| · ||(I − B)−1||,
which can be rearranged to give the desired result.

Linear iteration is especially useful in solving the equation Ax = b for x
when an approximation C to A−1 is known. If this is the case, then one
can set B = I −CA and w = Cb and iterate via (6.4). Provided ||B|| < 1,
the unique fixed point of the scheme (6.4) satisfies x = (I −CA)x+Cb. If
C−1 exists, then this is equivalent to Ax = b.

6.5.1 Jacobi’s Method

Jacobi’s method offers a typical example of this strategy. Suppose for the
sake of simplicity that A = (aij) is strictly diagonally dominant in the sense
that |aii| >

∑
j 6=i |aij| holds for all rows i. Let D be the diagonal matrix

with ith diagonal entry aii. Then the matrix C = D−1 can be considered
an approximate inverse A. The matrix B = I −CA has diagonal elements
bii = 0 and off-diagonal elements bij = −aij/aii. By definition

||B||∞ = max
i

∑

j 6=i
|bij|

< 1.

This analysis has the side effect of showing that every strictly diagonally
dominant matrix A is invertible.

6.5.2 Landweber’s Iteration Scheme

In practice, the approximate inverse C can be rather crude. For instance,
Landweber [9] suggests the surprising choice C = εAt for ε small and
positive. Because AtA is positive definite, its eigenvalues can be arranged
as 0 < λ1 ≤ · · · ≤ λm. The eigenvalues of the symmetric matrix I−εAtA are
then 1−ελ1, . . .1−ελm. As long as 1−ελm > −1, all eigenvalues of I−εAtA
will occur on the interval (−1, 1), which according to part (b) of Proposition
6.3.1 implies ||I−εAtA||2 < 1. In other words, if ε < 2/λm = 2/||A||22, then
linear iteration can be employed to solve Ax = b. Since finding the norm
||A||2 is cumbersome, one can replace it in bounding ε with more simply
computed upper bounds. For instance, the inequalities ||A||2 ≤ ||A||F and
||A||2 ≤

√
||A||∞||A||1 discussed in Problems 9 and 11 often serve well.

6.5.3 Equilibrium Distribution of a Markov Chain

A slightly different problem is to determine the equilibrium distribution of
a finite state Markov chain. Recall that movement among the m states of a
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Markov chain is governed by its m×m transition matrix P = (pij), whose
entries are nonnegative and satisfy

∑
j pij = 1 for all i. A column vector

x with nonnegative entries and norm ||x||1 =
∑

i xi = 1 is said to be an
equilibrium distribution for P provided xtP = xt, or equivalently Qx = x
for Q = P t. Because the norm ||Q||1 = 1, one cannot immediately invoke
the contraction mapping principle. However, if we restrict attention to the
closed set S = {x : xi ≥ 0, i = 1, . . . , m,

∑
i xi = 1}, then we do get a

contraction map under the hypothesis that some power Qk has all entries
positive [1]. Let c > 0 be the minimum entry of Qk and 1 be the column
vector of all 1’s. The matrix R = Qk− c11t has all entries nonnegative and
norm ||R||1 < 1.

Consider two vectors x and y from S. Owing to the fact 1t(x − y) = 0,
we get

||Qkx−Qky||1 = ||R(x− y)||1
≤ ||R||1||x− y||1,

and it follows that the map x→ Qkx is contractive on S with unique fixed
point x∞. Now for any x ∈ S,

Qx∞ = Q lim
n→∞

Qnkx

= lim
n→∞

QnkQx

= x∞.

Thus, x∞ is a fixed point of x → Qx as well. Because any integer n can be
represented uniquely as kl + r with 0 ≤ r < k, the inequality

||Qnx− x∞||1 = ||Qkl(Qrx−Qrx∞)||1
≤ ||R||l1||Qrx−Qrx∞||1

can be invoked to show that limn→∞Qnx = x∞ for all x ∈ S.
This method of finding the equilibrium distribution is termed the power

method. One of its more interesting applications is to ranking internet
nodes [3, 11]. Section 8.4 takes up the power method for more general
matrices.

6.6 Condition Number of a Matrix

Consider the apparently innocuous matrix

A =




10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10


 (6.5)
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concocted by R. S. Wilson [2]. This matrix is symmetric and positive defi-
nite. The unique solution to the linear equation Ax = b can be expressed as
x = A−1b. For the choice b = (32, 23, 33, 31)t, we find x = (1, 1, 1, 1)t. The
slightly perturbed vector b+ ∆b = (32.1, 22.9, 33.1, 30.9)t leads to the vio-
lently perturbed solution x+ ∆x = (9.2,−12.6, 4.5,−1.1)t. When we start
with b = (4, 3, 3, 1)t, then the solution of Ax = b is x = (1,−1, 1,−1)t. If
we perturb A to A + .01I, then the solution of (A + .01I)(x + ∆x) = b
is x + ∆x = (.59,−.32, .82,−.89)t. Thus, a relatively small change in A
propagates to a large change in the solution of the linear equation.

One can gain insight into these disturbing patterns by defining the con-
dition number of an invertible matrix. Consider a vector norm ||x|| and its
induced matrix norm ||A||. If Ax = b and A(x + ∆x) = b + ∆b, then by
definition of the induced matrix norm,

||b|| ≤ ||A|| · ||x||
||∆x|| ≤ ||A−1|| · ||∆b||.

Dividing the second of these inequalities by the first produces

||∆x||
||x|| ≤ cond(A)

||∆b||
||b|| , (6.6)

where cond(A) = ||A||·||A−1|| is termed the condition number of the matrix
A relative to the given norm. Inequality (6.6) is sharp. To achieve equality,
one merely needs to choose x so that ||Ax|| = ||A|| · ||x|| and ∆b so that
||A−1∆b|| = ||A−1|| · ||∆b||.

Now suppose Ax = b and (A + ∆A)(x + ∆x) = b. It then follows from
∆x = −A−1∆A(x+ ∆x) that

||∆x|| ≤ ||A−1|| · ||∆A|| · ||x+ ∆x||, (6.7)

or equivalently

||∆x||
||x+ ∆x|| ≤ cond(A)

||∆A||
||A|| . (6.8)

Inequality (6.8) is also sharp; see Problem 23.
A bound on the change ||∆x||/||x|| is, perhaps, preferable to the bound

(6.8). For ||∆A|| small, one can argue that x + ∆x = (I + A−1∆A)−1x
because

x = A−1b

= A−1(A+ ∆A)(x+ ∆x)

= (I +A−1∆A)(x+ ∆x).

The identity x+ ∆x = (I + A−1∆A)−1x in turn implies

||x+ ∆x|| ≤ ||(I +A−1∆A)−1|| · ||x||
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≤ ||x||
1 − ||A−1∆A||

≤ ||x||
1 − ||A−1|| · ||∆A||

in view of part (c) of Proposition 6.5.1. Substituting this bound for ||x+∆x||
in inequality (6.7) yields

||∆x||
||x|| ≤ ||A−1|| · ||∆A||

1 − ||A−1|| · ||∆A||

= cond(A)
||∆A||

(||A|| − cond(A)||∆A||) .

The mysteries of the matrix (6.5) disappear when we compute its con-
dition number cond2(A) relative to the matrix norm ||A||2. Recalling part
(b) of Proposition 6.3.1, it is clear that cond2(A) is the ratio of the largest
and smallest eigenvalues λ4 and λ1 of A. For the matrix (6.5), it turns
out that λ1 = 0.01015, λ4 = 30.2887, and cond2(A) = 2984. We will learn
later how to compute the dominant eigenvalues of A and A−1. If A−1 is
available, we can elect another more easily computed norm and calculate
cond(A) relative to it.

6.7 Problems

1. Verify the vector norm inequalities (6.1) and (6.2) for p and q chosen
from {1, 2,∞}.

2. Show that ||x||22 ≤ ||x||∞||x||1 ≤
√
m||x||22 for any vector x ∈ R

m.

3. Suppose x and y are vectors with

‖y − x‖
‖x‖ ≤ c < 1

for a norm ‖ · ‖. Demonstrate that

‖x− y‖
‖y‖ ≤ c

1 − c
.

4. Let x1, . . . , xn be points in R
m. State and prove a necessary and

sufficient condition under which the norm equality

‖x1 + · · ·+ xn‖2 = ‖x1‖2 + · · ·+ ‖xn‖2

holds.
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5. For p ∈ (1,∞) and x ∈ R
m, define

‖x‖p =
( m∑

i=1

|xi|p
)1/p

.

Prove the identity

‖x‖p = sup
‖y‖q=1

ytx,

where q satisfies p−1 + q−1 = 1. Use this second definition to show
that ‖x‖p gives a norm on R

m. (Hint: Look up and apply Hölder’s
inequality in verifying the equivalence of the two definitions.)

6. For the vector norm ‖x‖p of the preceding problem, demonstrate that
limp→∞ ‖x‖p = ‖x‖∞.

7. Suppose T is a symmetric matrix. What further conditions on T
guarantee that ||x|| =

√
|xtTx| is a vector norm?

8. Prove that 1 ≤ ||I|| and ||A||−1 ≤ ||A−1|| for any matrix norm.

9. For an m×m matrix A, show that

1√
m

||A||1 ≤ ||A||2 ≤ √
m||A||1

1√
m
||A||∞ ≤ ||A||2 ≤ √

m||A||∞
1√
m

||A||F ≤ ||A||2 ≤ ||A||F .

(Hint: Use the vector norm inequalities (6.1) and (6.2), the matrix
norm definition (6.3), and Proposition 6.3.1.)

10. Let A be an invertible m×m matrix. Demonstrate the formula

‖A−1‖ = max
v 6=0

‖v‖
‖Av‖

for any vector norm ‖ · ‖ and its induced matrix norm.

11. Prove the inequality ||A||2 ≤
√
||A||∞||A||1. (Hint: If the dominant

eigenvalue λ ≥ 0 of AtA has eigenvector u, then bound λ||u||1.)

12. Suppose ||x|| is a vector norm and T is an invertible matrix. Show
that ||x||† = ||Tx|| defines a vector norm whose induced matrix norm
is ||A||† = ||TAT−1||.

13. Define ||A|| = maxi,j |aij| for A = (aij). Show that this defines a
vector norm but not a matrix norm on m×m matrices A.
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14. Demonstrate that the outer product uvt of two vectors in R
m has the

matrix norms ‖uvt‖2 = ‖uvt‖F = ‖u‖2‖v‖2.

15. Let P be an orthogonal projection. Prove that I−P is an orthogonal
projection and I − 2P is an orthogonal transformation.

16. Demonstrate that a projection P satisfies the identity

rank(P ) = tr(P ).

17. Consider the linear map f(x) from R
n to R

n with components

fi(x) =
1

2
(xi + xn−i+1).

Prove that f(x) is an orthogonal projection. Compute its rank, and
identify a basis for its range.

18. Fix a positive integer n. Prove that a positive definite matrix M has
a unique positive definite nth root R. (Hint: For uniqueness note that
R commutes with M .)

19. Show that the matrix

(
0 1
0 0

)
has no square root even if one allows

complex entries.

20. Let On be a sequence of orthogonal matrices. Show that there exists
a subsequence Onk that converges to an orthogonal matrix. (Hint:
Compute the norm ||On||2.)

21. Demonstrate that ρ(A) = limn→∞ ||An||1/n for any induced matrix
norm. (Hints: ρ(An)1/n = ρ(A) and [(ρ(A) + ε)−1A]n → 0.)

22. Prove that the series Bn =
∑n

k=0
Ak

k!
converges. Its limit is the matrix

exponential eA.

23. Show that inequality (6.8) is sharp by choosing w 6= 0 so that

||A−1w|| = ||A−1|| · ||w||.

Then take successively ∆x = −βA−1w, x + ∆x = w, ∆A = βI, and
b = (A+ ∆A)w, where β is any nonzero number such that A+ βI is
invertible.

24. Relative to any induced matrix norm, show that (a) cond(A) ≥ 1,
(b) cond(A−1) = cond(A), (c) cond(AB) ≤ cond(A) cond(B), and
(d) cond(cA) = cond(A) for any scalar c 6= 0. Also verify that if U is
orthogonal, then cond2(U) = 1 and

cond2(A) = cond2(AU) = cond2(UA).
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25. If A+ ∆A is invertible, prove that

||(A+ ∆A)−1 − A−1||
||(A+ ∆A)−1|| ≤ cond(A)

||∆A||
||A|| .
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7

Linear Regression and Matrix
Inversion

7.1 Introduction

Linear regression is the most commonly applied procedure in statistics. This
fact alone underscores the importance of solving linear least squares prob-
lems quickly and reliably. In addition, iteratively reweighted least squares
lies at the heart of a host of other optimization algorithms in statistics.
The current chapter features four different methods for solving linear least
squares problems: sweeping, Cholesky decomposition, the modified Gram-
Schmidt procedure, and orthogonalization by Householder reflections. Later
we take up solution by the singular value decomposition.

The sweep operator [1, 3, 6, 7, 8] is the workhorse of computational
statistics. The matrices that appear in linear regression and multivariate
analysis are almost invariably symmetric. Sweeping exploits this symmetry.
Although there are faster and numerically more stable algorithms for in-
verting a matrix or solving a least-squares problem, no algorithm matches
the conceptual simplicity and utility of sweeping. To highlight some of the
typical quantities that sweeping calculates with surprising ease, we briefly
review a few key ideas from linear regression and multivariate analysis.

A Cholesky decomposition furnishes a lower triangular square root of
a positive definite matrix [2, 7, 10, 12, 13, 14, 15]. This turns out to be
valuable because solving linear equations with triangular matrices is par-
ticularly simple. Cholesky decompositions also provide convenient parame-
terizations of covariance matrices. The complicated constraints required by
positive definiteness melt away, leaving only positivity constraints on the
diagonal of the Cholesky decomposition.

Gram-Schmidt orthogonalization, particularly in its modified form, of-
fers a numerically more stable method of computing linear regression es-
timates than sweeping or Cholesky decomposition [2, 11, 13, 14, 15]. Al-
though this is reason enough for introducing two of the major algorithms of

where we discuss the computation of asymptotic standard errors of maxi-
mum likelihood estimates subject to linear constraints. Orthogonalization
by Householder reflections leads to the same QR decomposition reached by
Gram-Schmidt orthogonalization.

Woodbury’s formula occupies a somewhat different niche than sweeping
or matrix factorization [9, 10]. Many statistical models involve the inver-

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 93

matrix orthogonalization, we will meet further motivation in Chapter 11,
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sion of matrices that are low-rank perturbations of matrices with known
inverses. For instance, if D is an invertible diagonal matrix and u is a
compatible column vector, the Sherman-Morrison formula [9, 10]

(D + uut)−1 = D−1 − 1

1 + utD−1u
D−1uutD−1

provides the inverse of the symmetric, rank-one perturbation D+uut of D.
Woodbury’s formula generalizes the Sherman-Morrison formula. Both the
original Sherman-Morrison formula and Woodbury’s generalization permit
straightforward computation of the determinant of the perturbed matrix
from the determinant of the original matrix.

7.2 Motivation from Linear Regression

As motivation for studying least squares, we briefly review linear regression.
The basic setup involves p independent observations that individually take
the form

yi =

q∑

j=1

xijβj + ui. (7.1)

Here yi depends linearly on the unknown parameters βj through the known
constants xij. The error ui is assumed to be normally distributed with mean
0 and variance σ2. If we collect the yi into a p × 1 observation vector y,
the xij into a p× q design matrix X, the βj into a q × 1 parameter vector
β, and the uj into a p× 1 error vector u, then the linear regression model
can be rewritten in vector notation as y = Xβ + u. A maximum likelihood
estimator β̂ of β solves the normal equations XtXβ = Xty. Throughout
this chapter we assume that X has full rank. With this stipulation, the
normal equations have the unique solution β̂ = (XtX)−1Xty. This is also
the least squares estimator of β even when the error vector u is nonnormal.
In general, if u has uncorrelated components with common mean 0 and
common variance σ2, then the estimator β̂ has mean and variance

E(β̂) = β

Var(β̂) = σ2(XtX)−1.

The difference y−ŷ = y−Xβ̂ between the actual and predicted observations
is termed the residual vector. Its Euclidean norm ||y− ŷ||22 squared, known
as the residual sum of squares, is fundamentally important in inference. For
example, σ2 is usually estimated by ||y− ŷ||22/(p− q). A single application

of the sweep operator permits simultaneous computation of β̂, Var(β̂), and
||y− ŷ||22.
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In weighted least squares, one minimizes the criterion

f(β) =

p∑

i=1

wi

(
yi −

q∑

j=1

xijβj

)2

,

where the wi are positive weights. This reduces to ordinary least squares if
we substitute

√
wiyi for yi and

√
wixij for xij. It is clear that any method

for solving an ordinary least squares problem can be immediately adapted
to solving a weighted least squares problem.

7.3 Motivation from Multivariate Analysis

A random vector X ∈ R
p with mean vector µ, covariance matrix Ω, and

density

(2π)−
p
2 det(Ω)−

1
2 e−

1
2 (x−µ)tΩ−1(x−µ)

is said to follow a multivariate normal distribution. The sweep operator
permits straightforward calculation of the quadratic form (x−µ)tΩ−1(x−µ)
and the determinant of Ω. If we partition X and its mean and covariance
so that

X =

(
Y
Z

)
, µ =

(
µY
µZ

)
, Ω =

(
ΩY ΩY Z
ΩZY ΩZ

)
,

then conditional on the event Y = y, the subvector Z follows a multivariate
normal density with conditional mean and variance

E(Z | Y = y) = µZ + ΩZY Ω−1
Y (y − µY )

Var(Z | Y = y) = ΩZ − ΩZY Ω−1
Y ΩY Z .

These quantities and the conditional density of Z given Y = y can all be
easily evaluated via the sweep operator.

7.4 Definition of the Sweep Operator

Suppose A = (aij) is an m ×m symmetric matrix. Sweeping on the kth

diagonal entry akk 6= 0 of A yields a new symmetric matrix Â = (âij) with
entries

âkk = − 1

akk

âik =
aik
akk

âkj =
akj
akk

âij = aij −
aikakj
akk
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for i 6= k and j 6= k. Sweeping on the kth diagonal entry can be undone
by inverse sweeping on the kth diagonal entry. Inverse sweeping sends the
matrix A = (aij) into Ǎ = (ǎij) with entries

ǎkk = − 1

akk

ǎik = − aik
akk

ǎkj = −akj
akk

ǎij = aij −
aikakj
akk

for i 6= k and j 6= k. Because sweeping and inverse sweeping preserve
symmetry, all operations can be carried out on either the lower or upper-
triangular part of A alone. This saves both computation and storage. In
practice, it is wise to carry out sweeping in double precision.

7.5 Properties of the Sweep Operator

We now develop the basic properties of the sweep operator following the
exposition of Jennrich [6]. Readers familiar with Gaussian elimination or
the simplex algorithm in linear programming have already been exposed to
the major themes of pivoting and exchange [4]. Sweeping is a symmetrized
version of Gauss-Jordan pivoting.

Proposition 7.5.1 Let A be an m × m matrix and U and V be p × m
matrices with columns u1, . . . , um and v1, . . . , vm, respectively. If V = UA
before sweeping on the kth diagonal entry of A, then V̂ = Û Â after sweep-
ing on the kth diagonal entry of A. Here sweeping sends A into Â, the
matrix Û coincides with U except for the exchange of column uk for col-
umn vk, and the matrix V̂ coincides with V except for the exchange of
column vk for −uk. The inverse sweep produces the same result except that
uk is exchanged for −vk and vk is exchanged for uk. Consequently, an in-
verse sweep undoes a sweep on the same diagonal entry and vice versa. An
inverse sweep also coincides with a sweep cubed.

Proof: By definition vjl =
∑

i ujiail for all pairs j and l. After sweeping
on akk,

v̂jk = −ujk
= − 1

akk

(
vjk −

∑

i 6=k
ujiaik

)

= ûjkâkk +
∑

i 6=k
ûjiâik
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=
∑

i

ûjiâik,

and for l 6= k,

v̂jl = vjl

=
∑

i 6=k
ujiail + ujkakl

=
∑

i 6=k
ujiail +

(
vjk −

∑

i 6=k
ujiaik

) akl
akk

=
∑

i 6=k
ûjiâil + ûjkâkl

=
∑

i

ûjiâil.

Thus, V̂ = Û Â. Similar reasoning applies to an inverse sweep.
If a sweep is followed by an inverse sweep on the same diagonal entry,

then the doubly transformed matrix
ˇ̂
A satisfies the equation V = U

ˇ̂
A.

Choosing square matrices U and V such that U is invertible allows one to

write both A and
ˇ̂
A as U−1V . Likewise, it is easy to check that the inverse

and cube of a sweep transform U and V into exactly the same matrices Ǔ
and V̌ .

Performing a sequence of sweeps leads to the results stated in the next
proposition.

Proposition 7.5.2 Let the symmetric matrix A be partitioned as

A =

(
A11 A12

A21 A22

)
.

If possible, sweeping on the diagonal entries of A11 yields

Â =

(
−A−1

11 A−1
11 A12

A21A
−1
11 A22 −A21A

−1
11 A12

)
. (7.2)

In other words, sweeping on a matrix in block form conforms to the same
rules as sweeping on the matrix entry by entry. Furthermore, if it is possible
to sweep on a set of diagonal elements in more than one order, then the
result is independent of the order chosen.

Proof: Applying Proposition 7.5.1 repeatedly in the equality
(
A11 A12

A21 A22

)
=

(
I11 012

021 I22

)(
A11 A12

A21 A22

)

leads to
(
−I11 A12

021 A22

)
=

(
A11 012

A21 I22

)(
Â11 Â12

Â21 Â22

)
,
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where I11 and I22 are identity matrices and 012 and 021 are zero matrices.
This implies

−I11 = A11Â11

A12 = A11Â12

021 = A21Â11 + Â21

A22 = A21Â12 + Â22.

Solving these equations for the blocks of Â yields the claimed results.

Sweeping is also a device for monitoring the positive definiteness of a
matrix. In fact, sweeping is a more practical test than the classical criterion
of Sylvester mentioned in Problem 13 of Chapter 8.

Proposition 7.5.3 A symmetric matrix A is positive definite if and only
if each diagonal entry can be swept in succession and is positive until it is
swept. When a diagonal entry of a positive definite matrix A is swept, it
becomes negative and remains negative thereafter. Furthermore, taking the
product of the diagonal entries just before each is swept yields the determi-
nant of A.

Proof: The equivalence of the two conditions characterizing A is obvious
if A is a 1× 1 matrix. If A is m×m, then suppose it has the form given in
Proposition 7.5.2. Now the matrix identity

(
A11 012

021 A22 − A21A
−1
11 A12

)

=

(
I11 012

−A21A
−1
11 I22

)(
A11 A12

A21 A22

)(
I11 −A−1

11 A12

021 I22

)
(7.3)

shows that A is positive definite if and only if A11 and A22 − A21A
−1
11 A12

are both positive definite. In view of equation (7.2) of Proposition 7.5.2, the
equivalence of the sweeping condition and positive definiteness of A follows
inductively from the same equivalence applied to the smaller matrices A11

and A22 −A21A
−1
11 A12.

Once a diagonal entry of A has been swept, the diagonal entry forms part
of the matrix −A−1

11 , which is negative definite. Hence, the swept diagonal
entries must be negative. Finally, formula (7.3) shows that

detA = det(A11) det(A22 −A21A
−1
11 A12). (7.4)

The validity of the asserted procedure for calculating detA now follows
inductively since it is obviously true for a 1 × 1 matrix.

The determinant formula (7.4) is of independent interest. It does not
depend on A being symmetric. Obviously, the analogous formula

detA = det(A22) det(A11 −A12A
−1
22 A21) (7.5)

also holds.
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7.6 Applications of Sweeping

The representation (7.2) is of paramount importance. For instance, in linear
regression, suppose we construct the matrix

(
XtX Xty
ytX yty

)
(7.6)

and sweep on the diagonal entries of XtX. Then the basic theoretical in-
gredients

(
−(XtX)−1 (XtX)−1Xty
ytX(XtX)−1 yty − ytX(XtX)−1Xty

)

=

(− 1
σ2 Var(β̂) β̂

β̂t ||y− ŷ||22

)

magically emerge.
When we construct the matrix

(
Ω x− µ

xt − µt 0

)

for the multivariate normal distribution and sweep on the diagonal entries
of Ω, we get the quadratic form −(x−µ)tΩ−1(x−µ) in the lower-right block
of the swept matrix. In the process we can also accumulate detΩ. To avoid
underflows and overflows, it is better to compute lndet Ω by summing the
logarithms of the diagonal entries as we sweep on them. If we partition X
as (Y t, Zt)t and sweep on the upper-left block of




ΩY ΩY Z µY − y
ΩZY ΩZ µZ

µtY − yt µtZ 0


 ,

then the conditional mean E(Z | Y = y) = µZ + ΩZYΩ−1
Y (y − µY ) and

conditional variance Var(Z | Y = y) = ΩZ−ΩZY Ω−1
Y ΩY Z are immediately

available.

7.7 Cholesky Decompositions

Let A be an m×m positive definite matrix. The Cholesky decomposition L
of A is a lower-triangular matrix with positive diagonal entries that serves
as an asymmetric square root of A. To prove that such a decomposition
exists and is unique, we argue by induction. In the case of a positive scalar
a, the Cholesky decomposition l =

√
a. For an m×m matrix A = (aij) with
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m > 1, the square root condition A = LLt can be written in partitioned
form as

(
a11 at

a A22

)
=

(
`11 0t

` L22

)(
`11 `t

0 Lt22

)
.

Equating the two sides block by block yields the identities

a11 = `211

a = `11`

A22 = ``t + L22L
t
22.

Solving these equations gives

`11 =
√
a11

` = `−1
11 a

L22L
t
22 = A22 − ``t = A22 − a−1

11 aa
t.

Because a11 > 0, the values of `11 and ` are uniquely determined. Proposi-
tion 7.5.2 implies that the matrixA22−a−1

11 aa
t is positive definite. Therefore

in view of the induction hypothesis, L22 also exists and is unique.
The great virtue of this proof is that it is constructive and can be easily

implemented in computer code. If we want detA as well as L, then we
simply note that detA = (detL)2 and that the determinant of L is the
product of its diagonal entries. Another strength of the proof is that it shows
that positive semidefinite matrices also possess Cholesky decompositions,
though these are no longer unique. To adapt the above proof, we must
examine the situation a11 = 0. In this case, we take `11 = 0. Fortunately,
this does not conflict with the requirement a = `11` because the vector a
also vanishes when a11 vanishes. Lack of uniqueness arises because ` is not
fully determined, but certainly the specific choice ` = 0 is viable. With
this choice, L22L

t
22 = A22, and induction again pushes the algorithm to

completion. Problem 7 gives an example of nonuniqueness.
Regression analysis can be performed by finding the Cholesky factoriza-

tion

(X, y)t(X, y) =

(
XtX Xty
ytX yty

)
=

(
L 0
`t d

)(
Lt `
0t d

)
.

Clearly L is the Cholesky decomposition of XtX. The two equations

L` = Xty, Ltβ = `,

which are equivalent to the normal equations, can be solved quickly in
succession by forward and backward substitution for the estimated regres-
sion coefficients β̂. Before commenting on this further, let us add that the
equation yty = `t`+ d2 implies that

d2 = yty − `t` = yty − ytX(XtX)−1Xty = ||y − ŷ||22.
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Now let L = (lij) and U = (uij) be arbitrary m ×m lower and upper
triangular matrices with nonzero diagonal entries. To solve the equation
Lf = v by forward substitution, we take

f1 = l−1
11 v1

f2 = l−1
22 [v2 − l21f1]

fj = l−1
jj

[
vj −

j−1∑

k=1

ljkfk

]
, j = 3, . . . , m.

To solve the equation Ub = w by backward substitution, we take

bm = u−1
mmwm

bm−1 = u−1
m−1,m−1[wm−1 − um−1,mbm]

bj = u−1
jj

[
wj −

m∑

k=j+1

ujkbk

]
, j = m− 2, . . . , 1.

7.8 Gram-Schmidt Orthogonalization

The sweeping and Cholesky decomposition approaches to regression explic-
itly form the matrix XtX. In contrast, orthogonalization methods operate
directly on X. The QR decomposition represents a p × q matrix X with
full column rank as the product QR of a p× q matrix Q with orthonormal
columns and a q × q invertible upper-triangular matrix R. We will further
assume without loss of generality that the diagonal entries of R are pos-
itive. When this is not the case, we multiply R by a diagonal matrix D
whose diagonal entries are chosen from {−1,+1} in such a way that DR
has positive diagonal entries. The new representation X = (QD)(DR) is a
valid QR decomposition in the restricted sense.

Assuming for the moment that the QR decomposition exists, we can
rephrase the normal equations XtXβ = Xty as

RtQtQRβ = RtQty.

Because Rt is invertible and QtQ equals the q × q identity matrix Iq , it
follows that the normal equations reduce to Rβ = Qty = r. This system of
equations can be solved by forward substitution for β. The equation

XtX = RtQtQR = RtR

determines L = Rt as the Cholesky decomposition of XtX. Given that R
is unique and invertible, the identity Q = XR−1 determines Q.
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Gram-Schmidt orthogonalization takes a collection of vectors such as the
columns x1, . . . , xq of the design matrixX into an orthonormal collection of
vectors u1, . . . , uq spanning the same column space. The algorithm begins
by defining

u1 =
1

‖x1‖2
x1.

Given u1, . . . , uk−1, the next unit vector uk in the sequence is defined by
dividing the column vector

vk = xk −
k−1∑

j=1

utjxk uj (7.7)

by its Euclidean norm. In other words, we subtract from xk its projections
onto each of the previously created uj and normalize the result. A simple
induction argument shows that the vectors u1, . . . , uk form an orthonormal
basis of the subspace spanned by x1, . . . , xk, assuming of course that these
latter vectors are independent. The upper-triangular entries of the matrix
R are given by the formulas rjk = utjxk for 1 ≤ j < k and rkk = ‖vk‖2. This
fact can be deduced by observing that component i of the vector identity
(7.7) is just a disguised form of the matrix identity

xik =

k∑

j=1

uijrjk

required by the QR decomposition with Q = (uij).
Computational experience has shown that the numerical stability of

Gram-Schmidt orthogonalization can be improved by a simple device. In
equation (7.7) we subtract from xk all of its projections simultaneously.
If the columns of X are nearly collinear, it is better to subtract off the

projections sequentially. Thus, we let v
(1)
k = xk and sequentially compute

v
(j+1)
k = v

(j)
k − utjv

(j)
k uj, rjk = utjv

(j)
k

until we reach vk = v
(k)
k . As before, rkk = ‖vk‖2. With perfect arith-

metic, the modified algorithm arrives at the same outcome as the previous
algorithm. However, with imperfect arithmetic, the vectors u1, . . . , uq com-
puted under the modified algorithm are more accurate and more nearly
orthogonal.

In practice, the modified Gram-Schmidt method is applied to the parti-
tioned matrix (X, y). All of the required information can be harvested from
the extended QR decomposition

(X, y) = (Q, q)

(
R r
0 d

)
.
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If we premultiply y = Qr + dq by Qt, then we find that Qty = r, which
is directly applicable in solving for β in Rβ = Qty = r. The predicted
values Xβ̂ = QRR−1r = Qr and the residuals y −Xβ̂ = y −Qr = dq are
also immediately available. From the residuals, we get the residual sum of
squares d2 since q is a unit vector.

7.9 Orthogonalization by Householder Reflections

To construct the QR decomposition of the p×q matrixX, one can multiply
it by a special sequence H1, . . . , Hq−1 of Householder reflections and arrive
at the result

Hq−1 · · ·H2H1X =

(
R
0

)
, (7.8)

where R is a q×q upper triangular matrix with positive diagonal entries. If
we let O be the p× p orthogonal matrix Hq−1 · · ·H2H1, then the residual
sum of squares satisfies

‖y −Xβ‖2
2 = ‖Oy− OXβ‖2

2 =
∥∥∥Oy −

(
R
0

)
β
∥∥∥

2

2
=
∥∥∥Oy−

(
Rβ
0

)∥∥∥
2

2
.

Putting Oy =

(
r1
r2

)
, we recast this as

‖y −Xβ‖2
2 = ‖r1 − Rβ‖2

2 + ‖r2‖2
2.

There is nothing we can do to diminish ‖r2‖2
2, but we can eliminate the

term ‖r1 − Rβ‖2
2 by setting β equal to β̂ = R−1r1. The residual sum of

squares then collapses to ‖r2‖2
2. If we write

O =

(
Oq
Op−q

)

with submatrices Oq and Op−q having q and p− q rows, respectively, then
multiplying equation (7.8) by Ot produces the standard QR decomposition

X = (Otq, O
t
p−q)

(
R
0

)
= OtqR.

The key to determining the Householder reflections is the simple obser-
vation that for every pair of vectors v and w of equal Euclidean length,
we can construct a Householder matrix H = I − 2uut carrying v into w.
Because the condition Hv = w is equivalent to the condition

−2utv u = w − v,
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the unit vector u must be a multiple of w − v. The choice

u =
1

‖w − v‖ (v −w)

gives

Hv = v − 2

‖w− v‖2
(v −w)(v − w)tv

= v +
2‖v‖2 − 2wtv

‖w− v‖2
(w − v)

= v +
‖v‖2 − 2wtv + ‖w‖2

‖w − v‖2
(w − v)

= v + (w − v)

= w.

Once H is determined, its action Hx = x− 2utxu on any other vector x is
trivial to compute.

Because we want R to be upper triangular, we choose H = H1 to map
the first column x of X to the vector (‖x‖, 0, . . . , 0)t. Except for the first
entry, every entry of the vector u defining H is a positive multiple of the
corresponding entry of x. The first entry u1 is a positive multiple of x1−‖x‖.
If x1 is positive, we run the risk of losing significant digits in computing
u1. Application of the formula

x1 − ‖x‖ =
x2

1 − ‖x‖2

x1 + ‖x‖ = −x
2
2 + · · ·+ x2

p

x1 + ‖x‖
circumvents this pitfall. Once we multiply H = H1 times the columns of
X, we are left with a matrix of the form

H1X =

(
r11 r
0 A

)
.

The columns ofA are linearly independent because assuming otherwise ren-
ders the columns of H1X linearly dependent. By induction we reduce A to
an upper triangular matrix by multiplying it by a sequence of H̃q−1, . . . , H̃2

Householder reflections. If we elevate each of the (p− 1)× (p− 1) matrices
H̃i to

Hi =

(
1 0t

0 H̃i

)
,

then these matrices have the right dimension and leave the vector

(‖x‖, 0, . . . , 0)t

undisturbed.
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7.10 Comparison of the Different Algorithms

The various algorithms can be compared on the basis of speed, accuracy,
and flexibility. Table 7.1 gives the approximate number of floating point
operations (flops) for each of the methods. Recall here that p is the number
of cases and q is the number of regression coefficients. The various methods
are listed in order of their numerical accuracy as rated by Seber and Lee
[11], with sweeping the most prone to numerical error and the modified
Gram-Schmidt procedure the least prone.

TABLE 7.1. Approximate Flop Counts for Different Regression Methods

Method Flop Count

Sweeping pq2 + q3

Cholesky Decomposition pq2 + 1
3
q3

Householder Orthogonalization 2pq2 − 2
3q

3

Modified Gram-Schmidt 2pq2

Although flops omit a great deal of behind-the-scenes processing in nu-
merical computing, costs such as fetching array entries tend to be strongly
correlated with flops [11]. For this reason, flops serve as a useful mea-
sure of computational speed. If p is large compared to q, then sweeping
and Cholesky decomposition are approximately twice as fast as the other
two methods. Their speed comes at a price of reduced accuracy, but using
double precision mitigates most of the problems in practice. Despite its
apparent inferiority to Cholesky decomposition, sweeping remains in com-
mon use because of its flexibility in stepwise regression and its advantages
in dealing with the multivariate normal distribution.

7.11 Woodbury’s Formula

Suppose A is an m×m matrix with known inverse A−1 and known deter-
minant detA. If U and V are m×n matrices of rank n, then A+UV t is a
rank n perturbation of A. In many applications n is much smaller than m.
If U has columns u1, . . . , un and V has columns v1, . . . , vn, then A + UV t

can also be expressed as

A+ UV t = A+

n∑

i=1

uiv
t
i .

Woodbury’s formula amounts to

(A+ UV t)−1 = A−1 −A−1U(In + V tA−1U)−1V tA−1, (7.9)
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where In is the n × n identity matrix [9, 10]. Equation (7.9) is valuable
because the smaller n× n matrix In + V tA−1U is typically much easier to
invert than the larger m×m matrix A + UV t. When A is symmetric and
V = U , Woodbury’s formula is a consequence of sweeping the matrix

(
−A U
U t In

)

first on its upper-left block and then on its lower-right block and comparing
the results to sweeping on these blocks in reverse order.

In solving the linear equation (A+ UV t)x = b, computing the whole in-
verse (A+UV t)−1 is unnecessary. Press et al. [10] recommend the following
procedure. First compute the column vectors z1, . . . , zn of Z = A−1U by
solving each linear equation Azi = ui. Then calculate H = (In + V tZ)−1.
Finally, solve the linear equation Ay = b for y. The solution to the linear
equation (A+ UV t)x = b can then be written as x = y − ZHV ty.

If A + UU t is the covariance matrix of a multivariate normal random
vector X, then to evaluate the density of X it is necessary to compute
det(A + UU t). (Observe that choosing V = U preserves the symmetry of
A.) The identity

det(A + UV t) = detAdet(In + V tA−1U) (7.10)

permits easy computation of det(A + UV t). This identity also evidently
implies that A+UV t is invertible if and only if In +V tA−1U is invertible.
To prove (7.10), we note that

det(A+ UV t) = detAdet(Im +A−1UV t)

= detAdet

(
In V t

−A−1U Im

)

= detAdet(In + V tA−1U)

follows directly from equations (7.4) and (7.5).

7.12 Problems

1. Consider the matrix

A =
1

3




1 −2 −2
−2 1 −2
−2 −2 1


 .

Compute its inverse by sweeping. Determine whether A is positive
definite based on the intermediate results of sweeping.
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2. Calculate how many arithmetic operations it takes to compute one
sweep of an m × m symmetric matrix A. If you calculate only the
upper-triangular part of the result, how many operations do you save?
Note that the revised sweeping scheme

âkk = − 1

akk
âik = −âkkaik
âkj = −âkkakj
âij = aij − âikakj

for i 6= k and j 6= k is more efficient than the original sweeping
scheme. How many operations does it take to compute A−1, assuming
all of the required diagonal sweeps are possible?

3. Suppose the positive definite matrix A = (aij) has inverse B = (bij).
Show that a−1

ii ≤ bii with equality if and only if aij = aji = 0 for all
j 6= i. If A is an expected information matrix, what implications does
this result have for maximum likelihood estimation in large samples?

4. The jackknife method of regression analysis can be implemented by
replacing the linear regression matrix (7.6) by the matrix



Xt

Ip
yt



(
X Ip y

)
=



XtX Xt Xty
X Ip y
ytX yt yty


 ,

sweeping on its upper-left block XtX, and then sweeping on its
(q+ k)th diagonal entry for some k between 1 and p. Prove that this
action yields the necessary ingredients for regression analysis omit-
ting the kth observation yk and the corresponding kth row of the
p × q design matrix X [1]. (Hint: The additional sweep is equivalent
to replacing the kth regression equation yk =

∑q
l=1 xklβl + ek by the

regression equation yk =
∑q

l=1 xklβl + βq+k + ek involving an addi-
tional parameter; the other regression equations are untouched. The
parameter βq+k can be adjusted to give a perfect fit to yk. Hence, the

estimates β̂1, . . . , β̂q after the additional sweep depend only on the
observations yi for i 6= k.)

5. Continuing Problem 4, let hkk be the kth diagonal entry of the projec-
tion matrixX(XtX)−1Xt. If ŷk is the predicted value of yk and ŷ−kk is
the predicted value of yk omitting this observation, then demonstrate
that

yk − ŷ−kk =
yk − ŷk
1 − hkk

.

(Hint: Apply the Sherman-Morrison-Woodbury formula.)
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6. Find by hand the Cholesky decomposition of the matrix

A =

(
2 −2
−2 5

)
.

7. Show that the matrices

B =




1 0 0
2 0 0
2 3 2


 , C =




1 0 0
2 0 0
2 0

√
13




are both valid Cholesky decompositions of the positive semidefinite
matrix

A =




1 2 2
2 4 4
2 4 17


 .

8. Suppose the matrix A = (aij) is banded in the sense that aij = 0
when |i− j| > d. Prove that the Cholesky decomposition B = (bij)
also satisfies the band condition bij = 0 when |i− j| > d.

9. How many arithmetic operations does it take to calculate the Cho-
lesky decomposition L of an m×m positive definite matrix A? You
may count a square root as a single operation. If the solution of the
linear system Ab = v is desired, one can successively solve Lf = v
and Ltb = f . Estimate the number of extra operations required to do
this once L is obtained.

10. Find the QR decomposition of the matrix

X =




1 3 3
1 3 1
1 1 5
1 1 3




by the Gram-Schmidt process.

11. If X = QR is the QR decomposition of X, then show that the pro-
jection matrix

X(XtX)−1Xt = QQt.

Show that | detX| = | detR| when X is square and in general that
det(XtX) = (detR)2.

12. Prove that (a) the product of two upper-triangular matrices is upper
triangular, (b) the inverse of an upper-triangular matrix is upper
triangular, (c) if the diagonal entries of an upper-triangular matrix
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are positive, then the diagonal entries of its inverse are positive, and
(d) if the diagonal entries of an upper-triangular matrix are unity,
then the diagonal entries of its inverse are unity. Similar statements
apply to lower-triangular matrices.

13. Demonstrate that an orthogonal upper-triangular matrix is diagonal.

14. Consider the m×m matrix

M =




a b · · · b
b a · · · b
...

...
...

...
b b · · · a


 .

If 1 is the column vector with all entries 1, then show that M has
inverse and determinant

M−1 =
1

a − b

[
Im − b

a+ (m− 1)b
11t
]

detM = (a − b)m−1[a+ (m− 1)b].

15. Prove the slight generalization

(A+ UDV t)−1 = A−1 − A−1U(D−1 + V tA−1U)−1V tA−1

of the Woodbury formula (7.9) for compatible matrices A, U , D, and
V .

16. Suppose A and B are invertible matrices of the same dimension. If
A−1 + B−1 is invertible, then show that A + B is invertible, and
conversely. Furthermore, prove the identities

(A−1 +B−1)−1 = A(A+ B)−1B = B(A + B)−1A.

17. Let D be an m×m diagonal matrix with ith diagonal entry di. Show
that the characteristic polynomial p(λ) of the rank-one perturbation
D + uvt of D reduces to

p(λ) =

m∏

i=1

(λ − di) −
m∑

i=1

uivi
∏

j 6=i
(λ − dj).

Prove that di is an eigenvalue of D+ uvt whenever dj = di for some
j 6= i. If di is a unique diagonal entry, then show that it is an eigen-
value of D+uvt if and only if uivi = 0. Finally, if none of the di is an
eigenvalue, then demonstrate that the eigenvalues coincide with the
roots of the rational function

r(λ) = 1 −
m∑

i=1

uivi
λ− di

.
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18. Let A be an m× n matrix of full rank. One can easily show that

P = In −At(AAt)−1A

is the unique n× n orthogonal matrix projecting onto the null space
of A; in other words, P = P t, P 2 = P , and Px = x if and only if
Ax = 0. If b is a vector such that btPb 6= 0, then verify that the
rank-one perturbation

Q = P − 1

btPb
P bbtP

is the unique orthogonal projection onto the null space of
(
A
bt

)
. If

btPb = 0, then verify that Q = P serves as the orthogonal projector.

19. Let A be a square matrix of rank k and x and y vectors such that
xtAy 6= 0. Demonstrate that the matrix A − (xtAy)−1AyxtA has
rank k− 1. More generally suppose that A is m× n, B is l×m, C is
l × n, and BACt is invertible. If A has rank k and l ≤ k, then show
that A−ACt(BACt)−1BA has rank k− l. See the reference [5] for a
history and applications of this problem.
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8

Eigenvalues and Eigenvectors

8.1 Introduction

Finding the eigenvalues and eigenvectors of a symmetric matrix is one
of the basic tasks of computational statistics. For instance, in principal
components analysis [13], a random m-vector X with covariance matrix Ω
is postulated. As a symmetric matrix, Ω can be decomposed as

Ω = UDU t,

where D is the diagonal matrix of eigenvalues of Ω and U is the corre-
sponding orthogonal matrix of eigenvectors. If the eigenvalues are distinct
and ordered 0 ≤ λ1 < λ2 < . . . < λm, then the columns U1, . . . , Um of
U are unique up to sign. The random variables Vj = U tjX, j = 1, . . . , m,
have covariance matrix U tΩU = D. These random variables are termed
principal components. They are uncorrelated and increase in variance from
the first, V1, to the last, Vm.

Besides this classical application, there are other reasons for being in-
terested in eigenvalues and eigenvectors. We have already seen how the
dominant eigenvalue of a symmetric matrix Ω determines its norm ||Ω||2.
If Ω is the covariance matrix of a normally distributed random vector X
with mean E(X) = µ, then the quadratic form and the determinant

(x− µ)tΩ−1(x− µ) = [U t(x− µ)]tD−1U t(x− µ)

detΩ =
∏

i

λi

appearing in the density ofX are trivial to calculate if Ω can be diagonalized
explicitly. Understanding the eigenstructure of matrices also is crucial in

consider the Rayleigh quotient later in this chapter.

8.2 Jacobi’s Method

Rather than survey the variety of methods for computing the eigenvalues
and eigenvectors of a symmetric matrix Ω, we will focus on just one, the
classical Jacobi method [1, 2, 4, 5, 8, 15, 16]. This is not necessarily the
fastest method, but it does illustrate some useful ideas for proving conver-
gence of iterative methods in general. One attractive feature of Jacobi’s

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 113

proving convergence for maximum likelihood algorithms. This leads us to
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method is the ease with which it can be implemented on parallel comput-
ers. This fact suggests that it may regain its competitiveness on large-scale
problems.

The idea of the Jacobi method is to gradually transform Ω to a diagonal
matrix by a sequence of similarity transformations. Each similarity trans-
formation involves a rotation designed to increase the sum of squares of the
diagonal entries of the matrix currently similar to Ω. Section 6.4 reviews
basic material on orthogonal transformations such as the rotation

R =

(
cos θ sin θ

− sin θ cos θ

)
(8.1)

in the plane. It is proved in Section 6.4 that two m×m matrices A and B
related by the orthogonal similarity transformation B = U tAU satisfy the
identity ||B||2F = ||A||2F . If we appeal to the circular permutation property
of the matrix trace function, then it is also obvious that tr(B) = tr(A).

Now consider the effect of a rotation involving row k and column l of the
m × m matrix A = (aij). Without loss of generality, we take k = 1 and
l = 2 and form the orthogonal matrix

U =

(
R 0
0t Im−2

)
.

The diagonal entry bii of B = U tAU equals aii when i > 2. The entries of
the upper-left block of B are given by

b11 = a11 cos2 θ − 2a12 cos θ sin θ + a22 sin2 θ

b12 = (a11 − a22) cos θ sin θ + a12(cos2 θ− sin2 θ) (8.2)

b22 = a11 sin2 θ + 2a12 cos θ sin θ + a22 cos2 θ.

By virtue of the trigonometric identities

cos2 θ− sin2 θ = cos(2θ)

cos θ sin θ =
1

2
sin(2θ),

it follows that

b12 =
a11 − a22

2
sin(2θ) + a12 cos(2θ).

When a22 − a11 6= 0, there is a unique |θ| < π/4 such that

tan(2θ) =
2a12

a22 − a11
.

Making this choice of θ forces b12 = 0. When a22 − a11 = 0, the choice
θ = π/4 also gives b12 = 0.
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Given b12 = 0, we infer from the first two formulas of (8.2) that

b11 = a11 cos2 θ − 2a12 cos θ sin θ + a22 sin2 θ + b12 tan θ

= a11 − a12 tan θ. (8.3)

The trace identity b11 + b22 = a11 + a22 then yields the corresponding
equality

b22 = a22 + a12 tan θ.

The two-dimensional version of the identity ||B||2F = ||A||2F applies to
the upper-left blocks of B and A. In other words, if b12 = 0, then

b211 + b222 = a2
11 + 2a2

12 + a2
22.

In terms of the sums of squares of the diagonal entries of the matrices B
and A, this translates into

S(B) =

m∑

i=1

b2ii

=
m∑

i=1

a2
ii + 2a2

12

= S(A) + 2a2
12.

Thus, choosing b12 = 0 forces S(B) > S(A) whenever a12 6= 0.
Beginning with a symmetric matrix Ω, Jacobi’s method employs a se-

quence of rotations Un as designed above to steadily decrease the sum of
squares

||Ωn||2F − S(Ωn) = ||Ω||2F − S(Ωn)

of the off-diagonal entries of the transformed matrices

Ωn = U tn · · ·U t1ΩU1 · · ·Un.

For large n, approximate eigenvalues of Ω can be extracted from the diag-
onal of the nearly diagonal matrix Ωn, and approximate eigenvectors can
be extracted from the columns of the orthogonal matrix On = U1 · · ·Un.

In fact, there are several competing versions of Jacobi’s method. The
classical method selects the row i and column j giving the largest increase
2a2
ij in the sum of squares S(A) of the diagonal entries. The disadvantage of

this strategy is that it necessitates searching through all off-diagonal entries
of the current matrix A. A simpler strategy is to cycle through the off-
diagonal entries according to some fixed schedule. In the threshold Jacobi
method, this cyclic strategy is modified so that a rotation is undertaken
only when the current off-diagonal entry aij is sufficiently large in absolute
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value. For purposes of theoretical exposition, it is simplest to adopt the
classical strategy.

With this decision in mind, consider the sum of squares of the off-diagonal
entries

L(A) =
∑

k

∑

l6=k
a2
kl

= ||A||2F − S(A),

and suppose that B = U tAU , where U is a Jacobi rotation in the plane
of i and j. Because aij is the largest off-diagonal entry in absolute value,
L(A) ≤m(m− 1)a2

ij. Together with the relation L(B) = L(A) − 2a2
ij, this

implies

L(B) ≤
[
1 − 2

m(m− 1)

]
L(A).

Thus, the function L(A) is driven to 0 at least as fast as the successive
powers of 1−2/[m(m−1)]. This clearly suggests the convergence of Jacobi’s
method to the diagonal matrix D.

Rigorously proving the convergence of Jacobi’s method requires the next
technical result.

Proposition 8.2.1 Let xn be a bounded sequence in R
p, and suppose

lim
n→∞

||xn+1 − xn|| = 0

for some norm ||x||. Then the collection T of cluster points of xn is con-
nected. If T is finite, it follows that T reduces to a single point and that
limn→∞ xn = x∞ exists.

Proof: It is straightforward to prove that T is a compact set. If it is
disconnected, then it is contained in the union of two disjoint, open subsets
S1 and S2 in such a way that neither T ∩ S1 nor T ∩ S2 is empty. The
distance d = infy∈T∩S1, z∈T∩S2 ||y− z|| separating T ∩ S1 and T ∩ S2 must
be positive; otherwise, there would be two sequences yn ∈ T ∩ S1 and
zn ∈ T ∩ S2 with ||yn − zn|| < 1/n. Because T is compact, there is a
subsequence ynk of yn that converges to a point of T . By passing to a
subsubsequence if necessary, we can assume that znk converges as well.
The limits of these two convergent subsequences coincide. The fact that
the common limit belongs to the open set S1 and the boundary of S2 or
vice versa contradicts the disjointness of S1 and S2.

Now consider the sequence xn in the statement of the proposition. For
large enough n, we have ||xn+1 − xn|| < d/4. As the sequence xn bounces
back and forth between cluster points in S1 and S2, it must enter the closed
set W = {y : infz∈T ||y − z|| ≥ d/4} infinitely often. But this means that
W contains a cluster point of xn. Because W is disjoint from T ∩ S1 and
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T ∩S2, and these two sets are postulated to contain all of the cluster points
of xn, this contradiction implies that T is connected.

Since a finite set with more than one point is necessarily disconnected,
T can be a finite set only if it consists of a single point. Finally, a bounded
sequence with only a single cluster point has that point as its limit.

We are now in a position to prove convergence of Jacobi’s method via
the strategy of Michel Crouzeix [1]. Let us tackle eigenvalues first.

Proposition 8.2.2 Suppose that Ω is an m ×m symmetric matrix. The
classical Jacobi strategy generates a sequence of rotations Un and a sequence
of similar matrices Ωn related to Ω by

Ωn = U tn · · ·U t1ΩU1 · · ·Un.

With the rotations Un chosen as described above, limn→∞ Ωn exists and
equals a diagonal matrix D whose entries are the eigenvalues of Ω in some
order.

Proof: If Jacobi’s method gives a diagonal matrix in a finite number of
iterations, there is nothing to prove. Otherwise, let Dn be the diagonal
part of Ωn. We have already argued that the off-diagonal part Ωn − Dn
of Ωn tends to the zero matrix 0. Because ||Dn||F ≤ ||Ωn||F = ||Ω||F , the

sequence Dn is bounded in R
m2

. Let Dnk be a convergent subsequence with
limit D, not necessarily assumed to represent the eigenvalues of Ω. Owing
to the similarity of the matrix Ωnk to Ω, we find

det(D − λI) = lim
k→∞

det(Dnk − λI)

= lim
k→∞

det(Ωnk − λI)

= det(Ω − λI).

Thus, D possesses the same eigenvalues, counting multiplicities, as Ω. But
the eigenvalues of D are just its diagonal entries.

To rule out more than one cluster point D, we apply Proposition 8.2.1,
noting that there are only a finite number of permutations of the eigenvalues
of Ω. According to equation (8.3) and its immediate sequel, if Un is a
rotation through an angle θn in the plane of entries i and j, then the
diagonal entries of Dn+1 and Dn satisfy

dn+1,kk − dnkk =





0 k 6= i, j
−ωnij tan θn k = i
+ωnij tan θn k = j,

where Ωn = (ωnkl). Because |θn| ≤ π/4 and |ωnij| ≤ ||Ωn−Dn||F , it follows
that limn→∞ ||Dn+1 −Dn||F = 0.

Proposition 8.2.3 If all of the eigenvalues λi of the matrix Ω are distinct,
then the sequence On = U1 · · ·Un of orthogonal matrices constructed in
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Proposition 8.2.2 converges to the matrix of eigenvectors of the limiting
diagonal matrix D.

Proof: Mimicking the strategy of Proposition 8.2.2, we show that the se-
quence On is bounded, that it possesses only a finite number of cluster
points, and that

lim
n→∞

||On+1 −On||F = 0.

The sequence On is bounded because ||On||2F = tr(OtnOn) = tr(I). Suppose
On has a convergent subsequence Onk with limitO. Then D = OtΩO holds
because of Proposition 8.2.2. This implies that the columns of O are the
orthonormal eigenvectors of Ω ordered consistently with the eigenvalues
appearing in D. The eigenvectors are unique up to sign. Thus, O can be
one of only 2m possibilities.

To prove limn→∞ ||On+1−On||F = 0, again suppose that Un is a rotation
through an angle θn in the plane of entries i and j. This angle is defined by
tan(2θn) = 2ωnij/(ωnjj−ωnii). Because Ωn converges to D and the entries
of D are presumed unique,

|ωnjj − ωnii| >
1

2
min
k 6=l

|dkk − dll|
> 0

for all sufficiently large n. In view of the fact that limn→∞ ωnij = 0, this
implies that limn→∞ θn = 0, which in turn yields limn→∞ Un = I. The
inequality

||On+1 −On||F = ||On(Un+1 − I)||F
≤ ||On||F ||Un+1 − I||F

completes the proof.

8.3 The Rayleigh Quotient

Sometimes it is helpful to characterize the eigenvalues and eigenvectors of
an m × m symmetric matrix A in terms of the extrema of the Rayleigh
quotient

R(x) =
xtAx

xtx

defined for x 6= 0. This was the case, for example, in computing the
norm ||A||2. To develop the properties of the Rayleigh quotient, let A have
eigenvalues λ1 ≤ · · · ≤ λm and corresponding orthonormal eigenvectors
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u1, . . . , um. Because any x can be written as a unique linear combination∑
i ciui, the Rayleigh quotient can be expressed as

R(x) =

∑
i λic

2
i∑

i c
2
i

. (8.4)

This representation clearly yields the inequality R(x) ≤ λm and the equal-
ity R(um) = λm. Hence, R(x) is maximized by x = um and correspondingly
minimized by x = u1. The Courant-Fischer theorem is a notable general-
ization of these results.

Proposition 8.3.1 (Courant-Fischer) Let Vk be a k-dimensional sub-
space of R

m. Then

λk = min
Vk

max
x∈Vk, x6=0

R(x)

= max
Vm−k+1

min
x∈Vm−k+1, x 6=0

R(x).

The minimum in the first characterization of λk is attained for the subspace
spanned by u1, . . . , uk, and the maximum in the second characterization of
λk is attained for the subspace spanned by uk, . . . , um.

Proof: If Uk is the subspace spanned by u1, . . . , uk, then it is clear that

λk = max
x∈Uk, x 6=0

R(x).

If Vk is an arbitrary subspace of dimension k, then there must be some
nontrivial vector x ∈ Vk orthogonal to u1, . . . , uk−1. For this x =

∑m
i=k ciui,

we find

R(x) =

∑m
i=k λic

2
i∑m

i=k c
2
i

≥ λk
∑m

i=k c
2
i∑m

i=k c
2
i

= λk.

This proves that maxx∈Vk, x6=0R(x) ≥ λk. The second characterization of
λk follows from the first characterization applied to −A, whose eigenvalues
are −λm ≤ · · · ≤ −λ1.

The next proposition applies the Courant-Fischer theorem to the prob-
lem of estimating how much the eigenvalues of a symmetric matrix change
under a symmetric perturbation of the matrix.

Proposition 8.3.2 Let the m×m symmetric matrices A and B = A+∆A
have ordered eigenvalues λ1 ≤ · · · ≤ λm and µ1 ≤ · · · ≤ µm, respectively.
Then the inequality

|λk − µk| ≤ ||∆A||2
holds for all k ∈ {1, . . . , m}.
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Proof: Suppose that Uk is the subspace of R
m spanned by the eigenvectors

u1, . . . , uk of A corresponding to λ1, . . . , λk. If Vk is an arbitrary subspace of
dimension k, then the identity RB(x) = RA(x)+R∆A(x) and the Courant-
Fischer theorem imply that

µk = min
Vk

max
x∈Vk, x 6=0

RB(x)

≤ max
x∈Uk, x 6=0

RB(x)

≤ λk + max
x∈Uk, x 6=0

R∆A(x)

≤ λk + max
x6=0

R∆A(x)

≤ λk + ||∆A||2.

If we reverse the roles of A and B, the inequality λk ≤ µk + ||∆A||2 follows
similarly.

Finally, it is worth generalizing the above analysis to some nonsymmetric
matrices. Suppose that A and B are symmetric matrices with B positive
definite. An eigenvalue λ of B−1A satisfies B−1Ax = λx for some x 6= 0.
This identity is equivalent to the identity Ax = λBx. Taking the inner
product of this latter identity with x suggests examining the generalized
Rayleigh quotient [6]

R(x) =
xtAx

xtBx
. (8.5)

For instance, it is easy to prove that the maximum and minimum eigen-
values of B−1A coincide with the maximum and minimum values of (8.5).
Furthermore, the Courant-Fischer theorem carries over.

Another useful perspective on this subject is gained by noting that B
has a symmetric square root B1/2 defined in terms of its diagonalization
B = UDU t by B1/2 = UD1/2U t. The eigenvalue equation B−1Ax = λx is
then equivalent to

B− 1
2AB− 1

2 y = λy

for y = B1/2x. This lands us back in the territory of symmetric matrices and
the ordinary Rayleigh quotient. The extended Courant-Fischer theorem
now follows directly from the standard Courant-Fischer theorem.

8.4 Finding a Single Eigenvalue

In many applications, we seek either the largest or smallest eigenvalue
rather than all of the eigenvalues of a matrix A. Let A be diagonalizable
with eigenvalues λ1, . . . , λm and corresponding eigenvectors v1, . . . , vm. The
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power method finds the dominant eigenvector by taking the limit of the
iterates

un =
1

‖Aun−1‖2
Aun−1.

To see how this works, suppose |λm| > |λi| for each i < m and u0 is a unit
vector expressible as the linear combination u0 = c1v1 + · · · + cmvm. We
can rewrite

un =
c1

(
λ1

λm

)n
v1 + c2

(
λ2

λm

)n
v2 + · · ·+ cmvm

∥∥∥c1
(
λ1

λm

)n
v1 + c2

(
λ2

λm

)n
v2 + · · ·+ cmvm

∥∥∥
2

·
(
λm
|λm|

)n
.

Assuming λm is real and c1 6= 0, it is obvious that

lim
n→∞

[
un − cmvm

‖cmvm‖2
·
(
λm
|λm|

)n ]
= 0.

In other words, un converges to a multiple of vm or oscillates in sign. In
either case, u2n converges to a multiple of vm. The rate of convergence
depends on the ratio max1≤i<m |λi|/|λm|. In theory, there is no guaran-
tee that the coefficient cm of an arbitrary initial vector u0 is nonzero; in
practice, choosing u0 randomly overcomes this problem.

If we want to find the eigenvalue with smallest absolute value, then the
inverse power method is at our disposal. In the inverse power method, we
simply substitute A−1 for A in the power method. For other eigenvalues,
neither method directly applies. However, suppose we have an approximate
eigenvalue µ. The inverse matrix (A−µI)−1 has eigenvalues (λi−µ)−1 with
the same eigenvectors v1, . . . , vm. This suggests substituting (A−µI)−1 for
A in the power method. The limit and the rate of convergence now depend
on the magnitudes of the eigenvalues (λi−µ)−1. If we are fortunate enough
to choose µ very close to a given λi, then the shifted inverse power method
will converge very quickly to vi.

The Rayleigh quotient iteration algorithm takes the shifted inverse power
method one step further. Instead of relying on a static approximation µ to
the dominant eigenvalue λm of a symmetric matrix A, it updates µ via the
Rayleigh quotient µn = utnAun from the unit vector

un =
1

‖(A− µn−1I)−1un−1‖2
(A− µn−1I)

−1un−1.

This algorithm converges at an extremely fast cubic rate; it works for the
smallest eigenvalue if we start with a reasonable approximation to it.

Because the Rayleigh quotient algorithm carries no assurance of conver-
gence to any particular eigenvalue, it is important to make a good initial
guess of the desired eigenvalue. One approach is based on Gerschgorin’s
circle theorem.
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Proposition 8.4.1 Every eigenvalue λ of an m × m matrix A = (aij)
satisfies at least one of the inequalities

|λ− aii| ≤
∑

j 6=i
|aij|.

Proof: Suppose v is an eigenvector corresponding to λ. For each component
vi of v, we have

(λ − aii)vi =
∑

j 6=i
aijvj .

If we select vi so that |vi| ≥ |vj| for all j, then

|λ− aii| ≤
∑

j 6=i
|aij|

|vj|
|vi|

≤
∑

j 6=i
|aij|.

Nothing in this argument requires A to be symmetric or λ to be real.

If A is symmetric and we want the largest eigenvalue λm, then one plau-
sible guess of λm is µ = maxi aii. An even more conservative guess is

µ = max
1≤i≤m

{
aii +

∑

j 6=i
|aij|

}
.

The references [10, 14] contain more material on Gerschgorin’s circle theo-
rem.

In addition to making a good initial guess, we need some way of monitor-
ing the progress of the Rayleigh quotient algorithm. The next proposition
furnishes a useful estimate.

Proposition 8.4.2 Suppose that A is symmetric, u is a unit vector, and
λ is the closest eigenvalue to µ. Then we have

|λ− µ| ≤ ‖Au− µu‖2. (8.6)

Proof: If A has spectral decomposition A =
∑
i λiviv

t
i and u has orthogo-

nal expansion u =
∑

i v
t
iu vi, then

‖Au− µu‖2
2 =

∥∥∥
∑

i

(λi − µ)vtiu vi

∥∥∥
2

2

=
∑

i

(λi − µ)2(vtiu)
2

≥ min
i

(λi − µ)2
∑

i

(vtiu)
2

= min
i

(λi − µ)2.
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TABLE 8.1. Iterations of the Rayleigh Quotient Algorithm

Iteration Approximate Eigenvalue Error Bound
n µn (8.6)

0 15.000000000000000 5.8
1 16.201807549175964 1.1
2 16.313552340303307 1.2× 10−2

3 16.313567783095323 2.0× 10−8

4 16.313567783095326 2.1× 10−15

For a simple numerical example [12], consider the symmetric matrix

A =




3 2 1
2 8 3
1 3 15


 .

Table 8.1 displays the rapid progress of the Rayleigh quotient algorithm
starting from µ0 = 15 and

u0 =
1√
3
(1, 1, 1)t.

Problem 8 explores an alternative algorithm of Hestenes and Karush [7]
that converges more slowly but requires no matrix inversion. This algorithm
is worth keeping in mind whenever the largest or smallest eigenvalue of a
high-dimensional symmetric matrix is needed.

8.5 Problems

1. For symmetric matrices A and B, define A . 0 to mean that A is
positive semidefinite and A . B to mean that A − B . 0. Show that
A . B and B . C imply A . C. Also show that A . B and B . A
imply A = B. Thus, . induces a partial order on the set of symmetric
matrices.

2. Find the eigenvalues and eigenvectors of the matrix

Ω =




10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10




of R. S. Wilson by Jacobi’s method. You may use the appropriate
subroutine in Press et al. [11].
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3. Find the eigenvalues and eigenvectors of the rotation matrix (8.1).
Note that the eigenvalues are complex conjugates.

4. Find the eigenvalues and eigenvectors of the reflection matrix

(
cos θ sin θ
sin θ − cos θ

)
.

5. Suppose λ is an eigenvalue of the orthogonal matrix O with corre-
sponding eigenvector v. Show that v has real entries only if λ = ±1.

6. A matrixA with real entries is said to be skew-symmetric if At = −A.
Show that a skew-symmetric matrix has only imaginary eigenvalues.

7. Consider an n × n upper triangular matrix U with distinct nonzero
diagonal entries. Let λ be its mth diagonal entry, and write

U =



U11 U12 U13

0 λ U23

0 0 U33




in block form. Show that λ is an eigenvalue of U with eigenvector

w =




v
−1
0


 , v = (U11 − λIm−1)

−1U12,

where Im−1 is the (m− 1) × (m− 1) identity matrix.

8. Suppose the m×m symmetric matrix Ω has eigenvalues

λ1 < λ2 ≤ · · · ≤ λm−1 < λm.

The iterative scheme xn+1 = (Ω−ηnI)xn can be used to approximate
either λ1 or λm [7]. Consider the criterion

σn =
xtn+1Ωxn+1

xtn+1xn+1
.

Choosing ηn to maximize σn causes limn→∞ σn = λm, while choosing
ηn to minimize σn causes limn→∞ σn = λ1. If τk = xtnΩ

kxn, then
show that the extrema of σn as a function of η are given by the roots
of the quadratic equation

0 = det




1 η η2

τ0 τ1 τ2
τ1 τ2 τ3


 .
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9. Apply the algorithm of the previous problem to find the largest and
smallest eigenvalues of the matrix in Problem 2.

10. Show that the extended Rayleigh quotient (8.5) has gradient

2[A−R(x)B]x

xtBx
.

Argue that the eigenvalues and eigenvectors of B−1A are the station-
ary values and stationary points, respectively, of R(x).

11. In Proposition 8.3.2 suppose the matrix ∆A is positive semidefinite.
Prove that λk ≤ µk for all k.

12. For m positive numbers b1 < · · · < bm, define a matrix A with en-
tries aij = 1/(bi + bj). Show that A is positive definite with largest
eigenvalue λm ≥ 1

2b1
and smallest eigenvalue λ1 ≤ 1

2bm
. (Hints: Use

the identity

1

bi + bj
=

∫ ∞

0

e−bixe−bjxdx

and the Courant-Fischer theorem.)

13. Sylvester’s criterion is a test for positive definiteness of a square ma-
trix A. This test requires that every principal minor of A be positive.
Recall that a principal minor is the determinant of an upper-left block
of A. Use the Courant-Fischer theorem to prove that satisfaction of
Sylvester’s criterion is necessary and sufficient for positive definite-
ness [3].

14. Consider the m×m bordered symmetric matrix

A =

(
B c
ct d

)
,

where B is symmetric, c is a vector, and d is a scalar. Let the eigen-
values of A be λ1 ≤ λ2 ≤ · · · ≤ λm and the eigenvalues of B be
µ1 ≤ µ2 ≤ · · · ≤ µm−1. Use the Courant-Fischer theorem to prove
the interlacing property λi ≤ µi ≤ λi+1 for all i between 1 and m−1.

15. Let D be an m×m diagonal matrix with distinct and ordered diag-
onal entries d1 < d2 < · · · < dm. Also let v be a vector with nonzero
components. Show that the eigenvalues λi of the rank-one perturba-
tion D± vvt satisfy di < λi < di+1 for i = 1, . . . , m− 1 and dm < λm
when the plus sign is taken and λ1 < d1 and di−1 < λi < di for
i = 2, . . . , m when the minus sign is taken. Finally, demonstrate that
the eigenvector corresponding to λi is a multiple of (D − λiI)

−1v.
(Hint: This problem is a continuation of Problem 17 of Chapter 7.)
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16. In the notation of Problem 1, show that two positive definite matrices
A and B satisfy A.B if and only if they satisfy B−1 .A−1. If A.B,
then prove that detA ≥ detB and trA ≥ trB.

17. Suppose the symmetric matrices A and B satisfy A.B in the notation
of Problem 1. If the diagonal entries of A and B are equal, then
demonstrate that A = B.

18. Let A and B be m × m symmetric matrices. Denote the smallest
and largest eigenvalues of the convex combination αA+ (1−α)B by
λ1[αA+(1−α)B] and λm[αA+(1−α)B], respectively. For α ∈ [0, 1],
demonstrate that

λ1[αA+ (1 − α)B] ≥ αλ1[A] + (1 − α)λ1[B]

λm[αA+ (1 − α)B] ≤ αλm[A] + (1 − α)λm[B].

19. Given the assumptions of the previous problem, show that the small-
est and largest eigenvalues satisfy

λ1[A+ B] ≥ λ1[A] + λ1[B]

λm[A+ B] ≤ λm[A] + λm[B].

20. Let A and B be positive semidefinite matrices of the same dimension.
Show that the matrix aA+ bB is positive semidefinite for every pair
of nonnegative scalars a and b. Thus, the set of positive semidefinite
matrices is a convex cone.

21. One of the simplest ways of showing that a symmetric matrix is pos-
itive semidefinite is to show that it is the covariance matrix of a
random vector. Use this insight to prove that if the symmetric ma-
trices A = (aij) and B = (bij) are positive semidefinite, then the
matrix C = (cij) with cij = aijbij is also positive semidefinite [9].
(Hint: Take independent random vectors X and Y with covariance
matrices A and B and form the random vector Z with components
Zi = XiYi.)

22. Continuing Problem 21, suppose that the n×n symmetric matrices A
and B have entries aij = i(n−j+1) and bij =

∑i
k=1 σ

2
k for j ≥ i and

σ2
k ≥ 0. Show that A and B are positive semidefinite [9]. (Hint: For
A, consider the order statistics from a random sample of the uniform
distribution on [0, 1].)

23. Use the Gerschgorin circle theorem to find four intervals containing
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the eigenvalues of the matrix

A =




4 1
5

− 1
10

1
10

1
5

−1 − 1
10

1
20

− 1
10

− 1
10

3 1
10

1
10

1
20

1
10

−3



.

Because these intervals do not overlap, each contains exactly one
eigenvalue.

24. Suppose the rows of the square matrixM = (mij) obey the inequality∑
j |mij | < 1. Demonstrate via the Gerschgorin circle theorem that

all eigenvalues λ of M satisfy |λ| < 1.

25. Suppose the square matrix M = (mij) is diagonally dominant in
the sense that

∑
j 6=i |mij | < |mii| for every i. Apply the Gerschgorin

circle theorem to prove that M is invertible.
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9

Singular Value Decomposition

9.1 Introduction

In many modern applications involving large data sets, statisticians are
confronted with a large m×n matrix X = (xij) that encodes n features on
each of m objects. For instance, in gene microarray studies xij represents
the expression level of the ith gene under the jth experimental condition
[13]. In information retrieval, xij represents the frequency of the jth word
or term in the ith document [2]. The singular value decomposition (svd)
captures the structure of such matrices. In many applications there are al-
ternatives to the svd, but these are seldom as informative or as numerically
accurate.

Most readers are well acquainted with the spectral theorem for symmetric
matrices. This classical result states that an m ×m symmetric matrix A
can be written as A = UΣU t for an orthogonal matrix U and a diagonal
matrix Σ with diagonal entries σi. If U has columns u1, . . . , um, then the
matrix product A = UΣU t unfolds into the sum of outer products

A =

m∑

j=1

σjuju
t
j .

When σj = 0 for j > k, A has rank k and only the first k terms of
the sum are relevant. The svd seeks to generalize the spectral theorem
to nonsymmetric matrices. In this case there are two orthonormal sets of
vectors u1, . . . , uk and v1, . . . , vk instead of one, and we write

A =

k∑

j=1

σjujv
t
j = UΣV t (9.1)

for matrices U and V with orthonormal columns u1, . . . , uk and v1, . . . , vk,
respectively. Remarkably, it is always possible to find such a representation
with nonnegative σj.

For some purposes, it is better to fill out the matrices U and V to full
orthogonal matrices. If A is m×n, then U is viewed as m×m, Σ as m×n,

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing,
DOI 10.1007/978-1-4419-5945-4_9, © Springer Science+Business Media, LLC 2010 
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130 9. Singular Value Decomposition

and V as n× n. The svd then becomes

A = (u1 . . . uk uk+1 . . . um)




σ1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . σk 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0







vt1
...
vtk
vtk+1

...
vtn




,

assuming k < min{m, n}. The scalars σ1, . . . , σk are said to be singular val-
ues and conventionally are listed in decreasing order. The vectors u1, . . . , uk
are known as left singular vectors and the vectors v1, . . . , vk as right singu-
lar vectors. We will refer to any svd with U and V orthogonal matrices as
full.

The numerical issues in constructing the svd are so complicated that out-
siders get the impression that only experts should write code. Fortunately,
the experts are kind enough to contribute open source code to cooperative
efforts such as LAPACK [1]. It would be a mistake not to take advantage of
these efforts. However, perfectly usable software can be written by novices
for small-scale projects. Our discussion of Jacobi’s method for constructing
the svd targets such readers. Because it is accurate and receptive to par-
allelization, Jacobi’s method remains in contention with other algorithms.
In addition to these advantages, it is easy to explain.

There is a huge literature on the svd. The two books [9, 10] by Horn
and Johnson provide an excellent overview of the mathematical theory.
For all things numerical, the treatise of Golub and Van Loan [7] is the
definitive source. Beginners will appreciate the more leisurely pace of the
books [6, 15, 17]. At the same level as this text, the books [4, 16, 18] are
also highly recommended.

9.2 Basic Properties of the SVD

Let us start with the crucial issue of existence following Karro and Li [12].

Proposition 9.2.1 Every m× n matrix A has a singular value decompo-
sition of the form (9.1) with positive diagonal entries for Σ.

Proof: It suffices to prove that A can be represented as UΣV t for full
orthogonal matrices U and V . We proceed by induction on min{m, n}.
The cases m = 1 and n = 1 are trivial. In the first case, we write A = σ1vt,
and in the second case A = σu1. Thus, assume that m > 1 and n > 1.
According to Proposition 11.2.1, the continuous function (x, y) 7→ xtAy
attains its maximum σ1 on the compact set

S = {(x, y) : xtx = yty = 1}
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at some point (x, y) = (u1, v1). Extend u1 to an orthogonal matrix U with
u1 as its first column, and extend v1 to an orthogonal matrix V with v1 as
its first column. The matrix B = U tAV has upper-left entry σ1 = ut1Av1.
Let us show that bk1 = b1k = 0 for the remaining entries in the first column
and first row of B. To achieve this goal, let ei denote the standard basis
vector in R

m with 1 in position i and 0’s elsewhere, and define the unit
vector x(θ) = U [cos(θ)e1 +sin(θ)ek ]. Because the function f(θ) = x(θ)tAv1
is maximized by the choice θ = 0, we have

0 = f ′(0) = etkU
tAv1 = bk1.

A similar argument with y(θ) = V [cos(θ)e1 +sin(θ)ek] gives b1k = 0. Thus,
B has the block diagonal form

B = U tAV =

(
σ1 0t

0 C

)
.

One can now argue by induction that C has an svd. Since the set of orthog-
onal matrices is closed under multiplication and contains block matrices of
the form

(
I 0t

0 W

)

for W orthogonal and I an identity matrix, it is clear that A = UBV t has
an svd. Furthermore, the singular values are arranged in decreasing order
owing to the definition of σ1 and induction applied to C.

In view of the orthogonality of the bases u1, . . . , uk and v1, . . . , vk, the
singular value decomposition (9.1) leads to the formulas

At =

k∑

j=1

σjvju
t
j

AAt =

k∑

j=1

σ2
juju

t
j

AtA =

k∑

j=1

σ2
j vjv

t
j.

Hence, AAt has nonzero eigenvalue σ2
j with corresponding eigenvector uj,

and AtA has nonzero eigenvalue σ2
j with corresponding eigenvector vj. Al-

though one cannot invert the m×n matrix A when m 6= n or when A fails
to be of full rank, there is a partial inverse that is important in practice.

Proposition 9.2.2 The Moore-Penrose inverse

A− =

k∑

j=1

σ−1
j vju

t
j
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enjoys the properties

(AA−)t = AA−

(A−A)t = A−A

AA−A = A (9.2)

A−AA− = A−.

If A is square and invertible, then A− = A−1. If A has full column rank,
then A− = (AtA)−1At.

Proof: The first two properties in (9.2) are consequences of the represen-
tations

AA− =
k∑

j=1

uju
t
j

A−A =

k∑

j=1

vjv
t
j .

Multiplying these on the right by A and A−, respectively, produces the
last two properties in (9.2). If A is invertible, then multiplying AA−A = A
on the right by A−1 shows that AA− = I and therefore that A− = A−1.
Finally, if A has full column rank, then AtA has inverse

(AtA)−1 =

k∑

j=1

σ−2
j vjv

t
j .

Multiplying At on the left by (AtA)−1 yields A−.

Recalling item (c) of Proposition 6.3.1 and the discussion of norm pre-
serving transformations in Section 6.4, one can easily demonstrate that

‖A‖2 = ‖Σ‖2 = max
i
σi

‖A‖F = ‖Σ‖F =
(∑

j

σ2
j

)1/2

.

Norm preservation also permits a quick proof of the next proposition.

Proposition 9.2.3 Suppose the matrix A has full svd UΣV t with the di-
agonal entries σi of Σ appearing in decreasing order. The best rank-k ap-
proximation of A in the Frobenius norm is

B =
k∑

j=1

σjujv
t
j . (9.3)

Furthermore, ‖A− B‖F =
(∑

i>k σ
2
i

)1/2
and ‖A− B‖2 = σk+1.
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Proof: Let B be an approximating matrix. Because

‖A−B‖F = ‖UΣV t − B‖F = ‖Σ − U tBV ‖F , (9.4)

the best approximation is achieved by taking C = U tBV to be diagonal
with its first k diagonal entries equal to σ1 through σk and its remaining
diagonal entries equal to 0. Multiplying C on the left by U and on the right
by V t shows that B has the form displayed in equation (9.3).

9.3 Applications

The svd is generally conceded to be the most accurate method of least
squares estimation. As three of the next six examples illustrate, it offers
other advantages in regression as well. The recent book [5] highlights ap-
plications in data mining.

9.3.1 Reduced Rank Regression

Occasionally in linear regression, the design matrix does not have full rank.
When this occurs, there will be more than one parameter vector β that
minimizes ‖y − Xβ‖2

2 . The Moore-Penrose inverse picks out the solution
with minimum norm. If X has full svd X =

∑
j σjuj v

t
j and β =

∑
j αjvj ,

then the residual sum of squares is

‖y −Xβ‖2
2 =

∥∥∥
∑

j

(utjy − σjαj)uj

∥∥∥
2

2

=
∑

j

(utjy − σjαj)
2.

To minimize ‖y −Xβ‖2
2 , we break the indices into two subsets. For those

j with σj > 0, it is clear that we should set

α̂j = σ−1
j utjy.

For those j with σj = 0, any value αj will do. However, if we want a β of
minimum norm, we should set α̂j = 0. If k is the rank of X, then these
choices are summarized in the equations

β̂ =

k∑

j=1

σ−1
j utjy vj = X−y = (XtX)−Xty.

Problem 9 asks the reader to verify the identity X− = (XtX)−Xt. The

solution β̂ = X−y clearly generalizes the solution β̂ = X−1y when X is
invertible.
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9.3.2 Ridge Regression

The svd also unifies the theories of ridge regression and ordinary regression
with X of full rank. In ridge regression, we minimize the penalized sum of
squares

fλ(β) = ‖y −Xβ‖2
2 + λ‖β‖2

2

= (y −Xβ)t(y −Xβ) + λβtβ.

The case λ = 0 corresponds to ordinary regression and the case λ > 0 to
ridge regression. The gradient of fλ(β) is

∇fλ(β) = −2Xt(y −Xβ) + 2λβ.

Equating the gradient ∇fλ(β) to the 0 vector yields the revised normal
equations

(XtX + λI)β = Xty

with solution

β̂ = (XtX + λI)−1Xty.

If we let X have svd X =
∑

j σjujv
t
j , then the ingredients

Xty =
∑

j

σju
t
jy vj , XtX + λI =

∑

j

(σ2
j + λ)vjv

t
j

necessary for solving ridge regression are at our disposal. The parameter
estimates and predicted values reduce to

β̂ =
∑

j

σj
σ2
j + λ

utjy vj

ŷ =
∑

j

σ2
j

σ2
j + λ

utjy uj.

The above expression for β̂ makes it evident that increasing λ shrinks esti-
mates toward the origin and that shrinkage is most pronounced in directions
vj corresponding to low singular values.

9.3.3 Polar Decomposition

The svd affords a simple construction of the polar decomposition of a square
invertible matrix A. Any nonzero complex number z can be written as the
product ru of a positive radius r and a unit vector u determined by its
angle with the horizontal axis. By analogy, a polar decomposition represents
A = RO as the product of a positive definite matrix R and an orthogonal
matrix O. The svd of A = UΣV t is just one step away. Indeed, because
U and V are square and all diagonal entries of Σ are positive, we merely
set R = UΣU t and O = UV t. Clearly, R is positive definite, and O is
orthogonal.
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9.3.4 Image Compression

In digital imaging, a scene is recorded as an m × n matrix A = (aij) of
intensities. The entry aij represents the brightness of the pixel (picture
element) in row i and column j of the scene. Because m and n are often
very large, storage of A is an issue. One way of minimizing storage is to
approximate A by a low-rank matrix B = (bij). Proposition 9.2.3 tells how
to compute the best rank-k approximation in the Frobenius norm. The
choice of k is obviously a crucial consideration. One approach is to take
the first k that makes the ratio ‖A − B‖F/‖A‖F sufficiently small. Once
k is chosen, the singular values and singular vectors defining B are stored
rather than B itself.

9.3.5 Principal Components

In principal components analysis, one simplifies a random vector or a ran-
dom sample by projecting it onto a new coordinate system. The first prin-
cipal component is the linear combination vt1Y explaining the largest vari-
ance, the second principal component is the linear combination vt2Y uncor-
related with vt1Y explaining the largest remaining variance, and so forth.
More precisely, suppose Y is a random vector with mean vector E(Y ) = 0
and variance matrix Var(Y ). The first principal component vt1Y is the linear
combination that maximizes

Var(vtY ) = vt Var(Y )v

subject to the constraint ‖v‖2 = 1. By arguments very similar to those
presented in Section 9.2, v1 turns out to be the unit eigenvector associated
with the largest eigenvalue of Var(Y ). In general, vi is the unit eigen-
vector of Var(Y ) associated with the ith largest eigenvalue. Because these
eigenvectors are orthogonal, the corresponding linear combinations vtiY are
uncorrelated. The eigenvalue associated with vi is the variance of vtiY .

A random sample x1, . . . , xm is treated by considering its centered empir-
ical distribution as a theoretical distribution. Centering is accomplished by
subtracting the sample average x̄ = 1

m

∑m
j=1 xj from each observation xi.

If we assume this has been done, then the sample variance can be expressed
as XtX using

X =
1√
m



xt1
...
xtm


 =

∑

j

σjujv
t
j.

The principal components can be recovered from the svd of X without
computing XtX. As we have seen many times already, XtX =

∑
j σ

2
j vjv

t
j .

Hence, the ith principal direction is given by the unit eigenvector vi, and
the variance of vtixj over j is given by σ2

i .
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In regression problems with large numbers of nearly collinear predictors,
statisticians sometimes discard the original predictors and regress instead
on a subset of the first few principal components. Although this is an effec-
tive method of data reduction, it always raises questions of interpretation.
One should also keep in mind that lower-order components can be as re-
vealing as higher-order components [11].

9.3.6 Total Least Squares

In total least squares, the predictors as well as the observations are con-
sidered subject to error [14]. Minimizing the criterion ‖y − Xβ‖2

2 fails to
capture errors in the predictors. Instead, we should fit a hyperplane to the
vectors zi = (xi1, . . . , xin, yi)

t. Now a hyperplane H is determined by its
unit perpendicular r and its base point w, the point closest to the origin.
In total least squares, r and w are estimated by minimizing the criterion∑m

i=1 dist(zi, H)2, where

dist(z,H)2 = min
{
‖u− z‖2

2 : rtu = rtw
}

can be explicitly calculated by seeking a stationary point of the Lagrangian

L(u, λ) =
1

2
‖u− z‖2

2 − λ(rtu− rtw).

Setting the gradient of L(u, λ) with respect to u equal to 0 gives

u = z + λr.

If we multiply this on the left by rt and use ‖r‖2 = 1 and rtu = rtw, then
we recover the Lagrange multiplier

λ = rt(w − z)

and accordingly

‖u− z‖2
2 = [rt(z −w)]2.

Hence, in total least squares we minimize the criterion
∑m

i=1[r
t(zi − w)]2

with respect to r and w.
The identity

m∑

i=1

[rt(zi − w)]2 =

m∑

i=1

[rt(zi − z̄)]2 +m[rt(z̄ − w)]2

involving the average z̄ of the zi shows that the total least squares criterion
is minimized by taking w = z̄ regardless of r. To find r, we introduce the
matrix

M t = (z1 − z̄, . . . , zm − z̄)
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and minimize rtM tMr subject to ‖r‖ = 1. But this problem is solved
by taking the svd M = UΣV t of M and extracting the smallest singular
value σm and corresponding right singular vector vm. It is obvious that
r = vm and the minimum of the squared distances is σ2

m. Exceptions to
this solution happen when the minimum singular vector is not unique.
Another anomaly occurs when the last component of r equals 0. Because
the point zi is projected onto the point ui = zi+λr = zi+r

t(z̄−zi)r, in this
rare situation the last component of ui is yi itself. Since this component
serves as a predictor of yi, all residuals are 0, and the fit is perfect.

9.4 Jacobi’s Algorithm for the SVD

At this juncture, readers may want to review the presentation of Jacobi’s
method in Chapter 8. There we employed a two-sided algorithm that mul-
tiplies the current matrix on the left and right by Givens rotations. Here
we employ a one-sided algorithm that multiplies the current matrix on the
right by a Givens rotation. Since a rotation is orthogonal and the product
of two orthogonal matrices is orthogonal, each stage of the algorithm oper-
ates on a matrix product AV , where V is orthogonal and A is the original
m × n matrix whose svd we seek. The representation AV persists in the
limit as the Givens rotations tend to the identity matrix. Once the prod-
uct AV stabilizes with orthogonal columns, we normalize the nontrivial
columns. The resulting matrix can be represented as UΣ, where Σ is an
m×n diagonal matrix with nonnegative diagonal entries, and the columns
of U are either orthogonal unit vectors or 0 vectors. The representation
AV = UΣ is equivalent to the svd A = UΣV t if we ignore the irrelevant
columns of U corresponding to the 0 singular values. In practice, one can
keep track of V by applying the same sequence of Givens rotations to a
second matrix that starts out as the n × n identity matrix.

This overall strategy is predicated on choosing the Givens rotations
wisely. In the cyclic Jacobi strategy, each pair of columns of the target
matrix is considered in turn. If B represents the current version of the tar-
get, then the entries of BtB are just the inner products of the columns
of B. To make columns i and j of the transformed target orthogonal, we
choose the pertinent Givens rotation R based on the entries in positions
(i, i), (i, j), and (j, j) of BtB. The matrix RtBtBR then has a 0 in position
(i, j). In the Jacobi svd algorithm, we never actually compute either BtB
or RtBtBR. Computation of the three inner products and BR suffices.

9.5 Problems

1. Suppose the matrix A has svd (9.1). Prove rigorously that A has rank
k, range equal to the span of {u1, . . . , uk}, and null space equal to the
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orthogonal complement of {v1, . . . , vk}. State and prove correspond-
ing claims for At.

2. Show that the singular values of a matrix A are uniquely determined
and that, when A is square and the singular values are distinct, the
left and right singular vectors are uniquely determined up to sign.

3. Let A be an invertible m×m matrix with singular values σ1, . . . , σm.
Prove that

cond2(A) =
maxi σi
mini σi

.

See Section 6.6 for the definition and application of condition num-
bers.

4. Calculate the Moore-Penrose inverse of the outer product uvt when
u and v are not necessarily unit vectors.

5. Demonstrate that the limits

A− = lim
λ↓0

(AtA+ λI)−1At = lim
λ↓0

At(AAt + λI)−1

provide alternative definitions of the Moore-Penrose inverse.

6. Let A be an m × n matrix and b an m × 1 vector. Show that the
following four statements are logically equivalent:

(a) The equation Ax = b has a solution x.

(b) The vector b is a linear combination of the columns of A.

(c) The partitioned matrix (Ab) has the same rank as A.

(d) The identity AA−b = b holds.

7. Suppose the matrix A is symmetric. For any vector x demonstrate
that Ax = 0 if and only if A−x = 0.

8. Show that the Moore-Penrose inverse represents the only solution of
the system of equations (9.2). (Hint: Suppose A−

1 and A−
2 are two

solutions. To prove that A−
1 = A−

2 , first verify that A−
1 A = A−

2 A and
AA−

1 = AA−
2 .)

9. Prove the identity

A− = (AtA)−At.

If the matrix A has full column rank, then prove the further identity

(AAt)− = A(AtA)−2At.
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10. Courrieu’s [3] algorithm for computing the Moore-Penrose inverse of
a matrix M exploits the Cholesky decomposition L of the symmetric
matrix M tM . If M is n × n of rank r, then our development of the
Cholesky decomposition in Section 7.7 shows that L can be chosen to
have n−r columns consisting entirely of 0’s. LetK be the n×r matrix
derived by deleting these columns. Demonstrate that M tM = KKt

and that

M− = (M tM)−M t

(M tM)− = K(KtK)−2Kt.

(Hint: Apply the identities in Problem 9.)

11. Program and test Courrieu’s algorithm described in Problem 10.

12. Find the closest rank-one approximation to the matrix

M =

(
1 1
1 1 + ε

)

in the Frobenius norm ‖ · ‖F . Here ε is a positive constant.

13. Find expressions for the singular values σ1 and σ2 of the matrix

M =

(
a b
c d

)
.

14. Demonstrate that any matrix A is the limit of a sequence An of
matrices of full rank.

15. Prove the inequality ‖A‖F ≤ rank(A)‖A‖2.

16. Suppose the square matrix A has full svd A = UΣV t. Verify the
spectral decomposition

(
0 At

A 0

)
=

1√
2

(
V V
U −U

)(
Σ 0
0 −Σ

)
1√
2

(
V t U t

V t −U t
)
.

Thus, any algorithm producing a spectral decomposition will produce
an svd of A without computing AAt and AtA.

17. Show that the map A 7→ Σ taking a matrix to its ordered singular
values is continuous. (Hints: Suppose limn→∞An = A. In view of
the norm identity ‖An‖F = ‖Σn‖F , the matrices Σn are bounded.
By passing to an appropriate subsequence and taking limits, one can
prove that any cluster point of the Σn reduces to the unique matrix
Σ appearing in the svd of A.)
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18. The nuclear norm ‖A‖∗ on m × n matrices is the analog of the `1
norm on vectors. If A = (aij) has ith singular value σi, then we want
‖A‖∗ to equal

∑
i σi. Unfortunately, this definition does not suggest

simple proofs of the norm properties. An alternative is to employ the

function f(A) =
∑min{m,n}

i=1 aii in the definition

‖A‖∗ = max
R,S

f(RAS) = max
R#,S#

tr(R#AS#),

where R ranges over all m×m orthogonal matrices, S ranges over all
n× n orthogonal matrices, R# equals R after the deletion of its last
m − min{m, n} rows, and S# equals S after the deletion of its last
n− min{m, n} columns. Demonstrate that

(a) ‖A‖∗ ≥∑i σi,

(b) ‖A‖∗ = 0 if and only if A = 0,

(c) ‖cA‖∗ = |c| ‖A‖∗ ,

(d) ‖A +B‖∗ ≤ ‖A‖∗ + ‖B‖∗,
(e) ‖UAV ‖∗ = ‖A‖∗ for U and V orthogonal,

(f) ‖A‖∗ ≤∑i σi,

(g) ‖A‖∗ = tr
(√

AtA
)

= tr
(√

AAt
)

= ‖At‖∗,
(h) ‖AB‖∗ ≤ ‖A‖∗‖B‖∗.

(Hints: For property (f) first show that ‖A‖∗ = ‖Σ‖∗. For property
(h) suppose A has svd UDV t and B has svd Y EZt. Write

f(RABS) = f(TDOEX) =

min{m,n}∑

i=1

∑

j

∑

k

tijdjojkekxki,

where A has m rows, B has n columns, and T = RU , O = V tY ,
and X = ZtS are orthogonal matrices. Apply the Cauchy-Schwarz

inequality to |∑min{m,n}
i=1 tijxki|, and use the fact that |oij| ≤ 1.)

19. Show that ridge regression can be accomplished by conducting ordi-
nary regression on an augmented data set. (Hint: Augment the design
matrix X by a multiple of the identity matrix. Set the corresponding
observations yi equal to 0.)

20. In ridge regression, verify that the residual sum of squares ‖y − ŷ‖2
2

increases and ‖β̂‖2
2 decreases as λ increases.

21. The quantity df(λ) = tr[X(XtX + λI)−1Xt] is termed the effective
degrees of freedom in ridge regression. Show that

df(λ) =
∑

j

σ2
j

σ2
j + λ

.
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22. Consider the problem of minimizing ‖y−Xβ‖2
2 subject to ‖β‖2

2 ≤ α2.
If X has svd UΣV t, then prove in the ridge regression context that
you should choose either λ = 0 or the λ > 0 satisfying

∑

j

σ2
j

(σ2
j + λ)2

(utjy)
2 = α2.

23. Find the polar decomposition of the matrix

M =

(
a −b
b a

)
.

24. Demonstrate that the polar decomposition of an invertible matrix is
unique [8]. (Hint: If R1O1 = R2O2 are two polar decompositions, then

the matrix R−1
2 R1 = O2O

t
1 is similar to R

−1/2
2 R1R

−1/2
2 and therefore

has positive eigenvalues.)

25. Show that an invertible matrix A satisfies the normality condition
AAt = AtA if and only if its polar decomposition A = RO satisfies
the commutivity relation RO = OR. (Hint: If AAt = AtA, then show
that R

2 has the two symmetric square roots R and OtRO.)

26. Given the data points (1,3), (3,1), (4,5), (5,7), and (7,4), find the
prediction lines y = ax+ b determined by ordinary least squares and
total least squares.
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10

Splines

10.1 Introduction

Splines are used for interpolating functions. Before the advent of computer
graphics, a draftsman would draw a smooth curve through a set of points
plotted on graph paper by forcing a flexible strip to pass over the points.
The strip, made of wood, metal, or plastic, typically was held in place by
weights as the draftsman drew along its edge. Subject to passing through
the interpolating points, the strip or spline would minimize its stress by
straightening out as much as possible. Beyond the terminal points on the
left and right, the spline would be straight.

Mathematical splines are idealizations of physical splines. For simplicity
we will deal only with the most commonly used splines, cubic splines. These
are piecewise cubic polynomials that interpolate a tabulated function f(x)
at certain data points x0 < x1 < · · · < xn called nodes or knots. There are,
of course, many ways of interpolating a function. For example, Lagrange’s
interpolation formula provides a polynomial p(x) of degree n that agrees
with f(x) at the nodes. Unfortunately, interpolating polynomials can be-
have poorly even when fitted to slowly varying functions. (See Problem 1
for a discussion of the classical example of Runge.) Splines minimize aver-
age squared curvature and consequently perform better than interpolating
polynomials.

The program of this chapter is to investigate a few basic properties of
cubic splines, paying particular attention to issues of computing. We then
show how splines can be employed in nonparametric regression. For a much

[1, 2, 3, 5, 8].

10.2 Definition and Basic Properties

We start with a formal definition of a spline.

Definition 10.2.1 Let the values f(xi) = fi of the function f(x) be given
at the points x0 < x1 < · · · < xn. A natural, cubic, interpolatory spline s(x)
is a function on the interval [x0, xn] possessing the following properties:

(a) s(x) is a cubic polynomial on each node-to-node interval [xi, xi+1],

(b) s(xi) = fi at each node xi,

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 143
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(c) the second derivative s′′(x) exists and is continuous throughout the
entire interval [x0, xn],

(d) at the terminal nodes, s′′(x0) = s′′(xn) = 0.

For brevity we simply call s(x) a spline.

Existence and uniqueness follow immediately from this definition.

Proposition 10.2.1 There is exactly one function s(x) on [x0, xn] satis-
fying the above properties.

Proof: For notational convenience, let

hi = xi+1 − xi

σi = s′′(xi)

si(x) = s(x), x ∈ [xi, xi+1].

Note that the second derivatives σi are as yet unknown. Because si(x) is a
cubic polynomial, s′′i (x) is a linear polynomial that can be expressed as

s′′i (x) = σi
xi+1 − x

hi
+ σi+1

x− xi
hi

. (10.1)

The function s′′(x) pieced together in this fashion is clearly continuous on
[x0, xn]. Integrating equation (10.1) twice gives

si(x) =
σi
6hi

(xi+1 − x)3 +
σi+1

6hi
(x− xi)

3 (10.2)

+ c1(x− xi) + c2(xi+1 − x).

The constants of integration c1 and c2 can be determined from the inter-
polation conditions

fi = si(xi)

=
σi
6
h2
i + c2hi

fi+1 = si(xi+1)

=
σi+1

6
h2
i + c1hi.

Solving for c1 and c2 and substituting the results in equation (10.2) produce

si(x) =
σi
6hi

(xi+1 − x)3 +
σi+1

6hi
(x− xi)

3 (10.3)

+
(fi+1

hi
− σi+1hi

6

)
(x− xi) +

( fi
hi

− σihi
6

)
(xi+1 − x).

Since it satisfies the interpolation conditions, s(x) as defined by (10.3) is
continuous on [x0, xn].
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Choosing the σi appropriately also will guarantee that s′(x) is continu-
ous. Differentiating equation (10.2) yields

s′i(x) = − σi
2hi

(xi+1 − x)2 +
σi+1

2hi
(x− xi)

2

+
fi+1 − fi

hi
− hi

6
(σi+1 − σi). (10.4)

Continuity is achieved when s′i−1(xi) = s′i(xi). In terms of equation (10.4),
this is equivalent to

1

6
hi−1σi−1+

1

3
(hi−1+hi)σi+

1

6
hiσi+1 =

fi+1−fi
hi

− fi−fi−1

hi−1
. (10.5)

This is a system of n−1 equations for the n+1 unknowns σ0, . . . , σn. How-
ever, two of these unknowns, σ0 and σn, are 0 by assumption. If by good
fortune the (n−1)×(n−1) matrix of coefficients multiplying the remaining
unknowns is invertible, then we can solve for σ1, . . . , σn−1 uniquely. Invert-
ibility follows immediately from the strict diagonal dominance conditions

1

3
(h0 + h1) >

1

6
h1

1

3
(hi−1 + hi) >

1

6
hi−1 +

1

6
hi i = 2, . . . , n− 2

1

3
(hn−1 + hn) >

1

6
hn−1.

This completes the proof because, as already indicated, the coefficients
σ1, . . . , σn−1 uniquely determine the spline s(x).

To solve for σ1, . . . , σn−1, one can use functional iteration as described
in Chapter 6. In practice, it is better to exploit the fact that the matrix of
coefficients is tridiagonal. To do so, define

di =
6

hi

(fi+1 − fi
hi

− fi − fi−1

hi−1

)

and rewrite the system (10.5) as

hi−1

hi
σi−1 + 2

(
1 +

hi−1

hi

)
σi + σi+1 = di. (10.6)

Now set

σi−1 = ρiσi + τi, (10.7)

where ρi and τi are constants to be determined. In view of σ0 = 0, we take
ρ1 = τ1 = 0. In general, substitution of equation (10.7) in equation (10.6)
leads to

σi = − σi+1

hi−1

hi
ρi + 2(1 +

hi−1

hi
)

+
di − hi−1

hi
τi

hi−1

hi
ρi + 2(1 +

hi−1

hi
)
.
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This has the form of equation (10.7) and suggests computing

ρi+1 = − 1
hi−1

hi
ρi + 2(1 + hi−1

hi
)

τi+1 =
di − hi−1

hi
τi

hi−1

hi
ρi + 2(1 +

hi−1

hi
)

recursively beginning at i = 0. Once the constants ρi and τi are available,
then the σi can be computed in order from equation (10.7) beginning at
i = n.

The next proposition validates the minimum curvature property of nat-
ural cubic splines.

Proposition 10.2.2 Let s(x) be the spline interpolating the function f(x)
at the nodes x0 < x1 < · · · < xn. If g(x) is any other twice continuously
differentiable function interpolating f(x) at these nodes, then

∫ xn

x0

g′′(x)2dx ≥
∫ xn

x0

s′′(x)2dx, (10.8)

with equality only if g(x) = s(x) throughout [x0, xn].

Proof: If
∫ xn

x0
g′′(x)2dx = ∞, then there is nothing to prove. Therefore,

assume the contrary and consider the identity
∫ xn

x0

[g′′(x) − s′′(x)]2dx =

∫ xn

x0

g′′(x)2dx− 2

∫ xn

x0

[g′′(x) − s′′(x)]s′′(x)dx

−
∫ xn

x0

s′′(x)2dx. (10.9)

Let us prove that the second integral on the right-hand side of equation
(10.9) vanishes. Decomposing this integral and integrating each piece by
parts give

∫ xn

x0

[g′′(x) − s′′(x)]s′′(x)dx

=

n−1∑

i=0

∫ xi+1

xi

[g′′(x) − s′′(x)]s′′(x)dx

=

n−1∑

i=0

{
[g′(x) − s′(x)]s′′(x)|xi+1

xi
−
∫ xi+1

xi

[g′(x) − s′(x)]s′′′(x)dx
}
.

Since s(x) is a piecewise cubic polynomial, s′′′(x) equals some constant αi
on [xi, xi+1]. Thus, we find

∫ xi+1

xi

[g′(x) − s′(x)]s′′′(x)dx} = αi[g(x) − s(x)]xi+1
xi

= 0
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because g(x) and s(x) agree with f(x) at each node. We are left with

n−1∑

i=0

{
s′′(xi+1)[g

′(xi+1) − s′(xi+1)]− s′′(xi)[g
′(xi) − s′(xi)]

}
,

which telescopes to

s′′(xn)[g
′(xn) − s′(xn)] − s′′(x0)[g

′(x0) − s′(x0)].

By assumption, s′′(x0) = s′′(xn) = 0.
This proves our contention about the vanishing of the second integral on

the right-hand side of equation(10.9) and allows us to write

∫ xn

x0

g′′(x)2dx =

∫ xn

x0

s′′(x)2dx+

∫ xn

x0

[g′′(x) − s′′(x)]2dx. (10.10)

Inequality (10.8) is now obvious. If equality obtains in inequality (10.8),
then the continuous function g′′(x) − s′′(x) is identically 0. This implies
that s(x) = g(x) + c0 + c1x for certain constants c0 and c1. Because s(x)
and g(x) both interpolate f(x) at x0 and x1, it follows that c0 = c1 = 0.

Note that the curvature of a function g(x) is technically the function

κ(x) = g′′(x)/[1 + g′(x)2]
3
2 . For |g′(x)| � 1, we recover g′′(x). Proposi-

tion 10.2.2 should be interpreted in this light. The final proposition of this
section provides bounds on the errors committed in spline approximation.

Proposition 10.2.3 Suppose that f(x) is twice continuously differentiable
and s(x) is the spline interpolating f(x) at the nodes x0 < x1 < · · · < xn.
If h = max0≤i≤n−1(xi+1 − xi), then

max
x0≤x≤xn

|f(x) − s(x)| ≤ h
3
2

[ ∫ xn

x0

f ′′(y)2dy
] 1

2

max
x0≤x≤xn

|f ′(x) − s′(x)| ≤ h
1
2

[ ∫ xn

x0

f ′′(y)2dy
] 1

2

. (10.11)

It follows that s(x) and s′(x) converge uniformly to f(x) and f ′(x) as the
mesh length h goes to 0.

Proof: Any x ∈ [x0, xn] lies in some interval [xi, xi+1]. Because f(t) − s(t)
vanishes at xi and xi+1, Rolle’s theorem indicates that f ′(z) − s′(z) = 0
for some z ∈ [xi, xi+1]. Hence,

f ′(x) − s′(x) =

∫ x

z

[f ′′(y) − s′′(y)]dy,

and consequently the Cauchy-Schwarz inequality implies

|f ′(x) − s′(x)| ≤
{∫ x

z

[f ′′(y) − s′′(y)]2dy
} 1

2
{∫ x

z

12dy
} 1

2
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=
{∫ x

z

[f ′′(y) − s′′(y)]2dy
} 1

2 |x− z| 12

≤
{∫ xn

x0

[f ′′(y) − s′′(y)]2dy
} 1

2

h
1
2 .

In view of equation (10.10) with g(x) = f(x), this gives the second inequal-
ity of (10.11).

To prove the first inequality, again let x ∈ [xi, xi+1]. Then

|f(x) − s(x)| =
∣∣∣
∫ x

xi

[f ′(y) − s′(y)]dy
∣∣∣

≤
∫ x

xi

max
x0≤z≤xn

|f ′(z) − s′(z)|dy

≤ h max
x0≤z≤xn

|f ′(z) − s′(z)|.

Substituting in this inequality the second inequality of (10.11) yields the
first inequality of (10.11).

Better error bounds are available when f(x) possesses more derivatives
and the nodes are uniformly spaced [3]. For instance, if the fourth derivative
f(4)(x) exists and is continuous, and the uniform spacing is h, then

max
x0≤x≤xn

|f(x) − s(x)| ≤ h4

16
max

x0≤x≤xn

|f(4)(x)|. (10.12)

10.3 Applications to Differentiation and
Integration

Splines can be quite useful in numerical differentiation and integration. For
example, equation (10.4) of Proposition 10.2.1 offers an accurate method
of numerically differentiating f(x) at any point x ∈ [x0, xn]. To integrate
f(x), we note that equation (10.3) implies

∫ xi+1

xi

si(x)dx

=
σi
24
h3
i +

σi+1

24
h3
i +

(fi+1

hi
− σi+1hi

6

)h2
i

2
+
( fi
hi

− σihi
6

)h2
i

2

=
fi + fi+1

2
hi −

σi + σi+1

24
h3
i .

It follows that

∫ xn

x0

f(x)dx ≈
∫ xn

x0

s(x)dx =

n−1∑

i=0

[fi + fi+1

2
hi −

σi + σi+1

24
h3
i

]
.
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According to inequality (10.12), the error committed in the approximation∫ xn

x0
f(x)dx ≈

∫ xn

x0
s(x)ds is bounded above by

h4

16
(xn − x0) max

x0≤x≤xn

|f(4)(x)|

for nodes with uniform spacing h.

10.4 Application to Nonparametric Regression

In parametric regression, one minimizes a weighted sum of squares

n∑

i=0

wi[yi − g(xi)]
2 (10.13)

over a particular class of functions g(x), taking the observations yi and the
weights wi > 0 as given. For instance, in polynomial regression, the relevant
class consists of all polynomials of a certain degree d or less. In time series
analysis, the class typically involves linear combinations of a finite number
of sines and cosines. However, often there is no convincing rationale for
restricting attention to a narrow class of candidate regression functions.
This has prompted statisticians to look at wider classes of functions.

At first glance, some restriction on the smoothness of the regression func-
tions seems desirable. This is a valuable insight, but one needs to exercise
caution because there exist many infinitely differentiable functions reduc-
ing the weighted sum of squares (10.13) to 0. For example, the unique
polynomial of degree n interpolating the observed values yi at the points
xi achieves precisely this. Smoothness per se is insufficient. Control of the
overall size of the derivatives of the regression function is also important.
One criterion incorporating these competing aims is the convex combina-
tion

Jα(g) = α

n∑

i=0

wi[yi − g(xi)]
2 + (1 − α)

∫ xn

x0

g′′(x)2dx (10.14)

for 0 < α < 1. Minimizing Jα(g) reaches a compromise between mini-
mizing the weighted sum of squares and minimizing the average squared
curvature of the regression function. For α near 1, the weighted sum of
squares predominates. For α near 0, the average squared curvature takes
precedence. One immediate consequence of Proposition 10.2.2 is that the
class of relevant functions collapses to the class of splines. For if g(x) is twice
continuously differentiable, then the spline s(x) that interpolates g(x) at
the nodes xi contributes the same weighted sum of squares and a reduced
integral term; in other words, Jα(s) ≤ Jα(g).
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To find the spline s(x) minimizing Jα, we take the approach of de Boor
[1] and extend the notation of Proposition 10.2.1. The system of n − 1
equations displayed in (10.5) can be summarized by defining the vectors

σ = (σ1, . . . , σn−1)
t

f = (f0, . . . , fn)
t

= [s(x0), . . . , s(xn)]t

y = (y0, . . . , yn)
t,

the (n− 1) × (n − 1) tridiagonal matrix R with entries

rij =
1

6





hi−1 j = i− 1
2(hi−1 + hi) j = i
hi j = i+ 1
0 otherwise,

and the (n− 1) × (n+ 1) tridiagonal matrix Q with entries

qij =





1
hi−1

j = i− 1

−( 1
hi−1

+ 1
hi

) j = i
1
hi

j = i+ 1
0 otherwise.

In this notation, the system of equations (10.5) is expressed as Rσ = Qf .
If we also let W be the diagonal matrix with ith diagonal entry wi, then
the weighted sum of squares (10.13) becomes (y − f)tW (y − f).

The integral contribution to Jα(s) can be represented in matrix notation
by observing that equation (10.1) implies

∫ xi+1

xi

s′′(x)2dx

=
1

h2
i

∫ xi+1

xi

[σi(xi+1 − x) + σi+1(x− xi)]
2dx

=
1

h2
i

σ2
i h

3
i

3
+

2σiσi+1

h2
i

∫ xi+1

xi

(xi+1 − x)(x− xi)dx+
1

h2
i

σ2
i+1h

3
i

3

=
hi
3
σ2
i + 2hiσiσi+1

∫ 1

0

(1 − z)zdz +
hi
3
σ2
i+1

=
hi
3

(σ2
i + σiσi+1 + σ2

i+1).

Taking into account σ0 = σn = 0, we infer that

∫ xn

x0

s′′(x)2dx =
1

3

n−1∑

i=0

hi(σ
2
i + σiσi+1 + σ2

i+1)
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=
1

6

n−1∑

i=1

[hi−1σi−1σi + 2σ2
i (hi−1 + hi) + hiσiσi+1]

= σtRσ.

This shows that the symmetric, invertible matrix R is positive definite.
Furthermore, because σ = R−1Qf , the criterion Jα(s) reduces to

Jα(s) = α(y − f)tW (y − f) + (1 − α)σtRσ

= α(y − f)tW (y − f) + (1 − α)ftQtR−1Qf. (10.15)

Based on the identity (10.15), it is possible to minimize Jα(s) as a func-
tion of f . At the minimum point of Jα(s), its gradient with respect to f
satisfies

−2αW (y − f) + 2(1 − α)QtR−1Qf = 0. (10.16)

Solving for the optimal f yields

f̂ = [αW + (1 − α)QtR−1Q]−1αWy.

Alternatively, equation (10.16) can be rewritten as

−2αW (y − f) + 2(1 − α)Qtσ = 0. (10.17)

Thus, the optimal σ determines the optimal f through

y − f̂ =
(1 − α

α

)
W−1Qtσ̂. (10.18)

Multiplying equation (10.17) by QW−1 gives

−2αQy + 2αRσ + 2(1 − α)QW−1Qtσ = 0

with solution

σ̂ = [αR+ (1 − α)QW−1Qt]−1αQy.

This solution for σ̂ has the advantage that the positive definite matrix
αR + (1 − α)QW−1Qt inherits a banding pattern from R and Q. Solving
linear equations involving banded matrices is more efficiently accomplished
via their Cholesky decompositions than via the sweep operator; see Problem
8 of Chapter 7. Once σ̂ is available, equation (10.18) not only determines

f̂ but also determines the weighted residual sum of squares

(y − f̂)tW (y − f̂) =
(1 − α

α

)2

σ̂tQW−1Qtσ̂.
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10.5 Problems

1. Consider the function f(x) = (1 +25x2)−1 on [−1, 1]. Runge’s exam-
ple [4] involves fitting an interpolating polynomial pn(x) to f(x) at
n+ 1 equally spaced nodes

xi = −1 + ih i = 0, 1, . . . , n,

h =
2

n

using Lagrange’s formula

pn(x) =
n∑

i=0

f(xi)
∏

j 6=i

(x− xj)

(xi − xj)
.

Compare the fit of pn(x) to f(x) to that of the natural, cubic, in-
terpolating spline sn(x). In this comparison pay particular attention
to the point −1 + n−1 as n increases. Please feel free to use relevant
subroutines from [6] to carry out your computations.

2. Show that Proposition 10.2.1 remains valid if the condition

(d∗) s′(x0) = f ′(x0) and s′(xn) = f ′(xn)

replaces condition (d) in the definition of a cubic spline. Show that
Proposition 10.2.2 also carries over if g(x) as well as s(x) satisfies
(d∗).

3. For nodes x0 < x1 < · · · < xn and function values fi = f(xi), develop
a quadratic interpolating spline s(x) satisfying the conditions:

(a) s(x) is a quadratic polynomial on each interval [xi, xi+1],

(b) s(xi) = fi at each node xi,

(c) the first derivative s′(x) exists and is continuous throughout the
entire interval [x0, xn].

To simplify your theory, write

s(x) = ai + bi(x − xi) + ci(x− xi)(x − xi+1)

for x ∈ [xi, xi+1]. Derive explicit expressions for the ai and bi from
property (b). Using property (c), prove that

ci =
bi − bi−1

xi+1 − xi
− ci−1

xi − xi−1

xi+1 − xi

for i = 1, . . . , n − 1. What additional information do you require to
completely determine the spline?
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4. Given the nodes x0 < x1 < · · · < xn, let V be the vector space of
functions that are twice continuously differentiable at each node xi
and cubic polynomials on (−∞, x0), (xn,∞), and each of the inter-
vals (xi, xi+1). Show that any function s(x) ∈ V can be uniquely
represented as

s(x) = a0 + a1x+ a2x
2 + a3x

3 +

n∑

i=0

ci(x− xi)
3
+,

where (x − xi)
3
+ is 0 for x ≤ xi and (x − xi)

3 otherwise. Conclude
that this vector space has dimension n+ 5.

5. Continuing Problem 4, consider the vector subspace W ⊂ V whose
functions are linear on (−∞, x0) and (xn,∞). Prove that W is just
the subspace of natural cubic splines and has dimension n+ 1.

6. Let s(x) be the natural cubic spline interpolating the function f(x) at
the three equally spaced nodes x0 < x1 < x2. Explicitly evaluate the
integral

∫ x2

x0
s(x)dx and the derivatives s′(xi) in terms of the spacing

h = x2 − x1 = x1 − x0 and the function values fi = f(xi).

7. In the spline model for nonparametric regression, show that the pos-
itive definite matrix αR + (1 − α)QW−1Qt is banded. How many
subdiagonals display nonzero entries?

8. Continuing Problems 4 and 5, let

fi(x) = ai0 + ai1x+

n∑

j=0

cij(x− xj)
3
+, i = 0, . . . , n

be a basis of the vector space W . If s(x) =
∑n

i=0 βifi(x), then show
that

∫ xn

x0

s′′(x)t′′(x)dx = 6

n∑

i=0

n∑

j=0

βicijt(xj)

for any t(x) ∈ V . (Hints: Integrate by parts as in Proposition 10.2.2,
and use the fact that

∑n
j=0 cij = 0 by virtue of Problem 5.)

9. Mindful of Problems 4, 5, and 8, let s(x) =
∑n

i=0 βifi(x) ∈W be the
spline minimizing the functional Jα(g) defined in equation (10.14).
Prove that s(x) satisfies

0 = −α
n∑

j=0

wj[yj − s(xj)]t(xj) + (1 − α)

∫ xn

x0

s′′(x)t′′(x)dx

= −α
n∑

j=0

wj

[
yj −

n∑

i=0

βifi(xj)
]
t(xj) + 6(1 − α)

n∑

i=0

n∑

j=0

βicijt(xj)
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for any function t(x) ∈W . Because the constants t(xj) are arbitrary,
demonstrate that this provides the system of linear equations

αwjyj = αwj

n∑

i=0

βifi(xj) + 6(1 − α)
n∑

i=0

βicij

determining the βj . Summarize this system of equations as the single
vector equation αWy = αWF tβ+6(1−α)Ctβ by defining appropriate
matrices. Because the symmetric matrix FCt has entry

n∑

k=0

fi(xk)cjk =

∫ xn

x0

f ′′i (x)f ′′j (x)dx (10.19)

in row i and column j, argue finally that the solution

β̂ = [αFWF t + 6(1 − α)FCt]−1αFWy (10.20)

is well defined. This approach to minimizing Jα(g) can exploit any of
several different bases for W [2]. (Hint: Adopting the usual calculus
of variations tactic, evaluate the derivative J ′

α(s + εt)|ε=0. Equality
(10.19) follows from Problem 8.)

10. It is possible to give a Bayesian interpretation to the spline solution
(10.20) of Problem 9 [7]. Suppose in the notation of Problem 9 that

yj =

n∑

i=0

βifi(xj) +
1

√
wj
εj,

where the errors εj are independent, univariate normals with common
mean 0 and common variance σ2. Assuming that β has a multivariate
normal prior with mean 0 and covariance

σ2Ω = σ2[6(1− α)α−1FCt]−1,

demonstrate that the posterior mean of β is given by (10.20).
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Optimization Theory

11.1 Introduction

This chapter summarizes a handful of basic principles that permit the exact
solution of many optimization problems. Misled by the beautiful examples
of elementary calculus, students are disappointed when they cannot solve
optimization problems analytically. More experienced scholars know that
exact solutions are the exception rather than the rule. However, they cherish
these exceptions because they form the basis of most iteration schemes in
optimization.

Readers are expected to be comfortable with univariate optimization
techniques commonly taught in elementary calculus. As the chapter pro-
ceeds, the difficulty of the presented theory escalates. Each new complica-
tion forces a climb to a new plateau. To adjust to the thinner atmosphere
in preparation for the next ascent, take your time in understanding the spe-
cific examples and keep in mind how many centuries it took for the pioneers
to scale the present height. In the compass of a short chapter, it is impos-
sible to present all proofs. Fortunately, many texts [2, 5, 6, 12, 16, 17, 22]
lay out all details.

We first consider multivariate optimization without constraints. The the-
ory builds on previous experience and is largely a matter of exchanging
scalar notation for vector notation. Thus, first derivatives become differen-
tials and gradients, second derivatives become second differentials or Hes-
sians, and positivity becomes positive definiteness. We then move on to
optimization with equality constraints and meet those magical constructs
called Lagrange multipliers. We next consider optimization problems with
inequality constraints. Extension of the Lagrange multiplier rule to these
problems by Karush, Kuhn, and Tucker ranks as one of the great triumphs
of 20th century applied mathematics. The chapter concludes with a brief
survey of block relaxation methods. Here exact methods are applied to
successive subsets of the parameters of an objective function.

Mastery of the material in this chapter pays enormous dividends. Much of

of the past few centuries, the best methods for many large-scale problems
are still a matter of debate. Although harder to teach, framing problems as
optimization exercises is also vitally important. Without a proper ground-
ing in optimization theory, many algorithms for solving problems lack a
theoretical basis and appear hopelessly ad hoc.

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 157

modern estimation theory is driven by optimization. Despite the advances
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11.2 Unconstrained Optimization

In this section we discuss optimization of a continuous function f(x) defined
on R

m. Because we can always substitute −f(x) for f(x), we consider,
without loss of generality, minimization rather than maximization. In this
broad setting, f(x) may be unbounded. For instance, the function f(x) = x
is unbounded on the real line. However, if we require the domain of f(x)
to be a compact set, then f(x) is bounded and attains its minimum. Recall
that a set is compact if and only if it is closed and bounded. According
to the Bolzano-Weierstrass theorem [16], every sequence xn defined on a
compact set C has a subsequence xnk converging to a point x ∈ C.

Proposition 11.2.1 (Weierstrass) A continuous function f(x) defined
on a compact set is bounded below and attains its minimum.

Proof: Let b = infx∈C f(x). If f(x) is unbounded below, then b = −∞.
By definition of b, there exists a sequence xn ∈ C with limn→∞ f(xn) = b.
Extract from this sequence a convergent subsequence xnk with limit y ∈ C.
In view of the continuity of f(x), we have limk→∞ f(xnk) = f(y). Hence,
the value b = f(y) is finite and attained by f(x) at the point y.

Weierstrass’s theorem does not guarantee that a continuous function
f(x) possesses a minimum on an open domain U ⊂ R

m such as R
m itself.

To achieve this desirable result, we must impose on f(x) a property called
coerciveness. When U = R

m, coerciveness simply means

lim
‖x‖2→∞

f(x) = ∞,

where as usual ‖ · ‖2 denotes the standard Euclidean norm. This is not an
adequate definition for a more general open domain U . We also want f(x)
to approach ∞ as x approaches the boundary of U . Hence, f(x) is said to
be coercive if for every constant c the set {x ∈ U : f(x) ≤ c} is compact.
When f(x) is coercive in this sense, Weierstrass’s theorem remains valid
on U because it applies to the smaller domain {x ∈ U : f(x) ≤ f(y)} for
any y ∈ U .

Example 11.2.1 The Fundamental Theorem of Algebra

Consider a polynomial p(z) = cnz
n + cn−1z

n−1 + · · ·+ c0 in the complex
variable z with cn 6= 0. The fundamental theorem of algebra says that
p(z) has a root. d’Alembert suggested an interesting optimization proof of
this fact [5]. We begin by observing that if we identify a complex number
with an ordered pair of real numbers, then the domain of the real-valued
function |p(z)| is R

2. The identity

|p(z)| = |z|n
∣∣∣cn +

cn−1

z
+ · · ·+ c0

zn

∣∣∣
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shows that |p(z)| is coercive. According to the amended version of Propo-
sition 11.2.1, |p(z)| attains its minimum at some point y. Expanding p(z)
around y gives a polynomial

q(z) = p(z + y) = bnz
n + bn−1z

n−1 + · · ·+ b0

with the same degree as p(z). Furthermore, the minimum of |q(z)| occurs at
z = 0. Suppose b1 = · · · = bk−1 = 0 and bk 6= 0. For some angle θ ∈ [0, 2π),
the scaled complex exponential

u =

∣∣∣∣
b0
bk

∣∣∣∣
1/k

eiθ/k

is a root of the equation bku
k + b0 = 0. The function f(t) = |q(tu)| clearly

satisfies

f(t) = |bktkuk + b0| + o(tk) = |b0(1 − tk)| + o(tk)

f(t) ≥ |b0|

for t small and positive. These two conditions are compatible only if b0 = 0.
Hence, the minimum of |q(z)| = |p(z + y)| is 0.

We now turn to differentiable functions. Suppose f(x) is differentiable on
the open set U . Its differential df(x) is the row vector of partial derivatives
of f(x). Its gradient ∇f(x) is the transpose of df(x). For instance, the
differential and gradient of the linear function f(x) = btx are

df(x) = bt, ∇f(x) = b.

For a quadratic function f(x) = 1
2x

tAx, the componentwise calculation

∂

∂xk
f(x) =

1

2

∑

i

xiaik +
1

2

∑

j

akjxj

shows that

df(x) = xtA, ∇f(x) = Ax

for a symmetric matrix A = (aij). As a rule, revert to componentwise
differentiation whenever you harbor any doubts about the correctness of a
displayed differential.

Most readers will recall the following necessary condition for a minimum.

Proposition 11.2.2 (Fermat) Suppose a differentiable function f(x) has
a local minimum at the point y of the open set U . Then ∇f(x) vanishes at
y.
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Proof: For any vector v, the function g(s) = f(y+sv) has a local minimum
at s = 0. Hence, g′(0) vanishes. According to the chain rule, the inner
product g′(0) = df(y)v also vanishes. This can only happen for all v if
∇f(y) = 0.

A point y satisfying the first-order condition ∇f(y) = 0 is called a sta-
tionary point. When f(x) is twice continuously differentiable, there is a
second-order necessary condition for a local minimum as well. A slight
strengthening of the second-order condition gives a sufficient condition for
a stationary point to be a local minimum. These results depend on the
symmetric matrix d2f(x) = ∇2f(x) of second partial derivatives of f(x);
this matrix is called the second differential or Hessian of f(x).

Proposition 11.2.3 Suppose a twice continuously differentiable function
f(x) has a local minimum at the point y of the open set U . Then d2f(x) is
positive semidefinite at y. Conversely, if y is a stationary point and d2f(y)
is positive definite, then y is a local minimum.

Proof: Consider again the function g(s) = f(y + sv) of the scalar s. Ex-
panding g(s) in a second-order Taylor series around 0 yields

g(s) = g(0) + g′(0)s+
1

2
g′′(r)s2

= f(y) + df(y)vs +
1

2
vtd2f(z)vs2

for some r between 0 and s and z = y+rv. According to Fermat’s principle,
the linear terms g′(0)s and df(y)vs vanish. By continuity it follows that

1

2
vtd2f(y)v =

1

2
g′′(0)

= lim
s→0

g(s) − g(0)

s2

≥ 0.

Hence, the quadratic form vtd2f(y)v is nonnegative, and the corresponding
matrix d2f(y) is positive semidefinite.

Conversely, if y is a stationary point and d2f(y) is positive definite,
then suppose xn is a sequence of points that converges to y and satisfies
f(xn) < f(y). Let zn = y + rn(xn − y) be the corresponding point of
evaluation of d2f(x) in the second-order Taylor expansion of f(xn) around
f(y). By passing to a subsequence if necessary, we may assume that the
normalized sequence vn = (y−xn)/‖y−xn‖2 converges to a unit vector v.
Taking limits along the sequence xn produces

0 ≥ lim
n→∞

f(xn) − f(y)

‖y − xn‖2
2

= lim
n→∞

1

2
vtnd

2f(zn)vn
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=
1

2
vtd2f(y)v.

This inequality contradicts the positive definiteness of d2f(y). Hence, there
is no such sequence xn, and y represents a local minimum of f(x).

Example 11.2.2 Minimum of a Positive Definite Quadratic Function

The quadratic function f(x) = 1
2x

tAx+ btx+ c has gradient

∇f(x) = Ax + b

for A symmetric. Assuming that A is also invertible, the sole stationary
point of f(x) is −A−1b. When A is positive definite, f(x) is coercive, and
this point furnishes the minimum of f(x). Coerciveness follows from an
examination of the behavior of xtAx over the sphere {x : ‖x‖2 = 1}.
Because the sphere is compact and A is positive definite, the minimum d
of xtAx is positive. The Cauchy-Schwarz inequality therefore gives

f(x) ≥ d

2
‖x‖2

2 − ‖b‖2‖x‖2 + c.

This lower bound demonstrates that lim‖x‖2→∞ f(x) = ∞.

Example 11.2.3 Maximum Likelihood for the Multivariate Normal

The sample mean and sample variance

ȳ =
1

k

k∑

j=1

yj

S =
1

k

k∑

j=1

(yj − ȳ)(yj − ȳ)t

are also the maximum likelihood estimates of the theoretical mean µ and
theoretical variance Ω of a random sample y1, . . . , yk from a multivariate
normal distribution. (For a review of the multivariate normal, see the Ap-
pendix.) To prove this fact, we first note that maximizing the loglikelihood
function

−k
2

ln detΩ − 1

2

k∑

j=1

(yj − µ)tΩ−1(yj − µ)

= −k
2

ln detΩ − k

2
µtΩ−1µ+

( k∑

j=1

yj

)t
Ω−1µ − 1

2

k∑

j=1

ytjΩ
−1yj

= −k
2

ln detΩ − 1

2
tr
[
Ω−1

k∑

j=1

(yj − µ)(yj − µ)t
]
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constitutes a special case of the previous example with A = kΩ−1 and
b = −Ω−1

∑k
j=1 yj. This leads to the same estimate µ̂ = ȳ regardless of the

value of Ω.
To estimate Ω, we exploit the Cholesky decompositions Ω = LLt and

S = MM t under the assumption that both Ω and S are invertible. In view
of the identities Ω−1 = (L−1)tL−1 and det Ω = (detL)2, the loglikelihood
becomes

k ln detL−1 − k

2
tr
[
(L−1)tL−1MM t

]

= k ln det
(
L−1M

)
− k

2
tr
[
(L−1M)(L−1M)t

]
− k lndetM

using the cyclic permutation property of the matrix trace function. Because
products and inverses of lower triangular matrices are lower triangular, the
matrix R = L−1M ranges over the set of lower triangular matrices with
positive diagonal entries as L ranges over the same set. This permits us to
reparameterize and estimate R = (rij) instead of L. Up to an irrelevant
additive constant, the loglikelihood reduces to

k ln detR− k

2
tr(RRt) = k

∑

i

ln rii −
k

2

∑

i

i∑

j=1

r2ij.

Clearly, this function is maximized by taking rij = 0 for j 6= i. The term
g(rii) = −k ln rii + k

2
r2ii is convex and coercive on the interval (0,∞).

Differentiation of g(rii) shows that it is minimized by taking rii = 1. In
other words, the maximum likelihood estimator R̂ is the identity matrix I.
This implies that L̂ = M and consequently that Ω̂ = S.

11.3 Optimization with Equality Constraints

The subject of Lagrange multipliers has a strong geometric flavor. Our
proof of the multiplier rule will rely on tangent vectors and directions of
steepest ascent and descent. Suppose the objective function f(x) to be
minimized is continuously differentiable and defined on R

n. The gradient
direction ∇f(x) = df(x)t is the direction of steepest ascent of f(x) near the
point x. We can motivate this fact by considering the linear approximation

f(x + su) = f(x) + sdf(x)u + o(s)

for a unit vector u and a scalar s. The error term o(s) becomes negligi-
ble compared to s as s approaches 0. The inner product df(x)u in this
approximation is greatest for the unit vector

u =
1

‖∇f(x)‖2
∇f(x).
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Thus, ∇f(x) points locally in the direction of steepest ascent of f(x). Sim-
ilarly, −∇f(x) points locally in the direction of steepest descent.

The classical theory of Lagrange multipliers, which is all we consider in
this section, is limited to equality constraints. These are defined by the con-
ditions gi(x) = 0 for continuously differentiable functions g1(x), . . . , gm(x).
A point obeying the constraints is said to be feasible. A tangent vector
(or direction) w at the feasible point x satisfies dgi(x)w = 0 for all i. Of
course, if the constraint surface is curved, we must interpret the tangent
vectors as specifying directions of infinitesimal movement. From the per-
pendicularity relation dgi(x)w = 0, it follows that the set of tangent vectors
is the orthogonal complement S⊥(x) of the vector subspace S(x) spanned
by the ∇gi(x). To avoid degeneracies, the vectors ∇gi(x) must be linearly
independent. Figure 11.1 depicts level curves g(x) = c and gradients ∇g(x)
for the function sin(x) cos(y) over the square [0, π]× [−π

2 ,
π
2 ]. Tangent vec-

tors are parallel to the level curves (contours) and perpendicular to the
gradients (arrows).
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FIGURE 11.1. Level Curves and Steepest Ascent Directions for sin(x) cos(y)

These geometric insights can be made rigorous by introducing the notion
of a tangent curve at the point x. This is simply a differentiable curve v(s)
having a neighborhood of the scalar 0 as its domain and satisfying v(0) = x
and gi[v(s)] = 0 for all i and all s sufficiently close to 0. If we apply
the chain rule to the composite function gi[v(s)] = 0, then the identity
dgi(x)v

′(0) = 0 emerges. The vector w = v′(0) is said to be a tangent
vector at x. Conversely, if w satisfies dgi(x)w = 0 for all i, then we can
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construct a tangent curve at x with tangent vector w. This application of
the implicit function theorem [16] requires some notation. Let G(x) be the
vector-valued function with ith component gi(x). The differential dG(x) is
the Jacobi matrix whose ith row is the differential dgi(x). In agreement
with our earlier notation, ∇G(x) is the transpose of dG(x).

Now consider the relationship

h(u, s) = G[x+ ∇G(x)u+ sw] = 0.

Applying the chain rule to the function h(u, s) gives

duh(0, 0) = dG[x+ ∇G(x)u+ sw]∇G(x)
∣∣∣
(u,s)=(0,0)

= dG(x)∇G(x).

Since G(x) = 0 and dG(x)∇G(x) is invertible when dG(x) has full row
rank, the implicit function theorem implies that we can solve for u as a
function of s in a neighborhood of 0. If we denote the resulting continuously
differentiable function by u(s), then our tangent curve is

v(s) = x+ ∇G(x)u(s) + sw.

By definition u(0) = 0, v(0) = x, and G[v(s)] = 0 for all s close to 0. Thus,
we need only check that v′(0) = w. Because

v′(0) = ∇G(x)u′(0) + w,

it suffices to check that ∇G(x)u′(0) = 0. However, in view of the equality

0 = u′(0)t
d

ds
h[u(0), 0] = u′(0)tdG(x)[∇G(x)u′(0) + w]

and the assumption dG(x)w = 0, this fact is obvious.
If y provides a local minimum of f(x), we have df(y)w = 0 for every

tangent direction w ∈ S⊥(y). Indeed, if v(s) is a tangent curve with tangent
vector w at y, then the composite function f [v(s)] has a local minimum at
s = 0. Thus, its derivative df(y)w at 0 vanishes. In other words, ∇f(y) is
a member of the double orthogonal complement S⊥⊥(y), which we know
from linear algebra equals S(y). This enables us to write

∇f(y) = −
m∑

i=1

λi∇gi(y)

for properly chosen constants λ1, . . . , λm. Alternatively, the Lagrangian
function

L(x, ω) = f(x) +

m∑

i=1

ωigi(x) (11.1)
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has a stationary point at (y, λ). In this regard, note that

∂

∂ωi
L(y, λ) = 0

is equivalent to the constraint condition gi(y) = 0.
In summary, we have proved the first part of the next proposition. In

the statement and proof of the proposition, first and second differentials
are with respect to x, holding λ fixed. For this reason we will suppress the
dependence of the Lagrangian function on the Lagrange multipliers.

Proposition 11.3.1 (Lagrange) Suppose the continuously differentiable
function f(x) has a local minimum at the feasible point y and that the
constraint functions g1(x), . . . , gm(x) are continuously differentiable with
linearly independent gradient vectors ∇gi(y) at y. Then there exists a mul-
tiplier vector λ such that (y, λ) is a stationary point of the Lagrangian
(11.1). Furthermore, if f(x) and all gi(x) are twice continuously differen-
tiable, then vtd2L(y)v ≥ 0 for every tangent vector v at y. Conversely, if
(y, λ) is a stationary point of the Lagrangian and vtd2L(y)v > 0 for every
nontrivial tangent vector v at y, then y represents a local minimum of f(x)
subject to the constraints.

Proof: Let u(s) be a tangent curve at y with tangent vector u′(0) = v.
Because the function h(s) = L[u(s)] has a minimum at s = 0, its second
derivative

h′′(0) = dL[u(0)]u′′(0) + u′(0)td2L[u(0)]u′(0)

= vtd2L(y)v

must be nonnegative.
Conversely, suppose that (y, λ) is a stationary point and that the qua-

dratic form vtd2L(y)v is positive for every nontrivial tangent vector v. If y
is not a local minimum, then there exists a feasible sequence of points xn
converging to y with f(xn) < f(y) for every n. By passing to a subsequence
if necessary, we can assume that the unit vectors

vn =
1

‖xn − y‖2
(xn − y)

converge to a unit vector v. In view of the limit

0 = lim
n→∞

gi(xn) − gi(y)

‖xn − y‖2
= dgi(y)v,

v is a tangent vector. Because L(x) = f(x) for any feasible point x, and y
is a stationary point of L(x), we have

0 ≥ lim
n→∞

f(xn) − f(y)

‖xn − y‖2
2
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= lim
n→∞

L(xn) −L(y)

‖xn − y‖2
2

= lim
n→∞

1

2
vtd2L(y)v.

But this contradicts the assumed positivity of vtd2L(y)v, and therefore y
represents a local minimum.

Example 11.3.1 Estimation of Multinomial Probabilities

Consider a multinomial experiment with n trials and observed outcomes
n1, . . . , nm over m categories. The maximum likelihood estimate of the
probability pi of category i is p̂i = ni/n. To demonstrate this fact, let

L(p) =

(
n

n1 . . . nm

) m∏

i=1

pni

i

denote the likelihood. If ni = 0 for some i, then we interpret pni

i as 1 even
when pi = 0. This convention makes it clear that we can increase L(p)
by replacing pi by 0 and pj by pj/(1 − pi) for j 6= i. Thus, for purposes
of maximum likelihood estimation, we can assume that all ni > 0. Given
this assumption, L(p) tends to 0 when any pi tends to 0, and − lnL(p) is
coercive. It follows that we can further restrict our attention to the interior
region where all pi > 0 and maximize the loglikelihood lnL(p) subject to
the equality constraint

∑m
i=1 pi = 1. To find the minimum of − lnL(p), we

look for a stationary point of the Lagrangian

= − ln

(
n

n1 . . . nm

)
−

m∑

i=1

ni ln pi + λ
( m∑

i=1

pi − 1
)
.

Setting the partial derivative of L(p) with respect to pi equal to 0 gives the
equation

ni
pi

= λ.

These m equations are satisfied subject to the constraint by taking λ = n
and pi = ni/n. Not only is the Lagrange multiplier rule of Proposition
11.3.1 true at p̂, but the sufficient condition for a minimum also holds. In
fact, the entries

∂2

∂pi∂pj
L(p) = − ∂2

∂pi∂pj
lnL(p) =

{ ni

p2i
i = j

0 i 6= j

of the Hessian d2L(p) force it to be positive definite.
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Example 11.3.2 A Counterexample to Sufficiency

The Lagrange multiplier rule by itself is not sufficient for a point to furnish
a minimum. For example, consider the function f(x) = x3

1 − x2 subject to
the constraint g(x) = −x2 = 0. The Lagrange multiplier rule

∇f(0) =

(
0
−1

)
= ∇g(0)

holds, but the origin 0 fails to minimize f(x). Indeed, the one-dimensional
slice x1 7→ f(x1 , 0) has a saddle point at x1 = 0.

Example 11.3.3 Quadratic Programming with Equality Constraints

Minimizing a quadratic function

q(x) =
1

2
xtAx+ btx+ c

on R
n subject to the m linear equality constraints

vtix = di

is one of the most important problems in nonlinear programming. Here the
symmetric matrix A is assumed positive definite. The constraints can be
re-expressed as V x = d by defining V to be the m×n matrix with ith row
vti and d to be the column vector with ith entry di.

To minimize q(x) subject to the constraints, we introduce the Lagrangian

L(x, λ) =
1

2
xtAx+ btx+ c+

m∑

i=1

λi[v
t
ix− di]

=
1

2
xtAx+ btx+ c+ λt(V x− d).

A stationary point of L(x, λ) is determined by the equations

b+ Ax+ V tλ = 0

V x = d,

whose formal solution amounts to
(
x
λ

)
=

(
A V t

V 0

)−1(−b
d

)
.

The next proposition shows that the indicated matrix inverse exists. Be-
cause the second differential d2q(x) = A is positive definite, the second-
order sufficient condition of Proposition 11.3.1 ensures that the calculated
point provides a local minimum. In light of our subsequent remarks about
strict convexity, this local minimum is a global minimum.
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Proposition 11.3.2 Let A be an n × n positive definite matrix and V be
an m× n matrix. Then the matrix

M =

(
A V t

V 0

)

has inverse

M−1 =

(
A−1 − A−1V t(V A−1V t)−1V A−1 A−1V t(V A−1V t)−1

(V A−1V t)−1V A−1 −(V A−1V t)−1

)

if and only if V has linearly independent rows vt1, . . . , v
t
m.

Proof: We first show that M is invertible with the specified inverse if and
only if (V A−1V t)−1 exists. If

M−1 =

(
B C
D E

)
,

then the identity

(
A V t

V 0

)(
B C
D E

)
=

(
In 0
0 Im

)

implies that V C = Im and AC + V tE = 0. Multiplying the last equality
by V A−1 gives Im = −V A−1V tE. Thus, (V A−1V t)−1 exists. Conversely,
if (V A−1V t)−1 exists, then one can check by direct multiplication that M
has the claimed inverse.

If (V A−1V t)−1 exists, then V must have full row rank m. Conversely, if
V has full row rank m, take any nontrivial u ∈ R

m. Then the fact

utV = u1v
t
1 + · · ·umvtm 6= 0t

and the positive definiteness of A imply utV A−1V tu > 0. Thus, V A−1V t

is also positive definite and invertible.

It is noteworthy that the matrix M of Proposition 11.3.2 can be inverted
by sweeping on its diagonal entries. Indeed, sweeping on the diagonal entries
of A takes

(
A V t

V 0

)
−→

(
−A−1 A−1V t

V A−1 −V A−1V t

)
.

Sweeping is now possible for the remaining diagonal entries of M since
V A−1V t is positive definite.
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Example 11.3.4 Smallest Matrix Subject to Secant Conditions

In some situations covered by Example 11.3.3, the answer can be radically
simplified. Consider the problem of minimizing the Frobenius norm of a
matrix M subject to the linear constraints Mui = vi for i = 1, . . . , q.
It is helpful to rewrite the constraints in matrix form as MU = V for
U = (u1, . . . , uq) and V = (v1, . . . , vq). Provided U has full column rank
q, the minimum of the squared norm ‖M‖2

F subject to the constraints is
attained by the choice M = V (U tU)−1U t. We can prove this assertion by
taking the partial derivative of the Lagrangian

L =
1

2
‖M‖2

F +
∑

i

∑

k

λik

(∑

j

mijujk − vik

)

=
1

2

∑

i

∑

j

m2
ij +

∑

i

∑

k

λik

(∑

j

mijujk − vik

)

with respect to mij and equating it to 0. This gives the Lagrange multiplier
equation

0 = mij +
∑

k

λikujk,

which we collectively express in matrix notation as 0 = M + ΛU t. This
equation and the constraint equation MU = V uniquely determine the
minimum of the objective function. Indeed, straightforward substitution
shows that M = V (U tU)−1U t and Λ = −V (U tU)−1 constitute the solu-
tion. This result will come in handy later when we discuss accelerating the
MM algorithm.

11.4 Optimization with Inequality Constraints

In the current section, we study the problem of minimizing an objective
function f(x) subject to the mixed constraints

gi(x) = 0, 1 ≤ i ≤ p

hj(x) ≤ 0, 1 ≤ j ≤ q.

All of these functions share some open set U ⊂ R
n as their domain. In

addition to the equality constraints defined by the gi(x), we now have
inequality constraints defined by the hj(x). A constraint hj(x) is active
at the feasible point x provided hj(x) = 0; it is inactive if hj(x) < 0. In
general, we will assume that the feasible region is nonempty. The case p = 0
of no equality constraints and the case q = 0 of no inequality constraints
are both allowed.
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In exploring solutions to the above constrained minimization problem,
we will meet a generalization of the Lagrange multiplier rule fashioned in-
dependently by Karush and later by Kuhn and Tucker. Under fairly weak
regularity conditions, the rule holds at all extrema. In contrast to this nec-
essary condition, the sufficient condition for an extremum involves second
derivatives.

In our derivation of the Lagrange multiplier rule for equality constraints,
we required that the gradients ∇gi(y) be linearly independent at a local
minimum y of f(x). Without this condition, we could not generate a full
set of tangent curves at y. In the presence of inequality constraints, the
situation is more complicated. To avoid redundant constraints, not only do
we need linear independence of the gradients of the equality constraints
but also a restriction on the active inequality constraints. The simplest one
to check is the Kuhn-Tucker [15] condition requiring linear independence
of the set of vectors consisting of the gradients ∇gi(y) plus the gradients
∇hj(y) of the active inequality constraints. The Kuhn-Tucker condition
implies the weaker Mangasarian-Fromovitz constraint qualification. This
condition [19] requires that the gradients ∇gi(y) be linearly independent
and that there exists a vector v with dgi(y)v = 0 for all i and dhj(y)v < 0
for all inequality constraints active at y. The vector v is a tangent vector in
the sense that infinitesimal motion from y along v stays within the feasible
region.

Proposition 11.4.1 Suppose that the objective function f(x) of the con-
strained optimization problem just described has a local minimum at the
feasible point y. If f(x) and the constraint functions are continuously dif-
ferentiable near y, and the Mangasarian-Fromovitz constraint qualification
holds at y, then there exist Lagrange multipliers λ1, . . . , λp and µ1, . . . , µq
such that

∇f(y) +

p∑

i=1

λi∇gi(y) +

q∑

j=1

µj∇hj(y) = 0. (11.2)

Moreover, each of the multipliers µj is nonnegative, and µj = 0 whenever
hj(y) < 0. The restriction µjhj(y) = 0 is called complementary slackness.

Proof: See the article by McShane [21] or Proposition 4.2.1 of [16].

Example 11.4.1 The Cauchy-Schwarz Inequality

For a given vector v 6= 0, consider minimizing the linear function f(x) = vtx
subject to the inequality constraint h1(x) = ‖x‖2

2 − 1 ≤ 0. The minimum
exists since f(x) is continuous and the feasible region is compact. Further-
more, the Mangasarian-Fromovitz constraint qualification is true at any
point x 6= 0. According to the Lagrange multiplier rule of Proposition
11.4.1, there exist a nonnegative scalar µ and a feasible vector y such that

v + 2µy = 0.
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This equation forces µ to be positive. The complementary slackness condi-
tion µ(‖y‖2

2 − 1) = 0 holds only if ‖y‖2 = 1. It follows that

µ =
1

2
‖v‖2, y = − 1

‖v‖2
v,

and f(x) has minimum −‖v‖2. If we substitute −x for x in the inequality
vtx ≥ −‖v‖2, then the standard Cauchy-Schwarz inequality vtx ≤ ‖v‖2

for ‖x‖2 ≤ 1 appears. Equality is attained when x is a unit vector in the
direction v.

Example 11.4.2 Application to Another Inequality

Let us demonstrate the inequality

x2
1 + x2

2

4
≤ ex1+x2−2

subject to the constraints x1 ≥ 0 and x2 ≥ 0 [8]. It suffices to show that
the minimum of

f(x1 , x2) = −(x2
1 + x2

2)e
−x1−x2

is −4e−2. According to Proposition 11.4.1 with h1(x1, x2) = −x1 and
h2(x1, x2) = −x2, a minimum point necessarily satisfies

− ∂

∂y1
f(y1 , y2) = (2y1 − y2

1 − y2
2)e

−y1−y2

= −µ1

− ∂

∂y2
f(y1 , y2) = (2y2 − y2

1 − y2
2)e

−y1−y2

= −µ2,

where the multipliers µ1 and µ2 are nonnegative and satisfy µ1y1 = 0 and
µ2y2 = 0. In this problem, the Mangasarian-Fromovitz constraint qualifica-
tion is trivial to check using the vector v = 1. If neither y1 nor y2 vanishes,
then µ1 and µ2 both vanish and

2y1 − y2
1 − y2

2 = 2y2 − y2
1 − y2

2 = 0.

This forces y1 = y2 and 2y1 − 2y2
1 = 0. It follows that y1 = y2 = 1,

where f(1, 1) = −2e−2. We can immediately eliminate the origin 0 from
contention because f(0, 0) = 0. If y1 = 0 and y2 > 0, then µ2 = 0 and
2y2 − y2

2 = 0. This implies that y2 = 2 and (0, 2) is a candidate minimum
point. By symmetry, (2, 0) is also a candidate minimum point. At these two
boundary points, f(2, 0) = f(0, 2) = −4e−2, and this verifies the claimed
minimum value.

As with equality-constrained problems, we also have a sufficient condition
for a local minimum.
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Proposition 11.4.2 Suppose that the objective function f(x) of the con-
strained optimization problem satisfies the multiplier rule (11.2) at the point
y. Let f(x) and the constraint functions be twice continuously differentiable,
and let L(x) be the Lagrangian

L(x) = f(x) +

p∑

i=1

λigi(x) +

q∑

j=1

µjhj(x).

If vtd2L(y)v > 0 for every vector v 6= 0 satisfying dgi(y)v = 0 and
dhj(y)v ≤ 0 for all active constraints, then y provides a local minimum
of f(x).

Proof: See Proposition 4.5.1 of [16].

Example 11.4.3 Minimum of a Linear Reciprocal Function

Consider minimizing the function f(x) =
∑n
i=1 cix

−1
i subject to the linear

inequality constraint
∑n

i=1 aixi ≤ b. Here all indicated variables and pa-
rameters are positive. It is obvious that the inequality constraints xi ≥ 0
are inactive at the minimum. Differentiating the Lagrangian

L(x) =

n∑

i=1

cix
−1
i + µ

(
n∑

i=1

aixi − b

)

gives the multiplier equations

− ci
y2
i

+ µai = 0.

It follows that µ > 0, that the constraint is active, and that

yi =

√
ci
µai

, 1 ≤ i ≤ n

µ =

(
1

b

n∑

i=1

√
aici

)2

. (11.3)

The second differential d2L(y) is diagonal with ith diagonal entry 2ci/y
3
i .

This matrix is certainly positive definite, and Proposition 11.4.2 confirms
that the stationary point (11.3) provides the minimum of f(x) subject to
the constraint.

11.5 Convexity

Optimization theory is much simpler for convex functions than for ordinary
functions. Here we briefly summarize some of the relevant facts without
proof. A fuller treatment can be found in the references [4, 16, 23].
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FIGURE 11.2. Plot of the Convex Function ex + x2

A set S ⊂ R
m is said to be convex if the line segment between any

two points x and y of S lies entirely within S. Formally, this means that
whenever x, y ∈ S and α ∈ [0, 1], the point z = αx + (1 − α)y ∈ S. In
general, any convex combination

∑n
i=1 αixi of points x1, . . . , xn in S must

also reside in S. Here, the coefficients αi must be nonnegative and sum to
1. It is easy to concoct examples of convex sets. For example, every interval
on the real line is convex; every ball in R

n, either open or closed, is convex;
and every multidimensional rectangle, either open or closed, is convex.

Convex functions are defined on convex sets. A real-valued function f(x)
defined on a convex set S is convex provided

f [αx+ (1 − α)y] ≤ αf(x) + (1 − α)f(y) (11.4)

for all x, y ∈ S and α ∈ [0, 1]. Figure 11.2 depicts how in one dimension
definition (11.4) requires the chord connecting two points on the curve f(x)
to lie above the curve. If strict inequality holds in (11.4) for every x 6= y
and α ∈ (0, 1), then f(x) is said to be strictly convex. One can prove by
induction that inequality (11.4) extends to Jensen’s inequality

f
( n∑

i=1

αixi

)
≤

n∑

i=1

αif(xi)

for any convex combination of points from S. A concave function satisfies
the reverse of inequality (11.4).

Figure 11.2 also illustrates how a tangent line to a convex curve lies below
the curve. This supporting hyperplane inequality property characterizes
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convex differentiable functions. It can be expressed formally as

f(y) ≥ f(x) + df(x)(y − x) (11.5)

for all pairs of points (x, y) in the domain of f(x). One can demonstrate
that f(x) is strictly convex if and only if strict inequality holds in inequality
(11.5) when y 6= x. If f(x) is twice differentiable, then it is convex when
d2f(x) is positive semidefinite for all x; it is strictly convex when d2f(x)
is positive definite for all x. These conclusions follow from the supporting
hyperplane definition of convexity and the Taylor expansion

f(y) = f(x) + df(x)(y − x) +
1

2
(y − x)td2f(z)(y − x),

where z lies on the line segment between x and y.
Convex programming deals with convex objective functions, affine equal-

ity constraints, and convex inequality constraints. For simplicity let us also
require the objective function and the constraint functions to be differen-
tiable. In this setting, the set of points consistent with any constraint is
closed and convex. Since closedness and convexity are preserved under set
intersection, the feasible region of a convex programming problem is closed
and convex. Convexity is important because a local minimum of a convex
function on a convex domain is also a global minimum. If the objective
function is strictly convex, then a local minimum is the unique global min-
imum. Finally, in convex programming, satisfaction of the multiplier rule
(11.2) is sufficient for a minimum. As we have already pointed out, the
multiplier rule is necessary under an appropriate constraint qualification.

11.6 Block Relaxation

In some problems it pays to update only a subset of the parameters at a
time. Block relaxation divides the parameters into disjoint blocks and cycles
through the blocks, updating only those parameters within a single block
at each stage of a cycle [7]. Block relaxation is most successful when these
updates are exact. When each block consists of a single parameter, block
relaxation is called cyclic coordinate descent or cyclic coordinate ascent.

Example 11.6.1 Sinkhorn’s Algorithm

Let M = (mij) be a rectangular matrix with positive entries. Sinkhorn’s
theorem [24] says that there exist two diagonal matrices A and B with pos-
itive diagonal entries ai and bj such that the matrix AMB has prescribed
row and column sums. Let ri > 0 be the ith row sum and cj > 0 the jth
column sum. Because AMB has entry aimijbj at the intersection of row i
and column j, the constraints are

∑

i

aimijbj = cj,
∑

j

aimijbj = ri.
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For these constraints to be consistent, we must have

∑

i

ri =
∑

i

∑

j

aimijbj =
∑

j

cj .

Given this assumption, we now sketch a method for finding A and B.
Consider minimizing the smooth function [13]

f(A,B) = −
∑

i

ri lnai −
∑

j

cj ln bj +
∑

i

∑

j

aimijbj.

If any ai or bj approaches 0, then f(a, b) tends to ∞. In view of this fact, the
minimum occurs in a region where the parameters ai and bj are uniformly
bounded below by a positive constant. Within this region, it follows that
aimijbj tends to ∞ if either ai or bj tends to ∞. Hence, the minimum of
f(A,B) exists. At the minimum, Fermat’s principle requires

∂

∂ai
f(A,B) = − ri

ai
+
∑

j

mijbj = 0

∂

∂bj
f(A,B) = −cj

bj
+
∑

i

aimij = 0.

These equations are just a disguised form of Sinkhorn’s constraints.
The direct attempt to solve the stationarity equations is almost imme-

diately thwarted. It is much easier to minimize f(A,B) with respect to A
for B fixed or vice versa. If we fix B, then rearranging the first stationarity
equation gives

ai =
ri∑

jmijbj
.

Similarly, if we fix A, then rearranging the second stationarity equation
yields

bj =
cj∑

i aimij
.

Sinkhorn’s block relaxation algorithm [24] alternates the updates of A and
B.

Example 11.6.2 Poisson Sports Model

Consider a simplified version of a model proposed by Maher [18] for a sports
contest between two teams in which the number of points scored by team
i against team j follows a Poisson process with intensity eoi−dj , where
oi is an “offensive strength” parameter for team i and dj is a “defensive
strength” parameter for team j. (See Section 12.10 for a brief description
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of Poisson processes.) If tij is the length of time that i plays j and pij is the
number of points that i scores against j, then the corresponding Poisson
loglikelihood function is

`ij(θ) = pij(oi − dj) + pij ln tij − tije
oi−dj − ln pij!, (11.6)

where θ = (o, d) is the parameter vector. Note that the parameters should
satisfy a linear constraint such as d1 = 0 in order for the model to be
identifiable; otherwise, it is clearly possible to add the same constant to
each oi and dj without altering the likelihood. We make two simplifying
assumptions. First, the outcomes of the different games are independent.
Second, each team’s point total within a single game is independent of its
opponent’s point total. The second assumption is more suspect than the
first since it implies that a team’s offensive and defensive performances
are somehow unrelated to one another; nonetheless, the model gives an
interesting first approximation to reality. Under these assumptions, the
full data loglikelihood is obtained by summing `ij(θ) over all pairs (i, j).
Setting the partial derivatives of the loglikelihood equal to zero leads to
the equations

e−dj =

∑
i pij∑

i tije
oi

and eoi =

∑
j pij∑

j tije
−dj

satisfied by the maximum likelihood estimate (ô, d̂).
These equations do not admit a closed-form solution, so we turn to block

relaxation [7]. If we fix the oi, then we can solve for the dj and vice versa
in the form

dj = − ln

( ∑
i pij∑

i tije
oi

)
and oi = ln

( ∑
j pij∑

j tije
−dj

)
.

Block relaxation consists in alternating the updates of the defensive and
offensive parameters with the proviso that d1 is fixed at 0.

Table 11.1 summarizes our application of the Poisson sports model to the
results of the 2002–2003 regular season of the National Basketball Associa-
tion. In these data, tij is measured in minutes. A regular game lasts 48 min-
utes, and each overtime period, if necessary, adds five minutes. Thus, team

i is expected to score 48eôi−d̂j points against team j when the two teams
meet and do not tie. Team i is ranked higher than team j if ôi−d̂j > ôj−d̂i,
which is equivalent to the condition ôi + d̂i > ôj + d̂j.

It is worth emphasizing some of the virtues of the model. First, the rank-
ing of the 29 NBA teams on the basis of the estimated sums ôi + d̂i for
the 2002-2003 regular season is not perfectly consistent with their cumula-
tive wins; strength of schedule and margins of victory are reflected in the
model. Second, the model gives the point-spread function for a particu-
lar game as the difference of two independent Poisson random variables.
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Team ôi + d̂i Wins Team ôi + d̂i Wins

Cleveland -0.0994 17 Phoenix 0.0166 44
Denver -0.0845 17 New Orleans 0.0169 47

Toronto -0.0647 24 Philadelphia 0.0187 48
Miami -0.0581 25 Houston 0.0205 43

Chicago -0.0544 30 Minnesota 0.0259 51
Atlanta -0.0402 35 LA Lakers 0.0277 50

LA Clippers -0.0355 27 Indiana 0.0296 48
Memphis -0.0255 28 Utah 0.0299 47

New York -0.0164 37 Portland 0.0320 50
Washington -0.0153 37 Detroit 0.0336 50

Boston -0.0077 44 New Jersey 0.0481 49
Golden State -0.0051 38 San Antonio 0.0611 60

Orlando -0.0039 42 Sacramento 0.0686 59
Milwaukee -0.0027 42 Dallas 0.0804 60

Seattle 0.0039 40

TABLE 11.1. Ranking of all 29 NBA teams on the basis of the 2002-2003 regular
season according to their estimated offensive strength plus defensive strength.
Each team played 82 games.

Third, one can easily amend the model to rank individual players rather
than teams by assigning to each player an offensive and defensive inten-
sity parameter. If each game is divided into time segments punctuated by
substitutions, then the block relaxation algorithm can be adapted to es-
timate the assigned player intensities. This might provide a rational basis
for salary negotiations that takes into account subtle differences between
players not reflected in traditional sports statistics.

Example 11.6.3 K-Means Clustering

In k-means clustering we must divide n points x1, . . . , xn in R
m into k

clusters. Each cluster Cj is characterized by a cluster center µj. The best
clustering of the points minimizes the criterion

f(µ, C) =

k∑

j=1

∑

xi∈Cj

‖xi − µj‖2
2,

where µ is the matrix whose columns are the µj and C is the collection of
clusters. Because this mixed continuous-discrete optimization problem has
no obvious analytic solution, block relaxation is attractive. If we hold the
clusters fixed, then it is clear from Example 11.2.3 that we should set

µj =
1

|Cj|
∑

xi∈Cj

xi.
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Similarly, it is clear that if we hold the cluster centers fixed, then we should
assign point xi to the cluster Cj minimizing ‖xi − µj‖2. Block relaxation,
known as Lloyd’s algorithm in this context, alternates cluster center redefi-
nition and cluster membership reassignment. It is simple and effective. The
initial cluster centers can be chosen randomly from the n data points. The
evidence suggests that this should be done in a biased manner that spreads
the centers out [1]. Changing the objective function to

g(µ, C) =

k∑

j=1

∑

xi∈Cj

‖xi − µj‖1

makes it more resistant to outliers. The recentering step is now solved by
replacing means by medians in each coordinate. This takes a little more
computation but is usually worth the effort.

Example 11.6.4 Canonical Correlations

Consider a random vector Z partitioned into a subvector X of predictors
and a subvector Y of responses. The most elementary form of canonical
correlation analysis seeks two linear combinations atX and btY that are
maximally correlated [20]. If we partition the variance matrix of Z into
blocks

Var(Z) =

(
Σ11 Σ12

Σ21 Σ22

)

consistent with X and Y , then the two linear combinations maximize the
covariance atΣ12b subject to the variance constraints

atΣ11a = btΣ22b = 1.

This constrained maximization problem is an ideal candidate for block
relaxation. Problem 28 sketches another method for finding a and b that
exploits the singular value decomposition.

For fixed b we can easily find the best a. Introduce the Lagrangian

L(a) = atΣ12b−
λ

2

(
atΣ11a− 1

)
,

and equate its gradient

∇L(a) = Σ12b− λΣ11a

to 0. This gives the minimum point

a =
1

λ
Σ−1

11 Σ12b,
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assuming the submatrix Σ11 is positive definite. Inserting this value into
the constraint atΣ11a = 1 allows us to solve for the Lagrange multiplier λ
and hence pin down a as

a =
1√

btΣ21Σ
−1
11 Σ12b

Σ−1
11 Σ12b.

Because the second differential d2L = −λΣ11 is negative definite, a rep-
resents the maximum. Likewise, fixing a and optimizing over b gives the
update

b =
1√

atΣ12Σ
−1
22 Σ21a

Σ−1
22 Σ21a.

TABLE 11.2. Iterates in Canonical Correlation Estimation

n an1 an2 bn1 bn2

0 1.000000 1.000000 1.000000 1.000000
1 0.553047 0.520658 0.504588 0.538164
2 0.552159 0.521554 0.504509 0.538242
3 0.552155 0.521558 0.504509 0.538242
4 0.552155 0.521558 0.504509 0.538242

As a toy example consider the correlation matrix

Var(Z) =




1 0.7346 0.7108 0.7040
0.7346 1 0.6932 0.7086
0.7108 0.6932 1 0.8392
0.7040 0.7086 0.8392 1




with unit variances on its diagonal. Table 11.2 shows the first few iterates
of block relaxation starting from a = b = 1. Convergence is exceptionally
quick.

Example 11.6.5 Iterative Proportional Fitting

Our last example of block relaxation is taken from the contingency table
literature [3, 9]. Consider a three-way contingency table with two-way in-
teractions. If the three factors are indexed by i, j, and k and have r, s, and
t levels, respectively, then a loglinear model for the observed data yijk is
defined by an exponentially parameterized mean

µijk = eλ+λ1
i +λ2

j+λ3
k+λ12

ij +λ13
ik+λ23

jk

for each cell ijk. To ensure that all parameters are identifiable, we make
the usual assumption that a parameter set summed over one of its indices
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yields 0. For instance, λ1
. =

∑
i λ

1
i = 0 and λ12

i. =
∑

j λ
12
ij = 0. The overall

effect λ is permitted to be nonzero.
If we postulate independent Poisson distributions for the random vari-

ables Yijk underlying the observed values yijk, then the loglikelihood is

L =
∑

i

∑

j

∑

k

(yijk lnµijk − µijk). (11.7)

Maximizing L with respect to λ can be accomplished by setting

∂

∂λ
L =

∑

i

∑

j

∑

k

(yijk − µijk)

= 0.

This tells us that whatever the other parameters are, λ should be ad-
justed so that µ... = y... = m is the total sample size. (Here again the
dot convention signifies summation over the lost index.) In other words, if
µijk = eλωijk, then λ is chosen so that eλ = m/ω.... With this proviso, the
loglikelihood becomes

L =
∑

i

∑

j

∑

k

yijk ln
mωijk
ω...

−m

=
∑

i

∑

j

∑

k

yijk ln
ωijk
ω...

+m lnm−m,

which is up to an irrelevant constant just the loglikelihood of a multino-
mial distribution with probability ωijk/ω... attached to cell ijk. Thus, for
purposes of maximum likelihood estimation, we might as well stick with
the Poisson sampling model.

Unfortunately, no closed-form solution to the Poisson likelihood equa-
tions exists satisfying the complicated linear constraints. The resolution of
this dilemma lies in refusing to update all of the parameters simultaneously.
Suppose that we consider only the parameters λ, λ1

i , λ
2
j , and λ12

ij pertinent
to the first two factors. If in equation (11.7) we let

µij = eλ+λ1
i +λ2

j +λ12
ij

αijk = eλ
3
k+λ13

ik+λ23
jk ,

then setting

∂

∂λ12
ij

L =
∑

k

(yijk − µijk)

= yij. − µij.

= yij. − µijαij.

= 0
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leads to µij = yij./αij.. The constraint
∑

k(yijk − µijk) = 0 implies that
the other partial derivatives

∂

∂λ
L = y... − µ...

∂

∂λ1
i

L = yi.. − µi..

∂

∂λ2
j

L = y.j. − µ.j.

vanish as well. This stationary point of the loglikelihood is also a stationary
point of the Lagrangian with all Lagrange multipliers equal to 0.

Of course, we still must nail down λ, λ1
i , λ

2
j , and λ12

ij . The choice

λ12
ij = ln

( yij.
αij.

)
− λ − λ1

i − λ2
j

certainly guarantees µij = yij./αij.. One can check that the further choices

λ =
1

rs

∑

i

∑

j

lnµij

λ1
i =

1

s

∑

j

lnµij − λ

λ2
j =

1

r

∑

i

lnµij − λ

satisfy the relevant equality constraints λ1
. = 0, λ2

. = 0, λ12
.j = 0, and

λ12
i. = 0.
At the second stage, the parameter set {λ, λ1

i , λ
3
k, λ

13
ik} is updated, hold-

ing the remaining parameters fixed. At the third stage, the parameter set
{λ, λ2

j , λ
3
k, λ

23
jk} is updated, holding the remaining parameters fixed. These

three successive stages constitute one iteration of the iterative proportional
fitting algorithm. Each stage either leaves all parameters unchanged or in-
creases the loglikelihood. In this example, the parameter blocks are not
disjoint.

11.7 Problems

1. Which of the following functions is coercive on its domain?

(a) f(x) = x+ 1/x on (0,∞)

(b) f(x) = x− lnx on (0,∞)

(c) f(x) = x2
1 + x2

2 − 2x1x2 on R
2
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(d) f(x) = x4
1 + x4

2 − 3x1x2 on R
2

(e) f(x) = x2
1 + x2

2 + x2
3 − sin(x1x2x3) on R

3.

Give convincing reasons in each case.

2. Consider a polynomial p(x) in n variables x1, . . . , xn. Suppose that
p(x) =

∑n
i=1 cix

2m
i + lower-order terms, where all ci > 0 and where

a lower-order term is a product bxm1

1 · · ·xmn
n with

∑n
i=1mi < 2m.

Prove rigorously that p(x) is coercive on R
n. (Hint: Consider inequal-

ity (12.8) of Chapter 12.)

3. Demonstrate that h(x) + k(x) is coercive on R
n if k(x) is convex

and h(x) satisfies lim‖x‖2→∞ ‖x‖−1
2 h(x) = ∞. (Hint: Assume k(x)

is differentiable and apply the supporting hyperplane definition of
convexity.)

4. In some problems it is helpful to broaden the notion of coerciveness.
Consider a continuous function f : R

n 7→ R such that the limit

c = lim
r→∞

inf
{‖x‖≥r}

f(x)

exists. The value of c can be finite or ∞ but not −∞. Now let y be
any point with f(y) < c. Show that the set Sy = {x : f(x) ≤ f(y)}
is compact and that f(x) attains its global minimum on Sy . The
particular function

g(x) =
x1 + 2x2

1 + x2
1 + x2

2

furnishes an example when n = 2. Demonstrate that the limit c equals
0. What is the minimum value and minimum point of g(x)? (Hint:
What is the minimum value of g(x) on the circle {x : ‖x‖ = r}?)

5. Find the minima of the functions

f(x) = x lnx

g(x) = x− lnx

h(x) = x+
1

x

on (0,∞). Prove rigorously that your solutions are indeed the minima.

6. Find all of the stationary points of the function

f(x) = x2
1x2e

−x2
1−x2

2

in R
2. Classify each point as either a local minimum, a local maxi-

mum, or a saddle point.
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7. Demonstrate that the function x2
1+x

2
2(1−x1)

3 has a unique stationary
point in R

2, which is a local minimum but not a global minimum. Can
this occur for a continuously differentiable function with domain R?

8. Find the triangle of greatest area with fixed perimeter p. (Hint: Recall
that a triangle with sides a, b, and c has area

√
s(s− a)(s− b)(s− c),

where s = (a+ b+ c)/2 = p/2.)

9. The equation

n∑

i=1

aix
2
i = c

defines an ellipse in R
n whenever all ai > 0. The problem of Apollo-

nius is to find the closest point on the ellipse from an external point
y [5]. Demonstrate that the solution has coordinates

xi =
yi

1 + λai
,

where λ is chosen to satisfy

n∑

i=1

ai

(
yi

1 + λai

)2

= c.

Show how you can adapt this solution to solve the problem with the
more general ellipse (x − z)tA(x − z) = c for A a positive definite
matrix.

10. Use the techniques of this chapter to show that the minimum of the
quadratic form xtAx subject to ‖x‖2

2 = 1 coincides with the smallest
eigenvalue of the symmetric matrix A. The minimum point furnishes
the corresponding eigenvector. Note that you will have to use the
Lagrange multiplier rule for nonlinear constraints.

11. Find a minimum of f(x) = x2
1 + x2

2 subject to the inequality con-
straints h1(x) = −2x1 − x2 + 10 ≤ 0 and h2(x) = −x1 ≤ 0. Prove
that it is the global minimum.

12. Minimize the function f(x) = e−(x1+x2) subject to the constraints
h1(x) = ex1 + ex2 − 20 ≤ 0 and h2(x) = −x1 ≤ 0 on R

2.

13. Find the minimum and maximum of the function f(x) = x1 +x2 over
the subset of R

2 defined by the constraints hi(x) ≤ 0 for

h1(x) = −x1

h2(x) = −x2

h3(x) = 1 − x1x2.
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14. Consider the problem of minimizing f(x) = (x1 + 1)2 + x2
2 subject

to the inequality constraint h(x) = −x3
1 + x2

2 ≤ 0 on R
2. Solve the

problem by sketching the feasible region and using a little geometry.
Show that the Lagrange multiplier rule fails, and explain why.

15. Consider the inequality constraint functions

h1(x) = −x1

h2(x) = −x2

h3(x) = x2
1 + 4x2

2 − 4

h4(x) = (x1 − 2)2 + x2
2 − 5.

Show that the Kuhn-Tucker constraint qualification fails but the
Mangasarian-Fromovitz constraint qualification succeeds at the point
x = (0, 1)t. For the inequality constraint functions

h1(x) = x2
1 − x2

h2(x) = −3x2
1 + x2,

show that both constraint qualifications fail at the point x = (0, 0)t

[10].

16. For p > 1 define the norm ‖x‖p on R
n satisfying ‖x‖pp =

∑n
i=1 |xi|p.

For a fixed vector z, maximize f(x) = ztx subject to ‖x‖pp ≤ 1.
Deduce Hölder’s inequality |ztx| ≤ ‖x‖p‖z‖q for q defined by the
equation p−1 + q−1 = 1.

17. If A is a matrix and y is a compatible vector, then Ay ≥ 0 means that
all entries of the vector Ay are nonnegative. Farkas’s lemma says that
xty ≥ 0 for all vectors y with Ay ≥ 0 if and only if x is a nonnegative
linear combination of the rows of A. Prove Farkas’s lemma assuming
that the rows of A are linearly independent.

18. Establish the inequality

( n∏

i=1

ai

) 1
n ≤ 1

n

n∑

i=1

ai

between the geometric and arithmetic mean of n positive numbers.
Verify that equality holds if and only if all ai = a. (Hints: Replace ai
by exi and appeal to convexity.)

19. Demonstrate that the Kullback-Leibler (cross-entropy) distance

f(x) = x1 ln
x1

x2
+ x2 − x1

is convex on the set {x = (x1, x2) : x1 > 0, x2 > 0}.
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20. In Sinkhorn’s theorem, suppose the matrix M is square. Show that
some entries of M can be 0 as long as some positive power Mp of M
has all entries positive.

21. Let M = (mij) be a nontrivial m × n matrix. The dominant part
of the singular value decomposition (svd) of M is an outer product
matrix λuvt with λ > 0 and u and v unit vectors. This outer product
minimizes

‖M − λuvt‖2
F =

∑

i

∑

j

(mij − λuivj)
2.

One can use alternating least squares to find λuvt [11]. In the first
step of the algorithm, one fixes v and estimates w = λu by least
squares. Show that w has components

wi =
∑

j

mijvj.

Once w is available, we set

λ = ‖w‖2, u =
1

‖w‖2
w.

What are the corresponding updates for v and λ when you fix u? To
find the next outer product in the svd, form the matrix M − λuvt

and repeat the process. Program and test this algorithm.

22. Suppose A is a symmetric matrix and B is a positive definite matrix of
the same dimension. Formulate cyclic coordinate descent and ascent
algorithms for minimizing and maximizing the Rayleigh quotient

R(x) =
xtAx

xtBx

over the set x 6= 0. See Section 8.3 for connections to eigenvalue
extraction.

23. For a positive definite matrix A, consider minimizing the quadratic
function f(x) = 1

2x
tAx+ btx+ c subject to the constraints xi ≥ 0 for

all i. Show that the cyclic coordinate descent updates are

x̂i = max
{

0, xi − a−1
ii

[∑

j

aijxj + bi

]}
.

If we impose the additional constraint
∑

i xi = 1, the problem is
harder. One line of attack is to minimize the penalized function

fµ(x) = f(x) +
µ

2

(∑

i

xi − 1
)2
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for a large positive constant µ. One can show that the minimum of
fµ(x) tends to the constrained minimum of f(x) as µ tends to ∞ [2].
Accepting this result, demonstrate that cyclic coordinate descent for
fµ(x) has updates

x̂i = max
{

0, xi − (aii + µ)−1
[∑

j

aijxj + bi + µ
(∑

j

xj − 1
)]}

.

Program this second algorithm and test it for the choices

A =

(
2 1
1 1

)
, b =

(
1
0

)
.

Start with µ = 1 and double it every time you update the full vector
x. Do the iterates converge to the minimum of f(x) subject to all
constraints?

24. Program and test any one of the four examples 11.6.1, 11.6.2, 11.6.3,
or 11.6.4.

25. Program and test a k-medians clustering algorithm and concoct an
example where it differs from k-means clustering.

26. Consider the coronary disease data [9, 14] displayed in the three-way
contingency Table 11.3. Using iterative proportional fitting, find the
maximum likelihood estimates for the loglinear model with first-order
interactions. Perform a chi-square test to decide whether this model
fits the data better than the model postulating independence of the
three factors.

27. As noted in the text, the loglinear model for categorical data can
be interpreted as assuming independent Poisson distributions for the
various categories with category i having mean µi(θ) = el

t
iθ, where

li is a vector whose entries are 0’s or 1’s. Calculate the observed
information −d2L(θ) =

∑
i e
ltiθlil

t
i in this circumstance, and deduce

that it is positive semidefinite. In the presence of linear constraints
on θ, show that any maximum likelihood estimate of θ is necessarily
unique provided the vector subspace of possible θ is included in the
linear span of the li.

28. In Example 11.6.4, make the change of variables c = Σ
1/2
11 a and

d = Σ
1/2
22 b. In the new variables show that one must maximize ctΩd

subject to ‖c‖2 = ‖d‖2 = 1, where Ω = Σ
−1/2
11 Σ12Σ

−1/2
22 . The first sin-

gular vectors c = u1 and d = v1 of the svd Ω =
∑

k σkukv
t
k provide

the solution. Hence, a = Σ
−1/2
11 u1 and b = Σ

−1/2
22 v1. The advantage

of this approach is that one can now define higher-order canonical
correlation vectors from the remaining singular vectors.
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TABLE 11.3. Coronary Disease Data

Disease Cholesterol Blood Pressure
Status Level 1 2 3 4 Total

1 2 3 3 4 12
Coronary 2 3 2 1 3 9

3 8 11 6 6 31
4 7 12 11 11 41

Total 20 28 21 24 93

1 117 121 47 22 307
No Coronary 2 85 98 43 20 246

3 119 209 68 43 439
4 67 99 46 33 245

Total 388 527 204 118 1237
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The MM Algorithm

12.1 Introduction

Most practical optimization problems defy exact solution. In the current
chapter we discuss an optimization method that relies heavily on convexity
arguments and is particularly useful in high-dimensional problems such as
image reconstruction [27]. This iterative method is called the MM algo-
rithm. One of the virtues of the MM acronym is that it does double duty.
In minimization problems, the first M stands for majorize and the second
M for minimize. In maximization problems, the first M stands for minorize
and the second M for maximize. When it is successful, the MM algorithm
substitutes a simple optimization problem for a difficult optimization prob-
lem. Simplicity can be attained by (a) avoiding large matrix inversions, (b)
linearizing an optimization problem, (c) separating the variables of an op-
timization problem, (d) dealing with equality and inequality constraints
gracefully, and (e) turning a nondifferentiable problem into a smooth prob-
lem. In simplifying the original problem, we pay the price of iteration or
iteration with a slower rate of convergence.

Statisticians have vigorously developed a special case of the MM algo-
rithm called the EM algorithm, which revolves around notions of missing
data [6, 32]. We present the EM algorithm in the next chapter. We prefer
to present the MM algorithm first because of its greater generality, its more
obvious connection to convexity, and its weaker reliance on difficult statisti-
cal principles. Readers eager to learn the history of the MM algorithm and
see more applications can consult the survey articles [1, 4, 12, 27, 17, 40].
The book by Steele [38] is an especially good introduction to the art and
science of inequalities.

12.2 Philosophy of the MM Algorithm

A function g(x | xn) is said to majorize a function f(x) at xn provided

f(xn) = g(xn | xn) (12.1)

f(x) ≤ g(x | xn) , x 6= xn.

In other words, the surface x 7→ g(x | xn) lies above the surface f(x) and is
tangent to it at the point x = xn. Here xn represents the current iterate in
a search of the surface f(x). Figure 12.1 provides a simple one-dimensional
example of majorization.

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 189
DOI 10.1007/978-1-4419-5945-4_12, © Springer Science+Business Media, LLC 2010 
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FIGURE 12.1. A Quadratic Majorizing Function for the Piecewise Linear Func-
tion f(x) = |x− 1| + |x− 3| + |x− 4| + |x− 8| + |x− 10| at the Point xn = 6

In the minimization version of the MM algorithm, we minimize the sur-
rogate majorizing function g(x | xn) rather than the actual function f(x).
If xn+1 denotes the minimum of the surrogate g(x | xn), then we can show
that the MM procedure forces f(x) downhill. Indeed, the relations

f(xn+1) ≤ g(xn+1 | xn) ≤ g(xn | xn) = f(xn) (12.2)

follow directly from the definition of xn+1 and the majorization conditions
(12.1). The descent property (12.2) lends the MM algorithm remarkable
numerical stability. Strictly speaking, it depends only on decreasing the
surrogate function g(x | xn), not on minimizing it. This fact has practical
consequences when the minimum of g(x | xn) cannot be found exactly.
When f(x) is strictly convex, one can show with a few additional mild
hypotheses that the iterates xn converge to the global minimum of f(x)
regardless of the initial point x0 [24].

If g(x | xn) majorizes f(x) at an interior point xn of the domain of f(x),
then xn is a stationary point of the difference g(x | xn) − f(x), and the
identity

∇g(xn | xn) = ∇f(xn) (12.3)

holds. Furthermore, the second differential d2g(xn | xn) − d2f(xn) is posi-
tive semidefinite. Problem 2 makes the point that the majorization relation
between functions is closed under the formation of sums, nonnegative prod-
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ucts, limits, and composition with an increasing function. These rules per-
mit one to work piecemeal in simplifying complicated objective functions.
With obvious changes, the MM algorithm also applies to maximization
rather than to minimization. To maximize a function f(x), we minorize it
by a surrogate function g(x | xn) and maximize g(x | xn) to produce the
next iterate xn+1.

The reader might well object that the MM algorithm is not so much
an algorithm as a vague philosophy for deriving an algorithm. The same
objection applies to the EM algorithm. As we proceed through the current
chapter, we hope the various examples will convince the reader of the value
of a unifying principle and a framework for attacking concrete problems.
The strong connection of the MM algorithm to convexity and inequalities
has the natural pedagogical advantage of strengthening skills in these areas.

12.3 Majorization and Minorization

We will feature five methods for constructing majorizing functions. Two of
these simply adapt Jensen’s inequality

f
(∑

i

αiti

)
≤

∑

i

αif(ti)

defining a convex function f(t). It is easy to identify convex functions on
the real line, so the first method composes such a function with a linear
function ctx to create a new convex function of the vector x. Invoking the
definition of convexity with αi = ciyi/c

ty and ti = cty xi/yi then yields

f(ctx) ≤
∑

i

ciyi
cty

f
( cty
yi
xi

)
= g(x | y), (12.4)

provided all of the components of the vectors c, x, and y are positive. The
surrogate function g(x | y) equals f(cty) when x = y. One of the virtues
of applying inequality (12.4) in defining a surrogate function is that it
separates parameters in the surrogate function. This feature is critically
important in high-dimensional problems because it reduces optimization
over x to a sequence of one-dimensional optimizations over each component
xi. The argument establishing inequality (12.4) is equally valid if we replace
the parameter vector x throughout by a vector-valued function h(x) of x.

To relax the positivity restrictions on the vectors c, x, and y, De Pierro
[8] suggested in a medical imaging context the alternative majorization

f(ctx) ≤
∑

i

αif

{
ci
αi

(xi − yi) + cty

}
= g(x | y) (12.5)
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for a convex function f(t). Here all αi ≥ 0,
∑

i αi = 1, and αi > 0 whenever
ci 6= 0. In practice, we must somehow tailor the αi to the problem at hand.
Among the obvious candidates for the αi are

αi =
|ci|p∑
j |cj|p

for p ≥ 0. When p = 0, we interpret αi as 0 if ci = 0 and as 1/q if ci is one
among q nonzero coefficients.

Our third method involves the linear majorization

f(x) ≤ f(y) + df(y)(x − y) = g(x | y) (12.6)

satisfied by any concave function f(x). Once again we can replace the
argument x by a vector-valued function h(x). The most useful concave
function in practice is lnx.

Our fourth method applies to functions f(x) with bounded curvature
[2, 4]. Assuming that f(x) is twice differentiable, we look for a matrix
B satisfying B � d2f(x) and B � 0 in the sense that B − d2f(x) is
positive semidefinite for all x and B is positive definite. The quadratic
bound principle then amounts to the majorization

f(x) = f(y) + df(y)(x − y) +
1

2
(x − y)td2f(z)(x − y)

≤ f(y) + df(y)(x − y) +
1

2
(x − y)tB(x− y) (12.7)

= g(x | y)
of the second-order Taylor expansion of f(x). Here the intermediate point
z occurs on the line segment from x to y.

Our fifth and final method exploits the generalized arithmetic-geometric
mean inequality

m∏

i=1

yαi

i ≤
m∑

i=1

αiyi

for positive numbers yi and αi subject to the constraint
∑m

i=1 αi = 1.
If we put yi = exi , then this inequality is a direct consequence of the
strict convexity of the function ex. Equality holds if and only if all yi
coincide. With this result in mind, Problem 10 asks the reader to prove the
majorization

m∏

i=1

xαi

i ≤
(

m∏

i=1

xαi

ni

)
m∑

i=1

αi
α

(
xi
xni

)α
(12.8)

for positive numbers xi, xni, and αi and sum α =
∑m

i=1 αi. Inequality
(12.8) is the key to separating parameters with posynomials. We will use it
in sketching an MM algorithm for unconstrained geometric programming.
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Any of the first four majorizations can be turned into minorizations by
interchanging the adjectives convex and concave and positive definite and
negative definite, respectively. Of course, there is an art to applying these
methods just as there is an art to applying any mathematical principle. The
five highlighted methods hardly exhaust the possibilities for majorization
and minorization. Several problems at the end of the chapter sketch other
helpful techniques. Readers are also urged to consult the literature on the
MM and EM algorithms for a fuller discussion.

12.4 Linear Regression

Because the function s 7→ (y−s)2 is convex, we can majorize each summand
of the least squares criterion

∑m
i=1(yi − xtiθ)

2 using inequality (12.5). It
follows that

m∑

i=1

(yi − xtiθ)
2 ≤

m∑

i=1

∑

j

αij

[
yi −

xij
αij

(θj − θnj) − xtiθn

]2

= g(θ | θn),

with equality when θ = θn. Minimization of g(θ | θn) yields the updates

θn+1,j = θnj +

∑m
i=1 xij(yi − xtiθn)
∑m

i=1

x2
ij

αij

(12.9)

and avoids matrix inversion [27]. Although it seems plausible to take p = 1
in choosing

αij =
|xij|p∑
k |xik|p

,

conceivably other values of p might perform better. In fact, it might accel-
erate convergence to alternate different values of p as the iterations pro-
ceed. For problems involving just a few parameters, this iterative scheme is
clearly inferior to the usual single-step solution via matrix inversion. Cyclic
coordinate descent also avoids matrix operations, and Problem 12 suggests
that it will converge faster than the MM update (12.9).

Least squares estimation suffers from the fact that it is strongly influ-
enced by observations far removed from their predicted values. In least
absolute deviation regression, we replace

∑m
i=1(yi − xtiθ)

2 by

h(θ) =
m∑

i=1

∣∣∣yi − xtiθ
∣∣∣ =

m∑

i=1

|ri(θ)|, (12.10)

where ri(θ) = yi − xtiθ is the ith residual. We are now faced with mini-
mizing a nondifferentiable function. Fortunately, the MM algorithm can be
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implemented by exploiting the concavity of the function
√
u in inequality

(12.6). Because

√
u ≤ √

un +
u− un
2
√
un

,

we find that

h(θ) =

m∑

i=1

√
r2i (θ)

≤ h(θn) +
1

2

m∑

i=1

r2i (θ) − r2i (θn)√
r2i (θn)

= g(θ | θn).

Minimizing g(θ | θn) is accomplished by minimizing the weighted sum of
squares

m∑

i=1

wi(θn)ri(θ)
2

with ith weight wi(θn) = |ri(θn)|−1. A slight variation of the usual argu-
ment for minimizing a sum of squares leads to the update

θn+1 = [XtW (θn)X]−1XtW (θn)y,

where W (θn) is the diagonal matrix with ith diagonal entry wi(θn). Unfor-
tunately, the possibility that some weight wi(θn) = ∞ cannot be ruled out.
The next section, which generalizes the current MM algorithm to multivari-
ate response vectors and least `p regression, suggests some simple remedies.

12.5 Elliptically Symmetric Densities and `p

Regression

Dutter and Huber [15] introduced an MM algorithm for elliptically sym-
metric densities

f(y) =
e−

1
2κ[δ

2(θ)]

(2π)
k
2 [detΩ(θ)]

1
2

(12.11)

defined for y ∈ R
k, where δ2 = [y − µ(θ)]tΩ−1(θ)[y − µ(θ)] denotes the

Mahalanobis distance between y and µ(θ). For our purposes, it is conve-
nient to assume in addition that the function κ(s) is strictly increasing and
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strictly concave. The multivariate t provides a typical example of an el-
liptically symmetric distribution that can profitably be substituted for the
multivariate normal distribution in robust estimation [28, 29].

For a sequence y1, . . . , ym of independent observations from the ellipti-
cally symmetric density (12.11) with covariance matrices Ω1(θ), . . . ,Ωm(θ)
and means µ1(θ), . . . , µm(θ), the multivariate normal loglikelihood

g(θ | θn) = −1

2

m∑

i=1

[wiδ
2
i (θ) + lndet Ωi(θ)] + c,

with weights wi = κ′[δ2i (θn)] and normalizing constant c minorizes the log-
likelihood L(θ). This follows from inequality (12.6) applied to the concave
function κ(s). The array of techniques from linear algebra for maximizing
the multivariate normal distribution can be brought to bear on maximizing
g(θ | θn). See Problems 15 and 16 for how this works for estimation with the
multivariate t distribution. For normal/independent distributional families,
the Dutter-Huber algorithm usually reduces to an EM algorithm [7, 29].

For 1 ≤ p ≤ 2 and independent univariate observations y1, . . . , ym with
unit variances, the choice κ(s) = sp/2 leads to `p regression. The Dutter-
Huber procedure minimizes

h(θ | θn) =
m∑

i=1

wi(θn)[yi − µi(θ)]
2

at each iteration with weights wi(θn) = |yi − µi(θn)|p−2 as described
in Problem 7. Hence, `p regression can be accomplished by iteratively
reweighted least squares. This algorithm, originally proposed by Schloss-
macher [36] and Merle and Spath [33], is unfortunately plagued by infinite
weights for those observations with zero residuals. To avoid this difficulty,
we can redefine the weights to be

wi(θn) =
1

ε+ |yi − µi(θn)|2−p

for a small ε > 0 [29]. This corresponds to the choice

κ′(s) =
p

2(ε+ s1−p/2)

and also leads to an MM algorithm. The revised algorithm for p = 1 mini-
mizes the criterion

m∑

i=1

{|yi − µi(θ)| − ε ln[ε+ |yi − µi(θ)|]}, (12.12)

which obviously tends to
∑m

i=1 |yi − µi(θ)| as ε → 0. Problem 17 describes
alternative weights for another reasonable criterion.
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12.6 Bradley-Terry Model of Ranking

In the sports version of the Bradley and Terry model [3, 16, 19], each team
i in a league of teams is assigned a rank parameter ri > 0. Assuming ties
are impossible, team i beats team j with probability ri/(ri + rj). If this
outcome occurs yij times during a season of play, then the probability of
the whole season is

L(r) =
∏

i,j

( ri
ri + rj

)yij

,

assuming the games are independent. To rank the teams, we find the values
r̂i that maximize f(r) = lnL(r). The team with largest r̂i is considered
best, the team with smallest r̂i is considered worst, and so forth. In view
of the fact that lnu is concave, inequality (12.6) implies

f(r) =
∑

i,j

yij

[
ln ri − ln(ri + rj)

]

≥
∑

i,j

yij

[
ln ri − ln(rni + rnj) −

ri + rj − rni − rnj
rni + rnj

]

= g(r | rn)

with equality when r = rn. Differentiating g(r | rn) with respect to the
ith component ri of r and setting the result equal to 0 produces the next
iterate

rn+1,i =

∑
j 6=i yij∑

j 6=i(yij + yji)/(rni + rnj)
.

Because L(r) = L(βr) for any β > 0, we constrain r1 = 1 and omit the
update rn+1,1. In this example, the MM algorithm separates parameters
and allows us to maximize g(r | rn) parameter by parameter. Although this
model is less sophisticated than Maher’s model in Example 11.6.2, it does
apply to competitions such as chess that do not involve scoring points.

12.7 A Random Graph Model

Random graphs provide interesting models of connectivity in genetics and
internet node ranking. Here we consider a simplification of the random
graph model of Chatterjee and Diaconis. In this model we assign a propen-
sity pi ≥ 0 to each node i. An edge between nodes i and j then forms
independently with probability pipj/(1 + pipj). The most obvious statis-
tical question about the model is how to estimate the pi from data. Once
this is done, we can rank nodes by their estimated propensities.
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If E denotes the edge set of the graph, then the loglikelihood can be
written as

L(p) =
∑

{i,j}∈E
[ln pi + ln pj] −

∑

{i,j}
ln(1 + pipj). (12.13)

Here {i, j} denotes a generic unordered pair. The logarithms ln(1 + pipj)
are the bothersome terms in the loglikelihood. We will minorize each of
these by exploiting the convexity of the function − ln(1 + x). Application
of inequality (12.6) yields

− ln(1 + pipj) ≥ − ln(1 + pnipnj) −
1

1 + pnipnj
(pipj − pnipnj)

and eliminates the logarithm. Note that equality holds when pi = pni for
all i. This minorization is not quite good enough to separate parameters,
however. Separation can be achieved by invoking the second minorizing
inequality

−pipj ≥ −1

2

(pnj
pni

p2
i +

pni
pnj

p2
j

)
.

Note again that equality holds when all pi = pni.
These considerations imply that up to a constant L(p) is minorized by

the function

g(p | pn) =
∑

{i,j}∈E
[lnpi + lnpj ]−

∑

{i,j}

1

1 + pnipnj

1

2

(pnj
pni

p2
i +

pni
pnj

p2
j

)
.

The fact that g(p | pn) separates parameters allows us to compute pn+1,i

by setting the derivative of g(p | pn) with respect to pi equal to 0. Thus,
we must solve

0 =
∑

j∼i

1

pi
−
∑

j∼i

1

1 + pnipnj

pnj
pni

pi,

where j ∼ i means {i, j} ∈ E. If di =
∑

j∼i 1 denotes the degree of node i,
then the positive square root

pn+1,i =

[
pnidi∑

j∼i
pnj

1+pnipnj

]1/2

(12.14)

is the pertinent solution.
The MM update (12.14) is not particularly intuitive, but it does have

the virtue of algebraic simplicity. When di = 0, it also makes the sensible
choice pn+1,i = 0. As a check on our derivation, observe that a stationary
point of the loglikelihood satisfies

0 =
di
pi

−
∑

j∼i

pj
1 + pipj

,
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which is just a rearranged version of the update (12.14) with iteration
subscripts suppressed.

The MM algorithm just derived carries with it certain guarantees. It is
certain to increase the loglikelihood at every iteration, and if its maximum
value is attained at a unique point, then it will also converge to that point.
Problem 23 states that the loglikelihood is concave under the reparame-
terization pi = e−qi . The requirement of two successive minorizations in
our derivation gives us pause because if minorization is not tight, then
convergence is slow. On the other hand, if the number of nodes is large,
then competing algorithms such as Newton’s method entail large matrix
inversions and are very expensive.

12.8 Linear Logistic Regression

In linear logistic regression, we observe a sequence of independent Bernoulli
trials, each resulting in success or failure. The success probability of the ith
trial

πi(θ) =
ex

t
iθ

1 + ex
t
i
θ

depends on a covariate vector xi and parameter vector θ by analogy with
linear regression. The response yi at trial i equals 1 for a success and 0 for
a failure. In this notation, the likelihood of the data is

L(θ) =
∏

i

πi(θ)
yi [1− πi(θ)]

1−yi .

As usual in maximum likelihood estimation, we pass to the loglikelihood

f(θ) =
∑

i

{yi lnπi(θ) + (1 − yi) ln[1− πi(θ)]}.

Straightforward calculations show that

∇f(θ) =
∑

i

[yi − πi(θ)]xi

d2f(θ) = −
∑

i

πi(θ)[1 − πi(θ)]xix
t
i.

The loglikelihood f(θ) is therefore concave, and we seek to minorize it by a
quadratic rather than majorize it by a quadratic as suggested in inequality
(12.7). Hence, we must identify a matrix B such that B is negative definite
and B − d2f(x) is negative semidefinite for all x. In view of the scalar
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inequality π(1 − π) ≤ 1
4 , we take B = −1

4

∑
i xix

t
i. Maximization of the

minorizing quadratic

f(θn) + df(θn)(θ − θn) +
1

2
(θ − θn)tB(θ − θn)

is a problem we have met before. It does involve inversion of the matrix
B, but once we have computed B−1, we can store and reuse it at every
iteration.

12.9 Unconstrained Geometric Programming

The idea behind these algorithms is best understood in a concrete setting.
Consider the posynomial

f(x) =
1

x3
1

+
3

x1x2
2

+ x1x2

with the implied constraints x1 > 0 and x2 > 0. (Problem 25 defines a
general posynomial.) The majorization (12.8) applied to the third term of
f(x) yields

x1x2 ≤ xn1xn2

[
1

2

(
x1

xn1

)2

+
1

2

(
x2

xn2

)2
]

=
xn2

2xn1
x2

1 +
xn1

2xn2
x2

2.

When we apply the majorization to the second term of f(x) and replace
x1 by x−1

1 and x2 by x−1
2 , we find

3

x1x
2
2

≤ 3

xn1x
2
n2

[
1

3

(
xn1

x1

)3

+
2

3

(
xn2

x2

)3
]

=
x2
n1

x2
n2

1

x3
1

+
2xn2

xn1

1

x3
2

.

The second step of the MM algorithm for minimizing f(x) therefore splits
into minimizing the two surrogate functions

g1(x1 | xn) =
1

x3
1

+
x2
n1

x2
n2

1

x3
1

+
xn2

2xn1
x2

1

g2(x2 | xn) =
2xn2

xn1

1

x3
2

+
xn1

2xn2
x2

2.

If we set the derivatives of each of these equal to 0, then we find the solutions

xn+1,1 = 5

√
3

(
x2
n1

x2
n2

+ 1

)
xn1

xn2
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xn+1,2 = 5

√
6
x2
n2

x2
n1

.

It is obvious that the point x = ( 5
√

6, 5
√

6)t is a fixed point of these equations
and minimizes f(x). Table 12.1 records the iterates of the MM algorithm
ignoring this fact. Convergence is slow but sure.

TABLE 12.1. MM Iterates for a Geometric Program

m xn1 xn2 f(xn)

0 1.00000 2.00000 3.75000
1 1.13397 1.88818 3.56899
2 1.19643 1.75472 3.49766
3 1.24544 1.66786 3.46079
4 1.28395 1.60829 3.44074
5 1.31428 1.56587 3.42942
10 1.39358 1.47003 3.41427
20 1.42699 1.43496 3.41280
30 1.43054 1.43140 3.41279
40 1.43092 1.43101 3.41279
50 1.43096 1.43097 3.41279
51 1.43097 1.43097 3.41279

This analysis carries over to general posynomials except that we cannot
expect to derive explicit solutions of the minimization step. (See Problem
25.) Each separated surrogate function is a posynomial in a single variable.
If the powers appearing in one of these posynomials are integers, then the
derivative of the posynomial is a rational function, and once we equate it
to 0, we are faced with solving a polynomial equation. This can be ac-
complished by bisection or by Newton’s method as discussed in Chapter
5. Introducing posynomial constraints is another matter. Box constraints
ai ≤ xi ≤ bi are consistent with parameter separation as developed here,
but more complicated posynomial constraints that couple parameters are
not.

12.10 Poisson Processes

In preparation for our exposition of transmission tomography in the next
section, we now briefly review the theory of Poisson processes, a topic
from probability of considerable interest in its own right. A Poisson process
involves points randomly scattered in a region S of q-dimensional space R

q

[11, 14, 18, 21]. The notion that the points are concentrated on average
more in some regions than in others is captured by postulating an intensity
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function λ(x) ≥ 0 on S. The expected number of points in a subregion T
is given by the integral ω =

∫
T
λ(x)dx. If ω = ∞, then an infinite number

of random points occur in T . If ω < ∞, then a finite number of random
points occur in T , and the probability that this number equals k is given
by the Poisson probability

pk(ω) =
ωk

k!
e−ω .

Derivation of this formula depends critically on the assumption that the
numbers NTi of random points in disjoint regions Ti are independent ran-
dom variables. This basically means that knowing the values of some of the
NTi tells one nothing about the values of the remaining NTi . The model
also presupposes that random points never coincide.

The Poisson distribution has a peculiar relationship to the multinomial
distribution. Suppose a Poisson random variable Z with mean ω repre-
sents the number of outcomes from some experiment, say an experiment
involving a Poisson process. Let each outcome be independently classified
in one of l categories, the kth of which occurs with probability pk. Then
the number of outcomes Zk falling in category k is Poisson distributed
with mean ωk = pkω. Furthermore, the random variables Z1, . . . , Zl are
independent. Conversely, if Z =

∑l
k=1Zk is a sum of independent Poisson

random variables Zk with means ωk = pkω, then conditional on Z = n,
the vector (Z1, . . . , Zl)

t follows a multinomial distribution with n trials and
cell probabilities p1, . . . , pl. To prove the first two of these assertions, let
n = n1 + · · ·+ nl. Then

Pr(Z1 = n1, . . . , Zl = nl) =
ωn

n!
e−ω

(
n

n1, . . . , nl

) l∏

k=1

pnk

k

=
l∏

k=1

ωnk

k

nk!
e−ωk

=

l∏

k=1

Pr(Zk = nk).

To prove the converse, divide the last string of equalities by the probability
Pr(Z = n) = ωne−ω/n!.

The random process of assigning points to categories is termed coloring in
the stochastic process literature. When there are just two colors, and only
random points of one of the colors are tracked, then the process is termed
random thinning. We will see examples of both coloring and thinning in
the next section.
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FIGURE 12.2. Cartoon of Transmission Tomography

12.11 Transmission Tomography

Problems in medical imaging often involve thousands of parameters. As an
illustration of the MM algorithm, we treat maximum likelihood estimation
in transmission tomography. Traditionally, transmission tomography im-
ages have been reconstructed by the methods of Fourier analysis. Fourier
methods are fast but do not take into account the uncertainties of photon
counts. Statistically based methods give better reconstructions with less
patient exposure to harmful radiation.

The purpose of transmission tomography is to reconstruct the local at-
tenuation properties of the object being imaged [13]. Attenuation is to be
roughly equated with density. In medical applications, material such as
bone is dense and stops or deflects X-rays (high-energy photons) better
than soft tissue. With enough photons, even small gradations in soft tissue
can be detected. A two-dimensional image is constructed from a sequence
of photon counts. Each count corresponds to a projection line L drawn
from an X-ray source through the imaged object to an X-ray detector. The
average number of photons sent from the source along L to the detector
is known in advance. The random number of photons actually detected is
determined by the probability of a single photon escaping deflection or cap-
ture along L. Figure 12.2 shows one such projection line beamed through
a cartoon of the human head.

To calculate this probability, let µ(x1, x2) be the intensity (or attenua-
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tion coefficient) of photon deflection or capture per unit length at position
(x1, x2) in the plane. We can imagine that deflection or capture events oc-
cur completely randomly along L according to a Poisson process. The first
such event effectively prevents the photon from being detected. Thus, the
photon is detected with the Poisson probability p0(ω) = e−ω of no such
events, where

ω =

∫

L

µ(x1, x2)ds

is the line integral of µ(x1, x2) along L. In actual practice, X-rays are
beamed through the object along a large number of different projection
lines. We therefore face the inverse problem of reconstructing a function
µ(x1, x2) in the plane from a large number of its measured line integrals.
Imposing enough smoothness on µ(x1, x2), one can solve this classical de-
terministic problem by applying Radon transform techniques from Fourier
analysis [13].

An alternative to the Fourier method is to pose an explicitly stochastic
model and estimate its parameters by maximum likelihood [25, 26]. The
MM algorithm suggests itself in this context. The stochastic model de-
pends on dividing the object of interest into small nonoverlapping regions
of constant attenuation called pixels. Typically the pixels are squares on a
regular grid as depicted in Figure 12.2. The attenuation attributed to pixel
j constitutes parameter θj of the model. Since there may be thousands of
pixels, implementation of maximum likelihood algorithms such as scoring
or Newton’s method as discussed in Chapter 14 is out of the question.

To summarize our discussion, each observation Yi is generated by beam-
ing a stream of X-rays or high-energy photons from an X-ray source toward
some detector on the opposite side of the object. The observation (or projec-
tion) Yi counts the number of photons detected along the ith line of flight.
Naturally, only a fraction of the photons are successfully transmitted from
source to detector. If lij is the length of the segment of projection line i
intersecting pixel j, then the probability of a photon escaping attenuation
along projection line i is the exponentiated line integral exp(−∑j lijθj).

In the absence of the intervening object, the number of photons gen-
erated and ultimately detected follows a Poisson distribution. We assume
that the mean di of this distribution for projection line i is known. Ide-
ally, detectors are long tubes aimed at the source. If a photon is deflected,
then it is detected neither by the tube toward which it is initially headed
nor by any other tube. In practice, many different detectors collect pho-
tons simultaneously from a single source. If we imagine coloring the tubes,
then each photon is colored by the tube toward which it is directed. Each
stream of colored photons is then thinned by capture or deflection. These
considerations imply that the counts Yi are independent and Poisson dis-
tributed with means di exp(−∑j lijθj). It follows that we can express the
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loglikelihood of the observed data Yi = yi as the finite sum

∑

i

[
− die

−
∑

j
lijθj − yi

∑

j

lijθj + yi ln di − ln yi!
]
. (12.15)

Omitting irrelevant constants, we can rewrite the loglikelihood (12.15) more
succinctly as

L(θ) = −
∑

i

fi(l
t
iθ),

where fi(s) is the convex function die
−s+yis and ltiθ =

∑
j lijθj is the inner

product of the attenuation parameter vector θ and the vector of intersection
lengths li for projection i.

To generate a surrogate function, we majorize each fi(l
t
iθ) according to

the recipe (12.4). This gives the surrogate function

g(θ | θn) = −
∑

i

∑

j

lijθnj
ltiθn

fi

( ltiθn
θnj

θj

)
(12.16)

minorizing L(θ). Here the inner sum ranges over those pixels j with lij > 0.
By construction, maximization of g(θ | θn) separates into a sequence of one-
dimensional problems, each of which can be solved approximately by one
step of Newton’s method. We will take up the details of this in Section
14.8.

The images produced by maximum likelihood estimation in transmis-
sion tomography look grainy. The cure is to enforce image smoothness by
penalizing large differences between estimated attenuation parameters of
neighboring pixels. Geman and McClure [9] recommend multiplying the
likelihood of the data by a Gibbs prior π(θ). Equivalently we add the log
prior

lnπ(θ) = −γ
∑

{j,k}εN
wjkψ(θj − θk)

to the loglikelihood, where γ and the weights wjk are positive constants,
N is a set of unordered pairs {j, k} defining a neighborhood system, and
ψ(r) is called a potential function. This function should be large whenever
|r| is large. Neighborhoods have limited extent. For instance, if the pixels
are squares, we might define the weights by wjk = 1 for orthogonal nearest
neighbors sharing a side and wjk = 1/

√
2 for diagonal nearest neighbors

sharing only a corner. The constant γ scales the overall strength assigned
to the prior. The sum L(θ) + lnπ(θ) is called the logposterior function; its
maximum is the posterior mode.

Choice of the potential function ψ(r) is the most crucial feature of the
Gibbs prior. It is convenient to assume that ψ(r) is even and strictly convex.
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Strict convexity of ψ(r) leads to the strict concavity of the log posterior
function L(θ) + lnπ(θ) and permits simple modification of the MM algo-
rithm based on the surrogate function g(θ | θn) defined by equation (12.16).
Many potential functions exist satisfying these conditions. One natural ex-
ample is ψ(r) = r2. This choice unfortunately tends to deter the formation
of boundaries. The gentler alternatives ψ(r) =

√
r2 + ε for a small positive

ε and ψ(r) = ln[cosh(r)] are preferred in practice [10]. Problem 30 asks the
reader to verify some of the properties of these two potential functions.

One adverse consequence of introducing a prior is that it couples pairs of
parameters in the maximization step of the MM algorithm for finding the
posterior mode. One can decouple the parameters by exploiting the con-
vexity and evenness of the potential function ψ(r) through the inequality

ψ(θj − θk) = ψ
(1

2

[
2θj − θnj − θnk

]
+

1

2

[
− 2θk + θnj + θnk

])

≤ 1

2
ψ(2θj − θnj − θnk) +

1

2
ψ(2θk − θnj − θnk),

which is strict unless θj + θk = θnj + θnk. This inequality allows us to
redefine the surrogate function as

g(θ | θn)

= −
∑

i

∑

j

lijθnj
ltiθn

fi

( ltiθn
θnj

θj

)

−γ
2

∑

{j,k}εN
wjk[ψ(2θj − θnj − θnk) + ψ(2θk − θnj − θnk)].

Once again the parameters are separated, and the maximization step re-
duces to a sequence of one-dimensional problems. Maximizing g(θ | θn)
drives the logposterior uphill and eventually leads to the posterior mode.

12.12 Problems

1. Code and test any of the algorithms discussed in the text or problems
of this chapter.

2. Prove that the majorization relation between functions is closed under
the formation of sums, nonnegative products, maxima, limits, and
composition with an increasing function. In what sense is the relation
also transitive?

3. Demonstrate the majorizing and minorizing inequalities

xq ≤ qxq−1
n x+ (1 − q)xqn
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lnx ≤ x

xn
+ lnxn − 1

x lnx ≤ x2

xn
+ x lnxn − x

‖x‖2 ≥ xtnx

‖xn‖2

xy ≤ yn
2xn

x2 +
xn
2yn

y2

−xy ≤ −xnyn
[
1 + ln

( x
xn

)
+ ln

( y
yn

)]

1

x
≤ 1

xn
− x− xn

x2
n

+
(x− xn)2

c3
.

Determine the relevant domains of each variable q, x, xn, y, yn, and
c, and check that equality occurs in each of the inequalities when
x = xn and y = yn [12].

4. As alternatives to the fifth and sixth examples of Problem 3, demon-
strate the majorizations

xy ≤ 1

2
(x2 + y2) +

1

2
(xn − yn)2 − (xn − yn)(x− y)

−xy ≤ 1

2
(x2 + y2) +

1

2
(xn + yn)2 − (xn + yn)(x+ y)

valid for all values of x, y, xn, and yn.

5. Based on Problem 4, devise an MM algorithm to minimize Rosen-
brock’s function

f(x) = 100(x2
1 − x2)

2 + (x1 − 1)2.

Show that up to an irrelevant constant f(x) is majorized by the sum
of the two functions

g1(x1 | xn1, xn2) = 200x4
1 − [200(x2

n1 + xn2) − 1]x2
1 − 2x1

g2(x2 | xn1, xn2) = 200x2
2 − 200(x2

n1 + xn2)x2.

Hence at each iteration one must minimize a quartic in x1 and a
quadratic in x2. Implement this MM algorithm, and check whether
it converges to the global minimum of f(x) at x = 1.

6. Prove van Ruitenburg’s [39] minorization

lnx ≥ −3xn
2x

− x

2xn
+ lnxn + 2 .

Deduce the further minorization

x lnx ≥ −3xn
2

− x2

2xn
+ x lnxn + 2x .
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7. Suppose p ∈ [1, 2] and xn 6= 0. Verify the majorizing inequality

|x|p ≤ p

2
|xn|p−2x2 +

(
1 − p

2

)
|xn|p.

8. Let P be an orthogonal projection onto a subspace of R
m. Demon-

strate the majorization

‖Px‖2
2 ≤ ‖x− xn‖2

2 + 2(x− xn)
tPxn + ‖Pxn‖2

2.

9. The majorization

|x| ≤ 1

2|xn|
(
x2 + x2

n

)
(12.17)

for xn 6= 0 is a special case of Problem 7. Use (12.17) and the identity

max{x, y} =
1

2
|x− y| + 1

2
x+

1

2
y

to majorize max{x, y} when xn 6= yn. Note that your majorization
contains the product xy up to a negative factor. Describe how one
can invoke Problem 3 or Problem 4 to separate x and y.

10. Prove the majorization (12.8) of the text.

11. Consider the function

f(x) =
1

4
x4 − 1

2
x2.

This function has global minima at x = ±1 and a local maximum at
x = 0. Show that the function

g(x | xn) =
1

4
x4 +

1

2
x2
n − xxn

majorizes f(x) at xn and leads to the MM update xn+1 = 3
√
xn.

Prove that the alternative update xn+1 = − 3
√
xn leads to the same

value of f(x), but the first update always converges while the second
oscillates in sign and has two converging subsequences [5].

12. In the regression algorithm (12.9), let p tend to 0. If there are q
predictors and all xij are nonzero, then show that αij = 1/q. This
leads to the update

θn+1,j = θnj +

∑m
i=1 xij(yi − xtiθn)

q
∑m

i=1 x
2
ij

.
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On the other hand, argue that cyclic coordinate descent yields the
update

θn+1,j = θnj +

∑m
i=1 xij(yi − xtiθn)∑m

i=1 x
2
ij

,

which definitely takes larger steps.

13. A number µ is said to be a q quantile of the m numbers x1, . . . , xm
if it satisfies

1

m

∑

i:xi≤µ
1 ≥ q,

1

m

∑

i:xi≥µ
1 ≥ 1 − q .

If we define

ρq(r) =

{
qr r ≥ 0
(1 − q)|r| r < 0 ,

then demonstrate that µ is a q quantile if and only if µ minimizes the
function fq(ω) =

∑m
i=1 ρq(xi − ω). Medians correspond to the case

q = 1/2.

14. Continuing Problem 13, show that the function ρq(r) is majorized by
the quadratic

ζq(r | rn) =
1

4

[
r2

|rn|
+ (4q − 2)r + |rn|

]
.

Deduce from this majorization the MM algorithm

µn+1 =
m(2q − 1) +

∑m
i=1 wnixi∑m

i=1wni

wni =
1

|xi − µn|

for finding a q quantile. This interesting algorithm involves no sorting,
only arithmetic operations.

15. The multivariate t-distribution has density

f(x) =
Γ
[
ν+p
2

]

Γ
(
ν
2

)
(νπ)p/2(detΩ)1/2

[
1 + 1

ν (x− µ)tΩ−1(x− µ)
](ν+p)/2

for all x ∈ R
p. Here µ is the location vector, Ω is the positive definite

scale matrix, and ν > 0 is the degrees of freedom. Let x1, . . . , xm be a
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random sample from this density. Following Section 12.5, derive the
MM algorithm

µn+1 =

∑m
i=1 wnixi∑m
i=1wni

Ωn+1 =
1

m

m∑

i=1

wni(xi − µn+1)(xi − µn+1)
t

for estimating µ and Ω when ν is fixed, where

wni =
ν + p

ν + δ2ni
, δ2ni = (xi − µn)

tΩ−1
n (xi − µn).

(Hint: Extend the logic of Example 11.2.3.)

16. Continuing Problem 15, let sn =
∑m

i=1 wni be the sum of the case
weights. Kent et al. [20] suggest an alternative algorithm that replaces
the MM update for Ω by

Ωn+1 =
1

sn

m∑

i=1

wni(xi − µn+1)(xi − µn+1)
t.

The update for µ remains the same. To justify this update, take
a = 1/(ν + p) and prove the minorization

−m
2

ln detΩ − ν + p

2

m∑

i=1

ln[ν + (xi − µ)tΩ−1(xi − µ)]

= −ν + p

2

m∑

i=1

ln{(det Ω)a[ν + (xi − µ)tΩ−1(xi − µ)]}

≥ −
m∑

i=1

wni
2(detΩn)a

{(det Ω)a[ν + (xi − µ)tΩ−1(xi − µ)]} + cn

of the loglikelihood, where cn is an irrelevant constant depending on
neither µ nor Ω. Now argue as in Example 11.2.3. This alternative
MM update exhibits much faster convergence than the traditional
update of Problem 15.

17. Suppose for a small positive number ε we minimize the function

hε(θ) =

m∑

i=1




[
yi −

q∑

j=1

xijθj

]2
+ ε





1/2

instead of the function

h(θ) =

m∑

i=1

|yi − µi(θ)|.
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Show that the MM algorithm of Section 12.5 applies with revised
weights

wi(θn) =
1√

[yi − µi(θn)]2 + ε
.

18. In `1 regression, show that the maximum likelihood estimate satisfies
the equality

m∑

i=1

sgn[yi − µi(θ)]∇µi(θ) = 0,

provided no residual yi−µi(θ) = 0 and the regression functions µi(θ)
are differentiable. What are the corresponding equalities for `p re-
gression and the modified `1 criterion (12.12)?

19. Problem 23 of Chapter 11 deals with minimizing the quadratic func-
tion f(x) = 1

2
xtAx+ btx+ c subject to the constraints xi ≥ 0. If one

drops the assumption that A = (aij) is positive definite, it is still pos-
sible to devise an MM algorithm. Define matrices A+ and A− with
entries max{aij, 0} and −min{aij, 0}, respectively. Based on the fifth
and sixth majorizations of Problem 2, derive the MM updates

xn+1,i = xn,i

[
−bi +

√
b2i + 4(A+xn)i(A−xn)i

2(A+xn)i

]

of Sha et al [37]. All entries of the initial point x0 should be positive.

20. Show that the loglikelihood f(r) = lnL(r) of the Bradley-Terry model
in Section 12.6 is concave under the reparameterization ri = eθi .

21. In the Bradley-Terry model of Section 12.6, suppose we want to in-
clude the possibility of ties [16]. One way of doing this is to write the
probabilities of the three outcomes of i versus j as

Pr(i wins) =
ri

ri + rj + θ
√
rirj

Pr(i ties) =
θ
√
rirj

ri + rj + θ
√
rirj

Pr(i loses) =
rj

ri + rj + θ
√
rirj

,

where θ > 0 is an additional parameter to be estimated. Let yij
represent the number of times i beats j and tij the number of times
i ties j. Prove that the loglikelihood of the data is

L(θ, r) =
∑

i,j

(
yij ln

ri
ri + rj + θ

√
rirj

+
tij
2

ln
θ
√
rirj

ri + rj + θ
√
rirj

)
.
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One way of maximizingL(θ, r) is to alternate between updating θ and
r. Both of these updates can be derived from the perspective of the
MM algorithm. Two minorizations are now involved. The first pro-
ceeds using the convexity of − ln t just as in the text. This produces
a function involving −√

rirj terms. Use the minorization

−√
rirj ≥ −ri

2

√
rnj
rni

− rj
2

√
rni
rnj

,

to minorize L(θ, r). Finally, determine rn+1 for θ fixed at θn and θn+1

for r fixed at rn+1. The details are messy, but the overall strategy is
straightforward.

22. In the linear logistic model of Section 12.8, it is possible to separate
parameters and avoid matrix inversion altogether. In constructing a
minorizing function, first prove the inequality

ln[1 − π(θ)] = − ln
(
1 + ex

t
iθ
)

≥ − ln
(
1 + ex

t
iθn

)
− ex

t
iθ − ex

t
iθn

1 + ex
t
i
θn

,

with equality when θ = θn. This eliminates the log terms. Now apply
the arithmetic-geometric mean inequality to the exponential func-
tions ex

t
iθ to separate parameters. Assuming that θ has n components

and that there are k observations, show that these maneuvers lead to
the minorizing function

g(θ | θn) = − 1

n

k∑

i=1

ex
t
iθn

1 + ex
t
i
θn

n∑

j=1

enxij(θj−θnj) +

k∑

i=1

yix
t
iθ

up to a constant that does not depend on θ. Finally, prove that max-
imizing g(θ | θn) consists in solving the transcendental equation

−
k∑

i=1

ex
t
iθnxije

−nxijθnj

1 + ex
t
iθn

enxijθj +

k∑

i=1

yixij = 0

for each j. This can be accomplished numerically.

23. Prove that the loglikelihood (12.13) in the random graph model is
concave under the reparameterization pi = e−qi .

24. In many cases, a random directed graph is more meaningful than a
random undirected graph. With a directed graph we deal with ordered
pairs (j, k) called arcs rather than unordered pairs {j, k} called edges.
Let A be the set of arcs generated by a random graph. To each node



212 12. The MM Algorithm

j we assign two nonnegative propensities pj and qj. The probability
that an arc forms from j to k is then pjqk/(1+pjqk). The object of this
exercise is to design an MM algorithm to estimate the propensities.
Show that the loglikelihood of A amounts to

L(p, q) =
∑

(j,k)∈A
[ln pj + ln qk]−

∑

(j,k)

ln(1 + pjqk).

Minorize L(p, q) and derive the MM updates

pn+1,j =

[
pnjoj∑

k 6=j
qnk

1+pnjqnk

]1/2

qn+1,k =

[
qnkik∑

j 6=k
pnj

1+pnjqnk

]1/2

,

where oj is the number of outgoing arcs from j and ik is the number
of incoming arcs to k.

25. Consider the general posynomial of m variables

f(x) =
∑

α

cαx
α1
1 · · ·xαm

m

subject to the constraints xi > 0 for each i. We can assume that at
least one αi > 0 and at least one αi < 0 for every i. Otherwise, f(x)
can be reduced by sending xi to ∞ or 0. Demonstrate that f(x) is
majorized by the sum

g(x | xn) =

m∑

i=1

gi(xi | xn)

gi(xi | xn) =
∑

α

cα




m∏

j=1

x
αj

nj


 |αi|

‖α‖1

(
xi
xni

)‖α‖1 sgn(αi)

,

where ‖α‖1 =
∑m

j=1 |αj| and sgn(αi) is the sign function. To prove
that the MM algorithm is well defined and produces iterates with
positive entries, demonstrate that

lim
xi→∞

gi(xi | xn) = lim
xi→0

gi(xi | xn) = ∞.

Finally change variables by setting

yi = lnxi

hi(yi | xn) = gi(xi | xn)
for each i. Show that hi(yi | xn) is strictly convex in yi and therefore
possesses a unique minimum point. The latter property carries over
to the surrogate function gi(xi | xn).
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26. Devise MM algorithms based on Problem 25 to minimize the posy-
nomials

f1(x) =
1

x1x2
2

+ x1x
2
2

f2(x) =
1

x1x2
2

+ x1x2.

In the first case, demonstrate that the MM algorithm iterates accord-
ing to

xn+1,1 = 3

√
x2
n1

x2
n2

, xn+1,2 = 3

√
xn2

xn1
.

Furthermore, show that (a) f1(x) attains its minimum value of 2
whenever x1x

2
2 = 1, (b) the MM algorithm converges after a single

iteration to the value 2, and (c) the converged point x1 depends on
the initial point x0. In the second case, demonstrate that the MM
algorithm iterates according to

xn+1,1 = 5

√
x3
n1

x3
n2

, xn+1,2 = 5

√
2
x2
n2

x2
n1

.

Furthermore, show that (a) the infimum of f2(x) is 0, (b) the MM
algorithm satisfies the identities

xn1x
3/2
n2 = 23/10, xn+1,2 = 22/25xn2

for all n ≥ 2, and (c) the minimum value 0 is attained asymptotically
with xn1 tending to 0 and xn2 tending to ∞.

27. A general posynomial of m variables can be represented as

h(y) =
∑

α∈S
cαe

αty

in the parameterization yi = lnxi. Here the index set S ⊂ R
m is finite

and the coefficients cα are positive. Show that h(y) is strictly convex
if and only if the power vectors {α}α∈S span R

m.

28. Show that the loglikelihood (12.15) for the transmission tomography
model is concave. State a necessary condition for strict concavity in
terms of the number of pixels and the number of projections.

29. In the maximization phase of the MM algorithm for transmission
tomography without a smoothing prior, demonstrate that the exact
solution of the one-dimensional equation

∂

∂θj
g(θ | θn) = 0
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exists and is positive when
∑
i lijdi >

∑
i lijyi. Why would this con-

dition typically hold in practice?

30. Prove that the functions ψ(r) =
√
r2 + ε and ψ(r) = ln[cosh(r)] are

even, strictly convex, infinitely differentiable, and asymptotic to |r|
as |r| → ∞.

31. In the dictionary model of motif finding [35], a DNA sequence is
viewed as a concatenation of words independently drawn from a dic-
tionary having the four letters A, C, G, and T. The words of the
dictionary of length k have collective probability qk. The EM algo-
rithm offers one method of estimating the qk. Omitting many details,
the EM algorithm maximizes the function

Q(q | qn) =

l∑

k=1

cnk ln qk − ln
( l∑

k=1

kqk

)
.

Here the constants cnk are positive, l is the maximum word length,
and maximization is performed subject to the constraints qk ≥ 0 for
k = 1, . . . , l and

∑l
k=1 qk = 1. Because this problem can not be solved

in closed form, it is convenient to follow the EM minorization with a
second minorization based on the inequality

lnx ≤ ln y + x/y − 1. (12.18)

Application of inequality (12.18) produces the minorizing function

h(q | qn) =

l∑

k=1

cnk ln qk − ln
( l∑

k=1

kqnk

)
− dn

l∑

k=1

kqk + 1

with dn = 1/(
∑l

k=1 kqnk).

(a) Show that the function h(q | qn) minorizes Q(q | qn).
(b) Maximize h(q | qn) using the method of Lagrange multipliers.

At the current iteration, show that the solution has components

qk =
cnk

dnk − λ

for an unknown Lagrange multiplier λ.

(c) Using the constraints, prove that λ exists and is unique.

(d) Describe a reliable method for computing λ.

(e) As an alternative to the exact method, construct a quadratic
approximation to h(q | qn) near qn of the form

1

2
(q − qn)

tA(q − qn) + bt(q − qn) + a.

In particular, what are A and b?
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(f) Show that the quadratic approximation has maximum

q = qn −A−1
(
b− 1tA−1b

1tA−11
1
)

(12.19)

subject to the constraint
∑l

k=1(qk − qnk) = 0.

(g) In the dictionary model, demonstrate that the solution (12.19)
takes the form

qj = qnj +
(qnj)

2

cnj


cnj
qnj

− dnj −
1 −∑l

k=1 dnk
(qnk)2

cnk∑l
k=1

(qnk)2

cnk




for the jth component of q.

(h) Point out two potential pitfalls of this particular solution in
conjunction with maximizing h(q | qn).

32. In the balanced ANOVA model with two factors, we estimate the
parameter vector θ = (µ, αt, βt)t by minimizing the sum of squares

f(θ) =

I∑

i=1

J∑

j=1

K∑

k=1

wijk(yijk − µ− αi − βj)
2

with all weights wijk = 1. If some of the observations yijk are missing,
then we take the corresponding weights to be 0. The missing obser-
vations are now irrelevant, but it is possible to replace each one by
its predicted value

ŷijk = µ+ αi + βj .

If there are missing observations, de Leeuw [4] notes that

g(θ | θn) =

I∑

i=1

J∑

j=1

K∑

k=1

(zijk − µ − αi − βj)
2

majorizes f(θ) provided we define

zijk =

{
yijk for a regular observation
ŷijk(θn) for a missing observation.

Prove this fact and calculate the MM update of θ subject to the
constraints

∑I
i=1 αi = 0 and

∑J
j=1 βj = 0.

33. Inequality (12.5) generates many novel MM algorithms. Consider
maximizing a loglikelihood L(θ) = −∑p

i=1 fi(c
t
iθ), where ctiθ denotes

an inner product and each function fi(r) is strictly convex. If each
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fi(r) is twice continuously differentiable, then show that L(θ) has
observed information matrix −d2L(θ) =

∑p
i=1 f

′′
i (ctiθ)cic

t
i. Therefore

L(θ) is strictly concave whenever each f ′′i (r) is strictly positive and
the ci span the domain of θ.

Now assume nonnegative constants λij are given with λij > 0 when
cij 6= 0 and with

∑q
j=1 λij = 1. If Si = {j : λij > 0}, then demon-

strate the inequality

−
p∑

i=1

fi(c
t
iθ) ≥ −

p∑

i=1

∑

j∈Si

λijfi

[ cij
λij

(θj − θnj) + ctiθn

]

= g(θ | θn), (12.20)

with equality when θ = θn. Thus, g(θ | θn) minorizes L(θ) and sepa-
rates the parameters. Prove that g(θ | θn) attains its maximum when

∑

i∈Tj

f ′i

[ cij
λij

(θj − θnj) + ctiθn

]
cij = 0 (12.21)

holds for all j, where Tj = {i : λij > 0}. Check that one step of
Newton’s method provides the approximate maximum

θn+1,j = θnj −
[∑

i∈Tj

f ′′i (ctiθn)
c2ij
λij

]−1 ∑

i∈Tj

f ′i(c
t
iθn)cij. (12.22)

The case fi(ri) = (yi − ri)
2 was studied in Section 12.4. The update

(12.22) is a special case of the MM gradient algorithm explored in
Section 14.8.

34. Continuing Problem 33, show that the functions

fi(r) = −yir +mi ln(1 + er)

fi(r) = −mir + yi ln(1 + er)

fi(r) = −yir + er

fi(r) = νir + yie
−r

are strictly convex and provide up to sign loglikelihoods for the bino-
mial, negative binomial, Poisson, and gamma densities, respectively.
For the binomial, let yi be the number of successes in mi trials. For
the negative binomial, let yi be the number of trials until mi suc-
cesses. In both cases, p = er/(er + 1) is the success probability. For
the Poisson, let er be the mean. Finally, for the gamma, let er be the
scale parameter, assuming the shape parameter νi is fixed. For each
density, equation (12.21) determining θn+1,j appears analytically in-
tractable, but presumably the update (12.22) is viable. This problem
has obvious implications for logistic and Poisson regression.
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35. Continuing Problem 33, suppose fi(r) = |yi − r|. These nondifferen-
tiable functions correspond to `1 regression. Show that the maximum
of the surrogate function Q(θ | θn) defined in (12.20) has jth compo-
nent θn+1,j minimizing

s(θj ) =
∑

i∈Tj

wi|di − θj |

wi = |cij|

di = θnj + (yi − ctiθn)
λij
cij

,

where Tj = {i : λij > 0}. The function s(θj ) can be minimized by
Edgeworth’s algorithm as described in Section 16.5.1.

36. Luce’s model [30, 31] is a convenient scheme for ranking items such
as candidates in an election, consumer goods in a certain category,
or academic departments in a reputational survey. Some people will
be too lazy or uncertain to rank each and every item, preferring to
focus on just their top choices. How can we use this form of limited
voting to rank the entire set of items? A partial ranking by a per-
son is a sequence of random choices X1, . . . , Xm, with X1 the highest
ranked item, X2 the second highest ranked item, and so forth. If there
are r items, then the index m may be strictly less than r; m = 1 is
a distinct possibility. The data arrive at our doorstep as a random
sample of s independent partial rankings, which we must integrate in
some coherent fashion. One possibility is to adopt multinomial sam-
pling without replacement. This differs from ordinary multinomial
sampling in that once an item is chosen, it cannot be chosen again.
However, remaining items are selected with the conditional probabil-
ities dictated by the original sampling probabilities. Show that the
likelihood under Luce’s model reduces to

s∏

i=1

Pr(Xi1 = xi1, . . . , Ximi = ximi)

=

s∏

i=1

pxi1

mi−1∏

j=1

pxi,j+1∑
k 6∈{xi1,...,xij} pk

,

where xij is the jth choice out of mi choices for person i and pk is
the multinomial probability assigned to item k. If we can estimate
the pk, then we can rank the items accordingly. Thus, the item with
largest estimated probability is ranked first and so on.

The model has the added virtue of leading to straightforward esti-
mation by the MM algorithm [16]. Use the supporting hyperplane
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inequality

− ln t ≥ − ln tn − 1

tn
(t− tn).

to generate the minorization

Q(p | pn) =
s∑

i=1

mi∑

j=1

lnpxij −
s∑

i=1

mi−1∑

j=1

wnij
∑

k 6∈{xi1,...,xij}
pk

of the loglikelihood up to an irrelevant constant. Specify the positive
weights wnij and derive the maximization step of the MM algorithm.
Show that your update has the intuitive interpretation of equating
the expected number of choices of item k to the observed number of
choices of item k across all voters. Finally, generalize the model so
that person i’s choices are limited to a subset Si of the items. For
instance, in rating academic departments, some people may only feel
competent to rank those departments in their state or region. What
form does the MM algorithm take in this setting?
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13

The EM Algorithm

13.1 Introduction

Maximum likelihood is the dominant form of estimation in applied statis-
tics. Because closed-form solutions to likelihood equations are the exception
rather than the rule, numerical methods for finding maximum likelihood
estimates are of paramount importance. In this chapter we study maxi-
mum likelihood estimation by the EM algorithm [2, 8, 9], a special case
of the MM algorithm. At the heart of every EM algorithm is some notion
of missing data. Data can be missing in the ordinary sense of a failure to
record certain observations on certain cases. Data can also be missing in a
theoretical sense. We can think of the E (expectation) step of the algorithm
as filling in the missing data. This action replaces the loglikelihood of the
observed data by a minorizing function, which is then maximized in the
M step. Because the surrogate function is usually much simpler than the
likelihood, we can often solve the M step analytically. The price we pay for
this simplification is iteration. Reconstruction of the missing data is bound
to be slightly wrong if the parameters do not already equal their maximum
likelihood estimates.

One of the advantages of the EM algorithm is its numerical stability.
As an MM algorithm, any EM algorithm leads to a steady increase in
the likelihood of the observed data. Thus, the EM algorithm avoids wildly
overshooting or undershooting the maximum of the likelihood along its
current direction of search. Besides this desirable feature, the EM algo-
rithm handles parameter constraints gracefully. Constraint satisfaction is
by definition built into the solution of the M step. In contrast, compet-
ing methods of maximization must employ special techniques to cope with
parameter constraints. The EM algorithm shares some of the negative fea-
tures of the more general MM algorithm. For example, the EM algorithm
often converges at an excruciatingly slow rate in a neighborhood of the
maximum point. This rate directly reflects the amount of missing data in
a problem. In the absence of concavity, there is also no guarantee that the
EM algorithm will converge to the global maximum. The global maximum
can usually be reached by starting the parameters at good but suboptimal
estimates such as method-of-moments estimates or by choosing multiple
random starting points.

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 223
DOI 10.1007/978-1-4419-5945-4_13, © Springer Science+Business Media, LLC 2010 



224 13. The EM Algorithm

13.2 General Definition of the EM Algorithm

A sharp distinction is drawn in the EM algorithm between the observed,
incomplete data Y and the unobserved, complete data X of a statistical
experiment [2, 8, 13]. Some function t(X) = Y collapses X onto Y . For
instance, if we represent X as (Y, Z), with Z as the missing data, then t is
simply projection onto the Y component of X. The definition of X is left
up to the intuition and cleverness of the statistician. The general idea is to
choose X so that maximum likelihood estimation becomes trivial for the
complete data.

The complete data are assumed to have a probability density f(x | θ)
that is a function of a parameter vector θ as well as of the value x of the
complete data X. In the E step of the EM algorithm, we calculate the
conditional expectation

Q(θ | θn) = E[lnf(X | θ) | Y = y, θn ].

Here y is the actual observed data, and θn is the current estimated value of
θ. In the M step, we maximize Q(θ | θn) with respect to θ. This yields the
new parameter estimate θn+1, and we repeat this two-step process until
convergence occurs. Note that θ and θn play fundamentally different roles
in Q(θ | θn).

If lng(y | θ) denotes the loglikelihood of the observed data, then the EM
algorithm enjoys the ascent property

lng(y | θn+1) ≥ lng(y | θn).

The proof of this assertion in the next section unfortunately involves mea-
sure theory, so some readers may want to take it on faith and move on to
the practical applications of the EM algorithm.

13.3 Ascent Property of the EM Algorithm

The information inequality at the heart of the EM algorithm is a conse-
quence of Jensen’s inequality, which relates convex functions to expecta-
tions. Section 11.5 reviews the various ways of defining a convex function.

Proposition 13.3.1 (Jensen’s Inequality) Assume that the values of
the random variable W are confined to the possibly infinite interval (a, b).
If h(w) is convex on (a, b), then E[h(W )] ≥ h[E(W )], provided both expec-
tations exist. For a strictly convex function h(w), equality holds in Jensen’s
inequality if and only if W = E(W ) almost surely.

Proof: For the sake of simplicity, assume that h(w) is differentiable. If we
let u = E(W ), then it is clear that u belongs to the interval (a, b). In the
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E(W)

E[g(W)]

h(w)

g(w)

FIGURE 13.1. Geometric Proof of Jensen’s Inequality

supporting hyperplane inequality

h(w) ≥ h(u) + h′(u)(w − u), (13.1)

substitute the random variable W for the point w and take expectations.
It follows that

E[h(W )] ≥ h(u) + h′(u)[E(W ) − u] = h(u).

If h(w) is strictly convex, then inequality (13.1) is strict whenever w 6= u.
Hence, for equality to prevail, W = E(W ) must hold with probability 1.
Figure 13.1 visually summarizes the proof. Here the straight line g(w) is
tangent to the convex function h(w) at w = E(W ).

Proposition 13.3.2 (Information Inequality) Let f and g be probabil-
ity densities with respect to a measure µ. Suppose f > 0 and g > 0 almost
everywhere relative to µ. If Ef denotes expectation with respect to the prob-
ability measure fdµ, then Ef (lnf) ≥ Ef(ln g), with equality only if f = g
almost everywhere relative to µ.

Proof: Because − ln(w) is a strictly convex function on (0,∞), Jensen’s
inequality applied to the random variable g/f implies

Ef(ln f) − Ef(ln g) = Ef

(
− ln

g

f

)

≥ − ln Ef

( g
f

)
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= − ln

∫
g

f
fdµ

= − ln

∫
g dµ

= 0.

Equality holds only if g/f = Ef (g/f) almost everywhere relative to µ. But
Ef(g/f) = 1.

To prove the ascent property of the EM algorithm, it suffices to demon-
strate the minorization inequality

lng(y | θ) ≥ Q(θ | θn) + ln g(y | θn) −Q(θn | θn), (13.2)

where Q(θ | θn) = E[lnf(X | θ) | Y = y, θn ]. With this end in mind, note
that both f(x | θ)/g(y | θ) and f(x | θn)/g(y | θn) are conditional densities
of X on the set {x : t(x) = y} with respect to some measure µy. The
information inequality now indicates that

Q(θ | θn) − ln g(y | θ) = E

{
ln

[
f(X | θ)
g(Y | θ)

]
| Y = y, θn

}

≤ E

{
ln

[
f(X | θn)

g(Y | θn)

]
| Y = y, θn

}

= Q(θn | θn) − ln g(y | θn).

Given the minorization (13.2), the proof of the ascent property parallels
the proof of the descent property (12.2). Strict inequality occurs when the
conditional density f(x | θ)/g(y | θ) differs at the parameter points θn and
θn+1 or when Q(θn+1 | θn) > Q(θn | θn).

13.3.1 Technical Note

The preceding proof is a little vague as to the meaning of the conditional
density f(x | θ)/g(y | θ) and its associated measure µy. Commonly the
complete data decompose as X = (Y, Z), where Z is considered the missing
data and t(Y, Z) = Y is projection onto the observed data. Suppose (Y, Z)
has joint density f(y, z | θ) relative to a product measure ω×µ (y, z); ω and
µ are typically Lebesgue measure or counting measure. In this framework,
we define g(y | θ) =

∫
f(y, z | θ)dµ(z) and set µy = µ. The function g(y | θ)

serves as a density relative to ω. To check that these definitions make sense,
it suffices to prove that

∫
h(y, z)f(y, z | θ)/g(y | θ) dµ(z) is a version of the

conditional expectation E[h(Y, Z) | Y = y] for every well-behaved function
h(y, z). This assertion can be verified by showing

E{1S(Y ) E[h(Y, Z) | Y ]} = E[1S(Y )h(Y, Z)]
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for every measurable set S. With

E[h(Y, Z) | Y = y] =

∫
h(y, z)

f(y, z | θ)
g(y | θ) dµ(z),

we calculate

E{1S(Y ) E[h(Y, Z) | Y ]} =

∫

S

∫
h(y, z)

f(y, z | θ)
g(y | θ) dµ(z)g(y | θ) dω(y)

=

∫

S

∫
h(y, z)f(y, z | θ) dµ(z) dω(y)

= E[1S(Y )h(Y, Z)].

Hence in this situation, f(x | θ)/g(y | θ) is indeed the conditional density
of X given Y = y.

13.4 Missing Data in the Ordinary Sense

The most common application of the EM algorithm is to data missing in
the ordinary sense. For example, Problem 32 of Chapter 12 considers a bal-
anced ANOVA model with two factors. Missing observations in this setting
break the symmetry that permits explicit solution of the likelihood equa-
tions. Thus, there is ample incentive for filling in the missing observations.
If the observations follow an exponential model, and missing data are miss-
ing completely at random, then the EM algorithm replaces the sufficient
statistic of each missing observation by its expected value.

The density of a random variable Y from an exponential family can be
written as

f(y | θ) = g(y)eβ(θ)+h(y)t γ(θ) (13.3)

relative to some measure ν [3, 11]. The normal, Poisson, binomial, nega-
tive binomial, gamma, beta, and multinomial families are prime examples
of exponential families. The function h(y) in equation (13.3) is the suffi-
cient statistic. The maximum likelihood estimate of the parameter vector
θ depends on an observation y only through h(y). Predictors of y are in-
corporated into the functions β(θ) and γ(θ).

To fill in a missing observation y, we take the ordinary expectation

E[lnf(Y | θ) | θn ] = E[lng(Y ) | θn] + β(θ) + E[h(Y ) | θn]tγ(θ)

of the complete data loglikelihood. This function is added to the loglikeli-
hood of the regular observations y1, . . . , ym to generate the surrogate func-
tion Q(θ | θn). For example, if a typical observation is normally distributed
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with mean µ(α) and variance σ2, then θ is the vector (α, σ2)t, and

E[lnf(Y | θ) | θn] = ln
1√

2πσ2
− 1

2σ2
E{[Y − µ(α)]2 | θn}

= ln
1√

2πσ2
− 1

2σ2
{σ2

n + [µ(αn) − µ(α)]2}.

Once we have filled in the missing data, we can estimate α without refer-
ence to σ2. This is accomplished by adding each square [µi(αn) − µi(α)]2

corresponding to a missing observation yi to the sum of squares for the
actual observations and then minimizing the entire sum over α. In classical
models such as balanced ANOVA, the M step is exact. Once the iterates
αn converge to their limit α̂, we can estimate σ2 in one step by the formula

σ̂2 =
1

m

m∑

i=1

[yi − µi(α̂)]2

using only the observed yi. The reader is urged to work Problem 32 of
Chapter 12 to see the whole process in action.

Problem 13 of this chapter takes up the greater challenge of partially
missing data for bivariate normal observations. It is important to salvage
partial observations rather than discard them and estimate parameters
from complete cases alone. Because the missing components are correlated
with the observed components, replacing the sufficient statistic of each
missing observation by its expected value is no longer valid. The book [8]
contains an extended discussion of data imputation techniques that build
on Problem 13.

13.5 Bayesian EM

If a prior π(θ) is imposed on the parameter vector θ, then L(θ) + lnπ(θ) is
the logposterior function. Its maximum occurs at the posterior mode. The
posterior mode can be found by defining the surrogate function

Q(θ | θn) = E[lnf(X | θ) + lnπ(θ) | Y, θn]

= E[lnf(X | θ) | Y, θn] + lnπ(θ).

Thus, in the E step of the Bayesian algorithm, one simply adds the log-
prior to the usual surrogate function. The M-step strategy of maximizing
Q(θ | θn) drives the logposterior function uphill. Because the logprior of-
ten complicates the M step, it is helpful in some applications to minorize
it separately. This is the strategy followed in Example 12.11 on transmis-
sion tomography. Alternatively, one can employ the MM gradient algorithm
studied in Chapter 14 to maximize the logposterior approximately. We will
illustrate the Bayesian version of the EM algorithm in our next example.
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13.6 Allele Frequency Estimation

The ABO and Rh genetic loci are usually typed in matching blood donors
to blood recipients. The ABO locus exhibits the three alleles A, B, and O
and the four observable phenotypes A, B, AB, and O. These phenotypes
arise because each person inherits two alleles, one from his mother and one
from his father, and the alleles A and B are genetically dominant to allele
O. Dominance amounts to a masking of the O allele by the presence of an
A or B allele. For instance, a person inheriting an A allele from one parent
and an O allele from the other parent is said to have genotype A/O and is
phenotypically indistinguishable from a person inheriting an A allele from
both parents. This second person is said to have genotype A/A.

The EM algorithm for estimating the population frequencies (propor-
tions) of the three alleles involves an interplay between observed pheno-
types and underlying unobserved genotypes. As just noted, both genotypes
A/O and A/A correspond to the same phenotype A. Likewise, phenotype
B corresponds to either genotype B/O or genotype B/B. Phenotypes AB
and O correspond to the single genotypes A/B and O/O, respectively.

As a concrete example, Clarke et al. [1] noted that among their pop-
ulation sample of n = 521 duodenal ulcer patients, a total of nA = 186
had phenotype A, nB = 38 had phenotype B, nAB = 13 had phenotype
AB, and nO = 284 had phenotype O. If we want to estimate the fre-
quencies pA, pB, and pO of the three different alleles from this sample,
then we can employ the EM algorithm with the four phenotype counts as
the observed data Y and the underlying six genotype counts nA/A, nA/O,
nB/B , nB/O , nA/B = nAB , and nO/O = nO as the complete data X [12].
Note that the allele frequencies are nonnegative and satisfy the constraint
pA+pB+pO = 1. Furthermore, the classical Hardy-Weinberg law of popu-
lation genetics specifies that each genotype frequency equals the product of
the corresponding allele frequencies with an extra factor of 2 thrown in to
account for ambiguity in parental source when the two alleles differ. For ex-
ample, genotype A/A has frequency p2

A, and genotype A/O has frequency
2pApO.

With these preliminaries in mind, the complete data loglikelihood be-
comes

ln f(X | p) = nA/A lnp2
A + nA/O ln(2pApO) + nB/B ln p2

B

+ nB/O ln(2pBpO) + nAB ln(2pApB) + nO lnp2
O

+ ln

(
n

nA/A nA/O nB/B nB/O nAB nO

)
. (13.4)

In the E step of the EM algorithm we take the expectation of ln f(X | p)
conditional on the observed counts nA, nB, nAB , and nO and the current
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parameter vector pm = (pmA, pmB, pmO)t. It is obvious that

E(nAB | Y, pm) = nAB

E(nO | Y, pm) = nO.

A moment’s reflection also yields

nmA/A = E(nA/A | Y, pm)

= nA
p2
mA

p2
mA + 2pmApmO

nmA/O = E(nA/O | Y, pm)

= nA
2pmApmO

p2
mA + 2pmApmO

.

The conditional expectations nmB/B and nmB/O are given by similar ex-
pressions.

The M step of the EM algorithm maximizes the Q(p | pm) function de-
rived from equation (13.4) by replacing nA/A by nmA/A, and so forth.
Maximization of Q(p | pm) can be accomplished by finding a stationary
point of the Lagrangian as sketched in Example (11.3.1). The solution of
the stationarity equations is

pm+1,A =
2nmA/A + nmA/O + nAB

2n

pm+1,B =
2nmB/B + nmB/O + nAB

2n

pm+1,O =
nmA/O + nmB/O + 2nO

2n
.

In other words, the EM update is identical to a form of gene counting
in which the unknown genotype counts are imputed based on the current
allele frequency estimates. Table 13.1 shows the progress of the EM iterates
starting from the initial guesses p0A = 0.3, p0B = 0.2, and p0O = 0.5.
The EM updates are simple enough to carry out on a pocket calculator.
Convergence occurs quickly in this example.

The Dirichlet distribution is the conjugate prior to the multinomial dis-
tribution. If we impose the Dirichlet prior

Γ(αA + αB + αO)

Γ(αA)Γ(αB)Γ(αO)
pαA−1
A pαB−1

B pαO−1
O

in this example, then it is straightforward to prove that the EM algorithm
for finding the posterior mode iterates according to

pm+1,A =
2nmA/A + nmA/O + nAB + αA − 1

2n+ α− 3
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TABLE 13.1. Iterations for ABO Duodenal Ulcer Data

Iteration m pmA pmB pmO
0 0.3000 0.2000 0.5000
1 0.2321 0.0550 0.7129
2 0.2160 0.0503 0.7337
3 0.2139 0.0502 0.7359
4 0.2136 0.0501 0.7363
5 0.2136 0.0501 0.7363

pm+1,B =
2nmB/B + nmB/O + nAB + αB − 1

2n+ α− 3
(13.5)

pm+1,O =
nmA/O + nmB/O + 2nO + αO − 1

2n+ α− 3
,

where α = αA + αB + αO. Thus, imposing the prior can be interpreted as
adding αA− 1 pseudo-counts to the A alleles, αB − 1 pseudo-counts to the
B alleles, and αO − 1 pseudo-counts to the O alleles.

13.7 Clustering by EM

The k-means clustering algorithm discussed in Example 11.6.3 makes hard
choices in cluster assignment. The alternative of soft choices is possible
with admixture models [10, 14]. An admixture probability density h(y) can
be written as a convex combination

h(y) =

k∑

j=1

πjhj(y), (13.6)

where the πj are nonnegative probabilities that sum to 1 and hj(y) is
the probability density of group j. According to Bayes’ rule, the posterior
probability that an observation y belongs to group j equals the ratio

πjhj(y)∑k
i=1 πihi(y)

. (13.7)

If hard assignment is necessary, then the rational procedure is to assign y
to the group with highest posterior probability.

Suppose the observations y1, . . . , ym represent a random sample from the
admixture density (13.6). In practice we want to estimate the admixture
proportions and whatever further parameters θ characterize the hj(y | θ).
The EM algorithm is natural in this context with group membership as the
missing data. If we let zij be an indicator specifying whether observation
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yi comes from group j, then the complete data loglikelihood amounts to

m∑

i=1

k∑

j=1

zij

[
lnπj + lnhj(yi | θ)

]
.

To find the surrogate function, we must find the conditional expectation
wij of zij . But this reduces to the Bayes’ rule (13.7) with θ fixed at θn and
πj fixed at πnj, where as usual n indicates iteration number. Note that the

property
∑k

j=1 zij = 1 entails the property
∑k
j=1 wij = 1.

Fortunately, the E step of the EM algorithm separates the π parameters
from the θ parameters. The problem of maximizing

k∑

j=1

cj lnπj

with cj =
∑m

i=1wij should be familiar by now. Since
∑k

j=1 cj = m, Exam-
ple (11.3.1) shows that

πn+1,j =
cj
m
.

We now undertake estimation of the remaining parameters assuming
the groups are normally distributed with a common variance matrix Ω
but different mean vectors µ1, . . . , µk. The pertinent part of the surrogate
function is

m∑

i=1

k∑

j=1

wij

[
− 1

2
ln detΩ − 1

2
(yi − µj)

tΩ−1(yi − µj)
]

= −m
2

lndet Ω − 1

2

k∑

j=1

m∑

i=1

wij(yi − µj)
tΩ−1(yi − µj) (13.8)

= −m
2

lndet Ω − 1

2
tr
[
Ω−1

k∑

j=1

m∑

i=1

wij(yi − µj)(yi − µj)
t
]
.

Differentiating the second line of (13.8) with respect to µj gives the equation

m∑

i=1

wijΩ
−1(yi − µj) = 0

with solution

µn+1,j =

∑m
i=1 wijyi∑m
i=1 wij

.
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Maximization of the surrogate (13.8) with respect to Ω can be rephrased
as maximization of

−m
2

lndet Ω − 1

2
tr(Ω−1M)

for the choice

M =

k∑

j=1

m∑

i=1

wij(yi − µn+1,j)(yi − µn+1,j)
t.

Abstractly this is just the problem we faced in Example 11.2.3. Inspection
of the arguments there shows that

Ωn+1 =
1

m
M. (13.9)

There is no guarantee of a unique mode in this model. Fortunately, k-
means clustering generates good starting values for the parameters. The
cluster centers provide the group means. If we set wij equal to 1 or 0
depending on whether observation i belongs to cluster j or not, then the
matrix (13.9) serves as an initial guess of the common variance matrix. The
initial admixture proportion πj can be taken to be the proportion of the
observations assigned to cluster j.

13.8 Transmission Tomography

Derivation of the EM algorithm for transmission tomography is more chal-
lenging [7]. In this instance, the EM and MM algorithms differ. The MM
algorithm is easier to derive and computationally more efficient. In other
examples, the opposite is true.

In the transmission tomography example of Section 12.11, it is natural
to view the missing data as the number of photons Xij entering each pixel
j along each projection line i. These random variables supplemented by the
observations Yi constitute the complete data. If projection line i does not
intersect pixel j, then Xij = 0. Although Xij and Xij′ are not independent,
the collection {Xij}j indexed by projection i is independent of the collection
{Xi′j}j indexed by another projection i′. This allows us to work projection
by projection in writing the complete data likelihood. We will therefore
temporarily drop the projection subscript i and relabel pixels, starting
with pixel 1 adjacent to the source and ending with pixel m − 1 adjacent
to the detector. In this notation X1 is the number of photons leaving the
source, Xj is the number of photons entering pixel j, and Xm = Y is the
number of photons detected.

By assumption X1 follows a Poisson distribution with mean d. Condi-
tional on X1, . . . , Xj, the random variable Xj+1 is binomially distributed
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with Xj trials and success probability e−ljθj . In other words, each of the
Xj photons entering pixel j behaves independently and has a chance e−ljθj

of avoiding attenuation in pixel j. It follows that the complete data loglike-
lihood for the current projection is

−d+X1 ln d− lnX1! (13.10)

+

m−1∑

j=1

[
ln

(
Xj
Xj+1

)
+Xj+1 ln e−lj θj + (Xj −Xj+1) ln(1 − e−ljθj )

]
.

To perform the E step of the EM algorithm, we need only compute the
conditional expectations E(Xj | Xm = y, θ), j = 1, . . . , m. The conditional

expectations of other terms such as ln
(
Xj

Xj+1

)
appearing in (13.10) are ir-

relevant in the subsequent M step.
Reasoning as earlier, we infer that the unconditional mean of Xj is

µj = E(Xj) = de−
∑

j−1

k=1
lkθk

and that the distribution of Xm conditional on Xj is binomial with Xj
trials and success probability

µm
µj

= e
−
∑m−1

k=j
lkθk .

In view of our remarks about random thinning in Chapter 12, the joint
probability density of Xj and Xm therefore reduces to

Pr(Xj = xj , Xm = xm) = e−µj
µ
xj

j

xj !

(
xj
xm

)(µm
µj

)xm
(
1 − µm

µj

)xj−xm

,

and the conditional probability density of Xj given Xm becomes

Pr(Xj = xj | Xm = xm) =
e−µj

µ
xj
j

xj!

(
xj

xm

)
(µm

µj
)xm(1 − µm

µj
)xj−xm

e−µm
µxm

m

xm!

= e−(µj−µm) (µj − µm)xj−xm

(xj − xm)!
.

In other words, conditional onXm, the difference Xj−Xm follows a Poisson
distribution with mean µj − µm. This implies in particular that

E(Xj | Xm) = E(Xj −Xm | Xm) +Xm

= µj − µm +Xm.

Reverting to our previous notation, it is now possible to assemble the
function Q(θ | θn) of the E step. Define

Mij = di

(
e
−
∑

k∈Sij
likθnk − e−

∑
k
likθnk

)
+ yi

Nij = di

(
e
−
∑

k∈Sij∪{j}
likθnk − e−

∑
k
likθnk

)
+ yi,
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where Sij is the set of pixels between the source and pixel j along projection
i. If j′ is the next pixel after pixel j along projection i, then

Mij = E(Xij | Yi = yi, θn)

Nij = E(Xij′ | Yi = yi, θn).

In view of expression (13.10), we find

Q(θ | θn) =
∑

i

∑

j

[
−Nij lijθj + (Mij −Nij) ln(1 − e−lijθj )

]

up to an irrelevant constant.
If we try to maximize Q(θ | θn) by setting its partial derivatives equal

to 0, we get for pixel j the equation

−
∑

i

Nijlij +
∑

i

(Mij −Nij)lij
elij θj − 1

= 0. (13.11)

This is an intractable transcendental equation in the single variable θj ,
and the M step must be solved numerically, say by Newton’s method. It
is straightforward to check that the left-hand side of equation (13.11) is
strictly decreasing in θj and has exactly one positive solution. Thus, the
EM algorithm like the MM algorithm has the advantages of decoupling
the parameters in the likelihood equations and of satisfying the natural
boundary constraints θj ≥ 0. The MM algorithm is preferable to the EM
algorithm because the MM algorithm involves far fewer exponentiations in
defining its surrogate function.

13.9 Factor Analysis

In some instances, the missing data framework of the EM algorithm offers
the easiest way to exploit convexity in deriving an MM algorithm. The com-
plete data for a given problem are often fairly natural, and the difficulty
in deriving an EM algorithm shifts toward specifying the E step. Statisti-
cians are particularly adept at calculating complicated conditional expecta-
tions connected with sampling distributions. We now illustrate these truths
for estimation in factor analysis. Factor analysis explains the covariation
among the components of a random vector by approximating the vector by
a linear transformation of a small number of uncorrelated factors. Readers
with little background in multivariate statistical analysis should review the
material in the Appendix at this point.

The classical factor analysis model deals with l independent multivariate
observations of the form

Yk = µ+ FXk + Uk.
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Here the p × q factor loading matrix F transforms the unobserved factor
score Xk into the observed Yk. The random vector Uk represents random
measurement error. Typically, q is much smaller than p. The random vec-
tors Xk and Uk are independent and normally distributed with means and
variances

E(Xk) = 0, Var(Xk) = I

E(Uk) = 0, Var(Uk) = D,

where I is the q × q identity matrix and D is a p × p diagonal matrix
with ith diagonal entry di. The entries of the mean vector µ, the factor
loading matrix F , and the diagonal matrix D constitute the parameters of
the model. For a particular random sample y1, . . . , yl from the model, the
maximum likelihood estimation of µ is simply the sample mean µ̂ = ȳ. This
fact is a consequence of the reasoning given in Example 11.2.3. Therefore,
we replace each yk by yk − ȳ, assume µ = 0, and focus on estimating F
and D.

The random vector
(
Xk
Yk

)
is the obvious choice of the complete data

for case k. If f(xk) is the density of Xk and g(yk | xk) is the conditional
density of Yk given Xk = xk, then the complete data loglikelihood can be
expressed as

l∑

k=1

ln f(xk) +

l∑

k=1

lng(yk | xk)

= − l

2
lndet I − 1

2

l∑

k=1

xtkxk −
l

2
lndetD (13.12)

−1

2

l∑

k=1

(yk − Fxk)
tD−1(yk − Fxk).

We can simplify this by noting that lndet I = 0 and ln detD =
∑p

i=1 lndi.

The key to performing the E step is to note that
(
Xk
Yk

)
follows a multi-

variate normal distribution with variance matrix

Var

(
Xk
Yk

)
=

(
I F t

F FF t +D

)
.

Equation (A.2) of the Appendix therefore permits us to calculate the con-
ditional expectation

vk = E(Xk | Yk = yk, Fn, Dn) = F tn(FnF
t
n +Dn)

−1yk

and conditional variance

Ak = Var(Xk | Yk = yk, Fn, Dn) = I − F tn(FnF
t
n +Dn)−1Fn,
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given the observed data and the current values of the matrices F and D.
Combining these results with equation (A.1) of the Appendix yields

E[(Yk − FXk)
tD−1(Yk − FXk) | Yk = yk]

= tr(D−1FAkF
t) + (yk − Fvk)

tD−1(yk − Fvk)

= tr{D−1[FAkF
t + (yk − Fvk)(yk − Fvk)

t]},

which we use in a moment.
If we define

Λ =

l∑

k=1

[Ak + vkv
t
k], Γ =

l∑

k=1

vky
t
k, Ω =

l∑

k=1

yky
t
k,

and take conditional expectations in equation (13.13), then we can write
the surrogate function of the E step as

Q(F,D | Fn, Dn)

= − l

2

p∑

i=1

ln di −
1

2
tr[D−1(FΛF t− FΓ− ΓtF t + Ω)],

omitting the additive constant

−1

2

l∑

k=1

E(Xt
kXk | Yk = yk, Fn, Dn),

which depends on neither F nor D.
To perform the M step, we first maximize Q(F,D | Fn, Dn) with respect

to F , holding D fixed. We can do so by permuting factors and completing
the square in the trace

tr[D−1(FΛF t− FΓ − ΓtF t + Ω)]

= tr[D−1(F − ΓtΛ−1)Λ(F − ΓtΛ−1)t] + tr[D−1(Ω − ΓtΛ−1Γ)]

= tr[D− 1
2 (F − ΓtΛ−1)Λ(F − ΓtΛ−1)tD− 1

2 ] + tr[D−1(Ω − ΓtΛ−1Γ)].

This calculation depends on the existence of the inverse matrix Λ−1. Now
Λ is certainly positive definite if Ak is positive definite, and Problem 23
asserts that Ak is positive definite. It follows that Λ−1 not only exists but
is positive definite as well. Furthermore, the matrix

D− 1
2 (F − ΓtΛ−1)Λ(F − ΓtΛ−1)tD− 1

2

is positive semidefinite and has a nonnegative trace. Hence, the maximum
value of the surrogate function Q(F,D | Fn, Dn) with respect to F is
attained at the point F = ΓtΛ−1, regardless of the value of D. In other
words, the EM update of F is Fn+1 = ΓtΛ−1. It should be stressed that Γ
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and Λ implicitly depend on the previous values Fn and Dn. Once Fn+1 is
determined, the equation

0 =
∂

∂di
Q(F,D | Fn, Dn)

= − l

2di
+

1

2d2
i

(FΛF t− FΓ − ΓtF t + Ω)ii

provides the update

dn+1,i =
1

l
(Fn+1ΛF

t
n+1 − Fn+1Γ − ΓtF tn+1 + Ω)ii.

One of the frustrating features of factor analysis is that the factor loading
matrix F is not uniquely determined. To understand the source of the
ambiguity, consider replacing F by FO, where O is a q × q orthogonal
matrix. The distribution of each random vector Yk is normal with mean µ
and variance matrix FF t+D. If we substitute FO for F , then the variance
FOOtF t + D = FF t + D remains the same. Another problem in factor
analysis is the existence of more than one local maximum. Which one of
these points the EM algorithm converges to depends on its starting value
[4]. For a suggestion of how to improve the chances of converging to the
dominant mode, see the article [17].

13.10 Problems

1. Code and test any of the algorithms discussed in the text or problems
of this chapter.

2. The entropy of a probability density p(x) on R
m is defined by

−
∫
p(x) ln p(x)dx. (13.13)

Among all densities with a fixed mean vector µ =
∫
xp(x)dx and vari-

ance matrix Ω =
∫

(x−µ)(x−µ)tp(x)dx, prove that the multivariate
normal has maximum entropy. (Hint: Apply Proposition 13.3.2.)

3. In statistical mechanics, entropy is employed to characterize the equi-
librium distribution of many independently behaving particles. Let
p(x) be the probability density that a particle is found at position
x in phase space R

m, and suppose that each position x is assigned
an energy u(x). If the average energy U =

∫
u(x)p(x)dx per particle

is fixed, then Nature chooses p(x) to maximize entropy as defined in
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equation (13.13). Show that if constants α and β exist satisfying

∫
αeβu(x)dx = 1

∫
u(x)αeβu(x)dx = U,

then p(x) = αeβu(x) does indeed maximize entropy subject to the av-
erage energy constraint. The density p(x) is the celebrated Maxwell-
Boltzmann density.

4. Show that the normal, Poisson, binomial, negative binomial, gamma,
beta, and multinomial families are exponential by writing their den-
sities in the form (13.3). What are the corresponding measure and
sufficient statistic in each case?

5. In the EM algorithm suppose that the complete data X possess a
regular exponential density

f(x | θ) = g(x)eβ(θ)+h(x)tθ

relative to some measure ν . Prove that the unconditional mean of
the sufficient statistic h(X) is given by the negative gradient −∇β(θ)
and that the EM update is characterized by the condition

E[h(X) | Y, θn] = −∇β(θn+1).

6. Without mentioning missing data, derive the ABO allele frequency
estimation algorithm as an MM algorithm. (Hint: Apply the majoriza-
tion (12.4) to the loglikelihood.)

7. Suppose the phenotypic counts in the ABO allele frequency estima-
tion example satisfy nA+nAB > 0, nB+nAB > 0, and nO > 0. Show
that the loglikelihood is strictly concave and possesses a single global
maximum on the interior of the feasible region.

8. Program the EM updates (13.5) for the ABO allele frequency data
with prior counts αA − 1 = αB − 1 = αO − 1 = k. Plot the posterior
mode as a function of k, and comment on its behavior as k tends to
∞.

9. In a genetic linkage experiment, 197 animals are randomly assigned
to four categories according to the multinomial distribution with cell
probabilities π1 = 1

2 + θ
4 , π2 = 1−θ

4 , π3 = 1−θ
4 , and π4 = θ

4 . If the
corresponding observations are

y = (y1, y2, y3, y4)
t = (125, 18, 20, 34)t,
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then devise an EM algorithm and use it to estimate θ̂ = .6268 [11].
(Hint: Split the first category into two so that there are five categories
for the complete data.)

10. Suppose light bulbs have an exponential lifetime with mean θ. Two
experiments are conducted. In the first, the lifetimes y1, . . . , ym of m
independent bulbs are observed. In the second, p independent bulbs
are observed to burn out before time t, and q independent bulbs are
observed to burn out after time t. In other words, the lifetimes in the
second experiment are both left and right censored. Construct an EM
algorithm for finding the maximum likelihood estimate of θ [6].

TABLE 13.2. Death Notices from The London Times

Deaths i Frequency ni Deaths i Frequency ni
0 162 5 61
1 267 6 27
2 271 7 8
3 185 8 3
4 111 9 1

11. Consider the data from The London Times [14] during the years 1910-
1912 given in Table 13.2. The two columns labeled “Deaths i” refer
to the number of deaths of women 80 years and older reported by
day. The columns labeled “Frequency ni” refer to the number of days
with i deaths. A Poisson distribution gives a poor fit to these data,
possibly because of different patterns of deaths in winter and summer.
A mixture of two Poissons provides a much better fit. Under the
Poisson admixture model, the likelihood of the observed data is

9∏

i=0

[
αe−µ1

µi1
i!

+ (1 − α)e−µ2
µi2
i!

]ni

,

where α is the admixture parameter and µ1 and µ2 are the means of
the two Poisson distributions.

Formulate an EM algorithm for this model. Let θ = (α, µ1, µ2)
t and

zi(θ) =
αe−µ1µi1

αe−µ1µi1 + (1 − α)e−µ2µi2

be the posterior probability that a day with i deaths belongs to Pois-
son population 1. Show that the EM algorithm is given by

αm+1 =

∑
i nizi(θm)∑

i ni



13. The EM Algorithm 241

µm+1,1 =

∑
i niizi(θm)∑
i nizi(θm)

µm+1,2 =

∑
i nii[1 − zi(θm)]∑
i ni[1 − zi(θm)]

.

From the initial estimates α0 = 0.3, µ0,1 = 1.0 and µ0,2 = 2.5,
compute via the EM algorithm the maximum likelihood estimates
α̂ = 0.3599, µ̂1 = 1.2561, and µ̂2 = 2.6634. Note how slowly the EM
algorithm converges in this example.

12. Let x1, . . . , xm be an i.i.d. sample from a normal density with mean
µ and variance σ2. Suppose for each xi we observe yi = |xi| rather
than xi. Formulate an EM algorithm for estimating µ and σ2, and
show that its updates are

µn+1 =
1

m

m∑

i=1

(wni1yi −wni2yi)

σ2
n+1 =

1

m

m∑

i=1

[wni1(yi − µn+1)
2 +wni2(−yi − µn+1)

2]

with weights

wni1 =
f(yi | θn)

f(yi | θn) + f(−yi | θn)

wni2 =
f(−yi | θn)

f(yi | θn) + f(−yi | θn)
,

where f(x | θ) is the normal density with θ = (µ, σ2)t. Demonstrate
that the modes of the likelihood of the observed data come in sym-
metric pairs differing only in the sign of µ. This fact does not prevent
accurate estimation of |µ| and σ2.

13. Consider an i.i.d. sample drawn from a bivariate normal distribution
with mean vector and covariance matrix

µ =

(
µ1

µ2

)
, Ω =

(
σ2

1 σ12

σ12 σ2
2

)
.

Suppose through some random accident that the first p observations
are missing their first component, the next q observations are missing
their second component, and the last r observations are complete. De-
sign an EM algorithm to estimate the five mean and variance param-
eters, taking as complete data the original data before the accidental
loss.
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TABLE 13.3. Bivariate Normal Data for the EM Algorithm

Obs Obs Obs Obs Obs Obs

(1,1) (1,-1) (-1,1) (-1,-1) (2,∗) (2,∗)
(-2,∗) (-2,∗) (∗,2) (∗,2) (∗,-2) (∗,-2)

14. Suppose the data displayed in Table 13.3 constitute a random sample
from a bivariate normal distribution with both means 0, variances σ2

1

and σ2
2, and correlation coefficient ρ. The asterisks indicate missing

values. Show that the observed loglikelihood has symmetric global
maxima when σ2

1 = σ2
2 = 8

3
and ρ = ±1

2
and a saddle point when

σ2
1 = σ2

2 = 5
2

and ρ = 0. If the EM algorithm designed in Problem 13
starts with ρ = 0, prove that it converges to the saddle point [16].

15. The standard linear regression model can be written in matrix nota-
tion as X = Aβ+U . Here X is the r×1 vector of responses, A is the
r × s design matrix, β is the s × 1 vector of regression coefficients,
and U is the r×1 normally distributed error vector with mean 0 and
covariance σ2I. The responses are right censored if for each i there
is a constant ci such that only Yi = min{ci, Xi} is observed. The
EM algorithm offers a vehicle for estimating the parameter vector
θ = (βt, σ2)t in the presence of censoring [2, 13]. Show that

βn+1 = (AtA)−1AtE(X | Y, θn)

σ2
n+1 =

1

r
E[(X − Aβn+1)

t(X − Aβn+1) | Y, θn].

To compute the conditional expectations appearing in these formulas,
let ai be the ith row of A and define

H(v) =

1√
2π
e−

v2

2

1√
2π

∫∞
v e−

w2

2 dw
.

For a censored observation yi = ci <∞, prove that

E(Xi | Yi = ci, θn) = aiβn + σnH
(ci − aiβn

σn

)

and that

E(X2
i | Yi = ci, θn) = (aiβn)2 + σ2

n + σn(ci + aiβn)H
(ci − aiβn

σn

)
.

Use these formulas to complete the specification of the EM algorithm.
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16. In the transmission tomography model it is possible to approximate
the solution of equation (13.11) to good accuracy in certain situations.
Verify the expansion

1

es − 1
=

1

s
− 1

2
+

s

12
+ O(s2).

Using the approximation 1/(es − 1) ≈ 1/s− 1/2 for s = lijθj , show
that

θn+1,j =

∑
i(Mij −Nij)

1
2

∑
i(Mij +Nij)lij

results. Can you motivate this result heuristically?

17. Suppose that the complete data in the EM algorithm involve N bi-
nomial trials with success probability θ per trial. Here N can be
random or fixed. If M trials result in success, then the complete data
likelihood can be written as θM (1− θ)N−M c, where c is an irrelevant
constant. The E step of the EM algorithm reduces to forming

Q(θ | θn) = E(M | Y, θn) ln θ + E(N −M | Y, θn) ln(1 − θ) + ln c.

The binomial trials are hidden because only a function Y of them is
directly observed. Show that the EM update amounts to

θn+1 =
E(M | Y, θn)

E(N | Y, θn)
.

Prove that this is equivalent to the update

θn+1 = θn +
θn(1 − θn)

E(N | Y, θn)

d

dθ
L(θn),

where L(θ) is the loglikelihood of the observed data Y [15]. (Hint:
Apply identity (12.3) of Chapter 12.)

18. As an example of hidden binomial trials as discussed in Problem 17,
consider a random sample of twin pairs. Let u of these pairs consist
of male pairs, v consist of female pairs, and w consist of opposite
sex pairs. A simple model to explain these data involves a random
Bernoulli choice for each pair dictating whether it consists of iden-
tical or nonidentical twins. Suppose that identical twins occur with
probability p and nonidentical twins with probability 1−p. Once the
decision is made as to whether the twins are identical, then sexes are
assigned to the twins. If the twins are identical, one assignment of sex
is made. If the twins are nonidentical, then two independent assign-
ments of sex are made. Suppose boys are chosen with probability q
and girls with probability 1− q. Model these data as hidden binomial
trials. Derive the EM algorithm for estimating p and q.
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19. Chun Li has derived an EM update for hidden multinomial trials. Let
N denote the number of hidden trials, θi the probability of outcome
i of k possible outcomes, and L(θ) the loglikelihood of the observed
data Y . Derive the EM update

θn+1,i = θni +
θni

E(N | Y, θn)


 ∂

∂θi
L(θn) −

k∑

j=1

θnj
∂

∂θj
L(θn)




following the reasoning of Problem 17.

20. In this problem you are asked to formulate models for hidden Poisson
and exponential trials [15]. If the number of trials is N and the mean
per trial is θ, then show that the EM update in the Poisson case is

θn+1 = θn +
θn

E(N | Y, θn)

d

dθ
L(θn)

and in the exponential case is

θn+1 = θn +
θ2n

E(N | Y, θn)

d

dθ
L(θn),

where L(θ) is the loglikelihood of the observed data Y .

21. In many discrete probability models, only data with positive counts
are observed. Counts that are 0 are missing. Show that the likelihoods
for the binomial, Poisson, and negative binomial models truncated at
0 amount to

L1(p) =
∏

i

(
mi

xi

)
pxi(1 − p)mi−xi

1 − (1 − p)mi

L2(λ) =
∏

i

λxie−λ

xi!(1 − e−λ)

L3(p) =
∏

i

(
mi+xi−1

xi

)
(1 − p)xipmi

1 − pmi
.

For observation i of the binomial model, there are xi successes out
of mi trials with success probability p per trial. For observation i of
the negative binomial model, there are xi failures before mi required
successes. For each model, devise an EM algorithm that fills in the
missing observations by imputing a geometrically distributed number
of truncated observations for every real observation. Show that the
EM updates reduce to

pn+1 =

∑
i xi∑

i
mi

1−(1−pn)mi
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λn+1 =

∑
i xi∑

i
1

1−e−λn

pn+1 =

∑
i

mi

1−pmi
n∑

i(xi + mi

1−pmi
n

)

for the three models.

22. Demonstrate that the EM updates of the previous problem can be
derived as MM updates based on the minorization

− ln(1 − u) ≥ − ln(1 − un) +
un

1 − un
ln

u

un

for u and un in the interval (0, 1). Prove this minorization first. (Hint:
If you rearrange the minorization, then Proposition 13.3.2 applies.)

23. Suppose that Σ is a positive definite matrix. Prove that the matrix
I − F t(FF t + Σ)−1F is also positive definite. This result is used in
the derivation of the EM algorithm in Section 13.9. (Hint: Consider
theoretical properties of the sweep operator in Chapter 7.)

24. A certain company asks consumers to rate movies on an integer scale
from 1 to 5. Let Mi be the set of movies rated by person i. Denote the
cardinality ofMi by |Mi|. Each rater does so in one of two modes that
we will call “quirky” and “consensus”. In quirky mode, i has a private
rating distribution (qi1, qi2, qi3, qi4, qi5) that applies to every movie
regardless of its intrinsic merit. In consensus mode, rater i rates movie
j according to the distribution (cj1, cj2, cj3, cj4, cj5) shared with all
other raters in consensus mode. For every movie i rates, he or she
makes a quirky decision with probability πi and a consensus decision
with probability 1−πi. These decisions are made independently across
raters and movies. If xij is the rating given to movie j by rater i, then
prove that the likelihood of the data is

L =
∏

i

∏

j∈Mi

[πiqixij + (1 − πi)cjxij ].

Once we estimate the parameters, we can rank the reliability of rater
i by the estimate π̂i and the popularity of movie j by its estimated
average rating

∑
k kĉjk.

If we choose the natural course of estimating the parameters by maxi-
mum likelihood, then it is possible to derive an EM or MM algorithm.
From the right perspectives, these two algorithms coincide. Let n de-
note iteration number and wnij the weight

wnij =
πniqnixij

πniqnixij + (1 − πni)cnjxij

.
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Derive either algorithm and show that it updates the parameters by

πn+1,i =
1

|Mi|
∑

j∈Mi

wnij

qn+1,ix =

∑
j∈Mi

1{xij=x}wnij∑
j∈Mi

wnij

cn+1,jx =

∑
i 1{xij=x}(1 − wnij)∑

i(1 − wnij)
.

These updates are easy to implement. Can you motivate them as
ratios of expected counts?
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14

Newton’s Method and Scoring

14.1 Introduction

The MM and EM algorithms are hardly the only methods of optimization.
Newton’s method is better known and more widely applied. We encoun-
tered Newton’s method in Section 5.4 of Chapter 5. Here we focus on the
multidimensional version. Despite its defects, Newton’s method is the gold
standard for speed of convergence and forms the basis of many modern
optimization algorithms. Its variants seek to retain its fast convergence
while taming its defects. The variants all revolve around the core idea of
locally approximating the objective function by a strictly convex quadratic
function. At each iteration the quadratic approximation is optimized. Safe-
guards are introduced to keep the iterates from veering toward irrelevant
stationary points.

Statisticians are among the most avid consumers of optimization tech-
niques. Statistics, like other scientific disciplines, has a special vocabulary.
We will meet some of that vocabulary in this chapter as we discuss opti-
mization methods important in computational statistics. Thus, we will take
up Fisher’s scoring algorithm and the Gauss-Newton method of nonlinear
least squares. We have already encountered likelihood functions and the de-
vice of passing to loglikelihoods in estimation. In statistics, the gradient of
the loglikelihood is called the score, and the negative of the second differen-
tial is called the observed information. One major advantage of maximizing
the loglikelihood rather than the likelihood is that the loglikelihood, score,
and observed information are all additive functions of independent obser-
vations.

14.2 Newton’s Method and Root Finding

One of the virtues of Newton’s method of root finding is that it readily
extends to multiple dimensions. Consider a function f(x) mapping R

p into
R
p, and suppose a root of f(x) = 0 occurs at y. If the differential in the

approximate identity

0 − f(x) = f(y) − f(x) ≈ df(x)(y − x)

is invertible, then we can solve for y as

y = x− df(x)−1f(x).

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 249
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Thus, Newton’s method iterates according to

xn+1 = xn − df(xn)−1f(xn). (14.1)

This generally works well if the initial point x1 is close to y.

Example 14.2.1 Newton’s Method of Matrix Inversion

Newton’s method for finding the reciprocal of a number can be generalized
to compute the inverse of a matrix A [12]. The differentials in question
are messy to calculate, but guided by the one-dimensional case featured in
Section 5.4.1, we are led to consider the iteration scheme

Bn+1 = 2Bn − BnABn.

Rearranging this equation yields

A−1 −Bn+1 = (A−1 −Bn)A(A−1 −Bn),

which implies that

‖A−1 − Bn+1‖ ≤ ‖A‖ · ‖A−1 − Bn‖2

for every matrix norm. It follows that the sequence Bn converges at a
quadratic rate to A−1 if B1 is sufficiently close to A−1.

14.3 Newton’s Method and Optimization

We now take up the topic of maximizing a loglikelihood L(θ). A second-
order Taylor expansion around the current point θn gives

L(θ) ≈ L(θn) + dL(θn)(θ − θn) +
1

2
(θ − θn)td2L(θn)(θ − θn). (14.2)

In Newton’s method one maximizes the right-hand side of (14.2) by equat-
ing its gradient

∇L(θn) + d2L(θn)(θ − θn) = 0

and solving for the next iterate

θn+1 = θn − d2L(θn)−1∇L(θn).

Obviously, any stationary point of L(θ) is a fixed point of Newton’s method.
There are two potential problems with Newton’s method. First, it can

be expensive computationally to evaluate and invert the observed infor-
mation. Second, far from θ̂, Newton’s method is equally happy to head
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uphill or down. In other words, Newton’s method is not an ascent algo-
rithm in the sense that L(θn+1) > L(θn). To generate an ascent algorithm,
we can replace the observed information −d2L(θn) by a positive definite
approximating matrix An. With this substitution, the proposed increment
∆θn = A−1

n ∇L(θn), if sufficiently contracted, forces an increase in L(θ).
For a nonstationary point, this assertion follows from the first-order Taylor
expansion

L(θn + s∆θn) − L(θn) = dL(θn)s∆θn + o(s)

= sdL(θn)A−1
n ∇L(θn) + o(s),

where the error ratio o(s)/s tends to 0 as the positive contraction con-
stant s tends to 0. Thus, a positive definite modification of the observed
information combined with some form of backtracking leads to an ascent
algorithm.

Backtracking is a crude form of one-dimensional optimization. The meth-
ods of golden section search and cubic interpolation introduced in Sections
5.5 and 5.6 are applicable. A simpler and less expensive form of back-
tracking is step-halving. If the initial increment ∆θn does not produce an
increase in L(θ), then try ∆θn/2. If ∆θn/2 fails, then try ∆θn/4, and so
forth. Note that we have said nothing about how well An approximates
d2L(θn). The quality of this approximation obviously affects the rate of
convergence toward a local maximum.

If we maximize L(θ) subject to the linear equality constraints V θ = d,
then maximization of the approximating quadratic can be accomplished as
indicated in Example 11.3.3 of Chapter 11. Because

V (θn+1 − θn) = 0,

the revised increment ∆θn = θn+1 − θn is

∆θn = −
[
A−1
n −A−1

n V t(V A−1
n V t)−1V A−1

n

]
∇L(θn). (14.3)

This can be viewed as the projection of the unconstrained increment onto
the null space of V . Problem 5 shows that backtracking also works for the
projected increment.

Finally, the reader may want to review Section 5.7 on stopping rules for
iterative processes. The question of when to stop arises for all optimization
algorithms, not just for Newton’s method and scoring. Keep in mind that
the stopping criterion (5.12) should be satisfied across all coordinates.

14.4 Ad Hoc Approximations of Hessians

In minimization problems, we have emphasized the importance of approxi-
mating d2f(θ) by a positive definite matrix. Three key ideas drive the pro-
cess of approximation. One is the recognition that symmetric outer prod-
uct matrices are positive semidefinite. Another is a feel for when terms are
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small on average. Usually this involves comparing random variables and
their means. Finally, it is almost always advantageous to avoid the explicit
calculation of complicated second derivatives.

For example, consider the problem of least squares estimation with non-
linear regression functions. Let us formulate the problem slightly more gen-
erally as one of minimizing the weighted sum of squares

f(θ) =
1

2

m∑

i=1

wi[yi − µi(θ)]
2

involving a weight wi > 0 and response yi for case i. Here yi is a realization
of a random variable Yi with mean µi(θ). In linear regression, the mean
µi(θ) =

∑
j xijθj . To implement Newton’s method, we need

∇f(θ) = −
m∑

i=1

wi[yi − µi(θ)]∇µi(θ) (14.4)

d2f(θ) =
m∑

i=1

wi∇µi(θ)dµi(θ) −
m∑

i=1

wi[yi − µi(θ)]d
2µi(θ).

In the Gauss-Newton algorithm, we approximate

d2f(θ) ≈
m∑

i=1

wi∇µi(θ)dµi(θ) (14.5)

on the rationale that either the weighted residuals wi[yi − µi(θ)] are small
or the regression functions µi(θ) are nearly linear. In both instances, the
Gauss-Newton algorithm shares the fast convergence of Newton’s method.

Maximum likelihood estimation with the Poisson distribution furnishes
another example. Here the count data y1, . . . , ym have loglikelihood, score,
and negative observed information

L(θ) =

m∑

i=1

[yi lnλi(θ) − λi(θ) − ln yi!]

∇L(θ) =

m∑

i=1

[ yi
λi(θ)

∇λi(θ) −∇λi(θ)
]

d2L(θ) =

m∑

i=1

[
− yi
λi(θ)2

∇λi(θ)dλi(θ) +
yi

λi(θ)
d2λi(θ) − d2λi(θ)

]
,

where E(yi) = λi(θ). Given that the ratio yi/λi(θ) has average value 1, the
negative semidefinite approximations

d2L(θ) ≈ −
m∑

i=1

yi
λi(θ)2

∇λi(θ)dλi(θ)

≈ −
m∑

i=1

1

λi(θ)
∇λi(θ)dλi(θ)
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are reasonable. The second of these leads to the scoring algorithm discussed
in the next section.

The exponential distribution offers a third illustration. Now the data
have means E(yi) = λi(θ)

−1. The loglikelihood

L(θ) =

m∑

i=1

[lnλi(θ) − yiλi(θ)]

yields the score and negative observed information

∇L(θ) =

m∑

i=1

[ 1

λi(θ)
∇λi(θ) − yi∇λi(θ)

]

d2L(θ) =

m∑

i=1

[
− 1

λi(θ)2
∇λi(θ)dλi(θ) +

1

λi(θ)
d2λi(θ) − yid

2λi(θ)
]
.

Replacing observations by their means suggests the approximation

d2L(θ) ≈ −
m∑

i=1

1

λi(θ)2
∇λi(θ)dλi(θ)

made in the scoring algorithm. Table 14.1 summarizes the scoring algorithm
with means µi(θ) replacing intensities λi(θ).

Our final example involves maximum likelihood estimation with the
multinomial distribution. The observations y1, . . . , ym are now cell counts
over n independent trials. Cell i is assigned probability pi(θ) and averages
a total of npi(θ) counts. The loglikelihood, score, and negative observed
information amount to

L(θ) =
m∑

i=1

yi ln pi(θ)

∇L(θ) =

m∑

i=1

yi
pi(θ)

∇pi(θ)

d2L(θ) =

m∑

i=1

[
− yi
pi(θ)2

∇pi(θ)dpi(θ) +
yi
pi(θ)

d2pi(θ)
]
.

In light of the identity E(yi) = npi(θ), the approximation

m∑

i=1

yi
pi(θ)

d2pi(θ) ≈ n
m∑

i=1

d2pi(θ) = n d21 = 0

is reasonable. This suggests the further negative semidefinite approxima-
tions

d2L(θ) ≈ −
m∑

i=1

yi
pi(θ)2

∇pi(θ)dpi(θ)
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≈ −n
m∑

i=1

1

pi(θ)
∇pi(θ)dpi(θ),

the second of which coincides with the scoring algorithm.

14.5 Scoring and Exponential Families

One can approximate the observed information in a variety of ways. The
method of steepest ascent replaces the observed information by the identity
matrix I. The usually more efficient scoring algorithm replaces the observed
information by the expected information J(θ) = E[−d2L(θ)]. The alterna-
tive representation J(θ) = Var[∇L(θ)] of J(θ) as a covariance matrix shows
that it is positive semidefinite [25]. An extra dividend of scoring is that the

inverse matrix J(θ̂)−1 immediately supplies the asymptotic variances and

covariances of the maximum likelihood estimate θ̂ [25]. Scoring shares this
benefit with Newton’s method since the observed information is under nat-
ural assumptions asymptotically equivalent to the expected information.

It is possible to compute J(θ) explicitly for exponential families of den-
sities following the approach of Jennrich and Moore [15]. (See also the
references [1, 3, 11, 24], where the connections between scoring and iter-
atively reweighted least squares are emphasized.) The general form of an
exponential family is displayed in equation (13.3). Most of the distribu-
tional families commonly encountered in statistics are exponential families.
The score and expected information can be expressed in terms of the mean
vector µ(θ) = E[h(X)] and covariance matrix Σ(θ) = Var[h(X)] of the
sufficient statistic h(X). If dγ(θ) is the matrix of partial derivatives of the
column vector γ(θ), then the first differential amounts to

dL(θ) = d lnf(x | θ) = dβ(θ) + h(x)tdγ(θ). (14.6)

If γ(θ) is linear in θ, then J(θ) = −d2L(θ) = −d2β(θ), and scoring coincides
with Newton’s method. If, in addition, J(θ) is positive definite, then L(θ)
is strictly concave and possesses at most one local maximum.

The score conveniently has vanishing expectation because

E[dL(θ)] =

∫
df(x | θ)
f(x | θ) f(x | θ) dν(x) = d

∫
f(x | θ) dν(x)

and
∫
f(x | θ) dν(x) = 1. (Differentiation under the expectation sign is

incidentally permitted for exponential families [21].) For an exponential
family, this fact can be restated as

dβ(θ) + µ(θ)tdγ(θ) = 0t. (14.7)
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Subtracting equation (14.7) from equation (14.6) yields the alternative rep-
resentation

dL(θ) = [h(x)− µ(θ)]tdγ(θ) (14.8)

of the first differential. From this it follows directly that the expected in-
formation is given by

J(θ) = Var[∇L(θ)] = dγ(θ)tΣ(θ)dγ(θ). (14.9)

To eliminate dγ(θ) in equations (14.8) and (14.9), note that

dµ(θ) =

∫
h(x)df(x | θ) dν(x)

=

∫
h(x)dL(θ)f(x | θ) dν(x)

=

∫
h(x)[h(x) − µ(θ)]tdγ(θ)f(x | θ) dν(x)

= Σ(θ)dγ(θ).

When Σ(θ) is invertible, this calculation implies dγ(θ) = Σ(θ)−1dµ(θ),
which in view of equations (14.8) and (14.9) yields

dL(θ) = [h(x) − µ(θ)]tΣ(θ)−1dµ(θ) (14.10)

and

J(θ) = dµ(θ)tΣ(θ)−1dµ(θ). (14.11)

In fact, the representations in (14.10) and (14.11) hold even when Σ(θ)
is not invertible, provided the generalized inverse Σ(θ)− is substituted for
Σ(θ)−1 [15].

Based on equations (13.3), (14.10), and (14.11), Table 14.1 displays the
loglikelihood, score vector, and expected information matrix for some com-
monly applied exponential families. In this table, x represents a single ob-
servation from the binomial, Poisson, and exponential families. For the
multinomial family with m categories, x = (x1, . . . , xm) gives the category-
by-category counts. The quantity µ denotes the mean of x for the Poisson
and exponential families. For the binomial family, we express the mean np
as the product of the number of trials n and the success probability p per
trial. A similar convention holds for the multinomial family.

The multinomial family deserves further comment. Straightforward cal-
culation shows that the covariance matrix Σ(θ) has entries

n[1{i=j}pi(θ) − pi(θ)pj(θ)].

Here the matrix Σ(θ) is singular, so the generalized inverse applies in for-
mula (14.11). In this case it is easier to derive the expected information by
taking the expectation of the observed information given in Section 14.4.
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TABLE 14.1. Score and Information for Some Exponential Families

Family L(θ) ∇L(θ) J(θ)

Binomial x ln p
1−p + n ln(1−p) x−np

p(1−p)∇p n
p(1−p)∇pdp

Multinomial
∑

i xi ln pi
∑

i
xi

pi
∇pi

∑
i
n
pi
∇pidpi

Poisson −µ + x lnµ −∇µ+ x
µ
∇µ 1

µ
∇µdµ

Exponential − lnµ− x
µ

− 1
µ
∇µ+ x

µ2 ∇µ 1
µ2∇µdµ

In the ABO allele frequency estimation problem studied in Chapter 13,
scoring can be implemented by taking as basic parameters pA and pB and
expressing pO = 1 − pA − pB. Scoring then leads to the same maximum
likelihood point (p̂A, p̂B, p̂O) = (.2136, .0501, .7363) as the EM algorithm.
The quicker convergence of scoring here – four iterations as opposed to five
starting from (.3, .2, .5) – is often more dramatic in other problems. Scoring
also has the advantage over EM of immediately providing asymptotic stan-
dard deviations of the parameter estimates. These are (.0135, .0068, .0145)
for the estimates (p̂A, p̂B, p̂O).

14.6 The Gauss-Newton Algorithm

In nonlinear regression with normally distributed errors, the scoring algo-
rithm metamorphoses into the Gauss-Newton algorithm. Suppose that the
m independent responses x1, . . . , xm are normally distributed with means
µi(θ) and variances σ2/wi, where the wi are known constants. To estimate
the mean parameter vector θ and the variance parameter σ2 by scoring, we
first write the loglikelihood up to a constant as the function

L(φ) = −m
2

lnσ2 − 1

2σ2

m∑

i=1

wi[xi − µi(θ)]
2

of the parameters φt = (θt, σ2). Straightforward differentiations and inte-
grations yield the score

∇L(φ) =

(
1
σ2

∑m
i=1 wi[xi − µi(θ)]∇µi(θ)

− m
2σ2 + 1

2σ4

∑m
i=1 wi[xi − µi(θ)]

2

)

and the expected information

J(φ) =

(
1
σ2

∑m
i=1 wi∇µi(θ)dµi(θ) 0

0t m
2σ4

)
.
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The upper block of the score is a special case of formula (14.10) and co-
incides with formula (14.4) except for a factor of −σ−2. The upper-left
block of the expected information is a special case of formula (14.11) and
coincides with formula (14.5) except for a factor of σ−2. Scoring updates θ
by

θn+1 = θn+[

m∑

i=1

wi∇µi(θn)dµ(θn)]−1
m∑

i=1

wi[xi − µi(θn)]∇µi(θn) (14.12)

and σ2 by

σ2
n+1 =

1

m

m∑

i=1

wi[xi − µi(θn)]2.

The iterations (14.12) on θ can be carried out blithely neglecting those on
σ2.

TABLE 14.2. AIDS Data from Australia during 1983-1986

Quarter Deaths Quarter Deaths Quarter Deaths

1 0 6 4 11 20
2 1 7 9 12 25
3 2 8 18 13 37
4 3 9 23 14 45
5 1 10 31

14.7 Generalized Linear Models

The generalized linear model [24] deals with exponential families (13.3)
in which the sufficient statistic h(X) is X and the mean µ of X com-
pletely determines the distribution of X. In many applications it is natural
to postulate that µ(θ) = q(ztθ) is a monotonic function q of some linear
combination of known covariates z. The inverse of q is called the link func-
tion.In this setting, ∇µ(θ) = q′(ztθ)z. It follows from equations (14.10) and
(14.11) that if x1, . . . , xm are independent observations with corresponding
variances σ2

1, . . . , σ
2
m and covariate vectors z1, . . . , zm, then the score and

expected information can be written as

∇L(θ) =

m∑

i=1

xi − µi(θ)

σ2
i

q′(ztiθ)zi

J(θ) =

m∑

i=1

1

σ2
i

q′(ztiθ)
2ziz

t
i .
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Table 14.2 contains quarterly data on AIDS deaths in Australia that illus-
trate the application of a generalized linear model [10, 27]. A simple plot of
the data suggests exponential growth. A plausible model therefore involves
Poisson distributed observations xi with means µi(θ) = eθ1+iθ2 . Because
this parameterization renders scoring equivalent to Newton’s method, scor-
ing gives the quick convergence noted in Table 14.3.

TABLE 14.3. Scoring Iterates for the AIDS Model

Iteration Step-halves θ1 θ2
1 0 0.0000 0.0000
2 3 -1.3077 0.4184
3 0 0.6456 0.2401
4 0 0.3744 0.2542
5 0 0.3400 0.2565
6 0 0.3396 0.2565

14.8 MM Gradient Algorithm

Often it is impossible to solve the optimization step of the MM algorithm
exactly. If f(θ) is the objective function and g(θ | θn) minorizes or ma-
jorizes f(θ) at θn , then one step of Newton’s method can be applied to
approximately optimize g(θ | θn). Thus, the MM gradient algorithm iter-
ates according to

θn+1 = θn − d2g(θn | θn)−1∇g(θn | θn)

= θn − d2g(θn | θn)−1∇f(θn).

Here derivatives are taken with respect to the left argument of g(θ | θn).
Substitution of ∇f(θn) for ∇g(θn | θn) can be justified by appealing to
equation (12.3). In most practical examples, the surrogate function g(θ | θn)
is either convex or concave, and its second differential d2g(θn | θn) gives
a descent or ascent algorithm with backtracking. The MM gradient al-
gorithm and the MM algorithm enjoy the same rate of convergence ap-
proaching the optimal point θ̂. Furthermore, in the vicinity of θ̂, the MM
gradient algorithm also satisfies the appropriate ascent or descent condition
f(θn+1) > f(θn) or f(θn+1) < f(θn) without backtracking [18].

Example 14.8.1 Newton’s Method in Transmission Tomography

In the transmission tomography model of Chapters 12 and 13, the surrogate
function g(θ | θn) of equation (12.16) minorizes the loglikelihood L(θ) in
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the absence of a smoothing prior. Differentiating g(θ | θn) with respect to
θj gives the transcendental equation

0 =
∑

i

lij

[
die

−ltiθnθj/θnj − yi

]
.

One step of Newton’s method starting at θj = θnj produces the next iterate

θn+1,j = θnj +
θnj
∑

i lij(die
−ltiθn − yi)∑

i lijl
t
iθndie

−ltiθn

= θnj

∑
i lij [die

−ltiθn(1 + ltiθn) − yi]∑
i lij l

t
iθndie

−ltiθn
.

This step typically increases L(θ).

Example 14.8.2 Estimation with the Dirichlet Distribution

As another example, consider parameter estimation for the Dirichlet dis-
tribution [17]. This distribution has probability density

Γ(
∑m

i=1 θi)∏m
i=1 Γ(θi)

m∏

i=1

yθi−1
i (14.13)

on the simplex {y = (y1, . . . , ym)t : y1 > 0, . . . , ym > 0,
∑m
i=1 yi = 1}

endowed with the uniform measure. The Dirichlet distribution is used to
represent random proportions. All components θi of its parameter vector θ
are positive.

If y1, . . . , yl are randomly sampled vectors from the Dirichlet distribution,
then their loglikelihood is

L(θ) = l lnΓ
( m∑

i=1

θi

)
− l

m∑

i=1

ln Γ(θi) +

l∑

j=1

m∑

i=1

(θi − 1) ln yji.

Except for the first term on the right, the parameters are separated. Fortu-
nately the function lnΓ(t) is convex [20]. Denoting its derivative by ψ(t),
we exploit the minorization

ln Γ
( m∑

i=1

θi

)
≥ ln Γ

( m∑

i=1

θni

)
+ ψ

( m∑

i=1

θni

) m∑

i=1

(θi − θni)

and create the surrogate function

g(θ | θn) = l ln Γ
( m∑

i=1

θni

)
+ lψ

( m∑

i=1

θni

) m∑

i=1

(θi − θni)

− l

m∑

i=1

ln Γ(θi) +

l∑

j=1

m∑

i=1

(θi − 1) ln yji.
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Owing to the presence of the terms ln Γ(θi), the maximization step is in-
tractable. However, the MM gradient algorithm can be readily implemented
because the parameters are now separated and the functions ψ(t) and ψ′(t)
can be computed as suggested in Problem 18. The whole process is carried
out on actual data in the references [18, 23].

14.9 Quasi-Newton Methods

Quasi-Newton methods of maximum likelihood update the current approx-
imation An to the observed information −d2L(θn) by a low-rank pertur-
bation satisfying a secant condition. The secant condition originates from
the first-order Taylor approximation

∇L(θn) −∇L(θn+1) ≈ d2L(θn+1)(θn − θn+1).

If we set

gn = ∇L(θn) −∇L(θn+1) (14.14)

sn = θn − θn+1,

then the secant condition is −An+1sn = gn. The unique symmetric rank-
one update to An satisfying the secant condition is furnished by Davidon’s
formula [7]

An+1 = An − cnvnv
t
n (14.15)

with constant cn and vector vn specified by

cn =
[
(gn +Ansn)tsn

]−1
(14.16)

vn = gn +Ansn.

Historically, symmetric rank-two updates such as those associated with
Davidon, Fletcher, and Powell (DFP) or with Broyden, Fletcher, Gold-
farb, and Shanno (BFGS) were considered superior to the more parsi-
monious update (14.15). However, numerical analysts [5, 16] now better
appreciate the virtues of Davidon’s formula. To put it into successful prac-
tice, one must usually monitor An for positive definiteness. An immedi-
ate concern is that the constant cn is undefined when the inner product
(gn + Ansn)tsn = 0. In such situations or when |(gn + Ansn)tsn| is small
compared to ‖gn + Ansn‖2‖sn‖2, one can ignore the secant requirement
and simply take An+1 = An.

If An is positive definite and cn ≤ 0, then An+1 is certainly positive
definite. If cn > 0, then it may be necessary to shrink cn to maintain positive
definiteness. In order for An+1 to be positive definite, it is necessary that
detAn+1 > 0. In view of formula (7.10) of Chapter 7,

detAn+1 = (1 − cnv
t
nA

−1
n vn) detAn,
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and detAn+1 > 0 requires 1 − cnv
t
nA

−1
n vn > 0. Conversely, the condition

1 − cnv
t
nA

−1
n vn > 0 (14.17)

is also sufficient to ensure positive definiteness of An+1. This fact can be
most easily demonstrated by invoking the Sherman-Morrison formula

[An − cnvnv
t
n]

−1 = A−1
n +

cn

1 − cnvtnA
−1
n vn

A−1
n vn[A−1

n vn]t. (14.18)

Formula (14.18) shows that [An − cnvnv
t
n]−1 exists and is positive definite

under condition (14.17). Since the inverse of a positive definite matrix is
positive definite, it follows that An − cnvnv

t
n is positive definite as well.

The above analysis suggests the possibility of choosing cn so that not
only does An+1 remain positive definite, but detAn+1 always exceeds a
small constant ε > 0. This strategy can be realized by replacing cn by

min
{
cn,
(
1 − ε

detAn

) 1

vtnA
−1
n vn

}

in updating An. An even better strategy that monitors the condition num-
ber of An is sketched in Problem 22.

In successful applications of quasi-Newton methods, choice of the initial
matrix A1 is critical. Setting A1 = I is convenient, but often poorly scaled
for a particular problem. A better choice is A1 = J(θ1) when the expected
information matrix J(θ1) is available. In some problems, J(θ) is expen-
sive to compute and manipulate for general θ but cheap to compute and
manipulate for special θ. The special θ can furnish good starting points
for a quasi-Newton search. For instance, J(θ) can be diagonal in certain
circumstances.

TABLE 14.4. Quasi-Newton Iterates for the AIDS Model

Iteration Step-halves θ1 θ2
1 0 0.0000 0.0000
2 2 0.0222 0.2490
3 2 0.2501 0.2624
4 3 0.3747 0.2517
5 0 0.3404 0.2568
6 0 0.3395 0.2565
7 0 0.3396 0.2565

Table 14.4 displays the performance of the quasi-Newton method on
the AIDS data of this chapter. Comparison of Tables 14.3 and 14.4 demon-
strates that the quasi-Newton method is nearly as fast as Newton’s method.
Reliability is another matter. The identity matrix approximation to the
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Hessian is poor in this example, and the first step of the algorithm takes
θ into a region of parameter space where the exponential function over-
flows for the argument θ1 + iθ2 . This disaster is avoided by shrinking all
parameter increments to have Euclidean length at most 1. Comparison of
the two tables also shows that the quasi-Newton method experiences more
step halving, a clear indication that it is struggling in the early iterations.

It is noteworthy that the strategy of updating the approximation An to
−d2L(θn) can be reformulated to update the approximation Hn = A−1

n to
−d2L(θn)−1 instead. Restating the secant condition −An+1sn = gn as the
inverse secant condition −Hn+1gn = sn leads to the symmetric rank-one
update

Hn+1 = Hn − bnwnw
t
n

bn =
[
(sn +Hngn)

tgn
]−1

(14.19)

wn = sn +Hngn.

This strategy has the advantage of avoiding explicit inversion of An in
calculating the quasi-Newton direction ∆θn = Hn∇L(θn). However, moni-
toring positive definiteness of Hn forces us to invert it. Whichever strategy
one adopts, monitoring positive definiteness is most readily accomplished
by carrying forward simultaneously An and Hn = A−1

n and applying the
Sherman-Morrison formula to update either Hn or An.

14.10 Accelerated MM

We now consider the question of how to accelerate the often excruciat-
ingly slow convergence of the MM algorithm. The simplest device is to
just double each MM step [8, 18]. Thus, if F (xn) is the MM algorithm
map from R

p to R
p, then we move to xn + 2[F (xn) − xn] rather than to

F (xn). Step doubling is a standard tactic that usually halves the number of
iterations until convergence. However, in many problems something more
radical is necessary. Because Newton’s method enjoys exceptionally quick
convergence in a neighborhood of the optimal point, an attractive strategy
is to amend the MM algorithm so that it resembles Newton’s method. The
papers [13, 14, 19] take up this theme from the perspective of optimizing
the objective function by Newton’s method. It is also possible to apply
Newton’s method to find a root of the equation 0 = x− F (x). This alter-
native perspective has the advantage of dealing directly with the iterates
of the MM algorithm. Let G(x) denote the difference G(x) = x−F (x). Be-
cause G(x) has differential dG(x) = I − dF (x), Newton’s method iterates
according to

xn+1 = xn − dG(xn)
−1G(xn) = xn − [I − dF (xn)]

−1G(xn). (14.20)
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If we can approximate dF (xn) by a low-rank matrixM , then we can replace
I − dF (xn) by I −M and explicitly form the inverse (I −M)−1. Let us see
where this strategy leads.

Quasi-Newton methods operate by secant approximations. It is easy to
generate a secant condition by taking two MM iterates starting from the
current point xn. Close to the optimal point x∞, the linear approximation

F ◦ F (xn) − F (xn) ≈ M [F (xn) − xn]

holds, where M = dF (x∞). If v is the vector F ◦F (xn)−F (xn) and u is the
vector F (xn) − xn, then the secant condition is Mu = v. In fact, the best
results may require several secant conditions Mui = vi for i = 1, . . . , q,
where q ≤ p. These can be generated at the current iterate xn and the
previous q − 1 iterates. For convenience represent the secant conditions
in the matrix form MU = V for U = (u1, . . . , uq) and V = (v1, . . . , vq).
Example 11.3.4 shows that the choice M = V (U tU)−1U t minimizes the
Frobenius norm ofM subject to the secant constraintMU = V . In practice,
it is better to make a controlled approximation to dF (x∞) than a wild
guess.

To apply the approximation, we must invert the matrix I−V (U tU)−1U t.
Fortunately, we have the explicit inverse

[I − V (U tU)−1U t]−1 = I + V [U tU − U tV ]−1U t. (14.21)

The reader can readily check this variant of the Sherman-Morrison formula.
It is noteworthy that the q × q matrix U tU − U tV is trivial to invert for q
small even when p is large. With these results in hand, the Newton update
(14.20) can be replaced by the quasi-Newton update

xn+1 = xn − [I − V (U tU)−1U t]−1[xn − F (xn)]

= xn − [I + V (U tU − U tV )−1U t][xn− F (xn)]

= F (xn) − V (U tU − U tV )−1U t[xn − F (xn)].

The special case q = 1 is interesting in its own right. A brief calculation
shows that the quasi-Newton update for q = 1 is

xn+1 = (1 − cn)F (xn) + cnF ◦ F (xn) (14.22)

cn = − ‖F (xn) − xn‖2
2

[F ◦ F (xn) − 2F (xn) + xn]t[F (xn) − xn]
.

Our quasi-Newton acceleration enjoys several desirable properties in high-
dimensional problems. First, the computational effort per iteration is rel-
atively light: two MM updates and a few matrix times vector multipli-
cations. Second, memory demands are also light. If we fix q in advance,
the most onerous requirement is storage of the secant matrices U and V .
These two matrices can be updated by replacing the earliest retained se-
cant pair by the latest secant pair generated. Third, the whole scheme is
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FIGURE 14.1. MM Acceleration for the Mixture of Poissons Example

consistent with linear constraints. Thus, if the parameter space satisfies a
linear constraint wtx = a for all feasible x, then the quasi-Newton iter-
ates also satisfy wtxn = a for all n. This claim follows from the equalities
wtF (x) = a and wtV = 0. Finally, if the quasi-Newton update at xn fails
the ascent or descent test, then one can always revert to the second MM
update F ◦ F (xn). Balanced against these advantages is the failure of the
quasi-Newton acceleration to respect parameter lower and upper bounds.

Example 14.10.1 A Mixture of Poissons

Problem 11 of Chapter 13 describes a Poisson mixture model for mortal-
ity data from The London Times. Starting from the method of moments
estimates (µ01, µ02, π0) = (1.101, 2.582, .2870), the EM algorithm takes an
excruciating 535 iterations for the loglikelihoodL(θ) to attain its maximum
of -1989.946. Even worse, it takes 1749 iterations for the parameters to
reach the maximum likelihood estimates (µ̂1, µ̂2, π̂) = (1.256, 2.663, .3599).
The sizable difference in convergence rates to the maximum loglikelihood
and the maximum likelihood estimates indicates that the likelihood sur-
face is quite flat. In contrast, the accelerated EM algorithm converges to
the maximum loglikelihood in about 10 to 150 iterations, depending on
the value of q. Figure 14.1 plots the progress of the EM algorithm and the
different versions of the quasi-Newton acceleration. Titterington et al. [26]
report that Newton’s method typically takes 8 to 11 iterations to converge
when it converges for these data. For about a third of their initial points,
Newton’s method fails.
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14.11 Problems

1. Consider the map

f(x) =

(
x2

1 + x2
2 − 2

x1 − x2

)

of the plane into itself [9]. Show that f(x) = 0 has the roots −1 and
1 and no other roots. Prove that Newton’s method iterates according
to

xn+1,1 = xn+1,2 =
x2
n1 + x2

n2 + 2

2(xn1 + xn2)

and that these iterates converge to the root −1 if x01+x02 is negative
and to the root 1 if x01 + x02 is positive. If x01 + x02 = 0, then the
first iterate is undefined. Finally, prove that

lim
n→∞

|xn+1,1 − y1|
|xn1 − y1|2

= lim
n→∞

|xn+1,2 − y2|
|xn2 − y2|2

=
1

2
,

where y is the root relevant to the initial point x0.

2. Continuing Example 14.2.1, consider iterating according to

Bn+1 = Bn

j∑

i=0

(I − ABn)i (14.23)

to find A−1 [12]. Example 14.2.1 is the special case j = 1. Verify the
alternative representation

Bn+1 =

j∑

i=0

(I −BnA)iBn,

and use it to prove that Bn+1 is symmetric whenever A and Bn are.
Also show that

A−1 − Bn+1 = (A−1 − Bn)[A(A−1 −Bn)]j .

From this last identity deduce the norm inequality

‖A−1 − Bn+1‖ ≤ ‖A‖j‖A−1 −Bn‖j+1.

Thus, the algorithm converges at a cubic rate when j = 2, at a quartic
rate when j = 3, and so forth.
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3. Problem 14 of Chapter 5 can be adapted to extract the mth root of
a positive semidefinite matrix A [5]. Consider the iteration scheme

Bn+1 =
m− 1

m
Bn +

1

m
B−m+1
n A

starting with B0 = cI for some positive constant c. Show by induction
that (a) Bn commutes with A, (b) Bn is symmetric, and (c) Bn
is positive definite. To prove that Bn converges to A1/m, consider
the spectral decomposition A = UDU t of A with D diagonal and
U orthogonal. Show that Bn has a similar spectral decomposition
Bn = UDnU

t and that the ith diagonal entries of Dn and D satisfy

dn+1,i =
m− 1

m
dni +

1

m
d−m+1
ni di.

Problem 14 of Chapter 5 implies that dni converges to m
√
di when

di > 0. This convergence occurs at a fast quadratic rate. If di = 0,
then dni converges to 0 at the slower linear rate m−1

m .

4. Program the algorithm of Problem 3 and extract the square roots of
the two matrices

(
1 1
1 1

)
,

(
2 1
1 2

)
.

Describe the apparent rate of convergence in each case and any diffi-
culties you encounter with roundoff error.

5. Prove that the increment (14.3) can be expressed as

∆θn = −A−1/2
n

[
I −A−1/2

n V t(V A−1
n V t)−1V A−1/2

n

]
A−1/2
n ∇L(θn)

= −A−1/2
n (I − Pn)A

−1/2
n ∇L(θn)

using the symmetric square root A
−1/2
n ofA−1

n . Check that the matrix
Pn is a projection in the sense that P tn = Pn and P 2

n = Pn and that
these properties carry over to I − Pn. Now argue that

−dL(θn)∆θn = ‖(I − Pn)A
−1/2
n ∇L(θn)‖2

2

and consequently that backtracking is bound to produce a decrease
in L(θ) if

(I − Pn)A
−1/2
n ∇L(θn) 6= 0.

6. Show that Newton’s method converges in one iteration to the mini-
mum of

f(θ) = d+ etθ +
1

2
θtFθ
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when the symmetric matrix F is positive definite. Note that this
implies that the Gauss-Newton algorithm (14.12) converges in a single
step when the regression functions µi(θ) are linear.

7. Formally prove that the two expressions E[−d2L(θ)] and Var[∇L(θ)]
for the expected information J(θ) coincide. You may assume that
integration and differentiation can be interchanged as needed.

8. Verify the score and information entries in Table 14.1.

9. Prove that the inverse matrix Σ(θ)−1 appearing in equation (14.10)
can be replaced by the generalized inverse Σ(θ)− [15]. (Hints: Show
that the difference h(X) − µ(θ) is almost surely in the range of Σ(θ)
and hence that

Σ(θ)Σ(θ)− [h(X) − µ(θ)] = h(X) − µ(θ)

almost surely. To validate the claim about the range of h(X) − µ(θ),
let P denote perpendicular projection onto the range of Σ(θ). Then
show that E(‖(I − P )[h(X) − µ(θ)]‖2

2) = 0.)

10. A quantal response model involves independent binomial observations
x1, . . . , xm with ni trials and success probability πi(θ) per trial for the
ith observation. If zi is a covariate vector and θ a parameter vector,
then the specification

πi(θ) =
ez

t
iθ

1 + ez
t
i
θ

gives a generalized linear model. Estimate θ̂ = (−5.132, 0.0677)t for
the ingot data of Cox [6] displayed in Table 14.5.

TABLE 14.5. Ingot Data for a Quantal Response Model

Trials ni Observation xi Covariate zi1 Covariate zi2
55 0 1 7

157 2 1 14
159 7 1 27
16 3 1 57

11. Let g(x) and h(x) be probability densities defined on the real line.
Show that the admixture density f(x) = θg(x) + (1 − θ)h(x) for
θ ∈ [0, 1] has score and expected information

L′(θ) =
g(x) − h(x)

θg(x) + (1 − θ)h(x)
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J(θ) =

∫
[g(x) − h(x)]2

θg(x) + (1 − θ)h(x)
dx

=
1

θ(1 − θ)

[
1 −

∫
g(x)h(x)

θg(x) + (1 − θ)h(x)
dx
]
.

What happens to J(θ) when g(x) and h(x) coincide? What does J(θ)
equal when g(x) and h(x) have nonoverlapping domains? (Hint: The
identities

h− g =
θg + (1 − θ)h − g

1 − θ
, g − h =

θg + (1 − θ)h − h

θ

will help.)

12. In robust regression it is useful to consider location-scale families with
densities of the form

c

σ
e−ρ(

x−µ
σ ), x ∈ (−∞,∞). (14.24)

Here ρ(r) is a strictly convex even function, decreasing to the left
of 0 and symmetrically increasing to the right of 0. Without loss
of generality, one can take ρ(0) = 0. The normalizing constant c is
determined by c

∫∞
−∞ e−ρ(r)dr = 1. Show that a random variable X

with density (14.24) has mean µ and variance

Var(X) = cσ2

∫ ∞

−∞
r2e−ρ(r)dr.

If µ depends on a parameter vector θ, demonstrate that the score
corresponding to a single observation X = x amounts to

∇L(φ) =

(
1
σ
ρ′(x−µ

σ
)∇µ(θ)

− 1
σ + ρ′(x−µσ )x−µσ2

)

for φ = (θt, σ)t. Finally, prove that the expected information J(φ) is
block diagonal with upper-left block

c

σ2

∫ ∞

−∞
ρ′′(r)e−ρ(r)dr∇µ(θ)dµ(θ)

and lower-right block

c

σ2

∫ ∞

−∞
ρ′′(r)r2e−ρ(r)dr +

1

σ2
.

13. In the context of Problem 12, take ρ(r) = ln cosh2( r2 ). Show that this
corresponds to the logistic distribution with density

f(x) =
e−x

(1 + e−x)2
.
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Compute the integrals

π2

3
= c

∫ ∞

−∞
r2e−ρ(r)dr

1

3
= c

∫ ∞

−∞
ρ′′(r)e−ρ(r)dr

1

3
+
π2

9
= c

∫ ∞

−∞
ρ′′(r)r2e−ρ(r)dr+ 1

determining the variance and expected information of the density
(14.24) for this choice of ρ(r).

14. Continuing Problems 12 and 13, compute the normalizing constant c
and the three integrals determining the variance and expected infor-
mation for Huber’s function

ρ(r) =

{
r2

2 |r| ≤ k

k|r| − k2

2 |r| > k.

15. A family of discrete density functions pj(θ) defined on {0, 1, . . .} and
indexed by a parameter θ > 0 is said to be a power series family if
for all j

pj(θ) =
cjθ

j

g(θ)
, (14.25)

where cj ≥ 0 and g(θ) =
∑∞

k=0 ckθ
k is the appropriate normalizing

constant. If x1, . . . , xm are independent observations from the discrete
density (14.25), then show that the maximum likelihood estimate of
θ is a root of the equation

1

m

m∑

i=1

xi =
θg′(θ)

g(θ)
. (14.26)

Prove that the expected information in a single observation is

J(θ) =
σ2(θ)

θ2
,

where σ2(θ) is the variance of the density (14.25).

16. Continuing problem 15, equation (14.26) suggests that one can find

the maximum likelihood estimate θ̂ by iterating via

θn+1 =
x̄g(θn)

g′(θn)
= f(θn),
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where x̄ is the sample mean. The question now arises whether this
iteration scheme is likely to converge to θ̂. Local convergence hinges
on the condition |f ′(θ̂)| < 1. When this condition is true, the map

θn+1 = f(θn) is locally contractive near the fixed point θ̂. Prove that

f ′(θ̂) = 1 − σ2(θ̂)

µ(θ̂)
,

where

µ(θ) =
θg′(θ)

g(θ)

is the mean of a single realization. Thus, convergence depends on the
ratio of the variance to the mean. (Hints: By differentiating g(θ) it is
easy to compute the mean and the second factorial moment

E[X(X − 1)] =
θ2g′′(θ)

g(θ)
.

Substitute this in f ′(θ̂), recall Var(X) = E[X(X−1)]+E(X)−E(X)2 ,
and invoke equality (14.26).)

17. In the Gauss-Newton algorithm (14.12), the matrix

m∑

i=1

wi∇µi(θn)dµ(θn)

can be singular or nearly so. To cure this ill, Marquardt suggested
substituting

An =

m∑

i=1

wi∇µi(θn)dµ(θn) + λI

for it and iterating according to

θn+1 = θn +A−1
n

m∑

i=1

wi[xi − µi(θn)]∇µi(θn). (14.27)

Prove that the increment ∆θn = θn+1 − θn proposed in equation
(14.27) minimizes the criterion

1

2

m∑

i=1

wi[xi − µi(θn) − dµi(θn)∆θn]2 +
λ

2
‖∆θn‖2

2.
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18. In Example 14.8.2, digamma and trigamma functions must be evalu-
ated. Show that these functions satisfy the recurrence relations

ψ(t) = −t−1 + ψ(t + 1)

ψ′(t) = t−2 + ψ′(t+ 1).

Thus, if ψ(t) and ψ′(t) can be accurately evaluated via asymptotic
expansions for large t, then they can be accurately evaluated for small
t. For example, Stirling’s formula and its extension give

ψ(t) = ln t− (2t)−1 +O(t−2)

ψ′(t) = t−1 + (
√

2t)−2 + O(t−3)

as t → ∞.

19. Compute the score vector and the observed and expected information
matrices for the Dirichlet distribution (14.13). Explicitly invert the
expected information using the Sherman-Morrison formula.

20. Consider the quadratic function

L(θ) = −(1, 1)θ− 1

2
θt
(

2 1
1 1

)
θ

defined on R
2. Compute the iterates of the quasi-Newton method for

maximizing L(θ) using the inverse update (14.19) for Hn and starting

from θ1 = 0 and H1 =
(

1 0
0 1

)
.

21. Let A be a positive definite matrix. Prove [2] that

tr(A) − lndet(A) ≥ ln[cond2(A)], (14.28)

where cond2(A) = ‖A‖2‖A−1‖2. (Hint: Express tr(A) − ln det(A) in
terms of the eigenvalues of A. Then use the inequalities λ − lnλ ≥ 1
and λ > 2 lnλ for all λ > 0.)

22. In Davidon’s symmetric rank-one update (14.15), it is possible to
control the condition number of An+1 by shrinking the constant cn.
Suppose a moderately sized number d is chosen. Due to inequality
(14.28), one can avoid ill-conditioning in the matrices An by imposing
the constraint tr(An) − lndet(An) ≤ d. To see how this fits into the
updating scheme (14.15), verify that

ln det(An+1) = ln det(An) + ln(1 − cnv
t
nA

−1
n vn)

tr(An+1) = tr(An) − cn‖vn‖2
2.

Employing these results, deduce that tr(An+1) − lndet(An+1) ≤ d
provided cn satisfies

−cn‖vn‖2
2 − ln(1 − cnv

t
nA

−1
n vn) ≤ d− tr(An) + ln det(An).
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23. Survival analysis deals with nonnegative random variables T model-
ing random lifetimes. Let such a random variable T ≥ 0 have density
function f(t) and distribution function F (t). The hazard function

h(t) = lim
s↓0

Pr(t < T ≤ t + s | T > t)

s

=
f(t)

1 − F (t)

represents the instantaneous rate of death under lifetime T . Statis-
ticians call the right-tail probability 1 − F (t) = S(t) the survival
function and view h(t) as the derivative

h(t) = − d

dt
lnS(t).

The cumulative hazard function H(t) =
∫ t
0
h(s)ds obviously satisfies

the identity

S(t) = e−H(t).

In Cox’s proportional hazards model, longevity depends not only on
time but also covariates. This is formalized by taking

h(t) = λ(t)ex
tα,

where x and α are column vectors of predictors and regression coeffi-
cients, respectively. For instance, x might be (1, d)t, where d indicates
dosage of a life-prolonging drug.

Many clinical trials involve right censoring. In other words, instead of
observing a lifetime T = t, we observe T > t. Censored and ordinary
data can be mixed in the same study. Generally, each observation T
comes with a censoring indicator W . If T is censored, then W = 1;
otherwise, W = 0.

(a) Show that

H(t) = Λ(t)ex
tα,

where

Λ(t) =

∫ t

0

λ(s)ds.

In the Weibull proportional hazards model, λ(t) = βtβ−1. Show
that this translates into the survival and density functions

S(t) = e−t
βextα

f(t) = βtβ−1ex
tα−tβextα

.
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(b) Consider independent possibly censored observations t1, . . . , tm
with corresponding predictor vectors x1 . . . , xm and censoring
indicators w1, . . . , wm. Prove that the loglikelihood of the data
is

L(α, β) =

m∑

i=1

wi lnSi(ti) +

m∑

i=1

(1 −wi) lnfi(ti),

where Si(t) and fi(t) are the survival and density functions of
the ith case.

(c) Calculate the score and observed information for the Weibull
model as posed. The observed information is

−d2L(α, β) =

m∑

i=1

tβi e
xt

iα

(
xi

ln ti

)(
xi

ln ti

)t

+

m∑

i=1

(1 − wi)

(
0 0
0 β−2

)
.

(d) Show that the loglikelihood L(α, β) for the Weibull model is
concave. Demonstrate that it is strictly concave if and only if
the m vectors x1, . . . , xm span R

p, where α has p components.

24. In the survival model of Problem 23, implement Newton’s method
for finding the maximum likelihood estimate of the parameter vector
(α, β). What difficulties do you encounter? Why is concavity of the
loglikelihood helpful?

25. Write a computer program and reproduce the iterates displayed in
Table 14.4.

26. Let x1, . . . , xm be a random sample from the gamma density

f(x) = Γ(α)−1βαxα−1e−βx

on (0,∞). Find the score, observed information, and expected infor-
mation for the parameters α and β, and demonstrate that Newton’s
method and scoring coincide.

27. Continuing Problem 26, derive the method of moments estimators

α̂ =
x2

s2
, β̂ =

x

s2
,

where x = 1
m

∑m
i=1 xi and s2 = 1

m

∑m
i=1(xi − x)2 are the sample

mean and variance, respectively. These are not necessarily the best
explicit estimators of the two parameters. Show that setting the score
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function equal to 0 implies that β = α/x is a stationary point of the
loglikelihood L(α, β) of the sample x1, . . . , xm for α fixed. Why does
β = α/x furnish the maximum? Now argue that substituting it in the
loglikelihood reduces maximum likelihood estimation to optimization
of the profile loglikelihood

L(α) = mα lnα−mα lnx−m ln Γ(α) +m(α − 1)lnx−mα.

Here lnx = 1
m

∑m
i=1 lnxi. There are two nasty terms in L(α). One is

α lnα, and the other is lnΓ(α). We can eliminate both by appealing
to a version of Stirling’s formula. Ordinarily Stirling’s formula is only
applied for large factorials. This limitation is inconsistent with small
α. However, Gosper’s version of Stirling’s formula is accurate for all
arguments. This little-known version of Stirling’s formula says that

Γ(α+ 1) ≈
√

(α+ 1/6)2πααe−α.

Given that Γ(α) = Γ(α+1)/α, show that the application of Gosper’s
formula leads to the approximate maximum likelihood estimate

α̂ =
3 − d+

√
(3 − d)2 + 24d

12d
,

where d = lnx − lnx [4]. Why is this estimate of α positive? Why
does one take the larger root of the defining quadratic?

28. In the multilogit model, items are draw from m categories. Let yi de-
note the ith of l independent draws and xi a corresponding predictor
vector. The probability πij that yi = j is given by

πij(θ) =





e
xt

i
θj

1+
∑m−1

k=1
e

xt
i

θk
1 ≤ j < m

1

1+
∑

m−1

k=1
e

xt
i

θk
j = m .

Find the loglikelihood, score, observed information, and expected in-
formation. Demonstrate that Newton’s method and scoring coincide.
(Hint: You can achieve compact expressions by stacking vectors and
using matrix Kronecker products.)

29. Derive formulas (14.21) and (14.22).
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15

Local and Global Convergence

15.1 Introduction

Proving convergence of the various optimization algorithms is a delicate
exercise. In general, it is helpful to consider local and global convergence
patterns separately. The local convergence rate of an algorithm provides
a useful benchmark for comparing it to other algorithms. On this basis,
Newton’s method wins hands down. However, the tradeoffs are subtle. Be-
sides the sheer number of iterations until convergence, the computational
complexity and numerical stability of an algorithm are critically important.
The MM algorithm is often the epitome of numerical stability and compu-
tational simplicity. Scoring lies somewhere between these two extremes. It
tends to converge more quickly than the MM algorithm and to behave more
stably than Newton’s method. Quasi-Newton methods also occupy this in-
termediate zone. Because the issues are complex, all of these algorithms
survive and prosper in certain computational niches.

The following overview of convergence manages to cover only some high-
lights. The books [2, 9, 14] provide a fuller survey. Quasi-Newton methods
are given especially short shrift here. The efforts of a generation of numer-
ical analysts in understanding quasi-Newton methods defy easy summary
or digestion. Interested readers can consult one of the helpful references
[2, 4, 9, 12]. We emphasize the MM and related algorithms, partially be-
cause a fairly coherent theory for them can be reviewed in a few pages.

15.2 Calculus Preliminaries

As a prelude to our study of convergence, let us review some ideas from
advanced calculus. A function h : R

m → R
n is differentiable at a point

x ∈ R
m if and only if an n×m matrix A exists such that

‖h(x+ w) − h(x) −Aw‖ = o(‖w‖)

as ‖w‖ → 0. Because of the equivalence of vector norms, any pair of norms
on R

m and R
n will do in this definition. The matrix A is typically written

dh(x). Its ith row consists of the partial derivatives of the ith component
hi(x) of h(x). To avoid certain pathologies, we usually make the simplifying
assumption that all first partial derivatives of h(x) exist and are continuous.
This continuity assumption guarantees that the differential of h(x) exists

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 277
DOI 10.1007/978-1-4419-5945-4_15, © Springer Science+Business Media, LLC 2010 
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for all x and can be identified with the Jacobi matrix dh(x). Differentiability
of h(x) obviously entails continuity of h(x).

We will need an inequality substitute for the mean value theorem. The
desired bound can be best developed by introducing the vector-valued in-

tegral
∫ b
a g(t)dt of a continuous vector-valued function g : [a, b] → R

n. The

components of
∫ b
a
g(t)dt are just the integrals

∫ b
a
gi(t)dt of the components

gi(t) of g(t). If a = t0 < t1 < · · · < tk−1 < tk = b is a partition of [a, b],

the Riemann sum
∑k

i=1 g(ti)(ti− ti−1) approximates the integral
∫ b
a g(t)dt

and satisfies the norm inequality

∣∣∣
∣∣∣
k∑

i=1

g(ti)(ti − ti−1)
∣∣∣
∣∣∣ ≤

k∑

i=1

‖g(ti)‖(ti − ti−1).

Passing to the limit as the mesh size maxi(ti − ti−1) → 0, one can readily

verify that ‖
∫ b
a g(t)dt‖ ≤

∫ b
a ‖g(t)‖dt. Applying this inequality, the funda-

mental theorem of calculus, and the chain rule leads to the bound

‖h(y) − h(x)‖ =
∣∣∣
∣∣∣
∫ 1

0

dh[x+ t(y − x)](y − x)dt
∣∣∣
∣∣∣

≤
∫ 1

0

‖dh[x+ t(y − x)](y − x)‖dt

≤
∫ 1

0

‖dh[x+ t(y − x)]‖ · ‖y − x‖dt (15.1)

≤ sup
t∈[0,1]

‖dh[x+ t(y − x)]‖ · ‖y − x‖.

The mean value inequality (15.1) can be improved. Suppose that along
the line segment {z = x+ t(y−x) : t ∈ [0, 1]} the differential dh(z) satisfies
the Lipschitz inequality

‖dh(u)− dh(v)‖ ≤ λ‖u− v‖ (15.2)

for some constant λ > 0. This is the case if the second differential d2h(z)
exists and is continuous in z, for then inequality (15.2) follows from an
analog of inequality (15.1). Assuming the truth of inequality (15.2), we
find that

‖h(y) − h(x) − dh(x)(y− x)‖

=
∣∣∣
∣∣∣
∫ 1

0

{dh[x+ t(y − x)] − dh(x)}(y − x)dt
∣∣∣
∣∣∣

≤
∫ 1

0

‖dh[x+ t(y − x)]− dh(x)‖ · ‖y − x‖dt (15.3)

≤ λ‖y − x‖2

∫ 1

0

t dt

=
λ

2
‖y − x‖2.
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15.3 Local Rates of Convergence

Local convergence of many optimization algorithms hinges on the following
result of Ostrowski [13, 15].

Proposition 15.3.1 Let the map M : R
m → R

m have fixed point x∞.
If M(x) is differentiable at x∞, and the spectral radius ρ[dM(x∞)] of its
differential satisfies ρ[dM(x∞)] < 1, then the iterates xn+1 = M(xn) are
locally attracted to x∞ at a linear rate or better.

Proof: As mentioned in Proposition 6.3.2, there exists a vector norm ‖x‖
such that the induced matrix norm ‖dM(x∞)‖ comes arbitrarily close to
the spectral radius ρ[dM(x∞)]. Accordingly, choose an appropriate norm
with ‖dM(x∞)‖ = σ < 1 and then a constant ε > 0 with ε+σ < 1. Because
M(x) is differentiable, there is a ball B = {x : ‖x− x∞‖ < δ} such that

‖M(x) −M(x∞) − dM(x∞)(x − x∞)‖ ≤ ε‖x− x∞‖

for x ∈ B. It follows that x ∈ B implies

‖M(x)− x∞‖ = ‖M(x) −M(x∞)‖
≤ ‖M(x) −M(x∞) − dM(x∞)(x− x∞)‖

+ ‖dM(x∞)(x− x∞)‖
≤ (ε+ σ)‖x− x∞‖.

One can now argue inductively that if the initial iterate x1 belongs to B,
then all subsequent iterates xn+1 = M(xn) belong to B as well and that

‖xn+1 − x∞‖ ≤ (σ + ε)n‖x1 − x∞‖.

In other words, xn converges to x∞ at least as fast as (σ + ε)n → 0.

Our intention is to apply Ostrowski’s result to iteration maps of the type

M(x) = x− A(x)−1∇f(x), (15.4)

where f(x) is an objective function such as a sum of squares or a loglikeli-
hood and A(x) equals d2f(x) or an approximation to it. For instance, when
f(x) is a loglikelihood, −A(x) is the corresponding observed information
in Newton’s method and the expected information in scoring. In an MM
gradient algorithm for minimizing f(x), we take A(x) to be the Hessian
d20g(x | x) of the surrogate function g(x | x). For the sake of convenience
in the remainder of this chapter, we limit ourselves to minimization.

Our first order of business is to compute the differential dM(x∞) at a
local optimum x∞ of f(x). If x∞ is a strict local minimum, then ordinar-
ily d2f(x∞) is positive definite. We make this assumption as well as the
assumption that d2f(x) is continuous in a neighborhood of x∞. Thus, the
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iteration map is certainly well defined in some neighborhood of x∞ for
Newton’s method. For scoring and the MM gradient algorithm, we likewise
assume that A(x) is continuous and positive definite in a neighborhood of
x∞.

Because ∇f(x∞) = 0, the differential of A(x)−1 at x = x∞ is irrelevant
in determining dM(x∞). Thus, it is plausible to conjecture that

dM(x∞) = I −A(x∞)−1d2f(x∞).

This claim can be verified by noting that

M(x) −M(x∞) − dM(x∞)(x− x∞)

= x− A(x)−1∇f(x) − x∞ − dM(x∞)(x− x∞)

= −A(x)−1∇f(x) + [I − dM(x∞)](x− x∞)

= −A(x)−1∇f(x) +A(x∞)−1d2f(x∞)(x − x∞).

As a consequence of this representation and the identity ∇f(x∞) = 0, we
deduce the inequality

‖M(x)−M(x∞) − dM(x∞)(x− x∞)M(x)‖
= ‖ −A(x)−1∇f(x) + A(x∞)−1d2f(x∞)(x− x∞)‖
≤ ‖A(x)−1[A(x∞) − A(x)]A(x∞)−1d2f(x∞)(x− x∞)‖

+ ‖A(x)−1[∇f(x) −∇f(x∞) − d2f(x∞)(x− x∞)]‖
≤ ‖A(x)−1‖ · ‖A(x∞) − A(x)‖ · ‖A(x∞)−1‖ · ‖d2f(x∞)‖ · ‖x− x∞‖

+ ‖A(x)−1‖o(‖x− x∞‖).

Because ‖A(x∞)−A(x)‖ → 0 as ‖x− x∞‖ → 0 and ‖A(x)−1‖ is bounded
in a neighborhood of x∞, the overall error in the linear approximation of
M(x) around x∞ is consequently o(‖x− x∞‖).

Calculation of the differential dM(x∞) of an MM algorithm map at a
local minimum x∞ is equally interesting. In Section 16.6.1 we prove that

dM(x∞) = d20g(x∞ | x∞)−1[d20g(x∞ | x∞) − d2f(x∞)]

= I − d20g(x∞ | x∞)−1d2f(x∞), (15.5)

which is precisely the differential just computed for the MM gradient algo-
rithm. Thus, substituting a single Newton step for the full solution of the
optimization step of the MM algorithm does not slow convergence locally.

Proposition 15.3.2 Both the MM algorithm and the MM gradient algo-
rithm are locally attracted to a local optimum x∞ at a linear rate equal to
the spectral radius of I − d20g(x∞ | x∞)−1d2f(x∞).

Proof: Let M(x) be the iteration map. According to Proposition 15.3.1,
it suffices to show that all eigenvalues of the differential dM(x∞) lie on
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the half-open interval [0, 1). In view of the discussion at the end of Section
8.3, dM(x∞) has eigenvalues determined by the stationary values of the
Rayleigh quotient

R(v) =
vt[d20g(x∞ | x∞) − d2f(x∞)]v

vtd20g(x∞ | x∞)v

= 1 − vtd2f(x∞)v

vtd20g(x∞ | x∞)v
. (15.6)

Because both d2f(x∞) and d20g(x∞ | x∞) are positive definite, R(v) < 1
for all vectors v of unit length. It follows that the maximum of R(v) is
strictly less than 1. On the other hand, R(v) ≥ 0 since the difference
d20g(x∞ | x∞) − d2f(x∞) is positive semidefinite.

The next proposition validates local convergence of Newton’s method.

Proposition 15.3.3 Newton’s method is locally attracted to a local op-
timum x∞ at a rate faster than linear. If the second differential d2f(x)
satisfies

‖d2f(y) − d2f(x)‖ ≤ λ‖y − x‖ (15.7)

in some neighborhood of x∞, then the Newton iterates xn satisfy

‖xn+1 − x∞‖ ≤ 2λ‖d2f(x∞)−1‖ · ‖xn − x∞‖2 (15.8)

close to x∞.

Proof: If M(x) represents the Newton iteration map, then

dM(x∞) = I − d2f(x∞)−1d2f(x∞) = 0.

Hence, Proposition 15.3.1 implies local attraction to x∞ at a rate faster
than linear. If, in addition, inequality (15.7) holds, then inequality (15.3)
is true for h(x) = ∇f(x). Inequalities (15.3) and (15.7) together imply

‖xn+1 − x∞‖
= ‖xn − d2f(xn)−1∇f(xn) − x∞‖
≤ ‖− d2f(xn)−1[∇f(xn) −∇f(x∞) − d2f(x∞)(xn − x∞)]‖

+ ‖d2f(xn)−1[d2f(xn) − d2f(x∞)](xn − x∞)‖

≤
(λ

2
+ λ
)
‖d2f(xn)−1‖ · ‖xn − x∞‖2,

which yields inequality (15.8) for xn sufficiently close to x∞ by virtue of
the assumed continuity and invertibility of d2f(x).

Local convergence of the scoring algorithm is not guaranteed by Propo-
sition 15.3.1 because nothing prevents an eigenvalue of

dM(x∞) = I + J(x∞)−1d2L(x∞)
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from falling below −1. Scoring with a fixed partial step as specified by

xn+1 = xn + αJ(xn)
−1∇L(xn)

will converge locally for α > 0 sufficiently small. In practice, no adjust-
ment is usually necessary. For reasonably large sample sizes, the expected
information matrix J(x∞) approximates the observed information matrix
−d2L(x∞) well, and the spectral radius of dM(x∞) is nearly 0.

Finally, let us consider local convergence of block relaxation. The argu-
ment x = (x[1], x[2], . . . , x[b]) of the objective function f(x) now splits into
disjoint blocks, and f(x) is minimized along each block of components x[i]

in turn. Let Mi(x) denote the update to block i. To compute the differential
of the full update M(x) at a local optimum x∞, we need compact nota-
tion. Set y = x∞ and let dif(x) denote the partial differential of f(x) with
respect to block i; the transpose of dif(x) is the partial gradient ∇if(x).
The updates satisfy the partial gradient equations

0 = ∇if [M1(x), . . . ,Mi(x), x[i+1], . . . , x[b]]. (15.9)

Now let dj∇if(x) denote the partial differential of the partial gradient
∇if(x) with respect to block j. Taking the partial differential of equation
(15.9) with respect to block j, applying the chain rule, and substituting
the optimal point y = M(y) for x yield

0 =

i∑

k=1

dk∇if(y)djMk(y), j ≤ i

0 =

i∑

k=1

dk∇if(y)djMk(y) + dj∇if(y), j > i. (15.10)

It is helpful to express these equations in block matrix form.
For example in the case of b = 3 blocks, the linear system of equations

(15.10) can be represented as LdM(y) = D − U , where U = Lt and

dM(y) =



d1M1(y) d2M1(y) d3M1(y)
d1M2(y) d2M2(y) d3M2(y)
d1M3(y) d2M3(y) d3M3(y)




L =



d1∇1f(y) 0 0
d1∇2f(y) d2∇2f(y) 0
d1∇3f(y) d2∇3f(y) d3∇3f(y)




D =



d1∇1f(y) 0 0

0 d2∇2f(y) 0
0 0 d3∇3f(y)


 .

The identity dj∇if(y)
t = di∇jf(y) between two nontrivial blocks of U and

L is a consequence of the equality of mixed partials. The matrix equation
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LdM(y) = D−U can be explicitly solved in the form dM(y) = L−1(D−U).
Here L is invertible provided its diagonal blocks di∇if(y) are invertible. At
an optimal point y, the partial Hessian matrix di∇if(y) is always positive
semidefinite and usually positive definite as well.

Local convergence of block relaxation hinges on whether the spectral
radius ρ of the matrix L−1(U − D) satisfies ρ < 1. Suppose that λ is
an eigenvalue of L−1(D − U) with eigenvector v. These can be complex.
The equality L−1(D − U)v = λv implies (1 − λ)Lv = (L + U − D)v.
Premultiplying this by the conjugate transpose v∗ gives

1

1 − λ
=

v∗Lv

v∗(L + U −D)v
.

Hence, the real part of 1/(1 − λ) satisfies

Re

( 1

1 − λ

)
=

v∗(L + U)v

2v∗(L+ U −D)v

=
1

2

[
1 +

v∗Dv

v∗d2f(y)v

]

>
1

2

for d2f(y) positive definite. If λ = α+ βi, then the last inequality entails

1 − α

(1 − α)2 + β2
>

1

2
,

which is equivalent to |λ|2 = α2 +β2 < 1. Hence, the spectral radius ρ < 1.

15.4 Global Convergence of the MM Algorithm

In this section and the next, we tackle global convergence. We begin with
the MM algorithm and consider without loss of generality minimization of
the objective function f(x) via the majorizing surrogate g(x | xn). In study-
ing global convergence, we must carefully specify the parameter domain U .
Let us take U to be any open convex subset of R

m. To avoid colliding with
the boundary of U , we assume that f(x) is coercive as defined in Section
11.2. Whenever necessary we also assume that f(x) and g(x | xn) and their
various first and second differentials are jointly continuous in x and xn.

Finally, we demand that the second differential d2g(x | xn) be positive
definite. This implies that g(x | xn) is strictly convex. Note that the objec-
tive function f(x) is not required to be convex. Strict convexity of g(x | xn)
in turn implies that the solution xn+1 of the minimization step is unique.
Existence of a solution fortunately is guaranteed by coerciveness. Indeed,
the closed set

{x ∈ U : g(x | xn) ≤ g(xn | xn) = f(xn)}
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is compact because it is contained within the compact set

{x ∈ U : f(x) ≤ f(xn)}.

Finally, the implicit function theorem [7, 14] shows that the iteration map
xn+1 = M(xn) is continuously differentiable in a neighborhood of every
point xn. Local differentiability of M(x) clearly extends to global differen-
tiability.

The gradient algorithm (15.4) has the property that stationary points of
the objective function and fixed points of the iteration map coincide. This
property also applies to the MM algorithm. Here we recall the two identities
∇g(xn+1 | xn) = 0 and ∇g(xn | xn) = ∇f(xn) and the strict convexity of
g(x | xn). By the same token, stationary points and only stationary points
give equality in the descent inequality f [M(x)] ≤ f(x).

At this juncture, we remind the reader that a point y is a cluster point
of a sequence xn provided there is a subsequence xnk that tends to y. One
can easily verify that any limit of a sequence of cluster points is also a
cluster point and that a bounded sequence has a limit if and only if it has
at most one cluster point. With these facts in mind, we now state and prove
a version of Liapunov’s theorem for discrete dynamical systems [9].

Proposition 15.4.1 (Liapunov) Let Γ be the set of cluster points gen-
erated by the sequence xn+1 = M(xn) starting from some initial x1. Then
Γ is contained in the set S of stationary points of f(x).

Proof: The sequence xn stays within the compact set

{x ∈ U : f(x) ≤ f(x1)}.

Consider a cluster point z = limk→∞ xnk. Since the sequence f(xn) is
monotonically decreasing and bounded below, limm→∞ f(xn) exists. Hence,
taking limits in the inequality f [M(xnk)] ≤ f(xnk ) and using the continuity
of M(x) and f(x), we infer that f [M(z)] = f(z). Thus, z is a stationary
point of f(x).

The next two propositions are adapted from reference [11]. In the second
of these, recall that a point x in a set S is isolated if and only if there exists
a radius r > 0 such that S ∩ {y : ‖y − x‖ < r} = {x}.

Proposition 15.4.2 The set of cluster points Γ of xn+1 = M(xn) is com-
pact and connected.

Proof: Γ is a closed subset of the compact set {x ∈ U : f(x) ≤ f(x1)} and
is therefore itself compact. According to Proposition 8.2.1, Γ is connected
provided limm→∞ ‖xn+1 − xn‖ = 0. If this sufficient condition fails, then
the compactness of {x ∈ U : f(x) ≤ f(x1)} makes it possible to extract a
subsequence xnk such that limk→∞ xnk = u and limk→∞ xnk+1 = v both
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exist, but v 6= u. However, the continuity of M(x) requires v = M(u) while
the descent condition implies

f(v) = f(u) = lim
n→∞

f(xn).

The equality f(v) = f(u) forces the contradiction that u is a fixed point of
M(x). Hence, the stated sufficient condition for connectivity holds.

Proposition 15.4.3 Suppose that all stationary points of f(x) are isolated
and that the differentiability, coerciveness, and convexity assumptions are
true. Then any sequence of iterates xn+1 = M(xn) generated by the itera-
tion map M(x) of the MM algorithm possesses a limit, and that limit is a
stationary point of f(x). If f(x) is strictly convex, then limm→∞ xn is the
minimum point.

Proof: In the compact set {x ∈ U : f(x) ≤ f(x1)} there can only be a finite
number of stationary points. An infinite number of stationary points would
admit a convergent sequence whose limit would not be isolated. Since the
set of cluster points Γ is a connected subset of this finite set of stationary
points, Γ reduces to a single point.

Two remarks on Proposition 15.4.3 are in order. First, except when strict
convexity prevails for f(x), the proposition offers no guarantee that the
limit x∞ of the sequence xn furnishes a global minimum. Problem 14 of
Chapter 13 contains a counterexample of Wu [16] exhibiting convergence
to a saddle point in the EM algorithm. Fortunately in practice, descent
algorithms almost always converge to at least a local minimum of the ob-
jective function. Second, if the set S of stationary points is not discrete,
then there exists a sequence zn ∈ S converging to z ∈ S with zn 6= z for all
m. Because the surface of the unit sphere in R

n is compact, we can extract
a subsequence such that

lim
k→∞

znk − z

‖znk − z‖ = v

exists and is nontrivial. Taking limits in

0 =
1

‖znk − z‖ [∇f(znk) −∇f(z)]

=

∫ 1

0

d2f [z + t(znk − z)]
znk − z

‖znk − z‖dt

then produces 0 = d2f(z)v. In other words, the second differential at z is
singular. If one can rule out such degeneracies, then all stationary points
are isolated [15]. Interested readers can consult the literature on Morse
functions for further commentary on this subject [5].
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15.5 Global Convergence of Block Relaxation

Verification of global convergence of block relaxation parallels the MM al-
gorithm case. Careful scrutiny of the proof of Proposition 15.4.3 shows that
it relies on five properties of the objective function f(x) and the iteration
map M(x):

(a) f(x) is coercive on its convex open domain U ,

(b) f(x) has only isolated stationary points,

(c) M(x) is continuous,

(d) y is a fixed point of M(x) if and only if it is a stationary point of f(x),

(e) f [M(y)] ≤ f(y), with equality if and only if y is a fixed point of M(x).

Let us suppose for notational simplicity that the argument x = (v, w)
breaks into just two blocks. Criteria (a) and (b) can be demonstrated for
many objective functions and are independent of the algorithm chosen to
minimize f(x). In block relaxation we ordinarily take U to be the Cartesian
product V ×W of two convex open sets. If we assume that f(v, w) is strictly
convex in v for fixed w and vice versa, then the block relaxation updates are
well defined. If f(v, w) is twice continuously differentiable, and d11f(v, w)
and d22f(v, w) are invertible matrices, then application of the implicit func-
tion theorem demonstrates that the iteration map M(x) is a composition
of two differentiable maps. Criterion (c) is therefore valid. A fixed point
x = (v, w) satisfies the two equations ∇1f(v, w) = 0 and ∇2f(v, w) = 0,
and criterion (d) follows. Finally, both block updates decrease f(x). They
give a strict decrease if and only if they actually change either argument v
or w. Hence, criterion (e) is true. We emphasize that collectively these are
sufficient but not necessary conditions. Observe that we have not assumed
that f(v, w) is convex in both variables simultaneously.

15.6 Global Convergence of Gradient Algorithms

We now turn to the question of global convergence for gradient algorithms
of the sort (15.4). The assumptions concerning f(x) made in the previous
sections remain in force. A major impediment to establishing the global
convergence of any minimization algorithm is the possible failure of the
descent property

f(xn+1) ≤ f(xn)

enjoyed by the MM and block relaxation algorithms. Provided the matrix
A(xn) is positive definite, the direction vn = −A(xn)−1∇f(xn) is guaran-
teed to point locally downhill. Hence, if we elect the natural strategy of
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instituting a limited line search along the direction vn emanating from xn,
then we can certainly find an xn+1 that decreases f(x).

Although an exact line search is tempting, we may pay too great a price
for precision when we need mere progress. The step-halving tactic men-
tioned in Chapter 14 is better than a full line search but not quite adequate
for theoretical purposes. Instead, we require a sufficient decrease along a
descent direction v. This is summarized by the Armijo rule of considering
only steps tv satisfying the inequality

f(x + tv) ≤ f(x) + αtdf(x)v (15.11)

for t and some fixed α in (0, 1). To avoid too stringent a test, we take a
low value of α such as 0.01. In combining Armijo’s rule with regular step
decrementing, we first test the step v. If it satisfies Armijo’s rule we are
done. If it fails, we choose σ ∈ (0, 1) and test σv. If this fails, we test σ2v
and so forth until we encounter and take the first partial step σkv that
works. In step halving, obviously σ = 1/2.

Step halving can be combined with a partial line search. For instance,
suppose the line search has been confined to the interval t ∈ [0, s]. If the
point x + sv passes Armijo’s test, then we accept it. Otherwise, we fit a
cubic to the function t 7→ f(x + tv) on the interval [0, s] as described in
Section 5.6. If the minimum point t of the cubic approximation satisfies
t ≥ σs and passes Armijo’s test, then we accept x + tv. Otherwise, we
replace the interval [0, s] by the interval [0, σs] and proceed inductively.
For the sake of simplicity in the sequel, we will ignore this elaboration of
step halving and concentrate on the unadorned version.

We would like some guarantee that the exponent k of the step decre-
menting power σk does not grow too large. Mindful of this criterion, we
suppose that the positive definite matrix A(x) depends continuously on x.
This is not much of a restriction for Newton’s method, the Gauss-Newton
algorithm, the MM gradient algorithm, or scoring. If we combine continuity
with coerciveness, then we can conclude that there exist positive constants
β, γ, and ε such that ‖A(x)‖2 ≤ β, ‖A(x)−1‖2 ≤ γ, and ‖∇f(x)‖2 ≤ ε on
the compact set D = {x ∈ U : f(x) ≤ f(x1)} where any descent algorithm
acts.

Before we tackle Armijo’s rule, let us consider the more pressing question
of whether the proposed points x+v lie in the domain U of f(x). This is too
much to hope for, but it is worth considering whether x+ σdv always lies
in U for some fixed power σd. Fortunately, v(x) = −A(x)−1∇f(x) satisfies
the bound

‖v(x)‖2 ≤ γε

on D. Now suppose no single power σk is adequate for all x ∈ D. Then
there exists a sequence of points xk ∈ D with yk = xk + σkv(xk) 6∈ U .
Passing to a subsequence if necessary, we can assume that xk converges to
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x ∈ D. Because σk is tending to 0, and v(x) is bounded on D, the sequence
yk likewise converges to x. Since the complement of U is closed, x must
lie in the complement of U as well as in D. This contradiction proves our
contention.

In dealing with Armijo’s rule, we will majorize f(x+ tv) by a quadratic.
The standard second-order Taylor expansion

f(x + u) = f(x) + df(x)u +
1

2
utd2f(z)u

is valid for z on the line segment connecting x and x+ u. The remainder
is bounded above by

1

2
utd2f(z)u ≤ ‖u‖2

2

2
sup

0≤s≤1
‖d2f(x + su)‖2.

Now the function

h(x, u) = sup
0≤s≤1

‖d2f(x + su)‖2

is jointly continuous in (x, u) and attains its maximum δ on the compact
set {(x, u) : x ∈ D, x+ u ∈ D}. It follows that

f(x + tv) ≤ f(x) + tdf(x)v +
δ

2
t2‖v‖2

2 (15.12)

for all triples (x, v, t) with x in D, x+ tv in D, and t in [0, 1].
Finally, we are ready to consider Armijo’s rule. Taking into account the

upper bound β on ‖A(x)‖2 and the identity

‖A(x)1/2‖2 = ‖A(x)‖1/2
2

entailed by Proposition 6.3.1, we have

‖∇f(x)‖2
2 = ‖A(x)1/2A(x)−1/2∇f(x)‖2

2

≤ ‖A(x)1/2‖2
2‖A(x)−1/2∇f(x)‖2

2 (15.13)

≤ βdf(x)A(x)−1∇f(x).

It follows that

‖v‖2
2 = ‖A(x)−1∇f(x)‖2

2

≤ γ2‖∇f(x)‖2
2

≤ −βγ2df(x)v.

Combining this last inequality with the majorization (15.12) yields

f(x + tv) ≤ f(x) + t

(
1 − βγ2δ

2
t

)
df(x)v.
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Hence, as soon as σk satisfies

1 − βγ2δ

2
σk ≥ α,

Armijo’s rule (15.11) holds. In terms of k, backtracking is guaranteed to
succeed in at most

kmax = max

{
d,

⌈
1

lnσ
ln

2(1 − α)

βγ2δ

⌉}

decrements. Of course, a lower value of k may suffice.

Proposition 15.6.1 Suppose that all stationary points of f(x) are isolated
and that the continuity, differentiability, positive definiteness, and coercive-
ness assumptions are true. Then any sequence of iterates generated by the
iteration map M(x) = x− tA(x)−1∇f(x) with t chosen by step decrement-
ing possesses a limit, and that limit is a stationary point of f(x). If f(x)
is strictly convex, then limn→∞ xn is the minimum point.

Proof: Let vn = −A(xn)−1∇f(xn) and xn+1 = xn + σknvn. The sequence
f(xn) is decreasing by construction. Because the function f(x) is bounded
below on the compact set D = {x ∈ U : f(x) ≤ f(x1)}, f(xn) is bounded
below as well and possesses a limit. Based on Armijo’s rule (15.11) and
inequality (15.13), we calculate

f(xn) − f(xn+1) ≥ −ασkndf(xn)vn

= ασkndf(xn)A(xn)−1∇f(xn)

≥ ασkn

β
‖∇f(xn)‖2

2.

Since σkn ≥ σkmax, and the difference f(xn)−f(xn+1) tends to 0, we deduce
that ‖∇f(xn)‖2 tends to 0. This conclusion and the inequality

‖xn+1 − xn‖2 = σkn‖A(xn)
−1∇f(xn)‖2

≤ σknγ‖∇f(xn)‖2,

demonstrate that ‖xn+1 − xn‖2 tends to 0 as well.
Given these results, the conclusions of Propositions 15.4.1 and 15.4.2 are

true. All of the claims of the current proposition now follow as in the proof
of Proposition 15.4.3.

15.7 Problems

1. Define f : R
2 → R by f(0) = 0 and f(x) = x3

1/(x
2
1 + x2

2) for x 6= 0.
Show that f(x) is differentiable along every straight line in R

2 but
lacks a differential at 0.
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2. For f : R
2 → R

2 given by f1(x) = x3
1 and f2(x) = x2

1, show that no x̄
exists on the line segment from 0 = (0, 0)t to 1 = (1, 1)t such that

f(1) − f(0) = df(x̄)(1− 0).

3. Let f : U → R be a continuously differentiable function defined on an
open connected set U ⊂ R

m. Suppose that ∇f(x) = 0 for all x ∈ U .
Show that f(x) is constant on U . (Hint: There is a polygonal path
between any two points along which one can integrate ∇f(x).)

4. Suppose a continuously differentiable function f : U → R
n satisfies

the Lipschitz bound (15.2) on the convex open set U ⊂ R
m. Prove

that

‖f(u) − f(v) − df(x)(u− v)‖ ≤ λ

2
(‖u− x‖ + ‖v − x‖)‖u− v‖

for any triple of points u, v, and x contained in U . (Hint: Mimic the
derivation of the bound (15.3).)

5. In the context of Problem 4, suppose m = n and the matrix df(x) is
invertible. Show that there exist positive constants α, β, and ε such
that

α‖u− v‖ ≤ ‖f(u) − f(v)‖ ≤ β‖u− v‖

for all u and v with max{‖u− x‖, ‖v− x‖} ≤ ε. (Hints: Write

f(u) − f(v) = f(u) − f(v) − df(x)(u − v) + df(x)(u− v),

and apply the bound ‖u − v‖ ≤ ‖df(x)−1‖ · ‖df(x)(u − v)‖ and the
result of Problem 4.)

6. Demonstrate that cyclic coordinate descent either diverges or con-
verges to a saddle point of the function f : R

2 → R defined by

f(x1, x2) = (x1 − x2)
2 − 2x1x2.

This function of de Leeuw [1] has no minimum.

7. Consider the function f(x) = (x2
1 + x2

2)
−1 + ln(x2

1 + x2
2) for x 6= 0.

Explicitly find the minimum value of f(x). Specify the coordinate
descent algorithm for finding the minimum. Note any ambiguities in
the implementation of coordinate descent, and describe the possible
cluster points of the algorithm as a function of the initial point. (Hint:
Coordinate descent, properly defined, converges in a finite number of
iterations.)
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8. In block relaxation with b blocks, let Bi(x) be the map that updates
block i and leaves the other blocks fixed. Show that the overall iter-
ation map M(x) = Bb ◦ · · · ◦B1(x) has differential dBb(y) · · ·dB1(y)
at a fixed point y. Write dBi(y) as a block matrix and identify the
blocks by applying the implicit function theorem as needed. Do not
confuse Bi(x) with the update Mi(x) of the text. In fact, Mi(x) only
summarizes the update of block i, and its argument is the value of x
at the start of the current round of updates.

9. Consider a Poisson-distributed random variable Y with mean aθ+ b,
where a and b are known positive constants and θ ≥ 0 is a parameter
to be estimated. An EM algorithm for estimating θ can be concocted
that takes as complete data independent Poisson random variables
U and V with means aθ and b and sum U + V = Y . If Y = y is
observed, then show that the EM iterates are defined by

θn+1 =
yθn

aθn + b
.

Show that these iterates converge monotonically to the maximum
likelihood estimate max{0, (y − b)/a}. When y = b, verify that con-
vergence to the boundary value 0 occurs at a rate slower than linear
[5]. (Hint: When y = b, check that θn+1 = bθ1/(naθ1 + b).)

10. The sublinear convergence of the EM algorithm exhibited in the pre-
vious problem occurs in other problems. Here is a conceptually harder
example by Robert Jennrich. Suppose that W1, . . . ,Wm and B are in-
dependent normally distributed random variables with 0 means. Let
σ2
w be the common variance of the W ’s and σ2

b be the variance of B.
If the values yi of the linear combinations Yi = B+Wi are observed,
then show that the EM algorithm amounts to

σ2
n+1,b =

(
mσ2

nbȳ

mσ2
nb + σ2

nw

)2

+
σ2
nbσ

2
nw

mσ2
nb + σ2

nw

σ2
n+1,w =

m− 1

m
s2y +

(
σ2
nwȳ

mσ2
nb + σ2

nw

)2

+
σ2
nbσ

2
nw

mσ2
nb + σ2

nw

,

where ȳ = 1
m

∑m
i=1 yi and s2y = 1

m−1

∑m
i=1(yi − ȳ)2 are the sample

mean and variance. Although one can formally calculate the maxi-
mum likelihood estimates σ̂2

w = s2y and σ̂2
b = ȳ2−s2y/m, these are only

valid provided σ̂2
b ≥ 0. If for instance ȳ = 0, then the EM iterates will

converge to σ2
w = (m− 1)s2y/m and σ2

b = 0. Show that convergence
is sublinear when ȳ = 0.

11. Suppose the MM gradient iterates θn converge to a local maximum
θ∞ of the loglikelihood L(θ). Under the hypotheses of the text, prove
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that for all sufficiently large n, either θn = θ∞ or L(θn+1) > L(θn)
[6]. (Hints: Let g(θ | θn) be the surrogate function. Show that

L(θn+1) − L(θn)

=
1

2
(θn+1 − θn)t[d2L(φn) − 2d20g(θn | θn)](θn+1 − θn),

where φn lies on the line segment between θn and θn+1. Then use a
continuity argument, noting that d2L(θ∞)−d20g(θ∞ | θ∞) is positive
semidefinite and d20g(θ∞ | θ∞) is negative definite.)

12. Let M(θ) be the MM algorithm or MM gradient algorithm map. Con-
sider the modified algorithm Mt(θ) = θ+ t[M(θ) − θ] for t > 0. At a
local maximum θ∞, show that the spectral radius ρt of the differential
dMt(θ∞) = (1 − t)I + tdM(θ∞) satisfies ρt < 1 whenever 0 < t < 2.
Hence, Ostrowski’s theorem implies local attraction of Mt(θ) to θ∞.
If the largest and smallest eigenvalues of dM(θ∞) are ωmax and ωmin,
then prove that ρt is minimized by taking t = [1−(ωmin+ωmax)/2]−1.
In practice, the eigenvalues of dM(θ∞) are impossible to predict in
advance of knowing θ∞, but for many problems, the value t = 2 works
well [6]. (Hint: To every eigenvalue ω of dM(θ∞), there corresponds
an eigenvalue ωt = 1 − t + tω of dMt(θ∞) and vice versa.)

13. In the notation of Chapter 13, prove the EM algorithm formula

d2L(θ) = d20Q(θ | θ) + Var[d lnf(X | θ) | Y, θ]

of Louis [8].

14. Consider independent observations y1, . . . , ym from the univariate t-
distribution. These data have loglikelihood

L = −m
2

lnσ2 − ν + 1

2

m∑

i=1

ln(ν + δ2i )

δ2i =
(yi − µ)2

σ2
.

To illustrate the occasionally bizarre behavior of the MM algorithm,
take ν = 0.05, m = 4, and the data vector y = (−20, 1, 2, 3)t. Accord-
ing to Problem 15 of Chapter 12, the MM algorithm for estimating
µ with σ2 fixed at 1 has iterates

µn+1 =

∑m
i=1 wniyi∑m
i=1wni

, wni =
ν + 1

ν + (yi − µn)2
.

Plot the likelihood curve and show that it has the four local maxima
−19.993, 1.086, 1.997, and 2.906 and the three local minima −14.516,
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1.373, and 2.647. Demonstrate numerically convergence to a local
maximum that is not the global maximum. Show that the algorithm
converges to a local minimum in one step starting from −1.874 or
−0.330 [10].

15. In our exposition of least `1 regression in Chapter 12, we considered
a modified iteration scheme that minimizes the criterion

m∑

i=1

{|yi − µi(θ)| − ε ln[ε+ |yi − µ(θ)|]}. (15.14)

For a sequence of constants εn tending to 0, let θn be a corresponding
sequence minimizing (15.14). If θ∞ is a cluster point of this sequence
and the regression functions µi(θ) are continuous, then show that
θ∞ minimizes

∑m
i=1 |yi − µi(θ)|. If in addition the minimum point

θ∞ of
∑m

i=1 |yi − µi(θ)| is unique and lim‖θ‖→∞
∑m

i=1 |µi(θ)| = ∞,
then prove that limn→∞ θn = θ∞. (Hints: For the first assertion, take
limits in

m∑

i=1

hε[si(θn)] ≤
m∑

i=1

hε[si(θ)],

where si(θ) = yi−µi(θ) and hε(s) = |s|−ε ln(ε+ |s|). Note that hε(s)
is jointly continuous in ε and s. For the second assertion, it suffices
that the sequence θn be confined to a bounded set. To prove this fact,
demonstrate and use the inequalities

m∑

i=1

hε(si) ≥ 1

2

m∑

i=1

1{|si|≥1}|si|

≥ 1

2

m∑

i=1

|µi(θ)| −
1

2

m∑

i=1

|yi| −
m

2

m∑

i=1

hε(si) ≤
m∑

i=1

[|si| − ε ln ε]

≤
m∑

i=1

|si|+
m

e

for 0 ≤ ε < 1
2 .)

16. Example 14.2.1 and Problem 2 of Chapter 14 suggest a method of
accelerating the MM gradient algorithm. Denote the loglikelihood of
the observed data by L(θ) and the surrogate function by g(θ | θn).
To accelerate the MM gradient algorithm, we can replace the posi-
tive definite matrix B(θ)−1 = −d20g(θ | θ) by a matrix that better
approximates the observed information A(θ) = −d2L(θ). Note that
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often d20g(θ | θ) is diagonal and therefore trivial to invert. Now con-
sider the formal expansion

A−1 = (B−1 + A− B−1)−1

= {B− 1
2 [I −B

1
2 (B−1 − A)B

1
2 ]B− 1

2 }−1

= B
1
2

∞∑

i=0

[B
1
2 (B−1 − A)B

1
2 ]iB

1
2 .

If we truncate this series after a finite number of terms, then we
recover the first iterate of equation (14.23) in the disguised form

Sj = B
1
2

j∑

i=0

[B
1
2 (B−1 −A)B

1
2 ]iB

1
2 .

The accelerated algorithm

θn+1 = θn + Sj(θn)∇L(θn) (15.15)

has several desirable properties.

(a) Show that Sj is positive definite and hence that the update
(15.15) is an ascent algorithm. (Hint: Use the fact that B−1 −A
is positive semidefinite.)

(b) Algorithm (15.15) has differential

I + Sj(θ∞)d2L(θ∞) = I − Sj(θ∞)A(θ∞)

at a local maximum θ∞. If d2L(θ∞) is negative definite, then
prove that all eigenvalues of this differential lie on [0, 1). (Hint:
The eigenvalues are determined by the stationary points of the
Rayleigh quotient vt[A−1(θ∞) − Sj(θ∞)]v/vtA−1(θ∞)v.)

(c) If ρj is the spectral radius of the differential, then demonstrate
that ρj ≤ ρj−1, with strict inequality when B−1(θ∞) − A(θ∞)
is positive definite.

In other words, the accelerated algorithm (15.15) is guaranteed to
converge faster than the MM gradient algorithm. It will be particu-
larly useful for maximum likelihood problems with many parameters
because it entails no matrix inversion or multiplication, just matrix
times vector multiplication. When j = 1, it takes the simple form

θn+1 = θn + [2B(θn) − B(θn)A(θn)B(θn)]∇L(θn).

17. In Problem 33 of Chapter 12, we considered maximizing functions of
the form L(θ) = −∑p

i=1 fi(c
t
iθ), with each fi(s) strictly convex. If we
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choose nonnegative constants λij such that
∑

j λij = 1 and λij > 0
when cij 6= 0, then the function

g(θ | θn) = −
p∑

i=1

∑

j∈Si

λijfi

[ cij
λij

(θj − θnj) + ctiθn

]

with Si = {j : λij > 0} serves as a surrogate function minorizing
L(θ). In the resulting MM algorithm, we suggested that a reasonable
choice for λij might be λij = |cij|α/‖ci‖αα, where ‖ci‖αα =

∑
j |cij|α

and α > 0. It would be helpful to determine the α yielding the
fastest rate of convergence. As pointed out in Proposition 15.3.2,
the rate of convergence is given by the maximum of the Rayleigh
quotient (15.6). This fact suggests that we should choose α to min-
imize −vtd20g(θ | θ)v over all unit vectors v. This appears to be a
difficult problem. A simpler problem is to minimize tr[−d20g(θ | θ)].
Show that this substitute problem has solution α = 1 regardless of
the point θ selected. (Hint: Multiply the inequality

( ∑

j∈Si

|cij|
)2

≤
∑

j∈Si

c2ij
λij

by f ′′i (ctiθ) and sum on i.)

18. Consider a sequence xn in R
m. Verify that the set of cluster points

of xn is closed. If xn is bounded, then show that it has a limit if and
only if it has at most one cluster point.
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16

Advanced Optimization Topics

16.1 Introduction

Our final chapter on optimization provides a concrete introduction to sev-
eral advanced topics. The first vignette describes classical penalty and bar-
rier methods for constrained optimization [22, 37, 45]. Penalty methods
operate on the exterior and barrier methods on the interior of the feasible
region. Fortunately, it is fairly easy to prove global convergence for both
methods under reasonable hypotheses.

In convex programming, adaptive barrier methods are attractive alter-
natives to standard barrier methods. Adaptive algorithms encourage rapid
convergence to a boundary by gradually diminishing the strength of the
corresponding barrier. The MM algorithm perspective suggests a way of
accomplishing this feat while steadily decreasing the objective function
[7, 30, 48]. As our examples demonstrate, adaptive barrier methods have
novel applications to linear and geometric programming. For a proof that
the adaptive barrier algorithm converges, see reference [31].

Specifying an interior feasible point is the first issue that must be faced
in using a barrier method. Dykstra’s algorithm [2, 12, 14] finds the closest
point to the intersection ∩r−1

i=0Ci of a finite number of closed convex sets. If
Ci is defined by the convex constraint hi(x) ≤ 0, then one obvious tactic
is to replace Ci by the set Ci(ε) defined by the constraint hj(x) ≤ −ε for
some small number ε > 0. Projecting onto the intersection of the Ci(ε) then
produces an interior point.

Our fourth topic is lasso penalized estimation. The lasso is an `1 penalty
that shrinks parameter estimates toward zero and performs a kind of con-
tinuous model selection [13, 49]. The predictors whose estimated regression
coefficients are exactly zero are candidates for elimination from the model.
With the enormous data sets now confronting statisticians, considerations
of model parsimony have taken on greater urgency. In addition to this philo-
sophical justification, imposition of lasso penalties also has an enormous
impact on computational speed. Standard methods of regression require
matrix diagonalization, matrix inversion, or, at the very least, the solution
of large systems of linear equations. Because the number of arithmetic op-
erations for these processes scales as the cube of the number of predictors,
problems with tens of thousands of predictors appear intractable. Recent
research has shown this assessment to be too pessimistic [4, 17, 29, 40, 51].
Coordinate descent methods mesh well with the lasso and are simple, fast,
and stable. We will see how their potential to transform data mining plays

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 297
DOI 10.1007/978-1-4419-5945-4_16, © Springer Science+Business Media, LLC 2010 



298 16. Advanced Optimization Topics

out in both `1 and `2 regression.
Our final topic touches on the estimation of parameter asymptotic stan-

dard errors. The MM and EM algorithms do not automatically deliver
asymptotic standard errors, and it is important to see how any MM algo-
rithm can be adapted to produce them [28, 38]. The chapter ends with a
brief discussion of the computation of asymptotic standard errors in the
presence of linear equality constraints.

16.2 Barrier and Penalty Methods

In general, unconstrained optimization problems are easier to solve than
constrained optimization problems, and equality constrained problems are
easier to solve than inequality constrained problems. To simplify anal-
ysis, mathematical scientists rely on several devices. For instance, one
can replace the inequality constraint g(x) ≤ 0 by the equality constraint
g+(x) = 0, where g+(x) = max{g(x), 0}. This tactic is not entirely satisfac-
tory because g+(x) has kinks along the boundary g(x) = 0. The smoother
substitute g+(x)2 avoids the kinks in first derivatives. Alternatively, one can
introduce an extra parameter y and require g(x) + y = 0 and y ≥ 0. This
tactic substitutes a simple inequality constraint for a complex inequality
constraint.

The addition of barrier and penalty terms to the objective function f(x)
is a more systematic approach. Later in the chapter we will discuss the role
of penalties in producing sparse solutions. In the current section, penalties
are introduced to steer the optimization process toward the feasible region.
In the penalty method we construct a continuous nonnegative penalty p(x)
that is 0 on the feasible region and positive outside it. We then optimize the
functions f(x) + λkp(x) for an increasing sequence of tuning constants λk
that tend to ∞. The penalty method works from the outside of the feasible
region inward. Under the right hypotheses, the sequence of unconstrained
solutions xk tends to a solution of the constrained optimization problem.

In contrast, the barrier method works from the inside of the feasible re-
gion outward. We now construct a continuous barrier function b(x) that is
finite on the interior of the feasible region and infinite on its boundary. We
then optimize the sequence of functions f(x) + µkb(x) as the decreasing
sequence of tuning constants µk tends to 0. Again under the right hypothe-
ses, the sequence of unconstrained solutions xk tends to the solution of the
constrained optimization problem.

Example 16.2.1 Linear Regression with Linear Constraints

Consider the regression problem of minimizing ‖Y −Xβ‖2
2 subject to the

linear constraints V β = d. If we take the penalty function p(β) = ‖V β−d‖2
2,
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then we must minimize at each stage the function

hk(β) = ‖Y −Xβ‖2
2 + λk‖V β − d‖2

2.

Setting the gradient

∇hk(β) = −2Xt(Y −Xβ) + 2λkV
t(V β − d)

equal to 0 yields the sequence of solutions

βk = (XtX + λkV
tV )−1(XtY + λkV

td). (16.1)

In a moment we will demonstrate that the βk tend to the constrained
solution as λk tends to ∞.

Example 16.2.2 Estimation of Multinomial Proportions

In estimating multinomial proportions, we minimize the negative loglikeli-
hood −∑m

i=1 ni ln pi subject to the constraints
∑m
i=1 pi = 1 and pi ≥ 0 for

all i. An appropriate barrier function is −∑m
i=1 lnpi. The minimum of the

function

hk(p) = −
m∑

i=1

ni lnpi − µk

m∑

i=1

ln pi

subject to the constraint
∑m

i=1 pi = 1 occurs at the point with coordinates

pki =
ni + µk
n +mµk

,

where n =
∑m
i=1 ni. In this example, it is clear that the solution vector pk

occurs on the interior of the parameter space and tends to the maximum
likelihood estimate as µk tends to 0.

The next proposition derives the ascent and descent properties of the
penalty and barrier methods.

Proposition 16.2.1 Consider two real-valued functions f(x) and g(x) on
a common domain and two positive constants α < ω. Suppose the linear
combination f(x) + αg(x) attains its minimum value at y and the linear
combination f(x)+ωg(x) attains its minimum value at z. Then f(y) ≤ f(z)
and g(y) ≥ g(z).

Proof: Adding the two inequalities

f(z) + ωg(z) ≤ f(y) + ωg(y)

−f(z) − αg(z) ≤ −f(y) − αg(y)

and dividing by the constant ω − α validates the claim g(y) ≥ g(z). The
claim f(y) ≤ f(z) is proved by interchanging the roles of f(x) and g(x)
and considering the functions g(x) + α−1f(x) and g(x) + ω−1f(x).

It is fairly easy to prove a version of global convergence for the penalty
method.
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Proposition 16.2.2 Suppose that both the objective function f(x) and the
penalty function p(x) are continuous on R

m and that the penalized func-
tions hk(x) = f(x) + λkp(x) are coercive on R

m. Then one can extract a
corresponding sequence of minimum points xk such that f(xk) ≤ f(xk+1).
Furthermore, any cluster point of this sequence resides in the feasible region
C = {x : p(x) = 0} and attains the minimum value of f(x) there. Finally,
if f(x) is coercive and possesses a unique minimum point in C, then the
sequence xk converges to that point.

Proof: By virtue of the coerciveness assumption (c), the minimum points
xk exist. Proposition 16.2.1 confirms the ascent property. Now suppose that
z is a cluster point of the sequence xk and y is any point in C. If we take
limits in the inequalities

f(y) = f(y) + λkp(y) ≥ f(xk) + λkp(xk) ≥ f(xk)

along the corresponding subsequence xkl, then it is clear that f(y) ≥ f(z).
Furthermore, because the λk tend to infinity, the inequality

lim sup
l→∞

λklp(xkl) ≤ f(y) − lim
l→∞

f(xkl) = f(y) − f(z)

can only hold if p(z) = liml→∞ p(xkl) = 0.
If f(x) possesses a unique minimum point y in C, then to prove that xk

converges to y, it suffices to prove that xk is bounded. If f(x) is coercive,
then it is possible to choose r so that f(x) > f(y) for all x with ‖x‖2 ≥ r.
The assumption ‖xk‖2 ≥ r consequently implies

hk(xk) ≥ f(xk) > f(y) = f(y) + λkp(y),

which contradicts the assumption that xk minimizes hk(x). Hence, all xk
satisfy ‖xk‖2 < r.

Here is the corresponding result for the barrier method.

Proposition 16.2.3 Suppose the real-valued function f(x) is continuous
on the bounded open set U and its closure V. Also suppose the barrier
function b(x) is continuous and coercive on U. If the tuning constants µk
decrease to 0, then the linear combinations hk(x) = f(x) + µkb(x) attain
their minima at a sequence of points xk in U satisfying the descent property
f(xk+1) ≤ f(xk). Furthermore, any cluster point of the sequence furnishes
the minimum value of f(x) on V. If the minimum point of f(x) in V is
unique, then the sequence xk converges to this point.

Proof: Each of the continuous functions hk(x) is coercive on U, being the
sum of a coercive function and a function bounded below. Therefore, the
sequence xk exists. An appeal to Proposition 16.2.1 establishes the descent
property. If z is a cluster point of xk and x is any point of U , then taking
limits in the inequality

f(xk) + µkb(xk) ≤ f(x) + µkb(x)
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along the relevant subsequence xkl produces

f(z) ≤ lim
l→∞

f(xkl) + lim sup
l→∞

µklb(xkl) ≤ f(x).

It follows that f(z) ≤ f(x) for every x in V as well. If the minimum point
of f(x) on V is unique, then every cluster point of the bounded sequence
xk coincides with this point. Hence, the sequence itself converges to the
point.

Despite the elegance of the penalty and barrier methods, they suffer from
three possible defects. First, they are predicated on finding the minimum
point of the surrogate function for each value of the tuning constant. This
entails iterations within iterations. Second, there is no obvious prescription
for deciding how fast to send the tuning constants to their limits. Third,
too large a value of λk in the penalty method or too small a value µk in
the barrier method can lead to numerical instability.

16.3 Adaptive Barrier Methods

The standard convex programming problem involves minimizing a convex
function f(x) subject to affine equality constraints atix−bi = 0 for 1 ≤ i ≤ p
and convex inequality constraints hj(x) ≤ 0 for 1 ≤ j ≤ q. This formulation
renders the feasible region convex. To avoid distracting negative signs in
this section, we will replace the constraint hj(x) ≤ 0 by the constraint
vj(x) ≥ 0 for vj(x) = −hj(x). In the logarithmic barrier method, we define
the barrier function

b(x) =

q∑

j=1

ln vj(x) (16.2)

and optimize hk(x) = f(x)+µkb(x) subject to the equality constraints. The
presence of the barrier term lnvj(x) keeps an initially inactive constraint
vj(x) inactive throughout the search. Proposition 16.2.3 demonstrates con-
vergence under specific hypotheses.

One way of improving the barrier method is to change the barrier con-
stant as the iterations proceed [7, 30, 48]. This sounds vague, but matters
simplify enormously if we view the construction of an adaptive barrier
method from the perspective of the MM algorithm. Consider the following
inequalities

−vj(xk) ln vj(x) + vj(xk) ln vj(xk) + dvj(xk)(x− xk)

≥ −vj(xk)
vj(xk)

[vj(x) − vj(xk)] + dvj(xk)(x− xk) (16.3)

= −vj(x) + vj(xk) + dvj(xk)(x− xk)

≥ 0
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based on the concavity of the functions lny and vj(x). Because equality
holds throughout when x = xk, we have identified a novel function ma-
jorizing 0 and incorporating a barrier for vj(x). (Such functions are known
as Bregman distances in the literature [3].) The import of this discovery is
that the surrogate function

g(x | xk) = f(x) − γ

q∑

j=1

vj(xk) ln vj(x) (16.4)

+ γ

q∑

j=1

dvj(xk)(x− xk)

majorizes f(x) up to an irrelevant additive constant. Here γ is a fixed pos-
itive constant. Minimization of the surrogate function drives f(x) downhill
while keeping the inequality constraints inactive. In the limit, one or more
of the inequality constraints may become active.

Because minimization of the surrogate function g(x | xk) cannot be ac-
complished in closed form, we must revert to the MM gradient algorithm.
In performing one step of Newton’s method, we need the first and second
differentials

dg(xk | xk) = df(xk)

d2g(xk | xk) = d2f(xk) − γ

q∑

j=1

d2vj(xk)

+ γ

q∑

j=1

1

vj(xk)
∇vj(xk)dvj(xk).

In view of the convexity of f(x) and the concavity of the vj(x), it is obvious
that d2g(xk | xk) is positive semidefinite. If either f(x) is strictly convex or
the sum

∑q
j=1 vj(x) is strictly concave, then d2g(xk | xk) is positive defi-

nite. As a safeguard in Newton’s method, it is always a good idea to contract
any proposed step so that f(xk+1) < f(xk) and vj(xk+1) > εvj(xk) for all
j and a small ε such as 0.1.

The surrogate function (16.4) does not exhaust the possibilities for ma-
jorizing the objective function. If we replace the concave function ln y by
the concave function −y−α in our derivation (16.3), then we can construct
for each α > 0 and β the alternative surrogate

g(x | xk) = f(x) + γ

q∑

j=1

vj(xk)
α+βvj(x)

−α (16.5)

+ γα

q∑

j=1

vj(xk)
β−1dvj(xk)(x− xk)
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majorizing f(x) up to an irrelevant additive constant. This surrogate also
exhibits an adaptive barrier that prevents the constraint vj(x) from be-
coming prematurely active. Imposing the condition α+ β > 0 is desirable
because we want a barrier to relax as it is approached. For this particular
surrogate, straightforward differentiation yields

dg(xk | xk) = df(xk) (16.6)

d2g(xk | xk) = d2f(xk) − γα

q∑

j=1

vj(xk)
β−1d2vj(xk) (16.7)

+ γα(α+ 1)

q∑

j=1

vj(xk)
β−2∇vj(xk)dvj(xk).

Example 16.3.1 A Geometric Programming Example

Consider the typical geometric programming problem of minimizing

f(x) =
1

x1x2x3
+ x2x3

subject to

v(x) = 4 − 2x1x3 − x1x2 ≥ 0

and positive values for the xi. Making the change of variables xi = eyi

transforms the problem into a convex program. With the choice γ = 1, the
MM gradient algorithm with the exponential parameterization and the log
surrogate (16.4) produces the iterates displayed in the top half of Table 16.1.
In this case Newton’s method performs well, and none of the safeguards is
needed. The MM gradient algorithm with the power surrogate (16.5) does
somewhat better. The results shown in the bottom half of Table 16.1 reflect
the choices γ = 1, α = 1/2, and β = 1.

In the presence of linear constraints, both updates for the adaptive bar-
rier method rely on the quadratic approximation of the surrogate function
g(x | xk) using the calculated first and second differentials. This quadratic
approximation is then minimized subject to the equality constraints as
prescribed in Example 11.3.3.

Example 16.3.2 Linear Programming

Consider the standard linear programming problem of minimizing ctx sub-
ject to V x = b and x ≥ 0 [19]. At iteration k + 1 of the adaptive barrier
method with the power surrogate (16.5), we minimize the quadratic ap-
proximation

ctxk + ct(x− xk) + 1
2
γα(α + 1)

∑n
j=1 x

β−2
kj (xj − xkj)

2
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TABLE 16.1. Solution of a Geometric Programming Problem

Iterates for the Log Surrogate

Iteration m f (xk) xk1 xk2 xk3

1 2.0000 1.0000 1.0000 1.0000
2 1.7299 1.4386 0.9131 0.6951
3 1.6455 1.6562 0.9149 0.6038
4 1.5993 1.7591 0.9380 0.5685
5 1.5700 1.8256 0.9554 0.5478
10 1.5147 1.9614 0.9903 0.5098
15 1.5034 1.9910 0.9977 0.5023
20 1.5008 1.9979 0.9995 0.5005
25 1.5002 1.9995 0.9999 0.5001
30 1.5000 1.9999 1.0000 0.5000
35 1.5000 2.0000 1.0000 0.5000

Iterates for the Power Surrogate

1 2.0000 1.0000 1.0000 1.0000
2 1.6478 1.5732 1.0157 0.6065
3 1.5817 1.7916 0.9952 0.5340
4 1.5506 1.8713 1.0011 0.5164
5 1.5324 1.9163 1.0035 0.5090
10 1.5040 1.9894 1.0011 0.5008
15 1.5005 1.9986 1.0002 0.5001
20 1.5001 1.9998 1.0000 0.5000
25 1.5000 2.0000 1.0000 0.5000

subject to V (x − xk) = 0. Note here the application of the two identities
(16.6) and (16.7). According to Example 11.3.3 and equation (14.3), this
minimization problem has solution

xk+1 = xk − [D−1
k −D−1

k V t(V D−1
k V t)−1V D−1

k ]c,

where Dk is a diagonal matrix with jth diagonal entry γα(α + 1)xβ−2
kj . It

is convenient here to take γα(α+1) = 1 and to step halve along the search
direction xk+1 − xk whenever necessary. The case β = 0 bears a strong
resemblance to Karmarkar’s celebrated method of linear programming.

We will not undertake a systematic convergence analysis of the adaptive
barrier algorithms. The next example illustrates that the local rate of con-
vergence can be linear even when one of the constraints vi(x) ≥ 0 is active
at the minimum. Further partial results appear in [30].

Example 16.3.3 Convergence for the Multinomial Distribution

As pointed out in Example 11.3.1, the loglikelihood for a multinomial distri-
bution reduces to

∑m
i=1 ni lnpi, where ni is the observed number of counts



16. Advanced Optimization Topics 305

for category i and pi is the probability attached to category i. Maximiz-
ing the loglikelihood subject to the constraints pi ≥ 0 and

∑m
i=1 pi = 1

gives the explicit maximum likelihood estimates pi = ni/n for n trials. To
compute the maximum likelihood estimates iteratively using the surrogate
function (16.4), we find a stationary point of the Lagrangian

−
m∑

i=1

ni lnpi − γ

m∑

i=1

pki ln pi + γ

m∑

i=1

(pi − pki) + δ
( m∑

i=1

pi − 1
)
.

Setting the ith partial derivative of the Lagrangian equal to 0 gives

−ni
pi

− γpki
pi

+ γ + δ = 0. (16.8)

Multiplying equation (16.8) by pi, summing on i, and solving for δ yield
δ = n. Substituting this value back in equation (16.8) produces

pk+1,i =
ni + γpki
n + γ

.

At first glance it is not obvious that pki tends to ni/n, but the algebraic
rearrangement

pk+1,i −
ni
n

=
ni + γpki
n + γ

− ni
n

=
γ

n+ γ

(
pki −

ni
n

)

shows that pki approaches ni/n at the linear rate γ/(n + γ). This is true
regardless of whether ni/n = 0 or ni/n > 0.

16.4 Dykstra’s Algorithm

Dykstra’s algorithm deals with the projection of points onto a nonempty
closed convex set. Before we discuss the algorithm, it is important to check
that the notion of projection is well defined. The pertinent facts are summa-
rized in the next proposition. Note that the projection operator discussed
is usually nonlinear.

Proposition 16.4.1 If C is a closed convex set in R
n, then there is a

closest point PC(x) to x in C. The projection PC(x) can be characterized
as the unique point satisfying the inequality

[y − PC(x)]t[x− PC(x)] ≤ 0 (16.9)

for every y ∈ C. Furthermore, PC[PC(x)] = PC(x) and

‖PC(x) − PC(y)‖2 ≤ ‖x− y‖2.
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Proof: Obviously, PC(x) = x for x ∈ C. This makes the idempotent iden-
tity PC [PC(x)] = PC(x) obvious. For x 6∈ C, we will show that PC(x) exists
and is unique by employing the easily verified parallelogram law

‖u+ v‖2
2 + ‖u− v‖2

2 = 2
(
‖u‖2

2 + ‖v‖2
2

)
.

If d = inf{‖x− y‖2 : y ∈ C}, then there exists a sequence yk ∈ C such that
limk→∞ ‖x− yk‖2 = d. By virtue of the parallelogram law, we have

‖yj − yk‖2
2 + ‖yj + yk − 2x‖2

2 = 2
(
‖yj − x‖2

2 + ‖x− yk‖2
2

)
,

or equivalently

1

4
‖yj − yk‖2

2 =
1

2

(
‖x− yj‖2

2 + ‖x− yk‖2
2

)
− ‖x− 1

2

(
yj + yk

)
‖2
2.

Because C is convex, 1
2(yj + yk) ∈ C, and it follows from the definition of

d that

1

4
‖yj − yk‖2

2 ≤ 1

2

(
‖x− yj‖2

2 + ‖x− yk‖2
2

)
− d2. (16.10)

Letting j and k tend to ∞ confirms that ym is a Cauchy sequence whose
limit y∞ must lie in the closed set C. In view of the continuity of the norm,
we have ‖x − y∞‖2 = d. To prove uniqueness, suppose there is a second
point z∞ ∈ C satisfying ‖x− z∞‖2 = d. Then substituting y∞ for yj and
z∞ for yk in inequality (16.10) shows that z∞ = y∞.

To prove the inequality [x−PC(x)]t[y−PC(x)] ≤ 0 for y ∈ C, note that
the definition of PC(x) and the convexity of C imply

‖PC(x) − x‖2
2

≤ ‖(1 − s)PC(x) + sy − x‖2
2

= ‖PC(x) − x‖2
2 + 2s[PC(x) − x]t[y− PC(x)] + s2‖y − PC(x)‖2

2

for any s ∈ (0, 1]. Canceling ‖PC(x)− x‖2
2 from both sides and dividing by

s yields

0 ≤ 2[PC(x) − x]t[y − PC(x)] + s‖y − PC(x)‖2
2.

Sending s to 0 now gives the result. Conversely, if z ∈ C satisfies the
inequality (y − z)t(x− z) ≤ 0 for every y ∈ C, then we have

[PC(x) − z]t[x− z] ≤ 0

[z − PC(x)]
t
[x− PC(x)] ≤ 0.

Adding these two inequalities produces ‖z − PC(x)‖2
2 ≤ 0. This can only

be true if z = PC(x).
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Finally, to prove the inequality ‖PC(x) − PC(z)‖2 ≤ ‖x − z‖2, we add
the inequalities

[x− PC(x)]t[PC(z) − PC(x)] ≤ 0

[z − PC(z)]t[PC(x) − PC(z)] ≤ 0

and rearrange. This gives

[PC(x) − PC(z)]t[PC(x) − PC(z)] ≤ (x− z)t[PC(x) − PC(z)]

≤ ‖x− z‖2‖PC(x) − PC(z)‖2

by virtue of the Cauchy-Schwarz inequality. Dividing by ‖PC(x)−PC (z)‖2

now completes the proof.

For most closed convex sets C, it is impossible to give an explicit formula
for the projection operator PC . A notable exception is projection onto the
range C of a matrix A of full column rank. This puts us back in the familiar
terrain of least squares estimation, where PC(x) = A(AtA)−1Atx. One
can easily check that the projection matrix PC = A(AtA)−1At satisfies
P tC = PC and P 2

C = PC . Furthermore, since At(I − PC) = 0, any y = Av
in the range of A gives equality in the necessary inequality (16.9).

Projection onto a closed rectangle C =
∏n
i=1[ai, bi] yields the simple

formula

PC(x)i =

{ai xi < ai
xi xi ∈ [ai, bi]
bi xi > bi

for the ith coordinate of PC(x). This formula extends to the cases ai = −∞,
ai = bi, or bi = ∞. Verification of inequality (16.9) reduces to showing that

[yi − PC(x)i][xi− PC(x)i] ≤ 0

for all yi ∈ [ai, bi].
Subspaces and closed rectangles appear in the following brief list of the

explicit projections that are most useful in practice.

Example 16.4.1 Examples of Projection Operators

Closed Ball: If C = {y ∈ R
n : ‖y− z‖2 ≤ r}, then

PC(x) =

{
z + r

(x−z)
‖x−z‖2

x 6∈ C

x x ∈ C.

Closed Rectangle: If C = [a, b] is a closed rectangle in R
n, then

PC(x)i =

{ai xi < ai
xi xi ∈ [ai, bi]
bi xi > bi.



308 16. Advanced Optimization Topics

Hyperplane: If C = {y ∈ R
n : aty = b} for a 6= 0, then

PC(x) = x− atx− b

‖a‖2
2

a.

Closed Halfspace: If C = {y ∈ R
n : aty ≤ b} for a 6= 0, then

PC(x) =

{
x− atx−b

‖a‖2
2
a atx > b

x atx ≤ b .

Subspace: If C is the range of a matrix A with full column rank, then

PC(x) = A(AtA)−1Atx.

Positive Semidefinite Matrices: Let M be an n× n symmetric matrix
with spectral decomposition M = UDU t, where U is an orthogonal
matrix and D is a diagonal matrix with ith diagonal entry di. The
projection of M onto the set S of positive semidefinite matrices is
given by PS(M) = UD+U

t, where D+ is diagonal with ith diagonal
entry max{di, 0}. Problem 8 asks the reader to check this fact.

Dykstra’s algorithm [2, 12, 14] is designed to find the projection of a point
onto a finite intersection of closed convex sets. The intersection inherits the
properties of closedness and convexity. Here are some possible situations
where Dykstra’s algorithm applies.

Example 16.4.2 Applications of Dykstra’s Algorithm

Linear Equalities: Any solution of the system of linear equations Ax = b
belongs to the intersection of the hyperplanes atix = bi, where ati is
the ith row of A.

Linear Inequalities: Any solution of the system of linear inequalities
Ax ≤ b belongs to the intersection of the halfspaces atix ≤ bi, where
ati is the ith row of A.

Isotone Regression: The least squares problem of minimizing the sum∑n
i=1(xi − wi)

2 subject to the constraints wi ≤ wi+1 corresponds to
projection of x onto the intersection of the halfspaces

Hi = {w ∈ R
n : wi − wi+1 ≤ 0}, 1 ≤ i ≤ n− 1.

Convex Regression: The least squares problem of minimizing the sum∑n
i=1(xi − wi)

2 subject to the constraints wi ≤ 1
2
(wi−1 + wi+1) cor-

responds to projection of x onto the intersection of the halfspaces

Hi =
{
w ∈ R

n : wi −
1

2
(wi−1 + wi+1) ≤ 0

}
, 2 ≤ i ≤ n− 1.
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Quadratic Programming: To minimize the strictly convex quadratic
form 1

2
xtAx + btx + c subject to Dx = e and Fx ≤ g, we make

the change of variables y = Ux, where L = U t is the Cholesky de-
composition of A. This transforms the problem to one of minimizing

1

2
xtAx+ btx+ c =

1

2
‖y‖2

2 + btU−1y + c

=
1

2
‖y + L−1b‖2

2 −
1

2
btA−1b+ c

subject to DU−1y = e and FU−1y ≤ g. The solution in the y coor-
dinates is determined by projecting −L−1b onto the convex feasible
region determined by DU−1y = e and FU−1y ≤ g.

To state Dykstra’s algorithm, it is helpful to label the closed convex sets
C0, . . . , Cr−1 and denote their nonempty intersection by C = ∩r−1

i=0Ci. The
algorithm keeps track of a primary sequence xn and a companion sequence
en. In the limit, xn tends to PC(x). To initiate the process, we set x−1 = x
and e−r = · · · = e−1 = 0. For n ≥ 0 we then iterate via

xn = PCn mod r (xn−1 + en−r)

en = xn−1 + en−r − xn.

Here n mod r is the nonnegative remainder after dividing n by r. In essence,
the algorithm cycles among the convex sets and projects the sum of the
current vector and the relevant previous companion vector onto the current
convex set. The proof that Dykstra’s algorithm converges to PC(x) is not
beyond us conceptually, but we omit it in the interests of brevity.

As an example, suppose r = 2, C0 is the closed unit ball in R
2, and C1 is

the closed halfspace with x1 ≥ 0. The intersection C is the right half ball
centered at the origin. Table 16.2 records the iterates of Dykstra’s algorithm
starting from the point x = (−1, 2) and their eventual convergence to the
geometrically obvious solution (0, 1).

When Ci is a subspace, Dykstra’s algorithm can dispense with the cor-
responding companion subsequence of en. In this case, en is perpendicular
to Ci whenever n mod r = i. Indeed, since PCi(y) is a projection matrix,
we have

xn = PCi(xn−1 + en−r)

= PCixn−1 + PCien−r

= PCixn−1

under the perpendicularity assumption. The initial condition ei−r = 0, the
identity

en = xn−1 − xn + en−r

= [I − PCi ]xn−1 + en−r

= PC⊥
i
xn−1 + en−r,
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TABLE 16.2. Iterates of Dykstra’s Algorithm

Iteration m xm1 xm2

0 -1.00000 2.00000
1 -0.44721 0.89443
2 0.00000 0.89443
3 -0.26640 0.96386
4 0.00000 0.96386
5 -0.14175 0.98990

10 -0.01814 0.99984
15 0.00000 0.99999
20 -0.00057 1.00000
25 0.00000 1.00000
30 -0.00002 1.00000
35 0.00000 1.00000

and induction show that en belongs to the perpendicular complement C⊥
i if

n mod r = i. When all of the Ci are subspaces, Dykstra’s algorithm reduces
to the method of alternating projections first studied by von Neumann.

If one merely wants to find any element of the closed convex intersection
C, it is possible to dispense with the companion sequence of Dykstra’s
algorithm. The Elsner-Koltracht-Neumann theorem says that the sequence
xn = PCn mod r (xn−1) converges to some element of C regardless of its
starting point [6, 18]. For instance, in our toy example of the half ball, a
single round PC1 ◦ PC0(x) of projection lands in the half ball. Except for
special x, the converged point is not the closest point in C to x.

16.5 Model Selection and the Lasso

We now turn to penalized regression and continuous model selection. Our
focus will be on the lasso penalty and its application in regression problems
where the number of predictors p exceeds the number of cases n [8, 9, 43,
47, 49]. The lasso also finds applications in generalized linear models. In
each of these contexts, we let yi be the response for case i, xij be the value
of predictor j for case i, and βj be the regression coefficient corresponding
to predictor j. In practice one should standardize each predictor to have
mean 0 and variance 1. Standardization puts all regression coefficients on
a common scale as implicitly demanded by the lasso penalty.

The intercept α is ignored in the lasso penalty, whose strength is de-
termined by the positive tuning constant λ. If θ = (α, β1, . . . , βp) is the
parameter vector and g(θ) is the loss function ignoring the penalty, then



16. Advanced Optimization Topics 311

the lasso minimizes the criterion

f(θ) = g(θ) + λ

p∑

j=1

|βj |,

where g(θ) = 1
2

∑n
i=1(yi−xtiθ)2 in `2 regression and g(θ) =

∑n
i=1 |yi−xtiθ|

in `1 regression. The penalty λ
∑

j |βj | shrinks each βj toward the origin
and tends to discourage models with large numbers of irrelevant predictors.
The lasso penalty is more effective in this regard than the ridge penalty
λ
∑

j β
2
j because |b| is much bigger than b2 for small b.

Lasso penalized estimation raises two issues. First, what is the most ef-
fective method of minimizing the objective function f(θ)? In the current
section we highlight the method of coordinate descent [10, 23, 25, 54]. Sec-
ond, how does one choose the tuning constant λ? The standard answer is
cross-validation. Although this is a good reply, it does not resolve the prob-
lem of how to minimize average cross-validation error as measured by the
loss function. Recall that in k-fold cross-validation, one divides the data
into k equal batches (subsamples) and estimates parameters k times, leav-
ing one batch out per time. The testing error (total loss) for each omitted
batch is computed using the estimates derived from the remaining batches,
and the cross-validation error c(λ) is computed by averaging testing error
across the k batches.

Unless carefully planned, evaluation of c(λ) on a grid of points may be
computationally costly, particularly if grid points occur near λ = 0. Because
coordinate descent is fastest when λ is large and the vast majority of βj
are estimated as 0, it makes sense to start with a very large value and
work downward. One advantage of this tactic is that parameter estimates
for a given λ can be used as parameter starting values for the next lower
λ. For the initial value of λ, the starting value θ = 0 is recommended. It
is also helpful to set an upper bound on the number of active parameters
allowed and abort downward sampling of λ when this bound is exceeded.
Once a fine enough grid is available, visual inspection usually suggests a
small interval flanking the minimum. Application of golden section search
over the flanking interval will then quickly lead to the minimum.

Coordinate descent comes in several varieties. The standard version cy-
cles through the parameters and updates each in turn. An alternative ver-
sion is greedy and updates the parameter giving the largest decrease in the
objective function. Because it is impossible to tell in advance the extent
of each decrease, the greedy version uses the surrogate criterion of steep-
est descent. In other words, for each parameter we compute forward and
backward directional derivatives and update the parameter with the most
negative directional derivative, either forward or backward. The overhead
of keeping track of the directional derivative works to the detriment of
the greedy method. For `1 regression, the overhead is relatively light, and
greedy coordinate descent converges faster than cyclic coordinate descent.
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Although the lasso penalty is nondifferentiable, it does possess direc-
tional derivatives along each forward or backward coordinate direction.
For instance, if ej is the coordinate direction along which βj varies, then

dejf(θ) = lim
t↓0

f(θ + tej) − f(θ)

t
= dejg(θ) +

{
λ βj ≥ 0
−λ βj < 0,

and

d−ejf(θ) = lim
t↓0

f(θ − tej) − f(θ)

t
= d−ejg(θ) +

{−λ βj > 0
λ βj ≤ 0.

In `1 regression, the loss function is also nondifferentiable, and a brief cal-
culation shows that the coordinate directional derivatives are

dej

n∑

i=1

|yi − xtiθ| =

n∑

i=1





−xij yi − xtiθ > 0
xij yi − xtiθ < 0
|xij| yi − xtiθ = 0

and

d−ej

n∑

i=1

|yi − xtiθ| =

n∑

i=1




xij yi − xtiθ > 0
−xij yi − xtiθ < 0
|xij| yi − xtiθ = 0

with predictor vector xti = (1, zti) for case i. Fortunately, when a function is
differentiable, its directional derivative along ej coincides with its ordinary
partial derivative, and its directional derivative along −ej coincides with
the negative of its ordinary partial derivative.

When we visit parameter βj in cyclic coordinate descent, we evaluate
dejf(θ) and d−ejf(θ). If both are nonnegative, then we skip the update for
βj . This decision is defensible when g(θ) is convex because the sign of a
directional derivative fully determines whether improvement can be made
in that direction. If either directional derivative is negative, then we must
solve for the minimum in that direction. If the current slope parameter βj
is parked at zero and the partial derivative ∂

∂βj
g(θ) exists, then

dejf(θ) =
∂

∂βj
g(θ) + λ, d−ejf(θ) = − ∂

∂βj
g(θ) + λ.

Hence, βj moves to the right if ∂
∂βj

g(θ) < −λ, to the left if ∂
∂βj

g(θ) > λ,

and stays fixed otherwise. In underdetermined problems with just a few
relevant predictors, most updates are skipped, and the parameters never
budge from their starting values of 0. This simple fact plus the complete
absence of matrix operations explains the speed of coordinate descent. It
inherits its numerical stability from the descent property of each update.
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16.5.1 Application to `1 Regression

In lasso constrained `1 regression, greedy coordinate descent is quick be-
cause directional derivatives are trivial to update. Indeed, if updating βj
does not alter the sign of the residual yi−xtiθ for case i, then the contribu-
tions of case i to the various directional derivatives do not change. When
the residual yi − xtiθ changes sign, these contributions change by ±2xij.
When a residual changes from 0 to nonzero or vice versa, the increment
depends on the sign of the nonzero residual and the sign of xij.

Updating the value of the chosen parameter can be achieved by the
nearly forgotten algorithm of Edgeworth [15, 16], which for a long time was
considered a competitor of least squares. Portnoy and Koenker [42] trace
the history of the algorithm from Boscovich to Laplace to Edgeworth. It is
fair to say that the algorithm has managed to cling to life despite decades
of obscurity both before and after its rediscovery by Edgeworth.

To illustrate Edgeworth’s algorithm in operation, consider minimizing
the two-parameter model

g(θ) =
n∑

i=1

|yi − α− ziβ|

with a single slope β. To update α, we recall the well-known connection
between `1 regression and medians and replace α for fixed β by the sample
median of the numbers vi = yi − ziβ. This action drives g(θ) downhill.
Updating β for α fixed depends on writing

g(θ) =

n∑

i=1

|zi|
∣∣∣∣
yi − α

zi
− β

∣∣∣∣ ,

sorting the numbers vi = (yi − α)/zi, and finding the weighted median
with weight wi = |zi| assigned to vi. We replace β by the order statistic v[i]
whose index i satisfies

i−1∑

j=1

w[j] <
1

2

n∑

j=1

w[j],

i∑

j=1

w[j] ≥ 1

2

n∑

j=1

w[j].

Problem 3 demonstrates that this choice is valid. Edgeworth’s algorithm
easily generalizes to multiple linear regression. Implementing the algorithm
with a lasso penalty requires viewing the penalty terms as the absolute
values of pseudo-residuals. Thus, we write

λ|βj| = |y − xtθ|

by taking y = 0 and xk = λ1{k=j}.
Two criticisms have been leveled at Edgeworth’s algorithm. First, al-

though it drives the objective function steadily downhill, it sometimes con-
verges to an inferior point. See Problem 20 for an example. The second
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criticism is that convergence often occurs in a slow seesaw pattern. These
defects are not completely fatal. As late as 1978, Armstrong and Kung
published a computer implementation of Edgeworth’s algorithm in Applied
Statistics [1].

16.5.2 Application to `2 Regression

In `2 regression with a lasso penalty, we minimize the objective function

f(θ) =
1

2

n∑

i=1

(yi − α− ztiβ)2 + λ

p∑

j=1

|βj| = g(θ) + λ

p∑

j=1

|βj |.

The update of the intercept parameter can be written as

α̂ =
1

n

n∑

i=1

(yi − ztiβ) = α− 1

n

∂

∂α
g(θ).

For the parameter βk, there are separate solutions to the left and right of
0. These boil down to

β̂k,− = min

{
0, βk −

∂
∂βk

g(θ) − λ
∑n

i=1 z
2
ik

}

β̂k,+ = max

{
0, βk −

∂
∂βk

g(θ) + λ
∑n

i=1 z
2
ik

}
.

The reader can check that only one of these two solutions can be nonzero.
The partial derivatives

∂

∂α
g(θ) = −

n∑

i=1

ri,
∂

∂βk
g(θ) = −

n∑

i=1

rizik

of g(θ) are easy to compute if we keep track of the residuals ri = yi−α−ztiβ.
The residual ri starts with the value yi and is reset to ri + α − α̂ when
α is updated and to ri + zij(βj − β̂j) when βj is updated. Organizing all
updates around residuals promotes fast evaluation of g(θ). At the expense of
somewhat more complex code [24], a better tactic is to exploit the identity

n∑

i=1

rizik =

n∑

i=1

yizik − α

n∑

i=1

zik −
∑

j:|βj|>0

(
n∑

i=1

zijzik

)
βj .

This representation suggests storing and reusing the inner products

n∑

i=1

yizik,

n∑

i=1

zik,

n∑

i=1

zijzik

for the active predictors.



FIGURE 16.1. The Cross-Validation Curve c(λ) for Obesity in Mice

Example 16.5.1 Obesity and Gene Expression in Mice

We now consider a genetics example involving gene expression levels and
obesity in mice. Wang et al. [52] measured abdominal fat mass on n = 311
F2 mice (155 males and 156 females). The F2 mice were created by mating
two inbred strains and then mating brother-sister pairs from the resulting
offspring. Wang et al. also recorded the expression levels in liver of p =
23,388 genes in each mouse. A reasonable model postulates

yi = 1{imale}α1 + 1{i female}α2 +

p∑

j=1

xijβj + ǫi,

where yi measures fat mass on mouse i, xij is the expression level of gene
j in mouse i, and ǫi is random error. Since male and female mice exhibit
across the board differences in size and physiology, it is prudent to estimate
a different intercept for each sex. Figure 16.1 plots average prediction error
as a function of λ (lower horizontal axis) and the average number of nonzero
predictors (upper horizontal axis). Here we use ℓ2 penalized regression and
10-fold cross-validation. Examination of the cross-validation curve c(λ) over
a fairly dense grid shows an optimal λ of 7.8 with 41 nonzero predictors.
For ℓ1 penalized regression, the optimal λ is around 3.5 with 77 nonzero
predictors. The preferred ℓ1 and ℓ2 models share 27 predictors in common.
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Several of the genes identified are known or suspected to be involved in
lipid metabolism, adipose deposition, and impaired insulin sensitivity in
mice. More details can be found in the paper [54].

16.5.3 Application to Generalized Linear Models

The tactics described for `2 regression carry over to generalized linear mod-
els. In this setting, the loss function g(θ) is the negative loglikelihood. In
many cases, g(θ) is convex, and it is possible to determine whether progress
can be made along a forward or backward coordinate direction without
actually minimizing the objective function. It is clearly computationally
beneficial to organize parameter updates by tracking the linear predictor
α+ ztiβ of each case. Although we no longer have explicit solutions to fall
back on, the scoring algorithm serves as a substitute. Since it usually con-
verges in a few iterations, the computational overhead of cyclic coordinate
descent remains manageable.

16.5.4 Application to Discriminant Analysis

Discriminant analysis is another attractive candidate for penalized estima-
tion. In discriminant analysis with two categories, each case i is character-
ized by a feature vector zi and a category membership indicator yi taking
the values −1 or 1. In the machine learning approach to discriminant anal-
ysis [46, 50], the hinge loss function [1 − yi(α + ztiβ)]+ plays a prominent
role. Here (u)+ is shorthand for the convex function max{u, 0}. Just as in
ordinary regression, we can penalize the overall loss

g(θ) =
m∑

i=1

[1− yi(α+ ztiβ)]+

by imposing a lasso or ridge penalty. Note that the linear regression function
hi(θ) = α + ztiβ predicts either −1 or 1. If yi = 1 and hi(θ) over-predicts
in the sense that hi(θ) > 1, then there is no loss. Similarly, if yi = −1 and
hi(θ) under-predicts in the sense that hi(θ) < −1, then there is no loss.

Most strategies for estimating θ pass to the dual of the original mini-
mization problem. A simpler strategy is to majorize each contribution to
the loss by a quadratic and minimize the surrogate loss plus penalty [26].
A little calculus shows that (u)+ is majorized at un 6= 0 by the quadratic

q(u | un) =
1

4|un|
(u+ |un|)2 . (16.11)

See Problem 24. In fact, this is the best quadratic majorizer [11]. To avoid
the singularity at 0, we recommend replacing q(u | un) by

r(u | un) =
1

4|un|+ ε
(u+ |un|)2 .
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In double precision, a good choice of ε is 10−5. Of course, the dummy
variable u is identified in case i with 1− yi(α+ ztiβ).

If we impose a ridge penalty, then the majorization (16.11) leads to a
pure MM algorithm exploiting weighted least squares. Coordinate descent
algorithms with a lasso or ridge penalty are also enabled by majorization,
but each `2 coordinate update merely decreases the objective function along
the given coordinate direction. Fortunately, this drawback is outweighed by
the gain in numerical simplicity in circumventing hinge loss. The decisions
to use a lasso or ridge penalty and apply pure MM or coordinate descent
with majorization will be dictated in practical problems by the number of
potential predictors. If a lasso penalty is imposed, then cyclic coordinate
descent can be applied, with the surrogate function substituting for the
objective function in each parameter update.

In discriminant analysis with more than two categories, it is convenient
to pass to ε-insensitive loss and multiple linear regression. The story is
too long to tell here, but it is worth mentioning that the conjunction of a
parsimonious loss function and an efficient MM algorithm produces one of
the most effective discriminant analysis methods tested [32].

16.6 Standard Errors

In this section we tackle two issues that arise in computing asymptotic
standard errors of parameter estimates.

16.6.1 Standard Errors and the MM Algorithm

Under appropriate large sample assumptions [21], it is possible to demon-
strate that in unconstrained estimation a maximum likelihood estimator
has asymptotic variance matrix equal to the inverse of the expected infor-
mation matrix. In practice, the expected information matrix is often well
approximated by the observed information matrix −d2L(θ). Thus, once the

maximum likelihood estimate θ̂ has been found, its standard errors can be
obtained by taking square roots of the diagonal entries of the inverse of
−d2L(θ̂). In MM and EM algorithm problems, however, direct calculation

of −d2L(θ̂) can be difficult. Here we discuss a numerical approximation to
this matrix that exploits quantities readily obtained by running an MM
algorithm [28]. Let g(θ | θn) denote a minorizing function of the loglikeli-
hood L(θ) at the point θn, and define M(θ) to be the MM algorithm map
taking θn to θn+1.

Our numerical approximation of −d2L(θ̂) is based on the differential

dM(θ̂). Assuming that L(θ) and g(θ | φ) are sufficiently smooth and that
d2g(θ | θ) is invertible, the implicit function theorem [31] applies to the
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equation

∇g[M(θ) | θ] = 0

and shows that M(θ) is continuously differentiable with differential

dM(θ) = −d2g[M(θ) | θ]−1d11g[M(θ) | θ]. (16.12)

Here d11g(θ | φ) denotes the differential of ∇g(θ | φ) with respect to φ.
Further simplification can be achieved by taking the differential of

∇L(θ) −∇g(θ | θ) = 0

and setting θ = θ̂. These actions give

d2L(θ̂) − d2g(θ̂ | θ̂) − d11g(θ̂ | θ̂) = 0.

This last equation can be solved for d11g(θ̂ | θ̂), and the result substituted
in equation (16.12). It follows that

dM(θ̂) = −d2g(θ̂ | θ̂)−1[d2L(θ̂) − d2g(θ̂ | θ̂)]
= I − d2g(θ̂ | θ̂)−1d2L(θ̂)

and therefore that

d2L(θ̂) = d2g(θ̂ | θ̂)
[
I − dM(θ̂)

]
. (16.13)

This formula is the basis of the SEM algorithm of Meng and Rubin [38].

Approximation of d2L(θ̂) based on equation (16.13) requires numerical
approximation of the Jacobi matrix dM(θ), whose i, j entry equals

∂

∂θj
Mi(θ) = lim

s→0

Mi(θ + sej) −Mi(θ)

s
.

Since M(θ̂) = θ̂, the jth column of dM(θ̂) may be approximated using

output from the corresponding MM algorithm by (a) iterating until θ̂ is

found, (b) altering the jth component of θ̂ by a small amount s, (c) applying

the MM algorithm to this altered θ, (d) subtracting θ̂ from the result, and
(e) dividing by s.

16.6.2 Standard Errors under Linear Constraints

To calculate the asymptotic covariance matrix of an estimated parameter
vector θ̂ subject to linear equality constraints V θ = d, we reparameterize.
Suppose that the m× n matrix V has full row rank m < n and that α is
a particular solution of V θ = d. The Gram-Schmidt process allows us to
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construct an n×(n−m) matrixW with n−m linearly independent columns
w1, . . . , wn−m orthogonal to the rows vt1, . . . , v

t
m of V . Now consider the

reparameterization θ = α + Wβ. By virtue of our choice of α and the
identity VW = 0, it is clear that V (α + Wβ) = d. Since the range of W
and the null space of V both have dimension n−m, it is also clear that all
solutions of V θ = d are generated as image vectors α+ Wβ. Thus, β can
be viewed as a replacement for θ.

Under the preceding reparameterization, the loglikelihood L(α + Wβ)
has score W t∇L(α + Wβ), observed information −W td2L(α + Wβ)W ,
and expected information −W t E[d2L(α + Wβ)]W . If we let J(θ) repre-
sent either the observed information −d2L(θ) or the expected information
E[−d2L(θ)] of the original parameters, then an asymptotic variance matrix

of the estimated parameter vector β̂ is [W tJ(θ̂)W ]−1. The brief calculation

Var(θ̂) = Var(α+Wβ̂) = Var(Wβ̂) = W Var(β̂)W t

shows that θ̂ has asymptotic covariance matrix W [W tJ(θ̂)W ]−1W t, which
unfortunately appears to depend on the particular reparameterization cho-
sen. This is an illusion because if we replace W by WT , where T is any
invertible matrix, then

WT [T tW tJ(θ̂)WT ]−1T tW t = WTT−1[W tJ(θ̂)W ]−1(T t)−1T tW t

= W [W tJ(θ̂)W ]−1W t.

Problems 31 and 32 sketch Silvey [44] and Jennrich’s method of computing

W [W tJ(θ̂)W ]−1W t. This method relies on the sweep operator rather than
Gram-Schmidt orthogonalization.

In calculating the asymptotic covariance matrix of θ̂ in the presence
of linear inequality constraints, the traditional procedure is to ignore the
inactive constraints and to append the active constraints to the existing
linear equality constraints. This creates a larger constraint matrix V and
a corresponding smaller matrix W orthogonal to V .

16.7 Problems

1. In Example 16.2.1 prove directly that the solution displayed in equa-
tion (16.1) converges to the minimum point of ‖Y −Xβ‖2

2 subject to
the linear constraints V β = d. (Hints: Assume that the matrix V has
full column rank and apply Example 11.3.3, Proposition 11.3.2, and
Woodbury’s formula (7.9).)

2. Consider the convex programming problem of minimizing the convex
function f(x) subject to the affine equality constraints gi(x) = bi
for 1 ≤ i ≤ p and the convex inequality constraints hj(x) ≤ cj for
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1 ≤ j ≤ q. Let R(b, c) denote the feasible region for a particular choice
of the vectors b = (b1, . . . , bp)

t and c = (c1, . . . , cq)
t. Show that

s(b, c) = inf{f(x) : x ∈ R(b, c)}

is a convex function of the vector (b, c).

3. The convex function f(x) is defined on a convex set C. Suppose that
y ∈ C has nonnegative directional derivative dvf(y) for every direc-
tion v = x − y defined by an x ∈ C. Demonstrate that y minimizes
f(x) on C. Conversely, show that if any such directional derivative
dvf(y) is negative, then y cannot minimize f(x) on C. (Hint: The
difference quotient

f(y + s[x− y]) − f(y)

s

is increasing in s > 0.)

4. Prove the surrogate function (16.5) majorizes f(x) up to an irrelevant
additive constant.

5. Suppose C is a closed convex set. If y is on the line segment between
x 6∈ C and PC(x), then prove that PC(y) = PC(x).

6. Suppose C is a closed convex set and PC(y) = y. Demonstrate that
equality occurs in the projection inequality

‖PC(x) − PC(y)‖2 ≤ ‖x− y‖2

if and only if PC(x) = x. An operator PC(x) having this property is
said to be paracontractive relative to the given norm.

7. Let C be a closed convex set in R
n. Show that

(a) PC+y(x+ y) = PC(x) + y for all x and y.

(b) PaC(ax) = aPC(x) for all x and real a.

Let S be a subspace of R
n. Show that

(a) PS(x+ y) = PS(x) + y for all x ∈ R
n and y ∈ S.

(b) PS(ax) = aPS(x) for all x ∈ R
n and real a.

8. Let M be an n × n symmetric matrix with spectral decomposition
M = UDU t, where U is an orthogonal matrix and D is a diagonal
matrix with ith diagonal entry di. Prove that the Frobenius norm
‖M − PS(M)‖F is minimized over the set S of positive semidefinite
matrices by taking PS(M) = UD+U

t, where D+ is diagonal with ith
diagonal entry max{di, 0}.
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9. Suppose A is an n×n matrix and Symn is the set of n×n symmetric
matrices. Find the matrix M in Symn that minimizes the Frobenius
norm ‖A−M‖F .

10. Let A be a full rank m × n matrix and b be an m × 1 vector with
m < n. The set H = {x ∈ R

n : Ax = b} defines a plane in R
n. If

m = 1, H is a hyperplane. Given y ∈ R
n, prove that the closest point

to y in H is

P (y) = y − At(AAt)−1Ay +At(AAt)−1b.

(Hint: Verify the criterion (16.9).)

11. Suppose C is a closed convex set wholly contained within an affine
subspace V = {y ∈ R

n : Ay = b}. For x 6∈ V demonstrate the
projection identity PC(x) = PC ◦ PV (x) [39]. (Hint: Consider the
equality

[x− PC(x)]t[y− PC(x)] = [x− PV (x)]t[y − PC(x)]

+[PV (x) − PC(x)]t[y − PC(x)]

with the criterion (16.9) in mind.)

12. For positive numbers c1, . . . , cn and nonnegative numbers b1, . . . , bn
satisfying

∑n
i=1 cibi ≤ 1, define the truncated simplex

S =
{
y ∈ R

n :

n∑

i=1

ciyi = 1, yi ≥ bi, 1 ≤ i ≤ n
}
.

If x ∈ R
n has coordinate sum

∑n
i=1 cixi = 1, then prove that the

closest point y in S to x satisfies the Lagrange multiplier conditions

yi − xi + λci − µi = 0

for appropriate multipliers λ and µi ≥ 0. Further show that

λ =
ctµ

‖c‖2
2

≥ 0.

Why does it follow that yi = bi whenever xi < bi? Prove that the
Lagrange multiplier conditions continue to hold when xi < bi if we re-
place xi by bi and µi by λci. Since the Lagrange multiplier conditions
are sufficient as well as necessary in convex programming, this demon-
strates that (a) we can replace each coordinate xi by max{xi, bi} with-
out changing the projection y of x onto S, and (b) y can be viewed
as a point in a similar simplex in a reduced number of dimensions
when one or more xi ≤ bi [39].
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13. Michelot’s [39] algorithm for projecting a point x onto the simplex S
defined in Problem 12 cycles through the following steps:

(a) Projection onto the affine subspace Vn = {y ∈ R
n :
∑

i ciyi = 1},
(b) Replacement of every coordinate xi by max{xi, bi},
(c) Reduction of the dimension n whenever some xi = bi.

In view of Problems 11 and 12, demonstrate that Michelot’s algorithm
converges to the correct solution in at most n steps. Explicitly solve
the Lagrange multiplier problem corresponding to step (a). Program
and test the algorithm.

14. A polyhedron is the intersection of a finite number of halfspaces.
Program Dykstra’s algorithm for projection onto an arbitrary poly-
hedron.

15. In weighted isotone regression one minimizes the weighted sum of
squares

∑n
i=1 wi(yi−xi)2 subject to the constraints x1 ≤ · · · ≤ xn and

positive weights wi. Show how Dykstra’s algorithm can be adapted
to handle this problem. As an alternative, the pool adjacent violators
algorithm starts with xi = yi for all i. It then cycles through adjacent
pairs (xi, xi+1). When xi ≤ xi+1, it leaves the pair untouched. When
xi > xi+1, it replaces the pair by their weighted average

x̄ =
wixi + wi+1xi+1

wi + wi+1

with weight wi + wi+1 attached to x̄. This procedure reduces the
number of pairs by 1. It is repeated until no new violators are found.
At that moment, one recovers xi as the value assigned to the pool
containing index i. Program Dykstra’s algorithm and this alternative.
Compare them in terms of speed and reliability.

16. The power plant production problem [45] involves minimizing

f(x) =
n∑

i=1

fi(xi), fi(xi) = aixi +
1

2
bix

2
i

subject to the constraints 0 ≤ xi ≤ ui for each i and
∑n

i=1 xi ≥ c.
For plant i, xi is the power output, ui is the capacity, and fi(xi)
is the cost. The total demand is c, and the cost constants ai and
bi are positive. This problem can be solved by the adaptive barrier
method or Dykstra’s algorithm. Program either method and test it
on a simple example with at least two power plants. Argue that the
minimum is unique.

17. In Problem 16 investigate the performance of cyclic coordinate de-
scent. Explain why it fails.



16. Advanced Optimization Topics 323

18. Show that µ̂ minimizes f(µ) =
∑n

i=1wi|xi − µ| if and only if

∑

xi<µ̂

wi ≤ 1

2

n∑

i=1

wi,
∑

xi≤µ̂
wi ≥ 1

2

n∑

i=1

wi.

Assume that the weights wi are positive. (Hint: Apply Problem 3.)

19. Consider the piecewise linear function

f(µ) = cµ +

n∑

i=1

wi|xi − µ|,

where the positive weights satisfy
∑n

i=1wi = 1 and the points satisfy
x1 < x2 < · · · < xn. Show that f(µ) has no minimum when |c| > 1.
What happens when c = 1 or c = −1? This leaves the case |c| < 1.
Show that a minimum occurs when

∑

xi>µ

wi −
∑

xi≤µ
wi ≤ c and

∑

xi≥µ
wi −

∑

xi<µ

wi ≥ c.

(Hints: A crude plot of f(µ) might help. What conditions on the right-
hand and left-hand derivatives of f(µ) characterize a minimum?)

20. Show that Edgeworth’s algorithm [36] for `1 regression converges to
an inferior point for the data values (0.3,-1.0), (-0.4,-0.1), (-2.0,-2.9),
(-0.9,-2.4), and (-1.1,2.2) for the pairs (xi, yi) and parameter starting
values (α, β) = (−1.0, 3.5).

21. Implement and test greedy coordinate descent for lasso penalized `1
regression or cyclic coordinate descent for lasso penalized `2 regres-
sion.

22. In lasso penalized regression, suppose the convex loss function g(θ)
is differentiable. A stationary point θ of coordinate descent satisfies
the conditions dejf(θ) ≥ 0 and d−ejf(θ) ≥ 0 for all j. Here α varies
along the coordinate direction e0. Calculate the general directional
derivative

dvf(θ) =
∑

j

∂

∂θj
g(θ)vj + λ

∑

j>0




vj θj > 0
−vj θj < 0
|vj| θj = 0

and show that

dvf(θ) =
∑

vj>0

dejf(θ)vj +
∑

vj<0

d−ejf(θ)|vj |.

Conclude that every directional derivative is nonnegative at a station-
ary point. In view of Problem 3, stationary points therefore coincide
with minimum points. This result does not hold for lasso penalized
`1 regression.
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23. Consider the function ‖x‖0 =
∑m

i=1 1{xi 6=0} defined on R
m. What

properties of a norm does it enjoy? Demonstrate that

‖x‖0 = lim
ε↓0

m∑

i=1

ln
(
1 + |xi|

ε

)

ln
(
1 + 1

ε

) .

Note that the same limit applies if one substitutes x2
i for |xi|. Now

prove the majorization

ln (ε+ y) ≤ ln (ε+ yn) +
1

ε+ yn
(y − yn)

for nonnegative scalars y and yn, and show how it can be employed
to majorize approximations to ‖x‖0 based on the choices |xi| and x2

i .
See the references [5, 20, 53] for applications to sparse estimation and
machine learning.

24. Show that the function (u)+ = max{u, 0} is majorized by the quad-
ratic function (16.11) at a point un 6= 0. Why does it suffice to prove
that (u)+ and q(u | un) have the same value and same derivative at
un and −un? (Hint: Draw rough graphs of (u)+ and q(u | un).)

25. Implement and test one of the discriminant analysis algorithms that
depend on quadratic majorization of hinge loss.

26. Nonnegative matrix factorization was introduced by Lee and Seung
[33, 34] as an analog of principal components and vector quantization
with applications in data compression and clustering. In mathemati-
cal terms, one approximates a matrix U with nonnegative entries uij
by a product V W of two low-rank matrices with nonnegative entries
vij and wij. If the entries uij are integers, then they can be viewed
as realizations of independent Poisson random variables with means∑

k vikwkj. In this setting the loglikelihood is

L(V,W ) =
∑

i

∑

j

[
uij ln

(∑

k

vikwkj

)
−
∑

k

vikwkj

]
.

Maximization with respect to V and W should lead to a good factor-
ization. Lee and Seung construct a block relaxation algorithm that
hinges on the minorization

ln
(∑

k

vikwkj

)
≥

∑

k

anikj
bnij

ln
( bnij
anikj

vikwkj

)
,

where

anikj = vnikw
n
kj, bnij =

∑

k

vnikw
n
kj,
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and n indicates the current iteration. Prove this minorization and de-
rive the Lee-Seung algorithm with alternating multiplicative updates

vn+1
ik = vnik

∑
j uij

wn
kj

bn
ij∑

j w
n
kj

and

wn+1
kj = wnkj

∑
i uij

vn
ik

bn
ij∑

i v
n
ik

.

27. Continuing Problem 26, consider minimizing the squared Frobenius
norm

‖U − VW‖2
F =

∑

i

∑

j

(
uij −

∑

k

vikwkj

)2

.

Demonstrate the majorization

(
uij −

∑

k

vikwkj

)2

≤
∑

k

anikj
bnij

(
uij −

bnij
anikj

vikwkj

)2

based on the notation of Problem 26. Now derive the block relaxation
algorithm with multiplicative updates

vn+1
ik = vnik

∑
j uijw

n
kj∑

j b
n
ijw

n
kj

and

wn+1
kj = wnkj

∑
i uijv

n
ik∑

i b
n
ijv

n
ik

.

28. In the matrix factorizations described in Problems 26 and 27, it may
be worthwhile shrinking the estimates of the entries of V and W
toward 0 [41]. Let λ and µ be positive constants, and consider the
revised objective functions

l(V,W ) = L(V,W ) − λ
∑

i

∑

k

vik − µ
∑

k

∑

j

wkj

r(V,W ) = ‖U − V W‖2
F + λ

∑

i

∑

k

v2
ik + µ

∑

k

∑

j

w2
kj

with lasso and ridge penalties, respectively. Derive the block relax-
ation updates

vn+1
ik = vnik

∑
j
uij

wn
kj

bn
ij∑

j
wn

kj
+λ
, wn+1

kj = wnkj

∑
i
uij

vn
ik

bn
ij∑

i
vn

ik
+µ
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for l(V,W ) and the block relaxation updates

vn+1
ik = vnik

∑
j
uijw

n
kj∑

j
bn

ij
wn

kj
+λvn

ik

, wn+1
kj = wnkj

∑
i
uijv

n
ik∑

i
bn

ij
vn

ik
+µwn

kj

for r(V,W ). These updates maintain positivity. Shrinkage is obvious,
with stronger shrinkage for the lasso penalty with small parameters.

29. Let y1, . . . , ym be a random sample from a multivariate normal dis-
tribution on R

p. Example 11.2.3 demonstrates that the sample mean
ȳ and sample variance matrix S are the maximum likelihood esti-
mates of the theoretical mean µ and variance Ω. The implicit as-
sumption here is that m ≥ p and S is invertible. Unfortunately, S
is singular whenever m < p. Furthermore, the entries of S typically
have high variance in this situation. To avoid these problems, Levina
et al. [35] pursue lasso penalized estimation of Ω−1. If we assume
that Ω is invertible and let Ω = LLt be its Cholesky decomposi-
tion, then Ω−1 = (Lt)−1L−1 = RRt for the upper triangular matrix
R = (rij) = (Lt)−1. With the understanding µ̂ = ȳ, show that the
loglikelihood of the sample is

m lndetR− m

2
tr(RtSR) = m

∑

i

ln rii −
m

2

∑

j

rtjSrj ,

where rj is column j of R. In lasso penalized estimation of R, we
minimize the objective function

f(R) = −m
∑

i

ln rii +
m

2

∑

j

rtjSrj + λ
∑

j>i

|rij|.

The diagonal entries of R are not penalized because we want R to be
invertible. Why is f(R) a convex function? For rij 6= 0, show that

∂

∂rij
f(R) = −1{j=i}

m

rii
+msiirij +m

∑

k 6=i
sikrkj

+1{j 6=i}

{
λ rij > 0
−λ rij < 0.

Demonstrate that this leads to the cyclic coordinate descent update

r̂ii =
−∑k 6=i sikrki +

√
(
∑

k 6=i sikrki)
2 + 4sii

2sii
.

Finally for j 6= i, demonstrate that the cyclic coordinate descent
update chooses

r̂ij = −
m
∑

k 6=i sikrkj + λ

msii
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when this quantity is positive, it chooses

r̂ij = −
m
∑

k 6=i sikrkj − λ

msii

when this second quantity is negative, and it chooses 0 otherwise. In
organizing cyclic coordinate descent, it is helpful to retain and peri-
odically update the sums

∑
k 6=i sikrkj. The matrixR can be traversed

column by column.

30. Based on the theory of Section 16.6, show that the asymptotic covari-
ance matrix of the maximum likelihood estimates in Example 11.3.1
has entries

Ĉov(p̂i, p̂j) =

{
1
n
p̂i(1 − p̂i) i = j

− 1
n p̂ip̂j i 6= j.

For n large, these are close to the true values

Cov(p̂i, p̂j) =

{
1
npi(1 − pi) i = j
− 1
npipj i 6= j.

(Hints: You will need to use the Sherman-Morrison formula. For the
sake of simplicity, assume that all ni > 0.)

31. In the notation of Section 16.6, show that the asymptotic covariance
matrix W [W tJ(θ̂)W ]−1W t appears as the upper-left block of the
matrix inverse

(
J V t

V 0

)−1

=

(
W [W tJW ]−1W t J−1V t[V J−1V t]−1

[V J−1V t]−1V J−1 −[V J−1V t]−1

)
.

(Hint: Show that the matrices

P1 = JW [W tJW ]−1W t

P2 = V t[V J−1V t]−1V J−1

satisfy P 2
1 = P1, P

2
2 = P2, P1P2 = P2P1 = 0, and P1 + P2 = In.)

32. Continuing Problem 31, it may be impossible to invert the matrix

M =

(
J V t

V 0

)

by sweeping on its diagonal entries. However, suppose that θtJθ > 0
whenever θ 6= 0 and V θ = 0. Then the matrix

M(s) =

(
J + sV tV V t

V 0

)
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for sufficiently large s > 0 serves as a substitute for M . Show that (a)
if M(s) is invertible for one s, then it is invertible for all s, (b) the
upper-left block of M(s)−1 is W [W tJW ]−1W t, and (c) M(s) can be
inverted by sweeping on its diagonal entries if s is sufficiently large.
(Hint: Write

M(s) =

(
In sV t

0 Im

)(
J V t

V 0

)

and invert. Part (c) is a direct consequence of Theorem 6.1 of [27].)

33. When the number of components n of the parameter vector θ of a
model is large, inverting the observed or expected information matrix
J(θ) can be very expensive. If we want to compute the asymptotic
variance of a linear combination utθ of the parameters, then there is
an alternative way of bounding Var(utθ̂) = utJ(θ̂)−1u that is cheaper.

Let
∑n

j=1 σjvjv
t
j be the singular value decomposition of J(θ̂). Sup-

pose that we can peel off the singular values σn ≤ · · · ≤ σk and
corresponding singular vectors vn, . . . , vk of J(θ̂). Demonstrate that

n∑

j=k

1

σj
(utvj)

2 ≤ Var(utθ̂)

≤
n∑

j=k

1

σj
(utvj)

2 +
1

σk

[
‖u‖2

2 −
n∑

j=k

(utvj)
2
]
.

Describe how one could adapt the algorithm developed in Problem 8
of Chapter 8 to peel off the singular values and singular vectors one
by one. Discuss potential pitfalls of the method.
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17

Concrete Hilbert Spaces

17.1 Introduction

In this chapter we consider an infinite-dimensional generalization of Eu-
clidean space introduced by the mathematician David Hilbert. This gener-
alization preserves two fundamental geometric notions of Euclidean space—
namely, distance and perpendicularity. Both of these geometric properties
depend on the existence of an inner product. In the infinite-dimensional
case, however, we take the inner product of functions rather than of vec-
tors. Our emphasis here will be on concrete examples of Hilbert spaces
relevant to statistics. To keep our discussion within bounds, some theoret-
ical facts are stated without proof. Relevant proofs can be found in almost
any book on real or functional analysis [6, 12]. Applications of our exam-
ples to numerical integration, wavelets, and other topics appear in later
chapters.

The chapter ends with a brief introduction to reproducing kernel Hilbert
spaces. This vast topic is not as well documented in textbooks as it should
be. It provides a bridge to important research done by computer scientists
and applied mathematicians on inverse problems. Our treatment stresses
the traditional application to spline regression. Readers interested in more
modern applications and a comprehensive theoretical overview should con-
sult the books [2, 5, 14, 15]. Also worth reading are the tutorials [3, 11],
the early mathematical article of Aronszajn [1], and the conversation with
Emanuel Parzen [9] on the discovery of the statistical importance of repro-
ducing kernel methods.

17.2 Definitions and Basic Properties

An inner product space H is a vector space over the real or complex num-
bers equipped with an inner product 〈f, g〉 on pairs of vectors f and g from
H . If the underlying field is the real numbers, then 〈f, g〉 is always real.
If the field is the complex numbers, then, in general, 〈f, g〉 is complex. An
inner product satisfies the following postulates:

(a) 〈f, g〉 is linear in f for g fixed,

(b) 〈f, g〉 = 〈g, f〉∗, where ∗ denotes complex conjugate,

(c) 〈f, f〉 ≥ 0, with equality if and only f = 0.

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 333
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The inner product allows one to define a vector norm ‖f‖ = 〈f, f〉1/2 on
H , just as in linear algebra. Furthermore, the Cauchy-Schwarz inequality
immediately generalizes. This says that any two vectors f and g inH satisfy

|〈f, g〉| ≤ ‖f‖ · ‖g‖,
with equality only when f and g are linearly dependent. An inner product
space is said to be complete if every Cauchy sequence converges. In other
words, if for some sequence {fn}∞n=1 the norm ‖fm − fn‖ can be made
arbitrarily small by taking m and n large enough, then the limit of fn
exists as n → ∞. A complete inner product space is called a Hilbert space.

Example 17.2.1 Finite-Dimensional Vector Spaces

The Euclidean space R
mof m-dimensional vectors with real components

is a Hilbert space over the real numbers with the usual inner product
〈f, g〉 =

∑m
i=1 figi. If we consider the space Cm of m-dimensional vectors

with complex components, then we get a Hilbert space over the complex
numbers with inner product 〈f, g〉 =

∑m
i=1 fig

∗
i . Note that the first of these

spaces is embedded in the second space in a way that preserves inner prod-
ucts and distances. Since the other Hilbert spaces met in this chapter also
exist in compatible real and complex versions, we ordinarily omit specifying
the number field.

Example 17.2.2 Space of Square-Integrable Functions

This is the canonical example of a Hilbert space. Let µ be a measure on
some Euclidean space R

m. The vector space L2(µ) of real (or complex)
square-integrable functions with respect to µ is a Hilbert space over the
real (or complex) numbers with inner product

〈f, g〉 =

∫
f(x)g(x)∗dµ(x).

If µ is the uniform measure on an interval (a, b), then we denote the corre-
sponding space of square-integrable functions by L2(a, b).

It is a fairly deep fact that the set of continuous functions with com-
pact support is dense in L2(µ) [6]. This means that every square-integrable
function f can be approximated to within an arbitrarily small ε > 0 by a
continuous function g vanishing outside some bounded interval; in symbols,
‖f − g‖ < ε. On the real line the step functions with compact support also
constitute a dense set of L2(µ). Both of these dense sets contain countable,
dense subsets. In general, a Hilbert space H with a countable, dense set is
called separable. Most concrete Hilbert spaces possess this property, so we
append it as an additional postulate.

A finite or infinite sequence {ψn}n≥1 of nonzero vectors in a Hilbert
space H is said to be orthogonal if 〈ψm, ψn〉 = 0 for m 6= n. An orthog-
onal sequence {ψn}n≥1 is orthonormal if ‖ψn‖ = 1 for every n. Given a
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function f ∈ H , one can compute its Fourier coefficients 〈f, ψn〉 relative
to an orthonormal sequence {ψn}n≥1. The finite expansion

∑m
n=1〈f, ψn〉ψn

provides the best approximation to f in the sense that

∥∥∥f −
m∑

n=1

〈f, ψn〉ψn
∥∥∥

2

= ‖f‖2 −
m∑

n=1

|〈f, ψn〉|2

≤
∥∥∥f −

m∑

n=1

cnψn

∥∥∥
2

(17.1)

for any other finite sequence of coefficients {cn}mn=1. Inequality (17.1) inci-
dentally entails Bessel’s inequality

m∑

n=1

|〈f, ψn〉|2 ≤ ‖f‖2. (17.2)

An orthonormal sequence {ψn}n≥1 is said to be complete (or constitute a
basis for H) if

f =
∑

n≥1

〈f, ψn〉ψn

for every f ∈ H . (This usage of the word “complete” conflicts with the
topological notion of completeness involving Cauchy sequences.) The next
proposition summarizes and extends our discussion thus far.

Proposition 17.2.1 The following statements about an orthonormal se-
quence {ψn}n≥1 are equivalent:

(a) The sequence is a basis for H.

(b) For each f ∈ H and ε > 0, there is a corresponding m(f, ε) such that

∥∥∥f −
m∑

n=1

〈f, ψn〉ψn
∥∥∥ ≤ ε

for all m ≥ m(f, ε).

(c) If a vector f ∈ H satisfies 〈f, ψn〉 = 0 for every n, then f = 0.

(d) For every f ∈ H,

f =
∑

n≥1

〈f, ψn〉ψn.

(e) For every f ∈ H,

‖f‖2 =
∑

n≥1

|〈f, ψn〉|2. (17.3)
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Proof: This basic characterization is proved in standard mathematical
texts such as [6, 12].

A linear functional ` maps a Hilbert space H into its scalar field of real
or complex numbers in a linear fashion. For instance, the map

`(f) =

∫ 1

0

f(x) dx

is a linear functional on L2(0, 1). The most important linear functionals
are continuous. Continuity is intimately tied to boundedness. A linear
functional ` is said to be bounded if there exists a constant m such that
|`(f)| ≤ m‖f‖ for all f ∈ H . The next proposition clarifies the relationship
between boundedness and continuity.

Proposition 17.2.2 The following three assertions concerning a linear
functional ` are equivalent:

(a) ` is continuous,

(b) ` is continuous at the origin,

(c) ` is bounded.

Proof: Assertion (a) clearly implies assertion (b). Assertion (c) implies
assertion (a) because of the inequality

|`(f) − `(g)| = |`(f − g)| ≤ m‖f − g‖.
To complete the proof, we must show that assertion (b) implies assertion
(c). If the linear functional ` is unbounded, then there exists a sequence
fn 6= 0 with |`(fn)| ≥ n‖fn‖. If we set

gn =
1

n‖fn‖
fn,

then gn converges to 0, but |`(gn)| ≥ 1 does not converge to 0.

One can generate a continuous linear functional `g from a vector g by
defining `g(f) = 〈f, g〉. In fact, this procedure generates all continuous
linear functionals.

Proposition 17.2.3 (Reisz) Every continuous linear functional ` on a
Hilbert space H can be represented as `g for some g ∈ H.

Proof: Define Ker(`) to be the closed subspace of vectors f with `(f) = 0.
If Ker(`) = H , then take g = 0. Otherwise, there exists a nontrivial vector
h that is perpendicular to Ker(`). Without loss of generality, we assume
`(h) = 1 and define g = h/‖h‖2. It follows that

〈f, g〉 = 〈f − `(f)h, g〉 + `(f)〈h, g〉 = `(f)
〈h, h〉
‖h‖2

= `(f)

because f − `(f)h is in Ker(`).
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17.3 Fourier Series

The complex exponentials {e2πinx}∞n=−∞ provide an orthonormal basis for
the space of square-integrable functions with respect to the uniform distri-
bution on [0,1]. Indeed, the calculation

∫ 1

0

e2πimxe−2πinxdx =

{
1 m = n
e2πi(m−n)x

2πi(m−n)

∣∣∣
1

0
m 6= n

=

{
1 m = n
0 m 6= n

shows that the sequence is orthonormal. Completeness is essentially a con-
sequence of Fejér’s theorem [4], which says that any periodic, continuous
function can be uniformly approximated by a linear combination of sines
and cosines. (Fejér’s theorem is a special case of the more general Stone-
Weierstrass theorem [6].) In dealing with a square-integrable function f(x)
on [0,1], it is convenient to extend it periodically to the whole real line via
the equation f(x + 1) = f(x). (We consider only functions with period 1
in this chapter.) The Fourier coefficients of f(x) are computed according
to the standard recipe

cn =

∫ 1

0

f(x)e−2πinxdx.

The Fourier series
∑∞

n=−∞ cne
2πinx is guaranteed to converge to f(x) in

mean square. The more delicate issue of pointwise convergence is partially
covered by the next proposition.

Proposition 17.3.1 Assume that the square-integrable function f(x) on
[0,1] is continuous at x0 and possesses both one-sided derivatives there.
Then

lim
m→∞

m∑

n=−m
cne

2πinx0 = f(x0).

Proof: Extend f(x) to be periodic, and consider the associated periodic
function

g(x) =
f(x + x0) − f(x0)

e−2πix − 1
.

Applying l’Hôpital’s rule yields

lim
x→0+

g(x) =
d
dx
f(x+

0 )

−2πi
,

where d
dx
f(x+

0 ) denotes the one-sided derivative from the right. A similar
expression holds for the limit from the left. Since these two limits are finite

and
∫ 1

0
|f(x)|2dx <∞, we have

∫ 1

0
|g(x)|2dx <∞ as well.
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Now let dn be the nth Fourier coefficient of g(x). Because

f(x + x0) = f(x0) + (e−2πix − 1)g(x),

it follows that

cne
2πinx0 =

∫ 1

0

f(x)e−2πin(x−x0)dx

=

∫ 1

0

f(x+ x0)e
−2πinxdx

= f(x0)1{n=0} + dn+1 − dn.

Therefore,

m∑

n=−m
cne

2πinx0 = f(x0) +

m∑

n=−m
(dn+1 − dn)

= f(x0) + dm+1 − d−m.

To complete the proof, observe that

lim
|m|→∞

dm = lim
|m|→∞

∫ 1

0

g(x)e−2πimxdx

= 0

by the Riemann-Lebesgue lemma to be proved in Proposition 19.4.1 of
Chapter 19.

Example 17.3.1 Bernoulli Functions

There are Bernoulli polynomials Bn(x) and periodic Bernoulli functions
bn(x). Let us start with the Bernoulli polynomials. These are defined by
the three conditions

B0(x) = 1

d

dx
Bn(x) = nBn−1(x), n > 0 (17.4)

∫ 1

0

Bn(x)dx = 0, n > 0.

For example, we calculate recursively

B1(x) = x− 1

2

B2(x) = 2
(x2

2
− x

2
+

1

12

)
.
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The Bernoulli function bn(x) coincides with Bn(x) on [0, 1). Outside [0, 1),
bn(x) is extended periodically. In particular, b0(x) = B0(x) = 1 for all x.
Note that b1(x) is discontinuous at x = 1 while b2(x) is continuous. All
subsequent bn(x) are continuous at x = 1 because

Bn(1) −Bn(0) =

∫ 1

0

d

dx
Bn(x)dx

= n

∫ 1

0

Bn−1(x)dx

= 0

by assumption.
To compute the Fourier series expansion

∑
k cnke

2πikx of bn(x) for n > 0,

note that cn0 =
∫ 1

0 Bn(x)dx = 0. For k 6= 0, we have

cnk =

∫ 1

0

bn(x)e
−2πikxdx

= bn(x)
e−2πikx

−2πik

∣∣∣
1

0
+

1

2πik

∫ 1

0

d

dx
bn(x)e

−2πikxdx (17.5)

= bn(x)
e−2πikx

−2πik

∣∣∣
1

0
+

n

2πik

∫ 1

0

bn−1(x)e
−2πikxdx.

From the integration-by-parts formula (17.5), we deduce that b1(x) has
Fourier series expansion

− 1

2πi

∑

k 6=0

e2πikx

k
.

This series converges pointwise to b1(x) except at x = 0 and x = 1. For
n > 1, the boundary terms in (17.5) vanish, and

cnk =
ncn−1,k

2πik
. (17.6)

Formula (17.6) and Proposition 17.3.1 together imply that

bn(x) = − n!

(2πi)n

∑

k 6=0

e2πikx

kn
(17.7)

for all n > 1 and all x.
The constant term Bn = Bn(0) is known as a Bernoulli number. One can

compute Bn−1 recursively by expanding Bn(x) in a Taylor series around
x = 0. In view of the defining properties (17.4),

Bn(x) =

n∑

k=0

1

k!

dk

dxk
Bn(0)xk

=

n∑

k=0

1

k!
nkBn−kx

k,



340 17. Concrete Hilbert Spaces

where

nk = n(n− 1) · · · (n− k + 1)

denotes a falling power. The continuity and periodicity of bn(x) for n ≥ 2
therefore imply that

Bn = Bn(1)

=

n∑

k=0

(
n

k

)
Bn−k.

Subtracting Bn from both sides of this equality gives the recurrence relation

0 =

n∑

k=1

(
n

k

)
Bn−k

for computingBn−1 fromB0, . . . , Bn−2. For instance, starting from B0 = 1,
we calculate B1 = −1/2, B2 = 1/6, B3 = 0, and B4 = −1/30. From the
expansion (17.7), evidently Bn = 0 for all odd integers n > 1.

17.4 Orthogonal Polynomials

The subject of orthogonal polynomials has a distinguished history and
many applications in physics and engineering [4, 7, 8]. Although it is a little
under-appreciated in statistics, subsequent chapters will illustrate that it is
well worth learning. Our goal here is simply to provide some concrete exam-
ples of orthogonal polynomials. The next proposition is useful in checking
that an orthonormal sequence of polynomials is complete. In applying it,
note that condition (17.8) holds whenever the probability measure µ pos-
sesses a moment generating function. In particular, if µ is concentrated on
a finite interval, then its moment generating function exists.

Proposition 17.4.1 Let µ be a probability measure on the line R such that
for some α > 0

∫
eα|x|dµ(x) < ∞. (17.8)

Then the polynomials 1, x, x2, . . . generate an orthonormal sequence of poly-
nomials {pn(x)}n≥0 that is complete in the Hilbert space L2(µ) of square-
integrable functions.

Proof: This is proved as Proposition 43.1 of [10].

We now discuss some concrete examples of orthogonal polynomial se-
quences. Because no universally accepted conventions exist for most of the
classical sequences, we adopt conventions that appear best suited to the
purposes of probability and statistics.
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Example 17.4.1 Poisson–Charlier Polynomials

Let µ be the Poisson probability measure with mean λ. This probability
measure attributes mass µ({x}) = e−λλx/x! to the nonnegative integer x.
Consider the exponential generating function

p(x, t) = e−t
(
1 +

t

λ

)x

=

∞∑

n=0

p
(λ)
n (x)

n!
tn,

where t is a real parameter. Expanding e−t and (1 + t/λ)x in power series
and equating coefficients of tn give

p(λ)
n (x) = n!

n∑

k=0

(
x

k

)
λ−k

(−1)n−k

(n− k)!

=

n∑

k=0

(
n

k

)
(−1)n−kλ−kxk.

The polynomial p
(λ)
n (x) is the nth-degree Poisson–Charlier polynomial.

These polynomials form an orthonormal sequence if properly normalized.
Indeed, on the one hand,

∫
p(x, s)p(x, t)dµ(x) =

∞∑

x=0

e−s
(
1 +

s

λ

)x
e−t
(
1 +

t

λ

)x
e−λ

λx

x!

= e−(s+t+λ)
∞∑

x=0

1

x!

[(
1 +

s

λ

)(
1 +

t

λ

)
λ
]x

= e−(s+t+λ)e(1+ s
λ )(1+ t

λ )λ

= e
st
λ

=

∞∑

n=0

1

λnn!
sntn.

On the other hand,
∫
p(x, s)p(x, t)dµ(x) =

∞∑

m=0

∞∑

n=0

smtn

m!n!

∫
p(λ)
m (x)p(λ)

n (x)dµ(x).

Equating coefficients of smtn in these two expressions shows that
∫
p(λ)
m (x)p(λ)

n (x)dµ(x) =

{
0 m 6= n
n!
λn m = n.

Proposition 17.4.1 implies that the sequence {p(λ)
n (x)

√
λn/n!}n≥0 is a com-

plete orthonormal sequence for the Poisson distribution.
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Example 17.4.2 Hermite Polynomials

If µ is the probability measure associated with the standard normal distri-
bution, then

µ(S) =
1√
2π

∫

S

e−
1
2x

2

dx

for any measurable set S. The Hermite polynomials have exponential gen-
erating function

p(x, t) = ext−
1
2 t

2

=

∞∑

n=0

Hn(x)

n!
tn

for t real. The fact that Hn(x) is a polynomial of degree n follows from

evaluating the nth partial derivative of ext−
1
2 t

2

with respect to t at t = 0. To
prove that the Hermite polynomials yield an orthogonal sequence, equate
coefficients of smtn in the formal expansion

∞∑

m=0

∞∑

n=0

smtn
∫
Hm(x)

m!

Hn(x)

n!
dµ(x) =

∫
p(x, s)p(x, t)dµ(x)

=
1√
2π

∫ ∞

−∞
este−

1
2 (x−s−t)2dx

= est.

This gives
∫
Hm(x)

m!

Hn(x)

n!
dµ(x) =

{
0 m 6= n
1
n! m = n,

and Proposition 17.4.1 implies that {Hn(x)/
√
n!}n≥0 is a complete or-

thonormal sequence for the standard normal distribution.
An explicit expression for Hn(x) can be derived by writing

ext−
1
2 t

2

= exte−
1
2 t

2

=
( ∞∑

i=0

xiti

i!

)( ∞∑

j=0

(−1)jt2j

2jj!

)
.

This shows that

Hn(x) =

bn
2 c∑

j=0

n!(−1)jxn−2j

2jj!(n− 2j)!
.

In practice, the recurrence relation for Hn(x) given in Section 2.3.3 of
Chapter 2 and repeated in equation (17.11) ahead is more useful.
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Example 17.4.3 Laguerre Polynomials

If we let µ be the probability measure associated with the gamma distri-
bution with scale parameter 1 and shape parameter α, then

µ(S) =
1

Γ(α)

∫

S

xα−1e−xdx

for any measurable set S ⊂ (0,∞). The sequence of Laguerre polynomials

{L(α)
n (x)}∞n=0 has exponential generating function

p(x, t) =
1

(1 − t)α
e−

tx
1−t

=

∞∑

n=0

L
(α)
n (x)

n!
tn

for t ∈ (−1, 1). If we let αn = α(α+1) · · · (α+n−1) denote a rising power,
then equating coefficients of smtn in

∞∑

m=0

∞∑

n=0

smtn
∫
L

(α)
m (x)

m!

L
(α)
n (x)

n!
dµ(x)

=

∫
p(x, s)p(x, t)dµ(x)

=
1

(1 − s)α(1 − t)αΓ(α)

∫ ∞

0

xα−1e−
sx

1−s− tx
1−t −xdx

=
1

(1 − s)α(1 − t)αΓ(α)

∫ ∞

0

xα−1e−
x(1−st)

(1−s)(1−t) dx

=
1

(1 − st)α

=

∞∑

n=0

αn

n!
sntn

shows that the sequence of polynomials

{[ 1

n!αn

] 1
2

L(α)
n (x)

}∞

n=0

is orthonormal for the gamma distribution. In view of Proposition 17.4.1,
it is also complete.

It is possible to find explicit expressions for the Laguerre polynomials by
expanding

1

(1 − t)α
e−

tx
1−t =

∞∑

m=0

(−1)mxm

m!

tm

(1 − t)m+α
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=

∞∑

m=0

(−1)mxm

m!

∞∑

k=0

(−m− α

k

)
(−1)ktk+m

=

∞∑

m=0

(−1)mxm

m!

∞∑

k=0

Γ(k +m+ α)

Γ(m+ α)

tm+k

k!

=

∞∑

m=0

(−1)mxm
∞∑

n=m

Γ(n+ α)

Γ(m+ α)

(
n

m

)
tn

n!

=

∞∑

n=0

tn

n!
Γ(n + α)

n∑

m=0

(
n

m

)
(−1)mxm

Γ(m+ α)
.

Thus,

L(α)
n (x) = Γ(n+ α)

n∑

m=0

(
n

m

)
(−1)mxm

Γ(m+ α)
.

Again, this is not the most convenient form for computing.

Example 17.4.4 Beta Distribution Polynomials

The measure µ associated with the beta distribution assigns probability

µ(S) =
1

B(α, β)

∫

S

xα−1(1 − x)β−1dx

to any measurable set S ⊂ (0, 1), where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is
the usual normalizing constant. No miraculous generating function exists
in this case, but if we abbreviate the beta density by

w(x) =
1

B(α, β)
xα−1(1 − x)β−1,

then the functions

ψ(α,β)
n (x) =

1

w(x)

dn

dxn

[
w(x)xn(1 − x)n

]

= x−α+1(1 − x)−β+1 d
n

dxn

[
xn+α−1(1 − x)n+β−1

]

will prove to be orthogonal polynomials.

We can demonstrate inductively that ψ
(α,β)
n (x) is a polynomial of degree

n by noting first that ψ
(α,β)
0 (x) = 1 and second that

ψ(α,β)
n (x)

= (n+α−1)(1−x)ψ(α,β+1)
n−1 (x) − (n+β−1)xψ

(α+1,β)
n−1 (x). (17.9)
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Equality (17.9) follows from the definition of ψ
(α,β)
n (x) and the identity

dn

dxn

[
xn+α−1(1 − x)n+β−1

]

= (n+ α− 1)
dn−1

dxn−1

[
xn+α−2(1 − x)n+β−1

]

− (n+ β − 1)
dn−1

dxn−1

[
xn+α−1(1 − x)n+β−2

]
.

To show that the polynomials ψ
(α,β)
n (x) are orthogonal, note that for

m ≤ n repeated integration by parts leads to

∫ 1

0

ψ(α,β)
m (x)ψ(α,β)

n (x)w(x)dx

=

∫ 1

0

ψ(α,β)
m (x)

dn

dxn

[
w(x)xn(1 − x)n

]
dx

= (−1)n
∫ 1

0

dn

dxn

[
ψ(α,β)
m (x)

]
w(x)xn(1 − x)ndx

since all boundary contributions vanish. If m < n, then

dn

dxn
ψ(α,β)
m (x) = 0,

and this proves orthogonality. When m = n,

dn

dxn

[
ψ(α,β)
n (x)

]
= n!c(α,β)

n ,

where c
(α,β)
n is the coefficient of xn in ψ

(α,β)
n (x). It follows that

∫ 1

0

ψ(α,β)
n (x)ψ(α,β)

n (x)w(x)dx = (−1)nn!c(α,β)
n

∫ 1

0

w(x)xn(1 − x)ndx

= (−1)nn!c(α,β)
n

B(α + n, β + n)

B(α, β)
.

Because the beta distribution is concentrated on a finite interval, the poly-
nomial sequence

{√
B(α, β)

(−1)nn!c
(α,β)
n B(α+ n, β + n)

ψ(α,β)
n (x)

}∞

n=0

provides an orthonormal basis.

Finally, we claim that c
(α,β)
n = (−1)n(2n + α + β − 2)n. This assertion

is certainly true when n = 0 because c
(α,β)
0 = 1. In general, the recurrence
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relation (17.9) and induction imply

c(α,β)
n = −(n+ α− 1)c

(α,β+1)
n−1 − (n+ β − 1)c

(α+1,β)
n−1

= −(n+ α− 1)(−1)n−1(2[n− 1] + α+ β + 1 − 2)n−1

−(n+ β − 1)(−1)n−1(2[n− 1] + α+ 1 + β − 2)n−1

= (−1)n(2n+ α+ β − 2)(2n+ α+ β − 3)n−1

= (−1)n(2n+ α+ β − 2)n.

This proves the asserted formula.

The next proposition permits straightforward recursive computation of
orthogonal polynomials. Always use high-precision arithmetic when apply-
ing the proposition for a particular value of x.

Proposition 17.4.2 Let an and bn be the coefficients of xn and xn−1 in
the nth term pn(x) of an orthogonal polynomial sequence with respect to a
probability measure µ. Then

pn+1(x) = (Anx+Bn)pn(x) − Cnpn−1(x), (17.10)

where

An =
an+1

an
, Bn =

an+1

an

( bn+1

an+1
− bn
an

)
, Cn =

an+1an−1

a2
n

‖pn‖2

‖pn−1‖2
,

and a−1 = 0.

Proof: We will repeatedly use the fact that
∫
pn(x)q(x)dµ(x) = 0 for any

polynomial q(x) of degree n − 1 or lower. This follows because q(x) must
be a linear combination of p0(x), . . . , pn−1(x). Now given the definition of
An, it is clear that

pn+1(x) −Anxpn(x) = Bnpn(x) − Cnpn−1(x) + rn−2(x)

for as yet undetermined constants Bn and Cn and a polynomial rn−2(x) of
degree n− 2. If 0 ≤ k ≤ n− 2, then

0 =

∫
pn+1(x)pk(x)dµ(x)

=

∫
pn(x)[Anx+ Bn]pk(x)dµ(x) −Cn

∫
pn−1(x)pk(x)dµ(x)

+

∫
rn−2(x)pk(x)dµ(x),

and consequently
∫
rn−2(x)pk(x)dµ(x) = 0. This forces rn−2(x) = 0 be-

cause rn−2(x) is a linear combination of p0(x), . . . , pn−2(x).
If we write

xpn−1(x) =
an−1

an
pn(x) + qn−1(x),
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where qn−1(x) is a polynomial of degree n− 1, then

0 =

∫
pn+1(x)pn−1(x)dµ(x)

= An

∫
pn(x)xpn−1(x)dµ(x) +Bn

∫
pn(x)pn−1(x)dµ(x)

− Cn

∫
p2
n−1(x)dµ(x)

= An
an−1

an

∫
p2
n(x)dµ(x) +An

∫
pn(x)qn−1(x)dµ(x)− Cn‖pn−1‖2

= An
an−1

an
‖pn‖2 − Cn‖pn−1‖2.

This gives Cn. Finally, equating coefficients of xn in equation (17.10) yields
bn+1 = Anbn +Bnan, and this determines Bn.

After tedious calculations, Proposition 17.4.2 translates into the following
recurrence relations for the orthogonal polynomials considered in Examples
17.4.1 through 17.4.4:

p
(λ)
n+1(x) =

(x
λ
− n

λ
− 1
)
p(λ)
n (x) − n

λ
p
(λ)
n−1(x)

Hn+1(x) = xHn(x) − nHn−1(x)

L
(α)
n+1(x) = (2n+ α− x)L(α)

n (x) − n(n + α− 1)L
(α)
n−1(x) (17.11)

ψ
(α,β)
n+1 (x) =

(2n+ α+ β)(2n + α+ β − 1)

n + α+ β − 1

×
[ (n+ 1)(n+ α)

2n+ α+ β
− n(n+ α− 1)

2n+ α+ β − 2
− x

]
ψ(α,β)
n (x)

− n(2n+ α+ β)(n + α− 1)(n + β − 1)

(n+ α+ β − 1)(2n+ α+ β − 2)
ψ

(α,β)
n−1 (x).

17.5 Reproducing Kernel Hilbert Spaces

One of the most frustrating features of L2(0, 1) and similar Hilbert spaces
is that the vectors are not functions in the ordinary sense. They are only
defined almost everywhere. As a consequence, the linear evaluation func-
tionals evq(f) = f(q) are not well defined. If we limit the class of functions
and revise the definition of the inner product, then this annoyance fades
away. In many novel Hilbert spaces, the evaluation functionals are well de-
fined and continuous. Before we construct some examples, we would like to
focus on the axiomatic development of reproducing kernel Hilbert spaces.
For such a Hilbert space H of ordinary functions, one postulates the con-
tinuity of every evaluation functional. According to Proposition 17.2.3, we
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can then identify the evaluation functional evq with a function Kq ∈ H in
the sense that f(q) = 〈f,Kq〉 for every f . Taking f = Kp defines a func-
tion K(p, q) = 〈Kp, Kq〉 called the reproducing kernel of H . This function
summarizes the structure of H .

The reproducing kernel K(p, q) inherits some useful properties from the
inner product. First, we have conjugate symmetry

K(p, q) = 〈Kp, Kq〉 = 〈Kq, Kp〉∗ = K(q, p)∗.

If p1, . . . , pn is a finite sequence of vectors and c1, . . . , cn a corresponding
sequence of scalars, then we also have

∑

i

∑

j

ciK(pi, pj)c
∗
j =

〈∑

i

ciKpi ,
∑

i

ciKpi

〉

=
∥∥∥
∑

i

ciKpi

∥∥∥
2

≥ 0.

In other words, for all possible sequences p1, . . . , pn, the matrix K(pi, pj)
is positive semidefinite. This compels K(p, p) ≥ 0 and leads to the Cauchy-
Schwarz inequality

K(p, p)K(q, q) − |K(p, q)|2 = det

(
K(p, p) K(p, q)
K(q, p) K(q, q)

)
≥ 0.

The Cauchy-Schwarz inequality follows from the fact that the determinant
is the product of the eigenvalues of the displayed 2×2 positive semidefinite
matrix.

Here are some examples of kernels with domain R
m:

K(p, q) = ptq

K(p, q) = (1 + ptq)d, d a positive integer,

K(p, q) = f̂(p− q)

K(p, q) = (p− c)+(q − c)+, m = 1 .

It is easy to verify that the first example generates positive semidefinite
matrices. The second example also qualifies because the set of positive
semidefinite matrices is closed under entry-wise addition and entry-wise
multiplication; see Problems 20 and 21 of Chapter 8. The function f̂(y) in
the third example is the Fourier transform

f̂(y) =

∫
eiy

txf(x) dx, i =
√
−1

of a nonnegative integrable function f(x). The one-dimensional Fourier

transform is covered in Chapter 19. We demonstrate there that f̂(y) is real
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if and only if f(x) is even. The Gaussian kernel

f̂(y) = e−σ
2y2/2

is an especially important Fourier transform kernel. The calculation

∑

j

∑

k

cj f̂(pj − pk)c
∗
k =

∫ ∣∣∣
∑

j

cje
ipt

jx
∣∣∣
2

f(x) dx

proves positive semidefiniteness. The last example is one dimensional and
involves the function (z)+ = max{z, 0}. If we let zi = pi − c, then positive
semidefiniteness follows from the calculation

∑

i

∑

j

ai(pi − c)+(pj − c)+a
∗
j =

∣∣∣
∑

i

ai(zi)+

∣∣∣
2

≥ 0.

In practice, we often start with a kernel K(p, q) and construct a Hilbert
space H with K(p, q) as its reproducing kernel. The basic building blocks
of H are linear combinations of the functions Kp(q) = K(p, q). Consider
two such functions f =

∑
i aiKpi and g =

∑
i biKpi . We can arrange for

the two finite ranges of summation to be identical by allowing some of the
coefficients ai and bi to be 0. The inner product of f and g is defined as

〈f, g〉 =
∑

i

∑

j

aiK(pi, pj)b
∗
j . (17.12)

This definition shows that the inner product is conjugate symmetric and
linear in its left argument. The definition is also consistent with the norm
requirement 〈f, f〉 ≥ 0 and the evaluation property f(p) = 〈f,Kp〉. The
validity of point evaluation proves that the inner product

〈f, g〉 =
∑

j

f(pj )b
∗
j =

∑

i

aig(pi)
∗

depends only on the values of f and g and not on the particular linear
combinations chosen to represent f and g.

Finally, we need to check that f vanishes when 〈f, f〉 vanishes. As pre-
viously mentioned, an arbitrary point p can always be included in the enu-
merated pi in the representation f =

∑
i aiKpi . If p is the first point in the

list and M is the matrix K(pi, pj), then f(p) reduces to the quadratic form
atMe1, where a = (ai) and e1 is the standard unit vector with first entry 1.
According to Problem 15, this quadratic form satisfies the Cauchy-Schwarz
inequality, which in the current circumstances translates into

|f(p)| ≤
√

〈f, f〉
√
K(p, p). (17.13)

This bound simultaneously proves that f vanishes and that the evaluation
functional evp(f) is bounded and therefore continuous.
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The only flaw in our construction is that the inner product space may
be incomplete. To make it complete, we append the limits of Cauchy se-
quences. Consider a Cauchy sequence fn. The inequality

|fn(p) − fm(p)| ≤ ‖fn − fm‖
√
K(p, p) (17.14)

demonstrates that the pointwise limit f(p) of the numbers fn(p) exists for
every point p. The sensible strategy is to extend the inner product to such
limiting functions f . Thus, suppose fn is a Cauchy sequence converging
pointwise to f and gn is a Cauchy sequence converging pointwise to g. Let
us define

〈f, g〉 = lim
n→∞

〈fn, gn〉. (17.15)

This extended inner product is certainly conjugate symmetric, linear in its
left argument, and nonnegative when the arguments agree. It is less clear
(a) that the limit exists, (b) that it preserves the original inner product,
(c) that it does not depend on the particular Cauchy sequences converging
pointwise to f and g, and (d) that ‖f‖ = 0 implies f(p) = 0 for all p.

Let us prove each of these assertions in turn. (a) The inequality

|〈fm, gm〉 − 〈fn, gn〉| ≤ |〈fm − fn, gm〉| + |〈fn, gm − gn〉|
≤ ‖fm − fn‖ · ‖gm‖ + ‖fn‖ · ‖gm − gn‖

shows that the sequence 〈fn, gn〉 is Cauchy. Thus, the limit (17.15) exists.
(b) If f and g are linear combinations of the Kp, then we can choose the
constant Cauchy sequences fn = f and gn = g to represent f and g. These
choices force the extended inner product to preserve the original inner
product. (c) Let the Cauchy sequences f̃n and g̃n also converge pointwise
to f and g. The inequality

|〈fn, gn〉 − 〈f̃n , g̃n〉| ≤ ‖fn − f̃n‖ · ‖gn‖ + ‖f̃n‖ · ‖gn − g̃n‖

demonstrates that in order for the two limits to agree, it suffices that the
norms ‖fn−f̃n‖ and ‖gn−g̃n‖ converge to 0. Consider the Cauchy sequence
hn = fn − f̃n. It converges pointwise to 0, and for every ε > 0 there is an
m with ‖hn − hm‖ < ε for n ≥ m. If hm =

∑
i aiKpi and n ≥ m, then

‖hn‖ = 〈hn − hm, hn〉 + 〈hm, hn〉
≤ ε sup

k
‖hk‖ +

∑

i

aihn(pi)
∗.

Because ε is arbitrary and every hn(pi) tends to 0 as n tends to ∞, it follows
that ‖hn‖ tends to 0. Since the same reasoning applies to hn = gn− g̃n, the
extended inner product is well defined. (d) Finally, if fn tends pointwise to
f and ‖f‖ = limn→∞ ‖fn‖ = 0, then inequality (17.13) applied to each fn
implies in the limit that f(p) = 0 for all p.

As a summary of the foregoing discussion, we have the next proposition.
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Proposition 17.5.1 (Moore-Aronszajn) Let K(p, q)be a positive semi-
definite function defined on a subset X of R

m. There exists one and only one
Hilbert space H of functions on X with reproducing kernel K. The subspace
H0 of functions spanned by the functions Kp(q) with inner product (17.12)
is dense in H in the sense that every function of H is a pointwise limit of
a Cauchy sequence from H0.

In many practical examples, the kernel K(p, q) is continuous and bounded
on its domain. If these conditions hold, then every linear combination∑

i aiKpi is a continuous function, and inequality (17.14) implies that the
pointwise convergence of a Cauchy sequence fn to a function f is actually
uniform. It follows that the limit f is also continuous. As well as being
helpful in its own right, continuity leads to separability of the constructed
Hilbert space H . This claim is verified by taking a countable dense set S
in the domain of the kernel and showing that the countable set of func-
tions {Kp}p∈S is dense in H . It suffices to prove that the only function
g perpendicular to this set is the zero function. In view of the identity
g(p) = 〈g,Kp〉 = 0, the continuous function g vanishes on a dense set. This
can only hold if g is identically 0.

Example 17.5.1 The Sobolev Space Hm
per(0, 1)

Smooth periodic functions f(x) =
∑

n ane
2πinx have Fourier coefficients

that decline rapidly. For a positive integer m, consider the subspace

H =
{
f =

∑

n

ane
2πinx : |a0|2 +

∑

n 6=0

(2πn)2m|an|2 <∞
}

of square integrable periodic functions with revised inner product

〈f, g〉 = a0b
∗
0 +

∑

n 6=0

(2πn)2manb
∗
n

for f(x) =
∑

n ane
2πinx and g(x) =

∑
n bne

2πinx. Point evaluation is con-
tinuous because the Cauchy-Schwarz inequality implies

|f(x)| =
∣∣∣a0 +

∑

n 6=0

1

(2πn)m
(2πn)mane

2πinx
∣∣∣

≤
√

1 +
∑

n 6=0

1

(2πn)2m

√
〈f, f〉

and boundedness is equivalent to continuity. The kernel function

Kx(y) = 1 +
∑

n 6=0

e2πin(y−x)

(2πn)2m

= 1 +
(−1)m−1

(2m)!
b2m(y − x)
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involving the Bernoulli function b2m(y − x) clearly gives the correct evalu-
ation

〈f,Kx〉 =
∑

n

ane
2πinx.

The new inner product and norm are designed to eliminate non-smooth
functions.

Before introducing our second example, it is helpful to state and prove
an important result that matches reproducing kernels and orthogonal de-
compositions of Hilbert spaces.

Proposition 17.5.2 Let K(p, q) be the reproducing kernel of a Hilbert
space HK of functions defined on a subset X of R

m. Suppose K(p, q) can be
decomposed as the sum L(p, q) +M(p, q) of two positive semidefinite func-
tions, whose functional pairs Lp and Mq are orthogonal vectors in HK .
Then HK can be written as the orthogonal direct sum HL ⊕ HM of the
reproducing kernel Hilbert spaces HL and HM corresponding to L(p, q) and
M(p, q). Conversely, if L(p, q) and M(p, q) are positive semidefinite func-
tions whose induced Hilbert spaces satisfy HL ∩HM = {0}, then the direct
sum HK = HL ⊕HM has reproducing kernel K(p, q) = L(p, q) +M(p, q).

Proof: Suppose K(p, q) = L(p, q) + M(p, q) is the reproducing kernel of
HK with inner product 〈·, ·〉K. The Hilbert spaces HL and HM induced
by L(p, q) and M(p, q) are subspaces of HK with inner products 〈·, ·〉L and
〈·, ·〉M . Because Lp and Mq are orthogonal in HK , we have

〈Lp, Lq〉L = L(p, q) = 〈Lp, Kq〉K = 〈Lp, Lq〉K .
Thus, the inner products 〈·, ·〉L and 〈·, ·〉K agree on HL, and HL is a closed
subspace of HK. Similarly, the inner products 〈·, ·〉M and 〈·, ·〉K agree on
HM , and HM is a closed subspace of HK. By assumption, HL and HM

are orthogonal. Suppose h ∈ HK can be written as fL + fM + g, where
fL ∈ HL, fM ∈ HM , and g is perpendicular to both HL and HM . The
calculation

h(p) = 〈h,Kp〉K
= 〈fL + fM + g, Lp +Mp〉K
= 〈fL, Lp〉L + 〈fM ,Mp〉M
= fL(p) + fM (p)

demonstrates that g(p) is identically 0. Thus, HK = HL ⊕HM .
For the converse, consider f = fL + fM in HK = HL ⊕ HM . We now

have

f(p) = fL(p) + fM (p)

= 〈fL, Lp〉L + 〈fM ,Mp〉M
= 〈f, Lp +Mp〉K ,
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and K(p, q) is the reproducing kernel of HK .

Example 17.5.2 A Reproducing Kernel for a Taylor Expansion

Consider the vector space of m times differentiable functions [0, 1] with
inner product

〈f, g〉 =

m−1∑

n=0

f(n)(0)g(n)(0)∗ +

∫ 1

0

f(m)(y)g(m)(y)∗ dy.

We do not require that f(m)(y) and g(m)(y) exist everywhere, but they
should be square integrable, satisfy the fundamental theorem of calculus,
and allow integration by parts. To show that the point evaluation functional
evx(f) = f(x) is continuous, we use the Taylor expansion

f(x) =

m−1∑

n=0

f(n)(0)
xn

n!
+

∫ 1

0

f(m)(y)
(x − y)m−1

+

(m− 1)!
dy, (17.16)

which can be checked using repeated integration by parts. Applying the
discrete and continuous versions of the Cauchy-Schwarz inequality now
yields

|f(x)| ≤

√√√√
m−1∑

n=0

|f(n)(0)|2
m−1∑

n=0

(xn
n!

)2

+

√√√√
∫ 1

0

|f(m)(y)|2dy
∫ 1

0

[
(x− y)m−1

+

(m− 1)!

]2

dy

≤





√√√√
m−1∑

n=0

(xn
n!

)2

+

√√√√
∫ 1

0

[
(x− y)m−1

+

(m− 1)!

]2

dy




√

〈f, f〉.

Thus, the evaluation functional evx is bounded.
The reproducing kernel for this example can be deduced from the Taylor

expansion. For instance, the sum

Lx(y) =

m−1∑

n=0

xn

n!

yn

n!

gives the polynomial part

〈f, Lx〉 =
m−1∑

n=0

f(n)(0)
xn

n!
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of the expansion. The remainder term is captured by

Mx(y) =

∫ 1

0

(x− z)m−1
+

(m− 1)!

(y − z)m−1
+

(m− 1)!
dz.

According to Leibniz’s rule for differentiating under an integral sign,

dj

dyj
Mx(y) =





∫ 1

0

(x−z)m−1
+

(m−1)!

(y−z)m−1−j
+

(m−1−j)! dz 0 ≤ j < m

(x−y)m−1
+

(m−1)!
j = m and y < x

0 j = m and y > x.

Because dj

dyj Mx(0) = 0 for all j < m, this puts us in the position described
by Proposition 17.5.2 with HL consisting of the polynomials of degree m−1
or less and HM its orthogonal complement. Thus, the reproducing kernel
on the whole space boils down to the sum K(x, y) = L(x, y) +M(x, y).

When m = 2, straightforward calculations yield

M(x, y) =
1

2
xy2 − 1

6
y3 +

1

6
(y − x)3+ (17.17)

L(x, y) = 1 + xy. (17.18)

A glance at Chapter 10 should convince the reader that both of these
functions are cubic splines in y for x fixed. Thus, it is hardly surprising
that spline regression can be rephrased in the language of reproducing
kernel Hilbert spaces.

17.6 Application to Spline Estimation

In this section we revisit the problem of penalized estimation from the per-
spective of reproducing kernel Hilbert spaces. Most classical problems of
estimation can be posed as minimization of a loss function subject to con-
straints or penalties. The most commonly employed loss function is squared
error loss [yi − f(xi)]

2. Penalties are introduced in parameter estimation
to steer model selection, to regularize estimation, and to enforce smooth-
ness. As Example 17.5.2 hints, spline regression emphasizes smoothness.
We therefore estimate parameters by minimizing the criterion

n∑

i=1

[yi − f(xi)]
2 + λ‖PMf‖2 =

n∑

i=1

[yi − f(xi)]
2 + λ

∫ 1

0

f(m)(x)2dx,

where m = 2, λ > 0 is a tuning constant specifying the tradeoff between
fit and smoothness, and PM is the projection of f onto the subspace HM

of functions whose derivatives of order m− 1 or less vanish at 0.
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We can represent a generic function f in HK by

f(x) =

m−1∑

j=0

αj
xj

j!
+

n∑

i=1

βiMxi (x) + g(x), (17.19)

where g is perpendicular to HL and to all of the Mxi . The combination of
the reproducing property and orthogonality yields g(xi) = 〈g,Mxi〉 = 0. In
other words, g does not impact the loss function. The identity

‖PMf‖2 =
∥∥∥

n∑

i=1

βiPMMxi

∥∥∥
2

+ ‖g‖2 (17.20)

addressed in Problem 20 makes it clear that g should be dropped from the
penalty as well. Thus, the spline estimation problem is inherently linear
and finite dimensional. There is nothing about this argument that uses
the specific form of the loss function, so it extends to other settings. The
purely polynomial part of f plays a different role. Because the n×n matrix
Q = [M(xi, xj)] is invertible (Problem 17), there always exist coefficients
β1, . . . , βn such that

f(xj) =

n∑

i=1

βiM(xi, xj)

for every j. Hence, the coefficients α0, . . . , αm−1 also appear redundant.
They are retained in the model to promote smoothness.

In practice, the representation (17.19) is not the most convenient. With
cubic splines for example, it is conceptually simpler to work with linear
combinations

f(x) = α0 + α1x+

n∑

i=1

βi(x− xi)
3
+.

Natural cubic splines call for a reduced basis of lower dimension. If n is
large, there is also no absolute necessity of placing a knot at every xi [5].
In fact, the xi and the knots can be decoupled completely. Of course, it
is advisable for the distribution of the knots to mimic the distribution of
the xi. Once we make these adjustments, estimation can be reformulated
as minimization of the quadratic

‖y − Uα− V β‖2 + λβtWβ (17.21)

for the positive semidefinite matrix W = [〈PM(x − xi)
3
+, PM(x − xj)

3
+〉].

The stationary conditions

−2U t(y − Uα− V β) = 0

−2V t(y − Uα− V β) + 2λWβ = 0 (17.22)
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suggest block relaxation alternating the updates

α = (U tU)−1U t(y − V β)

β = (V tV + λW )−1V t(y − Uα).

This is probably better than the complicated simultaneous solution (Prob-
lem 21), but Wahba [15] recommends a stabler numerical method.

17.7 Problems

1. Find the Fourier series of the function |x| defined on [−1/2, 1/2]
and extended periodically to the whole real line. At what points of
[−1/2, 1/2] does the Fourier series converge pointwise to |x|?

2. Let f(x) be a periodic function on the real line whose kth derivative
is piecewise continuous for some positive integer k. Show that the
Fourier coefficients cn of f(x) satisfy

|cn| ≤
∫ 1

0
|f(k)(x)|dx
|2πn|k

for n 6= 0.

3. Suppose that the periodic function f(x) is square integrable on [0, 1].
Prove the assertions: (a) f(x) is an even (respectively odd) function
if and only if its Fourier coefficients cn are even (respectively odd)
functions of n, (b) f(x) is real and even if and only if the cn are real
and even, and (c) f(x) is even (odd) if and only if it is even (odd)
around 1/2. By even around 1/2 we mean f(1/2 + x) = f(1/2 − x).

4. Demonstrate that

π2

12
=

∞∑

k=1

(−1)k+1

k2
,

π4

90
=

∞∑

k=1

1

k4
.

5. Show that the even Bernoulli numbers can be expressed as

B2n = (−1)n+1 2(2n)!

(2π)2n

[
1 +

1

22n
+

1

32n
+

1

42n
+ · · ·

]
.

Apply Stirling’s formula and deduce the asymptotic relation

|B2n| � 4
√
πn
( n
πe

)2n

.
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6. Show that the Bernoulli polynomials satisfy the identity

Bn(x) = (−1)nBn(1 − x)

for all n and x ∈ [0, 1]. Conclude from this identity that Bn(1/2) = 0
for n odd.

7. Continuing Problem 6, show inductively for n ≥ 1 that B2n(x) has
exactly one simple zero in (0, 1/2) and one in (1/2, 1), while B2n+1(x)
has precisely the simple zeros 0, 1/2, and 1.

8. Demonstrate that the Bernoulli polynomials satisfy the identity

Bn(x+ 1) − Bn(x) = nxn−1.

Use this result to verify that the sum of the nth powers of the first
m integers can be expressed as

m∑

k=1

kn =
1

n+ 1

[
Bn+1n+ 1 −Bn+1(1)

]
.

(Hint: Prove the first assertion by induction or by expanding Bn(x)
in a Taylor series around the point 1.)

9. If µ is the probability measure associated with the binomial distribu-
tion with r trials and success probability p, then

µ({x}) =

(
r

x

)
pxqr−x,

where 0 ≤ x ≤ r and q = 1 − p. The exponential generating function

(1 + tq)x(1 − tp)r−x =

r∑

n=0

K
(r,p)
n (x)

n!
tn

defines the Krawtchouk polynomials. Show that

K(r,p)
n (x) =

n∑

k=0

(−1)k
(
n

k

)
pkqn−kxn−k(r − x)k

and that the normalized polynomials

pn(x) =
K

(r,p)
n (x)

(pq)
n
2

(
r
n

) 1
2n!

constitute an orthonormal basis for the binomial distribution.



358 17. Concrete Hilbert Spaces

10. Let p(x, t) be the exponential generating function for a sequence pn(x)
of orthogonal polynomials relative to a probability measure on the
real line. If An, Bn, and Cn are the coefficients appearing in the
recurrence (17.10), then demonstrate formally that

E[Xp(X, s)p(X, t)] =

∞∑

m=0

∞∑

n=0

E[Xpm(X)pn(X)]
smtn

m!n!

=

∞∑

n=0

1

An
E[p2

n+1(X)]
sn+1tn

(n+ 1)!n!

−
∞∑

n=0

Bn
An

E[p2
n(X)]

sntn

n!n!

+

∞∑

n=1

Cn
An

E[p2
n−1(X)]

sn−1tn

(n− 1)!n!
.

This result can be used to calculate the coefficients An, Bn, and Cn.
For instance, demonstrate that the exponential generating function
p(x, t) of the Krawtchouk polynomials of Problem 9 satisfies

E[Xp(X, s)p(X, t)] = r(1 + sq)(1 + tq)p(1 + stpq)r−1.

Show that equating coefficients of smtn in the two formulas gives the
recurrence

xK(r,p)
n (x) = K

(r,p)
n+1 (x) + [nq+ (r − n)p]K(r,p)

n (x)

+npq(r − n+ 1)K
(r,p)
n−1 (x)

starting from K
(r,p)
−1 (x) = 0 and K

(r,p)
0 (x) = 1.

11. Let µ denote the negative binomial distribution assigning probability

µ({x}) =

(
λ+ x− 1

x

)
qλpx

to the nonnegative integer x, where λ > 0, p ∈ (0, 1), and q = 1 − p.
The exponential generating function

(
1 − t

p

)x
(1 − t)−x−λ =

∞∑

n=0

Mn(x; λ, p)

n!
tn

defines the Meixner polynomials. Show that

Mn(x; λ, p) =

n∑

k=0

(−1)k
(
n

k

)
1

pk
xk(x+ λ)n−k
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and that the normalized polynomials

pn(x) =
Mn(x; λ, p)

√
pn√

n!λn

constitute an orthonormal basis for the negative binomial distribu-
tion. Derive the three-term recurrence

Mn+1(x; λ, p) =
(
1 − 1

p

)
xMn(x; λ, p) +

(
n+ λ+

n

p

)
Mn(x; λ, p)

−n
p

(λ + n− 1)Mn−1(x; λ, p)

starting from M−1(x; λ, p) = 0 and M0(x; λ, p) = 1. (Hint: Apply the
technique sketched in Problem 10.)

12. Show that

Hn(x) = (−1)ne
1
2x

2 dn

dxn
e−

1
2x

2

.

(Hint: Expand the left-hand side of the identity

e−
1
2 (x−t)2 =

∞∑

n=0

Hn(x)

n!
tne−

1
2x

2

in a Taylor series and equate coefficients of tn.)

13. Verify that

L(α)
n (x) = exx−α+1 d

n

dxn

(
e−xxn+α−1

)
.

14. Validate the recurrences listed in (17.11). (Hint: Note that the coeffi-

cient of xn−1 in ψ
(α,β)
n (x) is (−1)n−1n(n+α−1)(2n+α+β−3)n−1.)

15. Let A be a positive semidefinite matrix. Prove the Cauchy-Schwarz in-
equality |utAv|2 ≤ (utAu)(vtAv) for vectors u and v. State and prove
the analogous inequality when A is Hermitian positive semidefinite.
(Hints: If A is positive definite, then utAv defines an inner product.
If A is not positive definite, then A+ εI is positive definite for every
ε > 0.)

16. Derive the Taylor expansion (17.16).

17. Given n distinct points x1 < x2 < · · · < xn from the interval [0, 1],
prove that the matrix Q = [M(xi, xj)] of Example 17.5.2 is positive
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definite. Also prove that the matrix R = (xji /j!), 0 ≤ j ≤ m− 1, has
full rank whenever n ≥ m. (Hint: Show that the quadratic form

vtQv =
[ 1

(m− 1)!

]2 ∫ 1

0

[ n∑

i=1

vi(xi − z)m−1
+

]2
dz

is positive for every nontrivial vector v.)

18. In Example 17.5.2, verify the listed expressions for the derivatives
dj

dyj Mx(y) when j ≤ m.

19. Derive the expressions for M(x, y) and L(x, y) in equations (17.17)
and (17.18) when m = 2.

20. Check formula (17.20) using the facts that PMg = g and PMx
j = 0

for j < m.

21. Show that the system of equations (17.22) has solution

α̂ = [U t(I − VΣ−1V t)U ]−1U t(I − VΣ−1V t)y

β̂ = Σ−1V t(y − Uα̂),

where Σ = V tV +λW . What is the relevance of Problem 23 of Chapter
13?

22. The Sobolev space H1(R) has inner product

〈f, g〉 =

∫ ∞

−∞
f(x)g(x)∗dx+

∫ ∞

−∞
f ′(x)g′(x)∗dx

for appropriate functions defined on the real line. Prove that

K(x, y) =
1

2
e−|y−x|

is the reproducing kernel and that the functional evxf = f(x) satisfies
the bound |f(x)| ≤ ‖f‖. (Hints: For the first claim, integrate by parts.
For the second, consider

|f(x)|2 =

∫ x

−∞

d

dy
|f(y)|2dy,

and invoke the product rule of differentiation and the Cauchy-Schwarz
inequality.)
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Quadrature Methods

18.1 Introduction

The numerical calculation of one-dimensional integrals, or quadrature, is
one of the oldest branches of numerical analysis. Long before calculus was
invented, Archimedes found accurate approximations to π by inscribed and
circumscribed polygons on a circle of unit radius. In modern applied math-
ematics and statistics, quadrature is so pervasive that even hand-held cal-
culators are routinely programmed to perform it. Nonetheless, gaining a
theoretical understanding of quadrature is worth the effort. In many scien-
tific problems, large numbers of quadratures must be carried out quickly
and accurately.

This chapter focuses on the two dominant methods of modern quadra-
ture, Romberg’s algorithm [6, 7] and Gaussian quadrature [6, 11, 12, 13]. To
paraphrase Henrici [7], Romberg’s algorithm uses an approximate knowl-
edge of the error in integration to approximately eliminate that error. Gaus-
sian quadrature is ideal for integration against standard probability densi-
ties such as the normal or gamma. Both methods work extremely well for
good integrands such as low-degree polynomials. In fact, Gaussian quadra-
ture is designed to give exact answers in precisely this situation. Gaussian
quadrature also has the virtue of handling infinite domains of integration
gracefully. In spite of these advantages, Romberg’s algorithm is usually the
preferred method of quadrature for a wide variety of problems. It is ro-
bust and simple to code. At its heart is the trapezoidal rule, which can be
adapted to employ relatively few function evaluations for smooth regions of
an integrand and many evaluations for rough regions. Whatever the method
of quadrature chosen, numerical integration is an art. We briefly describe
some tactics for taming bad integrands.

18.2 Euler-Maclaurin Sum Formula

As a prelude to Romberg’s algorithm, we discuss the summation formula of
Euler and Maclaurin [3, 5, 10, 15]. Besides providing insight into the error
of the trapezoidal method of quadrature, this formula is an invaluable tool
in asymptotic analysis. Our applications to harmonic series and Stirling’s
formula illustrate this fact.

Proposition 18.2.1 Suppose f(x) has 2m continuous derivatives on the

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 363
DOI 10.1007/978-1-4419-5945-4_18, © Springer Science+Business Media, LLC 2010 
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interval [1, n] for some positive integer n. Then

n∑

k=1

f(k) =

∫ n

1

f(x)dx +
1

2

[
f(n) + f(1)

]
+

m∑

j=1

B2j

(2j)!
f(2j−1)(x)|n1

− 1

(2m)!

∫ n

1

b2m(x)f(2m)(x)dx, (18.1)

where Bk is a Bernoulli number and bk(x) is a Bernoulli function. The
remainder in this expansion is bounded by

∣∣∣ 1

(2m)!

∫ n

1

b2m(x)f(2m)(x)dx
∣∣∣ ≤ C2m

∫ n

1

|f(2m)(x)|dx, (18.2)

where

C2m =
2

(2π)2m

∞∑

k=1

1

k2m
.

Proof: Consider an arbitrary function g(x) defined on [0, 1] with 2m con-
tinuous derivatives. In view of the definition of the Bernoulli polynomials
in Chapter 17, repeated integration by parts gives

∫ 1

0

g(x)dx =

∫ 1

0

B0(x)g(x)dx

= B1(x)g(x)|10 −
∫ 1

0

B1(x)g
′(x)dx

=

2m∑

i=1

(−1)i−1Bi(x)

i!
g(i−1)(x)|10

+
(−1)2m

(2m)!

∫ 1

0

B2m(x)g(2m)(x)dx.

This formula can be simplified by noting that (a) B2m(x) = b2m(x) on
[0, 1], (b) B1(x) = x − 1/2, (c) Bi(0) = Bi(1) = Bi when i > 1, and (d)
Bi = 0 when i > 1 and i is odd. Hence,

∫ 1

0

g(x)dx =
1

2

[
g(1) + g(0)

]
−

m∑

j=1

B2j

(2j)!
g(2j−1)(x)|10

+
1

(2m)!

∫ 1

0

b2m(x)g(2m)(x)dx.

If we apply this result successively to g(x) = f(x + k) for k = 1, . . . , n− 1
and add the results, then cancellation of successive terms produces for-
mula (18.1). The bound (18.2) follows immediately from the Fourier series
representation of b2m(x) noted in Chapter 17.
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Example 18.2.1 Harmonic Series

The harmonic series
∑n

k=1 k
−1 can be approximated by taking f(x) to be

x−1 in Proposition 18.2.1. For example with m = 2, we find that

n∑

k=1

1

k
=

∫ n

1

1

x
dx+

1

2

[ 1

n
+ 1
]

+
B2

2

[
1 − 1

n2

]

+
B4

4!

[
3!− 3!

n4

]
− 1

4!

∫ n

1

b4(x)
4!

x5
dx

= lnn+ γ +
1

2n
− 1

12n2
+

1

120n4
+

∫ ∞

n

b4(x)
1

x5
dx

= lnn+ γ +
1

2n
− 1

12n2
+O

( 1

n4

)
,

where

γ =
1

2
+

1

12
− 1

120
−
∫ ∞

1

b4(x)
1

x5
dx (18.3)

≈ 0.5772

is Euler’s constant.

Example 18.2.2 Stirling’s Formula

If we let f(x) be the function lnx = d
dx

[x lnx−x] andm = 2 in Proposition
18.2.1, then we recover Stirling’s formula

lnn! =

n∑

k=1

ln k

=

∫ n

1

lnx dx+
1

2
lnn+

B2

2

[ 1

n
− 1
]

+
B4

4!

[ 2!

n3
− 2!

]
+

1

4!

∫ n

1

b4(x)
3!

x4
dx

= n lnn− n+
1

2
lnn+ s+

1

12n
− 1

360n3
− 1

4

∫ ∞

n

b4(x)
1

x4
dx

= (n+
1

2
) lnn− n+ s+

1

12n
+ O

( 1

n3

)
,

where

s = 1 − 1

12
+

1

360
+

1

4

∫ ∞

1

b4(x)
1

x4
dx (18.4)

= ln
√

2π

was determined in Chapter 4.
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Example 18.2.3 Error Bound for the Trapezoidal Rule

The trapezoidal rule is one simple mechanism for integrating a function
f(x) on a finite interval [a, b]. If we divide the interval into n equal subin-
tervals of length h = (b−a)/n, then the value of the integral of f(x) between
a+ kh and a+ (k + 1)h is approximately h

2
{f(a + kh) + f(a + [k+ 1]h)}.

Summing these approximate values over all subintervals therefore gives
∫ b

a

f(x)dx ≈ h
[1
2
g(0) + g(1) + · · ·+ g(n − 1) +

1

2
g(n)

]
(18.5)

for g(t) = f(a+ th). If we abbreviate the trapezoidal approximation on the
right of (18.5) by T (h), then Proposition 18.2.1 implies that

T (h) = h

∫ n

0

g(t)dt +
hB2

2
g′(t)|n0 +

hB4

4!
g(3)(t)|n0 − h

4!

∫ n

0

b4(t)g
(4)(t)dt

=

∫ b

a

f(x)dx +
h2

12

[
f ′(b) − f ′(a)

]
− h4

720

[
f(3)(b) − f(3)(a)

]

− h4

4!

∫ b

a

b4

(x− a

h

)
f(4)(x)dx

=

∫ b

a

f(x)dx +
h2

12

[
f ′(b) − f ′(a)

]
+ O(h4).

In practice, it is inconvenient to suppose that f ′(x) is known, so the error
committed in using the trapezoidal rule is O(h2). If f(x) possesses 2k con-
tinuous derivatives, then a slight extension of the above argument indicates
that the trapezoidal approximation satisfies

T (h) =

∫ b

a

f(x)dx+ c1h
2 + c2h

4 + · · ·+ ck−1h
2(k−1) + O(h2k) (18.6)

for constants c1, . . . , ck−1 that depend on f(x), a, and b but not on h.

18.3 Romberg’s Algorithm

Suppose in the trapezoidal rule that we halve the integration step h. Then
the error estimate (18.6) becomes

T
(1

2
h
)

=

∫ b

a

f(x)dx +
c1
4
h2 +

c2
42
h4 + · · ·+ ck−1

4k−1
h2(k−1) +O(h2k).

Romberg recognized that forming the linear combination

4T (1
2
h) − T (h)

3
= T

(1

2
h
)
− 1

3

[
T (h) − T

(1

2
h
)]

(18.7)

=

∫ b

a

f(x)dx + d2h
4 + · · ·+ dk−1h

2(k−1) +O(h2k)
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eliminates the h2 error term, where d2, . . . , dk−1 are new constants that
can be easily calculated. For h small, decreasing the error in estimating∫ b
a
f(x)dx from O(h2) to O(h4) is a striking improvement in accuracy.
Even more interesting is the fact that this tactic can be iterated. Suppose

we compute the trapezoidal approximations Tm0 = T [2−m(b− a)] for sev-
eral consecutive integers m beginning with m = 0. In essence, we double
the number of quadrature points and halve h at each stage. When f(x)
has 2k continuous derivatives, the natural inductive generalization of the
refinement (18.7) is provided by the sequence of refinements

Tmn =
4nTm,n−1 − Tm−1,n−1

4n − 1
(18.8)

= Tm,n−1 −
1

4n − 1
[Tm−1,n−1 − Tm,n−1]

for n ≤ min{m, k − 1}. From this recursive definition, it follows that

limm→∞ Tm0 =
∫ b
a
f(x)dx implies limm→∞ Tmn =

∫ b
a
f(x)dx for every n.

Furthermore, if

Tm,n−1 =

∫ b

a

f(x)dx+ γn4−mn + · · ·+ γk−14
−m(k−1) +O(4−mk)

for appropriate constants γn, . . . , γk−1, then

Tmn =

∫ b

a

f(x)dx+ δn+14
−m(n+1) + · · ·+ δk−14

−m(k−1) +O(4−mk)

for appropriate new constants δn+1, . . . , δk−1. In other words, provided the
condition n + 1 ≤ k holds, the error drops from O(4−mn) to O(4−m(n+1))
in going from Tm,n−1 to Tmn.

It is convenient to display the trapezoidal approximations to a definite

integral
∫ b
a
f(x)dx as the first column of the Romberg array




T00

T10 T11

T20 T21 T22

T30 T31 T32 T33

T40 T41 T42 T43 T44
...

...
...

...
...



.

Romberg’s algorithm fills in an entry of this array based on the two entries
immediately to the left and diagonally above and to the left of the given
entry. Depending on the smoothness of the integrand, the columns to the

right of the first column converge more and more rapidly to
∫ b
a f(x)dx.

In practice, convergence can occur so quickly that computing entries Tmn
with n beyond 2 or 3 is wasted effort.
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TABLE 18.1. Romberg Table for E(Y )

m Tm0 Tm1 Tm2 Tm3

0 0.4207355
1 0.4500805 0.4598622
2 0.4573009 0.4597077 0.4596974
3 0.4590990 0.4596983 0.4596977 0.4596977
∞ 0.4596977 0.4596977 0.4596977 0.4596977

Example 18.3.1 Numerical Examples of Romberg’s Algorithm

For two simple examples, letX be uniformly distributed on [0, 1], and define
the random variables Y = sinX and Z =

√
1 −X2. The explicit values

E(Y ) =

∫ 1

0

sinxdx = 1 − cos(1)

E(Z) =

∫ 1

0

√
1 − y2dy =

1

2
arcsin(1)

available for the means of Y and Z offer an opportunity to assess the perfor-
mance of Romberg’s algorithm. Table 18.1 clearly demonstrates the accel-
erated convergence possible for a smooth integrand. Because the derivative
of
√

1 − y2 is singular at y = 1, the slower convergence seen in Table 18.2
is to be expected.

TABLE 18.2. Romberg Table for E(Z)

m Tm0 Tm1 Tm2 Tm3

0 0.50000
1 0.68301 0.74402
2 0.74893 0.77090 0.77269
3 0.77245 0.78030 0.78092 0.78105
4 0.78081 0.78360 0.78382 0.78387
5 0.78378 0.78476 0.78484 0.78486
6 0.78482 0.78517 0.78520 0.78521
7 0.78520 0.78532 0.78533 0.78533
8 0.78533 0.78537 0.78537 0.78537
9 0.78537 0.78539 0.78539 0.78539
10 0.78539 0.78539 0.78540 0.78540
∞ 0.78540 0.78540 0.78540 0.78540
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18.4 Adaptive Quadrature

A crude, adaptive version of the trapezoidal rule can be easily constructed
[4]. In the first stage of the adaptive algorithm, the interval of integration
is split at its midpoint c = (a+ b)/2, and the two approximations

S0 =
(b− a)

2

[
f(a) + f(b)

]

S1 =
(b− a)

4

[
f(a) + 2f(c) + f(b)

]

are compared. If |S0 − S1| < ε(b− a) for ε > 0 small, then
∫ b
a
f(x)dx is set

equal to S1 . If the test |S0−S1| < ε(b−a) fails, then the integrals
∫ c
a
f(x)dx

and
∫ b
c f(x)dx are separately computed and the results added. This proce-

dure is made recursive by computing an integral via the trapezoidal rule
at each stage or splitting the integral for further processing. Obviously, a
danger in the adaptive algorithm is that the two initial approximations S0

and S1 (or similar approximations at some subsequent early stage) agree
by chance.

18.5 Taming Bad Integrands

We illustrate by way of example some of the usual tactics for improving
integrands.

Example 18.5.1 Subtracting off a Singularity

Sometimes one can subtract off the singular part of an integrand and inte-
grate that part analytically. The example

∫ 1

0

ex√
x
dx =

∫ 1

0

ex − 1√
x

dx+

∫ 1

0

1√
x
dx

=

∫ 1

0

ex − 1√
x

dx+ 2

is fairly typical. The remaining integrand

ex − 1√
x

=
√
x

∞∑

k=1

xk−1

k!

is well behaved at x = 0. In the vicinity of this point, it is wise to evaluate
the integrand by a few terms of its series expansion to avoid roundoff errors
in the subtraction ex − 1.
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Example 18.5.2 Splitting an Interval and Changing Variables

Consider the problem of computing the expectation of lnX for a beta
distributed random variable X. The necessary integral

E(lnX) =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

lnx xα−1(1 − x)β−1dx

has singularities at x = 0 and x = 1. We attack this integral by splitting it
into parts over [0, 1/2] and [1/2, 1]. The integral over [1/2, 1] can be tamed
by making the change of variables yn = 1 − x. This gives

∫ 1

1
2

lnx xα−1(1 − x)β−1dx = n

∫ 1
n√

2

0

ln(1 − yn) (1 − yn)α−1ynβ−1dy.

Provided n is chosen so large that nβ − 1 ≥ 0, the transformed integral is
well behaved. The integral over [0, 1/2] is handled similarly by making the
change of variables yn = x. In this case

∫ 1
2

0

lnx xα−1(1 − x)β−1dx = n2

∫ 1
n√

2

0

ln y ynα−1(1 − yn)β−1dy.

Because of the presence of the singularity in lny at y = 0, it is desirable
that nα−1 > 0. Indeed, then the factor ynα−1 yields limy→0 y

nα−1 ln y = 0.

Example 18.5.3 Infinite Integration Limit

The integral (18.3) appearing in the definition of Euler’s constant occurs
over the infinite interval [1,∞). If we make the change of variable y−1 = x,
then

∫ ∞

1

b4(x)
1

x5
dx =

∫ 1

0

b4(y
−1)y3dy.

The transformed integral is still challenging to evaluate because the inte-
grand b4(y

−1)y3 has limited smoothness and rapidly oscillates in the vicin-
ity of y = 0. Fortunately, some of the sting of rapid oscillation is removed by
the damping factor y3 . Problem 4 asks readers to evaluate Euler’s constant
by quadrature.

18.6 Gaussian Quadrature

Gaussian quadrature is ideal for evaluating integrals against certain proba-
bility measures µ. If f(x) is a smooth function, then it is natural to consider
approximations of the sort

∫ ∞

−∞
f(x)dµ(x) ≈

k∑

i=0

wif(xi), (18.9)
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where the finite sum ranges over fixed points xi with attached positive
weights wi. In the trapezoidal rule, µ is a uniform measure, and the points
are uniformly spaced. In Gaussian quadrature, µ is typically nonuniform,
and the points cluster in regions of high probability. Since polynomials are
quintessentially smooth, Gaussian quadrature requires that the approxima-
tion (18.9) be exact for all polynomials of sufficiently low degree.

If the probability measure µ possesses an orthonormal polynomial se-
quence {ψn(x)}∞n=0, then the k + 1 points x0, . . . , xk of formula (18.9) are
taken to be the roots of the polynomial ψk+1(x). Assuming for the moment
that these roots are distinct and real, we have the following remarkable re-
sult.

Proposition 18.6.1 If µ is not concentrated at a finite number of points,
then there exist positive weights wi such that the quadrature formula (18.9)
is exact whenever f(x) is any polynomial of degree 2k + 1 or lower.

Proof: Let us first prove the result for a polynomial f(x) of degree k or
lower. If li(x) denotes the polynomial

li(x) =
∏

j 6=i

x− xj
xi − xj

of degree k, then

f(x) =

k∑

i=0

li(x)f(xi)

is the interpolating-polynomial representation of f(x). The condition

∫
f(x)dµ(x) =

k∑

i=0

∫
li(x)dµ(x)f(xi)

now determines the weights wi =
∫
li(x)dµ(x), which obviously do not

depend on f(x).
Now let f(x) be any polynomial of degree 2k + 1 or lower. The division

algorithm for polynomials [2] implies that

f(x) = p(x)ψk+1(x) + q(x)

for polynomials p(x) and q(x) of degree k or lower. On the one hand,
because p(x) is orthogonal to ψk+1(x),

∫
f(x)dµ(x) =

∫
q(x)dµ(x). (18.10)

On the other hand, because the xi are roots of ψk+1(x),

k∑

i=0

wif(xi) =

k∑

i=0

wiq(xi). (18.11)
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In view of the first part of the proof and the fact that q(x) is a polynomial
of degree k or lower, we also have

∫
q(x)dµ(x) =

k∑

i=0

wiq(xi). (18.12)

Equations (18.10), (18.11), and (18.12) taken together imply that formula
(18.9) is exact.

Finally, if f(x) = li(x)
2, then the calculation

wi =

k∑

j=0

wjli(xj)
2

=

∫
li(x)

2dµ(x)

shows that wi > 0, provided that µ is not concentrated at a finite number
of points.

We now make good on our implied promise concerning the roots of the
polynomial ψk+1(x).

Proposition 18.6.2 Under the premises of Proposition 18.6.1, the roots
of each polynomial ψk+1(x) are real and distinct.

Proof: If the contrary is true, then ψk+1(x) changes sign fewer than k+ 1
times. Let the positions of the sign changes occur at the distinct roots
r1 < · · · < rm of ψk+1(x). Since the polynomial ψk+1(x)

∏m
i=1(x − ri) is

strictly negative or strictly positive except at the roots of ψk+1(x), we infer
that

∣∣∣
∫
ψk+1(x)

m∏

i=1

(x− ri)dµ(x)
∣∣∣ > 0.

However,
∏m
i=1(x − ri) is a polynomial of lower degree than ψk+1(x) and

consequently must be orthogonal to ψk+1(x). This contradiction shows that
ψk+1(x) must have at least k + 1 distinct changes of sign.

Good software is available for computing the roots and weights of most
classical orthogonal polynomials [13]. Newton’s method permits rapid com-
putation of the roots if initial values are chosen to take advantage of the
interlacing of roots from successive polynomials. The interlacing property,
which we will not prove, can be stated as follows [8]: If y1 < · · · < yk
denote the roots of the orthogonal polynomial ψk(x), then the next or-
thogonal polynomial ψk+1(x) has exactly one root on each of the k + 1
intervals (−∞, y1), (y1, y2), . . . , (yk,∞). The weights associated with the
k + 1 roots x0, . . . , xk of ψk+1(x) can be computed in a variety of ways.
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For instance, in view of the identity
∫
ψi(x)dµ(x) = 0 for i > 0, the set of

linear equations




ψ0(x0) · · · ψ0(xk)
ψ1(x0) · · · ψ1(xk)

...
...

ψk(x0) · · · ψk(xk)







w0

w1
...
wk


 =




∫
ψ0(x)dµ(x)

0
...
0




uniquely determines the weights.
For historical reasons, the Jacobi polynomials are employed in Gaussian

quadrature rather than the beta distribution polynomials. The Jacobi poly-
nomials are orthogonal with respect to the density (1 − x)α−1(1 + x)β−1

defined on the interval (−1, 1). Integration against a beta distribution can
be reduced to integration against a Jacobi density via the change of vari-
ables y = (1 − x)/2. Indeed,

1

B(α, β)

∫ 1

0

f(y)yα−1(1 − y)β−1dy

=
1

2α+β−1B(α, β)

∫ 1

−1

f
(1 − x

2

)
(1 − x)α−1(1 + x)β−1dx.

Example 18.6.1 Variance of a Sample Median

Consider an i.i.d. sample X1, . . . , Xn from the standard normal distribu-
tion. Assuming n is odd and m = bn/2c, the sample median X(m+1) has
density

n

(
n− 1

m

)
Φ(x)m[1 − Φ(x)]mφ(x),

where φ(x) is the standard normal density and Φ(x) is the standard normal
distribution function. Since the mean ofX(m+1) is 0, the variance ofX(m+1)

is

Var(X(m+1)) = n

(
n − 1

m

)∫ ∞

−∞
x2Φ(x)m[1 − Φ(x)]mφ(x)dx.

Table 18.3 displays the Gauss-Hermite quadrature approximations Qnk to
Var(X(m+1)) for sample sizes n = 11 and n = 21 and varying numbers
of quadrature points k. These results should be compared to the values
0.1428 for n = 11 and 0.0748 for n = 21 predicted by the asymptotic
variance 1/[4nφ(0)2] = π/(2n) of the normal limit law for a sample median
[14].
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TABLE 18.3. Quadrature Approximations to Var(X(m+1))

n Qn,2 Qn,4 Qn,8 Qn,16 Qn,32 Qn,64

11 0.1175 0.2380 0.2341 0.1612 0.1379 0.1372
21 0.0070 0.0572 0.1271 0.1230 0.0840 0.0735

18.7 Problems

1. Use the Euler-Maclaurin summation formula to establish the equality

1

e− 1
=

∞∑

n=0

Bn
n!
.

2. Verify the asymptotic expansion

n∑

k=1

kα = Cα +
nα+1

α+ 1
+
nα

2
+

m∑

j=1

B2j

2j

(
α

2j − 1

)
nα−2j+1

+O(nα−2m−1)

for a real number α 6= −1 and some constant Cα, which you need not
determine.

3. Find asymptotic expansions for the two sums
∑n

k=1(n
2 + k2)−1 and∑n

k=1(−1)k/k valid to O(n−3).

4. Check by quadrature that the asserted values in expressions (18.3)
and (18.4) are accurate.

5. After the first application of Romberg’s acceleration algorithm in

equation (18.7), show that the integral
∫ b
a
f(x)dx is approximated by

h

6

(
f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·+ 2f2n−2 + 4f2n−1 + f2n

)
,

where fk = f [a + k(b− a)/(2n)]. This is Simpson’s rule.

6. Show that the refinement Tmn in Romberg’s algorithm exactly equals∫ b
a f(x)dx when f(x) is a polynomial of degree 2n+ 1 or lower.

7. For an integrand f(x) with four continuous derivatives, let Q(h) be

the trapezoidal approximation to the integral
∫ b
a
f(x)dx with integra-

tion step h = (b − a)/(6n). Based on Q(2h) and Q(3h), construct a
quadrature formula R(h) such that

∫ b

a

f(x)dx−R(h) = O(h4).
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8. Numerical differentiation can be improved by the acceleration tech-
nique employed in Romberg’s algorithm. If f(x) has 2k continuous
derivatives, then the central difference formula

D0(h) =
f(x + h) − f(x− h)

2h

=

k−1∑

j=0

f(2j+1)(x)
h2j

(2j + 1)!
+O(h2k−1)

follows from an application of Taylor’s theorem. Show that the in-
ductively defined quantities

Dj(h) =
4jDj−1(

1
2h) −Dj−1(h)

4j − 1

= Dj−1

(1

2
h
)
− 1

4j − 1

[
Dj−1(h) −Dj−1

(1

2
h
)]

satisfy

f ′(x) = Dj(h) +O(h2j+2)

for j = 0, . . . , k − 1. Verify that

D1(h) =
1

6

[
8f
(
x+

1

2
h
)
− 8f

(
x− 1

2
h
)
− f(x + h) + f(x − h)

]
.

Finally, try this improvement of central differencing on a few repre-
sentative functions such as sin(x), ex, and lnΓ(x).

9. Discuss what steps you would take to compute the following integrals
accurately [1]:

∫ ∞

1

lnx

x
√

1 + x
dx,

∫ π
2

ε

sinx

x2
dx,

∫ π
2

0

1 − cos x

x2
√
x

dx.

In the middle integral, ε > 0 is small.

10. For a probability measure µ concentrated on a finite interval [a, b],
let

Qk(f) =

k∑

i=0

w
(k)
i f(x

(k)
i )

be the sequence of Gaussian quadrature operators that exactly inte-
grate polynomials of degree 2k+1 or lower based on the roots of the
orthonormal polynomial ψk+1(x). Prove that

lim
k→∞

Qk(f) =

∫ b

a

f(x)dµ(x)

for any continuous function f(x). (Hint: Apply the Weierstrass ap-
proximation theorem [9].)
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11. Describe and implement Newton’s method for computing the roots of
the Hermite polynomials. How can you use the interlacing property
of the roots and the symmetry properties of the Hermite polynomials
to reduce computation time? How is Proposition 17.4.2 relevant to
the computation of the derivatives required by Newton’s method?
To avoid overflows you should use the orthonormal version of the
polynomials.

12. Continuing Problem 11, describe and implement a program for the
computation of the weights in Gauss-Hermite quadrature.

13. Let X1, . . . , Xn be an i.i.d. sample from a gamma density with scale
parameter 1 and shape parameter α. Describe and implement a nu-
merical scheme for computing the expected values of the order statis-
tics X(1) and X(n).

14. In light of Problem 13 of Chapter 2, describe and implement a numer-
ical scheme for computing the bivariate normal distribution function.
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The Fourier Transform

19.1 Introduction

The Fourier transform is one of the most productive tools of the mathe-
matical sciences. It crops up again and again in unexpected applications
to fields as diverse as differential equations, numerical analysis, probabil-
ity theory, number theory, quantum mechanics, optics, medical imaging,
and signal processing [3, 5, 7, 8, 9]. One explanation for its wide utility
is that it turns complex mathematical operations like differentiation and
convolution into simple operations like multiplication. Readers most likely
are familiar with the paradigm of transforming a mathematical equation,
solving it in transform space, and then inverting the solution. Besides its
operational advantages, the Fourier transform often has the illuminating
physical interpretation of decomposing a temporal process into component
processes with different frequencies.

In this chapter, we review the basic properties of the Fourier transform
and touch lightly on its applications to Edgeworth expansions. Because of
space limitations, our theoretical treatment of Fourier analysis is necessar-
ily superficial. At this level it is difficult to be entirely rigorous without
invoking some key facts from real analysis. Readers unfamiliar with the
facts cited will have to take them on faith or turn to one of the many
available texts on real analysis. In mitigation of these theoretical excur-
sions, some topics from elementary probability are repeated for the sake of
completeness.

19.2 Basic Properties

The Fourier transform can be defined on a variety of function spaces. For
our purposes, it suffices to consider complex-valued, integrable functions
whose domain is the real line. The Fourier transform of such a function
f(x) is defined according to the recipe

f̂(y) =

∫ ∞

−∞
eiyxf(x)dx

for all real numbers y. Note that by the adjective “integrable” we mean∫∞
−∞ |f(x)|dx <∞. In the sequel we usually omit the limits of integration.

If f(x) is a probability density, then the Fourier transform f̂(y) coincides
with the characteristic function of f(x).

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 379
DOI 10.1007/978-1-4419-5945-4_19, © Springer Science+Business Media, LLC 2010 
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TABLE 19.1. Fourier Transform Pairs

Function Transform Function Transform

(a) af(x) + bg(x) af̂(y) + bĝ(y) (e) f(x)∗ f̂(−y)∗

(b) f(x − x0) eiyx0 f̂(y) (f) ixf(x) d
dy f̂(y)

(c) eiy0xf(x) f̂(y + y0) (g) d
dx f(x) −iyf̂ (y)

(d) f(x
a
) |a|f̂(ay) (h) f ∗ g(x) f̂(y)ĝ(y)

Proposition 19.2.1 Table 19.1 summarizes the operational properties of
the Fourier transform. In the table, a, b, x0, and y0 are constants, and the
functions f(x), xf(x), d

dx
f(x), and g(x) are assumed integrable as needed.

In entry (g), f(x) is taken to be absolutely continuous.

Proof: All entries in the table except (f) through (h) are straightforward to

verify. To prove (f), note that d
dy f̂(y) is the limit of the difference quotients

f̂(y + u) − f̂(y)

u
=

∫
eiux − 1

u
eiyxf(x)dx.

The integrand on the right is bounded above in absolute value by

∣∣∣e
iux − 1

u
eiyxf(x)

∣∣∣ =
∣∣∣
∫ x

0

eiuzdz
∣∣∣|f(x)|

≤ |xf(x)|.
Hence, the dominated convergence theorem permits one to interchange
limit and integral signs as u tends to 0.

To verify property (g), we first observe that the absolute continuity of
f(x) is a technical condition permitting integration by parts and applica-
tion of the fundamental theorem of calculus. Now the integration-by-parts
formula

∫ d

c

eiyx
d

dx
f(x)dx = eiyxf(x)|dc − iy

∫ d

c

eiyxf(x)dx.

proves property (g) provided we can demonstrate that

lim
c→−∞

f(c) = lim
d→∞

f(d) = 0.

Since d
dx
f(x) is assumed integrable, the reconstruction

f(d) − f(0) =

∫ d

0

d

dx
f(x)dx



19. The Fourier Transform 381

implies that limd→∞ f(d) exists. This right limit is necessarily 0 because
f(x) is integrable. The left limit limc→−∞ f(c) = 0 follows by the same
argument. We defer the proof of property (h) until we define convolution.

19.3 Examples

Before developing the theory of the Fourier transform further, it is useful
to pause and calculate some specific transforms.

Example 19.3.1 Uniform Distribution

If f(x) is the uniform density on the interval [a, b], then

f̂(y) =
1

b− a

∫ b

a

eiyxdx

=
eiyx

(b − a)iy

∣∣∣
b

a

=
ei

1
2 (a+b)y

[
e

1
2 i(b−a)y − e−

1
2 i(b−a)y

]

1
2(b − a)y2i

= ei
1
2 (a+b)y sin[ 12 (b− a)y]

1
2(b− a)y

.

When a = −b, this reduces to f̂(y) = sin(by)/(by).

Example 19.3.2 Gaussian Distribution

To find the Fourier transform of the Gaussian density f(x) with mean 0 and
variance σ2, we derive and solve a differential equation. Indeed, integration
by parts and property (f) of Table 19.1 imply that

d

dy
f̂(y) =

1√
2πσ2

∫
eiyxixe−

x2

2σ2 dx

=
1√

2πσ2

∫
eiyx(−iσ2)

d

dx
e−

x2

2σ2 dx

=
−iσ2

√
2πσ2

eiyxe−
x2

2σ2

∣∣∣
∞

−∞
− σ2y√

2πσ2

∫
eiyxe−

x2

2σ2 dx

= −σ2yf̂ (y).

The unique solution to this differential equation with initial value f̂(0) = 1

is f̂(y) = e−σ
2y2/2.
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Example 19.3.3 Gamma Distribution

We can also derive the Fourier transform of the gamma density f(x) with
shape parameter α and scale parameter β by solving a differential equation.
Now integration by parts and property (f) yield

d

dy
f̂(y)

=
βα

Γ(α)

∫ ∞

0

e(iy−β)xixxα−1dx

=
iβα

(iy − β)Γ(α)

∫ ∞

0

xα
d

dx
e(iy−β)xdx

=
iβα

(iy − β)Γ(α)
xαe(iy−β)x

∣∣∣
∞

0
− iαβα

(iy − β)Γ(α)

∫ ∞

0

e(iy−β)xxα−1dx

= − iα

(iy − β)
f̂(y).

The solution to this differential equation with initial condition f̂(0) = 1 is

clearly f̂(y) = [β/(β − iy)]α.

Example 19.3.4 Bilateral Exponential

The exponential density f(x) = e−x1[0,∞)(x) reduces to the special case
α = β = 1 of the last example. Since the bilateral exponential density
e−|x|/2 can be expressed as [f(x) + f(−x)]/2, property (d) of Table 19.1
shows that it has Fourier transform

1

2

[
f̂(y) + f̂(−y)

]
=

1

2(1 − iy)
+

1

2(1 + iy)

=
1

1 + y2
.

Up to a normalizing constant, this is the standard Cauchy density.

Example 19.3.5 Hermite Polynomials

The Hermite polynomial Hn(x) can be expressed as

Hn(x) = (−1)ne
1
2x

2 dn

dxn
e−

1
2 x

2

. (19.1)

Indeed, if we expand the left-hand side of the identity

e−
1
2 (x−t)2 = e−

1
2x

2

ext−
1
2 t

2

=
∞∑

n=0

Hn(x)e
− 1

2x
2

n!
tn
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in a Taylor series about t = 0, then the coefficient of tn/n! is

Hn(x)e
− 1

2x
2

=
dn

dtn
e−

1
2 (x−t)2

∣∣∣
t=0

= (−1)n
dn

dxn
e−

1
2 (x−t)2

∣∣∣
t=0

= (−1)n
dn

dxn
e−

1
2x

2

.

Example 19.3.2 and repeated application of property (g) of Table 19.1
therefore yield

1√
2π

∫
eiyxHn(x)e

− 1
2x

2

dx =
1√
2π

∫
eiyx(−1)n

dn

dxn
e−

1
2x

2

dx (19.2)

= (iy)ne−
1
2y

2

.

This Fourier transform will appear in our subsequent discussion of Edge-
worth expansions.

19.4 Further Theory

We now delve more deeply into the theory of the Fourier transform.

Proposition 19.4.1 (Riemann-Lebesgue) If the function f(x) is inte-

grable, then its Fourier transform f̂(y) is bounded, continuous, and tends
to 0 as |y| tends to ∞.

Proof: The transform f̂(y) is bounded because

|f̂(y)| =
∣∣∣
∫
eiyxf(x)dx

∣∣∣

≤
∫

|eiyx||f(x)|dx (19.3)

=

∫
|f(x)|dx.

To prove continuity, let limn→∞ yn = y. Then the sequence of functions
gn(x) = eiynxf(x) is bounded in absolute value by |f(x)| and satisfies

lim
n→∞

gn(x) = eiyxf(x).

Hence the dominated convergence theorem implies that

lim
n→∞

∫
gn(x)dx =

∫
eiyxf(x)dx.
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To prove the last assertion, we use the fact that the space of step functions
with bounded support is dense in the space of integrable functions. Thus,
given any ε > 0, there exists a step function

g(x) =

m∑

j=1

cj1[xj−1,xj)(x)

vanishing off some finite interval and satisfying
∫
|f(x) − g(x)|dx < ε. The

Fourier transform ĝ(y) has the requisite behavior at ∞ because Example
19.3.1 allows us to calculate

ĝ(y) =

m∑

j=1

cje
i 12 (xj−1+xj)y

sin[ 12(xj − xj−1)y]
1
2y

,

and this finite sum clearly tends to 0 as |y| tends to ∞. The original trans-

form f̂(y) exhibits the same behavior because the bound (19.3) entails the
inequality

|f̂(y)| ≤ |f̂(y) − ĝ(y)| + |ĝ(y)|
≤ ε+ |ĝ(y)|.

This completes the proof.

The Fourier transform can be inverted. If g(x) is integrable, then

ǧ(y) =
1

2π

∫
e−iyxg(x)dx

supplies the inverse Fourier transform of g(x). This terminology is justified
by the next proposition.

Proposition 19.4.2 Let f(x) be a bounded, continuous function. If f(x)

and f̂(y) are both integrable, then

f(x) =
1

2π

∫
e−iyxf̂(y)dy. (19.4)

Proof: Consider the identities

1

2π

∫
e−iyxe−

y2

2σ2 f̂(y)dy =
1

2π

∫
e−iyxe−

y2

2σ2

∫
eiyuf(u)du dy

=

∫
f(u)

1

2π

∫
eiy(u−x)e−

y2

2σ2 dy du

=

∫
f(u)

σ√
2π
e−

σ2(u−x)2

2 du

=
1√
2π

∫
f(x +

v

σ
)e−

v2

2 dv,
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which involve Example 19.3.2 and the change of variables u = x+ v/σ. As
σ tends to ∞, the last integral tends to

1√
2π

∫
f(x)e−

v2

2 dv = f(x),

while the original integral tends to

1

2π

∫
e−iyx lim

σ→∞
e−

y2

2σ2 f̂(y)dy =
1

2π

∫
e−iyxf̂(y)dy.

Equating these two limits yields the inversion formula (19.4).

Example 19.4.1 Cauchy Distribution

If f(x) is the bilateral exponential density, then Proposition 19.4.2 and
Example 19.3.4 show that the Cauchy density 1/[π(1 + x2)] has Fourier
transform e−|y|.

Proposition 19.4.3 (Parseval-Plancherel) If either of the integrable
functions f(x) or g(x) obeys the further assumptions of Proposition 19.4.2,
then

∫
f(x)g(x)∗dx =

1

2π

∫
f̂(y)ĝ(y)∗dy. (19.5)

In particular, when f(x) = g(x),

∫
|f(x)|2dx =

1

2π

∫
|f̂(y)|2dy. (19.6)

Proof: If f̂(y) satisfies the assumptions of Proposition 19.4.2, then

∫
f(x)g(x)∗dx =

∫
1

2π

∫
e−iyxf̂(y)dy g(x)∗dx

=

∫
f̂(y)

1

2π

∫
e−iyxg(x)∗dx dy

=

∫
f̂(y)

1

2π

[∫
eiyxg(x)dx

]∗
dy

=
1

2π

∫
f̂(y)ĝ(y)∗dy.

With obvious modifications the same proof works if ĝ(y) satisfies the as-
sumptions of Proposition 19.4.2.
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Example 19.4.2 Computation of an Integral

Let f(x) = 1[−b,b](x)/(2b) be the uniform density. Then the Parseval-
Plancherel relation (19.6) implies

1

2b
=

1

(2b)2

∫ b

−b
1 dx =

1

2π

∫ [ sin(by)

by

]2
dy.

Evaluation of the second integral is not so obvious.

There are several definitions of the Fourier transform that differ only
in how the factor of 2π and the sign of the argument of the complex ex-
ponential are assigned. We have chosen the definition that coincides with
the characteristic function of a probability density. For some purposes the
alternative definitions

f̂(y) =
1√
2π

∫
eiyxf(x)dx

ǧ(x) =
1√
2π

∫
e−iyxg(y)dy

of the Fourier transform and its inverse are better. Obviously, the transform
and its inverse are now more symmetrical. Also, the Parseval-Plancherel
relation (19.5) simplifies to

∫
f(x)g(x)∗dx =

∫
f̂(y)ĝ(y)∗dy.

In other words, the Fourier transform now preserves inner products and
norms on a subspace of the Hilbert space L2(−∞,∞) of square-integrable
functions. Such a transformation is said to be unitary. One can show that
this subspace is dense in L2(−∞,∞) and therefore that the Fourier trans-
form extends uniquely to a unitary transformation from L2(−∞,∞) onto
itself [3, 4, 9]. Proof of these theoretical niceties would take us too far afield.
Let us just add that norm preservation forces the Fourier transform of a
function to be unique.

Our final theoretical topic is convolution. If f(x) and g(x) are integrable
functions, then their convolution f ∗ g(x) is defined by

f ∗ g(x) =

∫
f(x− u)g(u)du.

Doubtless readers will recall that if f(x) and g(x) are the densities of in-
dependent random variables U and V , then f ∗ g(x) is the density of the
sum U+V . The fundamental properties of convolution valid in the context
of density functions carry over to the more general setting of integrable
functions.
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Proposition 19.4.4 The convolution of two integrable functions f(x) and

g(x) is integrable with Fourier transform f̂(y)ĝ(y). Furthermore, convolu-
tion is a commutative, associative, and linear operation.

Proof: Integrability of f ∗ g(x) is a consequence of the calculation

∫
|f ∗ g(x)|dx =

∫ ∣∣∣∣
∫
f(x− u)g(u)du

∣∣∣∣dx

≤
∫ ∫

|f(x− u)||g(u)|du dx

=

∫ ∫
|f(x− u)|dx|g(u)|du

=

∫ ∫
|f(x)|dx|g(u)|du

=

∫
|f(x)|dx

∫
|g(u)|du.

The product form of the Fourier transform follows from

∫
eiyxf ∗ g(x)dx =

∫
eiyx

∫
f(x − u)g(u)du dx

=

∫ ∫
eiy(x−u)f(x − u)dxeiyug(u)du

=

∫ ∫
eiyxf(x)dxeiyug(u)du

= f̂(y)ĝ(y).

The remaining assertions are easy consequences of the result just estab-
lished and the uniqueness of the Fourier transform.

Example 19.4.3 Convolution of Cauchy Densities

Let c1, . . . , cn be positive constants and X1, . . . , Xn an i.i.d. sequence of
random variables with standard Cauchy density 1/[π(1 + x2)] and charac-
teristic function e−|y|. Then the sum c1X1 + · · ·+ cnXn has characteristic
function e−c|y| and Cauchy density c/[π(c2 + x2)], where c = c1 + · · ·+ cn.
When c = 1 we retrieve the standard Cauchy density.

19.5 Edgeworth Expansions

An Edgeworth expansion is an asymptotic approximation to a density or
distribution function [1, 4, 6]. The main ideas can be best illustrated by
considering the proof of the central limit theorem for i.i.d. random variables
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X1, X2, . . . with common mean µ, variance σ2, and density f(x). Assum-
ing that f(x) possesses a moment generating function, we can write its
characteristic function as

f̂(y) =
∞∑

j=0

µj
j!

(iy)j

= exp

[ ∞∑

j=1

κj
j!

(iy)j

]
,

where µj and κj are the jth moment and jth cumulant of f(x), respectively.

The moment series for f̂(y) follows from repeated application of property
(f) of Table 19.1 with y set equal to 0. Cumulants are particularly handy
in this context because Proposition 19.4.4 implies that the jth cumulant
of the sum Sn =

∑n
i=1Xi is just nκj. The identities κ1 = µ1 and κ2 = σ2

hold in general. For notational convenience, we let ρj = κj/σ
j.

Owing to properties (b), (d), and (h) of Table 19.1, the characteristic
function of the standardized sum Tn = (Sn − nµ)/(σ

√
n) reduces to

e−
i
√

nµy
σ f̂

(
y

σ
√
n

)n

= exp

[
− y2

2
+ n

∞∑

j=3

ρj

n
j
2 j!

(iy)j
]

= e−
y2

2 e
ρ3(iy)3

6
√

n
+

ρ4(iy)4

24n +O(n−3/2)

= e−
y2

2

[
1 +

ρ3(iy)
3

6
√
n

+
ρ4(iy)

4

24n
+
ρ2
3(iy)

6

72n
+ O(n− 3

2 )

]
.

Formal inversion of this Fourier transform taking into account equation
(19.2) yields the asymptotic expansion

φ(x)

[
1 +

ρ3H3(x)

6
√
n

+
ρ4H4(x)

24n
+
ρ2
3H6(x)

72n
+O(n− 3

2 )

]
(19.7)

for the density of Tn. Here φ(x) denotes the standard normal density. To
approximate the distribution function of Tn in terms of the standard normal
distribution function Φ(x), note that integration of the Hermite polynomial
identity (19.1) gives

∫ x

−∞
φ(u)Hn(u)du = −φ(x)Hn−1(x).

Applying this fact to the integration of expression (19.7) yields the asymp-
totic expansion

Φ(x) − φ(x)

[
ρ3H2(x)

6
√
n

+
ρ4H3(x)

24n
+
ρ2
3H5(x)

72n
+ O(n− 3

2 )

]
(19.8)
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for the distribution function of Tn. It is worth stressing that the formal
manipulations leading to the expansions (19.7) and (19.8) can be made
rigorous [4, 6].

Both of the expansions (19.7) and (19.8) suggest that the rate of conver-
gence of Tn to normality is governed by the O(n−1/2) correction term. How-
ever, this pessimistic impression is misleading at x = 0 because H3(0) = 0.
(A quick glance at the recurrence relation (17.11) of Chapter 17 confirms
that Hn(x) is even for n even and odd for n odd.) The device known as
exponential tilting exploits this peculiarity [1].

If we let K(t) =
∑∞
j=1 κjt

j/j! be the cumulant generating function
of f(x) and g(x) be the density of Sn, then we tilt g(x) to the density
etx−nK(t)g(x). Because enK(t) is the moment generating function of Sn, we
find that ∫

esxetx−nK(t)g(x)dx = enK(s+t)−nK(t).

This calculation confirms that etx−nK(t)g(x) is a probability density with
moment generating function enK(s+t)−nK(t). The tilted density has mean
nK′(t) and variance nK′′(t). We can achieve an arbitrary mean x0 by
choosing t0 to be the solution of the equation nK′(t0) = x0. In general, this
equation must be solved numerically. Once t0 is chosen, we can approximate
the standardized tilted density

√
nK′′(t0)e

t0[
√
nK′′(t0)x+x0 ]−nK(t0)g

(√
nK′′(t0)x+ x0

)

at x = 0 by the asymptotic expansion (19.7). To order O(n−1) this gives

√
nK′′(t0)e

t0x0−nK(t0)g(x0) = φ(0)
[
1 + O(n−1)

]

or

g(x0) =
e−t0x0+nK(t0)

√
2πnK′′(t0)

[
1 + O(n−1)

]
. (19.9)

This result is also called a saddle point approximation.
Further terms can be included in the saddle point approximation if we

substitute the appropriate normalized cumulants

ρj(t0) =
nK(j)(t0)

[nK′′(t0)]
j
2

of the tilted density in the Edgeworth expansion (19.7). Once we determine
the required coefficients H3(0) = 0, H4(0) = 3, and H6(0) = −15 from
recurrence relation (17.11) of Chapter 17, it is obvious that

g(x0) =
e−t0x0+nK(t0)

√
2πnK′′(t0)

[
1 +

3ρ4(t0) − 5ρ2
3(t0)

24n
+O(n− 3

2 )

]
. (19.10)
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Example 19.5.1 Spread of a Random Sample from the Exponential

If X1, . . . , Xn+1 are independent, exponentially distributed random vari-
ables with common mean 1, then the spread X(n+1) −X(1) has density

n

n∑

k=1

(−1)k−1

(
n− 1

k − 1

)
e−kx. (19.11)

This is also the density of the sum Y1+· · ·+Yn of independent, exponentially
distributed random variables Yj with respective means 1, 1/2, . . . , 1/n. (A
proof of these obscure facts is sketched in Problem I.13.13 of [4]). For the
sake of comparison, we compute the Edgeworth approximation (19.7) and
the two saddle point approximations (19.9) and (19.10) to the exact density
(19.11). Because the Yj have widely different variances, a naive normal
approximation based on the central limit theorem is apt to be poor.

TABLE 19.2. Saddle Point Approximations to the Spread Density

x0 Exact g(x0) Error (19.7) Error (19.9) Error (19.10)

.50000 .00137 -.04295 -.00001 -.00001
1.00000 .05928 -.04010 -.00027 -.00024
1.50000 .22998 .04979 .00008 .00004
2.00000 .36563 .09938 .00244 .00211
2.50000 .37974 .05913 .00496 .00439
3.00000 .31442 -.00245 .00550 .00499
3.50000 .22915 -.03429 .00423 .00394
4.00000 .15508 -.03588 .00242 .00235
4.50000 .10046 -.02356 .00098 .00103
5.00000 .06340 -.00992 .00012 .00022
5.50000 .03939 -.00136 -.00026 -.00017
6.00000 .02424 .00167 -.00037 -.00029
6.50000 .01483 .00209 -.00035 -.00029
7.00000 .00904 .00213 -.00028 -.00024
7.50000 .00550 .00220 -.00021 -.00018
8.00000 .00334 .00203 -.00014 -.00013
8.50000 .00203 .00160 -.00010 -.00009
9.00000 .00123 .00112 -.00006 -.00006

A brief calculation shows that the cumulant generating function of the
sum Y1+· · ·+Yn is nK(t) = −∑n

j=1 ln(1−t/j). The equation nK′(t0) = x0

becomes
∑n

j=1 1/(j−t0) = x0, which obviously must be solved numerically.
The kth cumulant of the tilted density is

nK(k)(t0) = (k − 1)!

n∑

j=1

1

(j − t0)k
.
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Table 19.2 displays the exact density (19.11) and the errors (exact values
minus approximate values) committed in using the Edgeworth expansion
(19.7) and the two saddle point expansions (19.9) and (19.10) when n = 10.
Note that we apply equation (19.7) at the standardized point

x = [x0 − nK′(0)]/
√
nK′′(0)

and divide the result of the approximation to the standardized density by√
nK′′(0).
Both saddle point expansions clearly outperform the Edgeworth expan-

sion except very close to the mean
∑10

j=1 1/j ≈ 2.93. Indeed, it is remarkable
how well the saddle point expansions do considering how far this example
is from the ideal of a sum of i.i.d. random variables. The refined saddle
point expansion (19.10) is an improvement over the ordinary saddle point
expansion (19.9) in the tails of the density but not necessarily in the cen-
ter. Daniels [2] considers variations on this problem involving pure birth
processes.

19.6 Problems

1. Verify the first five entries in Table 19.1.

2. For an even integrable function f(x), show that

f̂(y) = 2

∫ ∞

0

cos(yx)f(x)dx,

and for an odd integrable function g(x), show that

ĝ(y) = 2i

∫ ∞

0

sin(yx)g(x)dx.

Conclude that (a) f̂(y) is even, (b) f̂(y) is real if f(x) is real, and (c)
ĝ(y) is odd.

3. If f(x) is integrable, then define

Sf(x) = f(ln x)

for x > 0. Show that S is a linear mapping satisfying

(a)
∫∞
0 |Sf(x)|x−1dx <∞,

(b) S(f ∗ g)(x) =
∫∞
0

Sf(xz−1)Sg(z)z−1dz,

(c) f̂(y) =
∫∞
0

Sf(x)xiyx−1dx.

The function
∫∞
0
h(x)xiyx−1dx defines the Mellin transform of h(x).
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4. Suppose f(x) is integrable and f̂(y) = c
√

2πf(y) for some constant
c. Prove that either f(x) = 0 for all x or c is drawn from the set
{1, i,−1,−i} of fourth roots of unity. (Hint: Take the Fourier trans-
form of f(x).)

5. Compute

lim
α→0+

∫
e−αx

2 sin(λx)

x
dx

for λ real. (Hint: Use the Parseval-Plancherel relation.)

6. Find a random variable X symmetrically distributed around 0 such
that X cannot be represented as X = Y − Z for i.i.d. random vari-
ables Y and Z. (Hint: Assuming Y and Z possess a density function,
demonstrate that the Fourier transform of the density of X must be
nonnegative.)

7. Let X1, X2, . . . be a sequence of i.i.d. random variables that has com-
mon density f(x) and is independent of the integer-valued random
variable N ≥ 0. If N has generating function

G(s) =

∞∑

n=0

Pr(N = n)sn,

then show that the density of the random sum
∑N

i=1Xi has Fourier

transform G[f̂(y)].

8. Let X1, . . . , Xn be a random sample from a normal distribution with
mean µ and variance σ2. Show that the saddle point approximation
(19.9) to the density of Sn =

∑n
j=1Xj is exact.

9. Let X1, . . . , Xn be a random sample from an exponential distribution
with mean 1. Show that the saddle point approximation (19.9) to the
density of Sn =

∑n
j=1Xj is exact up to Stirling’s approximation.

10. Let X1, . . . , Xn be a random sample from a member of an exponential
family of densities f(x|θ) = h(x)eθu(x)−γ(θ). Show that the saddle
point approximation (19.9) to the density of Sn =

∑n
j=1 u(Xj) at x0

reduces to

en[γ(θ0+θ)−γ(θ)]−θ0x0

√
2πnγ′′(θ0 + θ)

[
1 +O(n−1)

]
,

where θ0 satisfies the equation nγ′(θ0 + θ) = x0.
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11. Compute the Edgeworth approximation (19.8) to the distribution
function of a sum of i.i.d. Poisson random variables with unit means.
Compare your results for sample sizes n = 4 and n = 8 to the exact
distribution function and, if available, to the values in Table 4.2 of
[1]. Note that in computing Pr(Sn ≤ z) in this discrete case it is wise
to incorporate a continuity correction by applying the Edgeworth
approximation at the point x = (z − nµ+ 1/2)/(σ

√
n).
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The Finite Fourier Transform

20.1 Introduction

In previous chapters we have met Fourier series and the Fourier transform.
These are both incarnations of Fourier analysis on a commutative group,
namely the unit circle and the real line under addition. In this chapter we
study Fourier analysis in the even simpler setting of the additive group of
integers modulo a fixed positive integer n [6, 12]. Here, for obvious reasons,
the Fourier transform is called the finite Fourier transform. Although the
finite Fourier transform has many interesting applications in abstract al-
gebra, combinatorics, number theory, and complex variables [8], we view
it mainly as a tool for approximating Fourier series. Computation of finite
Fourier transforms is done efficiently by an algorithm known as the fast
Fourier transform [1, 3, 5, 9, 13, 15]. Although it was discovered by Gauss,
the fast Fourier transform has come into prominence only with the advent
of modern computing. As an indication of its critical role in many scientific
and engineering applications, it is often implemented in hardware rather
than software.

In this chapter we first study the operational properties of the finite
Fourier transform. With minor differences these parallel the properties of
Fourier series and the ordinary Fourier transform. We then derive the fast
Fourier transform for any highly composite number n. In many applica-
tions n is a power of 2, but this choice is hardly necessary. Once we have
developed the fast Fourier transform, we discuss applications to time series
[1, 2, 4, 9, 11] and other areas of statistics.

20.2 Basic Properties

Periodic sequences {cj}∞j=−∞ of period n constitute the natural domain of
the finite Fourier transform. The transform of such a sequence is defined
by

ĉk =
1

n

n−1∑

j=0

cje
−2πi jk

n . (20.1)

From this definition it follows immediately that the finite Fourier transform
is linear and maps periodic sequences into periodic sequences with the same
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period. The inverse transform turns out to be

ďj =

n−1∑

k=0

dke
2πi jk

n . (20.2)

It is fruitful to view each of these operations as a matrix times vector
multiplication. Thus, if we let un = e2πi/n denote the principal nth root
of unity, then the finite Fourier transform represents multiplication by the
matrix (u−kjn /n) and the inverse transform multiplication by the matrix
(ujkn ). To warrant the name “inverse transform”, the second matrix should
be the inverse of the first. Indeed, we have

n−1∑

l=0

ujln
1

n
u−kln =

1

n

n−1∑

l=0

u(j−k)l
n

=

{
1
n

1−u(j−k)n
n

1−uj−k
n

j 6= k mod n
1
n
n j = k mod n

=

{
0 j 6= k mod n
1 j = k mod n.

More symmetry in the finite Fourier transform (20.1) and its inverse (20.2)
can be achieved by replacing the factor 1/n in the transform by the factor
1/

√
n. The inverse transform then includes the 1/

√
n factor as well, and

the matrix (u−kjn /
√
n) is unitary.

We modify periodic sequences of period n by convolution, translation,
reversion, and stretching. The convolution of two periodic sequences cj and
dj is the sequence

c ∗ dk =

n−1∑

j=0

ck−jdj =

n−1∑

j=0

cjdk−j

with the same period. The translate of the periodic sequence cj by index r
is the periodic sequence Trcj defined by Trcj = cj−r. Thus, the operator Tr
translates a sequence r places to the right. The reversion operator R takes
a sequence cj into Rcj = c−j. Finally, the stretch operator Sr interpolates
r − 1 zeros between every pair of adjacent entries of a sequence cj . In
symbols,

Srcj =

{
c j

r
r | j

0 r 6 | j,

where r | j indicates r divides j without remainder. The sequence Srcj has
period rn, not n. For instance, if n = 2 and r = 2, the periodic sequence
. . . , 1, 2, 1, 2 . . . becomes . . . , 1, 0, 2, 0, 1, 0, 2, 0, . . . .
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Proposition 20.2.1 The finite Fourier transform satisfies the rules:

1. (a) ĉ ∗ dk = nĉkd̂k

2. (b) T̂rck = u−rkn ĉk

3. (c) R̂ck = Rĉk = ĉ∗
∗
k

4. (d) Ŝrck = ĉk

r
.

In (d) the transform on the left has period rn.

Proof: To prove rule (d), note that

Ŝrck =
1

rn

rn−1∑

j=0

Srcju
−jk
rn

=
1

rn

n−1∑

l=0

c lr
r
u−lrkrn

=
1

rn

n−1∑

l=0

clu
−lk
n

=
ĉk
r
.

Verification of rules (a) through (c) is left to the reader.

20.3 Derivation of the Fast Fourier Transform

The naive approach to computing the finite Fourier transform (20.1) takes
3n2 arithmetic operations (additions, multiplications, and complex expo-
nentiations). The fast Fourier transform accomplishes the same task in
O(n logn) operations when n is a power of 2. Proposition 20.2.1 lays the
foundation for deriving this useful and clever result.

Consider a sequence cj of period n, and suppose n factors as n = rs.

For k = 0, 1, . . . , r−1, define related sequences c
(k)
j according to the recipe

c
(k)
j = cjr+k. Each of these secondary sequences has period s. We now argue

that we can recover the primary sequence through

cj =

r−1∑

k=0

TkSrc
(k)
j . (20.3)

In fact, TkSrc
(k)
j = 0 unless r | j − k. The condition r | j − k occurs for

exactly one value of k between 0 and r − 1. For the chosen k,

TkSrc
(k)
j = c

(k)
j−k

r
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= c j−k
r r+k

= cj.

In view of properties (b) and (d) of Proposition 20.2.1, taking the finite
Fourier transform of equation (20.3) gives

ĉj =

r−1∑

k=0

u−kjn
̂Src(k)j

=
r−1∑

k=0

u−kjn

1

r
ĉ(k)j. (20.4)

Now let Op(n) denote the number of operations necessary to compute
a finite Fourier transform of period n. From equation (20.4) it evidently

takes 3r operations to compute each ĉj once the ĉ(k)j are computed. Since

there are n numbers ĉj to compute and r sequences c
(k)
j , it follows that

Op(n) = 3nr + rOp(s). (20.5)

If r is prime but s is not, then the same procedure can be repeated on

each c
(k)
j to further reduce the amount of arithmetic. A simple inductive

argument based on (20.5) that splits off one prime factor at a time yields

Op(n) = 3n(p1 + · · ·+ pd),

where n = p1 · · ·pd is the prime factorization of n. In particular, if n = 2d,
then Op(n) = 6n log2 n. In this case, it is noteworthy that all computa-
tions can be done in place without requiring computer storage beyond that
allotted to the original vector (c0, . . . , cn−1)

t [3, 9, 13, 15].

20.4 Approximation of Fourier Series Coefficients

The finite Fourier transform can furnish approximations to the Fourier
coefficients of a periodic function f(x). If f(x) has period 1, then its kth
Fourier coefficient ck can be approximated by

ck =

∫ 1

0

f(x)e−2πikxdx

≈ 1

n

n−1∑

j=0

f
( j
n

)
e−2πi jk

n

= b̂k,
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where bj = f(j/n) and n is some large, positive integer. Because the trans-

formed values b̂k are periodic, only n of them are distinct, say b̂−n/2 through

b̂n/2−1 for n even.

An important question is how well b̂k approximates ck. To assess the er-
ror, suppose that

∑
k |ck| <∞ and that the Fourier series of f(x) converges

to f(x) at the points j/n for j = 0, . . . , n− 1. The calculation

b̂k =
1

n

n−1∑

j=0

u−jkn f
( j
n

)

=
1

n

n−1∑

j=0

u−jkn

∑

m

cmu
jm
n

=
∑

m

cm
1

n

n−1∑

j=0

uj(m−k)
n

=
∑

m

cm

{
1 m = k mod n
0 m 6= k mod n

implies that

b̂k − ck =
∑

l6=0

cln+k (20.6)

= · · ·+ c−2n+k + c−n+k + cn+k + c2n+k + · · · .
If the Fourier coefficients cj decline sufficiently rapidly to 0 as |j| tends to

∞, then the error b̂k − ck will be small for −n/2 ≤ k ≤ n/2− 1. Problems
(6), (7), and (8) explore this question in more depth.

Example 20.4.1 Number of Particles in a Branching Process

In a branching process the probability that there are k particles at genera-
tion j is given by the coefficient pjk of sk in the probability generating func-
tion Pj(s) =

∑∞
k=0 pjks

k [10]. The generating function Pj(s) is calculated
from an initial progeny generating function P1(s) = P (s) =

∑∞
k=0 pks

k by
taking its j-fold functional composition

Pj(s) =

j times︷ ︸︸ ︷
P (P (· · ·(P ( s)) · · ·)). (20.7)

The progeny generating function P (s) summarizes the distribution of the
number of progeny left at generation 1 by the single ancestral particle at
generation 0. In general, it is impossible to give explicit expressions for
the pjk. However, these can be easily computed numerically by the finite
Fourier transform. If we extend Pj(s) to the unit circle by the formula

Pj(e
2πit) =

∞∑

k=0

pjke
2πikt,
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then we can view the pjk as Fourier series coefficients and recover them as
discussed above. Fortunately, evaluation of Pj(e

2πit) at the points t = m/n,
m = 0, . . . , n− 1, is straightforward under the functional composition rule

(20.7). As a special case, consider P (s) = 1
2 + s2

2 . Then the algebraically
formidable

P4(s) =
24, 305

32, 768
+

445

4, 096
s2 +

723

8, 192
s4 +

159

4, 096
s6 +

267

16, 384
s8

+
19

4, 096
s10 +

11

8, 192
s12 +

1

4, 096
s14 +

1

32, 768
s16

can be derived by symbolic algebra programs such as Maple. Alternatively,
the finite Fourier transform approximation

P4(s) = 0.74172974 + 0.10864258s2 + 0.08825684s4 + 0.03881836s6

+ 0.01629639s8 + 0.00463867s10 + 0.00134277s12

+ 0.00024414s14 + 0.00003052s16

is trivial to compute and is exact up to machine precision if we take the
period n > 16.

Example 20.4.2 Differentiation of an Analytic Function

If the function f(x) has a power series expansion
∑∞

j=0 ajx
j converging in

a disc {x : |x| < r} centered at 0 in the complex plane, then we can approx-
imate the derivatives f(j)(0) = j!aj by evaluating f(x) on the boundary
of a small circle of radius h < r. This is accomplished by noting that the
periodic function t → f(he2πit) has Fourier series expansion

f(he2πit) =

∞∑

j=0

ajh
je2πijt.

Thus, if we take the finite Fourier transform b̂k of the sequence bj = f(hujn),
equation (20.6) mutates into

b̂k − akh
k =

∞∑

l=1

aln+kh
ln+k = O

(
hn+k

)

for 0 ≤ k ≤ n − 1 under fairly mild conditions on the coefficients aj .
Rearranging this equation gives the derivative approximation

f(k)(0) =
k!b̂k
hk

+ O
(
hn
)

(20.8)

highlighted in [8].
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The two special cases

f ′(0) =
1

2h

[
f(h) − f(−h)

]
+ O

(
h2
)

f ′′(0) =
1

2h2

[
f(h) − f(ih) + f(−h) − f(−ih)

]
+ O

(
h4
)

of equation (20.8) when n = 2 and n = 4, respectively, deserve special
mention. If h is too small, subtractive cancellation causes roundoff error in
both of these equations. For a real analytic function f(x), there is an elegant

variation of the central difference approximation f ′(0) ≈ 1
2h

[
f(h)−f(−h)

]

that eliminates roundoff error. To derive this improved approximation, we
define g(x) = f(ix) and exploit the fact that g′(0) = if ′(0). Because the
coefficients aj are real, the identity f(−ih) = f(ih)∗ holds and allows us
to deduce that

f ′(0) =
1

i
g′(0)

=
1

2ih

[
g(h) − g(−h)

]
+O

(
h2
)

=
1

2ih

[
f(ih) − f(−ih)

]
+O

(
h2
)

=
1

2ih

[
f(ih) − f(ih)∗

]
+ O

(
h2
)

=
1

h
Imf(ih) +O

(
h2
)
.

The approximation f ′(0) ≈ 1
h Imf(ih) not only eliminates the roundoff

error jeopardizing the central difference approximation, but it also requires
one less function evaluation. Of course, the latter advantage is partially
offset by the necessity of using complex arithmetic.

TABLE 20.1. Numerical Derivatives of f(x) = ex/(sin3 x + cos3 x)

h 1
2h [f(x + h) − f(x − h)] 1

h Imf(x + ih)

10−2 3.62298 3.62109
10−3 3.62229 3.62202
10−4 3.62158 3.62203
10−5 3.60012 3.62203
10−6 3.57628 3.62203
10−7 4.76837 3.62203
10−8 0.00000 3.62203
10−9 0.00000 3.62203

As an example, consider the problem of differentiating the analytic func-
tion f(x) = ex/(sin3 x + cos3 x) at x = 1.5. Table 20.1 reproduces a
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single precision numerical experiment from reference [14] and shows the
lethal effects of roundoff in the central difference formula. The formula
f ′(x) ≈ 1

h Imf(x + ih) approximates the true value f ′(1.5) = 3.62203 ex-
tremely well and is stable even for small values of h. This stability makes
it possible to circumvent the delicate question of finding the right h to bal-
ance truncation and roundoff errors.

20.5 Convolution

Proposition 20.2.1 suggests a fast method of computing the convolution
of two sequences cj and dj of period n; namely, compute the transforms

ĉk and d̂k via the fast Fourier transform, multiply pointwise to form the
product transform nĉkd̂k, and then invert the product transform via the fast
inverse Fourier transform. This procedure requires on the order of O(n lnn)
operations, whereas the naive evaluation of a convolution requires on the
order of n2 operations unless one of the sequences consists mostly of zeros.
Here are some examples where fast convolution is useful.

Example 20.5.1 Repeated Differencing

The classical finite difference ∆cj = cj+1 − cj corresponds to convolution
against the sequence

dj =

{
1 j = −1 mod n
−1 j = 0 mod n
0 otherwise.

Hence, the sequence ∆rcj is sent into the sequence (ukn − 1)r ĉk under the
finite Fourier transform.

Example 20.5.2 Data Smoothing

In many statistical applications, observations x0, . . . , xn−1 are smoothed
by a linear filter wj. Smoothing creates a new sequence yj according to the
recipe

yj = wrxj−r +wr−1xj−r+1 + · · ·+w−r+1xj+r−1 +w−rxj+r.

For instance, yj = 1
3
(xj−1 + xj + xj+1) replaces xj by a moving average

of xj and its two nearest neighbors. For the convolution paradigm to make
sense, we must extend xj and wj to be periodic sequences of period n and
pad wj with zeros so that wr+1 = · · · = wn−r−1 = 0. In many situations
it is natural to require the weights to satisfy wj ≥ 0 and

∑r
j=−r wj = 1.

Problem 3 provides the finite Fourier transforms of two popular smoothing
sequences.
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Example 20.5.3 Multiplication of Generating Functions

One can write the generating function R(s) of the sum X + Y of two
independent, nonnegative, integer-valued random variables X and Y as
the product R(s) = P (s)Q(s) of the generating function P (s) =

∑∞
j=0 pjs

j

of X and the generating function Q(s) =
∑∞
j=0 qjs

j of Y . The coefficients
of R(s) are given by the convolution formula

rk =

k∑

j=0

pjqk−j.

Assuming that the pj and qj are 0 or negligible for j ≥ m, we can view the
two sequences as having period n = 2m provided we set pj = qj = 0 for
j = m, . . . , n− 1. Introducing these extra zeros makes it possible to write

rk =

n−1∑

j=0

pjqk−j (20.9)

without embarrassment. The rj returned by the suggested procedure are
correct in the range 0 ≤ j ≤ m−1. Clearly, the same process works if P (s)
and Q(s) are arbitrary polynomials of degree m− 1 or less.

Example 20.5.4 Multiplication of Large Integers

If p and q are large integers, then we can express them in base b as

p = p0 + p1b+ · · ·+ pm−1b
m−1

q = q0 + q1b+ · · ·+ qm−1b
m−1,

where each 0 ≤ pj ≤ b−1 and 0 ≤ qj ≤ b−1. We can represent the product

r = pq as r =
∑n−1

k=0 rkb
k with the rk given by equation (20.9) and n = 2m.

Although a given rk may not satisfy the constraint rk ≤ b − 1, once we
replace it by its representation in base b and add and carry appropriately,
we quickly recover the base b representation of r. For very large integers,
computing r via the fast Fourier transform represents a large savings.

Example 20.5.5 Fast Solution of a Renewal Equation

The discrete renewal equation

un = an +

n∑

m=0

fmun−m (20.10)

arises in many applications of probability theory [7]. Here fn is a known
discrete probability density with f0 = 0, and an is a known sequence with
partial sums converging absolutely to

∑∞
n=0 an = a. Beginning with the
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initial value u0 = a0, it takes on the order of n2 operations to compute
u0, . . . , un recursively via the convolution equation (20.10).

If we multiply both sides of (20.10) by sn and sum on n, then we get the
equation

U(s) = A(s) + F (s)U(s) (20.11)

involving the generating functions

U(s) =

∞∑

n=0

uns
n, A(s) =

∞∑

n=0

ans
n, F (s) =

∞∑

n=0

fns
n.

The solution

U(s) =
A(s)

1 − F (s)

of equation (20.11) has a singularity at s = 1. This phenomenon is merely
a reflection of the fact that the un do not tend to 0 as n tends to ∞. In-
deed, under a mild hypothesis on the coefficients fn, one can show that
limn→∞ un = a/µ, where µ =

∑∞
n=0 nfn [7]. The required hypothesis on

the fn says that the set {n: fn > 0} has greatest common divisor 1. Equiv-
alently, the only complex number s satisfying both F (s) = 1 and |s| = 1 is
s = 1. (See Problem 12.)

These observations suggest that it would be better to estimate the coef-
ficients vn = un − a/µ of the generating function

V (s) = U(s) − a

µ(1 − s)

=
A(s)µ(1 − s) − a[1− F (s)]

[1− F (s)]µ(1 − s)
.

A double application of l’Hôpital’s rule implies that

lim
s→1

V (s) =
aF ′′(1)

2µ2
− A′(1)

µ
.

In other words, we have removed the singularity of U(s) in forming V (s).
Provided F (s) satisfies the greatest common divisor hypothesis, we can
now recover the coefficients vn by the approximate Fourier series method
of Section 20.4. The advantage of this oblique attack on the problem is that
it takes on the order of only n lnn operations to compute u0, . . . , un−1.

As a concrete illustration of the proposed method, consider the classical
problem of computing the probability un of a new run of r heads ending at
trial n in a sequence of coin-tossing trials. If p and q = 1−p are the head and
tail probabilities per trial, respectively, then in this case the appropriate
renewal equation has A(s) = 1 and

F (s) =
prsr(1 − ps)

1 − s+ qprsr+1
. (20.12)
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TABLE 20.2. Renewal Probabilities in a Coin Tossing Example

n un n un n un
0 1.0000 5 0.1563 10 0.1670
1 0.0000 6 0.1719 11 0.1665
2 0.2500 7 0.1641 12 0.1667
3 0.1250 8 0.1680 13 0.1666
4 0.1875 9 0.1660 ∞ 0.1667

(See reference [7] or Problem 13.) A brief but tedious calculation shows
that F (s) has mean and variance

µ =
1 − pr

qpr
, σ2 =

1

(qpr)2
− 2r + 1

qpr
− p

q2
,

which may be combined to give F ′′(1) = σ2 +µ2 −µ. Fourier transforming
n = 32 values of V (s) on the boundary of the unit circle when r = 2
and p = 1/2 yields the renewal probabilities displayed in Table 20.2. In
this example, convergence to the limiting value occurs so rapidly that the
value of introducing the finite Fourier transform is debatable. Other renewal
equations exhibit less rapid convergence.

20.6 Time Series

The canonical example of a time series is a stationary sequence Z0, Z1, . . .
of real, square-integrable random variables. The sample average 1

n

∑n−1
j=0 Zj

over the n data points collected is the natural estimator of the common
theoretical mean µ of the Zj. Of considerably more interest is the autoco-
variance sequence

ck = Cov(Zj, Zj+k) = c−k.

Since we can subtract from each Zj the sample mean, let us assume that
each Zj has mean 0. Given this simplification, the natural estimator of ck
is

dk =
1

n

n−k−1∑

j=0

ZjZj+k.

If the finite sequence Z0, . . . , Zn−1 is padded with n extra zeros and ex-
tended to a periodic sequence ej of period 2n, then

dk =
2

2n

2n−1∑

j=0

ejej+k
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=
2

2n

2n−1∑

j=0

ej−kej .

According to properties (a) and (c) of Proposition 20.2.1, d0, . . . , dn−1 can
be quickly computed by inverting the finite Fourier transform 2|êk|2.

If the terms ck of the autocovariance sequence decline sufficiently rapidly,
then

∑
k |ck| <∞, and the Fourier series

∑
k cke

2πikx converges absolutely
to a continuous function f(x) called the spectral density of the time series.
One of the goals of time series analysis is to estimate the periodic function
f(x). The periodogram

In(x) =
1

n

∣∣∣∣
n−1∑

j=0

Zje
−2πijx

∣∣∣∣
2

provides an asymptotically unbiased estimator of f(x). Indeed, the domi-
nated convergence theorem and the premise

∑
k |ck| <∞ together imply

lim
n→∞

E[In(x)] = lim
n→∞

1

n

n−1∑

j=0

n−1∑

k=0

E(ZjZk)e
2πi(k−j)x

= lim
n→∞

n−1∑

m=−n+1

(
1 − |m|

n

)
cme

2πimx

=
∑

m

cme
2πimx

= f(x).

As a by-product of this convergence proof, we see that f(x) ≥ 0. In view of
the fact that the ck are even, Problem 6 of Chapter 17 indicates that f(x)
is also even around both 0 and 1/2.

Unfortunately, the sequence of periodogram estimators In(x) is not con-
sistent. Suppose we take two sequences ln and mn with limn→∞ ln/n = x
and limn→∞mn/n = y. Then one can show that limn→∞ Var[In(ln/n)] is
proportional to f(x)2 and that limn→∞ Cov[In(ln/n), In(mn/n)] = 0 for
x± y 6= 0 mod 1 [11]. The inconsistency of the periodogram has prompted
statisticians to replace In(k/n) by the smoothed estimator

r∑

j=−r
wjIn

( j + k

n

)

with positive weights wj satisfying w−j = wj and
∑r
j=−r wj = 1. The

smoothed periodogram decreases mean square error at the expense of in-
creasing bias slightly. This kind of compromise occurs throughout statistics.
Of course, the value of the fast Fourier transform in computing the finite
Fourier transforms 1

n

∑n−1
j=0 Zje

−2πijk/n and smoothing the periodogram
should be obvious. Here, as elsewhere, speed of computation dictates much
of statistical practice.
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20.7 Problems

1. Explicitly calculate the finite Fourier transforms of the four sequences
cj = 1, cj = 1{0}, cj = (−1)j , and cj = 1{0,1,...,n/2−1} defined on
{0, 1, . . . , n− 1}. For the last two sequences assume that n is even.

2. Show that the sequence cj = j on {0, 1, . . . , n− 1} has finite Fourier
transform

ĉk =

{
n−1

2 k = 0

−1
2 + i

2 cot kπn k 6= 0.

3. For 0 ≤ r < n/2, define the rectangular and triangular smoothing
sequences

cj =
1

2r + 1
1{−r≤j≤r}

dj =
1

r
1{−r≤j≤r}

(
1 − |j|

r

)

and extend them to have period n. Show that

ĉk =
1

n(2r + 1)

sin (2r+1)kπ
n

sin kπ
n

d̂k =
1

nr2

(
sin rkπ

n

sin kπ
n

)2

.

4. Prove parts (a) through (c) of Proposition 20.2.1.

5. From a periodic sequence ck with period n, form the circulant matrix

C =




c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
...

...
...

...
cn−1 cn−2 cn−3 · · · c0


 .

For un = e2πi/n and m satisfying 0 ≤ m ≤ n − 1, show that the

vector (u0m
n , u1m

n , . . . , u
(n−1)m
n )t is an eigenvector of C with eigen-

value nĉm. From this fact deduce that the circulant matrix C can be
written in the diagonal form C = UDU∗, where D is the diagonal
matrix with kth diagonal entry nĉk−1, U is the unitary matrix with

entry u
(j−1)(k−1)
n /

√
n in row j and column k, and U∗ is the conjugate

transpose of U .

6. For 0 ≤ m ≤ n − 1 and a periodic function f(x) on [0,1], define the

sequence bm = f(m/n). If b̂k is the finite Fourier transform of the
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sequence bm, then we can approximate f(x) by
∑bn/2c

k=−bn/2c b̂ke
2πikx.

Show that this approximation is exact when f(x) is equal to e2πijx,
cos(2πjx), or sin(2πjx) for j satisfying 0 ≤ |j| < bn/2c.

7. Continuing Problem 6, let ck be the kth Fourier series coefficient of a
general periodic function f(x). If |ck| ≤ ar|k| for constants a ≥ 0 and
0 ≤ r < 1, then verify using equation (20.6) that

|b̂k − ck| ≤ arn
rk + r−k

1 − rn

for |k| < n. Functions analytic around 0 automatically possess Fourier
coefficients satisfying the bound |ck| ≤ ar|k|.

8. Continuing Problems 6 and 7, suppose a constant a ≥ 0 and positive
integer p exist such that

|ck| ≤ a

|k|p+1

for all k 6= 0. (As Problem 2 of Chapter 17 shows, this criterion holds
if f(p+1)(x) is piecewise continuous.) Verify the inequality

|b̂k − ck| ≤ a

np+1

∞∑

j=1

[
1

(
j + k

n

)p+1 +
1

(
j − k

n

)p+1

]

when |k| < n/2. To simplify this inequality, demonstrate that

∞∑

j=1

1

(j + α)p+1
<

∫ ∞

1
2

(x+ α)−p−1dx

=
1

p
(

1
2 + α

)p

for α > −1/2. Finally, conclude that

|b̂k − ck| <
a

pnp+1

[
1(

1
2 + k

n

)p +
1(

1
2 − k

n

)p
]
.

9. For a complex number c with |c| > 1, show that the periodic func-
tion f(x) = (c − e2πix)−1 has the simple Fourier series coefficients
ck = c−k−11{k≥0}. Argue from equation (20.6) that the finite Fourier

transform approximation b̂k to ck is

b̂k =

{
c−k−1 1

1−c−n 0 ≤ k ≤ n
2
− 1

c−n−k−1 1
1−c−n −n

2 ≤ k ≤ 0.
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10. For some purposes it is preferable to have a purely real transform. If
c1, . . . , cn−1 is a finite sequence of real numbers, then we define its
finite sine transform by

ĉk =
2

n

n−1∑

j=1

cj sin
(πkj
n

)
.

Show that this transform has inverse

ďj =

n−1∑

k=1

dk sin
(πkj
n

)
.

(Hint: It is helpful to consider c1, . . . , cn−1 as part of a sequence of
period 2n that is odd about n.)

11. From a real sequence ck of period 2n we can concoct a complex se-
quence of period n according to the recipe dk = c2k+ ic2k+1. Because
it is quicker to take the finite Fourier transform of the sequence dk
than that of the sequence ck, it is desirable to have a simple method
of constructing ĉk from d̂k. Show that

ĉk =
1

4

(
d̂k + d̂∗n−k

)
− i

4

(
d̂k − d̂∗n−k

)
e−

πik
n .

12. Let F (s) =
∑∞
n=1 fns

n be a probability generating function. Show
that the equation F (s) = 1 has only the solution s = 1 on |s| = 1 if
and only if the set {n: fn > 0} has greatest common divisor 1.

13. Let W be the waiting time until the first run of r heads in a coin-
tossing experiment. If heads occur with probability p, and tails occur
with probability q = 1 − p per trial, then show that W has the
generating function displayed in equation (20.12). (Hint: Argue that
either W = r or W = k + 1 +Wk, where 0 ≤ k ≤ r − 1 is the initial
number of heads and Wk is a probabilistic replica of W .)

14. Consider a power series f(x) =
∑∞
m=0 cmx

m with radius of conver-
gence r > 0. Prove that

∞∑

m=k mod n

cmx
m =

1

n

n−1∑

j=0

u−jkn f(ujnx)

for any x with |x| < r. As a special case, verify the identity

∞∑

m=k mod n

(
p

m

)
=

2p

n

n−1∑

j=0

cos

[
(p− 2k)jπ

n

]
cosp

[ jπ
n

]

for any positive integer p.
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15. For a fixed positive integer n, we define the segmental functions

nαj(x) of x as the finite Fourier transform coefficients

nαj(x) =
1

n

n−1∑

k=0

exu
k
nu−jkn .

These functions generalize the hyperbolic trig functions cosh(x) and
sinh(x). Prove the following assertions:

(a) nαj(x) = nαj+n(x).

(b) nαj(x+ y) =
∑n−1

k=0 nαk(x)nαj−k(y).

(c) nαj(x) =
∑∞

k=0 x
j+kn/(j + kn)! for 0 ≤ j ≤ n− 1.

(d) d
dx

[
nαj(x)

]
= nαj−1(x).

(e) Consider the differential equation dn

dxn f(x) = kf(x) with initial

conditions dj

dxj f(0) = cj for 0 ≤ j ≤ n − 1, where k and the cj
are constants. Show that

f(x) =

n−1∑

j=0

cjk
− j

n nαj(k
1
nx).

(f) The differential equation dn

dxn f(x) = kf(x) + g(x) with initial

conditions dj

dxj f(0) = cj for 0 ≤ j ≤ n− 1 has solution

f(x) =

∫ x

0

k−
n−1

n nαn−1[k
1
n (x− y)]g(y)dy

+

n−1∑

j=0

cjk
− j

n nαj(k
1
n x).

(g) limx→∞ e−xnαj(x) = 1/n.

(h) In a Poisson process of intensity 1, e−xnαj(x) is the probability
that the number of random points on [0, x] equals j modulo n.

(i) Relative to this Poisson process, let Nx count every nth random
point on [0, x]. Then Nx has probability generating function

P (s) = e−x
n−1∑

j=0

s−
j
n nαj(s

1
nx).

(j) Furthermore, Nx has mean

E(Nx) =
x

n
− e−x

n

n−1∑

j=0

jnαj(x).

(k) limx→∞
[
E(Nx) − x/n

]
= −(n− 1)/(2n).
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21

Wavelets

21.1 Introduction

Wavelets are just beginning to enter statistical theory and practice [2, 5,
7, 10, 12]. The pace of discovery is still swift, and except for orthogo-
nal wavelets, the theory has yet to mature. However, the advantages of
wavelets are already obvious in application areas such as image compres-
sion. Wavelets are more localized in space than the competing sines and
cosines of Fourier series. They also use fewer coefficients in representing
images, and they pick up edge effects better. The secret behind these suc-
cesses is the capacity of wavelets to account for image variation on many
different scales.

In this chapter we develop a small fraction of the relevant theory and
briefly describe applications of wavelets to density estimation and image
compression. For motivational purposes, we begin with the discontinuous
wavelets of Haar. These wavelets are easy to understand but have limited
utility. The recent continuous wavelets of Daubechies are both more subtle
and more practical. Daubechies’ wavelets fortunately lend themselves to
fast computation. By analogy to the fast Fourier transform, there is even a
fast wavelet transform [9]. The challenge to applied mathematicians, com-
puter scientists, engineers, and statisticians is to find new applications that
exploit wavelets. The edited volume [1] and the articles [6, 3] describe some
opening moves by statisticians.

21.2 Haar’s Wavelets

Orthonormal bases are not unique. For example, ordinary Fourier series

and the beta distribution polynomials φ
(1,1)
n studied in Chapter 11 both

provide bases for the space L2[0, 1] of square-integrable functions relative
to the uniform distribution on [0, 1]. Shortly after the turn of the twentieth
century, Haar introduced yet another orthonormal basis for L2[0, 1]. His
construction anticipated much of the modern development of wavelets.

We commence our discussion of Haar’s contribution with the indica-
tor function h0(x) = 1[0,1)(x) of the unit interval. This function satis-
fies the identities

∫
h0(x)dx =

∫
h0(x)

2dx =
and translated to give the indicator function h0(2

jx − k) of the interval
[k/2j, (k + 1)/2j). If we want to stay within the unit interval [0, 1], then

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing,
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414 21. Wavelets

we restrict j to be a nonnegative integer and k to be an integer between 0
and 2j −1. If we prefer to range over the whole real line, then k can be any
integer. For the sake of simplicity, let us focus on [0, 1]. Since step functions
are dense in L2[0, 1], we can approximate any square-integrable function by
a linear combination of the h0(2

jx− k). Within a fixed level j, two differ-
ent translates h0(2

jx− k) and h0(2
jx− l) are orthogonal, but across levels

orthogonality fails. Thus, the normalized functions 2j/2h0(2
jx− k) do not

provide an orthonormal basis.
Haar turned the scaling identity

h0(x) = h0(2x) + h0(2x− 1) (21.1)

around to construct a second function

w(x) = h0(2x) − h0(2x− 1), (21.2)

which is 1 on [0, 1/2) and −1 on [1/2, 1). In modern terminology, h0(x) is
called the scaling function and w(x) the mother wavelet. We subject w(x)
to dilation and translation and construct a sequence of functions

hn(x) = 2
j
2w(2jx− k)

to supplement h0(x). Here n > 0 and j and k are uniquely determined
by writing n = 2j + k subject to the constraint 0 ≤ k < 2j. As with the
corresponding dilated and translated version of h0(x), the function hn(x)
has support on the interval [k/2j, (k + 1)/2j) ⊂ [0, 1). We claim that the
sequence {hn(x)}∞n=0 constitutes an orthonormal basis of L2[0, 1].

To prove the claim, first note that

∫ 1

0

h2
n(x)dx =

∫ 1

0

[
2

j
2w(2jx− k)

]2
dx

=

∫ 1

0

w(y)2dy

= 1.

Second, observe that

∫ 1

0

h0(x)hn(x)dx =

∫ 1

0

hn(x)dx

= 0

for any n ≥ 1 because of the balancing positive and negative parts of hn(x).
If 0 < m = 2r + s < n for 0 ≤ s < 2r, then

∫ 1

0

hm(x)hn(x)dx = 2
r
2 2

j
2

∫ 1

0

w(2rx− s)w(2jx− k)dx

= 2
j−r
2

∫
w(y − s)w(2j−ry − k)dy. (21.3)
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If r = j in the integral (21.3), then the support [k, k + 1) of the right
integrand is disjoint from the support [s, s+ 1) of the left integrand, and
the integral is trivially 0. If r < j, then the support [k/2j−r, (k+1)/2j−r) of
the right integrand is disjoint from the interval [s, s+1) or wholly contained
within either [s, s+1/2) or [s+1/2, s+1). If the two supports are disjoint,
then again the integral is trivially 0. If they intersect, then the positive and
negative contributions of the integral exactly cancel. This proves that the
Haar functions {hn(x)}∞n=0 form an orthonormal sequence.

To verify completeness, it suffices to show that the indicator function
h0(2

jx − k) of an arbitrary dyadic interval [k/2j, (k + 1)/2j) ⊂ [0, 1) can
be written as a finite linear combination

∑
n cnhn(x). For example,

1[0, 12 )(x) = h0(2x) =
1

2
[h0(x) + w(x)]

1[ 12 ,1)(x) = h0(2x− 1) =
1

2
[h0(x) −w(x)]

are immediate consequences of equations (21.1) and (21.2). The general
case follows by induction from the analogous identities

h0(2
jx− 2k) =

1

2
[h0(2

j−1x− k) + w(2j−1x− k)]

h0(2
jx− 2k − 1) =

1

2
[h0(2

j−1x− k) − w(2j−1x− k)].

Obvious extensions of the above arguments show that we can construct
an orthonormal basis for L2(−∞,∞) from the functions h0(x − k) and
2j/2w(2jx−k), where j ranges over the nonnegative integers and k over all
integers. In this basis, it is always possible to express the indicator function
h0(2

rx − s) of an interval [s/2r, (s + 1)/2r) as a finite linear combination
of the h0(x− k) and the 2j/2w(2jx− k) for 0 ≤ j < r.

21.3 Histogram Estimators

One application of the Haar functions is in estimating the common density
function f(x) of an i.i.d. sequence X1, . . . , Xn of random variables. For j
large and fixed, we can approximate f(x) accurately in L2(−∞,∞) by a
linear combination of the orthonormal functions gk(x) = 2j/2h0(2

jx− k).
The best choice of the coefficient ck in the approximate expansion

f(x) ≈
∑

k

ckgk(x)

is ck =
∫
gk(z)f(z)dz = E[gk(X1)]. This suggests that we replace the ex-

pectation ck by the sample average

c̄k =
1

n

n∑

i=1

gk(Xi).
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The resulting estimator
∑

k c̄kgk(x) of f(x) is called a histogram estimator.
If we let

ajk = 2j
∫ k+1

2j

k

2j

f(z)dz,

then we can express the expectation of the histogram estimator as

E

[∑

k

c̄kgk(x)

]
=

∑

k

ckgk(x)

=
∑

k

ajk1[ k

2j ,
k+1

2j )(x).

If f(x) is continuous, this sum tends to f(x) as j tends to ∞. Since
gk(x)gl(x) = 0 for k 6= l, the variance of the histogram estimator amounts
to

1

n
Var

[∑

k

gk(X1)gk(x)

]
=

1

n

∑

k

Var [gk(X1)] gk(x)
2

=
2j

n

∑

k

ajk

(
1 − 1

2j
ajk

)
1[ k

2j ,
k+1

2j )(x),

which is small when the ratio 2j/n is small. We can minimize the mean
square error of the histogram estimator by taking some intermediate value
for j and balancing bias against variance. Clearly, this general procedure
extends to density estimators based on other orthonormal sequences [12].

21.4 Daubechies’ Wavelets

Our point of departure in developing Daubechies’ lovely generalization of
the Haar functions is the scaling equation [2, 8, 11]

ψ(x) =

n−1∑

k=0

ckψ(2x− k). (21.4)

When n = 2 and c0 = c1 = 1, the indicator function of the unit interval
solves equation (21.4); this solution generates the Haar functions. Now
we look for a continuous solution of (21.4) that leads to an orthogonal
wavelet sequence on the real line instead of the unit interval. For the sake of
simplicity, we limit our search to the special value n = 4. In fact, there exists
a solution to (21.4) for every even n > 0. These higher-order Daubechies’
scaling functions generate progressively smoother and less localized wavelet
sequences.
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In addition to continuity, we require that the scaling function ψ(x) have
bounded support. If the support of ψ(x) is the interval [a, b], then the
support of ψ(2x − k) is [(a+ k)/2, (b+ k)/2]. Thus, the right-hand side of
equation (21.4) implies that ψ(x) has support between a/2 and (b+n−1)/2.
Equating these to a and b yields a = 0 and b = n−1. Because ψ(x) vanishes
outside [0, n − 1], continuity dictates that ψ(0) = 0 and ψ(n − 1) = 0.
Therefore, when n = 4, the only integers k permitting ψ(k) 6= 0 are k = 1
and 2. The scaling equation (21.4) determines the ratio ψ(1)/ψ(2) through
the eigenvector equation

(
ψ(1)
ψ(2)

)
=

(
c1 c0
c3 c2

)(
ψ(1)
ψ(2)

)
. (21.5)

If we take ψ(1) > 0, then ψ(1) and ψ(2) are uniquely determined either by
the convention

∫
ψ(x)dx = 1 or by the convention

∫
|ψ(x)|2dx = 1. As we

will see later, these constraints can be simultaneously met. Once we have
determined ψ(x) for all integer values k, then these values determine ψ(x)
for all half-integer values k/2 through the scaling equation (21.4). The half-
integer values k/2 determine the quarter-integer values k/4 and so forth.
Since any real number is a limit of dyadic rationals k/2j, the postulated
continuity of ψ(x) completely determines all values of ψ(x). The scaling
equation truly is a potent device.

Only certain values of the coefficients ck are compatible with our ob-
jective of constructing an orthonormal basis for L2(−∞,∞). To determine
these values, we first note that the scaling equation (21.4) implies

2

∫
ψ(x)dx = 2

∑

k

ck

∫
ψ(2x − k)dx

=
∑

k

ck

∫
ψ(z)dz.

(Here and in the following, we omit limits of summation by defining ck = 0
for k outside 0, . . . , n− 1.) Assuming that

∫
ψ(z)dz 6= 0, we find

2 =
∑

k

ck. (21.6)

If we impose the orthogonality constraints

1{m=0} =

∫
ψ(x)ψ(x −m)∗dx

on the integer translates of the current unknown scaling function ψ(x),
then the scaling equation (21.4) implies

1{m=0} =

∫
ψ(x)ψ(x −m)∗dx
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=
∑

k

∑

l

ckc
∗
l

∫
ψ(2x− k)ψ(2x− 2m− l)∗dx

=
1

2

∑

k

∑

l

ckc
∗
l

∫
ψ(z)ψ(z + k − 2m− l)∗dz (21.7)

=
1

2

∑

k

ckc
∗
k−2m.

For reasons that will soon be apparent, we now define the mother wavelet

w(x) =
∑

k

(−1)kc1−kψ(2x− k). (21.8)

In the case of the Haar functions, w(x) satisfies
∫
w(x)dx = 0. In view of

definition (21.8), imposing this constraint yields

0 =
∑

k

(−1)kc1−k

∫
ψ(2x− k)dx

=
1

2

∑

k

(−1)kc1−k. (21.9)

We can restate this result by taking the Fourier transform of equation
(21.8). This gives

ŵ(y) = Q
(y

2

)
ψ̂
(y

2

)
,

where

Q(y) =
1

2

∑

k

(−1)kc1−ke
iky.

From the identity
∫
w(x)dx = ŵ(0) = 0, we deduce that Q(0) = 0. Finally,

the constraint
∫
xw(x)dx = d

idy ŵ(0) = 0, which is false for the Haar mother

wavelet, ensures a limited amount of symmetry in the current w(x). This
final constraint on the coefficients ck amounts to

0 =
d

dy
ŵ(0)

=
1

2

[ d
dy
Q(0)

]
ψ̂(0) +

1

2
Q(0)

d

dy
ψ̂(0) (21.10)

=
1

2

[ d
dy
Q(0)

]∫
ψ(x)dx

=
1

4

∑

k

(−1)kikc1−k.
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Our findings (21.6), (21.7), (21.9), and (21.10) can be summarized for
n = 4 by the system of equations

c0 + c1 + c2 + c3 = 2

|c0|2 + |c1|2 + |c2|2 + |c3|2 = 2

c0c
∗
2 + c1c

∗
3 = 0 (21.11)

−c0 + c1 − c2 + c3 = 0

−c0 + c2 − 2c3 = 0.

The first four of these equations are redundant and have general solution



c0
c1
c2
c3


 =

1

c2 + 1



c(c− 1)
1 − c
c+ 1
c(c+ 1)




for some real constant c. The last equation determines c = ±1/
√

3. With
the coefficients ck in hand, we return to equation (21.5) and identify the

eigenvector
(
c− 1
c+ 1

)
determining the ratio of ψ(1) to ψ(2). By virtue of the

fact that the coefficients ck are real, choosing either ψ(1) or ψ(2) to be
real forces ψ(x) to be real for all x. This in turn compels w(x) to be real.
It follows that we can safely omit complex conjugate signs in calculating
inner products.

Figures 21.1 and 21.2 plot Daubechies’ ψ(x) and w(x) when n = 4 for the
choices c = −1/

√
3, ψ(1) = (1 +

√
3)/2, and ψ(2) = (1 −

√
3)/2, which in-

cidentally give the correct ratio ψ(1)/ψ(2) = (c− 1)/(c+1). The functions
ψ(x) and w(x) are like no other special functions of applied mathemat-
ics. Despite our inability to express ψ(x) explicitly, the scaling equation
offers an effective means of computing its values on the dyadic rationals.
Continuity fills in the holes.

The choices c = −1/
√

3, ψ(1) = (1 +
√

3)/2, and ψ(2) = (1−
√

3)/2 also
yield the partition of unity property

∑

l

ψ(x − l) = 1 (21.12)

at any integer x. To prove that this property extends to all real numbers, let
ev(x) =

∑
m ψ(x− 2m), and consider a half-integer x. The scaling relation

(21.4), induction, and the first and fourth equations in (21.11) imply

∑

l

ψ(x − l) =
∑

l

∑

k

ckψ(2x − 2l− k)

= c0ev(2x) + c1[1 − ev(2x)] + c2ev(2x) + c3[1− ev(2x)]

= c1 + c3

= 1.
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FIGURE 21.1. Plot of Daubechies’ ψ(x)

Induction extends the partition-of-unity property (21.12) beyond half inte-
gers to all dyadic rationals, and continuity extends it from there to all real
numbers.

At first glance it is not obvious that the choices ψ(1) = (1 +
√

3)/2 and
ψ(2) = (1 −

√
3)/2 are compatible with the conventions

∫
ψ(x)dx = 1 and∫

ψ(x)2dx = 1. Since ψ(x) has bounded support and satisfies the partition-
of-unity property, the first convention follows from

1 = lim
n→∞

1

2n+ 1

∫ n∑

k=−n
ψ(x− k)dx

=

∫
ψ(x)dx.

Here we use the fact that
∑n

k=−n ψ(x − k) = 1[−n,n](x) except for small
intervals around −n and n. The orthogonality of the different ψ(x−k) and
the partition-of-unity property now justify the calculation

1 =

∫
ψ(x)dx

=

∫
ψ(x)

∑

k

ψ(x − k)dx

=

∫
ψ(x)2dx.

The scaling function ψ(x) and the mother waveletw(x) together generate
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FIGURE 21.2. Plot of Daubechies’ w(x)

a wavelet basis for L2(−∞,∞) consisting of all translates ψ(x−m) of ψ(x)
plus all translated dilates wjk(x) = 2j/2w(2jx − k) of w(x). Here m and
k are arbitrary integers while j is an arbitrary nonnegative integer. The
orthonormality of the translates ψ(x − m) is built into the definition of
ψ(x). By the same reasoning that led to equation (21.7), we deduce that

∫
w(x)ψ(x −m)dx =

1

2

∑

k

(−1)kc1−kck−2m.

This sum vanishes because the term (−1)kc1−kck−2m exactly cancels the
term (−1)1−k+2mc1−(1−k+2m)c1−k+2m−2m in which 1− k+ 2m replaces k.
Now we see the purpose of the strange definition of w(x). Orthonormality
of the translates of w(x) comes down to the constraints

1{m=0} =

∫
w(x)w(x−m)dx

=
1

2

∑

k

(−1)kc1−k(−1)k−2mc1−k+2m

∫
ψ(z)2dz

=
1

2

∑

l

clcl+2m

already imposed on the ck in equation (21.7).
The coefficient 2j/2 is chosen to make

∫
wjk(x)

2dx = 1. The orthogo-
nality conditions

∫
ψ(x)wjk(x)dx = 0 and

∫
wjk(x)wlm(x)dx = 0 for pairs
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(j, k) 6= (l, m) follow by induction. For instance, induction implies

∫
ψ(x)wjk(x)dx =

∑

l

cl

∫
ψ(2x − l)2

j
2w(2jx− k)dx

=
∑

l

cl

∫
ψ(z)2

j
2−1w(2j−1z + 2j−1l− k)dz

= 0

for j > 0. Thus, the wavelet sequence is orthonormal.
We next demonstrate that ψ(2x−m) can be written as a finite sum

ψ(2x −m) =
∑

k

rmkψ(x− k) +
∑

k

smkw(x− k) (21.13)

for certain coefficients rmk and smk. Because the functions on the right of
the representation (21.13) are orthonormal, we calculate rmk as

∫
ψ(2x−m)ψ(x − k)dx =

∑

j

cj

∫
ψ(2x−m)ψ(2x − 2k − j)dx

=
1

2
cm−2k

and smk as

∫
ψ(2x−m)w(x− k)dx

=
∑

j

(−1)jc1−j

∫
ψ(2x−m)ψ(2x − 2k − j)dx

=
(−1)m−2k

2
c1−m+2k.

In light of the second identity in (21.11), we conclude that

∫
ψ(2x−m)2dx =

1

2

=
1

4

∑

k

c2m−2k +
1

4

∑

k

c21−m+2k

=
∑

k

r2mk +
∑

k

s2mk.

Bessel’s equality (17.3) of Chapter 17 now yields equation (21.13). Induc-
tion and substitution of 2l−1x for 2x in equation (21.13) demonstrate that
every function ψ(2lx−m) can be written as a finite linear combination of
the functions ψ(x− k) and the wjk(x) with j < l.
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Finally, we address the completeness of the orthonormal wavelet se-
quence. Observe first that the sequence of functions ψjk(x) = 2j/2ψ(2jx−k)
is orthonormal for j fixed. To prove completeness, consider the projection

Pjf(x) =
∑

k

ψjk(x)

∫
f(y)ψjk(y)dy

of a square-integrable function f(x) onto the subspace spanned by the
sequence {ψjk(x)}k. It suffices to show that these projections converge
to f(x) in L2(−∞,∞). Due to Bessel’s inequality (17.2) in Chapter 17,
convergence in L2(−∞,∞) is equivalent to limj→∞ ‖Pjf‖2 = ‖f‖2. Since
step functions are dense in L2(−∞,∞), we can further reduce the problem
to the case where f(x) is the indicator function 1[a,b](x) of an interval.
Making the change of variables y = 2jx, we calculate

‖Pj1[a,b]‖2 =
∑

k

[∫
1[a,b](x)2

j
2ψ(2jx− k)dx

]2

=
∑

k

[∫
1[2ja,2jb](y)ψ(y − k)dy

]2
2−j.

For the vast majority of indices k when j is large, the support of ψ(y − k)
is wholly contained within or wholly disjoint from [2ja, 2jb]. Hence, the
condition

∫
ψ(y)dy = 1 implies that

lim
j→∞

‖Pj1[a,b]‖2 = lim
j→∞

2−j#{k : k ∈ [2ja, 2jb]}

= b− a

=

∫
1[a,b](y)

2dy.

This proves completeness.
Doubtless the reader has noticed that we have never proved that ψ(x)

exists and is continuous for all real numbers. For the sake of brevity, we
refer interested readers to Problems 10 and 11 for a sketch of one attack on
these thorny questions [8]. Although continuity of ψ(x) is assured, differ-
entiability is not. It turns out that ψ(x) is left differentiable, but not right
differentiable, at each dyadic rational of [0, 3]. Problem 9 makes a start on
the issue of differentiability.

21.5 Multiresolution Analysis

It is now time to step back and look at the larger landscape. At the coarsest
level of detail, we have a (closed) subspace V0 of L2(−∞,∞) spanned by
the translates ψ(x−k) of the scaling function. This is the first of a hierarchy
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of closed subspaces Vj constructed from the translates ψjk(x) of the dilated
functions 2j/2ψ(2jx). The scaling equation (21.4) tells us that Vj ⊂ Vj+1

for every j, and completeness tells us that L2(−∞,∞) is the closed span of
the union ∪∞

j=0Vj . This favorable state of affairs is marred by the fact that
the functions ψjk(x) are only orthogonal within a level j and not across
levels. The remedy is to introduce the wavelets wjk(x). These are designed
so that Vj is spanned by a basis of Vj−1 plus the translates wj−1,k(x) of
wj−1,0(x). This fact follows from the obvious generalization

ψjk(x) (21.14)

=
1√
2

∑

l

ck−2lψj−1,l(x) +
1√
2

∑

l

(−1)k−2lc1−k+2lwj−1,l(x)

of equation (21.13). Representation (21.14) permits us to express the fine
distinctions of Vj partially in terms of the coarser distinctions of Vj−1. The
restatements

ψjk(x) =
1√
2

∑

l

clψj+1,2k+l(x)

wjk(x) =
1√
2

∑

l

(−1)lc1−lψj+1,2k+l(x) (21.15)

of the scaling equation and the definition of w(x) allow us to move in the
opposite direction from coarse to fine.

21.6 Image Compression and the Fast Wavelet
Transform

One of the major successes of wavelets is image compression. For the sake
of simplicity, we will discuss the compression of one-dimensional images.
Our remarks are immediately pertinent to acoustic recordings [13] and,
with minor changes, to visual images. The fact that most images are finite
in extent suggests that we should be using periodic wavelets rather than
ordinary wavelets. It is possible to periodize wavelets by defining

wjk(x) =
∑

l

wjk(x− l) =
∑

l

2
j
2w(2jx− k − l2j) (21.16)

for j ≥ 0 and 0 ≤ k < 2j. The reader is asked in Problem 12 to show
that these functions of period 1 together with the constant 1 form an
orthonormal basis for the space L2[0, 1]. The constant 1 enters because
1 =

∑
l ψ(x − l).
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To the subspace Vj in L2(−∞,∞) corresponds the subspace V j in L2[0, 1]
spanned by the 2j periodic functions

ψjk(x) =
∑

l

ψjk(x − l) =
∑

l

2
j
2ψ(2jx− k − l2j).

It is possible to pass between the ψjk(x) at level j and the basis functions
wlm(x) for 0 ≤ l < j via the analogs

ψjk(x) =
1√
2

∑

l

ck−2lψj−1,l(x) +
1√
2

∑

l

(−1)k−2lc1−k+2lwj−1,l(x)

ψjk(x) =
1√
2

∑

l

clψj+1,2k+l(x) (21.17)

wjk(x) =
1√
2

∑

l

(−1)lc1−lψj+1,2k+l(x)

of equations (21.14) and (21.15).
If we start with a linear approximation

f(x) ≈
2j−1∑

k=0

rkψjk(x) (21.18)

to a given function f(x) by the basis functions of V j , it is clear that the
first of the recurrences in (21.17) permits us to replace this approximation
by an equivalent linear approximation

f(x) ≈
2j−1−1∑

k=0

skψj−1,k(x) +

2j−1−1∑

k=0

tkwj−1,k(x) (21.19)

involving the basis functions of V j−1. We can then substitute

2j−1−1∑

k=0

skψj−1,k(x) =

2j−2−1∑

k=0

ukψj−2,k(x) +

2j−2−1∑

k=0

vkwj−2,k(x)

in equation (21.19) and so forth. This recursive procedure constitutes the
fast wavelet transform. It is efficient because in the case of Daubechies’
wavelets, only four coefficients ck are involved, and because only half of the
basis functions must be replaced at each level.

In image compression a function f(x) is observed on an interval [a, b].
Extending the function slightly, we can easily make it periodic. We can
also arrange that [a, b] = [0, 1]. If we choose 2j sufficiently large, then the
approximation (21.18) will be good provided each coefficient rk satisfies

rk =
∫ 1

0 f(x)ψjk(x)dx. We omit the practical details of how these inte-
grations are done. Once the linear approximation (21.18) is computed, we
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can apply the fast wavelet transform to reduce the approximation to one
involving the wl,k(x) of order l ≤ j−1 and the constant 1. Image compres-
sion is achieved by throwing away any terms in the final expansion having
coefficients smaller in absolute value than some threshold ε > 0. If we store
the image as the list of remaining coefficients, then we can readily recon-
struct the image by forming the appropriate linear combination of basis
functions. If we want to return to the basis of V j furnished by the ψjk(x),
then the second and third recurrences of (21.17) make this possible.

As mentioned in the introduction to this chapter, the value of wavelet
expansions derives from their ability to capture data at many different
scales. A periodic wavelet wjk(x) is quite localized if j is even moderately
large. In regions of an image where there is little variation, the coefficients
of the pertinent higher-order wavelets wjk(x) are practically zero because∫
w(x)dx = 0. Where edges or rapid oscillations occur, the higher-order

wavelets wjk(x) are retained.

21.7 Problems

1. Let X1, . . . , Xn be a random sample from a well-behaved density
f(x). If {gk(x)}∞k=1 is a real, orthonormal basis for L2(−∞,∞), then
a natural estimator of f(x) is furnished by

f̄(x) =

∞∑

k=1

c̄kgk(x)

c̄k =
1

n

n∑

i=1

gk(Xi).

Show formally that

E[f̄(x)] = f(x)

Var[f̄(x)] =
1

n

∞∑

k=1

∞∑

l=1

∫
gk(z)gl(z)f(z)dzgk(x)gl(x) −

1

n
f(x)2,

provided the orthogonal expansion of f(x) converges pointwise to
f(x).

2. Let C1(x) be the uniform density on [0, 1). The cardinal B-spline
Cm(x) of order m is the m-fold convolution of C1(x) with itself. Prove
that this function satisfies the scaling equation

Cm(x) =
1

2m−1

m∑

k=0

(
m

k

)
Cm(2x− k).

(Hint: Show that both sides have the same Fourier transform.)
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3. For the choice c = −1/
√

3, show that

(
c − 1
c + 1

)
is the eigenvector

sought in equation (21.5).

4. Write software to evaluate and graph Daubechies’ scaling function
and mother wavelet for n = 4 and c = −1/

√
3.

5. Suppose ψ(x) is a continuous function with bounded support that
satisfies the scaling equation (21.4) and the condition

∫
ψ(x)dx = 1.

If the coefficients satisfy
∑

k ck = 2, then show that

2

∫
xψ(x)dx =

∑

k

kck.

6. Show that the Fourier transform of Daubechies’ scaling function sat-
isfies ψ̂(y) = P (y/2)ψ̂(y/2), where P (y) = (

∑
k cke

iky)/2. Conclude

that ψ̂(y) =
∏∞
k=1 P (y/2k) holds.

7. Verify the identity

1 =
∑

k

|ψ̂(2πy + 2πk)|2

satisfied by Daubechies’ scaling function. (Hint: Apply the Parseval-
Plancherel identity to the first line of (21.7), interpret the result as a
Fourier series, and use the fact that the Fourier series of an integrable
function determines the function almost everywhere.)

8. Demonstrate the identities

1 = |P (πy)|2 + |P (πy+ π)|2
1 = |Q(πy)|2 + |Q(πy + π)|2
0 = P (πy)Q(πy)∗ + P (πy + π)Q(πy + π)∗

involving Daubechies’ functions

P (y) =
1

2

∑

k

cke
iky

Q(y) =
1

2

∑

k

(−1)kc1−ke
iky.

(Hint: For the first identity, see Problems 6 and 7.)

9. Show that Daubechies’ scaling function ψ(x) is left differentiable
at x = 3 but not right differentiable at x = 0 when n = 4 and
c = −1/

√
3. (Hint: Take difference quotients, and invoke the scaling

equation (21.4).)
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10. This problem and the next deal with Pollen’s [8] proof of the existence
of a unique continuous solution to the scaling equation (21.4). Readers
are assumed to be familiar with some results from functional analysis
[4]. Let a = (1 +

√
3)/4 and a = (1 −

√
3)/4. If f(x) is a function

defined on [0, 3], then we map it to a new function M(f)(x) defined
on [0, 3] according to the piecewise formulas

M(f)
( 0 + x

2

)
= af(x)

M(f)
( 1 + x

2

)
= af(x) + ax+

2 +
√

3

4

M(f)
( 2 + x

2

)
= af(1 + x) + ax+

√
3

4

M(f)
(3 + x

2

)
= af(1 + x) − ax+

1

4

M(f)
( 4 + x

2

)
= af(2 + x) − ax+

3 − 2
√

3

4

M(f)
(5 + x

2

)
= af(2 + x)

for x ∈ [0, 1]. To ensure that the transformation M(f)(x) is well
defined at the half-integers, we postulate that f(x) takes the val-
ues f(0) = f(3) = 0, f(1) = 2a, and f(2) = 2a. Show first that
M(f)(x) = f(x) at these particular points. Now consider the func-
tional identities

2f(x) + f(1 + x) = x+
1 +

√
3

2

2f(2 + x) + f(1 + x) = −x+
3 −

√
3

2

for x ∈ [0, 1]. If f(x) satisfies these two identities, then show that
M(f)(x) does as well. The set S of continuous functions f(x) that
have the values 0, 2a, 2a, and 0 at 0, 1, 2, and 3 and that satisfy the
two functional identities is nonempty. Indeed, prove that S contains
the function that takes the required values and is linear between suc-
cessive integers on [0, 3]. Also show that S is a closed, convex subset
of the Banach space (complete normed linear space) of continuous
functions on [0, 3] under the norm ‖f‖ = supx∈[0,3] |f(x)|. Given this
fact, prove that M(f) is a contraction mapping on S and therefore
has a unique fixed point ψ(x) [4]. Here it is helpful to note that
|a| ≤ |a| < 1.

11. Continuing Problem 10, suppose we extend the continuous, fixed-
point function ψ(x) of the contraction map M to the entire real line
by setting ψ(x) = 0 for x 6∈ [0, 3]. Show that ψ(x) satisfies the scaling
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equation (21.4). (Hint: You will have to use the two functional iden-
tities imposed on S as well as the functional identities implied by the
fixed-point property of M .)

12. Demonstrate that the constant 1 plus the periodic wavelets defined
by equation (21.16) constitute an orthonormal basis for L2[0, 1].
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Generating Random Deviates

22.1 Introduction

Statisticians rely on a combination of mathematical theory and statistical
simulation to develop new methods. Because simulations are often con-
ducted on a massive scale, it is crucial that they be efficiently executed.
In the current chapter, we investigate techniques for producing random
samples from univariate and multivariate distributions. These techniques
stand behind every successful simulation and play a critical role in Monte
Carlo integration. Exceptionally fast code for simulations almost always
depends on using a lower-level computer language such as C or Fortran.
This limitation forces the statistician to write custom software. Mastering
techniques for generating random variables (or deviates in this context) is
accordingly a useful survival skill.

Almost all lower-level computer languages fortunately have facilities for
computing a random sample from the uniform distribution on [0, 1]. Al-
though there are important philosophical, mathematical, and statistical
issues involved in whether and to what extent a deterministic computer
can deliver independent uniform deviates [18, 25, 11], we take the relaxed
attitude that this problem has been solved for all practical purposes. For
the sake of completeness, the next section discusses how to implement a
simple portable random number generator. Our focus in later sections is on
fast methods for turning uniform deviates into more complicated random
samples [4, 5, 11, 15, 16, 18, 23, 25, 26, 27]. Because statisticians must con-
stantly strike a balance between programming costs and machine efficiency,
we stress methods that are straightforward to implement.

22.2 Portable Random Number Generators

A carefully tuned multiplicative random number generator

In+1 = mIn mod p

can perform exceptionally well [22, 23]. Here the modulus p is a large prime
number, the multiplier m is an integer between 2 and p − 1, and In and
In+1 are two successive random numbers output by the generator. The
Mersenne prime p = 231−1 = 214783647 is the most widely used modulus.
Note that the function I 7→ mI modp maps the set {1, . . . , p − 1} onto
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itself. Indeed, if mI = mJ mod p, then m(I − J) must be a multiple of p.
This is impossible unless I − J is a multiple of p.

The period n of the generator is the minimal positive number such that
mn = 1 modp. In this circumstance,

In = mn mod p = I0 modp,

and the generator repeats itself every n steps under any seed I0 between
1 and p − 1. Fermat’s little theorem says that mp−1 = 1 modp, so the
period satisfies n ≤ p − 1. The multipliers meeting the test n = p − 1 are
called primitive. Although these are relatively rare, the surprising choice
m = 75 = 16807 is primitive. The generator In+1 = 75In mod(231 − 1)
can be easily implemented in any modern computer language with 64-
bit integers. The output is reduced to a real number on (0,1) by dividing
by 231 − 1. In addition to the Mersenne prime and its multiplier, the less
impressive primes 30269 and 30323 and corresponding primitive multipliers
171 and 170 enjoy wide usage [30].

Some of the more sophisticated generators are constructed by adding the
output of several independent generators [30]. This procedure is justified
by the simple observation that the sum U1 + U2 mod1 of two independent
uniform deviates U1 and U2 on [0, 1] is also uniform on [0, 1]. If this tactic
is adopted, then the prime moduli used to generate U1 and U2 should be
different. With a common prime modulus p and a common period p − 1,
the sum U1 +U2 mod 1 also has period p− 1. Problem 1 asks the reader to
write code implementing these ideas.

22.3 The Inverse Method

The inverse method embodied in the next proposition is one of the simplest
and most natural methods of generating non-uniform random deviates [1].

Proposition 22.3.1 Let X be a random variable with distribution func-
tion F (x).

(a) If F (x) is continuous, then U = F (X) is uniformly distributed on
[0, 1].

(b) Even if F (x) is not continuous, the inequality Pr[F (X) ≤ t] ≤ t is
still true for all t ∈ [0, 1].

(c) If F [−1](y) = inf{x : F (x) ≥ y} for any 0 < y < 1, and if U is uniform
on [0, 1], then F [−1](U) has distribution function F (x).

Proof: Let us first demonstrate that

Pr[F (X) ≤ F (t)] = F (t). (22.1)
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To prove this assertion, note that {X > t} ∩ {F (X) < F (t)} = ∅ and
{X ≤ t} ∩ {F (X) > F (t)} = ∅ together entail

{F (X) ≤ F (t)} = {X ≤ t} ∪ {F (X) = F (t), X > t}.

However, the event {F (X) = F (t), X > t} maps under X to an interval of
constancy of F (x) and therefore has probability 0. Equation (22.1) follows
immediately.

For part (a) let u ∈ (0, 1). Because F (x) is continuous, there exists t with
F (t) = u. In view of equation (22.1),

Pr[F (X) ≤ u] = Pr[F (X) ≤ F (t)] = u.

Part (c) follows if we can show that the events u ≤ F (t) and F [−1](u) ≤ t
are identical for both u and F (t) in (0, 1). Assume that F [−1](u) ≤ t.
Because F (x) is increasing and right continuous, the set {x : u ≤ F (x)}
is an interval containing its left endpoint. Hence, u ≤ F (t). Conversely, if
u ≤ F (t), then F [−1](u) ≤ t by definition. Finally for part (b), apply part
(c) and write X = F [−1](U) for U uniform on [0, 1]. Then the inequality
U ≤ F (X) implies

Pr[F (X) ≤ t] ≤ Pr(U ≤ t) = t.

This completes the proof.

Example 22.3.1 Exponential Distribution

If X is exponentially distributed with mean 1, then F (x) = 1 − e−x, and
F [−1](u) = − ln(1 − u). Because 1 − U is uniform on [0, 1] when U is uni-
form on [0, 1], the random variable − lnU is distributed as X. The positive
multiple Y = −µ lnU is exponentially distributed with mean µ.

Example 22.3.2 Cauchy Distribution

The distribution function F (x) = 1/2 + arctan(x)/π of a standard Cauchy
random variable X has inverse F [−1](u) = tan[π(u − 1/2)]. To generate a
Cauchy random variable Y = σX + µ with location and scale parameters
µ and σ, simply take Y = σ tan[π(U − 1/2)] + µ for U uniform on [0, 1].

Example 22.3.3 Probability Plots

If X(1) < X(2) < · · · < X(n) are the order statistics of a random sample
from a continuous distribution function F (x), then taking Ui = F (Xi)
generates the order statistics U(1) < U(2) < · · ·< U(n) of a random sample
from the uniform distribution. The fact that E[U(i)] = i/(n + 1) suggests
that a plot of the points (i/[n+ 1], F [X(i)]) should fall approximately on a
straight line. This is the motivation for the diagnostic tool of probability
plotting [24].
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Example 22.3.4 Discrete Uniform

One can sample a number uniformly from the set {1, 2, . . . , n} by taking
bnUc+1, where U is uniform on [0, 1] and brc denotes the greatest integer
less than or equal to the real number r.

Example 22.3.5 Geometric

In a Bernoulli sampling scheme with success probability p, the number of
trials N until the first success follows a geometric distribution. If we choose
λ so that q = 1 − p = e−λ, then N can be represented as N = bXc + 1,
where X is exponentially distributed with intensity λ. Indeed,

Pr(N = k + 1) = Pr(k ≤ X < k + 1)

= e−λk − e−λ(k+1)

= qk − qk+1.

In light of Example 22.3.1, N = b− ln(U)/λc + 1, where U is uniform on
[0, 1]. For the geometric that counts total failures until success rather than
total trials, we replace N by N − 1.

22.4 Normal Random Deviates

Although in principle normal random deviates can be generated by the in-
verse method, the two preferred methods involve substantially less compu-
tation. Both the Box and Muller [2] and the Marsaglia methods generate
two independent, standard normal deviates X and Y at a time starting
from two independent, uniform deviates U and V . The Box and Muller
method transforms the random Cartesian coordinates (X, Y ) in the plane
to random polar coordinates (Θ, R). It is clear from their joint density

e−
r2

2 r/(2π) that Θ and R are independent, with Θ uniformly distributed
on [0, 2π] and R2 exponentially distributed with mean 2. Example 22.3.1
says we can generate Θ and R2 by taking Θ = 2πU and R2 = −2 lnV .
Transforming from polar coordinates back to Cartesian coordinates, we
define X = R cos Θ and Y = R sin Θ.

In Marsaglia’s polar method, a random point (U, V ) in the unit square
is transformed into a random point (S, T ) in the square [−1, 1]× [−1, 1] by
taking S = 2U−1 and T = 2V −1. If W 2 = S2 +T 2 > 1, then the random
point (S, T ) falls outside the unit circle. When this occurs, the current
U and V are discarded and resampled. If W 2 = S2 + T 2 ≤ 1, then the
point (S, T ) generates a uniformly distributed angle Θ with cos Θ = S/W
and sin Θ = T/W . Furthermore, the distribution of the random variable
Z = −2 lnW 2 is

Pr(Z ≤ z) = Pr(W ≥ e−
z
4 )
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= 1 − π(e−
z
4 )2

π

= 1 − e−
z
2 ,

which implies that Z is distributed as R2 in the Box and Muller method.
Thus, we need only set

X =
√
−2 lnW 2

S

W

Y =
√
−2 lnW 2

T

W

to recover the normally distributed pair (X, Y ).
The polar method avoids the trigonometric function evaluations of the

Box and Muller method but uses 4/π as many random pairs (U, V ) on
average. Both methods generate normal deviates with mean µ and variance
σ2 by replacing X and Y by σX + µ and σY + µ.

22.5 Acceptance-Rejection Method

The acceptance-rejection method is predicated on a notion of majorization
[10] more primitive than that used in the MM algorithm. Suppose we want
to sample from a complicated probability density f(x) that is majorized
by a simple probability density g(x) in the sense that f(x) ≤ cg(x) = h(x)
for all x and some constant c > 1. If we sample a deviate X distributed
according to g(x), then we can accept or reject X as a representative of
f(x). John von Neumann [29] suggested making this decision based on sam-
pling a uniform deviate U and accepting X if and only if U ≤ f(X)/h(X).
This procedure gives the probability of generating an accepted value in the
interval (x, x+ dx) as proportional to

g(x)dx
f(x)

h(x)
=

1

c
f(x)dx.

In other words, the density function of the accepted deviates is precisely
f(x). The fraction of sampled deviates accepted is 1/c. The density g(x) is
called the instrumental density. The first stage of the polar method provides
a simple geometric example of the acceptance-rejection method.

As we have seen in Example 22.3.1, generating exponential deviates is
computationally quick. This fact suggests exploiting exponential curves as
majorizing functions in the acceptance-rejection method [5]. On a log scale
an exponential curve is a straight line. If a density f(x) is log-concave,
then any line tangent to lnf(x) will lie above ln f(x). Thus, log-concave
densities are ideally suited to acceptance-rejection sampling with piece-
wise exponential envelopes. Commonly encountered log-concave densities
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FIGURE 22.1. Exponential Envelopes for Two Beta Densities

include the normal, the gamma with shape parameter α ≥ 1, the beta with
parameters α and β ≥ 1, the exponential power density, and Fisher’s z den-
sity. The reader can easily check log-concavity in each of these examples
and in the three additional examples mentioned in Problem 9 by showing

that d2

dx2 ln f(x) ≤ 0 on the support of f(x).
A strictly log-concave density f(x) defined on an interval is unimodal.

The mode m of f(x) may occur at either endpoint or on the interior of the
interval. In the former case, we suggest using a single exponential envelope;
in the latter case, we recommend two exponential envelopes oriented in
opposite directions from the modem. Figure 22.1 depicts the two situations.
With different left and right envelopes, the appropriate majorizing function
is

h(x) =

{
clλle

−λl(m−x) x < m
crλre

−λr(x−m) x ≥ m.

Note that h(x) has total mass c = cl + cr. The proposal density is the
admixture density

g(x) =

{
cl

cl+cr
λle

−λl(m−x) x < m
cr

cl+cr
λre

−λr(x−m) x ≥ m.

To maximize the acceptance rate 1/(cl + cr) and the efficiency of sam-
pling, we minimize the mass constants cl and cr. Geometrically this is
accomplished by choosing optimal tangent points xl and xr. The tangency
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condition for the right envelope amounts to

f(xr) = crλre
−λr(xr−m)

f ′(xr) = −crλ2
re

−λr(xr−m). (22.2)

These equations allow us to solve for λr as −f ′(xr)/f(xr) and then for cr
as

cr(xr) = −f(xr)
2

f ′(xr)
e
− f′(xr )

f(xr )
(xr−m)

.

Finding xr to minimize cr is now a matter of calculus. A similar calculation
for the left envelope shows that cl(xl) = −cr(xl).
Example 22.5.1 Exponential Power Density

The exponential power density

f(x) =
e−|x|α

2Γ(1 + 1
α )
, α ≥ 1,

has mode m = 0. For xr ≥ 0 we have

λr = αxα−1
r

cr(xr) =
e(α−1)xα

r

2Γ(1 + 1
α
)αxα−1

r

.

The equation d
dxcr(x) = 0 has solution −xl = xr = α−1/α. This allows us

to calculate the acceptance probability

1

2cr(xr)
= Γ

(
1 +

1

α

)
α

1
α e

1
α−1,

which ranges from 1 at α = 1 (the double or bilateral exponential distri-
bution) to e−1 = .368 as α tends to ∞. For a normal density (α = 2), the
acceptance probability reduces to

√
π/2e ≈ .76. In practical implementa-

tions, the acceptance-rejection method for normal deviates is slightly less
efficient than the polar method.

A completely analogous development holds for a discrete density f(x)
defined and positive on an interval of integers. Now, however, we substitute
the easily generated geometric distribution for the exponential distribution
[6, 14]. In extending the notion of log-concavity to a discrete density f(x),
we linearly interpolate ln f(x) between supporting integers as shown in
Figure 22.2. If the linearly interpolated function is concave, then f(x) is
said to be log-concave. Analytically, log-concavity of f(x) is equivalent to
the inequality

lnf(x) ≥ 1

2
[lnf(x − 1) + ln f(x + 1)]
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FIGURE 22.2. Linearly Interpolated Log Poisson Density

for all supporting integers x. This inequality is in turn equivalent to the
inequality f(x)2 ≥ f(x − 1)f(x + 1) for all integers x.

For a discrete density with an interior mode m, the majorizing function

h(x) =

{
cl(1 − ql)q

m−1−x
l x < m

cr(1 − qr)q
x−m
r x ≥m

consists of two geometric envelopes oriented in opposite directions from the
mode m. The analog of the tangency condition (22.2) is

f(xr) = cr(1 − qr)q
xr−m
r

f(xr + 1) = cr(1 − qr)q
xr+1−m
r .

Solving these two equations gives qr = f(xr + 1)/f(xr) and

cr(xr) =
f(xr)

1 − f(xr+1)
f(xr)

[
f(xr + 1)

f(xr)

]m−xr

.

We now minimize the mass constant cr(xr) by adjusting xr. To the left of
the mode, a similar calculation yields

cl(xl) =
f(xl)

1 − f(xl)
f(xl+1)

[
f(xl)

f(xl + 1)

]xl+1−m

= −cr(xl).
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Example 22.5.2 Poisson Distribution

For the Poisson density f(x) = λxe−λ/x!, the mode m = bλc because
f(x + 1)/f(x) = λ/(x+ 1). It follows that the mass constant

cr(xr) =

λxr e−λ

xr !

(
λ

xr+1

)m−xr

1 − λ
xr+1

.

To minimize cr(xr), we treat xr as a continuous variable and invoke Stir-
ling’s asymptotic approximation in the form

lnx! = ln(x+ 1)!− ln(x + 1)

=
(
x+

3

2

)
ln(x+ 1) − (x+ 1) + ln

√
2π + − ln(x+ 1)

=
(
x+

1

2

)
ln(x+ 1) − (x+ 1) + ln

√
2π.

Substitution of this expression in the expansion of ln cr(xr) produces

ln cr(xr) = xr lnλ − λ−
(
x+

1

2

)
ln(xr + 1) + (xr + 1) − ln

√
2π

+ (m− xr) lnλ − (m− xr) ln(xr + 1) − ln
(
1 − λ

xr + 1

)
.

Hence,

d

dxr
ln cr(xr) = lnλ − ln(xr + 1) − xr + 1

2

xr + 1
+ 1 − lnλ

+ ln(xr + 1) − m− xr
xr + 1

−
λ

(xr+1)2

1 − λ
xr+1

=
x2
r +

(
3
2 −m− λ

)
xr + 1

2 −m− 3
2λ+mλ

(xr + 1)(xr + 1 − λ)
.

Setting this derivative equal to 0 identifies xr and xl as the two roots of
the quadratic equation x2 + (3/2 −m− λ)x + 1/2 −m− 3λ/2 +mλ = 0.
In practice, this acceptance-rejection method is faster than the alternative
acceptance-rejection method featured in [23].

The efficiency of the acceptance-rejection method depends heavily on
programming details. For instance, the initial choice of the left or right
envelope in a two-envelope problem involves comparing a uniform random
variable U to the ratio r = cl/(cl + cr). Once this choice is made, U can
be reused to generate the appropriate exponential deviate. Indeed, given
U < r, the random variable V = U/r is uniformly distributed on [0, 1] and
independent of U . Similarly, given the complementary event U ≥ r, the
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random variable W = (U − r)/(1− r) is also uniformly distributed on [0, 1]
and independent of U . In the continuous case, the acceptance step is based
on the ratio f(x)/h(x). Usually it is more efficient to base acceptance on
the log ratio

ln
f(x)

h(x)
=

{
ln f(x) − ln f(xl) + λl(xl − x) x < m
ln f(x) − ln f(xr) + λr(x− xr) x ≥ m ,

from which one cancels as many common terms as possible. Going over
to log ratios would appear to require computation of lnU for the uniform
deviate U used in deciding acceptance. In view of the inequality

lnu ≤ 1

2
(u− 1)(3 − u)

for u ∈ (0, 1], whenever 1
2 (U − 1)(3 − U) ≤ ln[f(x)/h(x)], we can accept

the proposed deviate without actually computing lnU . This is an example
of Marsaglia’s squeeze principle [21].

The next section takes the idea of piecewise exponential envelopes to
its logical extreme. Of course, such envelopes are not the only majoriz-
ing functions possible. Problems 17, 18, and 21 provide some alternative
examples.

22.6 Adaptive Acceptance-Rejection Sampling

The acceptance-rejection method just sketched has the disadvantage of re-
quiring a detailed mathematical analysis for each family of distributions.
In Gibbs sampling exotic distributions arise naturally that defy easy anal-
ysis. This dilemma prompted Gilks and Wild [12, 13] to devise an adaptive
method of acceptance-rejection sampling that handles any log-concave den-
sity. The method comes in tangent and secant versions. We restrict our at-
tention to the secant version because it avoids the cumbersome calculation
of derivatives.

The method begins with p points x1 < x2 · · · < xp scattered over the
domain of the target density f(x) and p corresponding values yi = lnf(xi).
The vast majority of the mass of f(x) should occur between x1 and xp. If
the domain is bounded, then x1 and xp should fall near the boundaries. If
the domain is unbounded, then x1 and xp should fall far out in the left and
right tails of f(x). The exact positions of the interior points x2, . . . , xp−1 are
less relevant because we add interior points as we go to improve sampling
efficiency. A good choice is p = 5 with y3 the largest value.

When f(x) is log-concave, the chords between the successive points of
ln f(x) lie below lnf(x) as depicted in Figure 22.3 for the case p = 5.
These chords are crucial in implementing the squeeze principle. Extending
the chords beyond their endpoints yields line segments majorizing ln f(x).
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In Figure 22.3 a single extended chord majorizes lnf(x) on the leftmost
interval [x1, x2]; likewise, a single extended chord majorizes lnf(x) on the
rightmost interval [xp−1, xp]. On an interior interval, the majorizing func-
tion is a tent formed by taking the minimum of the chords coming in from
the left and right.

Let u(x) and l(x) denote the upper and lower envelopes majorizing and
minorizing lnf(x). Because u(x) is piecewise linear, the total area lying
below eu(x) is readily calculated interval by interval via the formula

∫ b

a

ec+dxdx =
1

d
(ec+db − ec+da).

To sample from the normalized version of eu(x), one first chooses an interval
(a, b) with the appropriate probability. The possible choices for (a, b) are
(x1, x2), (xp−1, xp), (xi, ci), and (ci, xi+1) for 1 < i < p − 1, where ci is
the abscissa under the peak of the tent on (xi, xi+1). Once the interval
(a, b) is chosen, it is possible to apply inverse sampling. In this regard, the
distribution function and its inverse

z =
ec+dx − ec+da

ec+db − ec+da
, x =

1

d
ln
[
zedb + (1 − z)eda

]

come into play.
Implementation of adaptive acceptance-rejection sampling follows the

usual well-trod path. In addition to the random deviate X drawn from
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the normalization of eu(x), a uniform random deviate U is drawn. If the
squeeze test lnU ≤ l(X) − u(X) succeeds, then the point X is accepted.
If the squeeze test fails, the less demanding test lnU ≤ lnf(X) − u(X)
is applied. If it fails, a new value X is generated. If it succeeds, then the
pointX is accepted. Adaption to the shape of f(x) is achieved by adding an
accepted X to the current ordered set of bracketing points x1 < · · · < xp.
To avoid sorting, it is convenient to store the bracketing points as a linked
list. Repeated sampling produces larger bracketing sets and lower chances
of rejection. However, the efficiency gained by low rejection is offset by the
cost of generating candidate points. This cost is dominated by the time
taken in finding the sampling interval (a, b).

Despite the difficulty in assessing the best balance between these com-
peting costs, adaptive acceptance-rejection sampling has been widely em-
braced. Its generality is its strength. The method works without change for
densities with unknown normalizing constants. Of course, programming
the method is more complicated than programming ordinary acceptance-
rejection sampling, but this is hardly an issue for the majority of statis-
ticians, who are willing to trust well-crafted software. A more practical
matter is mathematical verification of log-concavity of typical densities
f(x). The knee-jerk reaction is to apply the second derivative test. Often
the closure properties of log-concave functions lead to the conclusion of
log-concavity with less pain; see Problems 7 through 10.

22.7 Ratio Method

The ratio method is a kind of generalization of the polar method. Suppose
that f(x) is a probability density and h(x) = cf(x) for c > 0. Consider the
set Sh = {(u, v) : 0 < u ≤

√
h(v/u)} in the plane. If this set is bounded,

then we can enclose it in a well-behaved set such as a rectangle and sample
uniformly from the enclosing set. The next proposition shows how this leads
to a method for sampling from f(x).

Proposition 22.7.1 Suppose ku = supx
√
h(x) and kv = supx |x|

√
h(x)

are finite. Then the rectangle [0, ku]× [−kv, kv] encloses Sh. If h(x) = 0 for
x < 0, then the rectangle [0, ku] × [0, kv] encloses Sh. Finally, if the point
(U, V ) sampled uniformly from the enclosing set falls within Sh, then the
ratio X = V/U is distributed according to f(x).

Proof: From the definition of Sh it is clear that the permitted u lie in
[0, ku]. Multiplying the inequality |v|u/|v| ≤

√
h(v/u) by |v|/u implies

that |v| ≤ kv. If h(x) = 0 for x < 0, then no v < 0 yields a pair (u, v) in Sh.
Finally, note that the transformation (u, v) → (u, v/u) has Jacobian u−1.
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Hence,

∫ ∫
1{ v

u
≤x0}1{0<u≤

√
h( v

u )}du dv =

∫ ∫
1{x≤x0}1{0<u≤

√
h(x)}udu dx

=

∫ x0

−∞

1

2
h(x)dx

is the distribution function of the accepted random variable X up to a
normalizing constant.

Example 22.7.1 Gamma with Shape Parameter α > 1

Here we take h(x) = xα−1e−x1(0,∞)(x). The maximum of
√
h(x) occurs at

x = α − 1 and equals ku = [(α − 1)/e](α−1)/2. Likewise, the maximum of
x
√
h(x) occurs at x = α + 1 and equals kv = [(α+ 1)/e](α+1)/2. To carry

out the ratio method, we sample uniformly from the rectangular region
[0, ku] × [0, kv] by multiplying two independent, uniform deviates U and
V by ku and kv, respectively. The ratio X = kvV/(kuU) is accepted as a
random deviate from f(x) if and only if

kuU ≤ X
α−1

2 e−
X
2 ,

which simplifies to

2

α− 1
lnU − 1 − lnW +W ≤ 0

for W = X/(α− 1). Problem 22 describes an alternative algorithm that is
faster and just as easy to program.

22.8 Deviates by Definition

In many cases we can generate a random variable by exploiting its definition
in terms of simpler random variables or familiar stochastic processes. Here
are some examples.

Example 22.8.1 Admixture Distributions

Consider the admixture distribution

F (x) =

k∑

j=1

pjFj(x)

with admixture proportions pj. If it is easy to sample from each of the
distributions Fj(x), then the obvious strategy is to randomly choose an
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index j with probability pj. Once this choice is made, generate the required
random deviate X from Fj(x). For example, to drawX from the admixture

F (x) = p1(1 − e−α1x) + p2(1 − e−α2x)

of two exponentials, generate a random deviate U and decide to sample
from the first exponential when U ≤ p1 and from the second exponential
when U > p1. Given the choice of the index j, generate an exponential
deviate according to the inverse method by sampling a second uniform
deviate V and setting X = −αj lnV .

Example 22.8.2 Binomial

For a small number of trials n, a binomial deviate Sn can be quickly gen-
erated by taking n independent, uniform deviates U1, . . . , Un and setting
Sn =

∑n
i=1 1{Ui≤p}, where p is the success probability per trial. When n

is large, the acceptance-rejection method featured in Problem 13 is more
efficient.

Example 22.8.3 Negative Binomial

Consider a Bernoulli sampling process with success probability p. The num-
ber of failures Sn until the nth success follows a negative binomial distri-
bution. When n = 1, we recover the geometric distribution. Adding n
independent geometric deviates gives the negative binomial. In view of the
ease with which we can generate geometric deviates (Example 22.3.5), we
can sample Sn quickly for n small. When n is large or fails to be an integer,
one can apply the acceptance-rejection method or exploit the fact that the
negative binomial distribution can be represented as a gamma mixture of
Poisson distributions. See Problems 13 and 14.

Example 22.8.4 Poisson

To generate a Poisson deviate X with mean λ, consider a Poisson pro-
cess with unit intensity. The number of random points falling on the in-
terval [0, λ] follows a Poisson distribution with mean λ. Furthermore, the
waiting times between successive random points are independent, exponen-
tially distributed random variables with common mean 1. If we generate
a sequence Z1, Z2, . . . of independent, exponential deviates and stop with
Zj satisfying

∑j−1
i=1 Zi ≤ λ <

∑j
i=1 Zi, then X = j − 1. Rephrasing the

stopping condition as
∏j−1
i=1 e

−Zi ≥ e−λ >
∏j
i=1 e

−Zi allows us to use uni-
form deviates U1, . . . , Uj since Example 22.3.1 implies that Ui and e−Zi are
identically distributed. This procedure is more efficient for small λ than the
acceptance-rejection method discussed in Example 22.5.2.
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Example 22.8.5 Lognormal

If a random variable X can be represented as a function f(Y ) of another
random variable that is easy to generate, then obviously we should sample
Y and compute f(Y ) to generate X. For example, if X is a standard normal
deviate, then eσX+µ is a lognormal deviate for all choices of the mean µ
and standard deviation σ of the normal deviate σX + µ.

Example 22.8.6 Chi-square

A chi-square distribution with n degrees of freedom is a gamma distri-
bution with shape parameter α = n/2 and scale parameter β = 2. The
acceptance-rejection method sketched in Problem 21 or the ratio method
discussed in Example 22.7.1 delivers a gamma deviate with shape param-
eter α and scale parameter 1. Doubling their output when α = n/2 gives
a χ2

n deviate. Alternatively for small n, we can exploit the definition of χ2
n

as a sum of squares of n independent, standard normal deviates. Once we
have generated a χ2

n deviate, we can compute derived deviates such as the
inverse chi-square, the inverse chi, and the log chi-square by forming 1/χ2

n,
1/χn, and lnχ2

n, respectively.
Generating deviates from the noncentral chi-square distribution is an-

other matter. If X has a noncentral chi-square distribution with n degrees
of freedom and noncentrality parameter µ2, then by definition we can write
X = (Y +µ)2 +χ2

n−1, where the standard normal deviate Y is independent
of the chi-square deviate χ2

n−1. In view of our previous constructions, this
representation yields a convenient method of simulating X.

Example 22.8.7 F Distribution

If χ2
m and χ2

n are independent chi-square random variables with m and n
degrees of freedom, respectively, then the ratio

Fmn =
1
mχ

2
m

1
nχ

2
n

follows an F distribution. Since we can readily generate chi-square deviates,
this definition provides a convenient method for generating F deviates.

Example 22.8.8 Student’s t Distribution

If X is a standard normal deviate and χ2
n is an independent chi-square

deviate, then the definition Tn = X/
√

1
n
χ2
n gives a convenient method of

generating t deviates.

Example 22.8.9 Beta

If Xα and Xβ are independent gamma deviates with shape parameters α
and β and scale parameter 1, then the ratio Xα/(Xα+Xβ) is by definition
a beta deviate with parameter pair (α, β).
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22.9 Multivariate Deviates

We make no attempt to be systematic in presenting the following examples.

Example 22.9.1 Multinomial

The multinomial distribution, like the binomial distribution, involves ran-
dom assignment to a finite number of categories. Instead of two categories
with probabilities p and 1 − p, we have k categories with probabilities
p1, . . . , pk. For a small number of trials n, the simplest approach to simula-
tion is to conduct the independent trials and add the number of successes
in each category. For large n this procedure is cumbersome. Brown and
Bromberg [3] suggest an alternative that exploits the intimate relationship
between multinomial sampling and independent Poisson sampling. Suppose
that we choose a positive constant λ and sample k independent Poisson de-
viates X1, . . . , Xk with means λp1, . . . , λpk. If the total number of successes
S =

∑k
i=1Xi equals n, then the random vector X = (X1 , . . . , Xk)

t follows
the multinomial distribution just described [19]. Of course, we must be
fortunate for the Poisson deviate S to exactly equal n.

Given S = m < n, we have a multinomial sample with m trials. If n−m
is small, then we can easily work our way up to n trials by conducting an
additional n −m trials in the naive manner. When m > n we are out of
luck and must redo the entire Poisson sample. These considerations suggest
that we take λ =

∑k
i=1 λpi slightly less than n. Brown and Bromberg

recommend the choices

λ =

{
n− k for k ≤ √

n
n−√

n− (k −√
n)1/2 for k >

√
n .

Because a Poisson random variable with mean λ has standard deviation√
λ, most of the time a single round of Poisson sampling suffices.

Example 22.9.2 Multivariate Normal

In R
n the simplest multivariate normal random vector X has n indepen-

dent, standard normal components. To generate a multivariate normal de-
viate Y with mean vector µ and covariance matrix Ω, we first generate X
and then form Y = Ω1/2X + µ. Any square root Ω1/2 will do; for instance,
we can use the Cholesky decomposition of Ω.

Example 22.9.3 Multivariate t

Let X be a multivariate normal deviate with mean vector 0 and covariance
matrix Ω, and let χ2

ν be an independent chi-square deviate with possibly
noninteger degrees of freedom ν . The translated ratio

Tν =
X√
χ2
ν/ν

+ µ (22.3)
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follows a multivariate t distribution with location vector µ, scale matrix Ω,
and degree of freedom ν [8]. For ν small, the t distribution has fatter tails
than the normal distribution and offers the opportunity of estimating loca-
tion and scale parameters robustly [20]. As ν tends to ∞, the t distribution
tends to the normal with mean vector µ and covariance matrix Ω. Again,
the most natural way of generating Tν is via its definition (22.3).

Example 22.9.4 Wishart

The Wishart distribution Wm(n,Σ) resides on the space of m×m positive
semidefinite matrices. If the vectors X1, . . . , Xn constitute a random sample
from the multivariate normal with m components, mean vector 0, and
variance matrix Σ, then the sum of outer products

∑n
i=1XiX

t
i follows a

Wm(n,Σ) distribution. This is yet another case where the definition offers
a viable method of simulation.

Example 22.9.5 Multivariate Uniform

In R
n there are many sets of finite Lebesgue measure from which we might

want to sample uniformly. The rectangle [a, b] =
∏n
i=1[ai, bi] is the sim-

plest. In this case we take n independent uniform deviates U1, . . . , Un and
construct the vector V with ith component Vi = (bi−ai)Ui+ai. To sample
uniformly from the unit sphere Sn = {x : ‖x‖2 ≤ 1}, we sample a stan-
dard, multivariate normal random vector X and note that V = X/‖X‖2

is uniformly distributed on the surface of Sn. We then choose an indepen-
dent radius R ≤ 1 and form the contracted point RV within Sn. Since the
volume of a sphere depends on the nth power of its radius, we construct
R by the inverse method employing the distribution function F (r) = rn

on [0, 1]. More complicated sets can be accommodated by enclosing them
within a rectangle or sphere and using a rejection procedure.

Example 22.9.6 Dirichlet

The Dirichlet density is the natural generalization of the beta density [17].
To generate a Dirichlet deviate Y = (Y1, . . . , Yn)t, we take n independent
gamma deviates X1, . . . , Xn with shape parameters αi and scale parameters
1 and form the ratios

Yi =
Xi∑n
i=1Xi

.

The random vector Y lives on the simplex

∆n =
{

(y1, . . . , yn)
t : y1 > 0 , . . . , yn > 0,

n∑

i=1

yi = 1
}

and has density

f(y) =
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

n∏

i=1

yαi−1
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there relative to the uniform measure. When each αi = 1, the deviate Y
is uniformly distributed on ∆n, and the reduced deviate (Y1, . . . , Yn−1)

t

derived by deleting Yn is uniformly distributed over the reduced simplex

{
(y1, . . . , yn−1)

t : y1 > 0 , . . . , yn−1 > 0,

n−1∑

i=1

yi ≤ 1
}
.

When n = 3, the reduced simplex is just the triangle in the plane with
vertices (0, 0), (1, 0), and (0, 1). Given the ability to randomly sample this
special triangle, one can randomly sample from any triangle.

Example 22.9.7 Order Statistics

At first glance, generating order statistics Y(1), . . . , Y(n) from a distribution
F (y) appears easy. However, if n is large and we are interested only in a
few order statistics at the beginning or end of the sequence, we can do
better than generate all n deviates Yi and order them in O(n lnn) steps.
Consider the special case of exponential deviates Xi with mean 1. From
the calculation

Pr(X(1) ≥ x) =

n∏

i=1

Pr(Xi ≥ x) = e−nx,

we find that X(1) is exponentially distributed with intensity n. Because of
the lack of memory property of the exponential, the n − 1 random points
to the right of X(1) provide an exponentially distributed sample of size
n− 1 starting at X(1). Duplicating our argument for X(1), we find that the
difference X(2) −X(1) is independent of X(1) and exponentially distributed
with intensity n − 1. Arguing inductively, we now see that Z1 = X(1),
that the differences Zi+1 = X(i+1) − X(i) are independent, and that Zi
is exponentially distributed with intensity n − i+ 1. This result, which is
proved more rigorously in [9], suggests that we can sample the Zi and add
them to get the X(i). If we are interested only in the X(i) for i ≤ j, then
we omit generating Zj+1, . . . , Zn.

To capitalize on this special case, note that Example 22.3.1 permits us
to generate the n order statistics from the uniform distribution by defining
U(i) = e−X(n−i+1) . The order statistics are reversed here because e−x is
strictly decreasing. Given the fact that 1 − U is uniform when U is uni-
form, we can equally well define U(i) = 1 − e−X(i) . If we desire the order
statistics Y(i) from a general, continuous distribution function F (y) with

inverse F [−1](u), then we apply the inverse method and set

Y(i) = F [−1](e−X(n−i+1) )

or

Y(i) = F [−1](1 − e−X(i)).
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The first construction is more convenient if we want only the last j order
statistics, and the second construction is more convenient if we want only
the first j order statistics. In both cases we generate only X(1), . . . , X(j).

Example 22.9.8 Random Orthogonal Matrix

The easiest way to generate an n×n random orthogonal matrix is to subject
n vectors pointing in random directions to the Gram-Schmidt orthogonal-
ization process. The n vectors can be generated as multivariate normal
deviates with mean vector 0 and covariance matrix I. In Example 25.2.4
we consider the related problem of randomly sampling rotation matrices.
The articles [7, 28] discuss even more efficient schemes.

22.10 Sequential Sampling

In many cases we can sample a random vector X = (X1, . . . , Xk) by sam-
pling each component in turn. For the sake of notational convenience, sup-
pose that X is discretely distributed. Then the decomposition

Pr(X1 = x1, . . . , Xk = xk)

= Pr(X1 = x1)

k∏

j=2

Pr(Xj = xj | X1 = x1, . . . , Xj−1 = xj−1)

provides the rationale for sequential sampling.

Example 22.10.1 Multinomial

Let us revisit the problem of multinomial sampling. Once again suppose
that Xj represents the number of outcomes of type j over n trials. It is
obvious that X1 follows a binomial distribution with success probability
p1 over n trials. Given we sample X1 = x1, the next component X2 is
binomially distributed with success probability p2/(1 − p1) over n − x1

trials. In general, given X1 = x1, . . . , Xj−1 = xj−1, the next component
Xj is binomially distributed with success probability pj/(1−p1−· · ·−pj−1)
over n− x1 − · · · − xj−1 trials.

Example 22.10.2 Conditional Poisson-Binomial

Let X1, . . . , Xn be independent Bernoulli random variables with a possibly
different success probability pk for each Xk. In Section 1.7 we showed how
to compute the distribution qn(i) = Pr(Sn = i) of the Poisson-binomial
sum Sn =

∑n
k=1Xk. These probabilities come in handy when we want to

sample the vector (X1, . . . , Xn) conditional on Sn = i. Indeed, Xn follows a
Bernoulli distribution with success probability pnqn−1(i−1)/qn(i). Once we
sample Xn = xn, the value of the Poisson-binomial sum Sn−1 is determined
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as i−xn. Thus, we can sample Xn−1 and so forth recursively. Fortunately,
the algorithm for computing qn(i) puts all of the required probabilities
qm(j) with m ≤ n and j ≤ i at our fingertips.

Example 22.10.3 Multivariate Normal

Let X be a normally distributed random vector in R
p with mean vector

µ and covariance matrix Ω. The first component X1 is univariate normal
with mean µ1 and variance Ω11. Once we sample X1, we must sample
(X2 , . . . , Xp) conditional on X1. As suggested in Section 7.3, the neces-
sary ingredients for computing the conditional mean vector and covariance
matrix emerge after sweeping on Ω11. This allows us to sample X2, and
successive sweeps down the diagonal of Ω allow us to sample X3 through
Xp similarly. This process is more intuitive but less efficient than sampling
via the Cholesky decomposition.

22.11 Problems

1. Write and test a uniform random number generator that adds the out-
put modulo 1 of three multiplicative generators with different prime
moduli and primitive multipliers.

2. Discuss how you would use the inverse method to generate a random
variable with (a) the continuous logistic density

f(x|µ, σ) =
e−

x−µ
σ

σ[1 + e−
x−µ

σ ]2
,

(b) the Pareto density

f(x|α, β) =
βαβ

xβ+1
1(α,∞)(x),

and (c) the Weibull density

f(x|δ, γ) =
γ

δ
xγ−1e−

xγ

δ 1(0,∞)(x),

where α, β, γ, δ, and σ are taken positive.

3. Continuing Problem 2, discuss how the inverse method applies to (d)
the Gumbel density

f(x) = e−xe−e
−x

,

(e) the arcsine density

f(x) =
1

π
√
x(1 − x)

1(0,1)(x),
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and (f) the slash density

f(x) = αxα−11(0,1)(x),

where α > 0.

4. Demonstrate how Examples 22.3.4 and 22.3.5 follow from Proposition
22.3.1.

5. Suppose the random variable X has distribution function F (x). If U
is uniformly distributed on [0, 1], then show that

Y = F [−1][UF (t)]

is distributed as X conditional on X ≤ t and that

Z = F [−1]{F (t) + U [1− F (t]}

is distributed as X conditional on X > t.

6. One can implement the inverse method even when the inverse distri-
bution function F [−1](y) is not explicitly available. Demonstrate that
Newton’s method for solving F (x) = y has the update

xn+1 = xn − F (xn) − y

f(xn)

when F (x) has density f(x) = F ′(x). Observe that if F (xn) > y,
then xn+1 < xn, and if F (xn) < y, then xn+1 > xn. Prove that xn
approaches the solution from above if F (x) is convex and from below
if F (x) is concave. Implement Newton’s method for the standard
normal distribution, and describe its behavior.

7. A positive function f(x) is said to be log-convex if and only if ln f(x)
is convex. Demonstrate the following properties:

(a) (a) If f(x) is log-convex, then f(x) is convex.

(b) (b) If f(x) is convex and g(x) is log-convex and increasing, then
the functional composition g ◦ f(x) is log-convex.

(c) (c) If f(x) is log-convex, then the functional composition f(Ax+
b) of f(x) with an affine function Ax+ b is log-convex.

(d) (d) If f(x) is log-convex, then f(x)α and αf(x) are log-convex
for any α > 0.

(e) (e) If f(x) and g(x) are log-convex, then f(x) + g(x), f(x)g(x),
and max{f(x), g(x)} are log-convex.

(f) (f) If fn(x) is a sequence of log-convex functions, then limn→∞ fn(x)
is log-convex whenever it exists and is positive.
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(Hint: To prove that the sum of log-convex functions is log-convex,
apply Hölder’s inequality.)

8. Show that the normal distribution, the gamma distribution with
shape parameter α ≥ 1, the beta distribution with parameters α and
β ≥ 1, the exponential power distribution with parameter α ≥ 1, and
Fisher’s z distribution of Problem 12 all have log-concave densities.

9. Verify that the logistic and Weibull (γ ≥ 1) densities of Problem 2
and the Gumbel density of Problem 3 are log-concave. Prove that the
Cauchy density is not log-concave.

10. Check that the Poisson, binomial, negative binomial, and hypergeo-
metric distributions have discrete log-concave densities.

11. Verify that the gamma distribution with shape parameter α > 1
and scale parameter β = 1 has mode m = α − 1 and that the beta
distribution with parameters α > 1 and β > 1 has mode

m =
α− 1

α+ β − 2
.

Demonstrate that the corresponding optimal tangency points of the
acceptance-rejection method of Section 22.5 are the roots of the re-
spective quadratics

m(m− x)2 − x

= (α− 1)(α− 1 − x)2 − x

(α+ β − 1)x2 + (2m− α− αm− βm)x + αm−m

= (α+ β − 1)x2 + (1 − 2α)x+
(1 − α)2

α+ β − 2
.

(Hints: You may want to use a computer algebra program such as
Maple. The beta distribution involves a quartic polynomial, one of
whose quadratic factors has imaginary roots.)

12. If X has an F distribution with m and n degrees of freedom, then
ln(X)/2 has Fisher’s Z distribution. Show that lnX has density

f(x) =
m

m
2 n

n
2 Γ(m2 + n

2 )e
mx
2

Γ(m2 )Γ(n2 )(n +mex)
m
2 + n

2

.

Prove that f(x) has mode m = 0 and that the corresponding opti-
mal tangency points xl and xr of the acceptance-rejection method of
Section 22.5 are the roots of the transcendental equation

m(nx− 2)ex = 2n+mnx.

(Hint: You may want to use a computer algebra program such as
Maple.)
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13. Demonstrate that the binomial density f(x) =
(
n
x

)
pxqn−x has mode

b(n+1)pc and that the negative binomial density f(x) =
(
x+n−1
n−1

)
pnqx

has mode b(n − 1)q/pc. Verify that the corresponding optimal tan-
gency points xl and xr of the acceptance-rejection method of Section
22.5 are the roots of the respective quadratic equations

2x2 + (3 − 2m− 2np)x+ 1 − 2m− p+ 2mp− 3np+ 2mnp = 0,

2px2 + (3p− 2mp− 2nq)x+ 1 − 2m− 3nq + 2mnq = 0.

(Hints: Use Stirling’s formula and a computer algebra program such
as Maple.)

14. Verify the identity

Γ(r + k)

k! Γ(r)
pr(1 − p)k =

∫ ∞

0

λk

k!
e−λ

λr−1e−λp/(1−p)

Γ(r)[(1 − p)/p]r
dλ

demonstrating that the negative binomial distribution is a mixture
of Poisson distributions whose intensities are gamma distributed.

15. Check that the hypergeometric density

f(x) =

(
R
x

)(
N−R
n−x

)
(
N
n

)

has mode m = b(R+1)(n+1)/(2+N)c. Prove that the corresponding
optimal tangency points xl and xr of the acceptance-rejection method
of Section 22.5 are the roots of the quadratic

0 = (2N + 2)x2 + (3N − 2mN − 4m+ 4 − 2nR)x

+ (2m− 1)(R−N + n− 1 + nR) − 2nR.

(Hints: Use Stirling’s formula and a computer algebra program such
as Maple. This quadratic is one of two possible quadratics. Why can
you discard the other one?)

16. Suppose the random variable X follows a standard normal distribu-
tion. Conditional on the event X ≥ c > 0, what is the density of X?
Construct the optimal exponential envelope

h(x) = 1{x≥c}bλe
−λ(x−c)

for acceptance-rejection sampling of the conditional density. In par-
ticular, demonstrate that λ = (c+

√
c2 + 4)/2.

17. The von Mises distribution for a random angle Θ has density

f(θ) =
eκ cos θ

I0(κ)
,
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where θ ∈ [0, 2π], κ > 0, and I0(κ) is a Bessel function. Devise
an acceptance-rejection method for generating random deviates from
f(θ).

18. Devise an acceptance-rejection method for generating beta deviates
based on the inequality xα−1(1 − x)β−1 ≤ xα−1 + (1 − x)β−1.

19. For α ∈ (0, 1) let Y be beta distributed with parameters α and 1−α.
If Z is independent of Y and exponentially distributed with mean 1,
then prove that X = Y Z is gamma distributed with parameters α
and 1. In conjunction with the previous problem, this gives a method
of generating gamma deviates.

20. Suppose Y is gamma distributed with parameters α+1 and 1 and Z
is uniformly distributed on (0, 1). If Y and Z are independent, then
demonstrate that X = Y Z1/α is gamma distributed with parameters
α and 1.

21. When α < 1, show that the gamma density

f(x) =
xα−1

Γ(α)
e−x1(0,∞)(x)

with scale 1 is majorized by the mixture density

g(x) =
e

e+ α
αxα−11(0,1)(x) +

α

e+ α
e1−x1[1,∞)(x)

with mass constant c = (e + α)/[eΓ(α)α]. Give a detailed algorithm
for implementing the acceptance-rejection method employing the ma-
jorizing function h(x) = cg(x).

22. The gamma deviate method of Marsaglia and Tsang [21] combines
speed and simplicity. This acceptance-rejection algorithm can be de-
rived by the following steps.

(a) Let X be a random variable with density

1

Γ(α)
f(x)α−1e−f(x)f ′(x)

for some nonnegative function f(x) and α ≥ 1. Show that the
random variable Y = f(X) has gamma density with shape pa-
rameter α and scale parameter 1.

(b) Let c and d be positive constants to be specified. For the choice

f(x) =

{
d(1 + cx)3 x ≥ −c−1

0 x < −c−1,
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define a function g(x) and constant a > 0 by the conditions

aeg(x) =
1

Γ(α)
f(x)α−1e−f(x)f ′(x)

and g(0) = 0. If d = α− 1
3 and c2d = 1

9 , then prove that

g(x) = d ln(1 + cx)3 − d(1 + cx)3 + d.

(c) To generate a deviate X with the density aeg(x), one can use
acceptance-rejection with a truncated standard normal deviate
Z, conditioning on the event Z ≥ −c−1. Explain how the in-
equality

eg(x) ≤ e−
1
2x

2

(22.4)

can be used to sample X. What fraction of standard normal
deviates Z satisfy Z ≥ −c−1? Of these, what proportion are
accepted as valid X’s?

(d) Demonstrate inequality (22.4) by showing that the derivatives
of w(x) = −1

2
x2 − g(x) satisfy

(1 + cx)w′(x) =
c2

3
x3

(1 + cx)2w′′(x) = c2x2
(
1 +

2

3
cx
)
.

23. Program and test the gamma deviate algorithm described in Problem
22. Check that the sample mean and variance match the theoretical
mean and variance of the gamma distribution.

24. Let S and T be independent deviates sampled from the uniform dis-
tribution on [−1, 1]. Show that conditional on the event S2 + T 2 ≤ 1
the ratio S/T is Cauchy.

25. Specify the ratio method for generating normal deviates starting from
the multiple h(x) = e−x

2/2 of the standard normal density. Show
that the smallest enclosing rectangle is defined by the inequalities
0 ≤ u ≤ 1 and v2 ≤ 2/e.

26. Describe and implement in computer code an algorithm for sampling
from the hypergeometric distribution. Use the “deviate by definition”
method of Section 22.8.

27. Describe how to generate deviates from the noncentral F and noncen-
tral t distributions. Implement one of these algorithms in computer
code.
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28. Three vertices v1, v2, and v3 in the plane define a triangle. To gener-
ate a random point T within the triangle, sample three independent
exponential deviates X, Y , and Z with mean 1 and put

T =
X

X + Y + Z
v1 +

Y

X + Y + Z
v2 +

Z

X + Y + Z
v3.

Implement this sampling method in code. How can it be justified
in theory? How does the method generalize to “triangles” in higher
dimensions?

29. Suppose the n-dimensional random deviateX is uniformly distributed
within the unit sphere Sn = {x : ‖x‖ ≤ 1}. If Ω is a covariance ma-
trix with square root Ω1/2, then show that Y = Ω1/2X is uniformly
distributed within the ellipsoid {y : ytΩ−1y ≤ 1}.
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23

Independent Monte Carlo

23.1 Introduction

Monte Carlo integration is a rough and ready technique for calculating high-
dimensional integrals and dealing with nonsmooth integrands [4, 5, 6, 8, 9,
10, 11, 12, 13]. Although quadrature methods can be extended to multiple
dimensions, these deterministic techniques are almost invariably defeated
by the curse of dimensionality. For example, if a quadrature method re-
lies on n quadrature points in one dimension, then its product extension
to d dimensions relies on nd quadrature points. Even in one dimension,
quadrature methods perform best for smooth functions. Both Romberg
acceleration and Gaussian quadrature certainly exploit smoothness.

Monte Carlo techniques ignore smoothness and substitute random points
for fixed quadrature points. If we wish to approximate the integral

E[f(X)] =

∫
f(x)dµ(x)

of an arbitrary integrand f(x) against a probability measure µ, then we
can take an i.i.d. sample X1, . . . , Xn from µ and estimate

∫
f(x)dµ(x)

by the sample average 1
n

∑n
i=1 f(Xi). The law of large numbers implies

that these Monte Carlo estimates converge to E[f(X)] as n tends to ∞.
If f(x) is square integrable, then the central limit theorem allows us to
refine this conclusion by asserting that the estimator 1

n

∑n
i=1 f(Xi) is ap-

proximately normally distributed around E[f(X)] with standard deviation√
Var[f(X)]/n. In practice, we estimate the order of the Monte Carlo error

as
√
v/n, where

v =
1

n − 1

n∑

i=1

[
f(Xi) −

1

n

n∑

j=1

f(Xj )
]2

is the usual unbiased estimator of Var[f(X)].
The central limit theorem perspective also forces on us two conclusions.

First, the error estimate does not depend directly on the dimensionality of
the underlying space. This happy conclusion is balanced by the disappoint-
ing realization that the error in estimating E[f(X)] declines at the slow rate
n−1/2. In contrast, the errors encountered in quadrature formulas with n
quadrature points typically vary as O(n−k) for k at least 2. Rather than
bemoan the n−1/2 rate of convergence in Monte Carlo integration, prac-
titioners now attempt to reduce the Var[f(X)] part of the standard error
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formula
√

Var[f(X)]/n. Our limited overview accordingly stresses variance
reduction methods. Several of these are predicated on the common sense
principle of substituting an exact partial result for an approximate partial
result. We begin our survey by discussing importance sampling, a supple
technique that is often combined with acceptance-rejection and sequential
sampling.

23.2 Importance Sampling

Importance sampling is one technique for variance reduction. Suppose that
the probability measure µ is determined by a density g(x) relative to a
measure ν such as Lebesgue measure or counting measure. If h(x) is another
density relative to ν with h(x) > 0 when f(x)g(x) 6= 0, then we can write

∫
f(x)g(x)dν(x) =

∫
f(x)g(x)

h(x)
h(x)dν(x).

Thus, if Y1, . . . , Yn is an i.i.d. sample from h(x), then the sample average

1

n

n∑

i=1

f(Yi)
g(Yi)

h(Yi)
=

1

n

n∑

i=1

f(Yi)w(Yi) (23.1)

offers an alternative unbiased estimator of
∫
f(x)g(x)dν(x). The ratios

w(Yi) = g(Yi)/h(Yi) are called importance weights.
The weighted estimator (23.1) has smaller variance than the naive esti-

mator 1
n

∑n
i=1 f(Xi) if and only if the second moments of the two sampling

distributions satisfy

∫ [f(x)g(x)
h(x)

]2
h(x)dν(x) ≤

∫
f(x)2g(x)dν(x).

If we choose h(x) = |f(x)|g(x)/
∫
|f(z)|g(z)dν(z), then the Cauchy-Schwarz

inequality implies

∫ [f(x)g(x)
h(x)

]2
h(x)dν(x) =

[ ∫
|f(x)|g(x)dν(x)

]2

≤
∫
f(x)2g(x)dν(x)

∫
g(x)dν(x)

=

∫
f(x)2g(x)dν(x).

Equality occurs if and only if |f(x)| is constant with probability 1 relative
to g(x)dν(x). If f(x) is nonnegative and h(x) is chosen according to the
above recipe, then the variance of the estimator 1

n

∑n
i=1 f(Yi)g(Yi)/h(Yi)

reduces to 0.
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This elegant result is slightly irrelevant since
∫
|f(x)|g(x)dν(x) is un-

known. However, it suggests that the variance of the sample average esti-
mator will be reduced if h(x) resembles |f(x)|g(x). When this is the case,
random points tend to be sampled where they are most needed to achieve
accuracy.

In practice, one or both of the densities g(x) and h(x) may only be known
up to an unspecified constant. This means the true importance weight is
cw(Yi) for some constant c > 0 rather than w(Yi). Although formula (23.1)
is no longer available, there is a simple fix. We now approximate E[f(X)]
by

∑n
i=1 f(Yi)w(Yi)∑n

i=1 w(Yi)
=

1
n

∑n
i=1 f(Xi)cw(Yi)

1
n

∑n
i=1 cw(Yi)

. (23.2)

A double application of the law of large numbers to the right-hand side of
equation (23.2) dictates that the numerator tends almost surely to E[f(X)]
and that the denominator tends almost surely to 1.

Example 23.2.1 Binomial Tail Probabilities

Suppose the random variable X is binomially distributed with m trials and
success probability p. For x much larger than mp, the right-tail probability
Pr(X ≥ x) is very small and estimating its value by taking independent
replicates of X is ill advised. If we use importance sampling with random
binomial deviates with the same number of trials m but a higher success
probability q, then we are apt to be more successful. In the earlier notation
of this section, importance sampling now depends on the following functions

f(y) = 1{y≥x}

g(y) =

(
m

y

)
py(1 − p)m−y

h(y) =

(
m

y

)
qy(1 − q)m−y

w(y) =

(
p

q

)y (
1 − p

1 − q

)m−y
.

As a guess, we might choose q to satisfy mq = x. This puts most of
the mass of the sampling distribution near x. To rationalize this guess, we
need to minimize the variance of the corresponding importance estimator.
As noted earlier, this amounts to minimizing the second moment

∑

y≥x

(
m

y

)
[py(1 − p)m−y]2

qy(1 − q)m−y .

If we assume that the terms in this sum are rapidly decreasing and replace
the sum by its first term, then it suffices to minimize q−x(1 − q)x−m. A
quick calculation shows that mq = x is optimal.
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Example 23.2.2 Tilted Importance Sampling

The notion of tilting introduced in Section 19.5 is also relevant to approxi-
mating a tail probability Pr(X ≥ x). If the random variableX with density
g(x) has cumulant generating function K(t), then tilting by t gives a new
density ht(x) = ext−K(t)g(x). The importance weight associated with an
observation x drawn from ht(x) is w(t) = e−xt+K(t). If Et denotes expec-
tation with respect to ht(x), then the optimal tilt minimizes the second
moment

Et(1{X≥x}e
−2Xt+2K(t)) = E0(1{X≥x}e

−Xt+K(t))

≤ e−xt+K(t).

It is far simpler to minimize the displayed bound than the second moment.
Differentiation with respect to t shows that the minimum is attained when
K′(t) = x. For example, when X is normally distributed with mean µ and
variance σ2, the cumulant generating function is K(t) = µt+ 1

2
σ2t2. For a

given x, a good tilt is therefore t = (x− µ)/σ2.

Example 23.2.3 Expected Returns to the Origin

In a three-dimensional, symmetric random walk on the integer lattice [3],
the expected number of returns to the origin equals

1

23

∫ 1

−1

∫ 1

−1

∫ 1

−1

3

3 − cos(πx1) − cos(πx2) − cos(πx3)
dx1dx2dx3.

Detailed analytic calculations too lengthy to present here show that this
integral approximately equals 1.516. A crude Monte Carlo estimate based
on 10,000 uniform deviates from the cube [−1, 1]3 is 1.478 ± 0.036. The
singularity of the integrand at the origin 0 explains the inaccuracy and
implies that the estimator has infinite variance. Thus, the standard error
0.036 attached to the estimate 1.478 is bogus.

We can improve the estimate by importance sampling. Let

S3 = {(x1, x2, x3) : r ≤ 1}

be the unit sphere in R
3, where r =

√
x2

1 + x2
2 + x2

3. Since the singularity
near the origin behaves like a multiple of r−2, we decompose the integral
as

1

23

∫ 1

−1

∫ 1

−1

∫ 1

−1

3

3 − cos(πx1) − cos(πx2) − cos(πx3)
dx1dx2dx3

=
1

(23 − 4π
3 )

∫

[−1,1]3\S3

3(23 − 4π
3 )/23

3 − cos(πx1) − cos(πx2) − cos(πx3)
dx1dx2dx3

+

∫

S3

3(4πr2)/23

3 − cos(πx1) − cos(πx2) − cos(πx3)

1

4πr2
dx1dx2dx3. (23.3)
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Sampling from the density 1/(4πr2) on S3 concentrates random points near
the origin. As the brief calculation

Pr(R∗ ≤ r) =
1

4π

∫ r

0

∫ 2π

0

∫ π

0

1

s2
s2 sinφ dφ dθ ds = r

with spherical coordinates shows, the radius R∗ under such sampling is
uniformly distributed on [0, 1]. This contrasts with the nonuniform distri-
bution

Pr(R ≤ r) =
3

4π

∫ r

0

∫ 2π

0

∫ π

0

s2 sinφ dφ dθ ds = r3

of the radius R under uniform sampling on S3. These formulas demonstrate
that we can generate R∗ by taking a uniform sample from S3 and setting
R∗ = R3.

A strategy for computing the expected number of returns is now clear.
We sample a point (x1, x2, x3) uniformly from the cube [−1, 1]3. If r > 1,
then the point is uniform in [−1, 1]3\S3, and we use it to compute a Monte
Carlo estimate of the first integral on the right of (23.3). If r ≤ 1, then we
have a uniform point in S3 . If we replace r by r3 and adjust (x1, x2, x3)
accordingly, then we use the revised point in S3 to compute a Monte Carlo
estimate of the second integral on the right of (23.3) based on the density
1/(4πr2). Carrying out this procedure with 10,000 random points from
[−1, 1]3 and adding the two Monte Carlo estimates produces the improved
estimate 1.513± 0.030 of the expected number of returns.

23.3 Stratified Sampling

In stratified sampling, we partition the domain of integration S of an ex-
pectation E[f(X)] =

∫
S
f(x)dµ(x) into m > 1 disjoint subsets Si and

sample a fixed number of points Xi1, . . . , Xini from each Si according to
the conditional probability measure µ(A | Si). If we estimate the condi-
tional expectation E[f(X) | X ∈ Si] by 1

ni

∑ni

j=1 f(Xij), then the weighted
estimator

m∑

i=1

µ(Si)
1

ni

ni∑

j=1

f(Xij ) (23.4)

is unbiased for E[f(X)]. If the ni are chosen carefully, then the variance∑m
i=1 µ(Si)

2 Var[f(X) | X ∈ Si]/ni of this estimator will be smaller than
the variance Var[f(X)]/n of the sample average Monte Carlo estimator
with the same number of points n =

∑m
i=1 ni drawn randomly from S.
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For instance, if we take ni = nµ(Si), then the variance of the stratified
estimator (23.4) reduces to

1

n

m∑

i=1

µ(Si)Var[f(X) | X ∈ Si] =
1

n
E{Var[f(X) | Z]},

where Z is a random variable satisfying Z = i when the random point X
drawn from µ falls in Si. Since we can write

Var[f(X)] = E{Var[f(X) | Z]} + Var{E[f(X) | Z]},
it is clear that the stratified estimator has smaller variance than the sample
average estimator.

In principle, one can improve on proportional sampling. To minimize the
variance of the stratified estimator, we treat the ni as continuous variables,
introduce a Lagrange multiplier λ, and look for a stationary point of the
Lagrangian

m∑

i=1

µ(Si)
2 1

ni
Var[f(X) | X ∈ Si] + λ

(
n−

m∑

i=1

ni

)
.

Equating its partial derivative with respect to ni to zero and taking into
account the constraint

∑m
i=1 ni = n yields

ni = n
µ(Si)

√
Var[f(X) | X ∈ Si]∑m

k=1 µ(Sk)
√

Var[f(X) | X ∈ Sk]
.

Although the values of the conditional variances Var[f(X) | X ∈ Si] are
inaccessible in practice, we can estimate them using a small pilot sample of
points from each Si. Once this is done, we can collect a more intelligent, final
stratified sample that puts more points where f(x) shows more variation.
Obviously, it is harder to give general advice about how to choose the strata
Si and compute their probabilities µ(Si) in the first place.

23.4 Antithetic Variates

In the method of antithetic variates, we look for unbiased estimators V and
W of an integral that are negatively correlated rather than independent.
The average (V +W )/2 is also unbiased, and its variance

Var
(V +W

2

)
=

1

4
Var(V ) +

1

4
Var(W ) +

1

2
Cov(V,W )

is reduced compared to what it would be if V and W were independent.
The next proposition provides a sufficient condition for achieving negative
correlation. Its proof exploits coupled random variables; by definition these
reside on the same probability space [7].
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Proposition 23.4.1 Suppose X is a random variable and the functions
f(x) and g(x) are both increasing or both decreasing. If the random vari-
ables f(X) and g(X) have finite second moments, then

Cov[f(X), g(X)] ≥ 0.

If f(x) is increasing and g(x) is decreasing, or vice versa, then the reverse
inequality holds.

Proof: Consider a second random variable Y independent of X but hav-
ing the same distribution. If f(x) and g(x) are both increasing or both
decreasing, then the product [f(X) − f(Y )][g(X) − g(Y )] ≥ 0. Hence,

0 ≤ E{[f(X) − f(Y )][g(X) − g(Y )]}
= E[f(X)g(X)] + E[f(Y )g(Y )] − E[f(X)] E[g(Y )]− E[f(Y )] E[g(X)]

= 2 Cov[f(X), g(X)].

The same proof with obvious modifications holds when one of the two
functions is increasing and the other is decreasing.

Example 23.4.1 Antithetic Uniform Estimators

Consider the integral
∫
f(x)g(x) dx, where f(x) is increasing and the den-

sity g(x) has distribution function G(x) with inverse G[−1](u). If U is uni-
formly distributed on [0, 1], then in view of Proposition 22.3.1, the random
variables f [G[−1](U)] and f [G[−1](1 − U)] are both unbiased estimators of∫
f(x)g(x) dx. According to Proposition 23.4.1, they are also negatively

correlated. It follows that for a random uniform sample U1, . . . , U2n, the
first of the two estimators

A1 =
1

2n

n∑

i=1

{f [G[−1](Ui)] + f [G[−1](1 − Ui)]}

A2 =
1

2n

2n∑

i=1

f [G[−1](Ui)]

has smaller variance.
The inverse distribution function is not always readily available. As a

substitute, one can exploit the symmetry of g(x). If X is distributed as
g(x), and g(x) is symmetric around the point µ, then X − µ has the same
distribution as µ−X. In other words, 2µ−X is distributed as X. Therefore,
one can substitute f(Xi) for f [G[−1](Ui)] and f(2µ−Xi) for f [G[−1](1−Ui)]
in the above sample averages and reach the same conclusion.

23.5 Control Variates

In computing E[f(X)], suppose that we can calculate exactly the expec-
tation E[g(X)] for a function g(x) close to f(x). Then it makes sense to
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write

E[f(X)] = E[f(X) − g(X)] + E[g(X)]

and approximate E[f(X) − g(X)] by a Monte Carlo estimate rather than
E[f(X)]. Example 23.2.3 provides a test case of this tactic. Near the origin
the integrand

f(x) =
3

3 − cos(πx1) − cos(πx2) − cos(πx3)

≈ 6

π2r2

= g(x).

By transforming to spherical coordinates it is straightforward to calculate

1
4π
3

∫

S3

g(x)dx1dx2dx3 =
18

π2
.

In Example 23.2.3 we can avoid importance sampling by forming a Monte
Carlo estimate of the conditional expectation E[f(X)−g(X) |X ∈ S3] and
adding it to the exact conditional expectation

E[g(X) |X ∈ S3] =
18

π2
.

Making this change but proceeding otherwise precisely as sketched in Ex-
ample 23.2.3 yields the impressive approximation 1.517 ± 0.015 for the
expected number of returns to the origin. In this case, the method of con-
trol variates operates by subtracting off the singularity of the integrand
and performs better than importance sampling.

23.6 Rao-Blackwellization

The Rao-Blackwell theorem in statistics takes an unbiased estimator and
replaces it by its conditional expectation given a sufficient statistic. This
process reduces the variance of the statistic while retaining its unbiasedness.
The same principle applies in Monte Carlo integration. The next example
illustrates the idea.

Example 23.6.1 Covariance of the Bivariate Exponential

Let U , V , and W be independent exponentially distributed random vari-
ables with intensities λ, µ, and ν , respectively. The two random variables
X = min{U,W} and Y = min{V,W} are exponentially distributed with
intensities λ+ν and µ+ν . The random vector (X, Y ) follows the bivariate



23. Independent Monte Carlo 467

exponential distribution. Calculation of the covariance Cov(X, Y ) is an in-
teresting theoretical exercise. Problem 17 asks the reader to demonstrate
that

Cov(X, Y ) =
ν

(λ+ ν)(µ+ ν)(λ+ µ + ν)
. (23.5)

If one ignores this exact result and wants to approximate Cov(X, Y ) numer-
ically, the natural approach is to generate a trivariate sample (Ui, Vi,Wi)
for 1 ≤ i ≤ n, form the bivariate sample (Xi, Yi) with Xi = min{Ui,Wi}
and Yi = min{Vi,Wi}, and compute the latter’s sample covariance. Let us
call this method 1.

Method 2 is less direct but more accurate. It exploits the formula

Cov(X, Y ) = Cov[E(X |W ),E(Y |W )] + E[Cov(X, Y |W )].

The second term on the right vanishes because X and Y are independent
given W . The first term can be simplified by noting that

E(X |W ) =

∫ ∞

0

Pr(min{U,W} ≥ x |W ) dx

=

∫ W

0

e−λxdx

=
1 − e−λW

λ
,

and similarly for E(Y | W ). (See Problem 18.) Thus, method 2 takes a
random sample W1, . . . ,Wn and computes the sample covariance of the
conditional expectations E(Xi | Wi) and E(Yi | Wi). As a test of the two
methods, we set λ = 1, µ = 2, and ν = 3. The exact covariance is then
0.02500. With 10,000 trials, method 1 yields the approximation 0.02466
and method 2 the approximation 0.02490.

Rao-Blackwellization also illuminates integration via acceptance-rejec-
tion sampling [1]. Recall that in the acceptance-rejection method we sample
from an envelope density h(x) that satisfies an inequality g(x) ≤ ch(x)
relative to a target density g(x). We accept a sampled point X drawn from
the density h(x) based on an independent uniform deviate U . If U ≤ V =
g(X)/[ch(X)], then we accept X; otherwise, we reject X. The accepted
points conform to the target density g(x).

In computing an expectation E[f(X)] =
∫
f(x)g(x)dx by the Monte

Carlo method, suppose we generate n points X1, . . . , Xn according to h(x)
and accept precisely m of them using the uniform deviates U1, . . . , Un. The
Monte Carlo estimate of E[f(X)] is

E[f(X)] ≈ 1

m

n∑

i=1

f(Xi)1{Ui≤Vi}. (23.6)
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The conditional expectation

1

m
E

[ n∑

i=1

f(Xi)1{Ui≤Vi} | X1, . . . , Xn,

n∑

j=1

1{Uj≤Vj} = m

]

=
1

m

n∑

i=1

f(Xi) E

[
1{Ui≤Vi} | X1, . . . , Xn,

n∑

j=1

1{Uj≤Vj} = m

]

retains the unbiased character of the Monte Carlo estimate while reducing
its variance. The revised estimate achieves this trick by using both the
rejected and the accepted points with appropriate weights for each.

To make this scheme viable, we must compute the conditional probability
Ri that the ith deviate Xi is accepted, given its success probability

Vi =
g(Xi)

ch(Xi)

and the fact that there are m successes in n trials. Fortunately, Example
22.10.2 of Chapter 22 deals with exactly this problem. Once the Ri are in
hand, the improved approximation

E[f(X)] ≈ 1

m

n∑

i=1

f(Xi)Ri (23.7)

is available.
When n is large, Ri is apt to be close to Vi, and m is apt to be close to∑n
i=1 Vi. If we drop the factor c−1 from Vi and define the revised weight

w(Xi) = g(Xi)/h(Xi), then formula (23.7) reduces under these approxima-
tions to the alternative importance sampling formula (23.2). Chen [2] argues
that formula (23.2) is generally preferable to the acceptance-rejection for-
mula (23.6). This conclusion is hardly surprising given the Rao-Blackwell
connection. In addition to leading to more precise estimates, the impor-
tance sampling perspective avoids explicit mention of the constant c and
the necessity of generating the uniform deviates U1, . . . , Un.

23.7 Sequential Importance Sampling

As its name implies, sequential importance sampling combines sequential
sampling with importance sampling. In practice this involves sequential
sampling of the importance density h(x). Suppose that x has d components
and that we factor h(x) as

h(x) = h1(x1)

d∏

j=2

hj(xj | x1, . . . , xj−1).
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To randomly draw from h(x), we draw the first component according to
h1(x1). Conditional on the first component, we then draw the second com-
ponent according to h2(x2 | x1) and so forth until the entire random vector
X is filled out. In this process, there is nothing to prevent xj from being
a subvector instead of a single component. Often the importance weight
w(X) is computed recursively as the components of X are added. Two
examples treated more fully in [8] illustrate the general approach.

Example 23.7.1 Self-Avoiding Symmetric Random Walks

This famous problem of polymer growth attracted the interest of applied
mathematicians and physicists in the mid 20th century. For the sake of
concreteness, suppose the walker starts at the origin of the plane and cur-
rently occupies the integer lattice point (j, k). At the next step he moves
randomly to one of the four adjacent lattice points (j − 1, k), (j + 1, k),
(j, k− 1), or (j, k+ 1) with the uniform probability of 1

4
. When the walker

visits a point already visited, the walk fails to model polymer growth well.
Let zd be the number of paths of d steps that do not cross themselves. The
most obvious question is how to compute zd. For d small, direct enumera-
tion is possible, but as d grows it becomes more and more difficult to check
each of the 4d−1 possible paths for self-avoidance. Among the zd permitted
paths, one would like to know the average distance from the origin and
other statistics.

The primary obstacle to computing these quantities by Monte Carlo
summation is that the fraction of self-avoiding paths declines quickly as d
grows. Naive sampling is therefore terribly inefficient. A better alternative
is to generate paths that tend to avoid themselves. One can then correct
for biased sampling by introducing importance weights. A reasonable pos-
sibility is to modify the move of the walker from the lattice point (j, k)
defining position m− 1. If we scan the points already visited, then some of
the four nearest neighbors of (j, k) will be among those points. Let cm−1

count the number of neighboring points not visited in the first m− 1 steps
of the walk. In the redesigned walk, the walker chooses the next destina-
tion among these points with the uniform probability 1/cm−1. Thus, an
entire path P of length d without self-intersection is chosen with probabil-
ity
∏d−1
j=1 c

−1
j . A partial path that stops prematurely at step e is assigned

probability
∏e−1
j=1 c

−1
j . The sample space for the revised sampling scheme

contains both partial and full paths. Figure 23.1 depicts a sample random
walk of d = 30 steps constructed under the revised scheme.

The importance weight

w(P ) =

{
z−1
d

∏d−1
j=1 cj(P ), P a successful path

0, P an unsuccessful path

can clearly be computed recursively up to the unknown constant zd. Be-
cause E[w(P )] = 1 under the revised scheme, this gives an opening to
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FIGURE 23.1. A Random Walk Biased toward Self-Avoidance

compute zd. If we generate independent paths P1, . . . , Pn under the revised
scheme, then

1 ≈ 1

n

n∑

j=1

w(Pj),

which we rearrange to yield the estimate

ẑd =
1

n

n∑

i=1

1{e(Pi)=d}

e(Pi)−1∏

j=1

cj(Pi).

If Rd is the distance from the origin conditional on self-avoidance, then we
estimate E(Rd) by

Ê(Rd) =

∑n
j=1Rd(Pj)w(Pj)∑n

j=1 w(Pj)
.

In this case, the unknown partition constant zd cancels, and we can employ
revised weights omitting it.

To get a feel for the size of zd and Rd, we conducted a Monte Carlo
experiment with d = 100 steps and n =100,000 trials. The importance
sampling formulas just given yield ẑd = 4.3 × 1042, Ê(Rd) = 26.0, and
V̂ar(Rd) = 85.5. The first of these numbers makes it clear that only the
miniscule fraction 1.1 × 10−17 of all realizations under ordinary sampling
avoid self-intersection.
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Example 23.7.2 Permanents of 0-1 Matrices

The permanent of a k × k matrix M = (mij) is defined by the formula

perm(M) =
∑

σ∈Sk

k∏

i=1

mi,σ(i) =
∑

σ∈Sk

k∏

i=1

mσ(i),i,

where Sk is the set of all permutations of {1, . . . , k}. This is precisely the
definition of the determinant of M with the alternating signs removed.
Permanents find applications in combinatorics and permutation tests. Here
we will be concerned with computing the permanent of a sparse matrix with
all entries equal to 0 or 1. In this setting perm(M) counts the number of
permutations with restricted positions. For example, the permanent of the
matrix

M =




1 0 0 1 0
0 0 1 0 1
0 1 0 0 0
1 1 1 1 0
0 1 1 0 0


 (23.8)

equals 2. This can be rephrased by considering random permutations σ
and defining the random variable X(σ) =

∏k
i=1mi,σ(i). It is then clear

that E(X) = 2
5! = 0.0167.

In larger matrices, exhaustive enumeration of all permutations is out of
the question. If we randomly sample permutations and compute X for a
sparse matrix, then most of the time X = 0. To overcome this problem,
we need to sample from a distribution that is enriched for permutations σ
satisfying X(σ) = 1. Consider sampling one column at a time. In column 1
there must be a non-zero entry mi1; otherwise, perm(M) = 0. If T1 is the
set {i : mi1 = 1}, then one possibility is to sample σ(1) uniformly from T1.
Unfortunately, this tactic is not ideal. To understand why, let ri count the
number of 1’s in row i. If we have ri = 1 for some i ∈ T1, then we are forced
to choose σ(1) = i. Failure to do so compels us to pick a 0 entry in row i at
a later stage. In fact, we should concentrate on using the sparse rows early
in the hope that the dense rows will still have enough non-zero entries when
they are encountered to create a full permutation σ with X(σ) = 1. When
all ri > 1 for i ∈ T1, Liu and Chen [8] suggest choosing i with probability
(ri − 1)−1d−1

1 , where

d1 =
∑

j∈T1

1

rj − 1
.

This favors the sparse rows.
Once σ(1) = i is selected, we reset the entries in column 1 and row i

of M to 0. We then move on to column 2 and choose σ(2) by the same
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process. This sequential construction either produces a full permutation
σ with X(σ) = 1 or terminates prematurely with a partial permutation
σ with X(σ) = 0. Either kind of outcome has a well-defined probability
equaling the product of the choice probabilities along the way. We start the
importance weight w(σ) attached to a permutation σ at 1 and replace it
at stage i by w(σ)(rσ(i) − 1)di. Because we have omitted the normalizing

constant 1
k! from the weight, a random sample σ1, . . . , σn of permutations

from the importance sampling distribution gives the estimate

p̂erm(M) =
1

n

n∑

j=1

X(σj)w(σj).

We estimate the permanent of the toy matrix (23.8) as 1.95 using 1000
trials of importance sampling and as 2.64 using 1000 trials of ordinary
uniform sampling.

23.8 Problems

1. Consider the integral
∫ 1

0
cos(πx/2) dx = 2/π [6]. Interpreting this as

an expectation relative to the uniform distribution on [0, 1], show that

Var

[
cos
(πX

2

)]
=

1

2
−
( 2

π

)2

≈ 0.095.

The importance density h(x) = 3(1 − x2)/2 roughly resembles the
integrand cos(πx/2). Demonstrate numerically that

Var




2 cos
(
πY
2

)

3(1− Y 2)


 ≈ 0.00099

when Y is sampled from h(y). Thus, importance sampling reduces
the variance of the corresponding Monte Carlo estimator by almost
a factor of 100.

2. Continuing Problem 1, devise a ratio method for sampling from the
density h(x) = 3(1− x2)/2 on [0, 1]. Show that [0,

√
3/2]× [0,

√
3/8]

is an enclosing rectangle.

3. Suppose X is binomially distributed with 100 trials and success prob-
ability 0.25. Compute the right-tail probability Pr(X ≥ 75) by im-
portance sampling as suggested in Example 23.2.1.

4. Let Y be a random variable with density g(y) relative to a measure ν .
Suppose that the random variable Z = f(Y ) satisfies Eg(Z

2) <∞. It
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is helpful for the sample average (23.1) used in estimating Eg(Z) to
have finite variance. Show that this condition is fulfilled whenever the
importance weight g(y)/h(y) is bounded on the set {y : f(y) 6= 0}.
If f(y) never vanishes, then this is just the boundedness requirement
imposed in the acceptance-rejection algorithm for sampling from g(y)
via h(y).

5. In conjunction with Example 23.2.2, calculate the cumulant generat-
ing functions K(t) of the exponential and Poisson distributions. Solve
the equation K ′(t) = x for t.

6. Suppose X follows a standard normal distribution. Write and test
a program to approximate the right-tail probability Pr(X ≥ x) by
tilted importance sampling. Assume that x is large and positive.

7. Monte Carlo simulation also provides a device for sampling from
a marginal distribution based on a joint distribution. Suppose the
random vector Y = (U, V )t has joint density fUV (u, v) relative to
the product measure µ × ν . To approximate the marginal density
fU (u) =

∫
fUV (u, v) dν(v), we take a random sample y1, . . . , yn from

Y and form the average

An =
1

n

n∑

i=1

fUV (u, vi)g(ui)

fUV (ui, vi)
.

Here g(w) is any probability density relative to µ. Demonstrate that
An is an unbiased estimator of fU (u) and that the variance of An is
minimized by choosing

g(w) =
fUV (w, v)∫

fUV (u, v) dµ(u)
,

the conditional density of U given V = v. (Hint: Apply the Cauchy-
Schwarz inequality.)

8. Continuing Problem 7, suppose U is Poisson distributed with mean V
and V is gamma distributed as described in Problem 14 of Chapter 22.
The marginal distribution U is negative binomial. Write a program
to compute the marginal distribution of U by sampling from the joint
distribution of U and V . Test several densities g(w) as described in
Problem 7 and see which one works best in practice.

9. Write a program to carry out the naive Monte Carlo method, the
importance sampling method, and the control variate method for
estimating the random walk integral discussed in Example 23.2.3 and
Section 23.5. Show analytically that about 52.4 percent of the points
generated in the cube [−1, 1]3 fall within S3.
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10. Suppose you compute by stratified sampling from the two subinter-
vals [0,

√
3/2) and [

√
3/2, 1] a Monte Carlo estimate of the integral∫ 1

0

√
1 − x2dx. If you employ n points overall, how many points should

you allot to each subinterval to achieve the greatest variance reduc-
tion [9]?

11. In the stratified sampling method, suppose the domain of integration
splits into two subsets S1 and S2 such that

Pr(X ∈ S1) = Pr(X ∈ S2)

E[f(X) | X ∈ S1] = E[f(X) | X ∈ S2]

Var[f(X) | X ∈ S1] = Var[f(X) | X ∈ S2].

Show that the stratified estimate of E[f(X)] with 3n/4 points drawn
randomly from S1 and n/4 points drawn randomly from S2 is actu-
ally worse than the sample mean estimate with all n points drawn
randomly from S1 ∪ S2.

12. Consider Monte Carlo estimation of the integral
∫ 1

0 e
xdx. Calculate

the reduction in variance achieved by applying antithetic variables.

13. Proposition 23.4.1 demonstrates what a powerful tool coupling of
random variables is in proving inequalities. Here is another example
involving the monotonicity of power functions in hypothesis testing.
Let X and Y follow binomial distributions with n trials and success
probabilities p < q, respectively. We can realize X and Y on the
same probability space by scattering n points randomly on the unit
interval. Interpret X as the number of points less than or equal to the
cutoff p, and interpret Y as the number of points less than or equal
to the cutoff q. Show that this interpretation leads to an immediate
proof of the inequality Pr(X ≥ k) ≤ Pr(Y ≥ k) for all k.

14. Continuing Problem 13, suppose that X follows the hypergeometric
distribution

Pr(X = i) =

(
r
i

)(
n−r
m−i

)
(
n
m

) .

Let Y follow the same hypergeometric distribution except that r+ 1
replaces r. Prove that Pr(X ≥ k) ≤ Pr(Y ≥ k) for all k. (Hint:
Consider an urn with r red balls, 1 white ball, and n − r − 1 black
balls. If we draw m balls from the urn without replacement, then X
is the number of red balls drawn, and Y is the number of red or white
balls drawn.)

15. The method of control variates can be used to estimate the moments
of the sample median X(n) from a random sample of size 2n−1 from
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a symmetric distribution. Because we expect the difference X(n) − X̄
between the sample median and the sample mean to be small, the
moments of X̄ serve as a first approximation to the moments of X(n).
Put this insight into practice by writing a Monte Carlo program to
compute Var(X(n)) for a sample from the standard normal distribu-
tion.

16. Suppose that X and Y are independent random variables with dis-
tribution functions F (x) and G(y). Sketch a naive simulation tactic
for estimating Pr(X + Y ≤ z). Describe how you can improve on the
naive tactic by conditioning on either X or Y .

17. Consider the bivariate exponential distribution defined in Example
23.6.1. Demonstrate that:

(a) X and Y are exponentially distributed with the stated means.

(b) (X, Y ) has the tail probability

Pr(X ≥ x, Y ≥ y) = e−λx−µy−νmax{x,y}.

(c) The probabilities

Pr(X < Y ) =
λ

λ+ µ+ ν

Pr(Y < X) =
µ

λ+ µ+ ν

Pr(X = Y ) =
ν

λ+ µ+ ν

are valid.

(d) (X, Y ) possesses the density

f(x, y) =

{
λ(µ + ν)e−λx−(µ+ν)y x < y
µ(λ + ν)e−(λ+ν)x−µy x > y

off the line y = x.

(e) The covariance expression (23.5) holds.

18. Let Z be a nonnegative random variable with distribution function
G(z). Demonstrate that

E(Z) =

∫ ∞

0

[1−G(z)]dz

by interchanging the order of integration in the implied double inte-
gral.

19. Program the naive method and the sequential importance sampling
method for either of the two examples 23.7.1 and 23.7.2. Compare
your findings with the results in the text.
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24

Permutation Tests and the
Bootstrap

24.1 Introduction

In this chapter we discuss two techniques, permutation testing and the
bootstrap, of immense practical value. Both techniques involve random re-
sampling of observed data and liberate statisticians from dubious model
assumptions and large sample requirements. Both techniques initially met
with considerable intellectual resistance. The notion that one can conduct
hypothesis tests or learn something useful about the properties of estima-
tors and confidence intervals by resampling data was alien to most statisti-
cians of the past. The computational demands of permutation testing and
bootstrapping alone made them unthinkable. These philosophical and prac-
tical objections began to crumble with the advent of modern computing.

Permutation testing is one of the many seminal ideas in statistics intro-
duced by Fisher [11]. Despite the fact that permutation tests have flour-
ished in biomedical research, they receive little mention in most statistics
courses. This educational oversight stems from three sources. First, per-
mutation tests involve little elegant mathematics and rely on brute force
computation. Second, the exchangeability hypothesis on which they depend
is often false. Third, as pure hypothesis tests, they forge only weak con-
nections to parameter estimation and confidence intervals. Despite these
drawbacks, permutation methods belong in the statistics curriculum. They
are simple to explain, require almost no distributional assumptions, and
can be nearly as powerful as parametric analogs in ideal settings.

Part of the mystery of permutation tests revolves around the distinc-
tion between population sampling and randomization [10, 19]. Statistics
courses emphasize population sampling. This is attractive because conclu-
sions drawn from the sample can be generalized to the entire population.
In many biomedical applications, data sets are small, and a nonrandom
sample is purposely randomized to protect against hidden biases.

The bootstrap is an even more versatile tool than permutation test-
ing. Because it avoids normality assumptions and large sample theory, it
perfectly embodies the healthy skepticism of many statisticians. The intro-
duction of the jackknife by Quenouille [25] and Tukey [29] demonstrated
some of the virtues of data resampling. In the last quarter century, Efron’s
bootstrap has largely supplanted the jackknife [7].

In essence, the bootstrap sets up a miniature world parallel to the real
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world where the data originate. Inferences in the bootstrap world are made
by resampling the data with replacement. This enables one to explore the
properties of an estimator such as bias and variance. The bootstrap corre-
spondence principle allows one to transfer these findings from the bootstrap
world back to the real world. In the early days of the bootstrap when com-
puting was still relatively expensive, Efron and others set guidelines for the
minimum number of bootstrap samples for safe inference. In view of the
speed of current computers, it seems better to take a more experimental
attitude and continue simulating until inferences stabilize. For this reason,
we refrain from recommending bootstrap sample sizes.

24.2 Permutation Tests

In designing permutation tests, statisticians such as Fisher and Pitman
[22, 23, 24] were guided by their experience with parametric models. There
are many permutation analogs of likelihood ratio tests. Permutation tests
differ from parametric tests in how the distribution of the test statistic
is evaluated. Asymptotic distributions are dropped in favor of exact dis-
tributions conditional on the sample. The idea is best introduced in the
concrete setting of the two-sample t-test popular in classical statistics. The
t-distribution arises when the measured variable is normally distributed in
each sampled population. If the variable is far from normally distributed,
a nonparametric test is a good alternative. Tests based on ranks are often
recommended, but the permutation t-test can be more powerful.

Suppose the observations from population 1 are labeled x1, . . . , xm, and
the observations from population 2 are labeled y1, . . . , yn. The sample
means x̄ and ȳ should not differ much if the variable has the same dis-
tribution in the two populations. Accordingly, the difference T = x̄− ȳ is a
reasonable test statistic. In permutation testing, we concatenate the obser-
vations into one long sequence z1, . . . , zm+n and assume under the null hy-
pothesis that all permutations of the data vector z are equally likely. These
permutations generate

(
m+n
m

)
equally likely versions of the test statistic

T . In evaluating T , z1, . . . , zm replace x1, . . . , xm, and zm+1 , . . . , zm+n re-
place y1, . . . , yn. The p-value attached to the observed value Tobs is just the
fraction of permuted vectors z with |T | ≥ |Tobs|. If the number of combina-
tions

(
m+n
m

)
is not too large, one can enumerate all of them and compute

the exact p-value; otherwise, one can randomly sample permutations and
approximate the exact p-value by the sample proportion.

When the simulation route is taken, one should indicate the precision of
the approximate p-value. If k random permutations are sampled and p is
the true p-value, then the sample proportion p̂ has mean p and variance
σ2
k = k−1p(1 − p). For k large, the coverage probability of the interval

(p̂ − 2σ̂k, p̂ + 2σ̂k) is about 95%. In interpreting p-values, two cautions
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should be borne in mind. First, the set of possible p-values is discrete with
jumps of size 1/

(
m+n
m

)
. Obviously, this limitation is more of an issue for

small samples. Second, the width of the 95% confidence interval is inversely
proportional to

√
k. This fact makes it difficult to approximate very small

p-values accurately. Many practitioners of permutation testing include the
observed statistic Tobs as one of the sample statistics in computing p̂. If
the data conform to the null hypothesis, this action is certainly legitimate.
However, if the data do not conform, then the p-value is slightly inflated,
and the test is conservative. Inclusion or exclusion is largely a matter of
taste. Our examples exclude the observed statistic.

Because permutation tests rely so heavily on random permutations, it is
worth mentioning how to generate a random permutation π on {1, . . . , n}.
The standard algorithm starts with an arbitrary permutation π. It then
redefines π1 by choosing a random integer j between 1 and n and swapping
π1 and πj. Once π1, . . . , πi have been redefined, it chooses a random integer
j between i+1 and n and swaps πi+1 and πj. A total of n−1 such random
swaps completely redefine π.

TABLE 24.1. Midge Morphological Data

Amerohelea fasciata Amerohelea pseudofasciata
Wing Antenna Wing Antenna
Length Length Length Length

1.72 1.24 1.78 1.14
1.64 1.38 1.86 1.20
1.74 1.36 1.96 1.30
1.70 1.40 2.00 1.26
1.82 1.38 2.00 1.28
1.82 1.48 1.96 1.18
1.90 1.38
1.82 1.54
2.08 1.56

Example 24.2.1 Distinguishing Two Midge Species

Our first example considers the midge data of Grogan and Wirth [14].
In an attempt to differentiate the two related species Amerohelea fasci-
ata and Amerohelea pseudofasciata, Grogan and Wirth measured several
morphological features, including the wing lengths and antenna lengths
featured in Table 24.1. The permutation t-tests for wing length and an-
tenna length have approximate p-values of 0.0697 and 0.0023, respectively,
based on 100,000 random permutations. The corresponding 95% confidence
intervals are (0.0681, 0.0713) and (0.0020, 0.0026). In this case, there are
only

(
15
9

)
= 5005 possible combinations, and complete enumeration of all
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relevant combinations is clearly possible. Chapter 3 of the reference [20]
discusses efficient algorithms for this task.

Antenna length alone discriminates between the two species, but the
borderline significance of wing length suggests that a bivariate test might
be even more significant. Because the two measurements are correlated,
the appropriate classical test employs Hotelling’s two-sample T 2 statistic.
Assuming normally distributed observations, the test statistic follows an
F distribution under the null hypothesis. Passing to the corresponding
permutation test obviates the normality assumption. Up to an irrelevant
constant, the test statistic is now defined by T 2 = (x̄ − ȳ)tW−1(x̄ − ȳ),
where

W =

m∑

i=1

(xi − x̄)(xi − x̄)t +

n∑

j=1

(yj − ȳ)(yj − ȳ)t

and each observation xi or yi has two components. The approximate p-
value falls to 0.00015 for the permutation version of Hotelling’s test with
100,000 random permutations. The corresponding 95% confidence interval
(0.00007, 0.00023) covers the number 1/5005 = 0.00020, and we can safely
conclude that the natural order of the data gives the most extreme test
statistic.

Example 24.2.2 The One-Way Layout and Reading Speeds

In the one-way layout, there are k samples of sizes n1, . . . , nk with unknown
means µ1, . . . , µk and a common unknown variance σ2. The null hypothesis
postulates that the means coincide as well. Let yij denote the jth observa-
tion from population i and n =

∑n
i=1 the total sample size. Assuming the

yij are normally distributed, the likelihood ratio test of the null hypothesis
takes the difference of the two statistics

min
µ

k∑

i=1

ni∑

j=1

(yij − µ)2 =

k∑

i=1

ni∑

j=1

y2
ij − nȳ2

and

k∑

i=1

min
µi

ni∑

j=1

(yij − µi)
2 =

k∑

i=1

ni∑

j=1

y2
ij −

k∑

i=1

niȳ
2
i ,

where ȳi = n−1
i

∑ni

j=1 yij . In the permutation setting, we omit irrelevant
constants and define the test statistic

S =

k∑

i=1

niȳ
2
i .

The sample space consists of all permutations of the vector z obtained
by concatenating the outcome vectors for the k different populations. In
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recomputing S, the first n1 entries of z replace y11, . . . , y1n1 , the next n2

entries replace y21, . . . , y2n2 , and so forth. Large values of S reject the null
hypothesis.

TABLE 24.2. Reading Speeds and Typeface Styles

Typeface Style
1 2 3

135 175 105
91 130 147

111 514 159
87 283 107

122 194

Table 24.2 presents data of Bradley [3] on the relationship between read-
ing speed and typeface style. The measured variables are reading speeds
for 14 subjects randomly assigned to three typeface styles. With 100,000
random permutations, we estimate the p-value of no effect of typeface as
0.0111 with a 95% confidence interval of (0.0104, 0.0117).

Example 24.2.3 Exact Tests of Independence in Contingency Tables

To illustrate permutation testing in a discrete setting, we now turn to the
problem of testing independence in large sparse contingency tables [18].
Consider a table with n multivariate observations scored on m factors. We
will denote a typical cell of the table by a multi-index i = (i1, . . . , im), where
ij represents the level of factor j in the cell. If the probability associated
with level k of factor j is pjk, then under the assumption of independence
of the various factors, a multivariate observation falls in cell i = (i1, . . . , im)
with probability

pi =

m∏

j=1

pjij .

Furthermore, the cell counts {ni} from the sample follow a multinomial
distribution with parameters (n, {pi}).

For the purposes of testing independence, the probabilities pjk are nui-
sance parameters. In exact inference, one conditions on the marginal counts
{njk}k of each factor j. For j fixed these follow a multinomial distribution
with parameters (n, {pjk}k). Because marginal counts are independent from
factor to factor under the null hypothesis, the conditional distribution of
the cell counts is

Pr({ni} | {njk}) =

(
n

{ni}
)∏

i
pni

i∏m
j=1

(
n

{njk}k

)∏
k(pjk)

njk
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=

(
n

{ni}
)

∏m
j=1

(
n

{njk}k

) . (24.1)

One of the pleasant facts of exact inference is that the multivariate Fisher-
Yates distribution (24.1) does not depend on the marginal probabilities
pjk. Problem 4 indicates how to compute the moments of the distribution
(24.1).

We can also derive the Fisher-Yates distribution by a counting argu-
ment involving a related but different sample space. Consider an m × n
matrix whose rows correspond to factors and whose columns correspond to
the multivariate observations attributed to the different cells. For instance
with three factors, the column vector (a1, b3, c2)

t represents an observation
with level a1 at factor 1, level b3 at factor 2, and level c2 at factor 3. By
assumption at factor j there are njk observations representing level k. If
we uniquely label each of these n =

∑
k njk observations, then there are n!

distinguishable permutations of the level labels in row j. The uniform sam-
ple space consists of the (n!)m matrices derived from the n! permutations
of each of the m rows. Each such matrix is assigned probability 1/(n!)m.
For instance, if we distinguish duplicate labels by a superscript ∗, then the
3 × 4 matrix



a1 a2 a∗1 a∗2
b3 b1 b∗1 b2
c2 c1 c3 c∗2


 (24.2)

for m = 3 factors and n = 4 multivariate observations represents one out
of (4!)3 equally likely matrices and yields the nonzero cell counts

na1b3c2 = 1

na2b1c1 = 1

na1b1c3 = 1

na2b2c2 = 1.

To count the number of matrices consistent with a cell count vector {ni},
note that the n multivariate observations can be assigned to the columns
of a typical matrix from the uniform space in

(
n

{ni}
)

ways. Within each

such assignment, there are
∏
k njk! consistent permutations of the labels

at level j; over all levels, there are
∏m
j=1

∏
k njk! consistent permutations.

It follows that the cell count vector {ni} has probability

Pr({ni}) =

(
n

{ni}
)∏m

j=1

∏
k njk!

(n!)m

=

(
n

{ni}
)

∏m
j=1

(
n

{njk}k

) .
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In other words, we recover the Fisher-Yates distribution.
The uniform sample space also suggests a device for random sampling

from the Fisher-Yates distribution [18]. If we arrange our n multivariate
observations in an m × n matrix as just described and randomly permute
the entries within each row, then we get a new matrix whose cell counts
are drawn from the Fisher-Yates distribution. For example, appropriate
permutations within each row of the matrix (24.2) produce the matrix



a1 a∗1 a2 a∗2
b1 b∗1 b2 b3
c2 c∗2 c1 c3




with nonzero cell counts

na1b1c2 = 2

na2b2c1 = 1

na2b3c3 = 1.

Iterating this permutation procedure r times generates an independent,
random sample Z1, . . . , Zr of tables from the Fisher-Yates distribution. In
practice, it suffices to permute all rows except the bottom row m because
cell counts do not depend on the order of the columns in a matrix such
as (24.2). Given the observed value Tobs of a test statistic T for inde-
pendence, we estimate the corresponding p-value by the sample average
1
r

∑r
l=1 1{T (Zl)≥Tobs}.

In Fisher’s exact test, the statistic T is the negative of the Fisher-Yates
probability (24.1). Thus, the null hypothesis of independence is rejected if
the observed Fisher-Yates probability is too low. The chi-square statistic∑

i
[ni−E(ni)]

2/E(ni) is also reasonable for testing independence, provided
we estimate its p-value by random sampling and do not foolishly rely on the
standard chi-square approximation. As noted in Problem 4, the expectation
E(ni) = n

∏m
j=1(njij/n).

Lazzeroni and Lange [18] apply this Monte Carlo method to test for
linkage equilibrium (independence) at six linked genetic markers on chro-
mosome 11. Here each marker locus is considered a factor, and each allele
of a marker is considered a level. An observation of a chromosome with
a particular sequence of alleles at the marker loci is called a haplotype.
With only 180 random haplotypes and 2, 2, 10, 5, 3, and 2 alleles at the six
loci, the resulting contingency table qualifies as sparse. Large sample chi-
square tests strongly suggest linkage disequilibrium (dependence). Monte
Carlo exact tests do not reach significance at the 0.1 level and correct this
misimpression.
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24.3 The Bootstrap

Like most good ideas, the principle behind the bootstrap is simple. Suppose
for the sake of argument that we draw an i.i.d. sample x = (x1, . . . , xn) from
some unknown probability distribution F (x). If we want to understand the
sampling properties of a complicated estimator T (x) of a parameter (or
functional) t(F ) of F (x), then we study the properties of the correspond-
ing estimator T (x∗) on the space of i.i.d. samples x∗ = (x∗1, . . . , x

∗
n) drawn

from a data-based approximation F ∗
n(x) to F (x). In the case of the non-

parametric bootstrap, F ∗
n(x) is the empirical distribution function, putting

weight 1/n on each of the n observed points x1, . . . , xn. In the case of the
parametric bootstrap, we assume a parametric form for Fα(x), estimate the
parameter α from the data by α̂, and then sample from F ∗

n(x) = Fα̂(x).
The bootstrap correspondence principle suggests that not only do T (x) and
T (x∗) have similar distributions, but equally important in practice, that
T (x) − t(F ) and T (x∗) − t(F ∗

n) have similar distributions. In many exam-
ples, the identity t(F ∗

n) = T (x) holds. In ordinary English, the functional t
applied to the approximate distribution F ∗

n equals the estimator T applied
to the actual sample.

These insights are helpful, but finding the theoretical sampling distri-
bution of T (x∗) is usually impossible. Undeterred by this fact, Efron [7]
suggested that we approximate the distribution and moments of T (x∗) by
independent Monte Carlo sampling, in effect substituting computing brawn
for mathematical weakness. As we have seen in Chapter 22, there are in-
efficient and efficient ways of carrying out Monte Carlo estimation. One
of the themes of this chapter is efficient Monte Carlo estimation for the
nonparametric bootstrap, the more interesting and widely applied version
of the bootstrap. Limitations of space prevent us from delving more deeply
into the theoretical justifications of the bootstrap. The underlying theory
involves contiguity of probability measures and Edgeworth expansions. The
papers [1, 2] and books [16, 27] are good places to start for mathematically
sophisticated readers. Efron and Tibshirani [9] and Davison and Hinkley
[5] provide practical guides to the bootstrap that go well beyond the ab-
breviated account presented here.

24.3.1 Range of Applications

In the bootstrap literature, the scope of the word “parameter” is broad-
ened to include any functional t(F ) of a probability distribution F (x). The
moments and central moments

µk(F ) =

∫
xkdF (x)

ωk(F ) =

∫
[x− µ1(F )]kdF (x)
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are typical parameters whenever they exist. The pth quantile

ξp(F ) = inf{x:F (x) ≥ p}

is another commonly encountered parameter. If we eschew explicit para-
metric models, then the natural estimators of these parameters are the
corresponding sample statistics

µ̂k(x) = µk(F
∗
n) =

1

n

n∑

i=1

xki

ω̂k(x) = ωk(F
∗
n) =

1

n

n∑

i=1

(xk − x̄)k

ξ̂p(x) = ξp(F
∗
n) = inf{x:F ∗

n(x) ≥ p}.

By construction, these estimators obey the rule T (x) = t(F ∗
n) and conse-

quently are called “plug-in” estimators by Efron and Tibshirani [9]. The
unbiased version of the sample variance,

s2n =
1

n− 1

n∑

i=1

(xi − x̄)2 =
n

n− 1
ω̂2(x),

fails to qualify as a plug-in estimator. In this chapter we consider only
plug-in estimators.

24.3.2 Estimation of Standard Errors

As a motivating example for the bootstrap, Efron [7] discusses calculation

of the variance of the sample median ξ̂1/2(x) = ξ1/2(F
∗
n). Classical large

sample theory implies that

Var[ξ 1
2
(F ∗
n)] � 1

4nf(ξ 1
2
)2
,

where f(x) = F ′(x) is the density of F (x) [26]. However, f(x) is hard to
estimate accurately even in large samples. The bootstrap provides a way
out of this dilemma that avoids direct estimation of f(ξ1/2).

In general, the bootstrap correspondence principle suggests that we esti-
mate the variance of an estimator T (x) by the variance of the correspond-
ing estimator T (x∗) on the bootstrap sample space. Because the variance
Var(T )∗ of T (x∗) is usually difficult to calculate exactly, we take indepen-
dent bootstrap samples x∗

b = (x∗b1, . . . , x
∗
bn) for b = 1, . . . , B and approxi-

mate Var(T )∗ by

V̂ar(T )∗ =
1

B − 1

B∑

b=1

[T (x∗
b) − Ê(T )∗]2,
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TABLE 24.3. Law School Admission Data

LSAT GPA LSAT GPA

576 3.39 651 3.36
635 3.30 605 3.13
558 2.81 653 3.12
578 3.03 575 2.74
666 3.44 545 2.76
580 3.07 572 2.88
555 3.00 594 2.96
661 3.43

where

Ê(T )∗ =
1

B

B∑

b=1

T (x∗
b).

If we can calculate E(T )∗ exactly, then in the approximation V̂ar(T )∗ we
substitute E(T )∗ for the sample mean Ê(T )∗ and replace the divisor B− 1
by B. Of course, to derive the estimated standard deviation, one simply
takes the square root of the estimated variance.

For example, Table 24.3 lists average LSAT and GPA admission scores
for 15 representative American law schools [9]. The median LSAT score
is 580.0. Straightforward random sampling with replacement generates the
median histogram of Figure 24.1. The 1000 bootstrap values depicted there
have mean 590.6 and standard deviation 20.5. Hence, under the correspon-
dence principle, the approximate standard deviation of the sample median
is also 20.5.

24.3.3 Bias Reduction

Provided users bear in mind that it can increase the variability of an esti-
mator, bias reduction is another valuable application of the bootstrap. We
approximate the bootstrap bias

bias∗ = E[T (x∗)] − t(F ∗
n)

by the Monte Carlo average

b̂ias
∗
B =

1

B

B∑

b=1

T (x∗
b ) − t(F ∗

n). (24.3)

In accord with the bootstrap correspondence principle, the revised estima-
tor

T (x) − b̂ias
∗
B = 2T (x) − 1

B

B∑

b=1

T (x∗
b) (24.4)
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FIGURE 24.1. Histogram of 1000 Bootstrap Medians of 15 LSAT Scores

usually has much less bias than T (x). For the sample median in the law
school data, the bootstrap bias (24.3) is 10.1, and the bias-adjusted esti-
mate (24.4) is 569.9. As a second example, the sample correlation between
LSAT and GPA is ρ̂ = 0.776. The 1000 bootstrap samples suggest that ρ̂
has the small bias -0.004 and the standard deviation 0.140.

24.3.4 Confidence Intervals

Our third application of the bootstrap involves confidence intervals. Recall
that a set C(x) = C(x1, . . . , xn) is a 1−α level confidence set for a param-
eter t(F ) if Pr[t(F ) ∈ C(x)] ≥ 1 − α. A good share of classical theoretical
statistics is devoted to the construction and interpretation of confidence
intervals. In his initial development of the bootstrap, Efron [7] introduced
the bootstrap percentile confidence interval. Let Gn and G∗

n denote the
distribution functions of T (x) and T (x∗), respectively. The bootstrap cor-
respondence principle suggests that the percentiles ξα(Gn) and ξα(G∗

n) are
approximately equal for all α ∈ (0, 1). Thus, the interval

[ξα
2
(G∗

n), ξ1−α
2
(G∗

n)]

should serve as a crude α-level confidence interval for t(F ). In practice, the
probability that the bootstrap percentile interval actually covers t(F ) can
deviate markedly from 1 − α.
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In the bootstrap-t method, we consider the studentized variable

R(x) =
T (x) − t(F )√

V (x)
,

where V (x) is an estimator of the variance of the plug-in estimator T (x)
of t(F ). For instance, T (x) could be the sample mean x̄ = 1

n

∑n
i=1 xi, and

V (x) could be n−1 times the sample variance S2
n = 1

n

∑n
i=1(xi − x̄)2. The

bootstrap analog of the studentized variable is

R(x∗) =
T (x∗) − T (x)√

V (x∗)
.

If Gn and G∗
n now denote the distribution functions of R(x) and R(x∗),

respectively, then the bootstrap correspondence principle suggests that the
percentiles ξα(Gn) and ξα(G∗

n) are approximately equal for all α ∈ (0, 1).
It follows that

Pr
[
t(F ) ≥ T (x) −

√
V (x)ξ1−α(G∗

n)
]

= Pr
[
R(x) ≤ ξ1−α(G∗

n)
]

≈ Pr
[
R(x∗) ≤ ξ1−α(G∗

n)
]

= 1− α.

In other words, T (x) −
√
V (x)ξ1−α(G∗

n) is an approximate level 1 − α
lower confidence bound for t(F ). Unfortunately, the bootstrap-t is also not
a panacea. To use it, we need a good estimator V (x) of the variance of
T (x). Such estimators are not always available. Best results obtain when
R(x∗) = [T (x∗) − T (x)]/

√
V (x∗) is nearly pivotal, that is, depends only

weakly on F (x).
In response to the deficiencies of the percentile and t confidence inter-

vals, Efron [8] crafted an improved version of the percentile interval called
the BCa (bias-corrected and accelerated) interval. We now briefly discuss
this interval, giving only enough details for implementation. Mathemati-
cal proofs and elaborations of the method can be found in the references
[8, 9, 16, 27]. To motivate the method, let θ = t(F ) and θ̂ = T (x) and
assume that there is an increasing differentiable transformation φ = m(θ)
such that the random variable

φ̂− φ

τ [1 + a(φ− φ0)]
+ z0

is approximately standard normal. Here z0 is the bias correction, a is the
acceleration constant, τ is a scaling constant, and φ0 is a convenient ref-
erence point. We will discuss how to estimate z0 and a in a moment. For-
tunately, m(θ), τ , and φ0 fade into the background, and we can formulate
the confidence interval solely in terms of the function

p(c) = Φ
{
zo +

z0 + Φ[−1](c)

1 − a[z0 + Φ[−1](c)]

}
,



24. Permutation Tests and the Bootstrap 489

where Φ(x) and Φ[−1](x) are the standard normal distribution function and
its inverse. In this notation the BCa confidence interval for θ = t(F ) can
be expressed as

[ξp( α
2 )(G

∗
n), ξp(1−α

2 )(G
∗
n)],

where G∗
n is the distribution function of the bootstrap statistic θ̂∗ = T (x∗).

One typically sets z0 equal to the normal percentile point corresponding
to the fraction of bootstrap statistics falling below the original statistic; in
symbols,

z0 = Φ[−1]
[
#(θ̂∗ < θ̂)/B

]
.

The acceleration is related to the skewness of the jackknife estimates of θ.
Thus, we take

a = −
∑n
i=1(θ(i) − θ̄)3

6[
∑n
i=1(θ(i) − θ̄)2]3/2

,

where θ(i) is the jackknife estimate of θ leaving out observation i and θ̄ is
the average of these n estimates.

Efron and Tibshirani [9] analyze the spatial ability scores Ai displayed in
Table 24.4 for 26 neurologically impaired children. To illustrate the various
bootstrap confidence intervals, they consider the statistic θ = Var(A). The
plug-in estimator

θ̂ =
1

26

26∑

i=1

(Ai − Ā)2, Ā =
1

26

26∑

i=1

Ai

has value 171.5, which is biased downward because we divide by 26 rather
than 25. A bootstrap sample of 10,000 suggests a bias of -7.1. The bias-
adjusted estimate of 178.6 is in remarkable agreement with the usual un-
biased estimate of 178.4 that divides by 25. Efron and Tibshirani compute
90% confidence intervals for φ based on 2000 bootstraps. Their approximate
percentile, bootstrap-t, and BCa intervals are (100.8,233.6), (112.3,314.8),
and (115.8,259.6), respectively. They state a clear preference for the BCa
interval for reasons that we will not pursue here.

TABLE 24.4. Spatial Ability Scores of 26 Neurologically Impaired Children

48 36 20 29 42 42 20 42
22 41 45 14 6 0 33 28
34 4 32 24 47 41 24 26
30 41
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24.3.5 Applications in Regression

In the linear regression model y = Xβ + u, bootstrapping is conducted by
resampling either cases (yi, xi) or residuals ri = yi − ŷi. In bootstrapping
residuals, we sample r∗ = (r∗1, . . . , r

∗
n) from r = (r1, . . . , rn) with replace-

ment and construct the new vector of dependent (or response) variables

y∗ = Xβ̂ + r∗. Recall that the least squares estimator β̂ = (XtX)−1Xty
is unbiased for β provided the errors ui satisfy E(ui) = 0. If, in addi-
tion, the errors are uncorrelated with common variance Var(ui) = σ2, then

Var(β̂) = σ2(XtX)−1. The predicted value of y is obviously defined as

ŷ = Xβ̂.
For the least squares estimator to qualify as a plug-in estimator in boot-

strapping residuals, the condition E(β̂∗) = β̂ must hold. Problem 11 asks
the reader to verify this condition for the intercept model X = (1, Z) under
the above hypotheses. Bootstrap-t confidence intervals for the components
of β are based on the studentized variables (β̂i − βi)/(σ̂

√
wii) and their

bootstrap analogs, where σ̂2 = 1
n

∑n
i=1(yi − ŷi)

2 and wii is the ith diago-
nal entry of (XtX)−1. Bootstrapping cases is more robust to violations of
model assumptions than bootstrapping residuals. Resampling of residuals
can be misleading if there are gross differences in the error variance across
the spectrum of predictor vectors.

In generalized linear models, the parametric bootstrap is the natural
recourse for computing standard errors and confidence intervals. The para-
metric bootstrap entails estimating regression coefficients by maximum
likelihood and resampling responses. For instance, in logistic regression the
estimated regression coefficients determine for each observation the prob-
ability that it is a success or failure. For a bootstrap replicate, one simply
resamples a success or failure with the estimated probability. In Poisson
regression, the estimated regression coefficients supply an estimated mean
for each observation, and for a bootstrap replicate one samples a Poisson
deviate with the given mean.

As a concrete example, consider the AIDS model of Section 14.7. Re-
call that the intercept and slope of the model had estimates of 0.3396
and 0.2565, respectively. The large sample standard errors of these esti-
mates based on inverting the expected information matrix are 0.2512 and
0.0220. The classical 95% confidence intervals for the two parameters are
therefore (-0.1528,0.8320) and (0.2134,0.2996), respectively. By contrast,
1000 bootstrap replicates suggest a standard error of 0.2676 and a 95%
BCa confidence interval of (-0.2264,0.7774) for the intercept. For the slope,
the bootstrap standard error is 0.0234, and the BCa confidence interval is
(0.2169,0.3044). The classical and bootstrap confidence intervals are nearly
the same length, but the bootstrap intercept interval is shifted left, and the
bootstrap slope interval is shifted right.
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24.4 Efficient Bootstrap Simulations

24.4.1 The Balanced Bootstrap

We now turn to methods of reducing Monte Carlo sampling error. The first
of these methods, balanced bootstrap resampling [6], is best illustrated by
an example where simulation is unnecessary. According to the bootstrap
correspondence principle, we estimate the bias of the sample mean x̄ of n
i.i.d. observations x = (x1, . . . , xn) by the Monte Carlo difference

1

B

B∑

b=1

x∗
b − x̄.

By chance alone, this difference often is nonzero. We can eliminate this ar-
tificial bias by adopting nonindependent Monte Carlo sampling. Balanced
bootstrap resampling retains as much randomness in the bootstrap resam-
ples xb as possible while forcing each original observation xi to appear
exactly B times in the bootstrap resamples. The naive implementation
of the balanced bootstrap involves concatenating B copies of the data
(x1, . . . , xn), randomly permuting the resulting data vector v of length nB,
and then taking successive blocks of size n from v for the B bootstrap
resamples.

A drawback of this permutation method of producing balanced boot-
strap resamples is that it requires storage of v. Gleason [13] proposed an
acceptance-rejection algorithm that sequentially creates only one block of
v at a time and therefore minimizes computer storage. We can visualize
Gleason’s algorithm by imagining n urns, with urn i initially filled with B
replicates of observation xi. In the first step of the algorithm, we simply
choose an urn at random and extract one of its replicate observations. This
forms the first observation of the first bootstrap resample. In filling out
the first resample and constructing subsequent ones, we must adjust our
sampling procedure to reflect the fact that the urns may contain different
numbers of observations. Let ci be the number of observations currently left
in urn i, and set c = maxi ci. If there are k nonempty urns, we choose one
of these k urns at random, say the ith, and propose extracting a replicate
xi. Our decision to accept or reject the replicate is determined by selecting
a random uniform deviate U . If U ≤ ci/c, then we accept the replicate;
otherwise, we reject the replicate. When a replicate xi is accepted, ci is
reduced by 1, and the maximum c is recomputed. In practice, recomputa-
tion of c is the most time-consuming step of the algorithm. Gleason [13]
suggests some remedies that require less frequent updating of c.

The balanced bootstrap is best suited to bias estimation. One can im-
pose additional constraints on balanced resampling such as the requirement
that every pair of observations occur the same number of times in the B
bootstrap resamples. These higher-order balanced bootstraps are harder to
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generate, and limited evidence suggests that they are less effective than
other methods of reducing Monte Carlo error [9].

24.4.2 The Antithetic Bootstrap

The method of antithetic resampling discussed in Chapter 23 is also per-
tinent to the bootstrap. Hall [15, 16] suggests implementing antithetic re-
sampling by replacing scalar i.i.d. observations (x1, . . . , xn) by their order
statistics x(1) ≤ · · · ≤ x(n). He then defines the permutation π(i) = n−i+1
that reverses the order statistics; in other words, x(π[1]) ≥ · · · ≥ x(π[n]).
For any bootstrap resample x∗ = (x∗1, . . . , x

∗
n), we can construct a corre-

sponding antithetic bootstrap resample x∗∗ by substituting x(π[i]) for every
appearance of x(i) in x∗. Often it is intuitively clear that the identically
distributed statistics T ∗ = T (x∗) and T ∗∗ = T (x∗∗) are negatively corre-
lated. Negative correlation makes it advantageous to approximate the mean
E(T ∗) by taking sample averages of the statistic (T ∗ + T ∗∗)/2.

If T (x) is a monotonic function of the sample mean x̄, then negative
correlation is likely to occur. For example, when T ∗ = T (x̄∗) is symmetric
about its mean, the residuals T ∗ − E(T ∗) and T ∗∗ − E(T ∗) are always of
opposite sign, and a large positive value of one residual is matched by a
large negative value of the other residual. This favorable state of affairs
for the antithetic bootstrap persists for statistics T ∗ = T (x̄∗) having low
skewness.

For a vector sample (x1, . . . , xn), the order statistics x(1) ≤ · · · ≤ x(n) no
longer exist. However, for a statistic T (x̄) depending only on the sample
mean, we can order the observations by their deflection of T (x̄∗) from T (x̄).
To a first approximation, this deflection is measured by

T (xi) − T (x̄) ≈ dT (x̄)(xi − x̄),

where dT (x) is the differential of T (x). Hall [15, 16] recommends imple-
menting antithetic resampling after ordering the xi by their approximate
deflections dT (x̄)(xi − x̄).

24.4.3 Importance Resampling

In standard bootstrap resampling, each observation xi is resampled uni-
formly with probability 1/n. In some applications it is helpful to imple-
ment importance sampling by assigning different resampling probabilities
pi to the different observations xi [4, 17]. For instance, with univariate ob-
servations (x1, . . . , xn), we may want to emphasize one of the tails of the
empirical distribution. If we elect to resample nonuniformly according to
the multinomial distribution with proportions p = (p1, . . . , pn)

t, then the
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equality

E[T (x∗)] = Ep


T (x∗)

(
n

m∗
1 ···m∗

n

)(
1
n

)n

(
n

m∗
1 ···m∗

n

)∏n
i=1 p

m∗
i

i




= Ep

[
T (x∗)

n∏

i=1

(npi)
−m∗

i

]

connects the uniform expectation and the importance expectation on the
bootstrap resampling space. Herem∗

i represents the number of times sample
point xi appears in x∗. Thus, we can approximate the mean E[T (x∗)] by
taking a bootstrap average

1

B

B∑

b=1

T (x∗
b)

n∏

i=1

(npi)
−m∗

bi (24.5)

with multinomial sampling relative to p. This Monte Carlo approximation
has variance

1

B

{
Ep

[
T (x∗)2

n∏

i=1

(npi)
−2m∗

bi

]
− E

[
T (x∗)

]2}
,

which we can minimize with respect to p by minimizing the second moment

Ep

[
T (x∗)2

∏n
i=1(npi)

−2m∗
bi

]
.

Hall [16] suggests approximately minimizing the second moment by tak-
ing a preliminary uniform bootstrap sample of sizeB1. Based on the prelim-

inary resample, we approximate Ep

[
T (x∗)2

∏n
i=1(npi)

−2m∗
bi

]
by the Monte

Carlo average

s(p) =
1

B1

B1∑

b=1

T (x∗
b )

2
n∏

i=1

(npi)
−2m∗

bi

n∏

i=1

(npi)
m∗

bi

=
1

B1

B1∑

b=1

T (x∗
b )

2
n∏

i=1

(npi)
−m∗

bi . (24.6)

The function s(p) serves as a surrogate for Ep

[
T (x∗)2

∏n
i=1(npi)

−2m∗
bi

]
. It

is possible to minimize s(p) on the open unit simplex

U =
{
p :

n∑

i=1

pi = 1, pi > 0, 1 ≤ i ≤ n
}

by standard methods.
For instance, we can apply the adaptive barrier method sketched in Chap-

ter 11 for moderately sized n. The method of geometric programming offers
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another approach [21]. For large n the combination of recursive quadratic
programming and majorization sketched in Problem 16 works well. All
methods are facilitated by the convexity of s(p). Convexity is evident from
the form

d2s(p) =
1

B1

B1∑

b=1

T (x∗
b )

2
n∏

i=1

(npi)
−m∗

bi (24.7)

×








m∗
b1

p1
...

m∗
bn

pn



( m∗

b1

p1
· · · m∗

bn

pn

)
+




m∗
b1

p21
· · · 0

...
. . .

...
0 · · · m∗

bn

p2n








of the second differential. Problems 14 and 15 ask the reader to verify this
formula and check that s(p) is strictly convex and attains its minimum on
U provided there exists for each index i an index b such that T (x∗

b) 6= 0 and
m∗
bi 6= 0. When this condition fails, one or more optimal pi are estimated

as 0. This makes it impossible to resample some observations and suggests
that the constraint pi ≥ ε > 0 be imposed for all i and some small ε.

Once the optimal vector popt is calculated, we take a second bootstrap
resample of size B2 with multinomial probabilities popt and compute the
sample average (24.5) with B2 replacing B. Call the result A2. Given the
outcomes of the first bootstrap, we can also easily compute a sample aver-
age A1 approximating E[T (x∗)] under uniform resampling. Each of these
sample averages has an attached sample variance Vi. The convex combina-
tion

V2

V1 + V2
A1 +

V1

V1 + V2
A2

is unbiased for E[T (x∗)] and should have nearly minimal variance. (See
Problem 17.)

The obvious strengths of Hall’s strategy of importance sampling are its
generality, its adaptive nature, and its use of stage-one resampling for ap-
proximating both the importance density and the sought-after expectation.
In practice, the strategy has at least two drawbacks. First, it entails solving
a nontrivial optimization problem as an intermediate step. Second, Hall [16]
argues theoretically that the method offers little advantage in approximat-
ing certain expectations such as central moments. However, Hall’s method
appears to yield substantial dividends in approximating distribution func-
tions and tail probabilities.

To illustrate importance sampling in action, we now consider Monte
Carlo approximation of the left-tail probability Pr(ρ∗ ≤ 0.4) for the cor-
relation coefficient in the law school data. In B = 500 ordinary bootstrap
replicates, the event ρ∗ ≤ 0.4 occurs only 11 times. Thus, we are fairly far
out in the left tail. Minimizing the importance criterion (24.6) for these 500
replicates yields an optimal importance probability vector with minimum
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0.0134 (school 5) and maximum 0.2085 (school 1). Figure 24.2 plots running
Monte Carlo averages approximating the left-tail probability Pr(ρ∗ ≤ 0.4)
based on the ordinary bootstrap and the importance bootstrap. Each curve
in the figure extends from b = 103 to b = 106 bootstrap resamples. Although
importance sampling (dark line) appears to converge faster, it is unclear
whether the sample averages of either method have fully stabilized. Other
examples offer a more dramatic contrast.
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FIGURE 24.2. Running Monte Carlo Averages for Pr(ρ∗ ≤ 0.4)

24.5 Problems

1. Consider a random sample (x1, y1), . . . , (xn, yn) from a bivariate dis-
tribution F (x, y). Devise a permutation test of the null hypothesis
that the two components are independent. Program the test and ap-
ply it to real or simulated data. (Hint: Use the sample covariance
function.)

2. The permutation t-test emphasizes sample means and ignores sample
variances. Devise a permutation test to check for equality of variances.
Program the test and apply it to real or simulated data.

3. The two-way layout without repetition deals with an m × n matrix
of observations (yij) from independent random variables Yij having
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common variance σ2 and means E(Yij) = µ+ αi + βj subject to the
constraints

∑
i αi =

∑
j βj = 0. The obvious estimate of µ is the

sample mean ȳ, so without loss of generality drop µ from the model
and assume ȳ = 0. Using known facts from the analysis of variance,
argue that

T =

m∑

i=1

y2
i. =

m∑

i=1

[ n∑

j=1

yij

]2

is a reasonable statistic for testing the null hypothesis that all αi = 0.
Program a permutation test based on this statistic, and apply it to
real or simulated data. (Hint: If the deviations from the means are
identically distributed, then permutation within each column should
not change the distribution of the table.)

4. To compute moments under the Fisher-Yates distribution (24.1), let

ur = u(u− 1) · · · (u− r + 1)

be a falling factorial power, and let {li} be a collection of nonnegative
integers indexed by the cell labels i = (i1 . . . , im). Setting l =

∑
i
li

and ljk =
∑

i
1{ij=k}li, show that

E
(∏

i

n
l
i

i

)
=

∏m
j=1

∏
k(njk)

ljk

(nl)m−1
.

In particular, verify that E(ni) = n
∏m
j=1(njij/n).

5. Table 24.5 gives tallies of eye color and hair color on 592 people [28].
Test for independence of the two attributes in this contingency table
by implementing a permutation version of either Fisher’s exact test
or a chi-square test.

TABLE 24.5. Eye Color versus Hair Color for 592 People

Eye Color Black Brunette Red Blond

Brown 68 119 26 7
Blue 20 84 17 94
Hazel 15 54 14 10
Green 5 29 14 16

6. If the n observations {x1, . . . , xn} are distinct, then we can repre-
sent a bootstrap resample by an n-tuple (m1, . . . , mn) of nonnegative
integers, where mi indicates the number of repetitions of xi in the
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resample. Show that there are
(
2n−1
n

)
such n-tuples. If the n-tuple

(m1, . . . , mn) is assigned multinomial probability
(

n
m1···mn

)
n−n, then

further demonstrate that the most probable n-tuple is (1, . . . , 1). Ap-
ply Stirling’s formula and show that

(
2n− 1

n

)
� 22n−1

√
nπ(

n

1 · · ·1

)(
1

n

)n
�

√
2nπe−n.

Finally, prove that a given xi appears in a bootstrap resample with
approximate probability 1 − e−1 ≈ 0.632.

7. Problem 6 indicates that the most likely bootstrap resample from
n distinct observations {x1, . . . , xn} has probability pn �

√
2nπe−n.

Show that b bootstrap samples are all distinct with probability

qnb ≥ (1 − pn)(1 − 2pn) · · · (1 − [b− 1]pn)

≥ 1 − 1

2
b(b− 1)pn.

For n = 20 and b = 2000, compute the bound qnb ≥ 0.954 [16].

8. Replicate any of the bootstrapping numerical examples discussed in
this chapter. Your answers will differ because of random sampling.
Either Matlab or R is a good environment for bootstrapping.

9. Suppose X = (Y, Z) is a bivariate random vector with independent
components Y and Z. If you are given n independent realizations
x1, . . . , xn of X, what alternative distribution would be a reasonable
substitute for the empirical distribution in bootstrap resampling?

10. In a certain medical experiment summarized in Table 24.6, mice were
assigned to either a treatment or control group, and their survival
times recorded in days [9]. Compute a 90% bootstrap-t confidence
interval for the mean of each group.

11. In the linear regression model of Section 24.3.5, prove that the con-
dition E(β̂∗) = β̂ holds for the intercept model X = (1, Z) under
bootstrapping residuals. (Hint: Show that 1tr̂ = 0, where r̂ is the
residual vector.)

12. If n = 2m − 1 is odd, and the observations {x1, . . . , xn} are dis-
tinct, then the sample median x(m) is uniquely defined. Prove that a
bootstrap resample {x∗1, . . . , x∗n} has median x∗(m) with distribution
function

G∗
n(x(k)) = Pr(x∗(m) ≤ x(k)) =

n∑

j=m

(
n

j

)
kj(n− k)n−j

nn
.
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TABLE 24.6. Mouse Survival Data

Group Survival Time Group Survival Time

Treatment 94 Control 10
Treatment 38 Control 40
Treatment 23 Control 104
Treatment 197 Control 51
Treatment 99 Control 27
Treatment 16 Control 146
Treatment 141 Control 30
Control 52 Control 46

By definition, the quantile ξα(G∗
n) of x∗(m) is the smallest order statis-

tic x(k) satisfying G∗
n(x(k)) ≥ α. The bootstrap percentile method

gives ξα(G∗
n) as an approximate 1−α lower confidence bound for the

true median.

13. The bootstrap may yield nonsense results in some circumstances.
Generate a random sample from the standard Cauchy distribution.
Estimate the standard error and bias of the sample mean. Alterna-
tively, generate a random sample from the uniform distribution on
(0, θ). Estimate the standard error and bias of the sample maximum
[12].

14. Calculate the second differential (24.7) of the function s(p) defined
in equation (24.6).

15. Show that the function s(p) in equation (24.6) is convex on the open
simplex U = {p :

∑n
i=1 pi = 1, pi > 0, i = 1, . . . , n}. Prove in

addition that s(p) is strictly convex and attains its minimum on U
provided there exists for each index i an index b such that T (x∗

b) 6= 0
and m∗

bi 6= 0.

16. When the number of observations n is large, a combination of meth-
ods works best for minimizing the importance function s(p) defined
by equation (24.6). Let q be the current point in an iterative search
for the minimum, and define

cb = T (x∗b)
2

n∏

j=1

(nqj)
−m∗

bj

vb =
(m∗

b1

q1
, . . . ,

m∗
bn

qn

)t

Db = diag
(m∗

b1

q21
, . . . ,

m∗
bn

q2n

)
.
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In this notation, s(p) has the second-order Taylor expansion

s(p) ≈ s(q) + ds(q)(p − q) +
1

2
(p− q)td2s(q)(p − q) (24.8)

around q. Apply the Cauchy-Schwarz inequality and show that the
quadratic (24.8) is majorized by the simpler quadratic

1

2
ptDp − (u+Dq)tp+ e,

where u =
∑

b cbvb, D =
∑

b cb(Db + ‖vb‖2
2In), and e is an irrelevant

constant. The strategy is now to minimize this surrogate function
subject to the additional safeguards pi ≥ ε for all i. Demonstrate
that the surrogate function can be recast as

1

2
‖r − (D−1/2u+D1/2q)‖2

2

by making the change of variable r = D1/2p. In the new coordinates,

the constraints are 1tD−1/2r = 1 and ri ≥ D
1/2
ii ε for all i. To find the

next iterate p, one should minimize the surrogate as a function of r
and transform the result back to p. Explain how Michelot’s algorithm
described in Problem 13 of Chapter 16 applies.

17. Suppose two independent random variables Y1 and Y2 have the same
mean but different variances v1 and v2. Demonstrate that the convex
combination βY1 + (1 − β)Y2 with minimal variance is achieved by
taking β = v2/(v1 + v2).
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Finite-State Markov Chains

25.1 Introduction

Applied probability and statistics thrive on models. Markov chains are one
of the richest sources of good models for capturing dynamical behavior with
a large stochastic component [2, 3, 7, 9, 13, 18, 19, 21]. Certainly, every
research statistician should be comfortable formulating and manipulating
Markov chains. In this chapter we give a quick overview of some of the
relevant theory of Markov chains in the simple context of finite-state chains.
We cover both discrete-time and continuous-time chains in what we hope
is a lively blend of applied probability, graph theory, linear algebra, and
differential equations. Since this may be a first account for many readers,
we stress intuitive explanations and computational techniques rather than
mathematical rigor.

To convince readers of the statistical utility of Markov chains, we intro-
duce the topic of hidden Markov chains [1, 5, 27]. This brings in Baum’s
forward and backward algorithms and inhomogeneous chains. Limitations
of space prevent us from considering specific applications. Interested read-
ers can consult our listed references on speech recognition [27], physiological
models of single-ion channels [10], gene mapping by radiation hybrids [23],
and alignment of multiple DNA sequences [31].

25.2 Discrete-Time Markov Chains

For the sake of simplicity, we will only consider chains with a finite state
space [2, 9, 13, 18, 19]. The movement of such a chain from epoch to
epoch (equivalently, generation to generation) is governed by its transition
probability matrix P = (pij). If Zn denotes the state of the chain at epoch
n, then pij = Pr(Zn = j | Zn−1 = i). As a consequence, every entry of
P satisfies pij ≥ 0, and every row of P satisfies

∑
j pij = 1. Implicit in

the definition of pij is the fact that the future of the chain is determined
by its present regardless of its past. This Markovian property is expressed
formally by the equation

Pr(Zn = in | Zn−1 = in−1, . . . , Z0 = i0) = Pr(Zn = in | Zn−1 = in−1).

The n-step transition probability p
(n)
ij = Pr(Zn = j | Z0 = i) is given

by the entry in row i and column j of the matrix power P n. This follows
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because the decomposition

p
(n)
ij =

∑

i1

· · ·
∑

in−1

pii1 · · ·pin−1j

over all paths i → i1 → · · · → in−1 → j corresponds to matrix multipli-
cation. A question of fundamental theoretical importance is whether the
matrix powers P n converge. If the chain eventually forgets its starting state,
then the limit should have identical rows. Denoting the common limiting
row by π, we deduce that π = πP from the calculation



π
...
π


 = lim

n→∞
P n+1

=
(

lim
n→∞

P n
)
P

=



π
...
π


P.

Any probability distribution π on the states of the chain satisfying the
condition π = πP is termed an equilibrium (or stationary) distribution
of the chain. For finite-state chains, equilibrium distributions always exist
[9, 13]. The real issue is uniqueness.

Mathematicians have attacked the uniqueness problem by defining ap-
propriate ergodic conditions. For finite-state Markov chains, two ergodic
assumptions are invoked. The first is aperiodicity; this means that the

greatest common divisor of the set {n ≥ 1 : p
(n)
ii > 0} is 1 for every state

i. Aperiodicity trivially holds when pii > 0 for all i. The second ergodic
assumption is irreducibility; this means that for every pair of states (i, j),

there exists a positive integer nij such that p
(nij)
ij > 0. In other words,

every state is reachable from every other state. Said yet another way, all
states communicate. For an irreducible chain, Problem 1 states that the
integer nij can be chosen independently of the particular pair (i, j) if and
only if the chain is also aperiodic. Thus, we can merge the two ergodic
assumptions into the single assumption that some power P n has all en-
tries positive. Under this single ergodic condition, we showed in Chapter 6

that a unique equilibrium distribution π exists and that limn→∞ p
(n)
ij = πj.

Because all states communicate, the entries of π are necessarily positive.
Equally important is the ergodic theorem [9, 13]. This theorem permits

one to run a chain and approximate theoretical means by sample means.
More precisely, let f(z) be some function defined on the states of an ergodic

chain. Then limn→∞
1
n

∑n−1
i=0 f(Zi) exists and equals the theoretical mean

Eπ[f(Z)] =
∑
z πzf(z) of f(Z) under the equilibrium distribution π. This

result generalizes the law of large numbers for independent sampling.
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The equilibrium condition π = πP can be restated as the system of
equations

πj =
∑

i

πipij (25.1)

for all j. In many Markov chain models, the stronger condition

πjpji = πipij (25.2)

holds for all pairs (i, j). If this is the case, then the probability distribution
π is said to satisfy detailed balance. Summing equation (25.2) over i yields
the equilibrium condition (25.1). An irreducible Markov chain with equi-
librium distribution π satisfying detailed balance is said to be reversible.
Irreducibility is imposed to guarantee that π is unique and has positive
entries.

If i1, . . . , im is any sequence of states in a reversible chain, then detailed
balance implies

πi1pi1i2 = πi2pi2i1

πi2pi2i3 = πi3pi3i2
...

πim−1pim−1im = πimpimim−1

πimpimi1 = πi1pi1im .

Multiplying these equations together and cancelling the common positive
factor πi1 · · ·πim from both sides of the resulting equality give Kolmogorov’s
circulation criterion [20]

pi1i2pi2i3 · · ·pim−1impimi1 = pi1impimim−1 · · ·pi3i2pi2i1 . (25.3)

Conversely, if an irreducible Markov chain satisfies Kolmogorov’s crite-
rion, then the chain is reversible. This fact can be demonstrated by explic-
itly constructing the equilibrium distribution and showing that it satisfies
detailed balance. The idea behind the construction is to choose some arbi-
trary reference state i and to pretend that πi is given. If j is another state,
let i → i1 → · · · → im → j be any path leading from i to j. Then the
formula

πj = πi
pii1pi1i2 · · ·pimj

pjimpimim−1 · · · pi1i
(25.4)

defines πj. A straightforward application of Kolmogorov’s criterion (25.3)
shows that the definition (25.4) does not depend on the particular path
chosen from i to j. To validate detailed balance, suppose that k is adjacent
to j. Then i → i1 → · · · → im → j → k furnishes a path from i to k
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through j. It follows from (25.4) that πk = πjpjk/pkj, which is obviously
equivalent to detailed balance. In general, the value of πi is not known
beforehand. Setting πi = 1 produces the equilibrium distribution up to a
normalizing constant.

Example 25.2.1 Random Walk on a Graph

Consider a connected graph with vertex set V and edge set E. The number
of edges d(v) incident on a given vertex v is called the degree of v. Due
to the connectedness assumption, d(v) > 0 for all v ∈ V . Now define the
transition probability matrix P = (puv) by

puv =

{
1

d(u)
for {u, v} ∈ E

0 for {u, v} 6∈ E .

This Markov chain is irreducible because of the connectedness assumption;
it is also aperiodic unless the graph is bipartite. (A graph is said to be
bipartite if we can partition its vertex set into two disjoint subsets F and
M , say females and males, such that each edge has one vertex in F and the
other vertex in M .) If V has m edges, then the equilibrium distribution π
of the chain has components πv = d(v)/(2m). It is trivial to show that this
choice of π satisfies detailed balance.

For instance, consider the n! different permutations

σ = (σ1, . . . , σn)

of the set {1, . . . , n} equipped with the uniform distribution πσ = 1/n! [6].
Declare a permutation ω to be a neighbor of σ if there exist two indices
i 6= j such that ωi = σj, ωj = σi, and ωk = σk for k 6∈ {i, j}. Evidently, each
permutation has

(
n
2

)
neighbors. If we put pσω = 1/

(
n
2

)
for each neighbor ω

of σ, then pσω satisfies detailed balance. Thus, randomly choosing a pair
of indices i 6= j and switching σi with σj produces a Markov chain on the
set of permutations. This chain has period 2. It can be made aperiodic by
allowing the randomly chosen indices i and j to coincide.

Example 25.2.2 Wright’s Model of Genetic Drift

Consider a population of m organisms from some animal or plant species.
Each member of this population carries two genes at some genetic locus,
and these genes assume two forms (or alleles) labeled a1 and a2. At each
generation, the population reproduces itself by sampling 2m genes with
replacement from the current pool of 2m genes. If Zn denotes the number
of a1 alleles at generation n, then it is clear that the Zn constitute a Markov
chain with transition probability matrix

pjk =

(
2m

k

)( j

2m

)k(
1 − j

2m

)2m−k
.
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This chain is reducible because once one of the states 0 or 2m is reached,
then the corresponding allele is fixed in the population, and no further
variation is possible. An infinite number of equilibrium distributions exist
determined by π0 = α and π2m = 1 − α for α ∈ [0, 1].

Example 25.2.3 Ehrenfest’s Model of Diffusion

Consider a box with m gas molecules. Suppose the box is divided in half by
a rigid partition with a very small hole. Molecules drift aimlessly around
each half until one molecule encounters the hole and passes through. Let
Zn be the number of molecules in the left half of the box at epoch n. If
epochs are timed to coincide with molecular passages, then the transition
matrix of the chain is

pjk =





1 − j
m for k = j + 1

j
m for k = j − 1
0 otherwise.

This chain is periodic with period 2, irreducible, and reversible with equi-
librium distribution πj =

(
m
j

)
2−m.

Example 25.2.4 A Chain with a Continuous-State Space

Although this chapter is devoted to discrete-state Markov chains, many
chains have continuous state spaces. Hastings [14] suggests an interesting
chain on the space of n× n orthogonal matrices R with det(R) = 1. These
multidimensional rotations form a compact subgroup of the set of all n×n
matrices and consequently possess an invariant Haar probability measure
[26]. The proposal stage of Hastings’s algorithm consists of choosing at
random two indices i 6= j and an angle θ ∈ [−π, π]. The proposed re-
placement for the current rotation matrix R is then S = Eij(θ)R, where
the matrix Eij(θ) is a rotation in the (i, j) plane through angle θ. Note
that Eij(θ) = (ekl) coincides with the identity matrix except for entries
eii = ejj = cos θ, eij = sin θ, and eji = − sin θ. Since Eij(θ)

−1 = Eij(−θ),
the transition density is symmetric, and the Markov chain induced on the
set of multidimensional rotations is reversible with respect to Haar mea-
sure. Problem 5 asks the reader to demonstrate that this Markov chain is
irreducible.

25.3 Hidden Markov Chains

Hidden Markov chains incorporate both observed data and missing data.
The missing data are the sequence of states visited by a Markov chain; the
observed data provide partial information about this sequence of states.
Denote the sequence of visited states by Z1, . . . , Zn and the observation
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taken at epoch i when the chain is in state Zi by Yi = yi. Baum’s algorithms
recursively compute the likelihood of the observed data [1, 5, 27]

P = Pr(Y1 = y1, . . . , Yn = yn) (25.5)

without actually enumerating all possible realizations Z1, . . . , Zn. Baum’s
algorithms can be adapted to perform an EM search as discussed in the
next section. The references [8, 22, 27] discuss several concrete examples of
hidden Markov chains.

The likelihood (25.5) is constructed from three ingredients: (a) the ini-
tial distribution π at the first epoch of the chain, (b) the epoch-dependent
transition probabilities pijk = Pr(Zi+1 = k | Zi = j), and (c) the con-
ditional densities φi(yi | j) = Pr(Yi = yi | Zi = j). The dependence of
the transition probability pijk on i makes the chain inhomogeneous over
time and allows greater flexibility in modeling. If the chain is homogeneous,
then π is often taken as the equilibrium distribution. Implicit in the defini-
tion of φi(yi | j) are the assumptions that Y1, . . . , Yn are independent given
Z1, . . . , Zn and that Yi depends only on Zi. Finally, with obvious changes
in notation, the observed data can be continuously rather than discretely
distributed.

Baum’s forward algorithm is based on recursively evaluating the joint
probabilities

αi(j) = Pr(Y1 = y1, . . . , Yi−1 = yi−1, Zi = j).

At the first epoch, α1(j) = πj by definition; the obvious update to αi(j) is

αi+1(k) =
∑

j

αi(j)φi(yi | j)pijk. (25.6)

The likelihood (25.5) can be recovered by computing
∑

j αn(j)φn(yn | j)
at the final epoch n.

In Baum’s backward algorithm, we recursively evaluate the conditional
probabilities

βi(k) = Pr(Yi+1 = yi+1 , . . . , Yn = yn | Zi = k),

starting by convention at βn(k) = 1 for all k. The required update is clearly

βi(j) =
∑

k

pijkφi+1(yi+1 | k)βi+1(k). (25.7)

In this instance, the likelihood is recovered at the first epoch by forming
the sum

∑
j πjφ1(y1 | j)β1(j).

Baum’s algorithms (25.6) and (25.7) are extremely efficient, particularly
if the observations yi strongly limit the number of compatible states at
each epoch i. In statistical practice, maximization of the likelihood with
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respect to model parameters is usually an issue. Most maximum likelihood
algorithms require the score in addition to the likelihood. These partial
derivatives can often be computed quickly in parallel with other quantities
in Baum’s forward and backward algorithms. For example, suppose that
a parameter θ impacts only the transition probabilities pijk for a specific
epoch i [23]. Since we can write the likelihood as

P =
∑

j

∑

k

αi(j)φi(yi | j)pijkφi+1(yi+1 | k)βi+1(k),

it follows that

∂

∂θ
P =

∑

j

∑

k

αi(j)φi(yi | j)
[ ∂
∂θ
pijk

]
φi+1(yi+1 | k)βi+1(k).(25.8)

Similarly, if θ only enters the conditional density φi(yi | j) for a given i,
then the representation

P =
∑

j

αi(j)φi(yi | j)βi(j)

leads to the partial derivative formula

∂

∂θ
P =

∑

j

αi(j)
[ ∂
∂θ
φi(yi | j)

]
βi(j). (25.9)

Finally, if θ enters only into the initial distribution π, then

∂

∂θ
P =

∑

j

[ ∂
∂θ
πj

]
φ1(y1 | j)β1(j). (25.10)

These formulas suggest that an efficient evaluation of P and its partial
derivatives can be orchestrated by carrying out the backward algorithm
first, saving all resulting βi(j), and then carrying out the forward algo-
rithm while simultaneously computing all partial derivatives. Note that if
a parameter θ enters into several of the factors defining P , then by virtue of
the product rule of differentiation, we can express ∂

∂θ
P as a sum of the cor-

responding right-hand sides of equations (25.8), (25.9), and (25.10). Given
a partial derivative ∂

∂θP of the likelihood P , we compute the corresponding

entry in the score vector by taking the quotient ∂
∂θP/P .

Besides evaluating and maximizing the likelihood, statisticians are of-
ten interested in finding a most probable sequence of states of the hidden
Markov chain given the observed data. The Viterbi algorithm solves this
problem by dynamic programming [10]. We proceed by solving the inter-
mediate problems

γk(zk) = max
z1,...,zk−1

Pr(Z1 = z1, . . . , Zk = zk, Y1 = y1, . . . , Yk = yk)
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for each k = 1, . . . , n, beginning with γ1(z1) = πz1φ1(y1 | z1). When we
reach k = n, then maxzn γn(zn) yields the largest joint probability

Pr(Z1 = z1, . . . , Zn = zn, Y1 = y1, . . . , Yn = yn)

and consequently the largest conditional probability

Pr(Z1 = z1, . . . , Zn = zn | Y1 = y1, . . . , Yn = yn)

as well. If we have kept track of one solution sequence z1(zn), . . . , zn−1(zn)
for each γn(zn), then obviously we can construct a best overall sequence by
taking the best zn and appending to it z1(zn), . . . , zn−1(zn). To understand
better the recursive phase of the algorithm, let

δk(z1, . . . , zk) = Pr(Z1 = z1, . . . , Zk = zk, Y1 = y1, . . . , Yk = yk).

In this notation, we express γk+1(zk+1) as

γk+1(zk+1) = max
z1,...,zk

δk+1(z1, . . . , zk+1)

= max
z1,...,zk

δk(z1, . . . , zk)pk,zk,zk+1φk+1(yk+1 | zk+1)

= max
zk

pk,zk,zk+1φk+1(yk+1 | zk+1) max
z1,...,zk−1

δk(z1, . . . , zk)

= max
zk

pk,zk,zk+1φk+1(yk+1 | zk+1)γk(zk)

and create a maximizing sequence z1(zk+1), . . . , zk(zk+1) for each zk+1 from
the corresponding best zk and its recorded sequence z1(zk), . . . , zk−1(zk).

25.4 Connections to the EM Algorithm

Baum’s algorithms also interdigitate beautifully with the E step of the EM
algorithm. It is natural to summarize the missing data by a collection of
indicator random variables Xij. If the chain occupies state j at epoch i,
then we take Xij = 1. Otherwise, we take Xij = 0. In this notation, the
complete data loglikelihood can be written as

Lcom(θ) =
∑

j

X1j lnπj +

n∑

i=1

∑

j

Xij lnφi(Yi | j)

+

n−1∑

i=1

∑

j

∑

k

XijXi+1,k ln pijk.

Execution of the E step amounts to calculation of the conditional expecta-
tions

E(XijXi+1,k | Y, θm) =
αi(j)φi(yi | j)pijkφi+1(yi+1 | k)βi+1(k)

P

∣∣∣
θ=θm

E(Xij | Y, θm) =
αi(j)φi(yi | j)βi(j)

P

∣∣∣
θ=θm

,
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where Y is the observed data, P is the likelihood of the observed data,
and θm is the current parameter vector. It is no accident that these are
reminiscent of the sandwich formulas (25.8), (25.9), and (25.10). Problems
17, 19, and 20 of Chapter 13 explore the connections between the score
vector and EM updates.

The M step may or may not be exactly solvable. If it is not, then one
can always revert to the MM gradient algorithm discussed in Section 14.8.
In the case of hidden multinomial trials, it is possible to carry out the M
step analytically. Hidden multinomial trials may govern (a) the choice of
the initial state, (b) the choice of an observed outcome Yi at the ith epoch
given the hidden state j of the chain at that epoch, or (c) the choice of the
next state j given the current state i in a time-homogeneous chain. In the
first case, the multinomial parameters are the πi; in the last case, they are
the common transition probabilities pij.

As a concrete example, consider estimation of the initial distribution π
at the first epoch of the chain. For estimation to be accurate, there must
be multiple independent runs of the chain. Let r index the various runs.
The surrogate function delivered by the E step equals

Q(π | π = πm) =
∑

r

∑

j

E(Xr
1j | Y r = yr , π = πm) lnπj

up to an additive constant. Maximizing Q(π | π = πm) subject to the
constraints

∑
j πj = 1 and πj ≥ 0 for all j is done as in Example 11.3.1.

The resulting EM updates

πm+1,j =

∑
r E(Xr

1j | Y r = yr , π = πm)

R

for R runs can be interpreted as multinomial proportions with fractional
category counts. Problem 9 asks the reader to derive the EM algorithm for
estimating common transition probabilities.

25.5 Continuous-Time Markov Chains

Continuous-time Markov chains are often more realistic than discrete-time
Markov chains. Just as in the discrete case, the behavior of a chain is
described by an indexed family Zt of random variables giving the state
occupied by the chain at each time t. However, now the index t ranges over
real numbers rather than integers. Of fundamental theoretical importance
are the probabilities pij(t) = Pr(Zt = j | Z0 = i). For a chain having
a finite number of states, these probabilities can be found by solving a
matrix differential equation. To derive this equation, we use the short-time
approximation

pij(t) = λijt + o(t) (25.11)
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for i 6= j, where λij is the transition rate (or infinitesimal transition prob-
ability) from state i to state j. Equation (25.11) implies the further short-
time approximation

pii(t) = 1 − λit+ o(t), (25.12)

where λi =
∑

j 6=i λij .
The alternative perspective of competing risks sharpens our intuitive

understanding of equations (25.11) and (25.12). Imagine that a particle
executes the Markov chain by moving from state to state. If the particle
is currently in state i, then each neighboring state independently beckons
the particle to switch positions. The intensity of the temptation exerted by
state j is the constant λij. In the absence of competing temptations, the
particle waits an exponential length of time Tij with intensity λij before
moving to state j. Taking into account the competing temptations, the
particle moves at the moment minj Tij, which is exponentially distributed
with intensity λi. Once the particle decides to move, it moves to state j
with probability λij/λi. Equations (25.11) and (25.12) now follow from the
approximations

(
1 − e−λit

)λij
λi

= λijt + o(t)

e−λit = 1 − λit+ o(t).

Next consider the Chapman-Kolmogorov relation

pij(t + h) = pij(t)pjj(h) +
∑

k 6=j
pik(t)pkj(h), (25.13)

which simply says the chain must pass through some intermediate state k
at time t en route to state j at time t+h. Substituting the approximations
(25.11) and (25.12) in (25.13) yields

pij(t+ h) = pij(t)(1 − λjh) +
∑

k 6=j
pik(t)λkjh+ o(h).

Sending h to 0 in the difference quotient

pij(t+ h) − pij(t)

h
= −pij(t)λj +

∑

k 6=j
pik(t)λkj +

o(h)

h

produces the forward differential equation

p′ij(t) = −pij(t)λj +
∑

k 6=j
pik(t)λkj. (25.14)

The system of differential equations (25.14) can be summarized in matrix
notation by introducing the matrices P (t) = [pij(t)] and Λ = (Λij), where
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Λij = λij for i 6= j and Λii = −λi. The forward equations in this notation
become

P ′(t) = P (t)Λ (25.15)

P (0) = I,

where I is the identity matrix. It is easy to check that the solution of the
initial value problem (25.15) is furnished by the matrix exponential [17, 21]

P (t) = etΛ

=

∞∑

k=0

1

k!
(tΛ)k. (25.16)

Probabilists call Λ the infinitesimal generator or infinitesimal transition ma-
trix of the process. The infinite series (25.16) converges because its partial
sums form a Cauchy sequence. This fact follows directly from the inequality

∥∥∥∥
m∑

k=0

1

k!
(tΛ)k −

m+n∑

k=0

1

k!
(tΛ)k

∥∥∥∥ ≤
m+n∑

k=m+1

1

k!
|t|k‖Λ‖k.

A probability distribution π = (πi) on the states of a continuous-time
Markov chain is a row vector whose components satisfy πi ≥ 0 for all i and∑

i πi = 1. If

πP (t) = π (25.17)

holds for all t ≥ 0, then π is said to be an equilibrium distribution for the
chain. Written in components, the eigenvector equation (25.17) reduces to∑

i πipij(t) = πj. Again this is completely analogous to the discrete-time
theory. For small t equation (25.17) can be rewritten as

π(I + tΛ) + o(t) = π.

This approximate form makes it obvious that πΛ = 0 is a necessary condi-
tion for π to be an equilibrium distribution. Multiplying (25.16) on the left
by π shows that πΛ = 0 is also a sufficient condition for π to be an equi-
librium distribution. In components this necessary and sufficient condition
amounts to

∑

j 6=i
πjλji = πi

∑

j 6=i
λij (25.18)

for all i. If all the states of a Markov chain communicate, then there is
one and only one equilibrium distribution π. Furthermore, each of the rows
of P (t) approaches π as t approaches ∞. Lamperti [21] provides a clear
exposition of these facts.
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Fortunately, the annoying feature of periodicity present in discrete-time
theory disappears in the continuous-time theory. The definition and proper-
ties of reversible chains carry over directly from discrete time to continuous
time provided we substitute infinitesimal transition probabilities for tran-
sition probabilities. For instance, the detailed balance condition becomes

πiλij = πjλji

for all pairs i 6= j. Kolmogorov’s circulation criterion for reversibility con-
tinues to hold; when it is true, the equilibrium distribution is constructed
from the infinitesimal transition probabilities exactly as in discrete time.

Example 25.5.1 Oxygen Attachment to Hemoglobin

A hemoglobin molecule has four possible sites to which oxygen (O2) can
attach. If the surrounding concentration so of O2 is sufficiently high, then
we can model the number of sites occupied on a hemoglobin molecule as a
continuous-time Markov chain [28]. Figure 25.1 depicts the model; in the
figure, each arc is labeled by an infinitesimal transition probability and each
state by the number of O2 molecules attached to the hemoglobin molecule.
The forward rates sok+j incorporate the concentration of O2. Because this
chain is reversible, we can calculate its equilibrium distribution starting
from the reference state 0 as πi = π0s

i
o

∏i
j=1 k+j/k−j.
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��
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FIGURE 25.1. A Markov Chain Model for Oxygen Attachment to Hemoglobin

Example 25.5.2 Continuous-Time Multitype Branching Processes

Matrix exponentials also appear in the theory of continuous-time branching
processes. In such a process one follows a finite number of independently
acting particles that reproduce and die. In a multitype branching process,
each particle is classified in one of n possible categories. A type i particle
lives an exponentially distributed length of time with a death intensity of
λi. At the end of its life, a type i particle reproduces both particles of its
own type and particles of other types. Suppose that on average it produces
fij particles of type j. We would like to calculate the average number of
particles mij(t) of type j at time t ≥ 0 starting with a single particle of
type i at time 0. Since particles of type j at time t + h either arise from
particles of type j at time t which do not die during (t, t + h) or from
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particles of type k which die during (t, t + h) and reproduce particles of
type j, we find that

mij(t + h) = mij(t)(1 − λjh) +
∑

k

mik(t)λkfkjh + o(h).

Forming the corresponding difference quotients and sending h to 0 yield
the differential equations

m′
ij(t) =

∑

k

mik(t)λk(fkj − 1{k=j}),

which we summarize as the matrix differential equation M ′(t) = M(t)Ω
for the n × n matrices M(t) = [mij(t)] and Ω = [λi(fij − 1{i=j})]. Again
the solution is provided by the matrix exponential M(t) = etΩ subject to
the initial condition M(0) = I.

25.6 Calculation of Matrix Exponentials

From the definition of the matrix exponential eA, it is easy to deduce that
it is continuous in A and satisfies eA+B = eAeB whenever AB = BA. It is
also straightforward to check the differentiability condition

d

dt
etA = AetA = etAA.

Of more practical importance is how one actually calculates etA [25]. In
some cases it is possible to do so analytically. For instance, if u and v are
column vectors with the same number of components, then

esuv
t

=

{
I + suvt if vtu = 0

I + esvtu−1
vtu uvt otherwise.

This follows from the formula (uvt)i = (vtu)i−1uvt. The special case hav-
ing u = (−α, β)t and v = (1,−1)t permits us to calculate the finite-time
transition matrix

P (s) = exp

[
s

(
−α α
β −β

)]

for a two-state Markov chain.
If A is a diagonalizable n × n matrix, then we can write A = TDT−1

for D a diagonal matrix with ith diagonal entry ρi. In this situation note
that A2 = TDT−1TDT−1 = TD2T−1 and in general that Ai = TDiT−1.
Hence,

etA =

∞∑

i=0

1

i!
(tA)i
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=

∞∑

i=0

1

i!
T (tD)iT−1

= TetDT−1,

where

etD =



eρ1t · · · 0

...
. . .

...
0 · · · eρnt


 .

Even if we cannot diagonalizeA explicitly, we can usually do so numerically.
When t > 0 is small, another method is to truncate the series expansion

for etA to
∑n

i=0(tA)i/i! for n small. For larger t such truncation can lead
to serious errors. If the truncated expansion is accurate for all t ≤ c, then
for arbitrary t one can exploit the property e(s+t)A = esAetA of the matrix
exponential. Thus, if t > c, take the smallest positive integer k such that

2−kt ≤ c and approximate e2
−ktA by the truncated series. Applying the

multiplicative property we can compute etA by squaring e2
−ktA, squaring

the result e2
−k+1tA, squaring the result of this, and so forth, a total of k

times. Problems 14 and 15 explore how the errors encountered in this proce-
dure can be controlled. Padé approximations based on continued fractions
work even better than truncated Taylor series [16].

25.7 Calculation of the Equilibrium Distribution

Finding the equilibrium distribution of a continuous-time Markov chain
reduces to finding the equilibrium distribution of an associated discrete-
time Markov chain. The latter task can be accomplished by the power
method or a variety of other methods [30]. Consider a continuous-time chain
with transition intensities λij and infinitesimal generator Λ. If we collect the
off-diagonal entries of Λ into a matrix Ω and the negative diagonal entries
into a diagonal matrix D, then equation (25.18) describing the balance
conditions satisfied by the equilibrium distribution π can be restated as

πD = πΩ.

Close examination of the matrix P = D−1Ω shows that its entries are
nonnegative, its row sums are 1, and its diagonal entries are 0. Further-
more, P is sparse whenever Ω is sparse, and all states communicate under
P when all states communicate under Λ. Nothing prevents the transition
probability matrix P from being periodic, but aperiodicity is irrelevant in
deciding whether a unique equilibrium distribution exists. Indeed, for any
fixed constant α ∈ (0, 1), one can easily demonstrate that an equilibrium
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distribution of P is also an equilibrium distribution of the aperiodic tran-
sition probability matrix Q = αI + (1 − α)P and vice versa.

Suppose that we compute the equilibrium distribution ν of P by some
method. Once ν is available, we set ω = νD−1. Because the two equations

ν = νP, ωD = ωΩ

are equivalent, ω coincides with π up to a multiplicative constant. In other
words, Λ has equilibrium distribution π = (ω1)−1ω. Hence, trivial adjust-
ment of the equilibrium distribution for the associated discrete-time chain
produces the equilibrium distribution of the original continuous-time chain.

25.8 Stochastic Simulation and Intensity Leaping

Many chemical and biological models depend on continuous-time Markov
chains with a finite number of particle types [15]. The particles interact via
a finite number of reaction channels, and each reaction destroys and/or cre-
ates particles in a predictable way. In this section, we consider the problem
of simulating the behavior of such chains. Before we launch into simulation
specifics, it is helpful to carefully define a typical process. If d denotes the
number of types, then the chain follows the count vector Xt whose ith com-
ponent Xti is the number of particles of type i at time t ≥ 0. We typically
start the system at time 0 and let it evolve via a succession of random
reactions. Let c denote the number of reaction channels. Channel j is char-
acterized by an intensity function rj(x) depending on the current vector
of counts x. In a small time interval of length s, we expect rj(x)s + o(s)
reactions of type j to occur. Reaction j changes the count vector by a fixed
integer vector vj . Some components vjk of vj may be positive, some 0, and
some negative. From the wait and jump perspective of Markov chain the-
ory, we wait an exponential length of time until the next reaction. If the
chain is currently in state Xt = x, then the intensity of the waiting time
is r0(x) =

∑c
j=1 rj(x). Once the decision to jump is made, we jump to the

neighboring state x+ vj with probability rj(x)/r0(x).
Table 25.1 lists typical reactions, their intensities r(x), and increment

vectors v. In the table, Si denotes a single particle of type i. Only the
nonzero increments vi are shown. The reaction intensities invoke the law
of mass action and depend on rate constants ai. Each discipline has its
own vocabulary. Chemists use the name propensity instead of the name
intensity and call the increment vector a stoichiometric vector. Physicists
prefer creation to immigration. Biologists speak of death and mutation
rather than of decay and isomerization. Despite the variety of processes
covered, the allowed chains form a subset of all continuous-time Markov
chains. Chains with an infinite number of reaction channels or random
increments are not allowed. For instance, most continuous-time branching
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TABLE 25.1. Some Examples of Reaction Channels

Name Reaction r(x) v

Immigration 0 → S1 a1 v1 = 1
Decay S1 → 0 a2x1 v1 = −1
Dimerization S1 + S1 → S2 a3

(
x1

2

)
v1 = −2, v2 = 1

Isomerization S1 → S2 a4x1 v1 = −1, v2 = 1
Dissociation S2 → S1 + S1 a5x2 v1 = 2, v2 = −1
Budding S1 → S1 + S2 a6x1 v2 = 1
Replacement S1 + S2 → S2 + S2 a7x1x2 v1 = −1, v2 = 1
Complex S1 + S2 → S3 + S4 a8x1x2 v1 = v2 = −1
Reaction v3 = v4 = 1

processes do not qualify. Branching processes that grow by budding serve
as useful substitutes for more general branching processes.

The wait and jump mechanism constitutes a perfectly valid method of
simulating one of these chains. Gillespie first recognized the practicality of
this approach in chemical kinetics [11]. Although his stochastic simulation
algorithm works well in some contexts, it can be excruciatingly slow in
others. Unfortunately, reaction rates can vary by orders of magnitude, and
the fastest reactions dominate computational expense in stochastic sim-
ulation. For the fast reactions, stochastic simulation takes far too many
small steps. Our goal is to describe an alternative approximate algorithm
that takes larger, less frequent steps. The alternative is predicated on the
observation that reaction intensities change rather slowly in many models.
Before describing how we can take advantage of this feature, it is worth
mentioning the chemical master equations, which is just another name for
the forward equations of Markov chain theory.

Let pxy(t) denote the finite-time transition probability of going from
state x at time 0 to state y at time t. The usual reasoning leads to the
expansions

pxy(t+ s) = pxy(t)

[
1 −

c∑

j=1

rj(y)s

]
+

c∑

j=1

px,y−vj(t)rj(y − vj)s+ o(s).

Forming the corresponding difference quotient and sending s to 0 produce
the master equations

d

dt
pxy(t) =

c∑

j=1

[
px,y−vj(t)rj(y − vj ) − pxy(t)rj(y)

]

with initial conditions pxy(0) = 1{x=y}. Only in special cases can the master
equations be solved. In deterministic models where particle counts are high,
one is usually content to follow mean particle counts. The mean behavior
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µ(t) = E(Xt) is then roughly modeled by the system of ordinary differential
equations

d

dt
µ(t) =

c∑

j=1

rj[µ(t)]vj .

This approximation becomes more accurate as mean particle counts in-
crease.

For the sake of argument, suppose all reaction intensities are constant.
In the time interval (t, t+ s), reaction j occurs a Poisson number of times
with mean rjs. If we can sample from the Poisson distribution with an
arbitrary mean, then we can run stochastic simulation accurately with s
of any duration. If we start the process at Xt = x, then at time t + s
we have Xt+s = x +

∑c
j=1Njv

j , where the Nj are independent Poisson
variates with means rjs. The catch, of course, is that reaction intensities
change as the particle count vector Xt changes. In the τ -leaping method of
simulation, we restrict the time increment τ > 0 to sufficiently small values
such that each intensity rj(x) suffers little change over (t, t+ τ ) [4, 12].

Before we discuss exactly how to achieve this, let us pass to a more
sophisticated update that anticipates how intensities change [29]. Assume
that Xt is a deterministic process with a well-defined derivative. Over a
short time interval (t, t+τ ), the intensity rj(Xt) should then change by the
approximate amount d

dtrj(Xt)τ . Reactions of type j now occur according
to an inhomogeneous Poisson process with a linear intensity. Thus, we
anticipate a Poisson number of reactions of type j with mean

ωj(t, t+ τ ) =

∫ τ

0

[
rj(Xt) +

d

dt
rj(Xt)s

]
ds

= rj(Xt)τ +
d

dt
rj(Xt)

1

2
τ2.

At time t+τ , we put Xt+τ = Xt+
∑c

j=1 Yjv
j , where the Yj are independent

Poisson variates with means ωj(t, t + τ ). This is all to the good, but how
do we compute the time derivatives of rj(Xt)? The most natural approach
is to invoke the chain rule

d

dt
rj(x) =

d∑

k=1

∂

∂xk
rj(x)

d

dt
xk,

and set

d

dt
xk =

c∑

j=1

rj(x)v
j
k

as dictated by the approximate mean growth of the system. In most models
the matrix dr(x) = [ ∂

∂xk
rj(x)] is sparse, with nontrivial entries that are

constant or linear in x.
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This exposition gives some insight into how we choose the increment τ in
the τ -leaping method. It seems reasonable to take the largest τ such that

∣∣∣ d
dt
rj(x)

∣∣∣τ ≤ εrj(x)

holds for all j, where ε > 0 is a small constant. If rj(x) = 0 is possible,
then we might amend this to

∣∣∣ d
dt
rj(x)

∣∣∣τ ≤ εmax{rj(x), aj},

where aj is the rate constant for reaction j. In each instance in Table
25.1, aj is the smallest possible change in rj(x). In common with other τ -
leaping strategies, we revert to the stochastic simulation update whenever
the intensity r0(x) for leaving a state x falls below a certain threshold δ.

As a test case, we apply the above version of τ -leaping to Kendall’s
birth, death, and immigration process. In the time-homogeneous case, this
Markov chain is governed by the birth rate α per particle, the death rate
µ per particle, and the overall immigration rate ν . Starting with i particles
at time 0, one can explicitly calculate the mean number of particles at time
t as

mi(t) = ie(α−µ)t +
ν

α− µ

[
e(α−µ)t − 1

]
.

This exact expression permits us to evaluate the accuracy of τ -leaping. For
the sake of illustration, we consider t = 4, i = 5, and average particle counts
over 10,000 simulations. Table 25.2 lists the exact value of m5(4) and the
average particle counts from τ -leaping for two methods. Method 1 ignores
the derivative correction, and method 2 incorporates it. The table also
gives for method 2 the time in seconds over all 10,000 runs and the fraction
of steps attributable to stochastic simulation when the threshold constant
δ = 100. Although the table makes a clear case for the more accurate
method 2, more testing is necessary. This is an active area of research, and
given its practical importance, even more research is merited.

25.9 Problems

1. Demonstrate that a finite-state Markov chain is ergodic (irreducible
and aperiodic) if and only if some power P n of the transition matrix
P has all entries positive. (Hints: For sufficiency, show that if some
power P n has all entries positive, then P n+1 has all entries positive.

For necessity, note that p
(r+s+t)
ij ≥ p

(r)
ik p

(s)
kk p

(t)
kj , and use the number

theoretic fact that the set {s : p
(s)
kk > 0} contains all sufficiently large

positive integers s if k is aperiodic. See the appendix of [3] for the
requisite number theory.)
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TABLE 25.2. Mean Counts for α = 2, µ = 1, and ν = 1
2

in Kendall’s Process.

epsilon average 1 average 2 predicted time ssa fraction

1.0000 153.155 251.129 299.790 0.781 0.971
0.5000 195.280 279.999 299.790 0.875 0.950
0.2500 232.495 292.790 299.790 1.141 0.909
0.1250 261.197 297.003 299.790 1.625 0.839
0.0625 279.176 301.671 299.790 2.328 0.726
0.0313 286.901 298.565 299.790 3.422 0.575
0.0156 297.321 301.560 299.790 4.922 0.405
0.0078 294.487 300.818 299.790 7.484 0.256

2. Show that Kolmogorov’s criterion (25.3) implies that definition (25.4)
does not depend on the particular path chosen from i to j.

3. In the Bernoulli-Laplace model, we imagine two boxes with m par-
ticles each. Among the 2m particles there are b black particles and
w white particles, where b + w = 2m and b ≤ w. At each epoch one
particle is randomly selected from each box, and the two particles are
exchanged. Let Zn be the number of black particles in the first box.
Is the corresponding chain irreducible, aperiodic, or reversible? Show
that its equilibrium distribution is hypergeometric.

4. In Example 25.2.1, show that the chain is aperiodic if and only if the
underlying graph is not bipartite.

5. Show that Hastings’s Markov chain on multidimensional rotations is
irreducible. (Hint: Prove that every multidimensional rotation R can
be written as a finite product of matrices of the form Eij(θ). Using a
variation of Jacobi’s method discussed in Chapter 8, argue inductively
that you can zero out the off-diagonal entries ofR in a finite number of
multiplications by appropriate two-dimensional rotations Eij(θ). The
remaining diagonal entries all equal ±1. There are an even number
of −1 diagonal entries, and these can be converted to +1 diagonal
entries in pairs.)

6. Let P be the transition matrix and π the equilibrium distribution
of a reversible Markov chain with n states. Define an inner product
〈u, v〉π on complex column vectors u and v with n components by

〈u, v〉π =
∑

i

uiπiv
∗
i .

Verify that P satisfies the self-adjointness condition

〈Pu, v〉π = 〈u, P v〉π,
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and conclude by standard arguments that P has only real eigenvalues.
Formulate a similar result for a reversible continuous-time chain.

7. Let Z0, Z1, Z2, . . . be a realization of an ergodic chain. If we sample
every kth epoch, then show (a) that the sampled chain Z0, Zk, Z2k, . . .
is ergodic, (b) that it possesses the same equilibrium distribution as
the original chain, and (c) that it is reversible if the original chain is.
Thus, we can estimate theoretical means by sample averages using
only every kth epoch of the original chain.

8. A Markov chain is said to be embedded in a base Markov chain if
there exists a map f : C∗ → C from the state space C∗ of the
base chain onto the state space C of the embedded chain [24]. This
map partitions the states of C∗ into equivalence classes under the
equivalence relation x ∼ y when f(x) = f(y). If Q = (quv) denotes
the matrix of transition probabilities of the base chain, then it is
natural to define the transition probabilities of the embedded chain
by

pf(u)f(v) =
∑

w∼v
quw.

For the embedding to be probabilistically consistent, it is necessary
that

∑

w∼v
quw =

∑

w∼v
qxw (25.19)

for all x ∼ u. A distribution ν on the base chain induces a distribution
µ on the embedded chain according to

µf(u) =
∑

w∼u
νw. (25.20)

Mindful of these conventions, show that the embedded Markov chain
is irreducible if the base Markov chain is irreducible and is aperiodic if
the base chain is aperiodic. If the base chain is reversible with station-
ary distribution ν , then show that the embedded chain is reversible
with induced stationary distribution µ given by (25.20).

9. In the hidden Markov chain model, suppose that the chain is time
homogeneous with transition probabilities pij. Derive an EM algo-
rithm for estimating the pij from one or more independent runs of
the chain.

10. In the hidden Markov chain model, consider estimation of the pa-
rameters of the conditional densities φi(yi | j) of the observed data
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y1, . . . , yn. When Yi given Zi = j is Poisson distributed with mean
µj , show that the EM algorithm updates µj by

µm+1,j =

∑n
i=1 wmijyi∑n
i=1 wmij

,

where the weight wmij = E(Xij | Y, θm). Show that the same update
applies when Yi given Zi = i is exponentially distributed with mean
µj or normally distributed with mean µj and common variance σ2.
In the latter setting, demonstrate that the EM update of σ2 is

σ2
m+1 =

∑n
i=1

∑
j wmij(yi − µm+1,j)

2

∑n
i=1

∑
j wmij

.

11. Suppose that Λ is the infinitesimal transition matrix of a continuous-
time Markov chain, and let µ ≥ maxi λi. If R = I+µ−1Λ, then prove
that R has nonnegative entries and that

S(t) =

∞∑

i=0

e−µt
(µt)i

i!
Ri

coincides with P (t). (Hint: Verify that S(t) satisfies the same defining
differential equation and the same initial condition as P (t).)

12. Consider a continuous-time Markov chain with infinitesimal transi-
tion matrix Λ and equilibrium distribution π. If the chain is at equi-
librium at time 0, then show that it experiences t

∑
i πiλi transitions

on average during the time interval [0, t], where λi =
∑

j 6=i λij and
λij denotes a typical off-diagonal entry of Λ.

13. Verify the inequalities

‖etA‖ ≤ e|t|·‖A‖

‖e−tA‖ ≥ e−|t|·‖A‖

for any square matrix A and matrix norm induced by a vector norm.

14. Derive the error estimate
∥∥∥∥etA −

n∑

i=0

1

i!
(tA)i

∥∥∥∥ ≤ |t|n+1‖A‖n+1

(n + 1)!

1

1 − |t|·‖A‖
n+2

for any square matrix A and matrix norm induced by a vector norm.

15. Consider the partial sums Sn =
∑n

i=0 B
i/i! for some square matrix

B. Show that BSn = SnB and that for any ε > 0

‖eB − Sn‖ < ε

‖Sn‖ ≤ ‖eB‖
(
1 +

ε

‖eB‖
)
,
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provided n is large enough and the indicated matrix norm is induced
by a vector norm. If n is chosen to satisfy the last two inequalities,
then show that

‖e2kB − S2k

n ‖ ≤ ε‖eB‖2k−1
(
2 +

ε

‖eB‖
)2k−1

for any positive integer k. In conjunction with Problem 14, conclude

that we can approximate etA arbitrarily closely by S2k

n for B = 2−ktA
and n sufficiently large. Hint:

‖e2kB − S2k

n ‖ ≤ ‖e2k−1B + S2k−1

n ‖ · ‖e2k−1B − S2k−1

n ‖.

16. Let A and B be the 2 × 2 real matrices

A =

(
a −b
b a

)
, B =

(
λ 0
1 λ

)
.

Show that

eA = ea
(

cos b − sin b
sin b cos b

)
, eB = eλ

(
1 0
1 1

)
.

(Hints: Note that 2× 2 matrices of the form
(
a −b
b a

)
are isomorphic

to the complex numbers under the correspondence
(
a −b
b a

)
↔ a+bi.

For the second case write B = λI + C.)

17. Prove that det(eA) = etr(A), where tr is the trace function. (Hint:
Since the diagonalizable matrices are dense in the set of matrices
[17], by continuity you may assume that A is diagonalizable.)

18. In Moran’s population genetics model, n genes evolve by substitution
and mutation. Suppose each gene can be classified as one of d alleles,
and let Xti denote the number of alleles of type i at time t. The
count process Xt moves from state to state by randomly selecting
two genes, which may coincide. The first gene dies, and the second
gene reproduces a replacement. If the second gene is of type i, then
its daughter gene is of type j with probability pij. The replacement
times are independent and exponentially distributed with intensity λ.
Reformulate Moran’s model to proceed by reaction channels. What
are the intensity and the increment of each channel?
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26

Markov Chain Monte Carlo

26.1 Introduction

The Markov chain Monte Carlo (MCMC) revolution sweeping statistics
is drastically changing how statisticians perform integration and summa-
tion. In particular, the Metropolis algorithm and Gibbs sampling make it
straightforward to construct a Markov chain that samples from a compli-
cated conditional distribution. Once a sample is available, then any condi-
tional expectation can be approximated by forming its corresponding sam-
ple average. The implications of this insight are profound for both classical
and Bayesian statistics. As a bonus, trivial changes to the Metropolis al-
gorithm yield simulated annealing, a general-purpose algorithm for solving
difficult combinatorial optimization problems.

Our limited goal in this chapter is to introduce a few of the major MCMC
themes, particularly Gibbs sampling. In describing the various methods we
will use the notation of discrete-time Markov chains. Readers should bear
in mind that most of the methods carry over to chains with continuous state
spaces; our examples exploit this fact. One issue of paramount importance
is how rapidly the underlying chains reach equilibrium. This is the Achilles
heel of the whole business and not just a mathematical nicety. Our two
numerical examples illustrate some strategies for accelerating convergence.
We undertake a formal theoretical study of convergence in the next chapter.

Readers interested in pursuing MCMC methods and simulated annealing
further will enjoy the pioneering articles [9, 12, 16, 19, 24]. The elementary
surveys [3, 6] of Gibbs sampling and the Metropolis algorithm are quite
readable, as are the books [8, 10, 15, 22, 28, 32]. The well-tested program
WinBugs [29] is one of the best vehicles for Gibbs sampling. Numerical
Recipes [27] provides a compact implementation of simulated annealing.

26.2 The Hastings-Metropolis Algorithm

The Hastings-Metropolis algorithm is a device for constructing a Markov
chain with a prescribed equilibrium distribution π on a given state space
[16, 24]. Each step of the chain is broken into two stages, a proposal stage
and an acceptance stage. If the chain is currently in state i, then in the
proposal stage a new destination state j is proposed according to a proba-
bility density qij = q(j | i). In the subsequent acceptance stage, a random
number is drawn uniformly from [0, 1] to determine whether the proposed

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 527
DOI 10.1007/978-1-4419-5945-4_26, © Springer Science+Business Media, LLC 2010 
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step is actually taken. If this number is less than the Hastings-Metropolis
acceptance probability

aij = min
{πjqji
πiqij

, 1
}
, (26.1)

then the proposed step is taken. Otherwise, the proposed step is declined,
and the chain remains in place.

A few comments about this strange procedure are in order. First, the
resemblance of the Hastings-Metropolis algorithm to acceptance-rejection
sampling should make the reader more comfortable. Second, like most good
ideas, the algorithm has gone through successive stages of abstraction and
generalization. For instance, Metropolis et al. [24] considered only symmet-
ric proposal densities with qij = qji. In this case the acceptance probability
reduces to

aij = min
{πj
πi
, 1
}
. (26.2)

In this simpler setting it is clear that any proposed destination j with
πj > πi is automatically accepted. Finally, in applying either formula (26.1)
or formula (26.2), it is noteworthy that the πi need only be known up to a
multiplicative constant.

To prove that π is the equilibrium distribution of the chain constructed
from the Hastings-Metropolis scheme (26.1), it suffices to check that de-
tailed balance holds. If π puts positive weight on all points of the state
space, it is clear that we must impose the requirement that the inequalities
qij > 0 and qji > 0 are simultaneously true or simultaneously false. This
requirement is also implicit in definition (26.1). Now suppose without loss
of generality that the fraction

πjqji
πiqij

≤ 1

for some j 6= i. Then detailed balance follows immediately from

πiqijaij = πiqij
πjqji
πiqij

= πjqji

= πjqjiaji.

Besides checking that π is the equilibrium distribution, we should also be
concerned about whether the Hastings-Metropolis chain is irreducible and
aperiodic. Aperiodicity is the rule because the acceptance-rejection step
allows the chain to remain in place. Problem 4 states a precise result and a
counterexample. Irreducibility holds provided the entries of π are positive
and the proposal matrix Q = (qij) is irreducible.
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26.3 Gibbs Sampling

The Gibbs sampler is a special case of the Hastings-Metropolis algorithm for
Cartesian product state spaces [9, 12, 15]. Suppose that each sample point
i = (i1, . . . , im) has m components. The Gibbs sampler updates one com-
ponent of i at a time. If the component is chosen randomly and resampled
conditional on the remaining components, then the acceptance probability
is 1. To prove this assertion, let ic be the uniformly chosen component, and
denote the remaining components by i−c = (i1, . . . , ic−1, ic+1, . . . , im). If j
is a neighbor of i reachable by changing only component ic, then j−c = i−c.
For such a neighbor j the proposal probability

qij =
1

m
· πj∑

{k:k−c=i−c} πk

satisfies πiqij = πjqji, and the ratio appearing in the acceptance probability
(26.1) is 1.

In contrast to random sampling of components, we can repeatedly cycle
through the components in some fixed order, say 1, 2, . . . , m. If the tran-
sition matrix for changing component c while leaving other components
unaltered is P (c), then the transition matrices for random sampling and
sequential (or cyclic) sampling are R = 1

m

∑
c P

(c) and S = P (1) · · ·P (m),

respectively. Because each P (c) satisfies πP (c) = π, we have πR = π and
πS = π as well. Thus, π is the unique equilibrium distribution for R or
S if either is irreducible. However as pointed out in Problem 6, R satisfies
detailed balance while S ordinarily does not.

Bayesian applications of Gibbs sampling rely heavily on conjugate dis-
tributions. A likelihood p(x | θ) and a prior density p(θ) are said to be
conjugate provided the posterior density p(θ | x) has the same functional
form as the prior density. Here θ is the parameter vector, and x is the data.
Table 26.1 collects some of the more useful conjugate families. In the table
the upper entry for the normal fixes the precision (reciprocal variance), and
the lower entry for the normal fixes the mean. The table omits mentioning
how the parameters of the prior distribution map to the parameters of the
posterior distribution. As an example, the reader can check that

θ → ωθ + τx

ω + τ
, ω → ω + τ

α → α+
1

2
, β → β +

(x − µ)2

2

for the two normal entries of the table. See the text [10] for a more extensive
catalog of conjugate pairs.
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TABLE 26.1. Conjugate Pairs

Likelihood Density Prior Density

Binomial
(

n
x

)
px(1 − p)n−x Beta 1

B(α,β)
pα−1(1 − p)β−1

Poisson λx

x!
e−λ Gamma βαλα−1

Γ(α)
e−βλ

Geometric (1 − p)xp Beta 1
B(α,β)

pα−1(1 − p)β−1

Multinomial
(

n
x1...xk

)∏k

i=1
pxi

i Dirichlet
Γ
(∑k

i=1
αi

)
∏k

i=1
Γ(αi)

∏k

i=1
pαi−1

i

Normal
√

τ
2π
e−τ(x−µ)2/2 Normal

√
ω
2π
e−ω(µ−θ)2/2

Normal
√

τ
2π
e−τ(x−µ)2/2 Gamma βατα−1

Γ(α)
e−βτ

Exponential λe−λx Gamma βαλα−1

Γ(α) e−βλ

Example 26.3.1 Ising Model

Consider m elementary particles equally spaced around the boundary of
the unit circle. Each particle c can be in one of two magnetic states—spin
up with ic = 1 or spin down with ic = −1. The Gibbs distribution

πi ∝ eβ
∑

d
idid+1 (26.3)

takes into account nearest-neighbor interactions in the sense that states
like (1, 1, 1, . . . , 1, 1, 1) are favored and states like (1,−1, 1, . . . , 1,−1, 1) are
shunned for β > 0. (Note that in (26.3) the index m+ 1 of im+1 is inter-
preted as 1.) Specification of the normalizing constant (or partition func-
tion)

Z =
∑

i

eβ
∑

d
idid+1

is unnecessary to carry out Gibbs sampling. If we elect to resample com-
ponent c, then the choices jc = −ic and jc = ic are made with respective
probabilities

eβ(−ic−1ic−icic+1)

eβ(ic−1 ic+icic+1) + eβ(−ic−1 ic−icic+1)
=

1

e2β(ic−1ic+icic+1) + 1

eβ(ic−1 ic+icic+1)

eβ(ic−1 ic+icic+1) + eβ(−ic−1 ic−icic+1)
=

1

1 + e−2β(ic−1ic+icic+1)
.

When the number of particles m is even, the odd-numbered particles
are independent given the even-numbered particles, and vice versa. This
fact suggests alternating between resampling all odd-numbered particles
and resampling all even-numbered particles. Such multi-particle updates
take longer to execute but create more radical rearrangements than single-
particle updates.
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Example 26.3.2 A Normal Random Sample with Conjugate Priors

Consider a random sample y = (y1, . . . , yn) from a normal density with
mean µ and precision τ . Suppose that µ is subject to a normal prior with
mean 0 and precision ω and τ is subject to a gamma prior with shape
parameter α and scale parameter β. Given that the two priors are inde-
pendent, the joint density of data and parameters is

(2π)−
n+1

2 τ
n
2 e−

τ
2

∑n

i=1
(yi−µ)2ω

1
2 e−

ω
2 µ

2 τα−1

Γ(α)βα
e−

τ
β .

Gibbs sampling from the joint posterior distribution of µ and τ requires the
conditional density of µ given y and τ and the conditional density of τ given
y and µ. According to Table 26.1, the first of these two conditional densities
is normally distributed with mean nτ ȳ/(ω + nτ ) and precision ω + nτ ,
where ȳ is the sample mean 1

n

∑n
i=1 yi. The second is gamma distributed

with shape parameter n/2+α and scale parameter 1/(ns2n/2+1/β), where
s2n is the sample variance 1

n

∑n
i=1(yi −µ)2. Choosing conjugate priors here

eases the analysis as it does throughout Bayesian statistics.

Example 26.3.3 Capture-Recapture Estimation

Ecologists employ capture-recapture models to estimate the abundance of
an animal species in a local habitat. Gibbs sampling offers a convenient
way of implementing a Bayesian analysis [13]. For the sake of concreteness,
suppose we are interested in estimating the number of fish f in a lake.
We fish on t occasions, record the number of fish caught, and mark each
fish caught. The data then consist of t count pairs (ci, ri), where ci is the
number of fish caught on trial i and ri is the number of fish recaught. The
number of new fish encountered on trial i is ci − ri. Over trials 1 through
i, we encounter ui =

∑i
j=1(ci − ri) unique fish.

Our first order of business in modeling is to construct a likelihood. The
simplest and most widely used assumes independent binomial sampling
with success probability pi for trial i. These assumptions translate into the
likelihood

t∏

i=1

(
ui−1

ri

)
pri

i (1 − pi)
ui−1−ri

(
f − ui−1

ci − ri

)
pci−ri

i (1 − pi)
f−ui−1−ci+ri

=

t∏

i=1

(
ui−1

ri

)(
f − ui−1

ci − ri

)
pci

i (1 − pi)
f−ci

=
f !

(f − ut)!

t∏

i=1

(
ui−1

ri

)
pci

i (1 − pi)
f−ci ,

where u0 = r1 = 0. It is mathematically convenient to put a Poisson prior
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on f and independent beta priors on the pi. This yields the joint density

f !

(f − ut)!

t∏

i=1

(
ui−1

ri

)
pci

i (1 − pi)
f−ci

λf e−λ

f !B(α, β)t

t∏

i=1

pα−1
i (1 − pi)

β−1

=
λf e−λ

(f − ut)!B(α, β)t

t∏

i=1

(
ui−1

ri

)
pα+ci−1
i (1 − pi)

β+f−ci−1.

To infer the conditional distribution of a parameter, we factor the joint
density into a constant times a function of that parameter. Thus, the Gibbs
update of parameter pi is beta distributed with α + ci replacing α and
β + f − ci replacing β. The Gibbs update of f is more subtle, but close
examination of the joint density implies that f − ut is Poisson distributed
with mean λ

∏t
i=1(1 − pi).

As an example, consider the Gordy Lake sunfish data [4] recorded in
Table 26.2. A simple frequentist analysis of these data constraining all pi
to be equal suggests the starting values f = 457 and pi = 0.02532 for all
i. We also take λ = 457 as a reasonable guess, α = β = 1, and a burn-in
period of 100 iterations. Figure 26.1 provides a histogram of the f values in
the first 1000 Gibbs iterations after burn-in. Over these 1000 iterates the
mean and median are 436.5 and 436, respectively. Although the iterates
are dependent, they appear nearly normally distributed. We will comment
later on our choice of priors.

TABLE 26.2. Capture-Recapture Counts for Gordy Lake Sunfish

Trial ci ri Trial ci ri

1 10 0 8 15 1
2 27 0 9 9 5
3 17 0 10 18 5
4 7 0 11 16 4
5 1 0 12 5 2
6 5 0 13 7 2
7 6 2 14 19 3

Example 26.3.4 Data Augmentation and Allele Frequency Estimation

Data augmentation uses missing data in a slightly different fashion than
the EM algorithm [32, 33]. In data augmentation we sample from the joint
conditional distribution of the missing data and the parameters given the
observed data. For example, consider the ABO allele frequency estima-
tion problem of Chapter 13. If we put a Dirichlet prior with parameters
(αA, αB, αO) on the allele frequencies, then the joint density of the observed
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FIGURE 26.1. Histogram of the Number of Sunfish in 1000 Gibbs Iterations

data and the parameters amounts to

(
n

nA nB nAB nO

)
(p2
A + 2pApO)nA(p2

B + 2pBpO)nB (2pApB)nAB(p2
O)nO

× Γ(αA+αB+αO)
Γ(αA)Γ(αB)Γ(αO)p

αA−1
A pαB−1

B pαO−1
O .

Extracting the posterior density of the allele frequencies pA, pB, and pO
appears formidable. However, sampling from the posterior distribution be-
comes straightforward if we augment the observed data by specifying the
underlying counts nA/A, nA/O, nB/B , and nB/O of individuals with geno-
types A/A, A/O, B/B, and B/O, respectively.

Sequential Gibbs sampling alternates between sampling the complete
data

(nA/A, nA/O, nB/B, nB/O, nAB, nO)

conditional on the observed data (nA, nB, nAB, nO) and the parameters
(pA, pB, pO) and sampling the parameters (pA, pB, pO) conditional on the
complete data. The marginal distribution of the parameters from a se-
quential Gibbs sample coincides with the posterior distribution. To sample
nA/A, we simply draw from a binomial distribution with nA trials and
success probability

p2
A

p2
A + 2pApO

.
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The complementary variable nA/O is determined by the linear constraint
nA/A + nA/O = nA. Sampling nB/B and nB/O is done similarly. Sampling
the parameters (pA, pB, pO) conditional on the complete data is accom-
plished by sampling from a Dirichlet distribution with parameters

αA + 2nA/A + nA/O + nAB,

αB + 2nB/B + nB/O + nAB,

αO + nA/O + nB/O + 2nO.

Again choosing a conjugate prior is critical in keeping the sampling process
simple.

Example 26.3.5 Slice Sampling

To create random deviates X with probability density f(x), slice sampling
creates an auxiliary random variable Y and conducts Gibbs sampling on the
pair (X, Y ) [1, 17, 26, 30]. The basic idea is to sample uniformly from the
region under the graph of f(x). Thus given X, we take Y to be uniformly
distributed on the interval [0, f(X)]. The logic

Pr(X ∈ A) =

∫

A

1

f(x)

∫ f(x)

0

dy f(x) dx =

∫

A

∫ f(x)

0

dy dx

justifies a uniform distribution in the combined coordinates. If cf(x) is a
probability density for some constant c 6= 1, then the procedure is identical
because choosing y uniformly from [0, cf(x)] is the same as choosing y/c
uniformly from [0, f(x)] and choosing x uniformly from {x : f(x) ≥ y/c}
is the same as choosing x uniformly from {x : cf(x) ≥ y}. We will call any
set {x : f(x) ≥ y} a top set.

For instance, suppose f(x) = e−x
2/2 is the standard normal density up to

a constant. Gibbs sampling alternates between choosing y uniformly over
[0, f(x)] and choosing x uniformly from the interval

{x : f(x) ≥ y} =
[
−
√
−2 ln y,

√
−2 lny

]
.

The components of the correlated sample of x1, x2, . . . have a standard nor-
mal distribution at equilibrium. With very little change, one can simulate
standard normal deviates conditioned to fall on a given interval [a, b]. All
that is required is that in the second step of Gibbs sampling we choose x
uniformly from the interval

[
−
√

−2 lny,
√
−2 lny

]
∩ [a, b].

The biggest impediment to applying slice sampling is the complicated ge-
ometric nature of the top set {x : f(x) ≥ y}. When f(x) is concave or
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log-concave, a top set is convex and therefore connected. Otherwise, it can
be disconnected.

Slice sampling is very adaptable. Suppose we can write a probability
density f(x) as the product f(x) = g(x)

∏j
i=1 fj(x), where all of the dis-

played functions are nonnegative and have the same support. Furthermore,
assume that f(x) is a density relative to an arbitrary measure µ rather
than Lebesgue measure. We now augment the underlying random variable
X by j random variables Y1, . . . , Yj . Given X = x, these are independently
and uniformly distributed over the j intervals [0, fi(x)]. Gibbs sampling
alternates drawing the Yi from these intervals with drawing X uniformly
from the intersection of the top sets {x : fi(x) ≥ yi}. The virtue of this
more complicated procedure is that the intersection is often simpler geo-
metrically than the single top set {x : f(x) ≥ y}. The equation

Pr(X ∈ A) =

∫

A

j∏

i=1

1

fi(x)

∫ fi(x)

0

dyi f(x) dµ(x) =

∫

A

f(x) dµ(x)

justifies the procedure.
For an example, consider slice sampling from the probability density

proportional to the function

f(x) = e−
(‖x‖2−1)2

2σ2 e−
(x2−1)2

2δ2 = f1(x)f2(x) (26.4)

on R
2 [5]. Figure 26.2 plots the contours of this unusual function for the

parameter values δ = 1 and σ = 0.1. It is evident in the plot and from the
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functional form of f(x) that the mean of the X1 coordinate is 0 and the
correlation between the X1 and X2 coordinates is also 0. Fortunately, the
top sets

{
x : e−

(‖x‖2−1)2

2σ2 ≥ y1

}
=
{
‖x‖2 ∈

[
1 −

√
−2σ2 ln y1, 1 +

√
−2σ2 lny1

]}

{
x : e−

(x2−1)2

2δ2 ≥ y2

}
=
{
x2 ∈

[
1 −

√
−2δ2 ln y2, 1 +

√
−2δ2 lny2

]}

boil down to a circle ‖x‖ ≤ b or an annulus a ≤ ‖x‖ ≤ b in the first case
and a strip c ≤ x2 ≤ d in the second case. To sample uniformly from the
intersection of the two sets, we can sample x2 uniformly from [c, d] and x1

uniformly from [−b, b]. If the point (x1, x2) falls inside the circle or annulus,
then we accept it; otherwise, we reject it and try again.

In 100 runs of slice sampling with a starting value of (1, 1), a burn-in of
100 steps, and a total of 1100 steps, we find an average value ofX1 of 0.0026
and an average correlation of X1 and X2 of 0.0010 under the parameter
values δ = 1 and σ = 0.1. The standard errors attached to these averages
are 0.0212 and 0.0258, respectively. Our crude rejection mechanism takes
about six steps on average to generate a uniformly distributed point x in
the intersection {x : f1(x) ≥ y1} ∩ {x : f2(x) ≥ y2}. These results suggest
that slice sampling is an excellent vehicle for simulation when the top sets
are sufficiently simple.

26.4 Other Examples of Hastings-Metropolis
Sampling

Although constructing good proposal densities is an art, two general tech-
niques are worth mentioning [6, 34]. Our initial use of discrete notation
should not obscure the fact that the methods have wider applicability.

Example 26.4.1 Independence Sampler

If the proposal density satisfies qij = qj, then candidate points are drawn
independently of the current point. To achieve quick convergence of the
chain, qi should mimic πi for most i. This intuition is justified by intro-
ducing the importance ratios wi = πi/qi and rewriting the acceptance
probability (26.1) as

aij = min
{wj
wi
, 1
}
. (26.5)

It is now obvious that it is difficult to exit any state i with a large impor-
tance ratio wi.

In sampling a posterior density, the prior density can be a reasonable
choice for the proposal density. In this situation the acceptance ratio (26.1)
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reduces to a likelihood ratio. Thus, a proposed move to a point with greater
likelihood is always accepted. This generic scheme is often less efficient than
more specialized schemes such as Gibbs sampling.

Example 26.4.2 Random Walk

Random walk sampling occurs when the proposal density qij = qj−i for
some density qk. This construction requires that the sample space be closed
under subtraction. If qk = q−k, then the Metropolis acceptance probability
(26.2) applies. In any case, normalizing constants are irrelevant in random
walk sampling.

TABLE 26.3. Averages over 100 Runs of Random Walk Sampling

γ ā x̄1 std. err. ρ̄ std. err.
0.0156 0.9477 0.6848 0.2139 -0.4095 0.3065
0.0244 0.9213 0.6255 0.2709 -0.5078 0.3258
0.0381 0.8784 0.4777 0.4071 -0.3669 0.4956
0.0596 0.8130 0.3624 0.4835 -0.2271 0.5663
0.0931 0.7210 0.1558 0.4617 -0.0946 0.4773
0.1455 0.5960 0.0764 0.3875 -0.0497 0.4052
0.2274 0.4562 0.0416 0.2903 -0.0268 0.2550
0.3553 0.3240 0.0082 0.2208 -0.0137 0.1741
0.5551 0.2207 -0.0258 0.1495 0.0295 0.1294
0.8674 0.1481 -0.0009 0.1364 0.0090 0.1119
1.3553 0.0909 -0.0184 0.1190 0.0086 0.1227
2.1176 0.0475 0.0166 0.1448 -0.0335 0.1748
3.3087 0.0217 0.0008 0.2214 0.0167 0.2782
5.1699 0.0099 -0.0033 0.2718 0.0851 0.4025
8.0779 0.0044 0.0057 0.4491 0.0307 0.5777

As an example, consider random walk sampling from the probability
density proportional to the function (26.4). Our random walk increments
Y will be drawn from the symmetric normal distribution

g(y) =
1

2πγ2
e
− ‖y‖2

2
2γ2

for various values of γ2 from the starting point (1, 1). If on the one hand
we take γ2 too small, then the walk takes tiny steps and a long time to
move to the left half-plane x1 < 0. On the other hand, if we take γ2 too
large, almost all proposed steps are rejected.

Table 26.3 displays the average results of 100 runs of random walk at
various values of γ. Each walk consists of 100 steps of burn-in followed
by 1000 steps of sampling. The symbols ā, x̄1, and ρ̄ denote the average
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TABLE 26.4. Averages over 100 Runs of Leapfrog Random Walk Sampling

γ ā x̄1 std. err. ρ̄ std. err.

0.0156 0.9182 0.6134 0.2766 -0.5308 0.2902
0.0244 0.8769 0.4718 0.4316 -0.3200 0.5879
0.0381 0.8122 0.2510 0.5241 -0.0721 0.5906
0.0596 0.7174 0.1475 0.4391 -0.0289 0.4827
0.0931 0.6005 0.0717 0.3954 -0.0466 0.3693
0.1455 0.4668 0.0262 0.2826 -0.0371 0.2581
0.2274 0.3394 -0.0034 0.2070 -0.0134 0.1943
0.3553 0.2384 0.0177 0.1690 -0.0174 0.1276
0.5551 0.1572 0.0051 0.1412 -0.0018 0.1187
0.8674 0.0992 0.0049 0.1241 -0.0006 0.1255
1.3553 0.0548 -0.0075 0.1625 0.0100 0.1651
2.1176 0.0267 -0.0259 0.2203 0.0289 0.2220
3.3087 0.0122 0.0101 0.2745 -0.0396 0.3307
5.1699 0.0057 -0.0292 0.4085 -0.0050 0.5314
8.0779 0.0031 0.0417 0.4797 0.1886 0.6737

acceptance rate, the average x1 coordinate, and the average correlation
between the two coordinates. Standard errors are given for the latter two
variables. It is evident from the table that as γ increases, the acceptance
rate and the biases of x1 and ρ all decrease. Standard errors show a more
complex pattern. The best performance occurs for γ between about 0.25
and 2.0.

Various other measures can be taken to improve the efficiency of Monte
Carlo sampling. One technique is to change the proposal density so that
it allows a wider range of both small and large increments. For instance,
one could draw increments from a bivariate t-distribution rather than a
bivariate normal distribution. Here we feature a more generic device that
takes a random number of proposal steps before checking for acceptance
[7, 20, 22, 25]. Again suppose that the number of states is finite and that
Q denotes the proposal transition matrix. Let pk be the probability of
taking k proposal steps before checking. Although finding the entries of
the new transition matrix R =

∑
k pkQ

k may be challenging, it is clear
that R is symmetric whenever Q is symmetric. This is all we need to run a
Metropolis-driven random walk. The choice pk = (1−p)k−1p of a geometric
distribution is simple to implement and has fairly long tails. We will refer
to randomizing the number of proposal steps as leapfrogging. Table 26.4
shows the results of leapfrog random walk under our earlier conditions for
the choice p = 1

3 . In comparison with ordinary random walk, acceptance
probabilities drop but overall performance improves for low values of γ.
This accords with our intuition that occasional long excursions should be
helpful. However, note that both ordinary and leapfrog random walk are
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inferior to slice sampling on this problem.

26.5 Some Practical Advice

When the first edition of this book was published, no commercial software
existed for carrying out MCMC simulations. This has changed with the
release of SAS PROC MCMC and open source additions to MATLAB. The
freeware packages are too numerous to review here, but it is safe to say that
WinBugs [29] still dominates the field. Because crafting good algorithms
and writing software to implement them is time consuming and error prone,
the long delays in implementation were probably inevitable.

The task of writing software is now less pressing than diagnosing con-
vergence and interpreting output. Despite the limitations of MCMC, the
range of problems it can solve is so impressive that more and more statisti-
cians are willing to invest the time to perform a Bayesian analysis in novel
applications. We therefore offer the following practical advice:

1. (a) Every chain must start somewhere. In sampling from posterior
densities, there are four obvious possibilities. One can set initial pa-
rameter values equal to frequentist estimates, to sampled values from
their corresponding priors, or to means or medians of their corre-
sponding priors. Multiple random starts can give a feel for whether
an MCMC algorithm is apt to be trapped by inferior local modes.

2. (b) In choosing priors for Gibbs sampling, it is clearly advantageous
to select independent conjugate priors. This makes sampling from
the various conditional densities straightforward. The introduction of
hyperparameters can partially compensate for a poor choice of priors.

3. (c) Thoughtful reparameterization can make a chain converge faster.
Ideally, parameters should be nearly independent under the posterior
distribution. Centering predictors in regression problems is a good
idea.

4. (d) As Example 26.3.4 shows, data augmentation can render sam-
pling much easier. Whenever the EM algorithm works well in the
frequentist version of a problem, data augmentation is apt to help in
sampling from the posterior density in a Bayesian version of the same
problem.

5. (e) Calculation of sample averages from a Markov chain should not
commence immediately. Every chain needs a burn-in period to reach
equilibrium.

6. (f) Not every epoch need be taken into account in forming a sample
average of a complicated statistic. This is particularly true if the chain
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reaches equilibrium slowly; in such circumstances, values from neigh-
boring states are typically highly correlated. Problem 7 of Chapter
25 validates the procedure of sampling a statistic at every kth epoch
of a chain.

7. (g) Just as with independent sampling, we can achieve variance reduc-
tion by replacing a sampled statistic by its conditional expectation.
Suppose, for instance, in Example 26.3.4 that we want to find the
posterior mean of the number nA/A of people of genotype A/A. If
we run the chain m epochs after burn-in, then we can estimate the
posterior mean by the sample average 1

m

∑m
i=1 n

i
A/A. However, the

estimator

1

m

m∑

i=1

nA
(piA)2

(piA)2 + 2piAp
i
O

is apt to have smaller variance since we have eliminated the noise
introduced by sampling niA/A at epoch i.

8. (h) Undiagnosed slow convergence can lead to grievous errors in sta-
tistical inference. A time series plot of each parameter can often sug-
gest when equilibrium kicks in. Strong autocorrelation is diagnostic of
slow convergence. Gelman and Rubin suggest some monitoring tech-
niques that are helpful if multiple independent realizations of a chain
are available [11]. Given the low cost of modern computing, there
is little excuse for avoiding this precaution. Enough runs should be
undertaken so that starting states are widely dispersed.

9. (i) If a chain is known to converge rapidly, multiple independent runs
are no better than a single long chain in computing expectations.

10. (j) For chains that converge slowly, importance sampling and running
parallel, coupled chains offer speedups. Problems 16 and 17 briefly
explain these techniques.

To illustrate some of the above advice in action, let us return to Example
26.3.3. The most suspect assumption there was the imposition of beta priors
on the catch probabilities pi. The particular choice α = β = 1 entails
the prior mean E(pi) = α

α+β
= 1

2
, which is hardly congruent with a low

maximum likelihood estimate for the common value of the pi. Here is where
it is useful to introduce a hyperparameter. Instead of considering α and β
fixed, we introduce an independent prior on each. The exact nature of the
priors is less relevant than the fact that α and β are now allowed to migrate
to values dictated by the data. For simplicity we assume exponential priors
with intensity θ and mean θ−1. Taking θ small yields a nearly flat prior.
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Of course, imposing priors on α and β adds two more stages of Gibbs
sampling. Ignoring the other parameters, the posterior density is now pro-
portional to

B(α, β)−t
t∏

i=1

pαi (1 − pi)
βe−θαe−θβ . (26.6)

Fortunately, this complicated function is log-concave in the parameter vec-
tor (α, β); see Problem 18. Thus, one can sample from it fixing either com-
ponent by the adaptive acceptance-rejection scheme sketched in Section
22.6. Table 26.5 shows the new simulation results under the earlier con-
ditions except for replacement of the constraint α = β = 1 by the more
realistic hyperparameterization. The value µ in the table refers to the ratio
α/(α+ β). As the exponential priors become flatter, the sample posterior
means f̄ and µ̄ approximate the maximum likelihood estimates of f and p̄.
However, the sample means ᾱ and β̄ continue to increase.

One can reasonably question the advantage of a Bayesian analysis over
a frequentist analysis in this example. The generic answer, and a good one,
is that MCMC reveals the entire posterior distribution of the parameters.
This is predicated on choosing decent priors. In reality, the distribution of
f , the most interesting quantity in the model, is more sensitive to its own
prior than to the priors on α and β. Readers interested in this aspect of
prior sensitivity should consult the original paper [13].

TABLE 26.5. Posterior Means for the Capture-Recapture Data

θ f̄ ᾱ β̄ µ̄

1.00000 452.51500 0.46502 5.74339 0.08186
0.50000 453.36600 0.61087 11.10304 0.05678
0.25000 452.94800 0.89373 21.75739 0.04177
0.12500 454.13300 1.29508 38.35684 0.03449
0.06250 454.71900 1.73865 58.33032 0.03008
0.03125 455.07700 2.44334 88.82707 0.02763
0.01563 454.18700 3.29712 122.88996 0.02663
0.00781 457.46700 3.63517 139.40565 0.02614
0.00391 456.67000 4.70653 181.60048 0.02555
0.00195 457.04700 4.27371 166.55931 0.02547
0.00098 455.68400 4.55649 175.54479 0.02581

Let us now return briefly to the random walk example. A time series
plot of the x1 component quickly demonstrates the long lag in reaching the
half-plane x1 < 0 starting from (x1, x2) = (1, 1). Convergence diagnosis
with less obvious examples often benefits from plotting the autocorrelation
function of each component. Figure 26.3 plots the autocorrelation function
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of x2 after burn-in under three scenarios: (a) γ = 0.5 and ordinary random
walk as described, (b) γ = 0.5 and leapfrog random walk with p = 1

3
, and

(c) slice sampling. In each case the autocorrelation function is averaged
over 100 independent trials. Scenario (a) (left subplot) shows a very slow
decline in the autocorrelation function. Matters improve under scenario
(b) (middle subplot), but the decline is still fairly slow. Scenario (c) (right
subplot) shows a rapid decline in the autocorrelation function, in agreement
with our suggestion that slice sampling performs best. If we undertake a
similar analysis with the x1 component, the results are even more striking.
The autocorrelation function under slice sampling is 0 for all nontrivial
lags. This just reflects the symmetry of the sampling process in the x1

component.

26.6 Simulated Annealing

In simulated annealing we are interested in finding the most probable state
of a Markov chain [19, 27]. If this state is k, then πk > πi for all i 6= k.
To accentuate the weight given to state k, we can replace the equilibrium
distribution π by a distribution putting probability

π
(τ)
i =

π
1
τ
i∑
j π

1
τ

j

on state i. Here τ is a small, positive parameter traditionally called tem-

perature. With a symmetric proposal density, the distribution π
(τ)
i can be

attained by running a chain with Metropolis acceptance probability

aij = min
{(πj

πi

) 1
τ

, 1
}
. (26.7)

In fact, what is done in simulated annealing is that the chain is run with
τ gradually decreasing to 0. If τ starts out large, then in the early steps
of simulated annealing, almost all proposed steps are accepted, and the
chain broadly samples the state space. As τ declines, fewer unfavorable
steps are taken, and the chain eventually settles on some nearly optimal
state. With luck, this state is k or a state equivalent to k if several states are
optimal. Simulated annealing is designed to mimic the gradual freezing of a
substance into a crystalline state of perfect symmetry and hence minimum
energy.

Example 26.6.1 The Traveling Salesman Problem

A salesman must visit n towns, starting and ending in his hometown. Given
the distance dij between every pair of towns i and j, in what order should he
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FIGURE 26.3. Plots of the Autocorrelation Function for the Random Walk.

visit the towns to minimize the length of his circuit? This problem belongs
to the class of NP-complete problems; these have deterministic solutions
that are conjectured to increase in complexity at an exponential rate in n.

In the simulated annealing approach to the traveling salesman problem,
we assign to each permutation σ = (σ1, . . . , σn) a cost cσ =

∑n
i=1 dσi,σi+1 ,

where σn+1 = σ1. Defining πσ ∝ e−cσ turns the problem of minimizing the
cost into one of finding the most probable permutation σ. In the proposal
stage of simulated annealing, we randomly select two indices i 6= j and
reverse the block of integers beginning at σi and ending at σj in the cur-
rent permutation (σ1, . . . , σn). This proposal is accepted with probability
(26.7) depending on the temperature τ . In Numerical Recipes’ [27] simu-
lated annealing algorithm for the traveling salesman problem, τ is lowered
in multiplicative decrements of 10 % after every 100n epochs or every 10n
accepted steps, whichever comes first.

Example 26.6.2 Best Subset Regression

Best subset regression can be tackled by simulated annealing [31]. The
standard criterion for determining the best subset of predictors is Mallows’
[23]

Cp =
‖y − ŷ‖2

2

σ̂2
+ αp,

where p is the cardinality of the given subset, y − ŷ is the residual vector
under this set, σ̂2 is an unbiased estimator of the error variance, and α = 2.
If there are q potential predictors and n observations, and if y − ỹ is the
residual vector under the full set of predictors, then the obvious choice of
σ̂2 is ‖y − ỹ‖2

2/(n − q). To minimize Cp by simulated annealing, we must
design a proposal mechanism to perturb the current subset. The simplest
device is to choose a predictor at random. If it is in the subset, then we
switch it out. If it is outside the subset, then we switch it in. Recall from
Section 7.6 that regression is conducted by sweeping on the diagonal entries
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of the (q + 1) × (q + 1) matrix

(
XtX Xty
ytX yty

)
. (26.8)

Here X is the design matrix for the full set of predictors. If we sweep
the p diagonal entries of this matrix corresponding to the current subset,
then the lower-right entry yty = ‖y‖2

2 becomes ‖y − ŷ‖2
2. Let M = (mij)

denote the partially swept matrix. Sweeping or unsweeping diagonal entry
r sends entry mq+1,q+1 intomq+1,q+1−mq+1,rm

−1
r,rmr,q+1 . Thus, it is trivial

to check whether a proposed move should be taken. Actually taking the
move involves performing the entire sweep, which is harder but still easily
accomplished if q is not too large.

26.7 Problems

1. Implement a Metropolis-driven random walk to generate Poisson de-
viates with mean λ. If the random walk is in state x, then it should
propose states x − 1 and x + 1 with equal probabilities. Check that
the visited states have approximate mean and variance λ.

2. Implement a Metropolis-driven random walk to generate standard
normal deviates. If the random walk is in state x, then it should
propose to move to state x+c(U− 1

2), where c > 0 and U is a uniform
deviate from [0, 1]. Check that the walk increment has mean and

variance 0 and c2

12
, respectively. What value of c would you suggest?

3. An acceptance function a : [0,∞] 7→ [0, 1] satisfies the functional
identity a(x) = xa(1/x). Prove that the detailed balance condition

πiqijaij = πjqjiaji

holds if the acceptance probability aij is defined by

aij = a
(πjqji
πiqij

)

in terms of an acceptance function a(x). Check that the Barker func-
tion a(x) = x/(1 + x) qualifies as an acceptance function and that
any acceptance function is dominated by the Metropolis acceptance
function in the sense that a(x) ≤ min{x, 1} for all x.

4. The Metropolis acceptance mechanism (26.2) ordinarily implies ape-
riodicity of the underlying Markov chain. Show that if the proposal
distribution is symmetric and if some state i has a neighboring state
j such that πi > πj , then the period of state i is 1, and the chain,
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if irreducible, is aperiodic. For a counterexample, assign probability
πi = 1/4 to each vertex i of a square. If the two vertices adjacent to
a given vertex i are each proposed with probability 1/2, then show
that all proposed steps are accepted by the Metropolis criterion and
that the chain is periodic with period 2.

5. Validate the conjugate pairs displayed in Table 26.1.

6. Consider the Cartesian product space {0, 1} × {0, 1} equipped with
the probability distribution

(π00, π01, π10, π11) =
(1

2
,
1

4
,
1

8
,
1

8

)
.

Demonstrate that sequential Gibbs sampling does not satisfy detailed
balance by showing that π00s00,11 6= π11s11,00, where s00,11 and s11,00

are entries of the matrix S for first resampling component 1 and then
resampling component 2.

7. Let f(x1, x2) denote the joint density of two random variables X1

and X2, and let f(x1 | x2) and f(x2 | x1) denote their corresponding
conditional densities. Prove the formula

f(x1, x2) = f(x0
1, x

0
2)
f(x1 | x2)f(x2 | x0

1)

f(x0
1 | x2)f(x0

2 | x0
1)

showing how the joint density can be recovered up to a normalizing
constant from the conditional densities.

8. Design and implement a Gibbs sampler for generating bivariate nor-
mal deviates.

9. In a Bayesian random effects model, mi observations yij are drawn
from a normal density with mean ηi and precision τ for i = 1, . . . , n.
Impose a normal prior on ηi with mean µ and precision ω, a nor-
mal prior on µ with mean 0 and precision δ, and gamma priors on
τ and ω with shape parameters ατ and αω and scale parameters βτ
and βω , respectively. Assume independence among the yij given all
model parameters, independence of the ηi given the hyperparameters
µ, τ , and ω, and independence among the hyperparameters them-
selves. Calculate the conditional densities necessary to conduct a
Gibbs sample from the posterior distribution of the parameter vector
(η1, . . . , ηn, µ, τ, ω).

10. Carry out the Gibbs sampling procedure for the ABO allele frequency
model described in Example 26.3.4 using the duodenal ulcer data of
Chapter 13. Estimate the posterior medians, means, variances, and
covariances of the allele frequency parameters.
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11. As a simple change-point problem, suppose we observe the indepen-
dent random variables X1 through Xm. The first k of these are Pois-
son distributed with mean λ1, and the last m − k are Poisson dis-
tributed with mean λ2. We place independent priors on k, λ1, and λ2.
The prior on k is uniform over {1, . . . , m}. The prior on λi is gamma
with shape parameter αi and scale parameter βi. The prior on the
hyperparameter βi is inverse gamma with shape parameter γi and
scale parameter δi. The full prior can be factored as

π(k)π(λ1 | β1)π(λ2 | β2)π(β1)π(β2).

Derive the Gibbs sampling updates for the posterior density of the
parameter vector (k, λ1, λ2, β1, β2).

12. Let {xi}ni=1 be observations from independent Poisson random vari-
ables with means {λiti}ni=1, where the ti are known times and the
λi are unknown intensities. Suppose that λi has a gamma prior with
shape parameter α and scale parameter β and that β has an inverse
gamma prior δγe−δ/β/[βγ+1Γ(γ)]. Here α, δ, and γ are given, while
the λi and β are parameters. If the priors on the λi are independent,
what is the joint density of the data and the parameters? Design a
sequential Gibbs scheme to sample from the posterior distribution of
the parameters given the data.

13. If the component updated in the randomly sampled component ver-
sion of Gibbs sampling depends probabilistically on the current state
of the chain, how must the Hastings-Metropolis acceptance probabil-
ity be modified to preserve detailed balance? Under the appropriate
modification, the acceptance probability is no longer always 1.

14. Design and implement a slice sampler that generates deviates from
the unnormalized density f(x) = e−|x|α , with x real and α > 0.

15. Write a program implementing the Markov chain of Example 25.2.4
of Chapter 25. Use the program to estimate E(

∑n
i=1 R

2
ii) for a random

rotation R. This integral has exact value 1.

16. Importance sampling is one remedy when the states of a Markov chain
communicate poorly [16]. Suppose that π is the equilibrium distribu-
tion of the chain. If we sample from a chain whose distribution is ν ,
then we can recover approximate expectations with respect to π by
taking weighted averages. In this scheme, the state z is given weight
wz = πz/νz. If Z0, Z1, Z2 . . . is a run from the chain with equilibrium
distribution ν , then under the appropriate ergodic assumptions prove
that

lim
n→∞

∑n−1
i=0 wZif(Zi)∑n−1

i=0 wZi

= Eπ[f(X)].
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The choice νz ∝ π
1/τ
z for τ > 1 lowers the peaks and raises the

valleys of π [18]. Unfortunately, if ν differs too much from π, then the
estimator

∑n−1
i=0 wZif(Zi)∑n−1

i=0 wZi

of the expectation Eπ[f(X)] will have a large variance for n of mod-
erate size.

17. Another device to improve mixing of a Markov chain is to run sev-
eral parallel chains on the same state space and occasionally swap
their states [14]. If π is the target distribution, then let π(1) = π,
and define m−1 additional distributions π(2), . . . , π(m). For instance,
incremental heating can be achieved by taking

π(k)
z ∝ π

1
1+(k−1)τ
z

for τ > 0. At epoch n, we sample for each chain k a state Znk given the
chain’s previous state Zn−1,k. We then randomly select chain i with
probability 1/m and consider swapping states between it and chain
j = i+ 1. (When i = m, no swap is performed.) Under appropriate
ergodic assumptions on the m participating chains, show that if the
acceptance probability for the proposed swap is

min

{
π

(i)
Znj

π
(j)
Zni

π
(i)
Zni

π
(j)
Znj

, 1

}
,

then the product chain is ergodic with equilibrium distribution given
by the product distribution π(1) ⊗ π(2) ⊗ · · · ⊗ π(m). The marginal
distribution of this distribution for chain 1 is just π. Therefore, we
can throw away the outcomes of chains 2 through m and estimate
expectations with respect to π by forming sample averages from the
embedded run of chain 1. (Hint: The fact that no swap is possible
at each step allows the chains to run independently for an arbitrary
number of steps.)

18. Show that the function (26.6) is log-concave in (α, β). (Hint: Based
on the closure properties enumerated in Problem 7 of Chapter 22,
argue that the normalizing function

Γ(α)Γ(β)

Γ(α+ β)
=

∫ 1

0

xα−1(1 − x)β−1dx

is log-convex.)



548 26. Markov Chain Monte Carlo

19. It is known that every planar graph can be colored by four colors
[2]. Design, program, and test a simulated annealing algorithm to
find a four coloring of any planar graph. (Suggestions: Represent the
graph by a list of nodes and a list of edges. Assign to each node a color
represented by a number between 1 and 4. The cost of a coloring is the
number of edges with incident nodes of the same color. In the proposal
stage of the simulated annealing solution, randomly choose a node,
randomly reassign its color, and recalculate the cost. If successful,
simulated annealing will find a coloring with the minimum cost of 0.)

20. A Sudoku puzzle is a 9-by-9 matrix, with some entries containing pre-
defined digits. The goal is to completely fill in the matrix, using the
digits 1 through 9, in such a way that each row, column, and symmet-
rically placed 3-by-3 submatrix displays each digit exactly once. In
mathematical language, a completed Sudoku matrix is a Latin square
subject to further constraints on the 3-by-3 submatrices. The initial
partially filled in matrix is assumed to have a unique completion. De-
sign, program, and test a simulated annealing algorithm to solve a
Sudoku puzzle.

21. Consider a graph with 2n nodes. The graph bisection problem in-
volves dividing the nodes into two disjoint subsets A and B of size n
such that the number of edges extending between a node in A and a
node in B is as small as possible. Design and implement a simulated
annealing algorithm to find a best pair of subsets. This problem has
implications for the design of microchips [19].
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27

Advanced Topics in MCMC

27.1 Introduction

The pace of research on MCMC methods is so quick that any survey of
advanced topics is immediately obsolete. The highly eclectic and decidedly
biased coverage in our final chapter begins with a discussion of Markov
random fields. Our limited aims here are to prove the Hammersley-Clifford
theorem and introduce the Swendsen-Wang algorithm, a clever form of slice
sampling. In the Ising model, the Swendsen-Wang algorithm is much more
efficient than standard Gibbs sampling.

We then move on to reversible jump MCMC. Bayesian inference tends to
perform better than frequentist inference in choosing between non-nested
models. Green’s [8] invention of reversible jump MCMC provides a practical
path to implementing Bayesian model selection. In our opinion, reversible
jump MCMC will have a larger impact on the field of statistics than the
more glamorous device of perfect sampling.

The second half of the chapter is designed to help readers sort through
the advanced literature on convergence rates of Markov chains. Our treat-
ment of convergence commences with the introduction of the total variation
and chi-square distances. Coupling is mentioned because it often yields sur-
prisingly good total variation bounds with little effort. Convergence theory
is much easier for finite-state Markov chains than it is for denumerable and
continuous chains. For reversible finite-state chains, the full force of linear
algebra can be brought to bear. This is a good setting to develop intuition.
For the sake of comparison, we treat convergence of the independence sam-
pler from the different perspectives of linear algebra and coupling.

The last two sections of the chapter emphasize Hilbert spaces, compact
operators, our old friend the singular value decomposition, and orthogonal
polynomials. The foundations of Hilbert and Banach spaces were laid in the
nineteenth century and completed in the first half of the twentieth century.
Hilbert spaces isolate and generalize the inner products that drive linear
algebra. Linear operators such as expectations and conditional expectations
are the infinite-dimensional analogs of matrices. Throughout our discussion,
alert readers will notice our debt to the books [11, 13, 15] and the survey
article [6].

The lovely interplay of different branches of mathematics yields enormous
insight into toy models of MCMC. Unfortunately, the convergence behavior
of more practical models is much more complicated. Statisticians are in
the position of those whose practical reach exceeds their theoretical grasp.

K. Lange, Numerical Analysis for Statisticians, Statistics and Computing, 551
DOI 10.1007/978-1-4419-5945-4_27, © Springer Science+Business Media, LLC 2010 
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Perhaps a chapter reinforcing this humbling reality is a good place to close
the present book. Certainly, there will be no lack of challenging theoretical
problems to keep the next generation of mathematical statisticians busy.

Before turning to particular topics, a few words about vocabulary and
notation are again timely. We will use the term kernel instead of the term
transition probability matrix in discussing denumerable and continuous-
state Markov chains. Integration signs will be replaced by summation signs
whenever convenient. Most of the kernels one encounters in practice provide
densities relative to a fixed measure such as counting measure or Lebesgue
measure. Omitting mention of these measures eases the notational burden
in complicated formulas. Sticklers for detail will want to mentally add the
measures back in following our derivations.

27.2 Markov Random Fields

A Markov chain is indexed by points in time. A random spatial process is
indexed by points in space. If we are willing to avoid continuous indices, we
can abstract even further and consider random processes over finite graphs.
The Ising process is a typical example. Suppose the graph G has g nodes
(or sites). The state of node i is characterized by a random element drawn
from a finite set Si. The state of the entire system is a random vector
N = (N1, . . . , Ng) with Ni ∈ Si. In the Ising model Si = {0, 1}. In imaging
problems, Si might be a range of intensities. If color is important, then
Si could be the Cartesian product of three sets of intensities, one for each
primary color. The structure of G is determined by the set of neighbors ∂i
of each node i. Thus, i and j ∈ ∂i are joined by an edge of the graph. The
first g epochs of a Markov chain fit naturally within this framework. The
nodes of the graph consist of the integers from 1 to g. The neighbors of i
are i − 1 and i + 1 provided 1 < i < g. This linear graph is the simplest
connected graph. The sets Si collapse to the possible states of the chain.

It is useful to adopt notation as compact as possible. Let π(n) be the
probability of the realization n = (n1, . . . , ng) of N. To circumvent certain
logical traps, we will assume that all π(n) are positive. Because they are
probabilities, they sum to 1. In defining a Markov random field, we must
deal with conditional probabilities. Let π(n | nA) denote the conditional
distribution of N given Ni = ni for i ∈ A. The most important choices for
the subset A ⊂ G are G− i = G \ {i} and ∂i. With this notation in hand,
the Markov random field assumption is π(ni | nG−i) = π(ni | n∂i) for all
nodes i. For instance, consider the first g epochs of a stationary Markov
chain with transition probability matrix (pij) and equilibrium distribution
ν . The calculation

π(ni | nG−i) =
νn1

∏g−1
j=1 pnj,nj+1

νn1

∏
j 6∈{i−1,i} pnj,nj+1

∑
m pni−1,mpm,ni+1
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=
pni−1,nipni,ni+1∑
m pni−1,mpm,ni+1

= π(ni | n∂i)
demonstrates the Markov field property for 1 < i < g. Verification when
i = 1 and i = g is equally easy.

Given a random field, Markovian or not, the conditional probabilities
π(ni | nG−i) determine the full distribution π(n). To establish this fact, let
Tmi be the operator that changes the state of node i to m. The identity

π(ni | nG−i)

π(m | nG−i)
=

π(n)

π(Tmi n)

is the key to the proof. For each set Si choose a distinguished state 0 and
let 0 = (0, . . . , 0). The equation

π(n)

π(0)
=

π(n)

π(T 0
1 n)

· π(T 0
1 n)

π(T 0
2 T

0
1 n)

· · · π(T 0
g−1T

0
g−2 · · ·T 0

1 n)

π(T 0
g T

0
g−1 · · ·T 0

1 n)

now determines π(n) up to a normalizing constant.
It is worth emphasizing that merely postulating the conditional distri-

butions π(ni | nG−i) does not guarantee the existence of a random field.
The conditional distributions have to be consistent. For instance, consider
the conditional distributions

Pr(N1 = i | N2 = j) =

(
1
2

1
4

1
2

3
4

)
, Pr(N2 = j | N1 = i) =

(
1
2

1
2

3
4

1
4

)

for a two-node graph with the common state space {1, 2} for each node. If
we postulate the marginal distributions (a, 1− a) for N1 and (b, 1 − b) for
N2, then the joint distribution can be written in the two different ways

Pr(N1 = i, N2 = j) =

( a
2

a
2

3(1−a)
4

(1−a)
4

)
=

( b
2

1−b
4

b
2

3(1−b)
4

)
.

The resulting four equations have no solution for the unknowns a and b.
Our next object is to characterize Markovian random fields. This exercise

is intimately tied to the clique structure of the graph G. A subset R ⊂ G is
said to be a clique if all pairs i and j drawn fromR are connected by an edge.
Every singleton {i} is a clique by default. Let C denote the collection of
cliques. With this notation we prove the necessary and sufficient condition
of Hammersley and Clifford for a random field to be Markovian [3].

Proposition 27.2.1 A random field is Markovian if and only if its prob-
ability distribution π(n) can be expressed as a product

π(n) =
∏

C∈C
ψC(nC) (27.1)

over functions whose arguments depend only on the cliques of the underlying
graph G.
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Proof: Suppose the representation (27.1) holds. Then

π(ni | nG−i) =

∏
C∈C:i∈C ψC(nC)∑

m∈Si

∏
C∈C:i∈C ψC(Tmi nC)

clearly depends only on the neighborhood ∂i of i.
To prove the converse, note that if G itself is a clique, then the asserted

representation is obvious. For the general case, it is convenient to let n0
R

be the vector whose ith component is ni when i ∈ R and 0 when i 6∈ R.
We define the clique functions of the representation (27.1) recursively via

ψ∅(n∅) = π(0)

ψC(nC) =

{
π(n0

C)∏
B⊂C:B 6=C

ψB(nB)
ni 6= 0 for all i ∈ C

1 otherwise.

Here ∅ is the empty set, and C 6= ∅. These definitions guarantee the validity
of the representation (27.1) for all n = n0

C with C a clique. In particular,
it holds when n = 0. We therefore assume inductively that it holds when
n has at most m nonzero components. Take n 6= n0

C for any clique C, and
assume n has at most m+ 1 nonzero components. There clearly exist two
nonneighboring nodes i and j with ni 6= 0 and nj 6= 0; otherwise, the set
C = {i : ni 6= 0} is a clique with n = n0

C . Since π is Markovian, the ratio
π(n)/π(T 0

j n) does not depend on ni, and

π(n)

π(T 0
j n)

=
π(T 0

i n)

π(T 0
i T

0
j n)

.

Because the state vectors T 0
i n, T 0

j n, and T 0
i T

0
j have more components with

value 0 than n, the induction hypothesis implies

π(n)

=
π(T 0

i n)π(T 0
j n)

π(T 0
i T

0
j n)

=

∏
i∈C ψC(T 0

i nC)
∏
i 6∈C ψC(T 0

i nC)
∏
j∈C ψC(T 0

j nC)
∏
j 6∈C ψC(T 0

j nC)∏
i,j /∈C ψC(T 0

i T
0
j nC)

∏
i∈C ψC(T 0

i T
0
j nC)

∏
j∈C ψC(T 0

i T
0
j nC)

=

∏
i∈C ψC(T 0

i nC)
∏
i 6∈C ψC(nC)

∏
j∈C ψC(T 0

j nC)
∏
j 6∈C ψC(nC)∏

i,j/∈C ψC(nC)
∏
i∈C ψC(T 0

i nC)
∏
j∈C ψC(T 0

j nC)

=

∏
i/∈C ψC(nC)

∏
j /∈C ψC(nC)∏

i,j/∈C ψC(nC)

=
∏

i,j /∈C
ψC(nC)

∏

i∈C
ψC(nC)

∏

j∈C
ψC(nC),

which is just the representation (27.1) again. This advances the induction
and proves the overall validity of the representation.
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As a simple illustration, suppose the field is binary (all Si = {0, 1}) and
all cliques contain at most two nodes. The distribution π(n) is determined
by the ratios

π(ni = 1 | n∂i)
π(ni = 0 | n∂i)

=
ψi(1)

∏
j∈∂i ψ{i,j}(1, nj)

ψi(0)
∏
j∈∂i ψ{i,j}(0, nj)

.

If we define

αi =
ψi(1)

∏
j∈∂i ψ{i,j}(1, 0)

ψi(0)
∏
j∈∂i ψ{i,j}(0, 0)

β{i,j} =
ψ{i,j}(0, 0)ψ{i,j}(1, 1)

ψ{i,j}(1, 0)ψ{i,j}(0, 1)
, j ∈ ∂i,

then this ratio becomes

π(ni = 1 | n∂i)
π(ni = 0 | n∂i)

= αi
∏

j∈∂i
β
nj

{i,j}.

Hence, π(n) is determined by the node parameters αi and the edge param-
eters β{i,j}.

Example 27.2.1 Swendsen-Wang Algorithm

The most interesting special case of the model occurs when all βij = β > 1.
In this setting it is convenient to reparameterize so that

π(n) ∝ e

∑
i
γini+δ

∑
{ij} 1{ni=nj} ,

where the second sum extends over all edges and δ > 0. Although Gibbs
sampling is clearly possible, the slice sampler is much faster [7, 19]. To
implement slice sampling, we must decompose π(n) into a product of non-
negative functions with the same support. The auxiliary functions appear-
ing in the product correspond to the edges {j, k} of G and are defined as

f{j,k}(n) = eγ1{nj=nk}. For each auxiliary function, one creates an auxiliary
random variable U{j,k} uniformly distributed on the interval [0, f{j,k}(n)].
Because the U{j,k} are independent given n, they are trivial to sample.
Sampling from the intersection of the top sets {n : f{j,k}(n) ≥ u{j,k}} is
more subtle.

The most fruitful way of thinking about sampling n is to separate the
edges with u{j,k} > 1 from those with u{j,k} ≤ 1. For those in the former
category, the components nj and nk of a sampled n must be equal. For
those in the latter category, no such restriction applies. Therefore, consider
a new graph whose node set is G and whose edge set consists of the former
category of edges. Divide the nodes in the new graph into connected com-
ponents. Within a connected component, all nodes i must have the same
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value ni. Nodes in different components have independent values for the
ni. Within a component A, we rely on Bayes’ rule to set the common value
of the ni. This requires that 0 be chosen with probability

e
∑

i∈A
γi0

e
∑

i∈A
γi0 + e

∑
i∈A

γi1
=

1

1 + e
∑

i∈A
γi

and that 1 be chosen with the complementary probability.

27.3 Reversible Jump MCMC

One of the advantages of the Bayesian perspective is that it promotes grace-
ful handling of non-nested models. Hypothesis testing by likelihood ratios
requires the null model to be a smooth restriction of the alternative model.
Many statistical problems involve selecting one model from a set of non-
overlapping models or a hierarchy of non-nested models. For instance in bi-
ological taxonomy, several different evolutionary trees may plausibly trace
the ancestry of a group of related species. The distinctions between trees
are discrete and combinatorial rather than continuous.

Suppose x represents the data explained by a finite or countable number
of competing models. Let Mm denote model m with prior ρm, parameter
vector θm, prior πm(θm), and likelihood fm(x | θm). An MCMC sample
from the joint density fm(x | θm)πm(θm)ρm can be used to approximate
the posterior probability

Pr(Mm | x) =
ρm
∫
fm(x | θm)πm(θm) dθm∑

n ρn
∫
fn(x | θn)πn(θn) dθn

.

Green’s [8] reversible jump MCMC makes estimation of such posterior prob-
abilities straightforward.

To implement Green’s algorithm, one needs to specify the probability of
jumping from Mm to Mn. In many problems the models form a staircase,
and choosing the jump probabilities jmn as a nearest neighbor random walk
is convenient. The diagonal terms jmm should be substantial enough to
permit exploration of the current model between jumps. If the dimensions
of the parameter vectors θm and θn do not match, then the dimension
of the less complex model is boosted by simulation. For instance, if the
dimension of θn exceeds the dimension of θm, then a continuous random
vector umn is simulated to fill out the missing dimensions of θm. Dimension
matching is fully achieved by defining smooth invertible transformations
θn = Tmn(θm, umn) and (θm, umn) = Tnm(θn) that take subsets of positive
Lebesgue measure into subsets of positive Lebesgue measure.

MCMC sampling is initiated by proposing the next model Mn according
to the jump distribution {jmn}n. The motion of the Markov chain within
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the current model Mm should preserve its posterior distribution, which is
proportional to fm(x | θm)πm(θm). For instance, one can conduct random
component Gibbs sampling. Jumps between models are governed by the
Hastings-Metropolis mechanism to maintain reversibility. If model Mn is
selected, then the boosting vector umn is sampled as needed from a fixed
density hmn(umn), often assumed uniform. The proposal step is completed
by sending the vector θm into the vector θn = Tmn(θm, umn). Acceptance is
more subtle. When the proposed model Mn differs from the current model
Mm, the acceptance probability is

min

{
fn(x | θn)πn(θn)ρnhnm(unm)jnm
fm(x | θm)πm(θm)ρmhmn(umn)jmn

· |dTmn(θm, umn)|, 1
}
. (27.2)

Equation (27.2) differs from the standard Hastings-Metropolis acceptance
probability by the inclusion of the jump probabilities, the boosting densi-
ties, and the dimension matching Jacobian |dTmn(θm, umn)|.

The Jacobian plays the role of a volume magnification factor. If we think
of the point (θm, umn) as surrounded by a small box of integration, then
this box is transformed into a distorted box around the point (θn, unm).
The Jacobian |dT (θm, umn)| specifies how the volume of the transformed
box relates to the volume of the original box. The boosted components umn
and unm, one of which is empty, are ghosts that appear only when needed
to facilitate the jumps between models. The whole apparatus requires the
functions fm(x | θm), πm(θm), and hmn(umn) to be densities relative to
Lebesgue measure (ordinary volume). These densities need only be specified
up to a constant, but the overall constants must be the same across models
in order for the proper cancellations to occur in the acceptance probability.

Example 27.3.1 Poisson versus Negative Binomial

The negative binomial distribution (model 2) provides an alternative to the
Poisson distribution (model 1) in a random sample x = (x1, . . . , xs) with
potential over-dispersion. The two corresponding densities

Pr(X = j) =
λj

j!
e−λ, Pr(X = j) =

(
n+ j − 1

j

)
pn(1 − p)j

are supported on the integers {0, 1, 2, . . .} and have means λ and n(1−p)/p
and variances λ and n(1− p)/p2, respectively. The comparison is clearer if
we reparameterize by setting n(1 − p)/p = λ and n(1 − p)/p2 = λ(1 + κ)
for κ > 0. This entails taking n = λ/κ and p = 1/(1+κ). With this change
in notation, the negative binomial density becomes

Pr(X = j) =
Γ(λ/κ+ j)

Γ(λ/κ)j!

( 1

1 + κ

)λ/κ( κ

1 + κ

)j
.

A reasonable prior on λ is gamma with shape parameter αλ and scale
parameter βλ. Under the Poisson model a gamma prior is conjugate. The
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choice of a prior for the over-dispersion parameter κ is more problematic.
One possibility is an independent gamma prior with shape parameter ακ
and scale parameter βκ. The uninformative prior ρ1 = ρ2 = 1

2 and jump
probabilities jmn = 1

2 are both fairly natural.
To achieve dimension matching, one can simply sample an exponential

deviate u with intensity δ and equate κ to u. The implied transforma-
tions T12(λ, u) = (λ, u) and T21(λ, κ) = (λ, κ) both have Jacobian 1. These
choices fully define the acceptance probabilities and drive MCMC sam-
pling. An obvious omission is how the chain moves within a model. Under
the Poisson model, resampling the posterior distribution is straightforward.
Under the negative binomial model, a good sampling procedure is less ob-
vious. One possibility is to institute Hastings-Metropolis sampling by mul-
tiplying λ and κ by independent exponential deviates with mean 1. We
encourage readers to play with the model and consult the expository pa-
per [9] for further hints. For the sake of simplicity, we have modified some
aspects of the model.

27.4 Metrics for Convergence

To discuss convergence rates rigorously, it is convenient to introduce two
distance functions on probability distributions. For the sake of simplicity,
suppose the common state space is the set of integers. The total variation
distance between distributions π and ν is defined as [5]

‖π − ν‖TV = sup
A

|π(A) − ν(A)| =
1

2

∑

i

|πi − νi|, (27.3)

where A ranges over all subsets of the integers. Problem 5 asks the reader
to check that these two definitions are equivalent. Another useful distance
is the chi-square distance ‖π − ν‖χ2 = ‖π − ν‖1/ν. Its square equals

‖π − ν‖2
χ2 =

∑

i

(πi − νi)
2

νi
= Varν

(πi
νi

)
.

If πi > 0 and νi = 0 for some i, then ‖π − ν‖χ2 is infinite. The Cauchy-
Schwarz inequality

∑

i

|πi − νi| ≤
[∑

i

(πi − νi)
2

νi

]1/2(∑

i

νi

)1/2

implies

‖π − ν‖TV ≤ 1

2
‖π − ν‖χ2. (27.4)
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Hence, chi-square distance is stronger than total variation distance. The
same reasoning leads to the bound

|Eπ(Z) − Eν(Z)| ≤ Eν(Z
2)1/2‖π − ν‖χ2

for any random variable Z.
Coupling arguments depend on π and ν being attached to random vari-

ables X and Y defined on the same probability space. When this is the
case, we have

|Pr(X ∈ A) − Pr(Y ∈ A)|
= |Pr(X ∈ A,X = Y ) + Pr(X ∈ A,X 6= Y )

− Pr(Y ∈ A,X = Y ) − Pr(Y ∈ A,X 6= Y )|
= |Pr(X ∈ A,X 6= Y ) − Pr(Y ∈ A,X 6= Y )|
≤ E(1{X 6=Y }|1A(X) − 1A(Y )|)
≤ Pr(X 6= Y ).

Taking the supremum over A yields

‖π − ν‖TV ≤ Pr(X 6= Y ). (27.5)

Example 27.4.1 Distance between Poisson Random Variables

Consider Poisson random variables X and Y with means µ and ω > µ,
respectively. It is well known that one can construct a copy of Y by adding
to X an independent Poisson random variable Z with mean ω − µ. In this
case the bound (27.5) gives

‖πY − πX‖TV ≤ Pr(X + Z 6= X) = Pr(Z 6= 0) = 1 − e−(ω−µ)

for the distributions πX and πY of X and Y . This calculation succeeds
because X and Z live on the same probability space.

In the next example, we concoct a stopping time T <∞ connected with
a Markov chain Xn. By definition the event {T = n} depends only on the
outcomes of X1, . . . , Xn. If at epoch T the chain achieves its equilibrium
distribution π and XT is independent of T , then T is said to be a strong
stationary time. When π is uniform, T is a strong uniform time. In either
circumstance, the inequality

‖πXn − π‖TV ≤ Pr(T > n) (27.6)

holds, where πXn is the distribution of Xn. The key elements

|Pr(Xn ∈ A) − π(A)|
= |Pr(Xn ∈ A, T ≤ n) + Pr(Xn ∈ A, T > n) − π(A)|
= |π(A) Pr(T ≤ n) + Pr(Xn ∈ A, T > n)

−π(A) Pr(T ≤ n) − π(A) Pr(T > n)|
≤ Pr(T > n)
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of the proof parallel the proof of the earlier coupling bound (27.5).

Example 27.4.2 Riffle Shuffle

As an example of a strong uniform time, we turn briefly to card shuffling.
In the inverse shuffling method conceptualized by Reeds [5], at every shuffle
we imagine that each of c cards is assigned independently and uniformly
to a top pile or a bottom pile. Hence, each pile has a binomial number of
cards with mean c

2 . The order of the two subpiles is kept consistent with the
order of the parent pile, and in preparation for the next shuffle, the top pile
is placed above the bottom pile. To keep track of the process, one can mark
each card with a 0 (top pile) or 1 (bottom pile). Thus, shuffling induces
an infinite binary sequence on each card that serves to track its fate. Let
T denote the epoch when the first n digits for each card are unique. At
T the cards reach a completely random state where all c permutations are
equally likely. Let π be the uniform distribution and πXn be the distribution
of the cards after n shuffles. The probability Pr(T ≤ n) is the same as the
probability that c balls (digit strings) dropped independently and uniformly
into 2n boxes all wind up in different boxes. It follows from inequality (27.6)
that

‖πXn − π‖TV ≤ Pr(T > n) = 1 − Pr(T ≤ n) = 1 −
c−1∏

i=1

(
1 − i

2n

)
.

This bound converges rapidly to 0 and shows that 11 or fewer shuffles suffice
for c = 52 cards.

27.5 Convergence Rates for Finite Chains

Although an ergodic chain converges to equilibrium, finding its rate of con-
vergence is challenging. Example 27.4.2 is instructive because it constructs
an explicit and natural bound. Unfortunately, it is often impossible to iden-
tify a strong stationary time. The best estimates of the rate of convergence
rely on understanding the eigenstructure of the transition probability ma-
trix P [5, 16]. We now discuss this approach for a reversible ergodic chain
with a finite number of states and equilibrium distribution π. The inner
products

〈u, v〉1/π =
∑

i

uivi
1

πi
, 〈u, v〉π =

∑

i

uiviπi

feature prominently in our discussion.
For the chain in question, detailed balance translates into the condition

√
πipij

1√
πj

=
√
πjpji

1√
πi
. (27.7)
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If D is the diagonal matrix with ith diagonal entry
√
πi, then the validity

of equation (27.7) for all pairs (i, j) is equivalent to the symmetry of the
matrix Q = DPD−1. Let Q = UΛU t be its spectral decomposition, where
U is orthogonal, and Λ is diagonal with ith diagonal entry λi. One can
rewrite the spectral decomposition as the sum of outer products

Q =
∑

i

λiu
i(ui)t

using the columns ui of U . The formulas (ui)tuj = 1{i=j} and

Qk =
∑

i

λki u
i(ui)t

follow immediately. The formula for Qk in turn implies

P k =
∑

i

λkiD
−1ui(ui)tD =

∑

i

λki w
ivi, (27.8)

where vi = (ui)tD and wi = D−1ui.
Rearranging the identity DPD−1 = Q = UΛU t yields U tDP = ΛU tD.

Hence, the rows vi of V = U tD are row eigenvectors of P . These vectors
satisfy the orthogonality relations

〈vi, vj〉1/π = viD−2(vj)t = (ui)tuj = 1{i=j}

and therefore form a basis of the inner product space `21/π. The identity

PD−1U = D−1UΛ shows that the columns wj of W = D−1U are column
eigenvectors of P . These dual vectors satisfy the orthogonality relations

〈wi, wj〉π = (wi)tD2wj = (ui)tuj = 1{i=j}

and therefore form a basis of the inner product space `2π . Finally, we have
the biorthogonality relations

viwj = 1{i=j}

under the ordinary inner product. The trivial rescalings wi = D−2(vi)t and
(vi)t = D2wi allow one to pass back and forth between row eigenvectors
and column eigenvectors.

The distance from equilibrium in the `21/π norm bounds the total varia-
tion distance from equilibrium in the sense that

‖µ− π‖TV ≤ 1

2
‖µ− π‖1/π. (27.9)

This is just a restatement of inequality (27.4). With the understanding that
λ1 = 1, v1 = π, and w1 = 1, the next proposition provides an even more
basic bound.
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Proposition 27.5.1 An initial distribution µ for a reversible ergodic chain
with m states satisfies

‖µP k − π‖2
χ2 =

m∑

j=2

λ2k
j [(µ− π)wj ]2 (27.10)

≤ ρ2k‖µ− π‖2
1/π, (27.11)

where ρ < 1 is the absolute value of the second-largest eigenvalue in mag-
nitude of the transition probability matrix P .

Proof: According to Sections 6.5.3 and 25.2, ρ < 1. In view of the identity
πP = π, the expansion (27.8) gives

‖µP k − π‖2
1/π = ‖(µ− π)P k‖2

1/π

= (µ− π)

m∑

i=1

λkiw
iviD−2

m∑

j=1

λkj (v
j)t(wj)t(µ− π)t

= (µ− π)

m∑

i=1

λ2k
i w

i(wi)t(µ− π)t

=

m∑

i=1

λ2k
i

[
(µ− π)wi

]2
.

The two constraints
∑

j πj =
∑

j µj = 1 clearly imply (µ − π)w1 = 0.
Equality (27.10) follows immediately. Because all remaining eigenvalues
satisfy |λj| ≤ ρ, one can show by similar reasoning that

m∑

j=2

λ2k
j

[
(µ− π)wi

]2 ≤ ρ2k
m∑

j=1

[
(µ − π)wi

]2

= ρ2k‖µ− π‖2
1/π.

This validates inequality (27.11).

If a nonreversible finite-state chain Xn is ergodic, then it still satisfies
the bound

‖πn − π‖TV ≤ cρn

for some positive constant c. Many infinite-state chains also satisfy this
condition; they are said to be uniformly ergodic. The central limit theorem
holds for uniformly ergodic chains. Suppose f(Xn) is square integrable
under π with mean µ and variance σ0. If we define the autocovariance
sequence σm = Cov(Xn , Xn+m), then the central limit theorem asserts
that the adjusted sample averages

1√
n

n−1∑

m=0

(Xm − µ)
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tend in distribution to a normal random variable with mean 0 and variance
σ = σ0 + 2

∑∞
m=1 σm. Further discussion of these results appear in the

references [2, 10, 20].

27.6 Convergence of the Independence Sampler

For the independence sampler, it is possible to give a coupling bound on the
rate of convergence to equilibrium [12]. Suppose that X0, X1, . . . represents
the sequence of states visited by the independence sampler starting from
X0 = x0. We couple this Markov chain to a second independence sampler
Y0, Y1, . . . starting from the equilibrium distribution π. By definition, each
Yk has distribution π. The two chains are coupled by a common proposal
stage and a common uniform deviate U sampled in deciding whether to
accept the common proposed point. They differ in having different accep-
tance probabilities. If Xn = Yn for some n, then Xk = Yk for all k ≥ n.
Let T denote the random epoch when Xn first meets Yn and the X chain
attains equilibrium.

The importance ratios wj = πj/qj determine what proposed points are
accepted. Without loss of generality, assume that the states of the chain
are numbered 1, . . . , m and that the importance ratios wi are in decreasing
order. If Xn = x 6= y = Yn, then according to equation (26.1) the next
proposed point is accepted by both chains with probability

m∑

j=1

qj min
{wj
wx

,
wj
wy

, 1
}

=

m∑

j=1

πj min
{ 1

wx
,

1

wy
,

1

wj

}
≥ 1

w1
.

In other words, at each trial the two chains meet with at least probability
1/w1. This translates into the tail probability bound

Pr(T > n) ≤
(
1 − 1

w1

)n

and ultimately via inequality (27.6) into the bound

‖πn − π‖TV ≤
(
1 − 1

w1

)n
(27.12)

on the total variation distance of Xn from equilibrium.
It is interesting to compare this last bound with the bound entailed by

Proposition 27.5.1. Based on our assumption that the importance ratios
are decreasing, equation (26.5) shows that the transition probabilities of
the independence sampler are

pij =

{
qj j < i
πj/wi j > i .
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In order for
∑

j pij = 1, we must set pii = qi + λi, where

λi =
m∑

k=i

(
qk −

πk
wi

)
=

m∑

k=i+1

(
qk −

πk
wi

)
.

With these formulas in mind, one can decompose the overall transition
probability matrix as P = U + 1q, where q = (q1, . . . , qm) and U is the
upper triangular matrix

U =




λ1
q2(w2−w1)

w1
· · · · · · qm−1(wm−1−w1)

w1

qm(wm−w1)
w1

...
...

...
. . .

...
...

0 0 0 · · · λm−1
qm(wm−wm−1)

wm−1

0 0 0 · · · 0 λm


 .

The eigenvalues of U are just its diagonal entries λ1 through λm.
The reader can check that (a) λ1 = 1 − 1/w1, (b) the λi are decreasing,

and (c) λm = 0. It turns out that P and U share most of their eigenvalues.
They differ in the eigenvalue attached to the eigenvector 1 since P1 = 1
and U1 = 0. Suppose Uv = λiv for some i between 1 and m − 1. Let
us construct a column eigenvector of P with the eigenvalue λi. As a trial
eigenvector we take v + c1 and calculate

(U + 1q)(v + c1) = λiv + qv1 + c1 = λiv + (qv + c)1.

This is consistent with v+ c1 being an eigenvector provided we choose the
constant c to satisfy qv + c = λic. Because λi 6= 1, it is always possible to
do so. The combination of Proposition 27.5.1 and inequality (27.9) gives a
bound that decays at the same geometric rate λ1 = 1−w−1

1 as the coupling
bound (27.12). Thus, the coupling bound is about as good as one could
hope for. Problems 11 and 12 ask the reader to flesh out our convergence
arguments.

27.7 Operators and Markov Chains

Classical functional analysis is the study of linear algebra on infinite-dimen-
sional spaces [4, 17]. The topology of such a space is usually determined by
a norm or an inner product giving rise to a norm. Assuming all Cauchy se-
quences converge, the space is called a Banach space in the former case and
a Hilbert space in the latter case. Hilbert spaces have the richer structure
and will be the object of study in this section. Chapters 6 and 17 sum-
marize background material on norms, inner products, and Hilbert spaces.
All Hilbert spaces in this section and the next will be real and separable.
Recall that the norm associated with an inner product is defined by

‖x‖ =
√
〈x, x〉 = sup

‖y‖=1

〈x, y〉.
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The second of these two definitions is a consequence of the Cauchy-Schwarz
inequality and the choice y = x/‖x‖.

Linear operators and linear functionals are of paramount importance.
Linear operators are the analogs of matrices; symmetric operators are the
analogs of symmetric matrices. For the sake of simplicity, all of the opera-
tors we consider will be linear and continuous. A continuous linear operator
is necessarily bounded and vice versa. The adjoint (transpose) T ∗ of an op-
erator T satisfies 〈Ty, x〉 = 〈y, T ∗x〉 for all x and y. It follows that T ∗∗ = T
and that the kernel of T ∗ is perpendicular to the range of T . When T ∗ = T ,
the operator is symmetric. The norm of an operator T between two Hilbert
spaces is defined via

‖T‖ = sup
‖x‖=1

‖Tx‖ = sup
‖x‖=1

sup
‖y‖=1

〈Tx, y〉. (27.13)

The second of these definitions makes it clear that ‖T ∗‖ = ‖T‖. The spec-
tral radius of an operator T sending a Hilbert space into itself is the num-
ber ρ = limn→∞ ‖Tn‖1/n. If λ is an eigenvalue of T , then λ ≤ ρ. This
follows from the inequality |λ|n‖v‖ = ‖Tnv‖ ≤ ‖T‖n‖v‖ for the associated
eigenvector v. A symmetric operator has real eigenvalues and orthogonal
eigenvectors corresponding to distinct eigenvalues.

We will deal almost exclusively with the Hilbert space L2(π) of square
integrable random variables relative to a probability distribution π. In many
applications the subspace L2

0(π) of random variables with zero means is
more relevant. On this subspace, ‖h‖2 represents the variance of the random
variable h, and 〈g, h〉 represents the covariance of the random variables
g and h. Given a Markov chain Xn with transition probability matrix
P = (pij) and equilibrium distribution π, one can define two operators
summarizing the action of the chain. The forward and backward operators
take a function h ∈ L2(π) to the functions with components

F (h)i =
∑

j

hjpij, B(h)j =
∑

i

hipij
πi
πj
,

respectively. Our discrete notation here should not obscure the fact that
these operators are defined on arbitrary probability spaces. Despite their
abstract definitions, the forward and backward operators are nothing more
than the conditional expectations

(Fh)i = E[h(X1) | X0 = i], (Bh)j = E[h(X0) | X1 = j].

Simple induction demonstrates that the powers of these operators

(F nh)i = E[h(Xn) | X0 = i], (Bnh)j = E[h(X0) | Xn = j]

are also conditional expectations.
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These interpretations show that the forward and backward operators
preserve the mean value

∑
i hiπi of a function. Hence, both operators map

L2
0(π) into itself. The Cauchy-Schwarz inequalities

∑

i

(Fh)2iπi ≤
∑

i

(∑

j

h2
jpijπi

)(∑

j

pij
πi

)
πi =

∑

j

h2
jπj

∑

j

(Bh)2jπj ≤
∑

j

(∑

i

h2
i

pijπi
πj

)(∑

i

pijπi
πj

)
πj =

∑

i

h2
iπi

prove that both operators are norm decreasing. The two operators are
adjoint to one another because

〈Fg, h〉π =
∑

i

∑

j

gjpijhiπi =
∑

j

gj
∑

i

hi
pijπi
πj

πj = 〈g, Bh〉π .

When the chain satisfies the detailed balance condition πipij = πjpji, the
identity

∑

j

hjpij =
∑

j

hj
pjiπj
πi

demonstrates that the operators coincide and define a single symmetric
operator.

If a reversible Markov chain Xn is already at equilibrium, then the au-
tocovariance sequence σn = Covπ [h(X0), h(Xn)] defined by a function h in
L2

0(π) is decreasing in n. To check this claim, suppose first that n = 2m.
Then the equality F = B yields

Covπ[h(X0), h(Xn)] = Eπ[h(X0)h(Xn)]

= Eπ{E[h(X0) | Xm] E[h(X2m) | Xm]}
= 〈Bmh, Fmh〉
= ‖Fmh‖2

≤ ‖F ‖2‖Fm−1h‖2,

which is decreasing in m. On the other hand, when n = 2m+ 1, we have

Covπ [h(X0), h(Xn)] = 〈Fmh, Fm+1h〉 ≤ ‖F ‖‖Fmh‖2

by virtue of definition (27.13).
To summarize, the forward and backward operators characterize the evo-

lution of a Markov chain. The rate of convergence of the chain to equilib-
rium is determined by the common spectral radius of the two operators.
Based on equation (27.13), this can be defined in terms of the maximal
correlations

γn = sup
Varπ(g)=1

sup
Varπ(h)=1

Covπ [g(X0), h(Xn)]
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as limn→∞ γ
1/n
n . The chi-square inequality (27.4) offers a less precise but

often more computable bound. In the chi-square inequality, we take ν to be
the distribution πXn of Xn starting from an arbitrary initial distribution.
Of course to be of any use, the chi-square distance must be finite.

27.8 Compact Operators and Gibbs Sampling

The spectral decomposition for symmetric matrices carries over to symmet-
ric operators. The most natural generalization involves a discrete spectrum
and hinges on the notion of a compact operator. Any such linear operator
T is the limit of a sequence of operators Tn with finite-dimensional ranges.
By limit we mean that limn→∞ ‖T − Tn‖ = 0 in the operator norm. The
next proposition summarizes a few key facts.

Proposition 27.8.1 Suppose T is a continuous linear operator from a
Hilbert space H1 to a Hilbert space H2. Then the following properties hold:

(a) If the operator S : H0 7→ H1 is compact, then TS is compact. If the
operator S : H2 7→ H3 is compact, then ST is compact.

(b) If Tn is a sequence of compact operators with limit T , then T is compact
as well.

(c) The adjoint operator T ∗ is compact whenever T is compact.

(d) The operator T is compact if and only if for every bounded sequence of
vectors fn from H1, there exists a subsequence fnm such that Tfnm

converges to a vector g of H2.

Proof: Straightforward proofs can be found in the references [1, 17, 18].

Property (d) is often taken as the definition of a compact operator. Based
on these results, one can prove the spectral decomposition.

Proposition 27.8.2 Suppose T is a compact symmetric operator on the
Hilbert space H. Then there exists an orthonormal basis {vn}n consisting
entirely of eigenvectors of T . The corresponding eigenvalues {λn}n are real
and satisfy limn→∞ λn = 0. Conversely, if an operator T is diagonalizable
in this sense, then it is compact and symmetric.

Proof: See the references [1, 17, 18] for proofs.

The forward and backward operators are not the only operators of inter-
est in MCMC. Gibbs sampling suggests two novel operators. Let rij denote
the density of the bivariate random vector X = (X1 , X2). The correspond-
ing marginal distributions are µi =

∑
j rij and νj =

∑
i rij. The conditional

distribution of X2 given X1 = i is rij/µi; similarly, the conditional distri-
bution of X1 given X2 = j is rij/νj. Marginally, Gibbs sampling can be
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described by the two kernels

Pr(Xn+1
1 = j | Xn

1 = i) = pij =
∑

k

rikrjk
µiνk

Pr(Xn+1
2 = j | Xn

2 = i) = qij =
∑

k

rkirkj
νiµk

.

These kernels satisfy detailed balance because

µipij =
∑

k

rikrjk
νk

=
∑

k

rjkrik
νk

= µjpji

νiqij =
∑

k

rkirkj
µk

=
∑

k

rkjrki
µk

= νjqji.

One can define two associated operators

(Tf)j =
∑

i

fi
rij
νj

=
∑

i

fi
rij
µiνj

µi (27.14)

(T ∗g)i =
∑

j

gj
rij
µi

=
∑

j

gj
rij
µiνj

νj (27.15)

that are formally adjoints of one another. This fact follows from the iden-
tities

〈Tf, g〉ν =
∑

j

∑

i

fi
rij
νj
gjνj =

∑

i

fi
∑

j

gj
rij
µi
µi = 〈f, T ∗g〉µ.

In order for the maps to preserve square integrability, we must constrain
the joint density rij. The Cauchy-Schwarz inequalities

∑

j

(∑

i

fi
rij
νj

)2

νj ≤ ‖f‖2
µ

∑

j

∑

i

r2ij
µiνj

∑

i

(∑

j

gj
rij
µi

)2

µi ≤ ‖g‖2
ν

∑

i

∑

j

r2ij
µiνj

suggest a single sufficient condition, which can be restated as the trace
requirement

∑

i

pii =
∑

i

qii =
∑

i

∑

j

r2ij
µiνj

< ∞. (27.16)

The trace condition is a consequence of either of the stronger conditions

sup
i

pii
µi

= sup
i

∑

j

(rij
µi

)2 1

νj
< ∞

sup
j

qjj
νj

= sup
j

∑

i

(rij
νj

)2 1

µi
< ∞.
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In particular, if either marginal chain is finite, then the trace condition
holds.

The operators T ∗T and TT ∗ are

(T ∗Tf)k =
∑

j

∑

i

fi
rij
νj

rkj
µk

=
∑

i

fi
∑

j

rij
µk

rkj
νj

=
∑

i

fipik
µi
µk

(TT ∗f)k =
∑

i

∑

j

fj
rij
µi

rik
νk

=
∑

j

fj
∑

i

rik
νk

rij
µi

=
∑

j

qkjfj .

The first of these is the backward operator associated with L2(µ), and the
second is the forward operator associated with L2(ν). In view of reversibil-
ity, each operator is symmetric and agrees with its forward or backward
counterpart. Furthermore, each operator possesses only nonnegative eigen-
values. For example, if TT ∗f = λf , then this claim follows from the identity

λ‖f‖2
µ = 〈TT ∗f, f〉µ = 〈T ∗f, T ∗f〉ν = ‖T ∗f‖2

ν .

In view of parts (a) and (c) of Proposition 27.8.1, if we can show that
T is compact, then the three operators T ∗, T ∗T , and TT ∗ are compact
as well. It suffices to identify T as the limit of a sequence Tk of operators
with finite-dimensional ranges. According to the trace criterion (27.16),
the function rij/(µiνj) belongs to L2(µ × ν). If {um}m is an orthonormal
basis of L2(µ), and {vn}n is an orthonormal basis of L2(ν), then Problem
18 demonstrates that the product collection {umvn}mn is an orthonormal
basis of L2(µ × ν). The expansion

rij
µiνj

=
∑

m

∑

n

cmnu
m
i v

n
j

suggests that we define Tk via integration against the function

wkij =
∑

|m|+|n|≤k
cmnu

m
i v

n
j .

The representation

(Tkf)j =
∑

i

fiw
k
ijµi =

∑

|m|+|n|≤k
cmn

(∑

i

fiu
m
i µi

)
vnj

proves that the range of Tk is contained in the finite-dimensional subspace
with basis {vn}|n|≤k. Furthermore, the Cauchy-Schwarz inequality

‖Tf − Tkf‖2
ν =

∑

j

[∑

i

fi

( rij
µiνj

− wkij

)
µi

]2
νj

≤ ‖f‖2
µ

∑

i

∑

j

( rij
µiνj

− wkij

)2

µiνj.
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proves that ‖T − Tk‖2 tends to 0. Hence, T and therefore T ∗, T ∗T , and
TT ∗ are all compact operators.

Given the trace condition (27.16), Proposition 27.8.2 implies that T ∗T
and TT ∗ possess spectral decompositions. Suppose T ∗T has orthonormal
eigenvectors un with nontrivial associated eigenvalues β2

n. The vectors Tun

are orthogonal because

〈Tum, Tun〉 = 〈um, T ∗Tun〉 = β2
n〈um, un〉.

Therefore, the vectors vn defined by Tun = βnv
n are orthonormal. In addi-

tion, these vectors satisfy the identities T ∗vn = βnu
n and TT ∗vn = β2

nv
n.

Eigenvectors un and vn with eigenvalue 0 get mapped into null vectors un-
der T and T ∗. These are precisely the properties characterizing the singular
value decomposition of linear algebra.

27.9 Convergence Rates for Gibbs Sampling

Before we tackle some concrete examples, it is helpful to comment on the re-
lationships between the metrics defined for the joint chain and the marginal
chains in Gibbs sampling. There are two versions of the joint chain, depend-
ing on whether we resample X1 or X2 first. These versions have the kernels

si1j1,i2j2 = Pr(X1
2 = j2 | X0

1 = i1) Pr(X1
1 = i2 | X1

2 = j2) =
ri1j2
µi1

ri2j2
νj2

,

ti1j1,i2j2 = Pr(X1
1 = i2 | X0

2 = j1) Pr(X1
2 = j2 | X1

1 = i2) =
ri2j1
νj1

ri2j2
µi2

.

We will write sni1j1,i2j2 and tni1j1,i2j2 for the corresponding n-step kernels.

Let χ2
p(n), χ2

q(n), χ2
s(n), and χ2

t (n) denote the chi-square distances from
equilibrium after n steps for the chains with kernels p, q, s, and t, respec-
tively. The following bounds are hardly surprising since the marginal chains
at step n− 1 determine the joint chains at step n, which in turn determine
the marginal chains at step n.

Proposition 27.9.1 In the above notation we have the bounds

χ2
p(n) ≤ χ2

s(n) ≤ χ2
p(n− 1) (27.17)

χ2
q(n) ≤ χ2

t (n) ≤ χ2
q(n− 1). (27.18)

Similar inequalities hold for the corresponding total variation distances.

Proof: First note that

tni1j1,i2j2
ri2j2

− 1 =
∑

k

qn−1
j1k

ri2k
νk

1

µi2
−
∑

k

ri2k
µi2

=
∑

k

ri2k
µi2

(qn−1
j1k

νk
− 1
)
.
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Hence, Jensen’s inequality implies that

∑

i2j2

(tni1j1,i2j2
ri2j2

− 1
)2

ri2j2 =
∑

i2j2

[∑

k

ri2k
µi2

(qn−1
j1k

νk
− 1
)]2

ri2j2

=
∑

i2

[∑

k

ri2k
µi2

(qn−1
j1k

νk
− 1
)]2

µi2

≤
∑

i2

∑

k

ri2k
µi2

(qn−1
j1k

νk
− 1
)2

µi2

=
∑

i2

∑

k

ri2k
νk

(qn−1
j1k

νk
− 1
)2

νk

=
∑

k

(qn−1
j1k

νk
− 1
)2

νk.

The first quantity in this string is χ2
t (n), and the last quantity is χ2

q(n−1).
For the lower bound, invoking Jensen’s inequality yields

∑

i2j2

( tni1j1,i2j2
ri2j2

− 1
)2

ri2j2 =
∑

j2

∑

i2

( tni1j1,i2j2
ri2j2

− 1
)2 ri2j2

νj2
νj2

≥
∑

j2

[∑

i2

( tni1j1,i2j2
ri2j2

− 1
)ri2j2
νj2

]2
νj2

=
∑

j2

(qnj1j2
νj2

− 1
)2

νj2 .

The first quantity in this string is again χ2
t (n), and the last quantity is now

χ2
q(n). The inequalities (27.17) involving χ2

p(n), χ2
s(n), and χ2

p(n − 1) are
handled in the same manner.

The combination of Propositions 27.5.1 and 27.9.1 with inequality (27.4)
gives precise information on the rate of convergence of a Gibbs sampler
to equilibrium. Unfortunately, diagonalizing the corresponding operators is
impossible in most cases. In a few simple examples, the following proposi-
tion provides the key.

Proposition 27.9.2 Suppose the marginal distributions in Gibbs sampling
are one-dimensional and satisfy the conditions of Proposition 17.4.1. This
condition guarantees the existence of two polynomial sequences {pn(x1)}n
and {qn(x2)}n furnishing orthonormal bases of L2(µ) and L2(ν). In addi-
tion suppose the conditional expectations E[f(X1) | X2] and E[g(X2) | X1]
send polynomial functions f(x1) and g(x2) of degree n into polynomial func-
tions of degree n in the dual variables x2 and x1. Then there exist constants
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γn and δn such that

E[pn(X1) | X2] = γnqn(X2) (27.19)

E[qn(X2) | X1] = δnpn(X1). (27.20)

As a consequence, the X1 chain has eigenvectors pn(x1) and corresponding
nonnegative eigenvalues θn = γnδn. Likewise, the X2 chain has eigenvectors
qn(x2) and the same eigenvalues.

Proof: The conditional expectations E[f(X1) | X2] and E[g(X2) | X1] cor-
respond to the operators Tf and T ∗g in equations (27.14) and (27.15). The
identities (27.19) and (27.20) show that {pn(x1)}n and {qn(x2)}n diagonal-
ize the symmetric operators T ∗T and TT ∗. Hence, it suffices to verify these
two identities. Because p0(x1) = q0(x2) = 1, they are true for the choices
γ0 = δ0 = 1 when n = 0. For 0 ≤ m < n, we have the full expectation

E[Xm
1 qn(X2)] = E{E[Xm

1 | X2]qn(X2)} = E[fm(X2)qn(X2)],

where fm(x2) is a polynomial of degree m. In view of the orthogonality
of the sequence qn(x2), the expectation E[Xm

1 qn(X2)] vanishes. We can
reinterpret this result as

E[Xm
1 qn(X2)] = E{Xm

1 E[qn(X2) | X1]} = 0.

Because the conditional expectation E[qn(X2) | X1] is both a polynomial of
degree n and orthogonal to all polynomials of degree m < n, it reduces to a
multiple of pn(X1). Similar reasoning applies to the conditional expectation
E[pn(X1) | X2].

Example 27.9.1 Poisson-Gamma

Consider a Poisson likelihood with a gamma prior. Replace X1 by Y and
X2 by λ in our earlier notation. The joint and marginal densities are

ryλ =
λy

y!
e−λ

α(αλ)β−1

Γ(β)
e−αλ

νλ =
α(αλ)β−1

Γ(β)
e−αλ

µy =
αβ

y!Γ(β)

∫ ∞

0

λβ+y−1e−(α+1)λdλ

=
Γ(β + y)

y!Γ(β)

( α

α+ 1

)β( 1

α+ 1

)y
.

The trace criterion for compactness is

∞∑

y=0

∫ ∞

0

r2yλ
µyνλ

dλ =

∞∑

y=0

(α+ 1)β+y

y!Γ(β + y)

∫ ∞

0

λβ+2y−1e−(α+2)λdλ
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=

∞∑

y=0

Γ(β + 2y)

y!Γ(β + y)

(α+ 1)β+y

(α+ 2)β+2y
.

If we denote the general term of this series by cy, then the limiting ratio

lim
y→∞

cy+1

cy
=

4(α+ 1)

(α+ 2)2
< 1

for α > 0 is enough to guarantee convergence.
The two operators (Tf)(λ) and (T ∗g)(y) are simply the conditional ex-

pectations

E[f(Y ) | λ] =

∞∑

y=0

f(y)
λy

y!
e−λ

E[g(λ) | Y ] =
(α+ 1)β+y

Γ(β + y)

∫ ∞

0

g(λ)λβ+y−1e−(α+1)λdλ.

The choices f(y) = y(y − 1) · · · (y − n+ 1) and g(λ) = λn produce

E[f(Y ) | λ] = λn, E[g(λ) | Y ] =
Γ(β + Y + n)

Γ(β + Y )(α+ 1)n
. (27.21)

Hence, the two operators send polynomials of degree n into polynomials of
degree n.

At this stage, it is worth noting that the proof of Proposition 27.9.2
does not actually require polynomials of unit norm. Only the orthogonality
of the pn(x1) and qn(x2) is invoked. It is now convenient to assume that
these polynomials are monic in the sense that their leading coefficients
are 1. This change makes it possible to recover the factors γn and δn by
taking the conditional expectation of any monic polynomial of degree n
and extracting the leading coefficient of the result. For instance, the choices
f(y) = y(y− 1) · · · (y− n+ 1) and g(λ) = λn in the identities (27.21) yield
the conclusions γn = 1 and δn = (α + 1)−n. Hence, θn = (α + 1)−n, and
the second-largest eigenvalue of either marginal chain is ρ = (α+1)−1. The
inequalities (27.9) and (27.10) therefore imply that

‖µn − µ‖TV ≤ 1

2
‖µn − µ‖χ2 ≤ 1

2(α+ 1)n
‖µ0 − µ‖1/µ

‖νn − ν‖TV ≤ 1

2
‖νn − ν‖χ2 ≤ 1

2(α+ 1)n
‖ν0 − ν‖1/ν,

where µn and νn are the distributions of X1 and X2 at epoch n of Gibbs
sampling. Similar bounds are possible for the joint distribution if we substi-
tute n−1 for n in the marginal chains. More definitive bounds are possible
if we use the eigenvector part of the bound (27.10). The Laguerre and
Meixner polynomials developed in Chapter 17 are pertinent.
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Example 27.9.2 Normal-Normal

Consider a normal likelihood with a normal prior on the mean. The joint
and marginal densities are

rx1x2 =
1√

2πσ2
e−

(x1−x2)2

2σ2
1√

2πδ2
e−

(x2−γ)2

2δ2

νx2 =
1√

2πδ2
e−

(x2−γ)2

2δ2

µx1 =
1√

2πσ2

1√
2πδ2

∫ ∞

−∞
e−

(x1−x2)2

2σ2 e−
(x2−γ)2

2δ2 dx2

=
1√

2π(σ2 + δ2)
e
− (x1−γ)2

2(σ2+δ2) .

These assumptions imply that X2 given X1 is normally distributed with
mean and variance

αX1 + φ =
δ2(X1 − γ)

σ2 + δ2
+ γ, η =

σ2δ2

σ2 + δ2
.

The trace criterion for compactness

∫ ∞

−∞

∫ ∞

−∞

r2x1x2

µx1νx2

dx1dx2

=

√
δ2(σ2 + δ2)

σ2

∫ ∞

−∞

∫ ∞

−∞
e−

(x1−x2)2

σ2 e−
(x2−γ)2

2δ2 e
(x1−γ)2

2(σ2+δ2) dx1dx2

is finite because, as the reader can check, the integrand is proportional to
e−x

tAx for a positive definite matrix A.
The two operators (Tf)(x2) and (T ∗g)(x1) are

E[f(X1) | X2] =
1√

2πσ2

∫ ∞

−∞
f(x1)e

− (x1−x2)2

2σ2 dx1 (27.22)

E[g(X2) | X1] =
1√
2πη2

∫ ∞

−∞
g(x2)e

− (x2−αx1−φ)2

2η2 dx2. (27.23)

The choices f(x1) = xn1 and g(x2) = xn2 produce polynomials of degree
n in x2 and x1, respectively. Hence, the two operators send polynomials
of degree n into polynomials of degree n. If we assume the orthogonal
polynomials are monic, then we can again extract the leading coefficient
of Xn

2 in equation (27.22) and the leading coefficient of Xn
1 in equation

(27.23). This action gives γn = 1, δn = αn, and θn = αn. The second-
largest eigenvalue of either marginal chain is therefore ρ = α = δ2/(σ2+δ2).
The orthogonal polynomials for the two chains are related to the Hermite
polynomials discussed in Chapter 17.
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27.10 Problems

1. The Hammersley and Clifford theorem can fail if the distribution of
the Markov field is not everywhere positive. As a counterexample,
consider the graph corresponding to the four vertices of a square.
Each vertex is assigned one of the two values 0 or 1, and each pair of
neighboring vertices is connected by an edge. The eight realizations
of (N1 , N2, N3, N4)

(0 0 0 0)
(1 0 0 0)
(1 1 0 0)
(1 1 1 0)

(0 0 0 1)
(0 0 1 1)
(0 1 1 1)
(1 1 1 1)

each have probability 1
8 . The remaining eight realizations have prob-

ability 0. Prove that the consistency conditions

π(ni | nG−i) = π(ni | n∂i)

hold, yet Proposition 27.2.1 is false.

2. The Swendsen-Wang algorithm depends on finding the connected
components of a graph. Design and test a quick algorithm for this
purpose.

3. Implement the reversible jump chain described by Green [8] for a
Poisson process with multiple change points.

4. Implement the reversible jump chain described by Richardson and
Green [14] for analyzing a mixture of univariate normals with an
unknown number of components.

5. Demonstrate that the two definitions (27.3) of total variation distance
are equivalent. (Hint: Consider the set A = {i : πi ≥ νi} and the
identities

∑
i πi =

∑
i νi = 1.)

6. LetX have a Bernoulli distribution with success probability p and Y a
Poisson distribution with mean p. Prove the total variation inequality

‖πX − πY ‖TV ≤ p2

involving the distributions πX and πY of X and Y .

7. Let Y be a Poisson random variable with mean λ. Demonstrate that
Pr(Y ≥ k) is increasing in λ for k fixed.
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8. Suppose Y follows a negative binomial distribution that counts the
number of failures until n successes. Demonstrate by a coupling ar-
gument that Pr(Y ≥ k) is decreasing in the success probability p for
k fixed.

9. Let X1 follow a beta distribution with parameters α1 and β1 and X2

follow a beta distribution with parameters α2 and β2. If α1 ≤ α2 and
α1 +β1 = α2 + β2, then demonstrate that Pr(X1 ≥ x) ≤ Pr(X2 ≥ x)
for all x ∈ [0, 1]. How does this result carry over to the beta-binomial
distribution? (Hint: Construct X1 and X2 from gamma-distributed
random variables.)

10. Suppose P is the transition probability matrix of a reversible Markov
chain with equilibrium distribution π. Verify that P satisfies the sym-
metry condition

〈Pu, v〉π = 〈u, P v〉π,

which yields a direct proof that P has only real eigenvalues.

11. In our analysis of convergence of the independence sampler, we as-
serted that the eigenvalues λ1, . . . , λm satisfied the properties: (a)
λ1 = 1 − 1/w1, (b) the λi are decreasing, and (c) λm = 0. Verify
these properties.

12. Find the row and column eigenvectors of the transition probability
matrix P for the independence sampler. Show that they are orthog-
onal in the appropriate inner products.

13. Suppose T is a linear operator from a Hilbert space into itself. Prove
that

‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2 = ‖T ∗‖2.

14. An orthogonal projection P onto a closed subspace S of a Hilbert
space satisfies Pf = f for f ∈ S and Pf = 0 for f ∈ S⊥. Show that
the properties P 2 = P and P ∗ = P are necessary and sufficient for
a continuous linear operator to be an orthogonal projection. Use the
obvious orthogonal projection to prove that a closed subspace S of a
separable Hilbert space is separable.

15. A continuous linear operator O from a Hilbert space to itself is said
to be orthogonal if and only if OO∗ = O∗O = I. It is said to be an
isometry if and only if ‖Ov‖ = ‖v‖ for every vector v. Prove that
an orthogonal operator is an isometry and that an isometry with full
range is orthogonal. Produce an infinite-dimensional example of an
isometry that is not orthogonal.
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16. A diagonalizable operator T sends a vector f =
∑
n cnvn into the

vector Tf =
∑

n λncnvn. Assuming the basis {vn}n is orthonormal,
prove the following assertions:

(a) T is continuous if and only if the λn are bounded. In this case
‖T‖ = supn |λn|.

(b) T is symmetric if and only if all λn are real.

(c) T is an orthogonal operator if and only if all λn have absolute
value 1.

(d) T is an orthogonal projection if and only if all λn equal 0 or 1.

(e) T is compact if and only if limn→∞ λn = 0.

See the previous two problems for definitions.

17. Prove that the identity operator cannot be compact on an infinite-
dimensional Hilbert space. Use this fact to demonstrate that a com-
pact operator cannot have a continuous inverse in the same circum-
stances. (Hint: Apply Proposition 27.8.1.)

18. If {um}m is an orthonormal basis of L2(µ), and {vn}n is a basis of
L2(ν), then demonstrate that the product collection {umvn}mn is an
orthonormal basis of L2(µ× ν). (Hint: Use Fubini’s theorem to show
that the vectors umvn are orthogonal unit vectors. If fij satisfies

∑

i

∑

j

fiju
m
i v

n
j µiνj = 0

for all m and n, then gmj =
∑

i fiju
m
i µi satisfies

∑
j g

m
j v

n
j νj = 0 for

all n.)

19. Prove the analogs of the chi-square bounds (27.17) and (27.18) for
total variation distance.

20. Let X be binomially distributed with n trials and success probability
P . Assume that P follows a beta distribution with parameters (α, β).
If one alternates Gibbs sampling of X and P , then

(a) Derive the transition probabilities and stationary distributions
for the X and P marginal chains.

(b) Show that the associated Markov chain operators are compact
and send polynomials of degree k into polynomials of degree k.

(c) Show that the eigenvalues of the marginal chains are

θk =
n(n− 1) · · · (n− k + 1)

(n+ α+ β)(n + α+ β + 1) · · · (n+ α+ β + k − 1)

for k = 0, 1, . . . , n.
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(Hints: The marginal moments are

E(Xk | P ) = n · · · (n− k + 1)P k

E(P k | X) =
(X + α) · · · (X + α+ k − 1)

(n+ α+ β) · · · (n + α+ β + k − 1)
.

The relevant eigenvectors are Hahn and Jacobi polynomials, but these
are not explicitly needed.)

21. In a binomial location model, X is distributed as Y + Z, where Z is
binomial with n1 trials and success probability p, Y is binomial with
n2 trials and success probability p, and Y and Z are independent. If
one alternates Gibbs sampling of X and Y , then

(a) Derive the transition probabilities and stationary distributions
of the X and Y marginal chains.

(b) Show that the associated Markov operators are compact and
send polynomials of degree k into polynomials of degree k.

(c) Show that the eigenvalues of the marginal chains are

θk =
n1 · · · (n1 − k + 1)

(n1 + n2) · · · (n1 + n2 − k + 1)

for k = 0, 1, . . . , n1 + n2.

(Hints: The marginal moments are

E(Xk | Y ) =

k∑

j=0

(
k

j

)
Y j E(Zk−j)

E[Y · · · (Y − k + 1) | X] =
n1 · · · (n1 − k + 1)X · · · (X − k + 1)

(n1 + n2) · · · (n1 + n2 − k + 1)
.

The relevant eigenvectors are the Krawtchouk polynomials, but these
are not explicitly needed.)
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[2] Brémaud P (1999) Markov Chains: Gibbs Fields, Monte Carlo Simu-
lation, and Queues. Springer

[3] Brook D (1964) On the distinction between the conditional and the
joint probability approaches in the specification of nearest-neighbor
systems. Biometrika 51:481–483



27. Advanced Topics in MCMC 579

[4] Conway JB (1985) A Course on Functional Analysis. Springer, New
York

[5] Diaconis P (1988) Group Representations in Probability and Statistics.
Institute of Mathematical Statistics, Hayward, CA

[6] Diaconis P, Khare K, Saloff-Coste L (2008) Gibbs sampling, exponen-
tial families and orthogonal polynomials. Stat Science 23:151–178

[7] Edwards RG, Sokal AD (1988) Generalizations of the Fortuin-
Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm.
Physical Review D 38:2009–2012

[8] Green PJ (1995) Reversible jump Markov chain Monte Carlo compu-
tation and Bayesian model determination. Biometrika 82:711–732

[9] Hastie D, Green PJ (2009) Reversible jump MCMC. (unpublished lec-
ture notes)

[10] Jones GL (2004) On the Markov chain central limit theorem. Prob
Surveys 1:299–320

[11] Levin DA, Peres Y, Wilmer EL (2008) Markov Chains and Mixing
Times. Amer Math Soc, Providence, RI

[12] Liu JS (1996) Metropolized independent sampling with comparisons
to rejection sampling and importance sampling. Stat and Computing
6:113–119

[13] Liu JS (2001) Monte Carlo Strategies in Scientific Computing.
Springer, New York

[14] Richardson S, Green PJ (1997) On Bayesian analysis of mixtures with
an unknown number of components. J Royal Stat Soc B 59:731–792

[15] Robert CP, Casella G (2004) Monte Carlo Statistical Methods, 2nd ed.
Springer, New York

[16] Rosenthal JS (1995) Convergence rates of Markov chains. SIAM Re-
view 37:387–405

[17] Rynne BP, Youngson MA (2008) Linear Functional Analysis. Springer,
New York

[18] Stein EM, Shakarchi R (2005) Real Analysis: Measure Theory, Inte-
gration, and Hilbert Spaces. Princeton University Press, Princeton, NJ

[19] Swendsen RH, Wang JS (1987) Nonuniversal critical dynamics in
Monte Carlo simulations. Physical Review Letters 58:86–88

[20] Tierney L (1994) Markov chains for exploring posterior distributions
(with discussion). Ann Stat 22:1701–1762



Appendix: The Multivariate
Normal Distribution

In dealing with multivariate distributions such as the multivariate normal,
it is convenient to extend the expectation and variance operators to random
vectors. The expectation of a random vector X = (X1, . . . , Xn)

t is defined
componentwise by

E(X) =




E[X1]
...

E[Xn]


 .

Linearity carries over from the scalar case in the sense that

E(X + Y ) = E(X) + E(Y )

E(MX) = M E(X)

for a compatible random vector Y and a compatible matrix M . The same
componentwise conventions hold for the expectation of a random matrix
and the variances and covariances of a random vector. Thus, we can express
the variance-covariance matrix of a random vector X as

Var(X) = E{[X − E(X)][X − E(X)]t} = E(XXt) − E(X) E(X)t.

These notational choices produce many other compact formulas. For in-
stance, the random quadratic form XtMX has expectation

E(XtMX) = tr[M Var(X)] + E(X)tM E(X). (A.1)

To verify this assertion, observe that

E(XtMX) = E
(∑

i

∑

j

XimijXj

)

=
∑

i

∑

j

mij E(XiXj)

=
∑

i

∑

j

mij[Cov(Xi, Xj) + E(Xi) E(Xj)]

= tr[M Var(X)] + E(X)tM E(X).

Among the many possible definitions of the multivariate normal distri-
bution, we adopt the one most widely used in stochastic simulation. Our
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point of departure will be random vectors with independent standard nor-
mal components. If such a random vector X has n components, then its
density is

n∏

j=1

1√
2π
e−x

2
j/2 =

( 1

2π

)n/2
e−x

tx/2.

Because the standard normal distribution has mean 0, variance 1, and
characteristic function e−s

2/2, it follows that X has mean vector 0, variance
matrix I, and characteristic function

E(eis
tX) =

n∏

j=1

e−s
2
j/2 = e−s

ts/2.

We now define any affine transformation Y = AX + µ of X to be mul-
tivariate normal [1, 2]. This definition has several practical consequences.
First, it is clear that E(Y ) = µ and Var(Y ) = AVar(X)At = AAt = Ω.
Second, any affine transformationBY +ν = BAX+Bµ+ν of Y is also mul-
tivariate normal. Third, any subvector of Y is multivariate normal. Fourth,
the characteristic function of Y is

E(eis
tY ) = eis

tµ E(eis
tAX) = eis

tµ−stAAts/2 = eis
tµ−stΩs/2.

Fifth, the sum of two independent multivariate normal random vectors is
multivariate normal. Indeed, if Z = BU + ν is suitably dimensioned and
X is independent of U , then we can represent the sum

Y + Z = (A B )

(
X
U

)
+ µ+ ν

in the required form.
This enumeration omits two more subtle issues. One is whether Y pos-

sesses a density. Observe that Y lives in an affine subspace of dimension
equal to or less than the rank of A. Thus, if Y has m components, then
n ≥ m must hold in order for Y to possess a density. A second issue is the
existence and nature of the conditional density of a set of components of
Y given the remaining components. We can clarify both of these issues by
making canonical choices of X and A based on the QR decomposition of a
matrix.

Assuming that n ≥ m, we can write

At = Q

(
R
0

)
,

where Q is an n × n orthogonal matrix and R = Lt is an m ×m upper-
triangular matrix with nonnegative diagonal entries. (If n = m, we omit
the zero matrix in the QR decomposition.) It follows that

AX = (L 0t )QtX = (L 0t )Z.
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In view of the usual change-of-variables formula for probability densities
and the facts that the orthogonal matrix Qt preserves inner products and
has determinant ±1, the random vector Z has n independent standard
normal components and serves as a substitute for X. Not only is this true,
but we can dispense with the last n −m components of Z because they
are multiplied by the matrix 0t. Thus, we can safely assume n = m and
calculate the density of Y = LZ + µ when L is invertible. The change-of-
variables formula then shows that Y has density

f(y) =
( 1

2π

)n/2
| detL−1|e−(y−µ)t(L−1)tL−1(y−µ)/2

=
( 1

2π

)n/2
| detΩ|−1/2e−(y−µ)tΩ−1(y−µ)/2,

where Ω = LLt is the variance matrix of Y . By definition LLt is the
Cholesky decomposition of Ω.

To address the issue of conditional densities, consider the compatibly
partitioned vectors Y t = (Y t1 , Y

t
2 ), Xt = (Xt

1, X
t
2), and µt = (µt1, µ

t
2) and

matrices

L =

(
L11 0
L21 L22

)
, Ω =

(
Ω11 Ω12

Ω21 Ω22

)
.

Now suppose that X is standard normal, that Y = LX + µ, and that L11

has full rank. For Y1 = y1 fixed, the equation y1 = L11X1 + µ1 shows that
X1 is fixed at the value x1 = L−1

11 (y1 − µ1). Because no restrictions apply
to X2, we have

Y2 = L22X2 + L21L
−1
11 (y1 − µ1) + µ2.

Thus, Y2 given Y1 is normal with mean L21L
−1
11 (y1 − µ1)+ µ2 and variance

L22L
t
22. To express these in terms of the blocks of Ω = LLt, observe that

Ω11 = L11L
t
11

Ω21 = L21L
t
11

Ω22 = L21L
t
21 + L22L

t
22.

The first two of these equations imply that L21L
−1
11 = Ω21Ω

−1
11 . The last

equation then gives

L22L
t
22 = Ω22 − L21L

t
21

= Ω22 − Ω21(L
t
11)

−1L−1
11 Ω12

= Ω22 − Ω21Ω
−1
11 Ω12.

These calculations do not require that Y2 possess a density. In summary, the
conditional distribution of Y2 given Y1 is normal with mean and variance

E(Y2 | Y1) = Ω21Ω
−1
11 (Y1 − µ1) + µ2

Var(Y2 | Y1) = Ω22 − Ω21Ω
−1
11 Ω12. (A.2)
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Index

Acceptance function, 544
Active constraint, 169
Adaptive acceptance-rejection, 440
Adaptive barrier methods, 301–

305
linear programming, 303
logarithmic, 301–303

Adaptive quadrature, 369
Admixture distribution, 443
Admixtures, see EM algorithm,

cluster analysis
AIDS data, 257
Allele frequency estimation, 229–

231
Dirichlet prior, with, 532
Gibbs sampling, 545
Hardy-Weinberg law, 229
loglikelihood function, 239

Alternating projections, 310
Analytic function, 400–402
Antithetic simulation, 464–465

bootstrapping, 492
Apollonius’s problem, 183
Arcsine distribution, 450
Armijo rule, 287
Ascent algorithm, 251
Asymptotic expansions, 39–54

incomplete gamma function,
45

Laplace transform, 45
Laplace’s method, 46–51
order statistic moments, 47
Poincaré’s definition, 46
posterior expectations, 49
Stieltjes function, 52
Stirling’s formula, 49
Taylor expansions, 41–43

Asymptotic functions, 40

examples, 52–54
Attenuation coefficient, 203
Autocovariance, 405, 566

Backtracking, 251, 287
Backward algorithm, Baum’s, 508
Backward operator, 565
Banded matrix, 108, 151
Barker function, 544
Basis, 335

Haar’s, 413–415
wavelets, 429

Baum’s algorithms, 508–509
Bayesian EM algorithm, 228
Bernoulli functions, 338–340
Bernoulli number, 339

Euler-Maclaurin formula, in,
364

Bernoulli polynomials, 338–340, 357
Bernoulli random variables, vari-

ance, 43
Bernoulli-Laplace model, 521
Bessel function, 454
Bessel’s inequality, 335
Best subset regression, 543
Beta distribution

coupling, 576
distribution function, see In-

complete beta function
orthonormal polynomials, 344–

346
recurrence relation, 347

sampling, 436, 445, 452, 454
Bias reduction, 486–487
Bilateral exponential distribution,

382
sampling, 437

Binomial coefficients, 1, 5

585
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Binomial distribution
conjugate prior, 529
coupling, 474
distribution function, 19
maximum likelihood estima-

tion, 216
orthonormal polynomials, 357
right-tail probability, 461
sampling, 444, 453
score and information, 256

Biorthogonality, 561
Bipartite graph, 506
Birthday problem, 48
Bisection method, 55–58
Bivariate exponential, 466
Bivariate normal distribution

distribution function, 24, 376
missing data, with, 241

Block relaxation, 174–181
global convergence of, 286
local convergence, 282–283, 291

Blood type data, 229, 255
Blood type genes, 229, 239
Bolzano-Weierstrass theorem, 158
Bootstrapping, 477–499

antithetic simulation, 492
balanced, 491–492
bias reduction, 486–487
confidence interval, 487–489

bootstrap-t method, 487
correspondence principle, 484
generalized linear models, 490
importance resampling, 492–

495, 498–499
linear regression, 490
nonparametric, 484
parametric, 484

Box-Muller method, 434
Bradley-Terry model, 196
Branching process, 399, 518

continuous time, 514–515
extinction probabilities, 62–

63, 65–67, 72
Bregman distance, 302

Canonical correlations, 178–179
Capture-recapture, 531–532
Cardinal B-spline, 426
Cauchy distribution, 382

convolution, 387
Fourier transform, 385
sampling, 433, 455

Cauchy sequence, 334
Cauchy-Schwarz inequality, 79, 170

inner product space, on, 334
Censoring, 272
Central difference formula, 375
Central limit theorem, 562
Central moments, 484
Chapman-Kolmogorov relation, 512
Characteristic function, 379

moments, in terms of, 388
Chi-square distance, 558, 570
Chi-square distribution

distribution function, 19
noncentral, 23
sampling, 445

Chi-square statistic, 483
Chi-square test, see Multinomial

distribution
Cholesky decomposition, 99–101,

108, 583
banded matrix, 108, 151, 153
operation count, 108

Circulant matrix, 407
Clique, 554
Cluster point, 116, 284
Coercive function, 158, 181, 182,

283
Coin tossing, waiting time, 409
Coloring, 201
Compact operator, 567–570
Complete inner product space, 334
Complete orthonormal sequence,

335
Compound Poisson distribution,

15
Concave function, 173
Condition number, 87–88, 90–91,

138
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Confidence interval, 56–58
bootstrapping, 487–489
normal variance, 71

Conjugate prior
binomial distribution, 529
exponential distribution, 529
geometric distribution, 529
multinomial distribution, 529,

532
normal distribution, 529, 531
Poisson distribution, 529, 546

Constrained optimization, 328
standard errors, estimating,

317–319
Contingency table

exact tests, 481–483
three-way, 179

Continued fractions, 27–37
convergence, 27–28, 36–37
equivalence transformations,

29–30, 36
evaluating, 28–29, 36
hypergeometric functions, 31–

33
incomplete gamma function,

33–36
Lentz’s method, 36
nonnegative coefficients, with,

36
Stieltjes function, 37
Wallis’s algorithm, 28, 36

Contractive function, 60
matrix properties, 84

Control variates, 465–466
Convergence of optimization al-

gorithms, 277–295
local, 279–283

Convex function, 173, 224
optimizing a sum, 215–217
sums of, optimizing, 294

Convex programming, 301
Dykstra’s algorithm, 305, 310
for a geometric program, 303

Convex regression, 308
Convex set, 172

Convolution
functions, of, 386–387

Fourier transform, 387
sequences, of, 396, 402–405

Coordinate descent, 311–317
Coronary disease data, 187
Coupled random variables, 464, 474

independence sampler, 563
Coupling bound, 559
Courant-Fischer theorem, 119, 125

generalized, 120
Covariance matrix, 126

asymptotic, 317–327
Credible interval, 56–58
Cross-validation, 311
Cubic interpolation, 68–70
Cubic splines, see Splines
Cumulant generating function, 15
Cyclic coordinate descent

local convergence, 282–283
saddle point, convergence to,

290

Data augmentation, 532
Daubechies’ wavelets, 416–429
Davidon’s formula, 260
Death notice data, 240, 264
Dense set, 334
Density estimation, 415–416, 426
Detailed balance, 505

Hastings-Metropolis algorithm,
528

Determinant, computing, 98
Diagonalizable operator, 577
Diagonally dominant matrix, 127
Differential, 277
Differentiation, numerical, 148, 375

analytic function, of, 400–402
Diffusion of gas, 507
Digamma function

recurrence relation, 271
Dirichlet distribution

conjugate prior, 231
sampling, 447
score and information, 271
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Discriminant analysis, 316
Distribution function

for specific type of distribu-
tion, see name of specific
distribution

transformed random variable,
for, 21

Division by Newton’s method, 65

Double exponential distribution,
see Bilateral exponential
distribution

Duodenal ulcer blood type data,
229, 255

Dykstra’s algorithm, 305–310, 322

Edgeworth expansion, 387–391
Edgeworth’s algorithm, 313–314
Ehrenfest’s model of diffusion, 507
Eigenvalues, 113–127

convex combination of matri-
ces, 126

Courant-Fischer theorem, 119,
125

interlacing property, 125
Jacobi’s method, 117
largest and smallest, 120–126
Markov chain convergence, 560–

563
Markov chain transition ma-

trix, 522
symmetric perturbation, 119,

125
Eigenvalues and eigenvectors, 563
Eigenvectors, 113–127

Jacobi’s method, 118
Markov chain, 513
Markov chain convergence, 560–

563
Elliptical orbits, 71
Elliptically symmetric densities, 194–

195
Elsner-Koltracht-Neumann theo-

rem, 310
EM algorithm, 223–245

allele frequency estimation, for,
229

ascent property, 224–227
Bayesian, 228
bivariate normal parameters,

241
cluster analysis, 231–233
convergence to a saddle point,

241
E step, 224
estimating multinomial param-

eters, 243
exponential family, 239
factor analysis, 235–238
genetic linkage, 239
linear regression with right cen-

soring, 242
local convergence

sublinear rate, 291
M step, 224
movie rating, 245
sublinear convergence rate, 291
success probability, 242
transmission tomography, 233–

235
zero truncated data, 244

Entropy, 238
Epoch, 503
Equality constraint, see Constrained

optimization, 163
Equilibrium distribution, see Markov

chain
Ergodic conditions, 504, 522
Ergodic theorem, 504
Euclidean norm, 77
Euclidean space, 334
Euler’s constant, 365
Euler-Maclaurin formula, 363–366
Expected information, 254

admixture density, 267
exponential families, 254, 256
logistic distribution, 269
positive definiteness, 107
power series family, 269
quasi-Newton initialization, 261
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robust regression, in, 268
Exponential distribution

bilateral, see Bilateral expo-
nential distribution

conjugate prior, 529
exponential integral, 44
Fourier transform, 382
order statistics, 448
random sums of, 23
range of random sample, 390–

391
saddle point approximation,

392
sampling, 433
score and information, 256

Exponential family, 227
EM algorithm, 239
expected information, 254–255,

267
saddle point approximation,

392
score, 254

Exponential power distribution, 437
Exponential tilting, 389, 462
Extinction, see Branching processes,

extinction probabilities

F distribution
distribution function, 20
sampling, 445, 452

Factor analysis, 235
Factor loading matrix, 235
Family size

mean, 4
recessive genetic disease, with,

10
upper bound, with, 10
variance, 10

Farkas’s lemma, 184
Fast Fourier transform, 397–398
Fast wavelet transform, 425
Feasible point, 163
Fejér’s theorem, 337
Fermat’s principle, 159
Finite differencing, 402

Finite Fourier transform, 395–410
computing, see Fast Fourier

transform
definition, 395
inversion, 396
transformed sequences, of, 397

Fisher’s z distribution
distribution function, 21
sampling, 436, 452

Fisher’s exact test, 483
Fisher-Yates distribution, 482–483

moments, 496
sampling, 483

Fixed point, 60, 284
Forward algorithm, Baum’s, 508
Forward operator, 565
Four-color theorem, 547
Fourier coefficients, 335, 337, 356

approximation, 398–402
Fourier series, 337–340

absolute value function, 356
Bernoulli polynomials, 339
pointwise convergence, 337

Fourier transform, 379–393
bilateral exponential density,

382
Cauchy density, 385
convolution, of, 387
Daubechies’ scaling function,

427
definition, 379, 386
fast, see Fast Fourier trans-

form
finite, see Finite Fourier trans-

form
function pairs, table of, 380
gamma density, 382
Hermite polynomials, 382
inversion, 384–385
mother wavelet, 418
normal density, 381
random sum, 392
uniform density, 381

Fractional linear transformation,
60–61
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Frobenius norm, 79
Function

coercive, 182
concave, 173
convex, 173
Lagrangian, 164
logposterior, 204
majorizing, 189
objective, 162
potential, 204

Functional iteration, 58–67
acceleration, 72

Fundamental theorem of algebra,
158

Gamma distribution
confidence intervals, 58
distribution function, see In-

complete gamma function
Fourier transform, 382
maximum likelihood estima-

tion, 216, 273
order statistics, 376
orthonormal polynomials, 343
sampling, 436, 443, 452, 454

Gamma function
asymptotic behavior, 49
evaluating, 17

Gauss’s method for hypergeomet-
ric functions, 30

Gauss-Jordan pivoting, 96
Gauss-Newton algorithm, 252, 256–

257
singular matrix correction, 270

Gaussian distribution, see Normal
distribution

Gaussian quadrature, 370–373, 375–
376

Gene expression, 315
Generalized inverse matrix, 267
Generalized linear model, 257–258

quantal response model, 267
Generalized linear models

bootstrapping, 490
Generating function

branching process, 399
coin toss wait time, 409
Hermite polynomials, 15
multiplication, 403
partitions of a set, 22
progeny distribution, 62

Genetic drift, 506
Geometric distribution, 434

conjugate prior, 529
Geometric mean, 184
Geometric programming, 303
Gerschgorin’s circle theorem, 121,

127
Gibbs prior, 204
Gibbs sampling, 529–536

allele frequency estimation, 545
operator theory, 567–574
random effects model, 545

Gillespie’s algorithm, 518
Golden section search, 67–68
Goodness of fit test, see Multino-

mial distribution
Gradient algorithms, 286–289
Gram-Schmidt orthogonalization,

101–103, 108, 449
Graph bisection, 548
Gumbel distribution, 450

Hölder’s inequality, 184
Haar’s wavelets, 413–415
Hammersley-Clifford theorem, 553
Hardy-Weinberg law, 229
Harmonic series, 365
Hastings-Metropolis algorithm, 527–

539
aperiodicity, 544
Gibbs sampler, 529–536
independence sampler, 536

convergence, 563–564
random walk sampler, 537

Hazard function, 272
Hemoglobin, 514
Hermite interpolation, 69
Hermite polynomials, 342, 359

Edgeworth expansions, in, 388
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evaluating, 15–16
Fourier transform, 382
recurrence relation, 347
roots, 376

Hermitian matrix, 81
Hidden Markov chain, 507–510

EM algorithm, 510
Hidden trials

binomial, 242
EM algorithm for, 243
multinomial, 243
Poisson or exponential, 243

Hilbert space, 333–336, 564–570
separable, 334

Histogram estimator, 415–416
Horner’s method, 2–3, 9
Householder matrix, 83

least squares, 103–104
Huber’s function, 269
Hyperbolic trigonometric functions

generalization, 410
Hypergeometric distribution

Bernoulli-Laplace model, in,
521

coupling, 474
sampling, 453

Hypergeometric functions, 30–33
identities, 35

Ill-conditioned matrix, 86
Image compression, 135, 424–426
Importance ratio, 536, 563
Importance sampling, 460–463

bootstrap resampling, 492–495,
498–499

Markov chain Monte Carlo,
546

sequential, 468–472
Inactive constraint, 169
Inclusion-exclusion principle, 11
Incomplete beta function, 18

connections to other distri-
butions, 19–21, 24

continued fraction expansion,
32

hypergeometric function, as,
31

identities, 24
Incomplete gamma function, 17

asymptotic expansion, 45
connections to other distri-

butions, 19, 21, 23–24
continued fraction expansion,

33–36
gamma confidence intervals,

58
Incremental heating, 547
Independence sampler, 536

convergence, 563–564
Inequality

Hölder’s, 184
Inequality constraint, 169, see Con-

strained optimization
Infinitesimal transition matrix, 513,

523
Infinitesimal transition probabil-

ity, 512
Information inequality, 225
Ingot data, 267
Inner product, 333–334

Markov chain, 521
Integrable function, 379
Integration by parts, 43–46
Integration, numerical, 148

Monte Carlo, see Monte Carlo
integration

quadrature, see Quadrature
Intensity leaping, 517–520
Inverse chi distribution, 21
Inverse chi-square distribution, 21
Inverse power method, 121
Inverse secant condition, 262
Ising model, 530
Isolated point, 284
Isotone regression, 308, 322
Iterative proportional fitting, 179–

181, 186

Jackknife residuals, 107
Jacobi matrix, 278



592 Index

Jacobi polynomials, 373
Jacobi’s method for linear equa-

tions, 85
Jacobi’s method of computing eigen-

values, 113–118, 137
Jensen’s inequality, 173, 224

geometric proof, 225

k-means clustering, 177–178
Kepler’s problem of celestial me-

chanics, 71
Kolmogorov’s circulation criterion,

505, 514
Krawtchouk polynomials, 357
Kuhn-Tucker condition, 170

Lagrange multiplier rule, 165, 170
Lagrange’s interpolation formula,

152
Lagrangian

allele frequency estimation, 230
multinomial probabilities, 166
quadratic programming, 167
stratified sampling, 464

Lagrangian function, 164
Laguerre polynomials, 343–344, 359

recurrence relation, 347
Laplace transform, 45

asymptotic expansion, 46
Laplace’s method, 46–51
Large integer multiplication, 403
Lasso, 310–317
Leapfrogging, 539
Least `p regression, 195, 210, 217

p = 1 case, 293
Least absolute deviation regres-

sion, 210, 217, 293, 313–
314

Least squares estimation, 308, 314
nonlinear regression functions,

252
Lentz’s algorithm for continued frac-

tions, 36
Linear convergence, 65, 279
Linear equations

iterative solution, 84–86
Jacobi’s method, 85
Landweber’s method, 85

Linear logistic regression, 198–199
Linear programming, 303
Linear regression, 94–95

bootstrapping, 490
bootstrapping residuals, 497
Cholesky decomposition, 99
Gram-Schmidt, 101
Householder reflections, 103
right censored data, for, 242
sweep operator, 99, 107

Link function, 257
Linkage equilibrium, genetic, 483
Lipschitz constant, 59
Location-scale family, 268
Log chi-square distribution, 21
Log-concave distributions, 435–442,

451–453
Logarithmic barrier method, 301–

303
Logistic distribution, 268

sampling, 450
Logistic regression, 216
Loglinear model, 179

observed information, 186
Lognormal distribution

distribution function, 21
sampling, 445

Logposterior function, 204
London Times death notice data,

240, 264
Lotka’s surname data, 63
Luce’s ranking model, 218

Maehly’s algorithm, 73
Maher’s sports model, 175–177
Majorizing function, 189
Mangasarian-Fromovitz constraint

qualification, 170
Markov chain, 503–524

continuous time, 511–515
branching process, 514
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equilibrium distribution, 513,
516

discrete time, 503–510

aperiodicity, 504
equilibrium distribution, 85–

86, 504
embedded, 522
hemoglobin, model for, 514
hidden, 507–510
irreducibility, 504
reversibility, 505, 514

Markov chain Monte Carlo, 527–
548, 551–564, 578

burn-in period, 539
Gibbs sampling, 529–536
Hastings-Metropolis algorithm,

527–539
importance sampling, 546

multiple chains, 547
simulated annealing, 542–544
starting point, 539
variance reduction, 540

Markov random field, 552–556
Marsaglia’s polar method, 434
Master equations, 518
Matrix

factor loading, 235
square root, 266

Matrix approximation, 132
Matrix differential equation, 515
Matrix exponential, 90, 515–516

approximating, 523
definition, 513
determinant, 524

Matrix inversion
Moore-Penrose inverse, 131
Newton’s method, 250, 265
sweep operator, 97, 106, 168

Matrix norm, see Norm, matrix
Maximum likelihood estimation

Dirichlet distribution, 259–260
exponential distribution, 253

multinomial distribution, 253,
305, 510–511

multivariate normal distribu-
tion, 161

Poisson distribution, 252
Maxwell-Boltzmann distribution,

238
Mean value theorem, 63, 278, 290
Mean, arithmetic, 3

geometric mean inequality, 184

Median
bootstrapping, 497
moments of, 474
variance of, 373

Meixner polynomials, 358
Mellin transform, 391
Mersenne prime, 431
Metropolis algorithm, see Hastings-

Metropolis algorithm
Michelot’s algorithm, 322

Minimum
positive definite quadratic func-

tion, 161
Missing data

data augmentation, 532
EM algorithm, 224, 510

Mixtures, see EM algorithm, clus-
ter analysis

MM algorithm, 189–218
`p regression, 195, 217
acceleration, 262–264, 293
Bradley-Terry model, 196

convex objective function, 294
descent property, 190
elliptically symmetric densi-

ties, 194
for discriminant analysis, 317
global convergence of, 283–

285
linear logistic regression, 198–

199
linear regression, 193–194

local convergence, 280, 292
majorization, 191–193
movie rating, 245
standard errors, 317–318
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transmission tomography, see
transmission tomography

zero-truncated data, 244
MM gradient algorithm, 258–260

convex programming, 302
Dirichlet distribution, estima-

tion with, 259–260
local convergence, 280, 292

Model selection, 310–317

Moment generating function
power series and, 14, 15
relation to cumulant gener-

ating function, 15
Moments, 484

asymptotic, 42, 52
sums, of, 14

Monte Carlo integration, 459–475
antithetic variates, 464–465
control variates, 465–466
importance sampling, 460–463
Rao-Blackwellization, 466–468

stratified sampling, 463–464
Moore-Aronszajn theorem, 351
Moore-Penrose inverse, 131
Mouse survival data, 498
Movie rating, 245

Multilogit model, 274
Multinomial distribution

asymptotic covariance, 327
chi-square test alternative, 5–

6, 10
conjugate prior, 529, 532
maximum likelihood estima-

tion, 166
sampling, 446, 449

score and information, 256
Multivariate t-distribution, 209
Multivariate normal distribution,

95
maximum entropy property,

238
maximum likelihood for, 161
sampling, 446, 450
sweep operator, 99

Negative binomial distribution
coupling, 576
distribution function, 19, 24
family size, in estimating, 4
maximum likelihood estima-

tion, 216
orthonormal polynomials, 358
sampling, 444, 453

Newton’s method, 63–67, 249–251
least squares estimation, 252
local convergence, 281
matrix inversion, 250
MM gradient algorithm, see

MM gradient algorithm
optimization, 250–251
orthogonal polynomials, find-

ing roots of, 372
quadratic function, for, 266
root extraction, 73, 249–250
transmission tomography, 258

Neyman-Pearson lemma, 71
Noncentral chi-square distribution,

23
Nonlinear equations, 55–75

bisection method, 55
functional iteration, 58
Newton’s method, 63

Nonlinear regression, 256
Nonparametric regression, 149, 153
Norm, 77–91

connection to svd, 132
matrix

induced, 79, 523–524
properties, 78, 89

nuclear, 140
preserving transformations, 82–

84
total variation, 558
vector

on inner product spaces, 334
properties, 77, 88–89

Normal distribution, 581–583
bivariate, see Bivariate nor-

mal distribution
conjugate prior, 529, 531
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distribution function, 16–17,
19

asymptotic expansion, 45
Fourier transform, 381
Gibbs sampling, 574
mixtures, 231
multivariate, see Multivariate

normal distribution, 581–
583

orthonormal polynomials, 342
saddle point approximation,

392
sampling, 434–435, 437, 455

Normal equations, 94
NP-completeness, 542
Nuclear norm, 140

O-notation, see Order relations
Objective function, 162
Observed information, 249
Operator theory, 564–570

adjoint, 565
compact operator, 567
norm, 565
spectral decomposition, 567
spectral radius, 567

Optimization theory, 157–174
Order relations, 39–40

examples, 52
Order statistics

distribution functions, 24
moments, 47–48
sampling, 448

Orthogonal matrix, 82
sampling, 449
sequence, 90

Orthogonal operator, 576
Orthogonal polynomials, 340–347,

572
beta distribution, 344–346
Gaussian quadrature, in, 371–

373
Hermite, 342, 574
Jacobi, 373
Krawtchouk, 357

Laguerre, 343–344, 573
Meixner, 358, 573
Poisson-Charlier, 341
recurrence relations, 346–347
roots, 372–373

Orthogonal projection, 576
Orthogonal vectors, 334
Orthonormal vectors, 334–336
Overdispersion, 557

Padé approximation, 516
Pareto distribution, 450
Parseval-Plancherel theorem, 385–

386
Partition

integers, of, 9
sets, of, 1–2, 22

Pascal’s triangle, 1
Penalized estimation, 310–317
Periodogram, 406
Permanent

computing, 471
Pixel, 203
Plug-in estimator, 485
Poisson distribution

AIDS deaths model, 258
birthday problem, 48
compound, 15
conjugate prior, 529, 546
contingency table data, mod-

eling, 180
coupling, 559, 575
distribution function, 19
Edgeworth expansion, 393
Gibbs sampling, 572
maximum likelihood estima-

tion, 216
mixtures, 240
orthonormal polynomials, 341
sampling, 439, 444
score and information, 256

Poisson process, 200
Poisson regression, 216
Poisson-binomial distribution, 4–

5
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conditional, 449
Poisson-Charlier polynomials, 341

recurrence relation, 347
Polar decomposition, 134, 141
Polar method of Marsaglia, 434
Polynomial

evaluation, 2
interpolation, 152
multiplication, 403

Pool adjacent violators, 322
Positive definiteness

monitoring, 98
partial ordering by, 123, 126
quasi-Newton algorithms, in,

260
Posterior expectation, 49–50
Posterior mode, 204
Potential function, 204
Power method, 86, 121, 516
Power series, 13–25

exponentiation, 14–16
powers, 13–14

Power series distribution, 22–23
expected information, 269

Powers of integers, sum of, 374
Principal components, 135
Principal components analysis, 113
Probability plot, 433
Progeny generating function, 62,

399
Projection matrix, 110, 307
Projection operators, 305–310, 320–

322
Projection theorem, 305
Proportional hazards model, 272
Proposition

Liapunov, 284
Pseudo-random deviates, see Ran-

dom deviates, generating

q quantile, 208
QR decomposition, 101–104, 582
Quadratic convergence, 65, 281
Quadratic form, 183

Quadratic programming, 167–169,
309

Quadrature, 363–376
adaptive, 369
Gaussian, 370
poorly behaved integrands, 369–

370
Romberg’s algorithm, 366
trapezoidal rule, 366

Quantal response model, 267
Quantile, 485

computing, 56
Quasi-Newton

AIDS model, 261
Quasi-Newton algorithms, 260

ill-conditioning,avoiding, 271
Quick sort, 7–9, 11

average-case performance, 8
worst-case performance, 11

Random deviates, generating, 431–
456

acceptance-rejection method,
435, 453–455

log-concave distributions, 435–
442, 452–453

Monte Carlo integration, in,
467

adaptive acceptance-rejection,
440

admixture, 443
arc sine, 450
beta, 436, 445, 452, 454
bilateral exponential, 437
binomial, 444, 453
Cauchy, 433, 455
chi-square, 445
Dirichlet, 447
discrete uniform, 434
exponential, 433
F, 445, 452
Fisher’s z, 436, 452
gamma, 436, 443, 452, 454
geometric, 434
Gumbel, 450
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hypergeometric, 453
inverse method, 432–434
logistic, 450
lognormal, 445
multinomial, 446, 449
multivariate t, 446
multivariate normal, 446, 450
multivariate uniform, 447
negative binomial, 444, 453
normal, 434–435, 437, 455

Box-Muller method, 434
Marsaglia’s polar method,

434
order statistics, 448
orthogonal matrix, 449
Pareto, 450
Poisson, 439, 444
ratio method, 442–443, 455
slash, 451
Student’s t, 445
truncated normal, 453
uniform, 431
von Mises, 453
Weibull, 450

Random effects model, 545
Random graph model, 196–198
Random number generator, 431
Random sum, 392
Random thinning, 201
Random walk, 21

graph, on, 506, 521
returns to origin, 462, 466,

473
sampling, 537

Rao-Blackwell theorem, 466
Rayleigh quotient, 118–120, 281

generalized, 120
gradient, 125

Reaction channel, 517
Recessive genetic disease, 10
Recurrence relations, 1–11

average-case quick sort, 8
Bernoulli numbers, 339
Bernoulli polynomials, 338

beta distribution polynomi-
als, 344

binomial coefficients, 1
continued fractions, 28–29, 36
cumulants to moments, 15
digamma and trigamma func-

tions, 271
expected family size, 4
exponentiation of power se-

ries, 15
gamma function, 17
Hermite polynomials, 16
hidden Markov chain, 508
incomplete beta function, 18
moments of sum, 14
moments to cumulants, 15
orthonormal polynomials, 346–

347
partitions of a set, 2, 22
partitions of an integer, 9
Pascal’s triangle, 1
Poisson-binomial distribution,

4
polynomial evaluation, 2
powers of power series, 13
random walk, 21
sample mean and variance, 3
unstable, 6–7, 11
Wd statistic, 5

Reduced rank regression, 133
Reflection matrix, 82

eigenvalues, 124
Regression

`p, see Least `p regression
linear, see Linear regression
nonlinear, 256
nonparametric, 149, 153
reduced rank, 133
ridge, 134, 139
robust, 268–269
total least squares, 136

Reisz representation theorem, 336
Rejection sampling, see Random

deviates, generating
Renewal equation, 403–405
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Reproducing kernel Hilbert spaces,
347–356

Resampling, see Bootstrapping
Residual sum of squares, 94
Reversible jump MCMC, 556–558
Reversion of sequence, 396
Ridge regression, 134, 139–141
Riemann sum, 278
Riemann-Lebesgue lemma, 383
Riffle shuffle, 560
Robust regression, 193, 268–269
Romberg’s algorithm, 366–368
Root extraction, 73
Rotation matrix, 82

eigenvalues, 124
Markov chain, 507, 521

Saddle point, 285
Saddle point approximation, 389–

392
Scaling equation, 416
Score, 249

admixture density, 267
exponential families, 254, 256
hidden Markov chain likeli-

hood, 509
robust regression, 268

Scoring, 254–256
AIDS model, 258
allele frequency estimation, 255
local convergence, 281
nonlinear regression, 256

Secant condition, 260
Segmental function, 410
Self-adjointness, 521
Self-adjointness condition, 576
Self-avoiding random walk, 469
Separable Hilbert space, 334
Sequential sampling, 449
Sherman-Morrison formula, 94, 261
Simpson’s rule, 374
Simulated annealing, 542–544
Sine transform, 409
Singular value decomposition, 129–

142, 185

applications, 133–137
basic properties, 130–133

Sinkhorn’s algorithm, 174–175, 185
Slash distribution, 451
Slice sampler, 534

Swenden-Wang algorithm, 555
Smoothing, 402, 407
Sorting, see Quick sort
Spectral decomposition, 83, 567
Spectral density, 406
Spectral radius, 79, 565

properties, 90
upper bound, 81

Spline, 143–154
Bayesian interpretation, 154
definition, 143
differentiation and integration,

148–149
equally spaced points, on, 153
error bounds, 147
minimum curvature property,

146
nonparametric regression, in,

149–151, 153
quadratic, 152
uniqueness, 144
vector space of, 153–154

Square-integrable functions (L2(µ)),
334

Squares of integers, sum of, 22,
374

Standard errors, see Covariance
matrix

Stationary point, 160, 284
Steepest ascent, 162
Steepest descent, 162
Step-halving, 251, 287
Stern-Stolz theorem of continued

fraction convergence, 36
Stieltjes function, 37

asymptotic expansion, 52
Stirling’s formula, 49

Euler-Maclaurin formula, de-
rived from, 365

Gosper’s version, 274
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Stochastic integration, see Monte
Carlo integration

Stochastic simulation, 517–520
Stone-Weierstrass theorem, 337
Stopping criteria, 70
Stratified sampling, 463–464
Stretching of sequence, 396
Strong stationary time, 559
Strong uniform time, 559
Student’s t distribution

computing quantiles, 56
distribution function, 21
multivariate, 209, 446
sampling, 445

Sudoku puzzle, 548
Supporting hyperplane property,

174
Surname data, 63
Survival analysis, 272–273
Survival function, 272
Sweep operator, 95–99, 106–107

checking positive definiteness,
98

definition, 95–96
finding determinant, 98
inverse, 96
linear regression, 94, 99, 107
matrix inversion, 97, 106, 168
multivariate normal distribu-

tion, 99
operation count, 107
properties, 96–98
Woodbury’s formula, 106

Swendsen-Wang algorithm, 555
Sylvester’s criterion, 125

t distribution, see Student’s t dis-
tribution

Tangent curve, 163
Tangent vector, 163
Taylor expansion, 41–43
Temperature, 542
Time series, 405–406

spectral density, 406
Total least squares, 136

Total variation inequality, 575
Total variation norm, 558
Trace condition, 568
Transition matrix, 86, 503

eigenvalues, 522
Gibbs sampler, 529

Transition rate, 512
Translation of sequence, 396
Transmission tomography, 202–205,

233–242
Trapezoidal rule, 366–369

error bound, 366
Traveling salesman problem, 542
Triangle inequality, 77
Triangle of greatest area, 183
Tridiagonal matrix, 9
Trigamma function

recurrence relation, 271
Truncated normal distribution

sampling, 453

Uniform distribution
discrete, 434
Fourier transform, 381
moments, 14
multivariate, 447

Uniform ergodicity, 562
Unitary transformation, 386
Upper triangular matrix, 108

eigenvectors, 124

Variance
bootstrapping, 485
computing, 3
conditional, formula for, 464

Variance reduction, see Monte Carlo
integration

Vector norm, see Norm, vector
Viterbi algorithm, 509
Von Mises distribution, 53

sampling, 453

Wd statistic, 5–6, 10
Wallis’s algorithm for continued

fractions, 28, 36
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Wavelets, 413–429
completeness in L2(−∞,∞),

423
Daubechies’ scaling function,

416–429
existence, 428–429
Fourier transform, 427

differentiability, 423, 427
Haar’s, 413–415
Haar’s scaling function, 414
image compression, 424–426
mother, 414, 418

Fourier transform, 418
orthonormality, 421
periodization, 424
scaling equation, 416

Weibull distribution, 272, 450
Weierstrass theorem, 158
Wishart distribution, 447
Woodbury’s formula, 105–106

generalization, 109
Wright’s model of genetic drift,

506

Zero-truncated data, 244
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