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Preface

In a strict topological sense all representations of a given type of a knot are
equal as they can be converted into each other by a finite number of moves
maintaining the original topology of the knot (moving of segments without passing
through each other, translation and rotation, change of the scale). However, we
intuitively avoid this extreme polymorphism of knots. Thus when we make a quick
drawing of a trefoil we usually trace it with just three crossings and not with many
additional unnecessary crossings. When we are asked for a really nice drawing of a
trefoil we try to give it a very regular symmetrical shape. This is why the founders of
the mathematical classification of knots represented different knots in the tables in
such a way that each type of the knot was shown with its minimal crossing number
and in addition had a regular shape with elements of symmetry (when this was
possible). Furthermore, when several persons are asked independently for an
extremely nice and elaborated drawing of a trefoil they will produce different
drawings where the presented trefoils will usually maintain three-fold symmetry, but
while one person will draw a trefoil with elongated blades another will give it almost
circular shape. This is of course different from drawings of a triangle or of a
tetragon where almost everyone will draw an equilateral triangle and a square where
the only difference between individual drawings is their scale.

Can we thus think about an ideal representation of a knot such that everyone would
agree that it is the best representation of a given knot, like we all can agree that the
square is the ideal representation of a tetragon? This question was raised at the
physical knot theory session organized by Jonathan Simon and Gregory Buck at
1996 ASM meeting in Iowa and it turned out that there was no consensus.
Background and the particular scientific interest of concerned scientists showed that
they had in mind different ideal representations of knots. Some were applying
simple geometrical criteria, some were minimizing certain physical or abstract
energies, some looked for the simplest parametric descriptions of given knots, some
wanted to have high symmetry, some hoped that the ideal shape would correspond to
a "mean" trajectory of all possible representations of a given knot, some demanded
that ideal knots should be built of a minimal number of straight segments on a
particular lattice etc.etc. Despite this lack of consensus one thing become apparent:
among an infinite sea of shapes of every type of knot only a small subset or even just
one unique representation can satisfy certain criteria and is thus ideal according to
these criteria. In this volume different authors characterize their approach to their
favourite ideal knots and links.

The following list of chapters with short descriptions of their contents
should help to navigate between the chapters and to encourage readers to visit each
domain of the ideality.
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Andrzej Stasiak

Vsevolod Katritch

Louis H. Kauffman
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CHAPTER 1

IDEAL KNOTS AND THEIR RELATION TO THE PHYSICS OF REAL
KNOTS

ANDRZEJ STASIAK, JACQUES DUBOCHET
Laboratoire d’Analyse Ultrastructurale
Université de Lausanne
1015 Lausanne-Dorigny, Switzerland.
e-mail: Andrzej.Stasiak@lau.unil.ch
Jacques. Dubochet@lau.unil.ch

VSEVOLOD KATRITCH
Department of Chemistry
Rutgers the State University of New Jersey
New Brunswick, New Jersey 08903, USA.
e-mail: seva@dnal.rutgers.edu

PIOTR PIERANSKI
Department of Physics
Poznan University of Technology
Piotrowo 3, 60 965 Poznan, Poland
and
Institute of Molecular Physics,
Smoluchowskiego 17, 60 159 Poznan
e-mail: pieransk@phys.put.poznan.pl

We present here the concept of ideal geometric representations of knots
which are defined as minimal length trajectories of uniform diameter
tubes forming a given type of knot. We show that ideal geometric
representations of knots show interesting relations between each other and
allow us to predict certain average properties of randomly distorted
knotted polymers. Some relations between the behaviour of real physical
knots and idealised representations of knots which minimise or maximise
certain properties were previously observed and discussed in Ref. 1-5.



1 Ideal knots

We learnt at school that the circle is the ideal planar geometric figure, since,
amongst planar objects, it has the highest area to circumference ratio. Similarly the
sphere is the ideal solid, since it has the highest volume to surface area ratio. The
concept of ideal geometric objects was developed in Ancient Greece by Plato (427-
347 B.C.), who said that we have the ability to intuitively grasp the ideal nature of
those objects. Indeed intuition tells us, for example, that the equilateral triangle is the
ideal triangle, and that the square is the ideal quadrilateral. Our intuition is
corroborated by the fact that equilateral triangles and squares show the highest area
to perimeter ratios for all triangles and quadrilaterals. Therefore, we can ask
ourselves (as we would have asked Plato, given the chance) what are the ideal
representations of different knots? Since knots occupy 3-D space, one should apply
to them the principle of maximising their volume to surface area ratio. To attribute
volume to knots in the most ideal way, one should consider them to be made of
impenetrable cylindrical tubes of uniform diameter along their whole length.
Obviously the highest ratio of the volume to surface area will be obtained for that
configuration of the knot which allows us to minimise the length/diameter ratio of
the tube forming a given type of knot.

One way to obtain ideal configurations is to uniformly increase the diameter
of the cylindrical tube forming a knot while keeping the axial length constant and
while adjusting the trajectory of the knot to permit the maximal radial inflation’ ©,
Equivalently, one can proceed with shortening of the knotted cylindrical tube or rope
while keeping its diameter constant until its length is minimised and the knot type is
still maintained’.

Fig.1 shows the process of rope shortening for the trefoil which initially has
an arbitrary configuration. To begin with, axial shrinkage can take place everywhere
and the axial trajectory of the knot therefore undergoes a simple scale reduction
while the diameter of the rope remains unchanged. This leads to surface collisions of
the rope segments, following which further shortening of the rope necessitates that
its axial trajectory adjusts toward the ideal. Finally, further adjustments of the knot’s
trajectory and further shortening of the rope are not possible and we see that
practically every radial crossection of the rope forming an ideal trefoil shows a point
of contact with the surface of another segment of the rope. We intuitively feel that
such maximally shortened trefoil knot showing a nice symmetry indeed adopts its
ideal representation. The situation becomes less intuitive when using simulation
approach we try to bring more complicated knots into their ideal configurations.
Colour Plates 1-3 show the results of such simulations performed for all prime knots



with up to 8 crossings. The notations accompanying the knots shown correspond to
Alexander-Briggs notations® used in standard tables of knots® 'O where the main
number indicates the minimum number of crossings possible for this knot type and
the index indicates the tabular position amongst the knots with the same minimum

crossing number.

Fig. 1. Evolution of the trefoil knot towards its ideal conformation. The process of the knot
tightening was simulated numerically with the SONO algorithm (see chapter by Pieranski).
(a) - the initial conformation has an irregular shape. (b) to (e) - collisions between
segments of the shrinking rope change its initial trajectory and allow maximal shortening
of the whole rope. (f) - ideal conformation : the ratio of volume to surface area reaches its
maximum.

It should be stressed here that the configurations presented are obtained by a
simulation approach and it is still possible that they represent only a local rather than
the absolute minimum in the configuration space of a given knot. We do not yet
know how corrugated the conformational space of knots is or how many local
minima and saddle points there are. We tested several different simulation
algorithms in order to find procedures which are less likely to terminate in local
minima. The algorithm used here (see chapter by Pieranski for its description) is less
sensitive to local minima than the algorithm used previously to find ideal
configurations of knots®. For example with the present algorithm we find that the
symmetrical configuration of the knot 51; shown in Ref. 6 represents only a local

minimum.

2 Ideal trajectories as knot invariants

Can the process of knot tightening be compared with finding a topological
invariant of knots? If yes, then irrespective of the starting configuration of a given



knot, one should be able to obtain the same ideal configuration. Perhaps the best test
for the knot tightening approach (and the computer algorithm used to simulate this
process) is provided by the so-called Perko pair of knots. These two representations
of 10 crossing knots were listed as distinct in knot tables compiled in 1899 by C.N.
Little, and were believed by generations of topologists to correspond to different

knot types, until, in 1974, K.A. Perko demonstrated that they represent the same
knot. When Perko pair diagrams, denoted in Rolfsen tables as knots 10161 and

10162, were taken as starting configurations for the process of knot tightening, the
two configurations converged toward the same shape shown in Fig. 2.

B®é @
@ 8B Q

Fig. 2. Convergence of two different tabular representations of the Perko knot, into the
same ideal form. (The final configurations of 10]6] and 10142 are seen from slightly

different angle)

3 Length/diameter ratio of ideal knots as a scale independent measure of
the complexity of knots.

All knots shown in Plates 1-3 are constructed from rope of the same diameter.
It is clear that as the knots become more complicated, one needs more rope to form
the knot. To express the increasing complexity of ideal knots by a measure which is
independent of the actual diameter of the rope, or the scale at which the ideal knot is
presented, one can use the ratio of the length to the diameter of the rope forming a
given ideal knot. Although we are not yet sure if our simulation approach will



always find the ideal configuration, it should be clear that one or more representation
of a given knot exists for which the length to diameter ratio reaches the value of a
giobal minimum. In the worst case there may be an infinite number of
representations with the same length to diameter ratio but there will always be a
length to diameter ratio value below which it is not possible to form a given knot.
This minimum length/diameter ratio thus constitutes the topological invariant of a
given knot. Of course without an analytical solution to the problem of ideal knots
configurations we are limited in the precision of determination of the minimum
length/diameter ratio. This is because our simulation approach is limited to
polygonal knots made out of a limited number of segments of uniform size.
However, we estimate that the error in the determination of the length to diameter
ratio of ideal knots is less than 0.5%. Table I lists the length/diameter ratios obtained
for different ideal knots.

The length to diameter ratio has a very simple intuitive meaning. It
corresponds to the shortest relative length of very flexible but radially
incompressible rope which is sufficient to tie a given type of knot. If one has, for
example, a rope which is 1 cm thick, one would need at least 16.4 cm of this rope to
form a trefoil (knot 31) and 47 cm to form knot 111: the more complicated the knot,
the longer the piece of rope (of given diameter) required to tie it. A corollary is that
the minimum length of rope needed to form a given knot should be a good measure
of knot complexity. Knots could thus be classified and ranked according to the
increasing length/diameter ratio of their ideal representations. Looking 4t Plate 3 and
Table I we can see that the so-called nonalternating knots, which are placed in
standard tables of knots as the last group of knots with a given minimum crossing
number, e.g. 819, 820, 821, can be made with a piece of rope having a lower
length/diameter ratio than alternating knots with the same minimum number of
crossings. This result is easy to explain since in the alternating knots their
trajectories are perfectly interwoven so that as we follow the rope forming ideal
representations of alternating knots we see that it passes alternatively under and over
the segments with which it crosses. In nonalternating knots the interweaving is not
perfect and ropes can pass twice over and twice under the segments with which they
cross and thus less rope is needed in-between such two crossings. Therefore, using
as a criterion the length/diameter ratio of a rope forming the ideal representation of a
given knot type, nonalternating knots are less complex than alternating knots with
the same minimum crossing number. The fact that nonalternating knots can have
shorter trajectories than alternating knots with the same minimum crossing number
was observed also for strongly tightened knots made of real ropes (see the chapter by

Janse van Rensburg) and for the minimum length knots on the cubic lattice! l(see
also the chapter: "Minimal lattice knots" by Janse van Rensburg). Interestingly also



L/D

16.33
20.99
23.55
24.68
28.30

6.86
10.25
8.52
6.95
10.25
8.56

949

Table I Parameters of the most tight conformations found with the SONO algorithm.



the energies of nonalternating knots are smaller than the energies of alternating knots
with the same minimal crossing number?.

4 Average crossing number of ideal knots.

To characterise a knot one usually tries to find out what is the minimum
number of crossings this knot can have in a planar projection. For example, there are
49 different prime knots which can be brought into configurations producing planar
projections with the minimum number of crossings equal to 9, and all those knots are
called 9 crossing knots. Minimum crossing number is by definition an integer and as
such cannot be used for the fine distinction between different knots. Therefore as the
minimum crossing number increases there are more and more knots with a given
minimum crossing number (165 with 10 crossings). However, if instead of searching
for the particular direction where a given knot shows minimum number of crossings
one looks at the knot from infinitely many directions, one can calculate the average
number of crossings which is a noninteger real number. Such a number, when
calculated with high precision, can be uniquely attributed to the observed
configuration of a given knot. Of course as long as we do not have unique
representations of different knots, the value of the average crossing number will
depend on the arbitrarily chosen configuration of a given knot. The situation is
different for ideal knots which, at least in the case of not too complex knots tested by
us, seemed to converge toward unique representations characteristic for a given type
of knot. The average crossing number when calculated with high precision for the
ideal configurations of knots is likely to be different for each knot type and as such
can be used to distinguish between different knots. Table I lists the average crossing
number calculated for the axial trajectory of ideal representations of different knots.

As with the length to diameter ratio of ideal knots, the average crossing
number of the ideal configurations of knots is also a topological invariant. At the
moment the only way to approach this value is by means of numerical simulations of
limited precision, though elements of the analytical estimation have already been
found (see chapter by Pieranski).

5 Relation between length/diameter ratio and the average crossing number
of ideal representations of knots

When the values of the average crossing number of the ideal forms of 20
relatively simple knots (up to 11 crossings in their standard tabular representations)
were plotted against the length/diameter ratio of the corresponding ideal forms, a
quasi linear relation was obtained®. This prompted the question: is this relation
strictly linear or is it a more complex one which only appears linear when relatively
simple knots are taken into a consideration? Obviously the best way to answer this
question is to take more complex knots, with minimum crossing numbers of several



dozens, and try to obtain their ideal configurations. However, as the knot becomes
more complicated, the computer simulation gets more difficult and this increases the
chances of obtaining final configurations which terminate in one of the local minima
of the complex conformational space instead of the global minimum corresponding
to the ideal configuration. In addition even if several independent simulation runs for
the same knot type end in the same configuration we can not eliminate the possibility
that there exists a better solution. Despite this uncertainty, we decided to simulate
ideal trajectories of several more complex knots and to check their average crossing
number and the length/diameter ratio. We have chosen torus type of knots for the
simplicity of generation of their starting configurations.

Torus knots are defined as those which can be placed without self
intersections on the surface of a regular torus. We took this class of torus knots
which encircle twice the central straight axis of the torus and at the same time wind
around the torus a given odd number of times. Since there are no tables of knots with
more than 13 crossings other designations than the standard Alexander-Brigs
notations are needed to describe more complicated knots. For torus type of knots the
notation includes two numbers where the first one tells how many times the knot
encircles the central straight axis of the torus and the second number tells how many
times the knot winds around the torus (See (2,33)-torus knots on Fig. 3). Torus knots
can be generated in nice symmetric configurations using a modified Lissajous
approach where orthogonal oscillations are centred around a circular trajectory. Such
symmetric torus knots evolve in an interesting way when they are used as the
starting axial configurations for the simulation procedure (See Plate 4. and for more
details see chapter by Pieranski). Initially the knots behave as if the tori about which

knot axes wind were just getting thicker and shorter while the knots maintain a
perfect cyclic group symmetry (C53 for the (2,33)-torus knot).

(o

Fig. 3 The initial stage of evolution of the (2,33)-torus knot tightened with the SONO
algorithm. For the next stages of the evolution see Plate 4.

Looking at the ropes forming symmetric torus knots one can see that they
form a regular double helical arrangement whereby opposing ropes wind around a
perfect circle.



During uniform shortening of the rope, axial paths of symmetric
representations of torus knot change so that the opposing segments tend to become
perpendicular to each other and then reach the optimum form (highest volume to
surface area ratio) for this symmetric double helical arrangement (Fig 3b.) Further
reduction in the rope length (maintaining fixed diameter) is only possible when the
perfect double helical symmetry is broken and one of the opposing ropes becomes
the central one. See Plate 4 and Fig. 4a. In this new arrangement the second, external
rope can tightly wind around the central one. The symmetry breaking causes the
whole knot to lose its toroidal shape upon which it folds into an irregular discoidal
form whereby the opposing ropes switch between internal and external position in a
non regular way.

In one of our long-duration simulation runs, a regular elongated form of torus
knots emerged from the irregular discoidal form.

(a) (b)

Fig. 4 Irregular discoidal and nice elongated form of (2,33)-torus knot obtained when
starting from different initial configurations. See text and Plate 5.

In such elongated form there is only one place where the central and external
rope exchange their positions (torus knots in contrast to torus links need to have a
site where the central and external rope exchange). This site of rope exchange is
located at one of the apexes of the elongated form (Fig. 4b and Plate 5). The
elongated regular forms of torus knots with high crossing number demonstrated the
shortest length, for a given rope diameter, of all the forms we have obtained. We
assume therefore that these forms represent ideal configurations of torus knots. As
seen in Plate 5, searching for the minimai rope iength the elongated form becomes
spontancously twisted. Interestingly, for minimum length torus knots in the cubic
lattice one also observes a tight winding of one strand around an essentially straight
central strand (see Fig. 3 in the chapter "Minimal lattice knots" by Janse van
Rensburg). As already indicated, our simulation procedure only rarely resulted in the
generation of elongated regular forms when starting from the symmetric
configurations of torus knots. However, when starting from configurations which
were already constructed with one switch point between the external and central
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rope, the simulations quickly reached a very regular elongated form with the shortest
length for a given diameter (see the chapter by Pieranski). Therefore we were able to
bring into this configuration very complex torus knots including (2,63)-torus knots
and calculate their average crossing number and length/diameter ratios. Fig 5 shows
the relation between the length/diameter ratio and the average crossing number of
ideal representations of (2,n)-torus knots 'starting from the trefoil knot (2,3)-torus
knot and ending with (2,63)-torus knot. It is visible that initial slope for less complex
torus knots is lower than this for more complex torus knots. Therefore it seems that
there is no universal linear relation between length/diameter ratio and average
crossing number of ideal representations of all knots.

180

1604
1404
1204
1004

ACN

80}
604

401

20} .
-

-

0 50 100 150 200 250
LD

Fig 5. Relation between length/diameter ratio and average crossing number of the ideal
geometrical representations of different knots, including the data obtained for large torus
knots. Note a substantial change of the slope upon progression from simple toward more
complicated knots.

However, as already mentioned, we are not sure that the elongated forms of
large torus knots actually represent ideal forms of these knots. Furthermore we do
not yet know if other large knots will follow the pattern of torus knots or if each
family of knots will have its own characteristic relation between length/diameter
ratio and the average crossing number of their ideal representations.

6 Writhe of ideal representations of knots.

Topologists are frequently interested in determining the chirality of different
knots. Writhe is a measure of the chirality, and is quantified in a similar way as the
mean crossing number. A given configuration of a knot is observed from thousands
of directions, equisampling the sphere, and perceived crossings are counted.
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However, in contrast to the mean crossing number, the chirality of the observed
crossings is important. Thus, right handed crossings score as +1 and left handed as
-1, and the writhe corresponds to the average score contributed by crossings
perceived from a random direction, whereby the absolute writhe value is always
smaller than the average crossing number. For achiral knots, the writhe of ideal
configurations turned out to be practically equal to zero. Table I lists the writhe
values calculated for ideal configurations of different knots. For chiral knots we
provided writhe values of right-handed representations.

Fig 6. Different families of knots show different slopes of the linear increase of writhe Wr
with increasing minimal crossing number (MCN). Knots 3, 5,,...,11, belong to the family
of the (2,n) torus knots. Knots 4,, 6, 8, and 10, belong to the family of twist knots with
the even number of crossings, while 3, 5,, 7, and 9, belong to the family of twist knots
with the odd number of crossings.

Fig. 6 shows that when the writhe values of ideal representations of different
knots are plotted against their minimum crossing numbers, one observes a linear
relationship between the knots belonging to the same families. So, for example, torus
knots fell on one line with a characteristic slope while twist knots with even and odd
numbers of crossings in their tabular standard representations are found on two
parallel lines with a lower slope. Thus ideal representations of knots naturally divide
themselves into families of knots and this division can be perceived without
analysing the overall topology of the knots but just by measuring their writhe.
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7 Ideal composite knots.

Composite knots are formed when two or more knots are tied successively on
the same string. Composite knots can always be redistributed on a string in such a
way that a plane pierced by the knot trajectory in only two places can separate the
knot into two parts, whereby each part upon simple closure can form a nontrivial
knot.
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Fig. 7. Additivity of the writhe in composite knots.

Knots which constitute a composite knot are called factor knots. Of course the
same criteria of ideality can be applied to composite knots as to the prime knots
considered earlier. Plate 3 (lower part) presents the ideal configurations of some

composite knots. Numerical notations indicate what factor knots are joined together
to form a given composite knot, so for example +3#-3, indicates that this

composite knot is formed from one left and one right-handed trefoil (knot 3).
Interestingly, the writhe of the ideal composite knot +3#-3, turned out to be exactly

zero as if positive writhe of a right-handed trefoil exactly compensated the negative



writhe of a left-handed trefoil (Table 2). Composite knot +3#-3; is achiral'?

therefore our previous observation that the writhe of achiral prime knots in their
ideal configurations is zero is apparently also valid for composite knots. When
checking the writhe values for different composite knots in their ideal form we
noticed that these values were always equal to the sum of the writhe values of the
ideal forms of the factor knots constituting a given composite knot (Fig. 7). The
observed additivity of writhe is a very interesting property of ideal knots since,
usually, the writhe values are not additive13 i.e. when one arbitrarily connects two
closed curves in space by removing fragments of the original trajectories and
replacing them by almost straight connectors, the writhe of the newly formed curve
usually differs from the sum of the writhes of the two starting curves. It appears that
factor knots, in the ideal forms of composite knots, adjust their trajectory and their
relative position in respect to each other in such a way that upon joining of two or
more ideal knots their total writhe does not change.

8 Relation between ideal and real trajectories of knots.

Upon discussing geometrical and topological relations between the ideal
representations of different knots it is good to consider the connections between
ideal and real knots. Perhaps we should recall here some thoughts of Plato, who said
that although real objects do not have the properties of ideal objects, some reflection
of ideality should still be present in real objects.

To look for the reflection of ideality in real knots it may be useful to consider
the average shapes of thermally agitated knotted polymers in solution. In order to
obtain reliable statistics it would be best to have a direct physical technique
providing us with precise information about writhe and crossing number of the
configurations actually adopted by millions of knotted molecules in solution.
Although, at present, there is no such experimental technique, the progress in
computer simulation techniques permits reliable generation and analysis of millions
of expected configurations of knotted polymers in solution'4. Certainly the most
studied polymer is DNA, and we understand DNA properties sufficiently well to be
able to use the Metropolis Monte Carlo simulation technique to model DNA
behaviour under given conditions'>. In order to have the shape of knotted DNA
molecules unaffected by the intrinsic stiffness of DNA, we have chosen to model
long DNA molecules so that the local curvature needed to form a given knot is
usually smaller than the average local curvature induced by thermal motion. If
modelled DNA molecules were short they would tend to minimise the curvature and
would therefore systematically deviate from the equilibrium of stochastic
representations satisfying the topology of a given knot. To eliminate the possible
effects of torsional stress in double-stranded DNA we modelled DNA with
interruptions in one of the strands so that torsional stress can dissipate. The

13
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simulation results presented below refer to knotted double-stranded DNA molecules
placed in a solution, though a qualitatively similar behaviour is expected for any
torsionally relaxed knotted polymers suspended in a solution. Plate 6 shows a
comparison between the axial trajectories of ideal knots and some modelled

trajectories of knotted DNA molecules undergoing thermal motion. The modelled
trajectories correspond to 5400 base pair-long DNA molecules forming a 3; and 4;

knot, respectively. It is clear that the trajectories of the knotted molecules
undergoing thermal motion bear little resemblance to the ideal trajectories of the
corresponding knots. When the writhe is measured for momentary configurations of
thermally shaken knotted molecules, the measured values very rarely approach those
of the ideal configurations of the given knots. However, when the writhe is measured
for millions of configurations, the mean value then becomes practically equal to the
writhe of the ideal configuration. As shown in Fig. 8a this is true for the average
writhe of every knot modelled, and is also true for different lengths of modelled
DNA molecules.
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Fig. 8. Relations between ideal configurations of knots and knotted DNA chains
undergoing thermal motion.

a. A 1:I correspondence between the writhe of the ideal forms of knots and the mean
writhe value of ensembles of ca. 9°000°000 configurations simulating the behaviour of
knotted double-stranded DNA molecules (5400 and 1800 bp long) randomly distorted by
thermal motion.

b. Linear correlation between the average crossing number of the ideal configurations and
the mean of the average crossing numbers of ensembles of simulated configurations of
knotted DNA chains with 1800 and 5400 base pairs.

The fact that the ideal configuration of a given knot has a writhe equal to the
mean writhe of the floppy, randomly distorted polymers forming the same type of
knot may initially be surprising. However, if one considers a simple circular polymer
undergoing thermal motion one would expect that its momentary configurations can



be, with the same probability, twisted in right-handed and left-handed ways.
Therefore the mean writhe, which is a measure of handedness or chirality should
remain equal to 0, and a writhe of 0 is that of an ideal circle. Thus, for reasons of
symmetry, floppy, circular polymers will maintain a mean writhe equal to that of an
ideal circle. For the same reason floppy knots of different types will maintain their
mean writhe equal to the writhe of the ideal configurations of these knots as long as
the size of the knotted chains or of knotted domains is sufficiently large so that
bending stress does not systematically change the shape of the knotted chains.
Random knots built in the cubic lattice are free from bending stress and are ideal to
test whether the mean writhe of a population of randomly distorted knotted chains
forming a given knot corresponds to that of the ideal geometric representation of a

given knot. Janse Van Rensburg et al. 16 calculated the mean writhe for randomly
generated populations of different knots in the cubic lattice and noticed that for a
given type of knot the mean writhe of the population did not depend on the number
of segments in the walk. For example, populations of trefoils built of 24 segments or
of 250 segments showed essentially the same writhe, 3.40+0.025, which corresponds
to the writhe observed for ideal trefoils presented here. For more details concerning
the mean writhe of random knots on the cubic lattice see the chapter by Janse van
Rensburg, Sumners and Whittington.

Let us now look at the average crossing number of populations of knotted
DNA molecules undergoing thermal motion. Fig. 8b shows that there is still a linear
relationship between the average crossing numbers of ideal representations of
different knots and the average crossing numbers calculated for populations of
different knots with the same axial length. The slope of the observed linear
relationship seems to be 1, and the longer the chain of the knotted polymers, the
more additional crossings it has. Explaining the relationship between the average
crossing numbers of the ideal representations of knots and those of a random
population of knots one needs to point out the basic difference between the average
crossing number and the writhe. Writhe is a measure of chirality so that additional
crossings can have positive or negative values and, as discussed already, the
accidental additional crossings have the same chance of adopting left or right handed
configurations so that, on average, the contribution to writhe of additional crossings
tends to 0. In contrast to the writhe, the average crossing number increases by +1 for
each perceived crossing and thus additional crossings will never cancel each other
but simply accumulate. The longer the polymeric chain undergoing thermal motion,
the higher the number of additional crossings and this is exactly what is observed in
Fig. 8b.

15
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9 Gel electrophoresis as a physical method to test the relationship between
ideal and real knots.

Upon observing 1:1 correspondence between the writhe of ideal knots and the
mean writhe of modelled polymer chains forming corresponding knots one starts to
appreciate that the ideal configurations predict or govern the real physical behaviour
of knotted polymers in solution.

average crossing number

electrophoretic separation from unknotted circle (cm)

direction of electrophoresis

Fig. 9. Agarose gel electrophoresis separates DNA knots according to the overall
compaction of ideal forms of the corresponding knots. The type of knot in each band was
verified by electron microscopy. The ideal configuration of the corresponding knots were
scaled to the same length and to facilitate visual tracing of the knots the diameter of the
tubes was shrunk to 1/3 whilst maintaining the same axial path. The figure is adapted from
Ref. 18



However, one may argue that the relationships described up to now are just
between computer generated ideal configurations and computer generated random
configurations of knots. A real physical test is needed. This test is provided by gel
electrophoresis, a technique which can separate different DNA knots. In the
laboratory of Nicholas Cozzarelli (University of Berkeley) this technique was
brought close to perfection and Fig. 9 shows a gel where DNA molecules of the
same length, though forming different well characterised knots, are analysedl 7,

Ideal forms of different knots with the same length can be obtained by
appropriate scaling of ideal knots with the same diameter but different length (as
those shown on Plates 1-3). Upon correct scaling to bring different ideal knots to the
same length we see that as knots become more complex their overall dimensions
decrease (see corresponding representations of the knots in Fig. 9). The same applies
to knotted DNA molecules of the same length, the more complicated the knot the
more compact is the average configuration of this molecule. For molecules with the
same charge, the higher the compaction the quicker the migration on the gel. Since
the average crossing number is a good measure of knots compaction it is thus natural
to plot the migration distance of different knots versus the mean crossing number of
their ideal representations. Fig. 9 shows that this relation is linear. This demonstrates
that the ideal configurations of knots can be used to predict the physical behaviour of
real knots. It should, however, be mentioned here that knotted molecules on the gel
do not adopt ideal configurations: but only their average shape has a compaction
proportional to the compaction of ideal configurations of these knots.

10  Conclusions.

Ideal configurations of knots showed interesting geometrical and topological
relationships between different knots. These configurations provide a basis for a
natural classification of knots. Most importantly, however, is the fact that the
physical behaviour of real physical knots can be predicted by the properties of the
ideal representations of those knots. This was demonstrated here for polymers in
solution but may also apply to other systems including superstrings on the lowest
scale and cosmic strings on the highest.

Idealised representations of knots which minimise or maximise certain
properties were shown to have interesting relations to the expected behaviour of real
physical knots formed by magnetic flux lines', polymersz’s, bistable chemical
systems4 or knotted fields . (See also the chapters by some of the authors of these
papers).

Several elements presented in this chapter were previously described in the
Ref. 6,19-21.

17
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CHAPTER 2
IN SEARCH OF IDEAL KNOTS
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Poznan University of Technology
Piotrowo 3, 60 965 Poznan, Poland
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Institute of Molecular Physics,
Smoluchowskiego 17, 60 159 Poznan
E-mail: pieransk@phys.put.poznan.pl

A particular version of the knot tightening algorithm is described. It is shown that the
algorithm is able to remove empty loops and nugatory crossing leading to the
simplification of the conformation of any knot. The problem of finding the ground state
conformation of knots is discussed. Results of tightening various types of knots are
presented and analysed.

1 Introduction

Knot is a closed, selfavoiding curve. From the topological point of view all
conformations of the curve accessible via transformations during which no self-
crossings occur are equivalent. From the point of a physicist, who thinks of the knot
as a material object, whose points interact with forces stemming e.g. from a certain
potential field, different conformations of a knot may have different energies. In such
a case finding the ground state of the knot, i.e. the particular conformation at which
the internal interaction energy reaches its minimum, is a challenging task. Our
interest in the problem was stimulated by the seminal paper on the energy spectrum
of knots and links by Moffat'. A rigorous treatment of various formulations of the
energy function and references concerning the history of the problem can be found in
chapters by O‘Hara and Diao et al. in this volume. Here, we shall limit ourselves but
to the simplest case of the energy defined by the knot thickness. Putting aside all
subtleties of the definition, one can state that the scale invariant parameter which
determines in this case the knot energy (in what follows we shall refer to it as the
thickness energy) is the ratio L/D, where L is the length of the rope (or tube) used to
tie a particular conformation of the knot and D is the diameter of the rope.

The conformation at which the L/D parameter reaches its global minimum is
the ground state of the knot. Knots in their ground state conformations are
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sometimes called ideal - term coined by Stasiak’. As it happens with ideal things, to
reach ideal conformations of knots is not a trivial task: as we have found out, some
of the ideal knots presented in Ref. 2 are in fact not ideal - we managed to find
conformations for which values of the L/D parameter are smaller. But, are the values
we managed to find the minimal ones? We cannot be sure. Thus, talking below less
about the ideal knots we shall talk more about the tool we created to search for them.

2 The knot inflation process

Let K be a given knot type. Let Cy be a particular, smooth conformation of
the knot at each point » of which the tangent unit vector ¢ is well defined. Imagine
now a process in which the curve Cx is slowly inflated into a tube 7,. At each point »
of C the crossection of the tube with a plane perpendicular to the tangent vector # is
a disk of diameter D. If the curvature all along Cx is finite and smaller than a certain
critical value, depending on the actual value of D , the tbe the inflation process
starts without problems. Depending on the actual shape of Cg, overlaps between
different segments of the tube, or at its strongly curved parts, will soon appear. If by
an appropriate procedure modifying the shape of Cx (keeping its length L fixed) the
overlaps are removed, the process of inflation can continue until the conformation of
the knot reaches a limit state above which the newly created overlaps can no more be
removed.

The knot inflation process was introduced independently by a few
authors'**. As easy to guess, instead of inflating the tube while keeping its length
fixed, one can consider the complementary process in which the length of the tube is
reduced while its diameter is kept fixed. Below we present the Shrink-On-No-
Overlaps (SONO) algorithm we developed during our studies of braids®.

Our approach to the knot tightening process is experimental. It was not our
aim to create a universal, autonomous algorithm able to find on its own the global
ground state conformation of any knot. What we were aiming at was rather the
creation of a virtual laboratory within which various experiments on knots could be
performed, among them - tightening. The SONO algorithm is one of the tools found
in the virtual laboratory. Other tools allow one to study various properties of the
knots such as their curvature and twist maps, writhe and the average crossing
number.

It is interesting that laboratory experiments with tightening knots tied on a real
rope of have been performed not by physicists but mathematicians. The experiments
are described in Ref. 4.



3 Shrink-On-No-Overlaps (SONO) ALGORITHM

Shrink-On-No-Overlaps algorithm is built from a number of procedures.
Below we describe them one by one. Developing the SONO algorithm we tried to
make it as fast as possible, thus simplicity of the applied procedures was of primary
importance.

3.1 ControlLeashes (CL) procedure.

For obvious reasons, in the numerical experiments described below knots
are discretised. Thus, let P; , i=1..N, be equidistant points belonging to Cx. In what
follows we shall refer to them as the nodes. I=L/N denotes the length of leashes,
which tie neighbouring nodes along the knot. The length of all leashes should be
equal /. To keep an eye on it we defined a ControlLeashes procedure. It checks the
distance d;;, between i and i+1 node and corrects its length to the proper L/N value.

If d;;., <> then nodes i and i+1 are symmetrically moved (away or towards
their centre of mass) along the line which passes through them to positions at which
diin=l.

The procedure starts at a randomly chosen node and runs, accordingly to
another random choice instruction, up or down around the chain of nodes.
Obviously, the CL procedure defined in such a manner is not selfconsistent; after its
single application the leashes are not of equal length. On the other hand, it is also
obvious that its frequent application should reduce the dispersion of the leash length.
It does.

The CL procedure returns the lengths of the longest and shortest leashes
found within the chain. Monitoring the values one can estimate the actual dispersion
of the leash lengths.

3.2 FindNeighbours(FN) and RemoveOverlaps (RO)procedures

Nodes are points. To simulate a tube of diameter D we assume that each of
the points is surrounded by a hard sphere of diameter D. As the number N of the
nodes is large (or L is small) and the leash length / is smaller than D, the spheres
surrounding consecutive nodes must be allowed to overlap. To achieve the aim, the
hard core repulsion between spheres is defined in a particular manner: the spheres
repel each other only if their index distance is larger than a certain Skipped integer.

The index distance between an i-th and k-th node is defined as the (smaller of
the) number of leashes which separate nodes in question along the chain. A proper
choice of the Skipped parameter is crucial. It should be larger than round(D/l). One
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should take into consideration situations in which the simulated tube makes the
tightest U-turn

by

Fig. | (a) The discrete form of the 3.1 knot as seen by the SONO algorithm. The number of
nodes N=49 is about 3 times smaller than the normalised standard value round(10L/D). (b)
The tight U-turn.

The sphere located at the entrance to such a U-turn should be blind to overlaps
with all spheres found within the turn and it should start repelling all spheres which
left the turn. Since the length of the tightest U-turn equals nD/2, the proper Skipped
value should be close to round(nD/2]).

Removing overlaps which appear in the knot during its tightening process is
the most time consuming task. If the procedure which performs it is defined without
imagination, its time consumption grows with N°. This happens if at each step of the
tightening process possible overlaps of each node with each other node are checked.
If the knot tightening process is slow, the evolution of the knot conformation is
smooth and uniform and for a given node only a few nodes have a chance to overlap
with it. (By a node we mean here the sphere which surrounds it.) Thus, before the
overlap removing procedure is called, one should find for each node all nodes which
have a chance to overlap with it. This task is performed by a FindNeighbours (FN)
procedure which updates an integer array nn[1..N,1..m], whose i-th raw contains
indexes of all nodes which are found within a distance smaller the (D+¢), where ¢ is
a small parameter adjusted experimentally. At the entrance to the FN procedure the
nn array is zeroed. Then, consecutive rows are filled in. If the length m of the rows is
chosen large enough, at the end of the FN procedure the rows are found to be only
partially filled in: they end with sequences of zeros.

Assume that the nn array has been updated. Then, the RO procedure starts
detecting and removing overlaps. The check starts at a randomly chosen nodes and,
according to another randomly chosen parameter, it runs up or down the chain of
nodes. For a given i-th node only the nodes whose indexes are found within the i-th
raw of the nn array are checked for overlapping. If the spheres surrounding the i-th
and j-th nodes are found to be overlapping, the nodes are shifted apart,
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symmetrically, along the line which joins their centres, to a distance (D+8), where &
is another experimentally adjusted parameter. Putting 8>0 leaves some extra free
space between the shifted apart spheres. As found experimentally, this speeds up the
tightening process.

The FN procedure is called much less frequently then the CL and RO.
Typically it is called only every 200 iteration steps. As in the case of the CL
procedure, the RO procedure is not selfconsistent. Removing overlaps between two
nodes may create overlaps with other neighbours of the moved nodes, however,
repeated use of the procedure asymptotically removes all overlaps (if the knot is not
too tight already). The state of overlaps found within the chain is monitored by
finding during the run of the RO procedure the values of the maximum and average
overlaps.

3.3 ShiftNodes (SN) procedure.

As stated at the beginning, in the numerical experiments knots are
represented by knotted, discrete chain of spherical beads threaded on Cx. Since the
beads are spherical, the surface of the chain is not smooth. To avoid jamming we
introduced into the SONO algorithm an additional procedure which shifts the beads
along the Cy thread by an incommensurate fraction of the internode (leash length)
distance, left or right. New positions of the beads are calculated via a simple, linear
interpolation. The primary aim of the shifting procedure is to prevent jamming. Its
sideeffect, which proved to be of great importance, is smoothening and cutting
corners of Cg. The latter leads to some additional effects such as a rotation of the
knot as a whole, which happens in the case of strongly chiral knots, e.g. the 3.1 knot.

3.4 ReduceNodeNumber (RNN), DoubleNodeNumber (DNN) and
NormalizeNodeNumber (NNN) procedures.

Tightening a knot aimed at finding its global ground state is a difficult
experiment. It aims at minimising A=L/D vs. C, where denotes the actual
conformation of the knot. Unfortunately, for most knots the A(C) function displays a
whole set of local minima. Any procedure aimed at finding the global minimum must
be able to get out of them. In the thermal bath based Monte Carlo algorithms such as
that used in Ref. 2, thermal fluctuations perform the task. In the mechanical knot
tightening process simulated with the SONO algorithm the mechanism is different.
Experiments prove that reduction of the number of nodes and increasing the o
parameter in the RO procedure allows one to cross some of the minima. We defined
simple procedures which reduce twice (RNN) or double (DNN) the number of
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nodes. The procedures are called, when necessary, by the operator performing the
tightening experiment.

To obtain comparable accuracy of parameters for different types of knots,
we defined also a procedure (NNN) which normalises the node number to a common
standard value depending on A. In all experiments described below we assumed that
the standard number of nodes is equal round(10*A). This particular choice of the
standard node number is of course arbitrary.

In addition to the procedures described above the numerical knot tightening
workbench contains: procedures finding the total length L of the knot, its writhe #r
and the average crossing number ACN , the procedure finding and plotting the
curvature map t and, finally, the procedure which plots the actual conformation of
the knot. Images of the knot conformation are stored on the hard disk what at any
step of the tightening process allows the operator to call an animation procedure
which displays the images in form of a short movie. Analysing the movie the
operator may estimate the effectiveness of the tightening process and check if the
knot did not change its type.

3.5 The core of the SONQ algorithm.
The general flow diagram of the SONO algorithm is as follows.

1. The (x,y,z) coordinates of the nodes of a chosen knot are taken either from
the procedure in which the knot is drawn with the mouse on the screen (the
over- and undercrossings marked during the drawing process with mouse
keys) or it is read from a file within which the coordinates were stored at
one of the previous runs.

2. The nn array containing indexes of the near neighbours is filled in with by

the FN procedure.

The lengths of the internode leashes are corrected by the CL procedure.

Overlaps are removed with the RO procedure.

5. If the average overlap value is smaller than a certain (defined by the
operator) threshold, the knot is tightened: the (x,y,z) coordinates of the
nodes and the leash length / are multiplied by a scaling factor s<1, while
the diameter D determining the overlapping remains unchanged.

b w

Steps 3, 4 and S are repeated NumOflt times, NumOflt being of order 1012 -
1013, before the FN procedure used in step 2 is called again.
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4 TESTS OF THE SONO ALGORITHM

4.1 Untagling an entangled unknot.

Any procedure aimed at searching for the global ground states of knots should
be able to perform such basic tasks as removing empty loops and nugatory crossings
from even the most entangled conformation of a knot. Fig. 2 demonstrates how the

SONO algorithm performed the task in the case of an entangled conformation of the
trivial knot.
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Fig. 2 Consecutive stages of the tightening process performed by the SONO algorithm on
an entangled trivial knot. The run presented in the figure lasted about 5 min. on a PC
Pentium 100.
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In spite of its apparent effectiveness the SONO algorithm performs the
untangling task in a rather awkward manner. Rather than tediously pulling out the
empty loops it should just detect and cut them. Such a CutEmptyLoops procedure
may be added to the tools it uses.

4.2 The Moffat test

Another test of knot tightening algorithms was suggested by Moffat. As he put
it in his comment’ to Ref. 1: "It would be interesting to test the algorithm on the
simpler T3, and T, 3 configurations of the trefoil; it is not clear to me, how T, could
Slow to T3 through the process described.”.

CRROEL
= QePW

s
304
204 L/D
1 N
104
ACN
0 100 200 300 200 500

a b ¢ d e f g h 1 1 %k

Fig. 3 Moffat test of the SONO algorithm. (a) the initial, loose conformation of the Tz
knot generated numerically. (k) the ground state configuration.
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Fig. 3 presents result of the Moffat test we performed with the SONO
algorithm. A symmetrical T, initial configuration (a) was generated numerically.
Then, the configuration was read by the SONO algorithm and tightened. As clearly
seen in the figure, after the very rapid initial stage, in which the loose initial
configuration became tight (b), the evolution practically stops. The L/D and ACN
parameters remain on average constant: a local minimum or saddle of the knot
energy has been reached. However, as seen in the figure as well, the L/D value
fluctuates. The fluctuations are induced mostly by the ShiftNodes procedure; let us
remind that the discrete representation of the knot is not smooth, seec Fig. 1. As a
result of the fluctuation the symmetry of the T3, configuration becomes broken (h),
and the knot slips into the ideal T, configuration. Let us note that the time needed
to break the symmetry of the T, configuration strongly depends on the number of
nodes. A considerable, temporary reduction of the number allows the operator to
initiate it. During the run presented in the figure all parameters of the SONO
algorithm remained fixed. We performed the Moffat test for other torus knots. In ail
studied cases the SONO algorithm managed to break the n-fold symmetry of the Ty,
knot.

4.3 The Perko Pair test

(2)
10.161
60]
L/D (b) (© (d) (e)
50}
40+ h—\\'\\%
30} \
*r 10.162
1
0 50 100 150 200 250 300

Fig. 4 Evolution of knots from the Perko pair to the identical final conformation.

Another test, which any algorithm aimed at finding the ideal conformations of
prime knots should pass is the ability to bring knots 10,5, and 10,6, the Perko pair,
to a single, minimum energy conformation. The test was passed by the tools used in
Ref. 2. In chapter by Stasiak et al. we presented how the task of bringing the Perko
pair knots to the same conformation was performed by the SONO algorithm.



29

Initial conformations (a) of the Perko pair knots were defined by redrawing on
the screen the conformations found in ,,74e Knot Book” by C. C. Adams, p.32. The
conformations were tightened separately with the SONO algorithm. Fig. 2 presented
in chapter by Stasiak et al. shows consecutive stages of the knots evolution. As
checked by an additional knot comparing procedure, although differently oriented,
the final conformations of the knots were identical.

Fig. 4 presents the evolution of L/D for both knots. As seen in the plot, it is
rather the 10,4, knot which has a problem with finding the proper shape; evolution of
the 10,4, knot is rapid and leads immediately to the final conformation.

5 In search of ideal prime knots

First pictures of the ideal prime knots were presented in Ref. 2. As
mentioned above, tests we performed with the SONO algorithm revealed that some
of the configurations presented were not ideal.® Below we present a numerical
experiment which illustrates well the problems encountered during the search for the
ideal conformations.

The first, most spectacular case is the 5, knot. Its conformation presented in
Ref. 2 has a 5-fold symmetry axis and L/D=24.2. SONO algorithm managed to break
the symmetry arriving at a conformation for which L/D=23.5. Fig. 5 presents the
symmetry breaking process observed in a single run lasting on a PC 100MHz about
2 min. The run started from a symmetrical T, s conformation generated numerically
(a). Initially, (a) - (c), the evolution was very fast until the knot became tight (c).
Then, the evolution stopped (c), (d), (e) - the knot entered a local energy minimum.
The stable tight conformation preserves the 5-fold symmetry axis present in the
initial conformation. To induce the symmetry breaking, the & parameter which
determines the distance to which the overlapping nodes are shifted by the RO
procedure was temporarily increased to 0.1 (previously it was equal 0.00001). This
resulted in strong fluctuations of the knot conformation visible within the L/D plot.
Figures (f), (g), (h), (i) present evolution of the knot shape towards the asymmetrical
conformation (j).

Obviously, the knot conformation (j) to which the SONO algorithm arrived in
the single run described above is not of a good quality. First of all, the number of
nodes, N=46, of which it is built is too small to provide reliable values of its L/D,
ACN, Wr parameters. In a standard procedure we apply to clean knots, its node
number is normalised to round(10*L/D) and the overlaps are carefully removed. We
do not describe the cleaning procedure in more detail, although its application is
quite essential if reliable data are to be obtained.
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Fig. 5§ Symmetry breaking of the 5, torus knot observed during the tightening of the knot
with the SONO algorithm. See text.

The local minimum encountered during tightening of the 5, knot has been
found also in the case of larger T, knots (m; knots in the Rolfsen classification).
The Pascal code we are using allows us to study T, knots up to m=63.

The case discussed above clearly demonstrates that the knot inflation process
may encounter problems when getting into the local minima within the thickness
energy function. On the other hand, the case demonstrates also that the tools built
into the SONO algorithm may in some cases allow the operator to force the knot to
leave them. In the end, however, we cannot be sure if the conformation to which the
knot eventually arrives is the final one, ie. if the global energy minimum was
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reached. At the present state of the art of tightening knots we must admit that we
have no certainty if the conformations to which we arrived are the ideal ones. On the
other hand, due to the clear definition of the thickness energy the conformations
obtained can be compared: the lower L/D, the better.

5.1  Prime knots up to 9 crossings.

The race for the lowest thickness energy-conformations was initiated with the
Monte Carlo annealing procedure whose results were presented in Ref. 2. The best
conformations to which we arrived applying the SONO algorithm to all knots up to 8
crossings are shown in the Plates 1-3. L/D, ACN and Wr parameters of the
conformations are listed in Table I found in chapter by Stasiak et al. Here we present
two plots covering a slightly larger range of knots.

50

N
3.

6 20 40 60 80

Fig. 6 The thickness energy for consecutive knots up to 9 crossings. Thickness energy is
plotted in units of the rope diameter D .

The first one, Fig. 6, analogous to Fig. 2 found in Ref. 4, presents the L/D
values of the consecutive prime knots up to 9 crossings in the order they are listed in
the Rolfsen table. In the terminology of Ref. 3, the plot presents the closed thickness
energies in units of the rope diameter D .

Note the drop, visible in Fig. 6, in the L/D value as the nonalternating knots
are reached in classes of both 8 and 9 crossing knots.
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Fig. 7. Average crossing number ACN of prime knots up to 9 crossings vs. L/D
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Fig. 8 Writhe vs. average crossing number for all 9 crossings knots.

The second plot, Fig. 7, follows the idea presented in Ref. 2 and correlates the
L/D values with the average crossing number ACN. Note, that the L/D vs. ACN
relation, apparently linear at the beginning, is clearly nonlinear in a larger interval.
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Trying to find the quantitative description of the relation we studied larger torus
knots T, which in the Rolfsen notation are denoted as m, knots, m - odd. The
nonlinearity of the ACN vs. L/D relation is clearly visible in Fig. 5 found in chapter
by Stasiak et al., where we plotted data of all knots we studied.

Another essential parameter which characterises optimised conformations of
knots is their writhe. Fig. 8 presents the variable correlated with the average crossing
number. As clearly seen in the figure, the writhe is a variable, which within a family
of knots with the same minimal crossing number takes values localised near a few,
well defined levels. Reasons for this quasiquantization of writhe is not clear to us.
For a discussion of the writhe vs. minimal crossing number correlations see chapter
by Stasiak et. al.

Another problem, which puts in doubt the idea of using the parameters of the
ideal conformations as the knot type identifiers, is the existence of knots which being
of different type have almost identical values of their L/D, ACN and Wr parameters.
This is well seen in the class of knots with MCN=9. Table 1 below presents values of
the parameters for two pairs of knots for which the differences are smallest.

Knot type L/D ACN Wr
9% | 9% | 39.97 40.00 16.87 16.77 10.26 10.19
95 | 93 | 40.71 40.58 17.48 17.47 8.57 8.56

Table | L/D, ACN and Wr parameters of two pairs of the most similar knots.

The differences are below the estimated accuracy of 1% with which the L/D,
ACN and Wr parameters are determined. (In the table the values are given with
excessive accuracy.) We are thus forced to conclude, that in practice the set of L/D,
ACN and Wr values does not determine in an unambiguous manner the knot type.

5.2 Tightening of the torus knots Ty

To check the ACN vs. L/D dependence in a lager interval of L/D we tightened
with the SONO algorithm the sequence of T,, knots, m odd, which initiate in the
Rolfsen notation all classes of knots with m crossings.

Initial configurations of the knots were generated numerically according to
equations:

2(t)=r(t) cos(2m v, 1),
x(O=n(f) sin(2n v, 1),
Y(O)=r(f) cos(2m v, ),

where



=R R, sin(27 v, );

Ry and R, are the radii of the torus onto the surface of which the knot trajectory is
defined. Putting v;=2 and v,=m one obtains circular conformation of the (2,m) torus
knots. In what follows we shall refer to them as the T, knots.

(b) (c) (d) (e) (H)

: %\ L/D

4 ACN

0 500 1000 1500 2000 2500 3000

Fig.10 Evolution of the T 33 knot during the tightening process. See also Plate 4.

Evolution of the L/D and ACN parameters of the knot are presented in Fig. 10.
For the sake of the clarity the tube of which the knot is made is drawn has a diameter
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equal D/2. The initial conformation of the knot is not shown. (a) presents the
symmetrical conformation to which the initial conformation is rapidly tightened. As
seen in (b) the SONO algorithm breaks it easily. In 8 places the arrangement of the
tube becomes different. Fig 10. presents a fragment of the configuration in which 3
such places are well visible. The overall shape of the knot becomes almost
octagonal; note that one side of the octagon is longer. This cannot be avoided, since
the number of crossings is odd. This symmetry breaking leads to (c) - another typical
conformation of the knot. The existence of the longer side leads to a another
conformation of the knot (d), which eventually stabilises (¢) and (f). Conformation of
this type is characteristic to larger T, knots. Is it the ideal shape, or just one of the
local minima? As stated in Chapter by Dubochet et all., we have found that there
exists a better conformation. We discuss it in more detail in the next subsection.

Fig.9 A typical arrangement of the tube in the T 33 torus knot in which the symmetry was
broken.

3.3  Towards the ground state conformation of the T, knots

Tightening of large T, knots starting from their toroidal conformations
leads to their compact, globular conformations. Experiments we performed prove
that there exist better, with a lower L/D value, conformations of the knots. Fig. 11
present such a conformation of the T 3; knot.

As seen in the figure, structure of the initial conformation, from which the
tightening procedure starts, is utterly different from the typical conformation of torus
knots. In the conformation the tube is divided into two parts: the first one, bent into
the a safety pin shape, forms the core around the second part of the tube is
helicoidally wound.

The initial stage: of the evolution process, during which all loose parts of the
tube are shortened, is very rapid. In the next, much slower stage, the tightly packed
safety-pin conformation becomes twisted. The rate of the twist is approximately the
same in all torus knots and leads to a kind of a double-helix conformation. As noted
by Stasiak’, the core part of the tube is not straight: under the pressure induced by



36

the outer, helicoidal part it becomes helicoidally deformed as well. Analysis of the
phenomenon lead us to formulate the following problem:

initial
conformation

200 (@) (b) (c)

1803
1604
1404

L/D

1204

1004
8o
601

wf T ACN

Fig.11 Evolution of the T,3; knot from the safety-pin initial conformation. The initial
conformation is presented in a slightly different scale.

Which is the periodic conformation of two twisted together tubes, at which the
L/D ratio reaches a minimum?

Answering the question may shed some light on the nature of the ground state
conformation of the T, , torus knots. In a different wording it asks how much of the
tube we need to produce two crossings. The problem is being studied by Sylwester
Przybyl'’. Fig. 12 presents four different conformations he considered.
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a b

C d
Fig. 12 Four closely packed conformations of twisted tubes. L/D per one period equals,
respectively: (a) 8.886,. (b) 8.5013, (c) 7.2261, (d) 7.2013. See text.

Let us describe in a few words the differences between them. All of the
conformation can be described parametrically by two sets of equations:

x(t)= Pt x, ()= Pt
y,(6) = R, sin(2nt)  y,(¢) = —R, sin(2nr)
z,(t) = R, cos(2nt) z,(t) =—R, cos(2nt)

Fig. 13 The simplest way of twisting two tubes together. (a) Take two straight tubes and
put them in parallel so that they touch along a common line. (b) Start twisting them together
so that they remain in touch along the initial contact line. (c) Stop twisting, when the pitch
of the structure equals x - overlaps are just about to appear.

In the first conformation, Fig. 13, the tubes are wound around and touch each
other along the line lying between them: R,=R,=0.5D. The pitch of the periodic
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structure P=nD. The thickness energy per period L/D=8.8858. By L, we denoted
here the length of the tubes found within one period of the structure.

Fig. 14 The more clever way of twisting two tubes together. (a) Take two straight tubes and
put them in parallel so that they do not touch. Insert a virtual cylinder between them. (b)
Start twisting them together so that they remain in touch with the virtual cylinder. {c) Do
not stop twisting when the pitch reaches the z value. (d) Stop twisting, when the tubes come
in touch with each other. (Do not forget to remove the virtual cylinder.)

In the second conformation, Fig. 14. the radii of the spirals defining axial
curves running inside the tubes are slightly larger than the radii of the tubes:
Ri=R,=0.5229D. As a result, a small hole appears along the x axis. The pitch of the
structure is smaller than n: P=2.6967D. The tubes touch each other along two spiral
curves running between the tubes. The thickness energy per period L,/D=8.5013.

In the third conformation, Fig. 15, the radii of the spirals are different, but
their sum is equal D : R=0.97326D, R,=0.0267D. Pitch of the structure is much
smaller than previously: P=1.0136D. The thickness energy per period L,/D=7.2261.
Note, that the value of R, is limited by condition that the curvature of the inner spiral
cannot be larger than 2/D.

In the fourth and it seems best, conformation (we do not show its construction
details because visually it differs too little from the third one) R,=0.9670D,
R,=0.0377 D , thus, their sum is larger than 1. The minimal pitch P=1.0139D. The
thickness energy per period £,/D=7.2013.
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Fig. 15 Take the close packed structure obtained by procedure described in the caption of
Fig. 13 and, remaining all time at the limit above which overlaps between the tubes appear,
start increasing the radius of the spiral formed by one of the tubes decreasing at the same
time the radius of the spiral formed by the other one. Stop the process, when the first spiral

becomes close packed.

Looking at the numbers cited above, one can immediately see the reasons
for which the m-fold symmetry of the initial conformations of the T, knots must be

broken.
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Conclusions

The simplest experimental procedure one can think of when trying to find the
most tight conformations of a knot is to tie it on a rope and try to tighten it as much
as possible by pulling the ends of the rope. To stay in agreement with what in
mathematics is meant by a knot, one cannot forget at the end of the process to cut the
spare parts and join the ends of the rope together.

The technique of numerical simulations provides us with a chance to perform
such experiments in a much more clean manner:

- using the perfectly flexible and slippery, but at the same time perfectly hard in
its circular crossection rope,
- shortening the rope without the necessity of cutting it.

The SONO algorithm we described performs the simulation task in the most
simple and thus effective manner. Using it we managed to find more tight
conformations for a few from the knots considered in Ref. 2. Unfortunately, we
cannot be by no means sure if the conformations we found are the most tight ones.
What makes things even worse is that for the more complex knots results of the
simulations depend on the initial conformations. We would be in a much better
position if the ideal conformations of at least a few knots were known rigorously. (So
far we know the rigorous solution but for a single knot — the trivial one.) We hope
that mathematicians will be able to make some progress in this direction. Without a
rigorous understanding of the nature of the ideal conformations the accuracy of
results of any numerical work will remain unknown.
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CHAPTER 3

ANNEALING IDEAL KNOTS AND LINKS: METHODS AND
PITFALLS.
BEN LAURIE
A.L. Digital Ltd.
Voysey House, Barley Mow Passage,
London, W4 4GB, England
Email: ben@algroup.co.uk

Simulated annealing is a powerful method for finding global minima. The
application of annealing to the search for ideal knots and links is explored,
and some optimisations and problems discussed.

1 Simulated Annealing

The method of simulated annealing is often used to search for the global
minimum of multidimensional functions, and is particularly suitable when the
function has many local minima. The ratio of a link’s® axial diameter to its length is
clearly such a function.

I will not describe simulated annealing in depth; it is well covered elsewhere.
Numerical Recipes' is a good source for this and many other algorithms.

Simulated annealing is well suited to finding ideal knots, as the energy
function has many flat plateaux, and local minima, against which simulated
annealing has considerable resilience.

2 General Method

At each step of the annealing process, a vertex is chosen at random. This
vertex is then randomly moved using a square distribution® based on a parameter s.
The “energy” of the new configuration is calculated, and the new configuration
accepted or rejected according to the usual rules of simulated annealing:

* 1 will use the term “links” to mean both knots and links.
® As I was writing this, I was referred to an article suggesting that this is not the best distribution to use.
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P is the probability the new configuration will be accepted, AE is the change
in energy and k is a constant (I use k=1). If the new configuration is accepted, the
parameter s is increased slightly, otherwise it is reduced. This ensures that around
50% of moves are accepted, which is thought to be a good thing?. s is initialised to
.1 of the initial maximal diameter, D.

3 Measuring Distance

An ideal link is simulated as a polygon. The co-ordinates of the vertices are
all that is needed to represent the knot. In order to “idealise” the knot, it is necessary
to determine the distance between each part of the knot and every other part of the
knot. A little thought makes it clear that the minimum of these distances is the
diameter of the maximal axial tube that can be threaded along the knot without
intersecting itself. The ratio of the link’s length to this minimal distance is what we
must minimise to obtain an ideal knot.

There are three different ways to measure the distance between parts of the
link.

3.1 Vertex to Vertex distance

The simplest measure is simply to take distances between vertices.

Let a and b be the position vectors of two vertices of the link. Then the
distance d,,(a,b) is given by:

d,(a,b)=la-b| )

The disadvantage of this approach is that a link can change topology without
its energy going through infinity. In fact, it can change topology without the energy
even getting particularly high. Although we can disallow such changes (see
Avoiding Change of Type, p. 1), it is better to not have to.

3.2 Vertex to Edge distance

Next, we can take the distance from each vertex to each edge. This is a little
more complicated to calculate.



Let a be the position vector of a vertex of the link, and (byb;) be the position
vectors of the ends of an edge, then:

Leta = (b, "'a)'(boz"bl) (3)
(b, —b))
b, —aifa <0
Thend,, (a,(b,,b,)) =[b, —a|if a > 1 )

lab, + (1 - a)b, | otherwise

3.3 Edge to Edge distance

The final approach is to calculate the distance between each edge and each
other edge:
Let (ag,a;) and (by,b,) be the position vectors of the ends of two edges of the

link.
Letz=(a, —a,)e (b, -b,)’ —(a, —2,)*(by -b,)’ ®)
Leta=[(b0_b]).(ao_al)(a] —bl).gbo—bl)J/ (6)
—(a, -by)e(a, —a, )b, —b,)
Letﬂ___[(ao_al)z(al —b,)e(b, -b,) ]/t (7)
_(ao —al).(bo _bl)(al "'bl).(ao —al)

Thend,,((ay,a,),(by,b,)) =

(min(d,,(a,, (b,,b,)),d,, (b,,(a,,a,))ifa <0and S <0
min(d,, (a,,(b,,b,)),d,.(b,,(ay,a,))ifa <0and > 1
min(d,, (a,,(b,,b,)),d,.(b,,(ay,2a,))ifa>1and S <0
min(d . (a,, (by,b,)),d,,(by,(a,,a,))if a >1land > 1
id,.(a,,(by,b)))if a <0and0< § <1

d, (a,,(by,b))ifa>1land0< g <1

d, (b, (aya)if 0<a<land f<0
d,,(by,(ay,2,))if 0<a <land g >1

laa, +(1-a)a, - P, - (1- B)b,|otherwise

®
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Although this is the most complex to calculate, it is also, in some ways, the
best. A link cannot change type without passing through infinite energy, and the
method also yields a precisely correct answer for a polygonal link.

There is a mathematically more elegant way to do this calculation, using
matrices, but it turns out to be about 30% slower’.

4 What Does “Local” Mean?

Clearly we should only measure the distance between parts of the knot that
are not “next to” each other. How do we define this? One method often used is to
say that two segments of a link are “next to” each other if they on the same
component and are within some fraction of the total length of the component of
each other. This method is clearly unsatisfactory — we must pick the fraction for
each link by some ad hoc method. Consider # trefoils composed; in this case the
fraction we choose must be less than //n (substantially less, in fact), so, in the limit,
the fraction must be zero. But zero obviously doesn’t work for any non-infinite link.

A more satisfactory method is to consider the ratio of the distance along the
link between two knot segments and the direct distance between the same two
segments®. If they are close to each other, this ratio will be close to 1. The further
apart they are, the larger the ratio becomes. In practice, this turns out to be a very
sensitive test, and is independent of knot type®. In order to determine an appropriate
ratio for the cut-off between “local” and “nonlocal”, we can consider a circle. The
opposite side of the circle is clearly nonlocal. The direct distance is d (the diameter
of the circle), and the distance along the knot is /7d/2. The ratio in this case is,
therefore, /7/2. This gives us an upper bound for the appropriate ratio of ~1.55.

A lower bound can be obtained by considering the (common) case of two
parts of a link, one of which forms a spiral, and the other is the axis of that spiral.
The distance from the spiral to its axis is the one we should be measuring, rather
than from the spiral to itself. If we simplify the situation by assuming that the spiral
is locally planar (that is, a circle), then it can be seen that the ratio should be derived
from an equilateral triangle with one vertex at the centre of the circle, and the other
two on the circumference. In this case, the direct distance is d/2 and the distance
around the circle is /7d/6, giving a ratio of /7/3, or ~1.047.

¢ With the exception of the unknot. Although we can minimise an unknot correctly (in the sense that it
takes up the correct shape), it is difficult to get the correct length to diameter ratio, which should be IT.
This is because in the unknot every segment except the one precisely opposite should be considered
“local”.



If we were not using approximations, the correct value to use would clearly
be 17/2. But if we were to use this value, the unknot would not work correctly. So
we must use a somewhat lower value. In practice 1.2 or 1.3 work well.

5 Avoiding Change of Type

The simplest way to avoid a change of type is to prevent the link from
“uncrossing”. A simple test for uncrossing is to check, each time we move a vertex
v, to a new position, v,’, whether any edges pass through either of the triangles (v,.
1Va,¥a') and (Vp,Vy',Vaer), Other than the edges (Va.2,Va-1)s (Va-15Va), (Va,Vasr) and
(Vas1,Vas2)- These triangles correspond to the space swept by the edges (V,.1,Va) and
(VasVa+1) as the vertex moves smoothly from v, to v,'. The test to see whether an
edge (vy,Vi+1) has passed through a triangle (a,b,c) is as follows:

Letn=(a-b)x(a—c) ®)
Leta =£._(a_——vﬁ!l (10)
ne(a—b)
Letp=av, +(1-a)v,,, (11)
Letd = a,b, — azb, —ayc, +bic, + ayc, —byc, a12)
Letk = — P19+ Podi + PGy~ &1Cy — PG + 06y a3)
d
Letl = P19y — Dody — Piby + aby + poby —aghy 14)
d

The edge passes through the triangleif 0< k <1&0</<1&k+1<1 (15)

In practice, since we always know how close the knot is to itself, we can
avoid doing this test when the step size is sufficiently small. On the face of it, it
would seem that a step size which is less than the minimal distance would be
sufficient, but this is not so. The problem is that the knot can cross itself locally (i.e.
within the area of the knot that we don’t use to measure the minimal distance). This
would suggest that we should always perform the test, but experimentation has
shown that a cutoff at a step size 1/10 of the minimal distance works well. This is
because step size is related to simulated temperature — when it is sufficiently small,
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changes which may lead to crossing correspond to such large energy deltas that the
chance of them being accepted is vanishingly small.

Because there is a tiny chance that an uncrossing change will be accepted
when this test is not being performed, it is important to inspect the annealed knot to
ensure it has not changed type®.

6 The Distance Cache

During the annealing process, a great deal of time is spent calculating
distances. But at each step only a single vertex is moved. In order to reduce the
computational overhead, I implemented a cache of distances between pairs of line
segments (or vertices, depending on the measure used). The obvious approach to
using such a cache is to recalculate all the entries affected by each vertex move. But
this is still wasteful, as, typically, each line segment is only at or near the minimal
distance to a single other line segment. The other distances are usually much larger
than this minimal distance. So, I augment the cache to include an “error” term, as
well as a distance. Each time a vertex v, is moved by a distance &, each cache entry
with v, as one of the pair has k added to the error term. Then, as we look for the
minimal distance (i.e. the smallest entry in the cache), we take the cached distance ¢
and subtract the error term k. Only if c-k is less than the smallest distance found so
far do we recalculate the actual distance. Of course, when recalculated, the new
distance is cached, and the error term set to 0.

7 Results

7.1 Writhe and Average Crossing Number

One of the interesting aspects of ideal knots is that the writhe and average
crossing number are related to L/d. In the case of links, the writhe is not a well-
defined quantity, as it has multiple values depending on which direction you go
around the link components when calculating it. The average crossing number
(ACN), however, does not suffer from this problem. The writhe and ACN can be
calculated as follows:

4 If the link is one we have worked on before, the L/d is a useful assurance that the type hasn’t changed
(we expect it to be close to previously obtained values).



For each pair of points p; ; and p, ; , wherei,, j, are component numbers,

andi,, j, are the indices of points on those components, calculate:
I = Piia—Pi

T,=p, ;n~P,.,,

d; =(T;xE;)eT;

_Itlzjd,
W; = '7:2'i
o, - FIEl4

Elj

The writhe is the sum of the w; and the ACN is the sum of the a;.

Table I presents the results of annealing various 2 component links (and the trefoil).
In this chart, N is the number of nodes in the polygonal approximation, and R is the
ratio of the component lengths. These links are shown in plates 1 and 2.

(16)
amn
(18)

(19

(20)

@1

Link N L/d ACN R

3, 144 | 16.3989 4.28005 -

2!, 160 | 12.6633 2.50905 1.01379
4', 160 | 20.0542 6.02241 1.32176
5, 160 | 24.9804 8.49914 1.87351
6'; 160 | 27.3297 9.53802 1.00719
6% 160 | 28.4778 10.1166 1.0104
6% 160 | 29.8303 10.7249 1.96305
7, 160 | 32.2939 12.335 1.32443
74 160 | 32.8594 12.7081 1.72998
8, 160 | 34.5898 13.4111 1.07362
9!, 160 | 39.6763 16.56 1.02934
10', 160 | 41.7828 17.9126 1.01076
11, 160 | 46.9882 21.0256 1.1147
12, 160 | 49.3442 22.6926 1.13258
14, 160 | 57.1055 26.3581 1.84719

Table I



L/d

Figure |

The ACN was originally thought to have a linear relationship to L/d, both in
knots® and in links®’. However, recent mathematical analysis®® suggests that this
may be an artefact of the types of knots and links analysed, in that they happen to
adopt roughly planar conformations when tightened. It is also possible that we were
seduced by the good fit a linear relationship gives. As can be seen in figure 1, a
distinctly non-linear curve is nearly as good a fit as the linear one, though the
exponent (1.5456) is rather higher than the expected maximum of 4/3. Also, a
preliminary study of Hopf tori (Hopf tori are a bundle of » tori simply linked with
another bundle of n tori) exhibits a power law with exponent ~1.44 (R?=.999).

7.2 Smoothness

Although the resulting links look smooth, detailed examination shows that
they are not. Using visualisation tools to show the curvature, we can see that it
varies unsmoothly. More interestingly, if we study the relationship between the
individual segments, we can see that the points of closest approach between the
segments behave in a very complex way. They do not progress in a simple way
from one segment to the next. Instead, each segment is influenced by its immediate
neighbours, and their relationship to other segments. Some segments do not even
achieve the minimal distance, and it seems they cannot. There is an extraordinarily
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complex mesh of interrelationships that define the final shape of the ideal link. An
interesting question is whether this is purely a result of approximating the link with
a polygon, or whether these complex relationships persist even for completely
smooth curves.

8 Limitations of the Method

Experimentation with this method has revealed several limitations.

8.1 Performance

Even with the caching scheme described above, a 160 vertex link takes
around 14 hours to anneal on an SGI O2 workstation. For good results, I'd like to
be using at least 10 times as many vertices, but since the time taken seems to be
O(n®) this is clearly out of the question without some radical improvement.

8.2 Migration of Components

Of course, the whole point of using simulated annealing is to find global
minima. A good test of whether this is, in fact, happening, is to see whether the
loops on a trefoil with two loops linked to it can move from one “lobe” of the trefoil
to another. Using simulated annealing, they have never been observed to do so. This
can be understood easily: when the temperature is sufficiently high to permit such a
movement, the link is so tangled it is virtually impossible for the loops to squeeze
through the gaps in the trefoil, and at lower temperatures moving a loop through the
centre of a lobe is more or less prohibited, since the energy is guaranteed to at least
double as a consequence.

9 Future Directions

Szu and Hartley'® claim that the speed of annealing can be hugely improved
by choosing the distribution of the perturbations carefully. Investigation of this
procedure is planned.

Pieranski'' uses a method which simulates the physical tightening of string.
The steps used deterministically in Pieranski’s method could be applied as
perturbations for annealing.
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10 Availability of Code

C++ source code implementing the method described here is available on
application to me by email. The source includes a general purpose class for
representing links, software to visualise links on SGI platforms (or others that
support OpenInventor'z) and software to produce raytraced images using
POVRay". It also introduces a file format for the platform-independent interchange
of knot and link coordinates, and associated information, known as the Portable
Knot Format (PKF). The only conditions imposed on use of the code are:

e  The authors should be acknowledged in any derived works, or descriptions of
results obtained using the code.

e Improvements should be sent to the authors for possible inclusion in future
versions.
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ABSTRACT

Energy functions on knots are continuous and scale-invariant functions defined
from knot conformations into non-negative real numbers. The infimum of an en-
ergy function is a knot invariant which defines (not necessarily unique) “canonical
conformations” of knots in three space. In this paper we examine strategies of
how to find these canonical conformations and compute or measure their min-
imal energy. Furthermore, we discuss properties that energy functions should
have if one wants to compute canonical conformations of knots with minimal
energy. Two types of energies are discussed in more detail, the first type consists
of energies of C' 2 or C? knots defined using the concept of thickness of a knot;
the second type is a polygonal energy which should be well suited to numerical
computation since it has all the properties discussed earlier.

Keywords: Knots, Polygonal Knots, Energy of Knots, Properties of Energy Func-
tions, Thickness of Knots

1. INTRODUCTION

The energies of knots were introduced by O’Hara [1] in an attempt to
study both the complexity and canonical forms of knots. Energy functions are
scale invariant functions defined from knot- conformations into non-negative
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real numbers. The energy of a given knot type K is the infimum of the knot
energies taken over the set of all conformations of knot type K. Ideally, the
energy infimum is attained at a tame conformation which provides us with a
canonical form of the knot type. However, different energy functions can yield
different canonical forms of the same knot type. Intuitively, the connection
between the complexity of a knot conformation and its energy is simple - the
more complicated the conformation the higher the energy.

A large number of energy functions are known and discussed in the lit-
erature [2,3,4,5]. At a first glance it seems that one can define new energy
functions at will, and therefore obtain many “ideal shapes” of the same knot.
In reality, we have found that it is surprisingly difficult to define “good” knot
energies, i.e. knot energies for which one can establish properties designed
to ensure that the canonical conformations with minimal energies reflect the
complexity of the knot in an intuitive manner. An example of such a property
in the case of polygonal knots is the following: If one increases the number
of edges of a polygonal knot, then the angles between consecutive edges must
become “uniformly small” in a polygonal configuration with minimal energy.
Clearly such a property is necessary if one hopes that the polygon should ap-
proximate the canonical form of a smooth knot as the number of edges in
increases. Many knot energies in the literature do not have these properties
and therefore are not good at revealing a nice canonical conformation of a knot
[7,10].

Other properties that should help finding canonical forms of a knot are
the following: The energy function should have a global infimum on the unit
circle (in the case of polygonal knots, on the regular polygon). In addition, the
knot energy should diverge when it is computed from any sequence of knots
which approach a singular conformation. This will avoid the event that a
minimal energy conformation is singular, and it will present an energy barrier
between knots of different types. The last property is standard in the numerical
approximation of minimal energy conformations. Many well-known energy
functions fail the above tests, see again [7, 10]. In the next section, we will
give precise definitions of these properties with the concept of ideal and semi-
tdeal knot energies.

In this paper we examine strategies of how to find canonical conformations
of knots and links and how to compute or measure their minimal energy. Many
of the results quoted in this paper have appeared elswhere, and the proofs have
been omitted.
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2. DEFINITIONS AND PROPERTIES OF ENERGY FUNCTIONS

One can imagine an energy function on knots to be a scale-invariant func-
tion from the space of knot conformations into non-negative real numbers. It
seems desirable that energy functions are continuous, but we will see that some
functions derived from the thickness of a knot are in fact not continuous. To
probe the continuity of knot energies, we define a metric on the space of all
knot conformations of unit length (since energy functions are scale invariant,
we need to only consider these).

Definition 2.1. Let a(s) and 3(s) be two simple closed curves of the same
length parametrized by arc length. If the curves are k-times differentiable, then
the k-distance between them is defined as

d*(a(s), B(s)) = min{ ZlAa“)S+t) CRIOTINENGY

A€O 0<s<L 0<t<L

where L is the length of a(s) and B(s), A4 is a rigid motion (the composition
of a translation and a rotation), O is the group of all rigid motions in R?® and
ali(s), B (s) are the i-th derivatives of a(s) and B(s).

Using the above metric, we can define continuous functions on the space
of all knot conformations of unit length:

Definition 2.2. Let C*(T) be the set of all simple closed curves of unit
length that are k times differentiable. Then f: C*(T) — R.is said to be
k-continuous on C*(T') if Ve > 0, 36 > 0, such that |f(a) — f(B)| < € whenever
the k-th distance between a and § is less than 4.

Remark: If f: C*¥(T) — R is k-continuous, then f is invariant under rigid
motion, i.e., f(Aa) = f(a) for any o € C*¥(T) and A € O. Also, f will be
m-continuous on C™(T) if m > k since C™(T') C C*(T). On the other hand,
one can find examples in which f is k-continuous but not m-continuous for
some m < k.

We express scale invariance in definition 2.3:

Definition 2.3. Let C*(T") be the set of all simple closed curves (of any
length) that are k times differentiable. Let f : C*¥(T') — R. Then f is said
to be scale invariant if we have f(Aa(s)) = f(a(s)) for any real number A and
a(s) € Ck(T).

Definition 2.4. Let f : C*¥(T') — R*. Then f is called an energy
function on C*(T") if it is scale invariant and f is continuous when restricted
to C¥(T).
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Some desirable properties of an energy function are given in the following
definition. Let f be an energy function on C*(T"). Then for a given knot type
K, the energy of K denoted f(K) is defined to be the infimum of f over all
knots K of knot type K in C*¥(T").

Definition 2.5. Let f : C*(T') — R*, where k > 0, be an energy
function. Then
(a) f is called a basic energy function if f(a) is an absolute minimum if and
only if a is a circle;
(b) f is called a strong energy function if for any given positive number a, there
are only finitely many knot types K such that f(K) < a;
(c) f is called a charge energy if f goes to infinity when o approaches a closed
curve with self-intersections;
(d) f is called a tight energy if f(o;) goes to infinity for any sequence of
embeddings a; of equal length and of the same knot type K, where «; contains
a knotted arc of knot type K in a ball B; and the diameter of the ball B;
converges to zero.

We will then call f a semi-ideal energy function if it satisfies conditions
(a) to (c) above and an ideal energy function if it satisfies conditions (a) to (d)
above.

Condition (b) is desirable since it ensures that only a finite number of
knot types have energies below any given threshold, thus a strong energy can
serve as a measure of the complexity of a knot. Conditions (c) and (d) are
designed to ensure nice canonical conformations. Note that there are knot
energies which are infinite at singular knot embeddings, but not tight (see [7]
for examples). If one has a knot energy function which is not tight and one
wants to find a canonical form of a knot by minimizing the knot energy using
numerical simulations with a large number of edges, then it may happen that
the knot energy is minimized at a tiny knotted ball pair on an almost regular
polygon. In such a case all knotted curves (any knot type !) might approach
nearly identical conformations (namely the unit circle).

A family of (almost) ideal energy functions can be defined as the reciprocal
of the thickness of a knotted curve. In the following two sections we will discuss
a variety of different approaches and definitions of thickness of a space curve.

3. ENERGIES DEFINED BY KNOT THICKNESSES

The disk thickness. Let K be a C? knot of length L. A number r > 0
is said to be “nice” if for any z, y on K, we have D(z,7) N D(y,r) = 0,
where D(z,r) and D(y,r) are the discs of radius r centered at z and y which
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are normal to K. The disk thickness of K is defined to be the supremum
over all the nice 7’s and will be denoted by ¢p(K). It follows that for any
0 < r < tp(K), K(r) has a natural circle bundle structure D? x S!. Since
each D(z,r) is disjoint from D(y,r) (for any 2 # y), K(r) can be retracted
onto K by retracting each D(z,r) to z. Let D(K) be the smallest distance
between points z and y on K, where the tangents at  and y are perpendicular
to the line segment connecting z with y. D(K) is called the double critical self
distance of K. The disk thickness has been well characterized in reference [6]
where the following theorem is shown:

Theorem 3.1. tp(K) = min{3D(K), 1} where « is the maximum cur-
vature of K.

The advantage of tp(K) over other thicknesses is that it is 2-continuous
(see [8]) hence L/tp(K) would define an ideal energy function (see theorem
3.2). But since tp(K) depends on the curvature of K, it becomes undefined if
K is only differentiable or is piecewise linear. Further, since it is restricted by
the reciprocal of the maximum curvature of K, it has a tendency to lose the big
picture of the knot if the knot contains a very short arc with large curvature.
The two definitions after theorem 3.2 are attempts to define a thickness of a -
curve which does not depend on curvature and can be used for C! curves.

Theorem 3.2. Let K be a C? knot of length L, then IE(LTS is an ideal

energy function. O
A proof for theorem 3.2 can be found in reference {7).

The maximal thickness. The c-neighborhood of a simple closed C*-
curve K is the set of all points with distances less than or equal to ¢ from
K. We denote the c-neighborhood of K by K.. Also, for any x € K, let &,
denote the plane that intersects K perpendicularly at z. If ¢ is small enough,
then for any z € K, the component of K. N ¥, containing z is a meridian
disk of K, which only intersects K. at z. For small ¢ one can show that
K is homotopic to K via strong deformation retract, see [8] for a detailed
proof. A number ¢ with this property, that K, is homotopic to K via strong
deformation retract, is called a nice number and the thickness of K is defined
by t(K) = sup{c| t is nice V¢t € (0,c¢)}. The advantage of this definition
is that it captures the intuitive meaning of thickness; the neighbourhood of
the curve can be made thicker until it becomes constricted by itself. It is the
maximal possible thickness since any larger neighborhood of K would contain a
neighborhood of K that has a different homotopy type from K. Unfortunately
the maximal thickness is not continuous in a C! metric and thus L/t(K) is
not an ideal energy. An additional disadvantage of ¢(K) is that it is difficult



57

to calculate or simulate on a computer since it is not analytically defined and
no formulas such as in theorem 3.1 are known. The following third thickness
is an attempt to define a C? thickness analytically, so that is can be calculated
easier.

The e-thickness. Let K be a closed curve, and let z and y be two points
on K, separated by an arc-length distance s(z,y) along the curve. Let the
Euclidean distance between z and y be d(z,y). Define T, to be the tangent
vector to K at z, and let §(z,y) be the smaller angle between T, and the
line-segment from z to y. Let K be a C! curve and 27/3 > € > 0, then the
e-thickness of K is defined as

- d(z,y)  2sinf(z,y) - s(z,y)
te(K) = z,lgflefK{2sin 0(z,y) d(z,y) 2 ek @

If K is a C? curve and z and y are points on K with small arc-length
distance s(z,y), then we can approximate O, the center of curvature at z, by
O', where O' is the point on the intersection line of the plane that bisects the
line segment from z to y and X, that is closest to the middle point between z
and y. If R is the distance between z and O and R’ is the distance between
z and O', then 1/R' is an approximation to 1/R, the curvature of K at z.
For C? curves one can show that if y — = then 1/R’ — 1/R. Solving for R’

we get R/ = 5 sffn";’&‘y), [8]. Thus the quotient in (2) has a geometric meaning
similar to the radius of curvature. The inequality in (2) guarantees that t.(K)
is not affected by short arcs contained in K (of course the length of such arcs
are related to the value of €). Thus one hopes that the e-thickness is better at
capturing the big picture of the knot than the disk thickness. Since tangents
and normal planes are defined for a C* curve as well, this approximation of the
center of curvature can be computed for every z and y on K. One can verify
that t.(K) is a non-decreasing function of ¢ for each fixed K. Furthermore, it
can be shown ([8]) that t.(K) < ¢t(K) and therefore it is indeed a thickness of
K, ie. K. is homotopic to K via strong deformation retract for all ¢ < t.(K).
Also to(K) = tp(K) if K is a C? curve and thus the e-thickness generalizes the
disk thickness. Unfortunately, t.(K) fails to be a 1-continuous function. See
[8] for details. Thus, the function defined by L/t.(K) is not quite an energy
function.

We define the thickness of a knot type K to be the infimum

t(K) = jinf ¢(K), 3)
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and similarly for ¢p(K) and t.(K). An open question is: For a given knot type
K, what is the relation between t(K), tp(K) and t.(X)? We conjecture the
following:

Conjecture. Let K be any knot type, then there exists a knot K € K
such that ¢{(K) = t(K) = tp(K) = t(K).

Currently this is only a conjecture. However the conjecture is consistent
with numerical simulations. We approximated the thickness of the trefoil knot
by a computer simulation using a Metropolis Monte Carlo simulation with
simulated annealing (see references [8, 10, 14] for details). The definition of
t(K) was adapted to equilateral polygonal knots (this introduces some error
in the approximation, but this error is not significant if the polygonal knot
has a large number of edges). In figure 1 we illustrate the thickest trefoil
knot with 128 edges and € = 0.5. We found that ¢, = 0.0305 in this case.
Simulations with other values of € (we took € to be 1.0, 1.5, 2.0 and 2.09) all
gave a thickness of 0.0302. Simulations with trefoils with 64 edges and 32 edges
were also performed, in both cases we found that the maximum thickness is
insensitive to the value of € (in the case of 32 edges we obtained t. ~ 0.0316 and
for 64 edges we obtained ¢, ~ 0.0305). The consistency of our results indicates
that t.(3;) =~ 0.03, where 3; is the trefoil knot supporting our conjecture.

Figure 1: A polygonal trefoil with 128 edges and t.- thickness 0.0305, with
€ = 0.5. We produced this polygonal knot by simulated annealing.

4. OPEN THICKNESS ENERGY

It is extremely difficult to compute the thicknesses of the last section for
different knot types. The approach of this section is to design a thickness that
can be measured by a physical experiment using ropes. This thickness will be
defined for knotted or linked arcs instead of closed curves and can be called
the open thickness of a knot (or link). First we will define this thickness for a
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knotted arc and then we will give a definition of thickness of two knotted or
linked arcs, which will form a link when properly closed up. It will be shown
that the energy function derived from these definitions has all the properties
of an ideal energy function. Most of the results involving knotted arcs in this
section can be found in [9]. All the work is done in Euclidean 3-space where
each point has Cartesian coordinates (z,y, z).

Open Thickness of Knots. Let K be a knot type and Ax be a C? curve
with arc length parametrization Ag(t), ¢t € [0, L], and L is the (finite) length
of Ax. Moreover, assume Ak to have the following properties:

(1) The endpoints of Ax are Ax(0) = (0,0,0) and Ax(L) = (0,0, Lx).

(2) Ac \ {Ax(0), Ax(L)} is strictly bounded by the planes 2 =0 and z = Lg.
(3) The tangents %Ax(t) is parallel to the z-axisfor t =0 and t = L.

(4) (Ax, B) is a knotted arc-ball-pair of knot type X, where B is the solid
cylinder with height Lk, radius L and axis defined by the endpoints Ax(0) and
Ax(L). Note that, except for its endpoints, Ax is disjoint with the boundary
of B.

As in the case of the disk thickness of & closed curve, a number r > 0 is
said to be “nice” if for any z, y on Ax, we have D(z,r) N D(y,r) = 0, where
D(z,r) and D(y,r) are the discs of radius r centered at z and y which are
normal to Ax. The open thickness of Ax is defined to be the supremum over
all the nice r’s and will be denoted by ¢,(Ax).

Definition 4.1. The open thickness energy of the curve Ax is given by
E°(Ax) = (L — Lx)/t°(Ax). The open thickness energy of the knot type K is
defined by E°(K) = inf{E°(Ak)}.

Theorem 4.2.. E°(Ax) is an ideal energy function of knots.

The proof that E°(Ax) is ideal will be omitted, because the proof that
E°(Ak) has all the properties of an ideal energy function (except continuity)
can be found in [9]. In addition the arguments are similar to the ones used in
the proof of Theorem 4.4 in this section. That E°(Ax) is continuous follows
from theorem 3.2.

Open Thickness of Links. We can define the open thickness of a 2-
component, link in a similar manner and prove that an energy derived from
this thickness is also ideal.

Let £ be an unsplittable link type and A, and B, be C? curves with arc
length parametrization Az (t) and B(t). L4 is the (finite) length of Az, Lp is
the (finite) length of B, and the total length L = L4 + Lp. Moreover, assume
Ag and Bg(t) to have the following properties:
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(1) The endpoints of Az are Az(0) = (0,0,0) and Az(La) = (,0,0) for
some real number e. The endpoints of By are B.(0) = (zo,¥0,—Lc) and
Br(L) = (z1,%,—Lc), where z; and y; are real numbers and L is a positive
parameter that is less or equal to L/2.

(2) AcUBe\{AL£(0), Az(L), B£(0), B (L)} are strictly bounded by the planes
z=0and z= L.

(3) The tangents 4 A, (t) and £ B.(t) are parallel to the z-axis for ¢ = 0 and
t = L or t = Lp respectively.

(4) Let C be a solid cylinder with height L, radius L and axis with endpoints
(0,0,0) and (0,0, L.). Note that, except for their endpoints, Az and B are
disjoint with the boundary of C. So (C,{La, Lg}) is a two string tangle. We
require that the numerator of this tangle results in the link L.

As in the case of the disk thickness of a closed curve, a number r > 0 is
said to be “nice” if for any z, y on Az U B, we have D(z,r) N D(y,r) = 0,
where D(z,r) and D(y,r) are the discs of radius r centered at z and y which
are normal to Az U B.. The open thickness of Az U B is defined to be the
supremum over all the nice r’s and will be denoted by t°(Az U Bg).

Definition 4.3. The open thickness energy of the arcs A and B¢ is given by
E°(AUBg) = (L/2— Lg)/t°(Az U B). The open thickness energy of the
link type £ is defined by E°(L) = inf{E°(A, U B¢)}.

We will show that the open thickness link energy is charge, tight and strong
in the same sense that the open thickness energy of knots are.

Theorem 4.4. E°(L) is a charge, tight and strong energy function of links.

Proof. E°(L) depends on the difference L/2— L. and on L itself. Append-
ing line segments parallel to the z-axis at endpoints of Az and B outwards
normal to the B does not change E°(£). Uniform dilations of R® do not change
E°(L), since this amounts to scale changes in both L/2— L and t°(A¢ U B¢),
so the ratio is invariant. Hence E°(L) is scale invariant. It is also easy to see
that E°(L) is a charge and tight energy function. Continuity of E°(L) follows
from the continuity of the disk thickness, see [8]. So we will need to show that
it is strong.

Assume that for Az U Bz, we have E°(A U Bg) = (L/2 - Lg)/t°(Ag U
Br) < a for some a > 0. Project Az U B onto the z-axis by the map
p: (z,9,2) = (2). p maps Az U B, onto the interval [0, L;]. Let

P, = {(z,y,2) € Ac UB|p™ (z) N (A U B;) are 2 single points}
and let
Psy = {(z,y,2) € AUB|p~!(2)N(A-UB.) are more than 2 single points}.
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Notice that P, is an open subset of Az UB,. A component of P53 consists
of all points of P, whose image under the projection map p is a connected
subset of the z-axis. P, may contain more than one component. We prove
that if the projection of such a component has length less than 6t°(A; U
Bc), then that component is unknotted and unlinked in the following sense.
Intersecting (A U Bg,C) with two planes parallel to the zy-plane slightly
below and above the said component creates a 2-string tangle. Saying that a
component of P, is unknotted or unlinked means that the tangle is equivalent
to the O-tangle or co- tangle.

Let T be a component of P.2 and assume that T forms a nontrivial tangle
with the bounding planes. A projection of T into the zy-plane has at least one
point of self intersection resulting in a non trivial crossing of 7. The two open
balls of radius t°(A, U B) centered on different points on the curves Az U B
which projects to a such a self intersection cannot intersect since Az U B, has
thickness t°(Az U Br). So we see that the projected length of T on the z-axis
greater or equal to 2¢t°(A, U B;) and it follows that the length of the arcs in
T is greater or equal to 6t°(Az U Br).

In particular if the component T is not trivial, then (L/2—Lz) > t°(Az U
Bg), for any Az U By, and E°(L) > 1. Since E°(A: U B¢) < a, we note there
are at most a nontrivial components in Ps5. Let these nontrivial components
be C;, ¢ = 1,2,...,m, where m < a. Let L(i) be the total length of C; and
let the separation between the maximum and minimum z-component of C; be
L,(%). Then

L(i)/2 = Le(i) _

t°(AcUBg) —

But we see that L(i) > 3L.(i) since C; is a nontrivial component of Ps3, so
L(i) < 2(Lg(3) + at°(Ac U Bg)) < 2(L(3)/3 + at®(Az U Bz)). Thus L(i) <
6at’(Ar U Bz). If we now show that only finitely many tangle types can

a, Vi.

be represented by C; for each i, then we are done, since then Ay U B, can
be knotted in only a finite number of link types if its open thickness energy
is bounded by a. Let n = [L(i)/t°(A U B)| +1 < 6a + 1 and divide
C; into n pieces of equal arc-length. Connect the vertices in this division
by line segments, to obtain a piecewise linear approximation to C; which is
isotopic in the t°(L)-neighborhood of C; to the ball-pair defined by C; and its
bounding planes. The n line-segments can only have at most n? crossings in
any projection, and so C; can have only a finite number of knot types. O

The advantage of an open thickness of a knot (over its thickness) is that
the open thickness can be measured in a physical experiment. We first describe
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Figure 2: The open thickness energies of knots to eight crossings. In this bar
graph the length of each bar indicates the length of rope used when a given knot
is tied, in units of the radius of the rope. We indicate a statistical error bar of
one standard deviation in brackets: for example, 20.7(3) is to be interpreted as
20.740.3.

the experiment in detail for the knotted arcs and then outline the experiment
of the linked arcs.

Measuring the Open Thickness of Knots and Links. Take a rope of
a known thickness and length and tie a knot of a given type in it. The presence
of the knot lessens the end-to-end length of the rope, and by measuring this
reduction in length, we can measure an upper bound on the open thickness
energy of the knot. If the knot is tied in an optimal way (to minimize the
amount of rope used), and if it is pulled tight enough, then it seems not
unreasonable to assume that the measurement will approximate the actual
open thickness energy of the knot.
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We obtained four different mountaineering ropes in two different locations
(two per location). The ropes were labeled by the manufacturer as having
diameters 3 mm, 5.5 mm, 7 mm and 9.0 mm, but we measured the diameters
with a caliper to be 2.46 mm, 4.9 mm, 7.02 mm and 8.0 mm respectively when
the ropes were stretched during the experiment by a fixed force to pull the
knot tight. One end of the rope was tied to a fixed object with the other
hanging freely. The free end of the rope was then connected to a heavy weight
(a bucket of sand proved sufficient in one location, while a couple of heavy
metallic weights were used at the other). We lubricated the rope with Vaseline
and tied each knot five times in each rope to generate statistical data on the
open thickness.

There were small systematic differences between the results from different
ropes, and we attribute these to the different qualities of the ropes: Knots
were more difficult to pull tight in the thicker ropes, while thinner ropes may
stretch more under the applied weights. We pooled all the data and computed
the average open thicknesses of each knots type. We measured all knots up to
7-crossings by four ropes, while the 8-crossings knots were measured on 2 of
the 4 ropes (the 2.46 mm and 7.02 mm ropes), with exception of 8;, 8¢ and
890, which were measured also by 4.9 mm rope. The data was converted to
the open thickness energy.

The converted energies are listed in figure 2. Note that the units of this
energy is rope radius, for example, the energy of the trefoil knot is 20.7 + 0.3,
which means that the length of rope needed to capture a trefoil is about 20.7
times its radius. The number in brackets following each energy is a statistical
error bar composed of one standard deviation (computed from the pooled
data). The knots 8;5 to 815 tend to be hard to measure, and 8,9 was remarkably
hard to untie once it was pulled tight.

The general trend in figure 2 is that energies increase with crossing number.
In addition, with the exception of the non-alternating knots 819, 829 and 891,
all the other energies are remarkably well separated by their crossing numbers.
Note that this bar graph can be used to identify knots from a complicated
diagram: Tie the knot in a rope, and pull it tight. Then measure the amount
of rope used in tying the knot; dividing this by the rope radius should give a
good where to start searching for the knot in the standard tables.

In a numerical study, Katritch et al [11] estimated the thickness of closed
knotted curves. At a qualitative level, their results are in good agreement
with ours; they found a general decrease in the thickness of knotted conforma-
tions with increasing crossing number, while the non-alternating knots have
anomolously high thickness. It is not clear how to make a quantitative com-



Figure 3: The open thickness energies of links to eight crossings. In this bar
graph the length of each bar indicates the length of rope used when a given link
is tied, in units of the radius of the rope. The Hopf link has thickness energy
of at most 2w — 2.

parison to their results. Their data also shows a linear relationship between
inverse thickness and average crossing number for many small knots (see also
[12]).

The data in figure 2 also compares well with the M&bius energies of knots
obtained numerically [13). With the exception of the non-alternating knots,
the energies in Table 2 are within narrow bands determined by the crossing
numbers of the knot types. The M&bius energy appears to follows that pattern
as well, but the bands are now much wider: the standard deviation of 8-crossing
knots in Table 2 from the mean energy (63.7) is 1.9; most of the energies lies
in a narrow band of half-width 3% the value of the mean energy. In the case
of the Mobius energy we obtain roughly 7% (using data from reference [13]).
The non-alternating knots also have lower Mobius energies, compared to other
8-crossing knots, but that is not as dramatic as in figure 2. We note that the
knot 819 has open thickness energy lower than that of knots with 6 crossings,
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but Mdbius energy higher than that of any 6- crossing knot.

The open thickness of tangles were measured similarly to the case for knots.
Two ropes were used. For the first rope both ends were tied to a fixed object.
The second rope was entangled with the first to form a link and then both its
end were attached to a weight. The ropes were lubricated and the link was
tied several times and the results averaged. The open thickness energy of the
unlink can not be measured experimentally, since the second rope with the
attached weight would simply fall to the floor. To obtain a reference marker
to which all measurements can be compared, all measurements were measured
relative to configuration of the two ropes forming the Hopf Link. We illustrate
our results in figure 3. We conjecture that the open thickness of the Hopf Link
is 2 — 2, and this value was added to all measurements in figure 3. As in
the knot case one can see that the non-alternating energies have exceptional
low energies, while in general for alternating links the energy goes up with the
crossing number. Finally we note that the data in figure 3 is less acurate than
data in figure 2 because the open link measurments result form measurments
using only one type of rope.

5. ENERGIES OF POLYGONAL KNOTS

Several polygonal knot energies have been studied numerically in the lit-
erature, notably the cases in references [13,14,5,3]. Some of these energies are
assumed to be discrete counterparts of energies defined on smooth knots and
of these some are semi-ideal. For a knot energy that has a counterpart defined
on smooth knots it seems natural to expect that the polygonal energy will have
a well-behaved limit. That is, if the number of edges in the polygonal knot
is increased to infinity so that the corresponding sequence of polygonal knots
converge pointwise to a smooth knot (while the length of the polygons are kept
fixed), the polygonal knot energy will converge to the energy defined on the
smooth knot. This requirement is difficult to check in general, and we pose a
weaker condition: if a sequence of polygons converges to a smooth knot, then
the sequence of the corresponding energies of the polygons should converge as
well, and as the number of edges approaches infinity, the limit of the minimal
polygonal conformation of a knot should be smooth and non-singular (if it
exists). Neither of these conditions is satisfied by many polygonal knot energy
functions. Consequently, minimizing these energies would not yield desirable
knot conformations.

In this section we like to pose two conditions that are necessary for a
polygonal energy function to yield nice knot conformations reflecting the com-
plexity of a knot type. We then define an energy function for polygonal knots
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satisfying these conditions. Finally a computer simulation will then produce
canonical forms for knotted polygons. For a more detailed treatment see [10].

We restrict our attention to equilateral polygons, an we will refer to equi-
lateral polygons as polygons. We denote a polygon with n edges by P, and the
set of all polygons of n edges will be denoted by P,. If X is a knot type, then
P,(K) is a polygon of n edges which is also a knot of type K. Similarly, the
set of all such polygons is denoted by P,(K). Note that P,(K) contains only
non-singular polygons while P,, includes the singular polygons as well. We will
also use P for the set of all polygons and P(K) for the set of all nonsingular
polygons of knot type K. To ensure that the minimal polygon appears like a
smooth knot as n — oo, we would like the excluded angles between adjacent
edges to get smaller uniformaly as n increases. We call such an energy function
asymptotically smooth. (Thus, if a sequence of polygons converges uniformly
to a knot which is not differentiable at a given point, then the corresponding
sequence of energies diverges.) In order to carry out computations when a
large number of edges is used, the energy of P,(K) should not go to infinity
as n increases. We call the energy function with this property asymptotically
finite. The precise definitions are given below.

Figure 4: The Angles Defining the Curvature of a Polygon.

Definition 5.1. Let f be an energy function of equilateral polygons and
let fn,(K) = min{f(P,(K))}. f is called an asymptotically finite energy func-
tion if sup,, f,(K) is finite for any knot type K.

Definition 5.2. Let f be an energy function of equilateral polygons. Let
6; be the excluded angle between e; and e;y1 of P, (as shown in figure 4)
and let # = max; ;. f is called an asymptotically smooth energy function if
g < —”—Iﬂn&l for some positive constant M which is independent of n.

Similar to the definitions in section 2 one defines the concept of an ideal
polygonal energy. In the definition of basic the role of the circle will be played
by a regular polygon. For details see [10]. An energy function of polygonal
knots is called asymptotically ideal if it is semi-ideal, asymptotically smooth
and asymptotically finite. We have to point out that the term “ideal energy”
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Knot | 8 16 32 64 128
3 688.0 3329 {2822 |[2674 | 266.6
4 4163.2 | 843.2 | 475.7 | 461.5 | 444.6
91 33212.1 | 1015.1 | 727.7 | 655.4 | -

52 62604.6 | 2217.2 | 782.3 | 710.6 | -

- 2031.1 | 1030.8 | 8829 | -

62 11820.4 | 4288.6 | 1012.3 | 901.3 | -
63 - 3548.9 | 1274.8 | 1058.3 | -

Table 1: Polygonal Knot Energies

is somewhat misleading since minimizing an asymptotically ideal energy may
still not produce an ideal smooth conformation representing the given knot
type. But on the other hand, it does give us a better chance. In fact, many
known polygonal knot energies are not asymptotically ideal (see [10] for ex-
amples), thus we can eliminate these energy functions when trying to find an
ideal smooth conformation to represent a knot type. The following definition
provides us an asymptotically ideal energy function.

Definition 5.3. Let P, be an equilateral polygon of 2n edges e, €3, e3,
... ez, with total length L and define d; to be the shortest (Euclidean)
distance between e; and ejii (with €415 = eiyk—2n if i + £ > 2n). The
arclength between e; and e;; is defined as the shortest arclength between any
point on e; and any point on e;y and is denoted by s; ;. Define

11
2

——— ], 4
1<i<InB<k<n (d?k Sf,k) @

E(Py,) =

Theorem 5.4. The energy function E(P,,) defined above (over the set
of all equilateral polygons of even number of edges) is an asymptotically ideal
energy function.

The proof of Theorem 6.4 is long and technical and is presented in [10].
Computer simulations to estimate the minimal energies of given polygonal
knots were performed and reported also in reference [10]. The minimal energies
are tabled in table 1 for 2n = 8, 16, 32, 64 and 128. In figure 5 we display
stereographic images of equilateral polygonal knots (all are trefoils). Cross
your eyes to superimpose the side-by-side images for depth-perception.
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Figure 5: Stereographic projections of the equilateral polygonal trefoil knots.

6. CONCLUSION

In this paper we have outlined strategies of finding canonical conforma-
tions of knots and their associated minimal energies using energy functions
which have nice theoretical properties. The success of our approaches how-
ever remains quite limited. To compute energy functions analytically seems
virtually impossible. Numerical simulations are very involved, convergence of
these computations is slow and the theory that these conformations of poly-
gons reflect conformations of smooth knots is incomplete. The experiments
using ropes yield surprisingly consistent data, however it seems to be impossi-
ble to increase the precision of these measurements significantly or to use these
methods to measure knot energies of knots with higher crossing number.

Acknowledgments: The authors want to thank Douglas Humphrey in the
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dergraduate at Western Kentucky University and the Physics Department at
York University, for providing space and help for the rope experiments.
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Abstract

We discuss the writhe of linked and knotted simple closed curves
embedded in the simple cubic lattice, Z3. We show that the writhe
of a simple closed curve in Z® can be computed as the average of its
linking numbers with certain pushoffs, and use this result to establish
a lower bound on the rate of increase of the mean absolute writhe. We
present Monte Carlo results on the distribution of writhe for particular
knot types, and compare the mean values with values for ideal knots.
Similar results are presented for links and we show that the mean writhe
of (2, 2k) torus links increases linearly with crossing number.

1 Introduction

A time-honoured model of the configurational properties of long linear polymer
molecules in dilute solution in a good solvent is the self-avoiding walk. This is a
walk (a sequence of edges and vertices) on a regular lattice, such as the simple
cubic lattice, Z3. No two vertices of the walk can occupy the same lattice
point, and all self-avoiding walks with the same number (n) of edges have the
same probability of occurence. The self-avoiding condition is designed to mimic
the excluded volume effect in polymers, which says that no two monomers can
occupy the same region of space. These lattice models have the advantage that
they can be treated by combinatorial methods and, by using a computer, one
can make use of efficient data structures because of the discrete nature of the
space Z3.

In the same way, ring polymers can be modelled by (self-avoiding) poly-
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gons. A polygon is an embedding of a simple closed curve in Z3 and two
polygons are considered distinct if they can not be superimposed by transla-
tion. If we write p,, for the number of polygons with n edges then p,, = 0 if n is
odd, ps = 3, ps = 22, ps = 207, etc. In this paper we shall be concerned with
the geometric properties of polygons and especially with their writhe, which
is a measure of the geometrical entanglement complexity of space curves, and
which we define in Section 2. Natural questions which one can ask are: “What
is the distribution of the values of the writhe?”, “How does the mean writhe,
or mean square writhe, depend on n?”, etc.

Calculating the writhe of a simple closed curve in R? is usually done by a
stochastic numerical approximation, but we shall see in Section 2 that there is
a considerable simplification when the curve is embedded in a lattice. Indeed,
for polygons on the simple cubic lattice, four times the writhe is always an
integer, and an exact calculation for the writhe can easily be performed. The
approach described in Section 2 is an important ingredient in a proof, outlined
in Section 3, that the expectation (over all polygons with n edges) of the
absolute value of the writhe increases at least as fast as \/n.

In Section 4 we describe a Monte Carlo method for estimating the dis-
tribution of the writhe when the polygons are conditioned to have a specified
knot type, and in Section 5 we describe some results obtained in this way. It
seems that the distribution of the writhe increases in width as n increases, but
that the mean writhe is more or less independent of n. We shall see that these
mean values are very close to the values estimated by Katritch et al! for the
writhe of “ideal” knots. In addition we note that the mean writhe is a linear
function of crossing number for knots in certain families (such as torus knots,
twist knots with odd crossing number, twist knots with even crossing number,
etc.), and seems to be additive under the process of connect sum when com-
posite knots are formed from their prime components. This additivity under
connect sum was also observed by Katritch et al 2. In addition, our results
suggest that linearity of writhe for certain homologous families of knots and
links, and additivity of writhe, are not dependent on particular features of
ideal representations of knot and link types.

Similar questions can be asked about the writhe of links, and we address
these questions in Section 6. Perhaps the most striking result is the linear
dependence of average writhe on crossing number in the sequence of (2,2k)
torus links. This has been observed experimentally in circular DNA, and nu-
merically in a particular model of DNA links 3. Our results suggest that the
feature is a more general one, and is not dependent on the particular features
of DNA molecules.
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2 Computing the writhe of lattice polygons

The writhe of a simple curve in 3-space is a geometric quantity intended to
measure the signed non-planarity of a curve. The writhe of a space curve w
{(Wr(w)) is defined in terms of orthogonal projections of w onto 2-dimensional
hyperplanes. We will restrict attention to simple closed curves w. A projection
direction is an oriented line in R®; think of the projection plane as being below
the curve w. Given a knot diagram & determined by a regular orthogonal
projection of the simple closed curve w, orient the planar curve @, and assign
either +1 or -1 to each self-crossing of & , according to the usual crossing sign
convention for any diagram of a pair of oriented skew lines in 3-space (see
figure 1). The sum of the signed crossings is the signed crossing number of
that knot diagram; it is an integer-valued function of the space curve and the
projection direction. For a fixed space curve, one averages this function over
all projection directions (points on a reference 2-sphere) obtaining the writhe
of the curve.

Figure 1: The sign-convention for projected arcs crossing each other in the plane.

In order to compute the writhe, this average value can be approximated
in a stochastic fashion by randomly and uniformly choosing projection direc-
tions in which to sample the signed crossing number function. It is possible,
however, to obtain exact calculations for curves constrained to live on spatially
periodic lattices in R3. In order to do this, one converts the signed crossing
number of a planar diagram to a linking number; the topological invariance
of linking number supplies the needed flexibility to achieve an exact calcula-
tion. The signed crossing number of a knot diagram can be viewed as a linking
number of a pair of oriented space curves determined by the knot diagram as
follows: travel along the projected curve & and push off by a small amount
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along a vector orthogonal to & in the direction of the unbounded region of
the plane of the diagram. One obtains the planar pushoff Wp , & companion
planar curve which is parallel to & . Orient wp parallel to & . Near each self-
crossing of @ (or @,) the overcrossing segment of the curve can be vertically
pushed a small distance above the diagram plane, generating a pair of space
curves (w*,wj) corresponding to the pair of planar curves (Wywp). Thought
of as 3-dimensional objects in this way, the linking number Lk(w*,wy) is the
signed crossing number of the knot diagram &. The pair (w*,w,) cobound a
small annulus in 3-space. Think of the small annulus as a curtain, and rotate
the curtain downward until it hangs vertically downward from w* toward the
diagram plane. The planar pushoff has now moved to the position of a spatial
pushoff &7 of w* in the projection direction, and Lk(w*,wy) = Lk(w*,&}).
The pair (w*,&y) is ambient isotopic by pushing vertically to the pair (w,wp),
where w,, is a pushoff of w vertically downward in the projection direction.
Hence, the Wr(w) is converted to the average value of linking numbers of w

with pushoffs in all projection directions.

If a simple closed space curve is constrained to lie on a regular space-filling
lattice, the number of pushoffs needed for an exact computation of the writhe
is finite. As will be argued below, this is because the “coordinate” planes of
the lattice subtend finitely many compartments on a small 2-sphere about the
origin, and the linking number of the curve and all pushoffs along directions
in the interior of the same compartment have the same linking number. For
simplicity, we argue the case for the simple cubic lattice Z3. Suppose that
we wish to compute the writhe of the polygon w in Z3. Let S? be the 2-
sphere in R3 of radius %; S? is the space of directions for push-offs. The three
coordinate planes in Rg separate S? into eight connected regions (“octants”),
characterized by constancy of sign in each coordinate. If x € S?, then w, =
w + u is the push-off of w in the direction u.

Claim 1 : If u lies in the interior of any octant on S?, then w and w, are
disjoint space curves and Lk(w,w,) is defined.

Proof: Suppose that g = (p1, to, u3) lies in the interior of the first octant,
where all three coordinates are positive; since u lies on a 2-sphere of radius
3, then 0 < p; < 1 for ¢ = 1,2,3. Now suppose that (z,y,2z) € w and (z +
1,y + p2,2 + p3) € wNw,. Points in w have the property that at least two
of the coordinates are integers. By the pigeonhole principle, at least one of
the following is true: both z and z + y; are integers; both y and y + ug are
integers, or both z and z + u3 are integers. This means that at least one of
{u1, p2,p3} is an integer, which is impossible. A similar argument holds for
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the other seven octants.0

Claim 2 : If u and v lie in the interior of the same octant, then Lk(w,w,) =
Lk(w,w,).

Proof: Consider the shorter of the two great circle arcs connecting y and v on
S2; this arc lies in the interior of the same octant as do u and v. The points
along this arc define a 1-parameter family of pushoff directions, starting with
p and ending with v. Thus the pushoff w, can be ambient isotoped to the
pushoff w, in the complement of w, and the linking numbers are equal. Since
all of the eight octants in S? have equal area, at this point we have shown that
Wr(w) is the average of eight linking numbers, one for each octant. We now

use the symmetry of the simple cubic lattice to reduce the number of pushoffs
needed to four.O

Claim 3 : If u is not on a coordinate plane, then Lk(w,w,) = Lk(w,w-,).

Proof: Let t be a parameter such that —1 < ¢ < 0. Asin Claim 1, for each value
of ¢, w, and wy, are disjoint. To see this, suppose that (z+pu1,y+uz, 2+u3) =
(z* + tpr, y* + tug, 2™ + tus) for some (z,y, 2), (z*,y*,2*) € w. Suppose also
that both z and z* are integers. It follows that (z — z*) = (1 — t)u;. But
(1 — t)uy cannot be an integer, because 1 < (1-1¢) < 2, and 0 < || < }.
This means that we can ambient isotope w to w_, in the complement of wy, so
Lk(wy,w) = Lk(wy,w-,). Similarly, one can ambient isotope w, to w in the
complement of w_,, hence Lk(w_,,w,) = Lk(w-4,w). The claim now follows
by symmetry of linking numbers in R3.0

From the above three claims it is clear that Wr(w) is the average of linking
numbers of w with pushoffs into four mutually non-antipodal octants. In par-
ticular, it follows that four times Wr(w) is an integer for any polygon w € Z3.
As we shall see, the fact that the writhe of a lattice polygon is the average of
four linking numbers is useful in both calculational and theoretical (theorem
proving) contexts.

3 Width of the writhe distribution

In this section we discuss how the width of the distribution of writhe of poly-
gons in Z® depends on the number of edges in the polygon®. In particular,
can we use the result in the previous section to examine the behaviour of the
mean absolute writhe as a function of n? We expect the mean absolute writhe
to increase with n, and we shall prove that this increase is at least as fast as
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N

We define two polygons in Z3 to be identical if they can be superimposed
by a translation. Let P, be the set of polygons of length n in Z3, and let the
number of polygons in P, be p,. If w is a polygon in P,, then let Wr(w) be
the writhe of w. The expected value of the writhe for a polygon with n edges
in Z3, (Wr),, is defined by

(Wrlp=— ) Wr(w). (1)

By symmetry, (Wr), = 0. It will be more rewarding to study the expected
absolute writhe, (|Wr|),, or the expected square writhe, (Wr?2),, instead. We
saw in the previous section that writhe of a given polygon can be computed
by taking the average of linking numbers of the polygon with four pushoffs of
itself into non-antipodal octants in Z3. We use this result now to study the
expectation of the absolute writhe. We shall divide the proof into two parts.
In the first part, we show that small curly-cues can be truncated from a given
polygon, and that the writhe is additive with respect to the truncation. In the
second part we adapt a coin-tossing argument to study the expected absolute
writhe.

Define a curly-cue to be the self-avoiding walk defined by the sequence of
canonical unit vectors {%,7, —k, —j, —i, 7,4, k, —1}® The first and last vertices
in a curly-cue can be joined by adding an extra edge in the j-direction giving
a polygon P (see figure 2).

In order to compute the writhe of P, we construct its pushoffs and compute
its linking numbers with its pushoffs. Let P; be the pushoff of P obtained by
adding (i + j + k)/2 to each point of P. Direct computation show that the
linking number is Lk(P,P;) = 1. Push-offs by (i —j+k)/2 and (—i—j +k)/2
also give linking numbers equal to 1, but the push-off by (—¢ + j + k)/2 gives
a linking number of —1. Hence, Wr(P) = }. Similarly, if P* is the mirror

image of P, reflected through the zy-plane, then Wr(P*) = —%.

Let C be the cube formed by the union of the 3-cells dual to any trans-
lation in Z3 of the set of vertices with coordinates in the set {0,1,2} x
{0,1,2} x {0,1,2}. Let A be a polygon which intersects C in the curly-cue
{i,%,—k, —j, —1, 4,4, k, —i} with first and last vertices P and Q. We can trun-
cate this subwalk from A by removing it from A, and by joining P and Q with
an edge in the j-direction in A. The subwalk can be turned into P by joining

% Any rotation of this sequence in 23 is also a curly-cue.
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Figure 2: A curly-cue can be truncated from a polygon as shown here. The writhe of the
polygon is additive with respect to this truncation.

its ends with an edge in the j-direction. Suppose we obtain a polygon A’ if we
truncate the curly-cue from A. Then

Wr(4) = Wr(4') + Wr(P). )

To see this, consider push-offs 4; of A and A of A’ in the (i+j+k)/2 direction,
as illustrated in figure 3. Define Lk(4, A1) to be linking number of A and 4;.

Ay

>~

ﬂ

I o
Figure 3: The projection in the xy-plane of a section of a polygon (and one of its push-offs)
which contains a curly-cue. The curly-cue can be truncated at the dashed lines.

p
[

In figure 3 a projection of A and its push-off in the (i+j +k)/2 direction in
the vicinity of the cube C is shown. If the crossing which is circled is reversed,
then A and A; can be deformed by an isotopy in the cube C (for example,
by performing Reidemeister moves on figure 3 after reversal of the crossing)
to the pair A’ and A} (that is, with the curly-cue truncated at the dashed
lines in figure 3). Thus, truncating the curly-cue is equivalent (in a topological
sense) to reversing the single crossing encircled in figure 3. Let P and Py be
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the polygons obtained by closing the curly-cues on truncation. Then
Lk(A, A1) = Lk(A', A]) + 1 = Lk(A', A}) + Lk(P, P,). 3)

The remaining three push-offs can be similarly analized, and the result is equa-
tion (2). This is an important result for us, since we know exactly the change
in the writhe of a polygon if we truncate a curly-cue. We can now show that
the expected value of the absolute writhe increases at least as fast as O(/n).

Let ([Wr|), be the mean of the absolute value of the writhe of polygons
of length n.

Theorem 1 The probability Prob({|Wr|), < f(n)) approaches zero asn — oo
for any function f(n) = o(y/n).

Proof: Let P = (C, B) be a ball-pair consisting of any translate of the cube C
and the curly-cue B = {4,i, -k, —j, —1,j,j,k, —i}. We call P a pattern, and
we define P* = (C, B*) to be the mirror image of P (reflected through the zy-
plane). Let € > 0 be given and let an(€) be the number of polygons of length n
which have at least |en| occurances of the patterns P or P*. (In other words,
these polygons intersect at least |en| translated copies of the cube C in either
B or B*). A pattern theorem by Kesten ® states than for sufficiently small e
and sufficiently large n, there exists a v > 0 such that (1 — e™"")p, > an(e),
where p,, is the number of polygons of length n. Let a polygon counted by
an(€) contain P or P* exactly D > |en| times. Then P occurs exactly k times

with probability
D\ (1\*/1\P*
k 2 2 '

This is a maximum when & = | D/2], and we obtain the upper bound 1/,/[en]
on this probability. The writhe of a polygon w counted by a,(€) has contribu-
tions from the D > |en] copies of P or P*, as shown by the truncation in figure
3 and by equation (2). Let w’ be the polygon obtained by truncating all the
curly-cues from w. Then by equation (2), Wr(w) = Wr(w') + Wr(curly-cues).
If [Wr(w)| < f(n), then this implies than Wr(curly-cues) can assume at
most [2f(n) + 1] different values. Thence, the probability that the absolute
writhe of w is less than f(n) is bounded from above by the probability that
Wr(curly-cues) assume one of at most [2f(n) + 1] values. But

Prob(Wr(w)| < f(n)) < XM+ ()

V len]
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Thus
Prob((Wrl)a < f(n)) < (1 - e PLOEL | oomp (5

Vlen

where R is the contribution from polygons not counted by a.(e). This ap-
proaches zero as n — oo provided that f(n) = o(y/n), as claimed above. O

In theorem 1 we have focussed entirely on the contribution of small curly-
cues to the writhe of a polygon. In particular, this restriction enables us to
prove that the expected absolute writhe of a random polygon grows at least
as fast as the square root of its length. A model of self-avoiding walks with
a fugacity coupled to writhe has recently been studied by an identification to
the N = 0 limit (N is the number of scalar components) of a complex scalar
Chern-Simon theory” In particular, they found that the conformation of the
self-avoiding walk is decoupled from its writhe in the scaling limit. This can
be interpreted as indicating that the total writhe (and therefore the total ab-
solute writhe) of a self-avoiding walk is a consequence of contributions from
local conformations in the walk, which are invisible from the long wavelength
field theory (presumably, the local conformations are plectonemic wound con-
formations of size no larger than that of the persistence length of the walk).
In our context, this suggests that the total writhe of a polygon is primarily
determined by curly-cues. We therefore consider now the contribution to the
absolute writhe of the polygon w by the curly-cue pattern P and its mirror
image P*. Thus, if P occurs exactly k times, and there are a total of D oc-
curances of P or P*, the the contribution to the absolute writhe is |2k — D|.
The expected value of this contribution for w is given by

zk:|2k—D|(lZ>2“D
2-b+ip ¥ (IIZ) -2 Db+ B k(f), (6)

Ew(|2k - DI)

k<D/2 k<D/2
after some algebra. This may be simplified to give
E,(12k - D)) = 2‘D‘“D( b-1 ) if D is odd, )
(D-1)/2
and
E.(|2k-D|) =2"PD (D?Z) if D is even. (8)
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But for any polygon counted by a,(€), [en] < D < n, and by noting that
( D%) ~ 2P D=1/2 we obtain the result that

E,(12k - D)) ~ n*/2. (9)

In other words, the contribution to the absolute writhe of the curly-cues grows
as the square root of n. An important open question is to derive an upper
bound on the n-dependence of the absolute writhe of the polygon, rather than
focussing on the curly-cues. Numerical evidence ® suggests that the mean
absolute writhe might grow like y/n. Using techniques similar to the above,
we can compute the expectation values E, (|2k — D|M).

4 Numerical methods

In this section we discuss a Monte Carlo algorithm for the sampling of knotted
polygons in Z3. In particular, we are interested in sampling polygons of a fixed
(given) knot type. We shall show that the BFACF algorithm ® is suitable for
our purposes.

The BFACF algorithm has two elementary moves, illustrated in figure 4.
The first of these moves changes the length of the polygon, while the second
is a length preserving move. By applying these moves, the algorithm samples
along a realisation of a Markov chain defined on the state space of polygons.
It has one free parameter 3, which can be set to control the expected length
of polygons in the sample.

— —
1I “
s ___._.Jb .——JI

Figure 4: The elementary moves of the BFACF algorithm. Moves of type I can increase or
decrease the length of the polygon by two edges. Moves of type II are length preserving.



The implementation of the algorithm is as follows: Let w be the current
state in the Markov chain. Select an edge uniformly in w, and move the
edge perpendicular to itself one lattice spacing in one of four possible lattice
directions, while two new edges are inserted to keep the polygon connected. If
this operation produces double edges then they are deleted. An enumeration
of the possible outcomes shows that all possible results are one of the cases in
figure 4. Let the new state be v. If v is not a polygon (i.e. if the vertices are
not all of degree 2) then v is rejected and w is the next state of the Markov
chain. If v is a polygon then it is accepted or rejected as the next state by
applying a Metropolis rule; if it is rejected, then w will be taken as the next
state in the chain. Let the number of edges in w be |w| and in v be |v|. If
|w| > |v|, then we accept v as the next state in the chain; if |w| = |v] - 2,
then we accept v with probability 42 as the next state. Since the edge is
selected with probability 1/|w|, and moved perpendicular to itself in one of
four directions with probability 1/4, the probability that v is the next state in
the Markov chains is given by

Pw = v) = (Z(lw| 2 |v]) + BL(lw| < [v]) /4lwl, (1)

where T is an indicator function. On the other hand, by interchanging w and.
v in (1), we obtain the probability that w is the next state in the Markov
chain if v is the current state. A comparison of these probabilities gives us the
equation of detailed balance for this algorithm:

w8 P(w = v) = v|BY P(v - w). (2)

Notice that the algorithm is aperiodic (since there is a non-zero probability
that a move will be rejected). The elementary moves in figure 4 are homeo-
morphisms on the polygon, and the knot type of the polygon along the Markov
chain is therefore invariant. Therefore, the algorithm is reducible on the state
space of all polygons, and we must find its ergodicity classed if we are to un-
derstand its behaviour in any detail. The knot type of the polygon is set by
the first polygon sampled by the chain. Let P(K') be the set of all polygons of
knot type K. Then any ergodicity class, defined by an initial polygon of knot
type K, is a subset of P(K). Remarkably, the ergodicity classes of the polygon
are exactly the sets P(K), since it is known ® that any two polygons of the
same knot types can be connected by a finite sequence of the moves in figure 4.
By summing the above over all possible states v in a given ergodicity class, we
see from the fundamental theorem of Markov chains that the invariant limiting

bThese are the subsets of the state space on which the algorithm is irreducible.
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distribution of the algorithm is given by

1
Zk(P)

I, (K) = Ww|B“Z(w € P(K)), where Zk(8)= Y |w|B“l. (3)

w€EP(K)

We conclude that this algorithm is suitable for sampling polygons with a given
knot type. The invariant limit distribtion is given by (3), where polygons of the
same length have the same weight. The expected length of polygons sampled
by the algorithm is given by

(lWhs = Y W (K). (4)

weP(K)

This expected length is known to be infinite if 8 is larger than a critical value
Be. If B < B, then the expected length of polygons stays finite, and the
algorithm can be used to sample finite polygons of a fixed knot type K from
the distribution II, (K) to compute their properties.

5 Writhe as a function of knot type

In 1980 Le Bret ! computed the writhe of closed Gaussian piece-wise linear
curves in R® as a model of closed circular DNA. If the knot type of the curve
is fixed, he noticed that the mean writhe is zero for the unknot and for the
achiral knot 4,, but not for the chiral knots which he studied. These issues were
revisited by Katritch et al! who published a similar study of “ideal knots” in
R3 and of a simple model of circular DNA. These questions were also studied
in the cubic lattice *!, and in this section we recount this study, and compare
our findings with those of Le Bret and Katritch et al.

Any achiral knot K has a mirror image K™* of the same knot type. Since
the writhe of K changes sign under reflection, but retains its magnitude, this
observation proves that the mean writhe of any achiral knot is zero. Thus, if the
mean writhe of a knot is not zero, then it is chiral® If writhe can be computed
by a Monte Carlo algorithm, then we have a good method for determining,
up to numerical error, whether a given knot is chiral. It is fortunate that the
writhe of a lattice knot can be computed exactly by taking the average of the
linking number of the knot with its pushoffs into four non-mutually antipodal
octants. This is a tremendous improvement, since the writhe is defined as the
mean of the sum of the signed crossings over all regular projections of the knot.

cAlas, the converse of this statement is not known to be true.



We sampled along a Markov chain in the state space of lattice knots of
a fixed knot type K by using the BFACF algorithm described in section 4.
The writhe of the lattice knots along this chain was obtained by computing
the linking numbers of the lattice knots with push-offs into four non-antipodal
octants. The linking numbers were computed by performing heap sorting al-
gorithms on the coordinates of the polygons. This allowed the calculation of
a linking number in O(nlogn) CPU-time (as opposed to the O(n?) CPU-time
which would be required for a naive search for intersections in projections of
the knot and its push-offs.) Several runs were performed for each knot type,
with several different values of the parameter 3 selected each time in an at-
tempt to sample adequately polygons with length up to 250 edges. For each

fixed value of n we tabulated the distribution of writhe, and computed a mean
writhe over the distribution. The distribution is plotted in figure 5 for the knot
5;. Notice that there are no data for n < 34; the best upper bound '2 on the
number of edges necessary to tie the knot 5, is 34. The distribution widens as
n increases, as we expect following the arguments in section 3, although this
has not been made rigorous for the situation here. This increase in the width
of the distribution was also observed by Le Bret !°. The mean writhe of the
knot seems to be independent of n, even though n increases from 34 up to 250.
This observation seems to be true for every knot that we have examined. We
can therefore estimate the mean writhe of the lattice knot by pooling all the
data in figure 5 to arrive at a single estimate of the writhe?

Our best estimate for the writhe of the trefoil is 3.441 £ 0.025, and esti-
mating the writhe of 5, from the data in figure 5 gives 6.254 £ 0.011. The
mean writhe for other knots are tabulated in the second column of table 1.
All the knots in this table are chiral, since we know that achiral knots have
mean writhe zero. We also compare our results with estimates obtained by Le
Bret 1 and Katritch et al® (the estimates for the trefoil by Le Bret vary be-
tween 3.5 for the smallest polygons, and 3.15 for the largest polygons; we give
the value obtained at the largest polygons in table 1). The data from the work
of Katritch et al! are for an “ideal knot”, and a model of circular DNA with
5400 base pairs and with 1800 base pairs respectively. The agreement in the
data is remarkable. An interesting observation from table 1 is the appearance
of linear relationships between the crossing number and the mean writhe in
some knot families. (Katritch et al! also observed this in their model.) One
such family is the family of (2,2k + 1)-torus knots with first members 3,, 51,
71, 91, and so on. A linear fit to our data gives (Wr) = 1.409C — 0.789 where

4We achieved this by plotting the mean writhe as a function of », and carrying out a linear
least squares analysis. The y-intercept was taken as the mean writhe, and we observed that
the slope of the fitted line was very close to zero in every case.
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Figure 5: The distribution of writhe for a lattice knot of type s,. The distribution for each
value of n has been normalised to 1. Notice that the minimal number of edges to tie the
knot in 23 is 34, so that there are no data for polygons shorter than 34 edges.

C is the crossing number, and the accuracy of this fit is very good (the residual
deviance is approximately 2 x 10~3). Similar relationships can be obtained for
other families of knots, such as the even crossing number twist knots (41, 64,
81, ...) and odd crossing number twist knots (3, 53, 72, ...). Linear fits to
our data show that the rate of increase in mean writhe w1th crossing number
is approximately 0.59 in both these families. These observations remain true
even in the case of more “complicated” knot families. We have considered
the families of knots with Conway symbols (2k + 1, 1,2k), (2k — 1,1, 2k) and
(1,2k—1,1,2k — 1,2), and we observe similar linear behaviour.

We can concatenate prime knots in the lattice to form composite knots by
the following construction: The top edge of a polygon is the edge with lexi-
cographically largest midpoint, and the bottom edge is that edge with lexico-
graphically least midpoint. Two polygons are concatenated by translating one
polygon (and rotating it if necessary) such that the midpoint of its bottom edge
has first coordinate which is one more than the first coordinate of the midpoint
of the top edge of the second polygon. We concatenate the two polygons by
first deleting the bottom edge of the first and the top edge of the second poly-
gon, before we add two edges incident with the endpoints of the deleted top and
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bottom edges to connect the two polygons into a single, larger polygon. If the
first polygon had knot type K; and the second K3, then the new polygon has
knot type K;#K>. The writhe of polygons is additive under concatenation?!
This result suggests a much more general case: the possibility that writhe is ad-
ditive under the connect sum of lattice knots: In other words, the mean writhe
of a lattice knot of type K;#K is the sum of the mean writhe of lattice knots
of types K and K. Numerical work supports this notion strongly; for exam-
ple, we measured (Wr(37)) = —3.441 £ 0.025, (Wr(5;)) = —6.254 £ 0.011,
while (Wr(57 #37)) = —9.657 £ 0.58 and (Wr(57 #37)) = —2.790 + 0.048.
Aciditivity under the connect sum operation was also observed by Katritch et
al:

6 Writhe as a function of link type

One can ask similar questions about the dependence of mean writhe on link
type, though less work has been carried out in this area. Gee and Whitting-
ton 13 have recently used Monte Carlo methods to estimate the writhe of a
polygon in a two component link of fixed type, as a function of the numbers
of edges in the two polygons. We shall discuss these results and compare with
work by Vologodskii and Cozzarelli® on torus links in a model of circular DNA.

Two component links can be symmetric or asymmetric. Colour the two
circles red and blue. An unoriented link is symmetric if there is a ambient iso-
topy which interchanges the colours. That is, if there is a smooth deformation
whereby the two circles in the link can be interchanged in space. (2, 2k)-torus
links are symmetric. A link with one component knotted and the other un-
knotted (e.g. 72) is asymmetric. If the link is symmetric and the two polygons
composing the link in Z* have the same number of edges, then each component
of the link must have the same mean writhe, and this is the simplest case to
consider. Suppose we consider (2,2k)-torus links, where each polygon has n
edges. Gee and Whittington 13 estimated the mean writhe for k£ = 2,3,4,5
for n < 140. For each value of k the mean writhe seems to be more or less
independent of n (except at very small values of n) and one can estimate the
mean writhe on the assumption that it is really n-independent, and that the
apparent small dependence is a mixture of statistical fluctuations and a slow
convergence to a limiting value. It then seems that the mean writhe increases
roughly linearly with increasing k. Vologodskii and Cozzarelli® observed simi-
lar behaviour in their model of circular DNA. Although the mean writhe values
for the two models are different (for the same torus link), the mean writhe in-
creases linearly with & in both cases, and the slope of the line is very similar.
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knot type | Janse van Rensburg et al | Le Bret Katritch et al
average minimal ideal | 5400bp | 1800bp

31 3.44 3.44 3.5 3.41 3.43 3.41
51 6.25 6.25 6.3 6.26 6.30 6.21
59 4.55 4.49 4.7 4.54 4.56 4.59
61 1.16 0.93 1.23 1.20 1.18
62 2.83 2.69 2.70 2.83 2.76
71 9.07 9.28 9.15 9.10 8.95
72 5.74 ’ 5.82 5.79 5.77
81 2.35 2.33 2.47 2.43
819 8.73 8.64
9, 11.89 12.07 12.0
9, 6.95 6.84 6.94
10, 3.55 3.47 3.60

10161 9.30 9.45

31#3 6.91 6.81

Table 1: Estimates of mean writhe for various chiral knots.

This establishes that linking induces writhe and that the mean writhe
increases (roughly linearly with k) within the family of (2, 2k)-torus links,
when the two circles are the same length. If the circles have different lengths
then the writhe can depend on the length of a circle and on the length (or
relative length) of its partner. For instance, if a 20-gon and a 40-gon are
linked to form a (2, 4)-torus link, the mean writhe of the 20-gon is 0.53 + 0.03
while the mean writhe of the 40-gon is 3.35 £ 0.13 (so that the longer polygon
has higher writhe, as found by Vologodskii and Cozzarelli3). More generally,
consider a polygon with n edges linked to a polygon with m edges. Gee and
Whittington !3 found that, for a fixed torus link type, the mean writhe of an
n-gon decreases with increasing m at fixed n and increases with increasing n at
fixed m. At fixed n the writhe of an n-gon seems to be approaching a limiting
non-zero value as m increases, and this limiting value depends both on n and
on the type of torus link, increasing both with n and with k.

7 Discussion

Lattice models have played an important role in the development of our un-
derstanding of the conformational properties of polymers and, since the recent
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interest in topological and geometrical entanglement in polymers, lattice mod-
els have proved important in these areas. The first proofs of the inevitability
of knotting in sufficiently long ring polymers were constructed for lattice mod-
els'415 and we still know much more about the lattice version of this problem!é

than about its continuum analogues!?:18:19

The results which we described in Section 2 show that the computation of
the writhe of a simple closed curve in Z? is much simpler than the correspond-
ing calculation for curves in R®. With some modifications this argument can
be applied to other lattices such as the body-centred and face-centred cubic
lattices. The result described in that section plays a key role in the proof of
the theorem which we described in Section 3 which gives a lower bound on the

rate of increase of (|[Wr|),.

The remainder of the paper is concerned with the mean writhe of circles of
a fixed knot type or which are members of a link of two circles with specified
link type. The mean writhe isn’t strongly dependent on n and our estimates of
the mean writhe as a function of knot type are very similar to the values found
by Katritch et al! for ideal knots in R3. In addition we observed that mean
writhe is approximately additive under the connect sum operation (see also
the results in Katritch et al 2), and this might be an exact relation. We also
observed that mean writhe increases linearly with crossing number in certain
knot families, and that there is a similar behaviour in (2, 2k)-torus links.

For the moment the results described in Sections 5 and 6 are observations
based on numerical data, and it would be interesting to establish these results
rigorously.
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CHAPTER 6
MINIMAL LATTICE KNOTS

E.J. JANSE VAN RENSBURG
Department of Mathematics and Statistics, York University
4700 Keele street, North York, Ontario, M3J 1P3, Canada.

Abstract

How many unit edges and right angles are needed to construct a knot of a given type in
the cubic lattice. The unknot can be made using 4 edges and 4 right angles, since the girth
of the cubic lattice is 4, and the curvature of a lattice polygon must be at least 27 (define
curvature of a piecewise linear curve as the sum over the excluded angles between successive
line segments). It is also known that the trefoil can be constructed in the cubic lattice
using 24 edges (and not with any fewer), and that it will have at least 12 right angles. In
this chapter I review the properties of minimal lattice knots, concentrating of the minimum

length and minimum curvature for given knot types.

1. Introduction

How many edges are necessary and sufficient to tie a knot of a given type in
the cubic lattice Z37 A trefoil will need 24 edges [1], and it is conjectured that
a figure eight knot needs 30 edges [2]. In this chapter I will consider aspects
of this question; in particular, I consider the behaviour of the minimal edge
number and the minimal lattice curvature, and estimate these numerically.
Related questions were considered in references [1,2,3,4,5,8]. Similar questions
can be asked about knotted polygons in other lattices. It is thought that 16
edges are necessary and sufficient to tie the knot! 3; in the face-centered cubic
lattice [7].

! Knots will be indicated by Alexander-Briggs notation [6]; for example, 3; is the trefoil
and 4; is the figure eight knot.
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A polygon in Z3 is an unlabeled vertex-avoiding closed path of edges. I
define two polygons to be equivalent if they can be superimposed by a transla-
tion and/or a rotation in Z®. The resulting equivalence classes are also called
polygons.. One may consider a polygon to be a tame embedding of the circle
in R3, and therefore its knot type is defined, and may be determined by com-
puting knot invariants. There is a natural one-to-one correspondence between
the knot classes of polygons and tame embeddings of the circle in R?; by sub-
division, any tame knot can be arbitrarily closely approximated by a polygon
with the same knot type [9].

Figure 1: Concatenation of two polygons.

Concatenation is an operation which constructs a new polygon from two
smaller polygons. A lexicographic ordering of the edges of a polygon P by
the coordinates of their midpoints defines a bottom edge, as the lexicographic
least edge, and a top edge, as the lexicographic most edge. It is simple to
check that the bottom and the top edges of P are always perpendicular to
the first direction.? A polygon P; can be concatenated with a polygon P» by
translating P, and rotating it about the i-axis, if necessary, until the midpoint

2 1 define i, ] and k to be the canonical unit vectors. The vector 1 is the first direction, and
the lexicographic ordering is done first in the i direction, then the j direction, and then the

k direction. The bottom and top edges are always in either the j or k directions.
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of the bottom edge of P, has first coordinate exactly one more than the first
coordinate of the midpoint of the top edge of P, (the other two coordinates
are the same). By inserting two new edges between the end-vertices of the
top edge of P, and the bottom edge of P;, and by deleting the top edge of
P, and the bottom edge of P;, a new polygon P; is constructed. The list of
coordinates of the vertices of P; is the union of the lists for P; and P,, and all
the edges in P; and P, are in P;; with the exception of the deleted top edge
of P; and the deleted bottom edge of P,. The two new edges connect P, and
P, into Ps, concatenating the knots?; I illustrate this in figure 1.

In this chapter I will consider the minimal edge number of lattice knots, and
the minimal curvature of a lattice knot. I will first consider some theoretical
results before I resort to computer simulations to estimate the minimal edge
number and the minimal curvature of lattice knots. In section 2 I explore the
basic theoretical ideas before I consider numerical results in section 3. The
paper is concluded in section 4.

2. Knot Complexity and the Minimal Number.

Let M(K) be the minimal edge number of the knot K, and let C(K) be the
minimal lattice curvature of K. Note that contributions to C(K) is in units of
7 /2 (for each right angle in K). I first show that M(K) is subadditive with
respect to concatenation (and therefore with respect to the connected sum of
knots), and I explore the extent to which M(K) and C(K) are measures of
knot complexity (see reference [9] for a comparison). Presumably, the more
complicated a knot, the larger its minimal edge number.

Lemma 1: If K; and K> are knots, then
M(K1#K2) < M(K1) + M(Ka).

Thus, the minimal edge number is subadditive with respect to the connected
sum of K; and K.

3 Concatenation is usually applied to establish a sub-additive relation for the numbers
of the objects involved. It will be sligtly differently applied here: I will use it to show a

sub-additive relation for the minimum size of the involved polygons.
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Proof: Let P, and P, be minimal polygon representatives of K; and K
with M(K1) and M(K>) edges respectively. Concatenate P; and P, to get
a polygon representation of K;#K> with M(K;) + M(K,) edges. Hence,
M(K1#K3) < M(K1) + M(Ky).

Application of lemma 1 gives an upper bound on the minimal edge number
of compound knots in terms of the minimal edge number of their factors. The
following lemma finds a lower bound by using the curvature of the knots. This
also has some implications for the lattice curvature.

Lemma 2: If K and K, are knots, then there exist constants ax > 0 for any
knot K such that
M(KI#K2) Z K, +aK2a

and
M(K™) > nag,

where K" is the connected sum of n knots, all of type K. If K is not the
unknot, then ax > 0.

Proof: The bridge number of a projection of a knot K can be found by travers-
ing the knot and recording a sequence of letters corresponding to over- and
underpasses; one may suppose that an O indicates an overpass and a U in-
dicates an underpass. Consider this sequence to be cyclic; the last letter is
followed again by the first. The number of runs of O’s in the sequence is
the bridge number of the projection. The bridge indez of a knot K, b(K),
is the minimum bridge number over all projections and conformations of the
knot [10,11]. It is known that the bridge index minus one is additive with
respect to the connected sum of knots: if K; and K, are two tame knots,
then b(K1) + b(K2) — 1 = b(K 1#K3). Put axg = 4(b(K) — 1). Then ak is
additive under the connected sum of knots.” For every tame knot K in R3,
b(K) = ¢(K)/2w, where ¢(K) is the infimum of the total curvature of K, as
K varies within its knot type [11]. Let C(K) be the curvature of a given knot
K (then ¢(K) < C(K)). Then C(K) > 2nb(K) for any given knot K. If
a polygon in Z3 is considered, then contributions to the curvature occurs in
units of 7/2, since successive edges in the polygon can make angles of only 0
or 7/2 with each other. Hence, if a polygon P has curvature C(P), then P
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has at least 2C(P)/n edges; one edge for every /2 contribution to C(P). We
get M(K) > 2C(K)/m > 2¢(K)/n = 4b(K) > ak. From the additivity of
ax, M(Ki#K3) > ak, 4k, = 0k, + ak,. The second inequality is obtained
similarly.

In lemma 2, the constants ax depend only on the knot type K, and there
is it is enough, but not necessary, to take agx = 4(b(K) — 1) in the above. The
following theorem assigns a minimal edge index to every knot type.

Theorem 3: Let K be an arbitrary knot. Then the following limit exists, and
it is the minimal edge indez of K:

lim ————M(K ) = UK

n—00 n
In addition, M(K™) > nug. Moreover, pg > 0 if K is not the unknot.

Proof: M(K™) is subadditive with respect to the connected sum: by lemma
1 M(K*"#K™) < M(K™) + M(K™). By lemma 2, M(K™) grows at least
linearly in n if K is not the unknot; thus, applying a result from the theory of
subadditive functions: px = lim, 0o M(K™)/n > ag exists. Moreover, for
every n, M(K™) > nug [12]. If K # 0, then ax # 0, and so ux > 0.

The minimal lattice curvature can be studied in the same way as M(K).
Let K; and K be two lattice knots with minimal lattice curvature C(K3) and
C(K3). If K; and K, are concatenated, then at most 4 right angles can be
removed when the bottom and top edges are deleted, and at most 4 right angles
may be created when new edges are added to connect K; to K2. Therefore,
the total number of right angles in K; and K> may change by a total of 8 (this
is an overestimate). Thus C(K1#K>) < C(K1) + C(K3) + 4m. In other words,
C(K) + 4x is subadditive. On the other hand, it is known that C(K) > 6x
(13]. By the proof of lemma 2 observe that C(K™) > c¢(K™) = 2nb(K") =
2rnb(K) — 2n(n — 1) > 27n of K is not the unknot. The same arguments in
the proof of theorem 3 gives:
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Corollary 4: Let K be an arbitrary knot. Then the following limit exists,
and it is the minimal curvature indezr of K:

n—o0 n

VK.

In addition, C(K™) > nvk, and vk > 27 if K is not the unknot.

To what extent do M(K), C(K), ux and vk measure the “complexity” of
a knot? A good measure of knot complexity [9] is any function F defined on
the equivalence classes of knots with the following properties: F(#) = 0 (0 is
the unknot), and there exists a knot K such that for any knot L, F(K™#L) >
nF(K) > 0 (n is an arbitrary integer). This last condition rules out any
functions which are subadditive with respect to the connected sum of knots,
including M(K) and C(K). Instead, define a weak measure of knot complexity
[2] as a function F,, defined on the equivalence classes of knots such that
Fuw(@) = 0 and F (K"#L) > nAg + AL, where Ax > 0 and Ax = 0 if
and only if K = . This definition suggests that F,(K) = M(K) — 4 and
Fw = C(K) — 27 should qualify as weak measures of knot complexity. I state
the properties of M(K) in the next theorem:

Theorem 5: M(K) has the following properties:

(i) M(K) >4 if K is not the unknot,
(iif) M(K1#K3) < M(K1) + M(K2),

(iv) and there exists constants Ag such that M(K]#K>) > nAg, + Ak, for
any knot K; # 0, K, an arbitrary knot, and any integer n > 0. Moreover,
Ak =0 K =0.

Proof: (i) This follows from the fact that the unknotted polygon has shortest
length 4. (ii) A theorem by Diao [1,3] states: M(K) = 24 if and only if K = 3,.
Moreover, if M(K) < 24, then K is the unknot. Hence, M(K) > 4 if K is
not the unknot. (iii) This was shown in lemma 1. (iv) M(K) > ax as shown
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in the proof of lemma 2. Therefore, M(KT#K3) > na)K; + ak,. So take
Ak = ag. Since ag > 4 if K is not the unknot, and ag = 0 if K is the
unknot, the claimed bounds on Ak follows.

Theorem 5 implies that M(K) —4 is a weak measure of knot complexity. A
weak measure can distinguish the unknot, and it grows at least proportionally
to the number of factors in a compound knot. M(K) —4 does not qualify as a
good measure of knot complexity due to theorem 5(iii): it is subadditive, and
it cannot satisfy the condition F(K"#L) > nF(K) > 0 for a knot K and any
knot L.

Theorem 6: Let K be any piecewise linear knot. Then the minimal edge
index of K has the following properties:

(l) NK=0©K=@a
(li) HK» = NUK,

(311) px, 2k, < Bk, + Uk,, where K; and K, are non-trivial piecewise linear
knots.

(iv) There exists numbers Ag such that if K is a non-trivial knot and K is
an arbitrary knot, then pgrgx, > nAg, + Ak,. In fact, Ak =0 & K =0

and Ag > 4 if K is not the unknot.

Proof: (i) M(@™) = 4 thus pg = 0. If K # @, then by lemma 2, M(K"™) > nak,
where ag > 0. Divide by n and take the limit n — oo to find ux > 0.
(i) prr = My oo MU(K™)™)/m = nlimpmo0 M(K™™)/nm = npg by
theorem 3. (ill) px,pk, = lim, oo M(K1#K2)")/n < limpyoo (M(KT) +
M(KP))/n = pk, + pk, by lemma 1. (iv) By the methods of lemma 2 and
theorem 4, pxp gk, > liMmm—oo(4nm (K1) +4m c(K2)-2m(4nm+4m))/(2mm)
where ¢(K) is the minimum curvature of knot K. But for any non-trivial knot,
c(K) > 4w [14], thus pxp gk, = liMpoeo(8m(n+1)—4m(n+1)/m = 4n+4. If
K; = K, = 0, then observe that Ag, = 0. Otherwise, K1 # 0, and pky > 4n
so that Ax, >4 > 0.

w]
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Theorem 6(i) and (iv) implies that the minimal edge index is a weak measure
of knot complexity. It is not a good measure of knot complexity in the sense
of reference [9] because of theorem 6(iii). Theorem 6(ii) indicates that the
minimal edge index is regular when applied to knots of the type K™; in fact,
it measures the number of components in the compound knot. Moreover,
this property suggests that theorem 6(iii) should be an equality (it is when
K, = K3), so the following conjecture seems natural:

Conjecture 7: Let K; and K, be arbitrary knots. Then px, 2k, = pk, +1k,-

If conjecture 7 holds, then the minimal edge index should be a very pow-
erful measure of knot complexity. To prove this seems hard: some detailed
geometric information on exactly how the minimal knots change when they
are concatenated are needed.

Similar results are found when C(K) and vk are considered instead. The
arguments are very similar to those in the proofs of theorems 5 and 6, and I
will only state the results; the interested reader can fill in the detail.

Theorem 8: C(K) has the following properties:
(i) C(@) = 2m,
(ii) C(K) > 2r if K is not the unknot,

(iii) C(K1#K32) < C(K1) + C(Ka),

(iv) and there exists constants A such that C(KT#K2) > nAy, + A, for
any knot K; # 0, K> an arbitrary knot, and any integer n > 0. Moreover,
Ay =0 K =0.

And similarly:

Theorem 9: Let K be any piecewise linear knot. Then the minimal curvature
index of K has the following properties:
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(i) k=0 K =10,
(ll) Vgn = NVK,

(i) vk,#Kk, < VK, + VK,, where K; and K, are non-trivial piecewise linear
knots.

(iv) There exists invariants Ay > 0 such that if K, is a non-trivial knot and
K, is an arbitrary knot, then vkngk, > ndk, + Ak, In fact, Ay =0 &

K =0 and Ay > 2r if K is not the unknot.

Thus, C(K) — 2 and vk are both weak measures of knot complexity, and

Conjecture 10: Let K; and K, be arbitrary knots. Then vk, 4k, = vk, +
VK, .

In other words, I conjecture that the lattice curvature index is additive with
respect to the connected sum of lattice knots.

3. Numerical Results

In this section the BFACF algorithm [15] is implemented with simulated
annealing to find upper bounds (and also to estimate) on the minimal edge
numbers and minimal curvature of various lattice knots. The two elementary
moves in the algorithm act locally on the polygons; the first is a length pre-
serving move (figure 2(a)), and the second move may change the length of the
polygon (figure 2(b)).

Figure 2: The two elementary moves of the BFACF algorithm
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A simple Metropolis-style implementation [16] of the algorithm is as follows:
Let w be an arbitrary polygon with vertices denoted by wo, w1, ws,...,w, if w
has length n. Pick an edge w;—jw; in w with uniform probability, and pick a
unit vector u perpendicular to the edge. Move the chosen edge parallel to itself
in the direction of u, inserting two new edges to keep the polygon connected.
Erase any double edges which may be formed. It can be checked that this
gives one of the two possible transitions in figure 2. Let the new polygon be
w'. If W' is not self-avoiding, then this attempt is rejected, and w is counted
(again) as the next state. If w’ is shorter or of equal length than w, then
accept w' as the next state. If w' is longer than w, then accept it as the next
state with probability 3?%; if it is not accepted, then w is (again) counted as
the the next state. 3 is a free parameter of the algorithm, increasing its value
leads to the sampling of longer polygons, while reducing it bias the sampling in
favour of shorter polygons. Simulated annealing [18] is implemented by slowly
reducing the value of 8 to 0 during a simulation; while the shortest polygons
and polygons with least curvature found are recorded. If the “cooling down” is
done carefully enough, then good estimates of the least curvature and shortest
polygons are found. Is it known that the algorithm is irreducible on the classes
of lattice polygons with the same knot type this means that the polygons of a
given knot type with least curvature and shortest length is always accessible
to the algorithm [17].

3.1 Estimating the Minimal Number

Estimates of the minimal edge numbers for prime knots up to eight crossings
in the standard knot tables, as well as a selected few knots with nine and
ten crossings, are listed in table I. There seems to be some correspondence
between M(K) and the minimal crossing number of knots: M(K') increases
in generally with crossing number. Any polygon with n edges will have at
most n(n — 3)/2 crossings in any regular projection, thus a lower bound is
M(K) > (3++/9+8C)/2,if K has C crossings in a minimal projection. The
knots with non-alternating minimal diagrams seem to be anomolously low in
the table; they take fewer edges to construct than alternating knots with the
same crossing number.

How many different knot types may have the same minimal edge number?
Let g(n) be the number of knot types with minimal edge number n, and let
Q(n) =3, <na(m). Then Q(n) grows at most exponentially:



TABLE I: Estimates of M(K)

M(K) K

4 0,

24 31

30 4

34 5

36 59

40 6, 6, 65

42 819

44 T T3 Tq¢ 71 8y

46 T9 Ts T 821

48 8 8; 94

50 8 8 84 8 8 8 813 816 947 10161
52 83 810 811 812 814 815 817 813
54 9,

56 9

60 104

Theorem 10: There exists a constant Q such that
Jim [log @(n)}/n = log Q.
Moreover, Q(n) < Q™.

Proof: Let n be even, and let g(n) and Q(n) be defined as above. Since
the number of polygons rises exponentially with n [19], ¢(n) rises at most
exponentially with n. Also, Q(n)Q(m) < @(n+m), since every knot of type K
with M(K') = n can be concatenated with a knot of type K’ with M(K') =m
to give a compound knot with M(K#K') < (n+m). But this does not count
prime knots K with max{n,m} < M(K) < (n + m). Consequently, @(n)
is a supermultiplicative function. Since g(n) is bounded exponentially, so is
Q(n). Thus, we conclude that lim,_,[log @(n)}/n = log Q exists. Moreover,
Q) < Q" [12]

[m]

Since q(n) = Q(n) — Q(n — 1), it follows from theorem 10 that

Jim [logg(n)}/n = log Q.
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Lower bounds on Q can easily be read from table L. If chiral knots are counted
as the same, and if compound knots (see table III) are ignored, then @ > 1.047.
An immediate consequence of theorem 10 is:

Corollary 11: The number of distinct knot types with minimal edge number
equal to n rises exponentially with n.

There are other interesting patterns in table I. Consider the sequence of
knots 3;, 51, 71 and 9; which is a sequence of torus knots of the type 15y for
k = 3,5,7,9. The minimal edge numbers of these knots increase as 24, 34,
44 and 54, exactly in steps of 10 edges. However, this pattern likely will not
persist indefinitely. If strands in the knot twist about each other as in figure
3, then it appears as if 10 each are needed to complete each twist, except that
2 extra edges will be required every eighth twist, for an average of 10.25 edges
per twist. This pattern could explain the increments in steps of 10 in this
sequence of torus knots, but I think that it is unlikely to persist.

1
Figure 3: Twisting two strands.

Other interesting sequences in table I involve the twist knots, where two
separate sequences can be identified: 4;, 61, 8;, 101, and 52, 72 and 9;. In
both sequences the increases are again in units of 10 edges, and a similar
situation to the one above may be imagined, using the basic unit in figure 3
to add extra twists between two strands. 3; should be the first member in the
sequence starting with 52, but it appears that it does not fit the pattern. It is
again hard to make definitive statements: to do so requires detailed knowledge
of the geometric properties of the minimal knots in the lattice.
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TABLE II: Estimates of C(K) (Units of 7/2)

M(K) K
4 0,

12 3

14 44

17 51 99

18 60 63 947

19 61 77 82

20 74 T6 818 819 8

21 T 83 813 817 94

22 LT3 8 8 8 8 8 10%
23 75 84 8 810 823 &6

24 Y 8y 81, 8

26 9,

27 9;

29 10,

3.2 Minimal Curvature

The minimal curvature of lattice knots were estimated by simulated anneal-
ing. The results are displayed in table II. In most cases the minimal curvature
was found on knots of minimal length; I indicate the exceptional cases with a x.
As with the minimal edge number, the minimal curvature increases generally
with increasing crossing numbers; there seems to be little, or no connection to
the infimum of the curvature for these knots when realised in R3.

In table II the torus knots T3 241 increases in minimal curvature in steps
of 5; this pattern can again be explained by figure 3. The sequences of twist
knots 4, 6,, 8;, 10; similarly increases in steps of 5. On the other hand
the sequence 31, 52, 72, 92 increases in units of 5, except for the increment
from 59 to 7. The non-alternating knots appear early in the table, having
relatively low curvature. The knot 942 has very low curvature compared to
other knots with minimal crossing number 9. Will knots with arbitraty high
crossing number appear with low minimal lattice curvature? Since exactly
2C(K) /7 line segments appear in a lattice knot with curvature C(K), there
can be at most C(K)(2C(K)/n — 3)/m crossings in any regular projection of
the lattice knot. Thus, if a knot has minimal crossing number C, then its
minimal lattice curvature is at least (3 + /9 + 8C)n /4.
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3.3 Bounds on the minimal edge index and the minimal curvature
index

Any vertex in the cubic lattice is at the barycentre of a dual 3-cube. The
lattice neighbourhood of a (self-avoiding) walk is the union of all 3-cubes dual
to the vertice of the walk. Let w be a walk with first and last vertices the
lexicographic least and most vertices respectively. Let N(w) be the lattice
neighbourhood of w. Let w' be the walk derived from w by deleting its first
and last steps. If N(w') is a 3-ball, and if the pair (N (w'), N{w')Nw) is knotted,
then w is a knotted ball-pair or a tight knot. A tight knot w has the Kesten
property if three copies of N(w') Nw can be concatenated endpoint-to-endpoint
to produce a tight knot which contains the original tight knot exactly three
times [20]. The knot type of a tight knot is determined by taking rays from
its endpoints (on the boundary of the 3-ball) to infinity, giving a knot in S3.
The following lemma was proven in [9]:

Figure 4: Tight trefoils in a string.

Lemma 12: Let K be any knot, then there exists a tight knot with the Kesten
property which has knot type K.

Theorem 13: Let w be a tight knot of type K with |w| edges. If w has the
Kesten property, then ug < |w| — 1. Moreover, if w has C right angles, then
vg < 7wC/2.
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Proof: Let w' be defined as above. If w has the Kesten property, then we
may concatenate three copies of N(w') Nw in a row, as illustrated in figure
4. Adding a fourth copy to the third gives a new sequence of three, starting
from the second copy, and this process can be continued indefinitely to find a
sequence of tight knots in the lattice. Continue this process until N copies of
N(w')Nw are included. Take four copies of this string, arranged in a square,
where (say) m edges are added to join them into a polygon. The resulting
polygon has 4(|w| — 1)N + m edges, since the length of each copy of N(w') Nw
is |w| — 1. Divide by 4N and let N — oo to find the upper bound. Observe
that there are 4N copies of w in this polygon, with non-overlapping corners,
for a total of 4CN right angles. Thus, by taking N = oo, vg < 7C/2.

In figure 4 a string of tight trefoils is shown; each copy has 17 edges, rep-
resenting 3; as a tight knot. Since there are 9 corners in each component,
p3, < 17 and v3, < 97/2. In order to test these predictions, I estimated
M(37) and C(37) for n taking values 1 through n. The results are displayed
in table IIT where C(37) is stated in units of m/2.

Theorem 3 and Corollary 4 indicates that the data in Table III may be
used to compute strict upper bounds on pu3, and v3,. The best bound on
i3, is obtained for n = 8, which gives p3, < 17; this is as good as the bound
obtained from theorem 13. Similarly v3, < 7.367/2, also obtained when n = 8.
The increase in M(K) with n is in steps of 16 until n = 8; this bound is much
better than the 9 obtained from figure 4. I illustrate the minimal 3% in figure
5; note the aoccurences of “knots-of-knots”; these make effective use of right
angles in the knot, producing a better lower bound. By corollary 4, vg > 2m;
is it true that vg, > 277

There are other interesting patterns visible in table III, for example, there
are increases of 48 in the minimal edge number in the compounded left-handed
trefoils 37 for n = 2,5, 8; it was stated in reference {2] that this spacing is 50,
but more extensive simulations have improved on those results. Forn = 3,5,7
the spacing is 32 and for n = 1,4, 7 the spacing is 48 again.

4. Discussion

The results in this chapter is closely linked to work on the stick number
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TABLE IIT: M(3}) and C(3}) [x/2]

no | MET) | C@3D)
1 | 24 12
2 | 40 20
3 | 56 28
4 | 72 36
5 | 88 41
6 | 104 49
7 | 120 57
8 | 136 59
9 | 154 72
10 | 176 81

of a knot [8,21]: How many unit length line segments are necessary to realise
a piecewise linear knot of type K (by joining the segments end-to-end into a
polygon)? It is known that the stick number of a trefoil is 6 [8], and that the
stick number of a figure eight knot is at least 7 [21].

4\,

—_—

- E/

Figure 5: The shortest version of 3? found by simulated annealing.

From the perspective of the cubic lattice, it seems natural to define ideal
conformations of lattice knots as those with minimal curvature. This minimizes
the number of corners in a realisation of the knot as a lattice polygon (but
does not necessarily minimize its edge number). It is not obvious that there is
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always a conformation of a minimal lattice curvature which is also of minimal
edge length, for any given knot K. The results in table Il suggest that in
some cases, lattice knots with minimal curvature cannot have minimal edge
number; I suspect that for complicated knots this will be the rule, rather than
the exception. On the other hand, one may want to minimise the curvature of
lattice knots with minimal edge number to define those as “ideal lattice knots”.

The results in tables I, IT and III classifies knots according to a measure of
complexity defined by minimal edge numbers or curvature; more complicated
knots appear lower in those tables. This observation may be compared to
experimental work on knots in DNA [22], where it is found that no knots
beyond a certain complexity will appear in a piece of DNA of given length.
DNA has a natural stiffness, and it is energetically unfavourable to tie knots
with (for example) high curvature in it (for simulation results, see reference

[7)-

Acknowledgements:

This work was supported by a grant from NSERC of Canada.

References

Y. Diao, Minimal Knotted Polygons on the Cubic Lattice, J. of Knot Theory
and its Ramifications, 2 (1993) 413-425.

E.J. Janse van Rensburg and S.D. Promislow, Minimal Knots in the Cubic
Lattice, J. of Knot Theory and its Ramifications, 4 115-130 (1995).

Y. Diao, The Number of Smallest Knots on the Cubic Lattice, J. Stat. Phys.,
74 (1994) 1247-1254.

E.J. Janse van Rensburg, Lattice Invariants for Knots, in Mathematical Ap-
proaches to Biomolecular Strucure and Dynamics, (eds. J.P. Mesirov, K. Schul-
ten and D.W. Sumners), Proc. IMA Summer Prog. in Mol. Biol.,, 11-20
(Springer-Verlag, New York, 1995).

R. Uberti, E.J. Janse van Rensburg, E. Orlandini, M.C. Tesi and S.G. Whit-
tington, Minimal Links in the Cubic Lattice, in Topology and Geometry in
Polymer Science, (eds. S.G. Whittington, D.W. Sumners and T. Lodge), Proc.
IMA 1995-96 Prog. on Math. Meth. in Material Science, Workshop 8 (1996).



105

[6] J. W. Alexander and G. B. Briggs, On Types of Knotted Curves, Ann. of Math.
(2), 28 (1927) 562-586.

(7] E. J. Janse van Rensburg and S. G. Whittington, The Knot Probability in
Lattice Polygons, J. Phys. A: Math. and Gen., 23 (1990) 3573-3590.

[8] R. Randell, A Molecular Conformation Space, Proc. of the Int. Course and
Conf. on Interfaces between Math., Chem. and Comp. Sci., 54 (1987) 125-
140. R. Randell, Conformation Spaces of Molecular Rings, Proc. of the Int.
Course and Conf. on Interfaces between Math., Chem. and Comp. Sci., 54
(1987) 141-156.

[9] C. E. Soteros, D. W. Sumners and S. G. Whittington, Entanglement Complez-
ity of Graphs in Z3, Math. Proc. Camb. Phil. Soc., 111 (1992) 75-91.

[10] H. Schubert, Uber eine Numerische Knoteninvariante, Math. Z. 61 (1954)
245-288.

[11] D. Rolfson, Knots and Links, Math. Lect. Ser., 7 (1990) (Publish or Perish,
Inc.: Houston, Texas).

[12] E. Hille, Functional Analysis and Semi-Groups, Am. Math. Soc. Colloqg.
Publ., 31 (1948) (American Mathematical Society: New York).

[13] E.J. Janse van Rensburg and S.D. Promislow, The Curvature of Lattice Knots,
Preprint.

[14] J. Milnor, On the total curvature of closed space curves, Math. Scand., 1
(1953) 289-296.

[15] B. Berg and D. Foester, Random Paths and Random Surfaces on a Digital
Computer, Phys. Lett., 106B (1981) 323-326. C. Aragao de Carvalho, S.
Caracciolo and J. Frélich, Polymers and g|¢|* Theory in Four Dimensions,
Nucl. Phys. B [FS7], 215 (1983) 209-248.

[16] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,
Equation of State Calculations by Fast Computing Machines, J. Chem. Phys.,
21 (1953) 1087-1092.

[17] E.J. Janse van Rensburg and S.G. Whittington, The BFACF Algorithm and
Knotted Polygons, J. Phys. A: Math. Gen., 24 (1991) 5553-5567.

[18] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by Simulated An-



106

nealing, Science, 220 no. 4598 (1983) 671-680.

[19] J.M. Hammersley, The Number of Polygons on a Lattice, Proc. Camb. Phil.
Soc., 57 (1961) 516-523.

[20] D.W. Sumners and S.G. Whittington, Knots in Self-Avoiding Walks, J. Phys.
A: Math. Gen. 21 (1988) 1689-1694.

[21] K.C. Millett, Random knotting of reqular polygons, Talk given at the Int. Joint
Meetings of the AMS-CMS-MAA (August 1993), Vancouver. R. Randell,
Polygonal Knots, Talk given at the Int. Joint Meetings of the AMS-CMS-
MAA (August 1993), Vancouver.

[22] S.Y. Shaw and J.C. Wang, Knotting of a DNA chain during ring closure,
Science 260 (1993) 533-535.



107

CHAPTER 7
MINIMAL EDGE PIECEWISE LINEAR KNOTS

J. A. CALVO

Department of Mathematics, University of California,
Santa Barbara, CA 93106, USA

K. C. MILLETT

Department of Mathematics, University of California,
Santa Barbara, CA 93106, USA

The space of n-sided polygons embedded in three-space consists of a smooth man-
ifold in which points correspond to piecewise linear or “geometric” knots, while
paths correspond to isotopies which preserve the geometric structure of these knots.
Two cases are considered: (i) the space of polygons with varying edge length, and
(ii) the space of equilateral polygons with unit-length edges. In each case, the
spaces are explored via a Monte Carlo search to estimate the distinct knot types
represented. Preliminary results of these searches are presented. Additionally, this
data is analyzed to determine the smallest number of edges necessary to realize
each knot type with nine or fewer crossings as a polygon, i.e. its “minimal stick
number.”

1. Introduction, vocabulary, and history of geometric knots.

The topological and geometric knotting of circles occurs in many contexts in
the natural sciences!”?® By geometric knotting we mean the imposition of geo-
metric constraints on allowed configurations and their transformations. These
constraints can arise by taking into consideration local “stiffness” of molecular
structures such as DNA or other polymers. An attractive structure providing
a useful model is that of the spatial polygon. These polygonal configurations
are determined by a list of n points in three-space, which we call the vertices of
the polygon. Straight line segments, or edges, connect each successive pairs of
vertices, including the first and last one, producing a closed loop. When this
configuration is embedded, so that there are no intersections of edges except at
common vertices, one has a polygonal knot. The entire collection of such knots
determines an open subset of euclidean space whose dimension is three times
the number of vertices. Requiring that all vertices lie within the unit cube,
that each edge have unit length, or that the angle between adjacent edges be
constrained will determine other knot spaces and knot theories of interest.
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Figure 1: A hexagonal trefoil knot and a heptagonal figure eight knot.

31 4

1.1. Minimal stick number

An n-sided spatial polygon P in R3 is a closed, piecewise linear loop with
no self-intersections consisting of n points of R3, called wertices, joined by n
straight line segments, called edges. We think of an n-gon as the result of
glueing n sticks end to end to end. Define the minimal stick number s(K) of
a topological knot type K as the smallest number of edges required to realize
K as a knotted polygon.:23 It takes at least six sticks to construct a knotted
polygon. A trefoil can be built with six sticks, while at least seven are required
to build a figure-eight knot®* Thus s(31) = 6 and s(4,) = 7. Figure 1 shows
projections of a hexagonal right-handed trefoil and a heptagonal figure-eight
knot. In addition, every five and six crossing prime knot (51, 5, 61, 62, 63), the
square and granny knots (3; £ 3;), the (3, 4)-torus knot (89), and the knot
840 can all be built using eight sticks. Figure 2 shows octagonal realizations
of these knots. Since only the trefoil and the figure eight can be constructed
with fewer edges, all of these knots have stick number s(-) = 8. However, it
remains an open question whether this is a complete list of the eight-stick
knots. Towards this goal, Calvo® rules out every possibility other than 8,
which has a minimal stick number of either 8 or 9. In addition to those knots
in Figures 1 and 2, all of the seven crossing prime knots (71,...,77), as well
as knots 816, 817, 821, 940, and 94; are known to have nine-stick realizations,
showing that these knots have minimal stick number s(-) = 9%

Formulae for stick number are known only for a couple of families of knots.

@ For instance, see Proposition 1.3 in Millett1® In pp.266-268, this proposition is followed
not only by pictures, but also by coordinates of the vertices of equilateral realizations of these
knots.

b The construction of these nine-stick realizations are due to Monica Meissen!%16 and
Robert Scharein?4.






110

Firstly, if p and q are coprime integers with 2 < p < ¢ < 2p, the stick number
of the (p, g)-torus knot T}, ; is

s(Tp,q) = 29 (1)

(Theorem 7 in Jin!!). Note that this shows that s(3;) = s(T3,3) = 6 and that
s(819) = s(T3.4) = 8. Secondly, the connected sum of any combination of n
right- and left-handed trefoils has stick number

S(31i31i---:|:31)=2n+4 (2)

(Theorem 7.1 in Adams et al?). Thus the square and granny knots have

s(31 +31) = s(3; — 3;) = 8. This is an improvement on the general case of a
connected sum, in which

S(K1 + Kz) < S(Kl) + S(Kz) -3 (3)

(Theorem 3.1 in Adams et al 2).
Relatively little more is known about stick number. Negami'® shows that
given a nontrivial knot K with crossing number ¢(K),

2+ VI48AR) ¢ (k) < 2¢(K). (4)

Here, the upper bound is obtained using results in graph theory, while the lower
bound is found by projecting an n-sided polygon onto a plane perpendicular
to one of the edges. The result is an (n — 1)-sided polygonal knot diagram
having at most ¢ = %n(n —3) crossings. Completing the square and solving for
n then gives the inequality in (4). Note that the trefoil knot is the only known
example for which the upper bound is tight. In fact, Furstenberg et al ® show
that if K is a knot with a one-, two-, or three-integer Conway notation and
¢(K) > 5, then this bound can be improved to

5+W33(K)SC(K)+2- ®)

On the other side of the spectrum, Jin!! uses Kuiper’s superbridge index
sb(K) to obtain the lower bound

2 sb(K) < s(K). (6)

The superbridge index sb(K) is the minimum over all embeddings of K of
the largest number of local maxima obtained when projecting the knot in any
direction in IR? (see Kuiper 1?). Furstenberg et al® point out that no bound on
stick number s(K) gotten from the superbridge index sb(K) can ever be very



m

efficient. A case in point is the family of two-bridge knots which, by (4), have
arbitrarily large stick number but whose superbridge index is bounded above
by seven: sb(K) < 7. Nonetheless, (6) can lead to some interesting bounds.
For instance, if 2 < p < g then the (p, ¢)-torus knot has sb(T}, 4) = min{2p, ¢}
(Theorem B in Kuiper 1?). A systematic construction of polygonal realizations
of torus knots then shows that, if 2 < p < ¢, then
: 2q

2mm{2p, ‘1} <s(Tpg) <P ’V‘;.‘» )
where the “ceiling brackets” denote rounding up, so [z] =min{n € Z : n > z}
(Corollary 5 and Theorem 8 in Jin and Kim 1°). Notice that in the special case
when p = 2r + 1 and ¢ = 3r + 1, we have 2min{2(2r + 1),3r + 1} = 6r + 2

while (2r + 1) f%;:%l] = 6r + 3. Therefore,

6r +2< 5(T2r+1,3r+1) <6r+3 (8)

for any positive integer r (Corollary 9 in Jin and Kim 1°).

Although here s(-) is defined in the general setting of polygons with ar-
bitrary edge lengths, similar notions of minimal stick number exist for more
special sorts of “geometric knots.” For instance, one might restrict attention
to polygons with unit-length edges, with vertices on the integral lattice Z3,
with restricted vertex angles, or with vertices on the unit-radius sphere about
the origin? In this way, stick number might well depend upon the specific type
of geometric knot under consideration. For example, Diao” has shown that
the trefoil knot requires 24 edges for its vertices to lie on the lattice Z3 and
its edges to have unit length. Later, we shall give special attention to equi-
lateral polygons and consider the minimal equilateral stick number s'(K) of a
topological knot type K. At this time, however, there are no knot types known
to have equilateral stick numbers which are different from their standard stick
number.

Question 1. How many sticks are required to construct a knot K? In par-
ticular, what are the stick numbers for all knots with, say, nine crossings or
fewer? Does this depend on whether we use unit-length edges or not?

¢ See Adams et al.2
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1.2. The space of geometric knots

The general framework for the space of geometric knots was introduced by
Randell 21=22 Consider an n-sided polygon P in R3, together with a distin-
guished vertex, or root, v; and a choice of orientation. We can view P as
a point of R3™ by listing the triple of coordinates for each of its n vertices,
starting with v; and proceeding in sequence as determined by the orientation.

In the spirit of Vassiliev,326 define the discriminant £(™ to be the collec-
tion of points in R3™ which correspond in this way to non-embedded polygons.
A polygon fails to be embedded in R* when two or more of its edges inter-
sect, so £(™ is the union of the closure of 47 (n — 3) real semi-algebraic cubic
varieties, each consisting of polygons with a given pair of intersecting edges?

For example, the collection of polygons (v1,vs,...,vn—1,v,) for which vjv,
intersects v3vy is the closure of the locus of the system

(’02 —'Ul) X (’Ug —’Ul) . ('1)4 —’U1) =0
(vg —v1) X (v3 —v1) - (v2a —v1) X (vg —v1) <0
(vg —v3) X (v1 —v3) - (vg —v3) X (v3 —v3) <O.

In particular, the closure of each of these semi-algebraic varieties forms a
codimension-1 submanifold (with boundary) of R3". Hence the subspace

Beo™ = R — x™)

corresponding to embedded polygons is an open 3n-manifold which we will call
the embedding space of rooted oriented n-sided geometric knots.

A path h : [0,1] — ®eo(™ corresponds to an isotopy of polygonal sim-
ple closed curves, so each path-component of Beo™ contains polygons of the
same topological knot type. If two polygons lie in the same path-component
of Beo™, we will say they are geometrically equivalent. Also, a polygon is
geometrically unknotted if it is geometrically equivalent to a standard planar
polygon; since all planar n-sided polygons are geometrically equivalent, the
component of geometric unknots is well-defined.

The geometric equivalence of two knots implies their topological equiv-
alence. However, not much is known about the converse. For instance, it
is unknown whether there exist topological unknots which are geometrically
knotted. In fact, until recently there were no known examples of any topolog-
ical knot type corresponding to two distinct geometric knot types?®

d Ifn = 3, £(3) is the collection of triangles {v1,v2,v3) for which (vs —v1) X (vz—v1) = 0.
¢ See Millett!8 p.265, and compare with Theorem 1 in 2
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(a) (b)

Figure 3: All pentagons are geometric unknots.

Question 2. How many distinct geometric (or topological) knot types are
there in &eo(™ as a function of n?

Question 3. What can be said about the topology of the components of these
knot spaces?

A classical theorem of Whitney?” guarantees that, for each n, there are
only finitely many geometric knot types. Furthermore, it is a “folk theorem”
that Geo(™ consists of a single path-component when n < 5. Since triangles
are planar, the embedding space Beo® of rooted oriented triangles is con-
nected. A quadrilateral (tetragon) consists of two triangles hinged along a
common edge; since we can change the dihedral angle at the hinge to flatten
the quadrilateral out, we find that Geo) is also connected. Finally, suppose
that P = (vq,vq,v3, v4,vs) is some pentagon. If the edge v4vs intersects the
triangular disc determined by vertices vy, v9, and vs, then P can be deformed
by an isotopy of the linkage v4vsvg across the disc determined by wvg4,vs, and
vg until it coincides with the quadrilateral (vy,vq,vs,v4) (see Figure 3a). On
the other hand, if the edge does not intersect that triangle, then P can be de-
formed by an isotopy of vivaus across the triangular disc determined by v, vy,
and v3 until it coincides with the quadrilateral (vy,vs,v4,vs) (see Figure 3b).
In either case, P can then be pushed into a plane just like a quadrilateral.
Therefore the space Geo(®) of pentagons is connected, as well.

The situation when n = 6 is described in Calvo?~5 In this case, we have
to contend with the hexagonal realizations of the trefoil knot. Recall that
trefoils are chiral, i.e. topologically different than their mirror image. This
means that every hexagonal trefoil will lie in a different component of Geo(®)
than its mirror image. Therefore, there must be at least three distinct path-
components in Geo(®), corresponding to the unknot, the right-handed trefoil,



114

and the left-handed trefoil. The embedding space Geo(® contains, in fact, five
path-components. These consist of a single component of unknots, two compo-
nents of right-handed trefoil knots, and two components of left-handed trefoil
knots. Thus there two distinct geometric realizations of each type of topologi-
cal trefoil. In particular, hexagonal trefoil knots are not reversible: In contrast
with trefoils in the topological setting, reversing the orientation on a hexag-
onal trefoil yields a different geometric knot. Hence geometric knottedness is
actually stronger than topological knottedness.

It turns out that the distinction between the two geometric types of right-
handed trefoils is a consequence of our original choice of root and orientation.
If we eliminate this choice by taking the quotient of eo(®) modulo the action
of the dihedral group of order 12, we find that the spaces of non-rooted ori-

ented hexagonal knots and of non-rooted non-oriented hexagonal knots each
consist of three components (Corollary 7 in Calvo*). Randell has reported an-
other approach, using a spectral sequence analysis, confirming these results/
Nevertheless, the fact that Geo(®) consists of five components may prove to be
relevant to questions about the topology of DNA, in which there are intrinsic
base points and orientations due to the sequences of base pairs.

The classification of hexagonal knots is completed by means of the joint
chirality-curl J, a combinatorial invariant which distinguishes between all five
components of Geo(®. In particular, J takes values as follows:

(0,0) iff H is an unknot,
J(H) =< (+1,£1) iff His a right-handed trefoil,
(-1,%1) iff His a left-handed trefoil.

Reversing orientation on a hexagon will change the sign of the second coordi-
nate of J, while taking mirror its image will change the sign of both coordi-
nates.

The minimal stick number for the figure-eight knot is s(4;) = 7. Thus,
the space ®eol”) contains at least four path-components containing to the
unknot, the right- and left-handed trefoil knots, and the figure eight knot.
Topologically, these are the only four knots that can occur with seven edges.
Geometrically, there are five heptagonal knot types, two of which correspond
to the figure-eight knot (Theorem 4.1 in Calvo 5). In fact, heptagonal trefoil
knots are achiral but not reversible. This is another example demonstrating
the difference between topological and geometric knottedness.

Unlike the hexagonal trefoils, though, the irreversibility of heptagonal
figure-eights does not depend on our choice of root. In fact, whereas the

/ Personal communication, AMS meeting, Iowa (March 1996).
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space of non-rooted non-oriented embedded heptagons consists of four path-
components, the space quotient of of non-rooted oriented embedded heptagons
consists of five path-components (Corollary 4.7 in Calvo®).

Of the nine knot types known to have stick number s(-) = 8 (see Figure 2),
only two are achiral. Together with the four topological knot types which
already occur in &eo("), this gives at least 20 path-components in Geo®). The
exact number of geometric — or, for that matter, topological — knot types that
can occur when n = 8 remains unknown.

1.3. FEgquilateral polygons

A path in the embedding space Beo(™) corresponds to a deformation which can
stretch or shrink the edges of a polygon. This type of deformation might be
unrealistic when one uses geometric knot theory to model phenomena like DNA
molecules. In such cases, we may want a stronger notion of “geometric knot
theory” in which the length of the edges remain invariant under deformation.
Depending on the relative size of the edges, this new notion of knottedness may
actually be different than the more general geometric knottedness described in
Section 1.2 above. For instance, Cantarella and Johnston® show that for certain
choices of edge length, there are “stuck” hexagonal unknots, i.e. polygons
which are topologically unknotted but cannot be made planar via geometric
deformations that preserve edge lengths.

Let us restrict our attention to the class of equilateral polygons and to
deformations which preserve the lengths of their edges. Define the embed-
ding space €qu(™ of n-sided equilateral knots as the collection of polygons
(v1,v2, ... ,0n_1,v,) in Geol™ with unit-length edges. Therefore Equ(™ is a
codimension-n quadric subvariety of Geo(™ defined by the equations

o1 = vall = llvg —wsll = - = |lvn—1 = vnll = [lon —wa]| = 1.
Consider the map f : Geo(™ — R™ given by the n-tuple

(v, v, 0n1,0n)) = (lvg —vals [lv2 —vsll, . s llon—1 = vall, [lon —21ll) -

The point p = (1,1,...,1) € R™ is a regular value for f (Corollary 1 in
Randell 22), so that €qu{™) = f~1(p) is a 2n-dimensional smooth submanifold
which intersects a number of the components of Geo(™), some perhaps more
than once.

Another helpful way in which to think of the space qu(™ is to use a vector
description. An n-sided polygon can be entirely described by its root vertex
vy and a list of n displacement vectors from one vertex to the next:

—

— -
Vi=zva—v, Va=wvz—vy - Vaei=0n—tno1, Vu=vi—n.
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Each of these is a unit vector and is, therefore, enumerated by a point of the
unit-radius 2-sphere S2 in R3. A list of n such vectors is subject to the require-
ment that their sum is the zero vector in order to ensure a closed polygon. This
shows that the collection of n-sided equilateral polygons can be considered to
be the codimension-3 subset S of the product R x §? x - -- x S? determined
by the condition that the sum of the n vectors is zero. Note that S is a real
algebraic variety of dimension 2n. Then the space Gqu(™ of equilateral knots
is the open subset of S consisting of the points (v, Vi, Va, -+, Va_1, Vn) which
correspond to embedded polygons.

We will say two polygons are equilaterally equivalent if they lie in the
same component of ¢qu(™, and that a polygon is an equilateral unknot if it is
equilaterally equivalent to a standard planar polygon. Millett has shown that
all planar polygons are equilaterally equivalent, so the component of equilateral
unknots is well-defined 9

As in the geometric case, the space un(3) of triangles is connected; in
fact, €qu® consists of rotations and translations of a rigid equilateral triangle
and is thus homeomorphic to R® x SO(3). All thombi (equilateral quadrilat-
erals) are equilaterally unknotted, since we can view a rhombus as the sum
of two isosceles triangles “hinged” along one of the rhombus’s diagonals. For
instance, a rhombus Q = (vy,vs, vs, v4) corresponds to the sum of the triangles
(v1,v2,v3) and (vs,vs,v1). We can move vy and keep ||vy —vg| = ||va —ws| =1
by rotating the triangular linkage vjvovs about the axis through v; and wvs
until Q lies completely in a plane. Hence €qu(?) is connected.

Randell 22 showed that any equilateral pentagon can be deformed to a
planar one without changing the length of any of its edges. For suppose P =
(v1,v9,v3,v4,v5) is an equilateral pentagon. Let P be the plane determined
by vertices vy, v2, and vs. If P separates v4 from vg, then either

(i) both v3 and vy4 lie on one side of the plane containing v, v, and wvs,
or
(ii) both v; and vs lie on one side of the plane containing v;,vs, and vs.

Thus, after relabeling, we can assume that both v4 and wvs lie to one side of
P. In this case, rotate the triangular linkage v vovs about the axis through
vt and vz until it lies coplanar with v;. We can then deform the quadrilateral
linkage vivovsvy in its plane until it misses the line through v; and vy; this
is easy to achieve since the set of quadrilateral linkages vyvov3v4 embedded in
the plane forms a connected one-parameter family described entirely by the
angle Zvyviv9. We can then rotate the linkage vqvsv; about the axis through

9 For example, see steps 2 and 3 in the proof of Proposition 2.1 in Millett 18
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vy and vy until the entire pentagon lies in a single plane. Since any equilateral
pentagon can be flattened out, €qu{®) must also be connected.

Consider the case when n = 6. We have equilateral examples of each of
the five types of hexagons in eo(®). For example, the regular hexagon

Hp = ((1,0,0), (.5,.866025,0), (—.5, .866025, 0),
(~1,0,0), (-.5, —.866025, 0), (.5, —.866025, 0))

is an equilateral unknot, while the hexagon

Hy = {((0,0,0), (.886375, .276357, .371441),
(.125043, — 363873, .473812), (.549367, 461959, .845227),
(.818041,0, 0), (.4090205, — 343939, .845227))

is an equilateral trefoil with J(H1) = (+1,+1). Let pH and rH denote the
mirror image (or obverse) and the reverse of a hexagon H; then p,r, and pr are
involutions of Geo(® taking H; to equilateral trefoils of the other three types.
Therefore Equ(®) intersects each of the five components of Geo(®) at least once.

The first in-depth analysis of €qu(®) was done by Millett and Rosa Orel-
lana. They show that any topologically unknotted equilateral hexagon can be
deformed to a planar one without changing the length of any of its edges?
Thus ¢qu(®) contains a single component of unknots. Calvo % completes
the study of equilateral hexagons, showing that any two equilateral hexagons
are equilaterally equivalent exactly when they are geometrically equivalent.
Therefore, un(ﬁ) contains exactly five path-components, consisting of a sin-
gle component of unknots, two components of right-handed trefoil knots, and
two components of left-handed trefoil knots (Theorem 2 in Calvo?). As with
Beo®), the joint chirality-curl J distinguishes among these components. Nev-
ertheless, each component of trefoils in €qu(®) contains essential loops which
are null-homotopic in Geo(®), so that the inclusion i : €qu(® < Beo®) has a
nontrivial kernel at the level of fundamental group. Thus, the trefoil compo-
nents of €qu(®) are not homotopy equivalent to those in Geo(® (Theorem 15
in Calvo?). In particular, this shows that, despite the fact that equilateral and
geometric knot types coincide in the case n = 6, the two notions of knottedness
are quite different in nature.

Question 4. Are there values of n for which the number of path-components
in Geo(™ and €qu™ differ? This can occur if there exist either topological knot

h This result is mentioned, for example, in Proposition 1.2 of Millett.1® An alternate

proof is presented in Calvot—8
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types which are realizable only by “scalene” n-sided polygons, or equilateral
isotopes of the same geometric knot type.

2. Monte Carlo search methods.
2.1. Random knot generation

The complexity of the knot spaces eol™ and €qu(™ has proven to be very
difficult to penetrate analytically. Instead, we shall explore these spaces prob-
abilistically, by selecting a large number of “random” configurations in these
spaces. As the size of the sample of this Monte Carlo search increases, one ob-
tains a better understanding of the spaces, the topological knot types realized,

and the minimal stick numbers of those knots.

Consider generating a random geometric knot in Beo(™). By a homothety,
any knot type which occurs in ®eo™ will be realizable by a polygon in the cube
[0, 1]3. This allows us to restrict our attention to the subspace Beol™ N[0, 113",
In this case, one Monte Carlo approach is quite straight forward. With respect
to the uniform distribution on the interval [0, 1], one selects a list of 3n numbers
to represent the coordinates of the n vertices of the polygon. Geometric knots
are obtained by connecting these vertices by linear segments cyclically.

A helpful tool in the study of the spaces €qu(™ of equilateral knots is the
pivot transformation. A pivot is determined by a pair of non-adjacent vertices
of a polygon, which separate the regular n-gon into two pieces, together with
a pivot angle ¢ € [—m,n]. The pivot transforms the polygon by holding the
image on one of these pieces fixed and rotating the image of the other piece
about the axis through the two designated vertices by the given angle. Up to
a rotation of euclidean 3-space about the same axis, the result of the pivot
will be equivalent to the one given by reversing the roles of the two pieces.
Furthermore, if ¢ is sufficiently small, the new polygon will have the same
equilateral knot type as the one with which we started. The following two
theorems assist in the study of equilateral knot spaces.

Theorem 1. (Proposition 2.1 in Millett!®) For any two equilateral polygons
in un(”), there is a finite sequence of translations, rotations, and pivots taking
one polygon to the other.

This theorem is helpful in the study of Question 2, as it provides a method
to construct any possible knot type. If the knots are based at (0,0,0) and
the second vertex is (1,0,0), then translations and rotations are not required.
Since all knot types have a representative of this sort, pivots are the only
transformations required. Similar methods show that any path connecting two
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equilateral polygons in &qu(™ can be approximated as closely as desired by a
sequence of pivots. This implies that the pivots generate all possible paths, a
fact of relevance in the study of a geometric knot type.

2.2. Recognition of knot type

Omne important tool in the study of knot spaces has been the calculation of
knot invariants that can be used to identify knot types in the standard classifi-
cation of knots. Historically, the Alexander polynomial has been the principal
example, and it continues to be a popular one due to the relative ease of its cal-
culation. Since 1984, however, this has changed with the creation of the Jones
polynomial and its successors, the HOMFLY polynomial, the Kauffman poly-
nomial and, more recently, the “quantum” and Vassiliev finite-type invariants.
While, in theory, these are impractical due to the complexity of their compu-
tation, they actually are remarkably effective in practice. In addition, certain
simplifications have proved to be helpful?’ Based upon the observed computa-
tional complexity of, for example, the HOMFLY polynomial, one might make
the conjecture: “The invariant of the generic knot is easy to compute.”

The HOMFLY polynomial is a finite Laurent polynomial in two vari-
ables, [ and m, with integer coefficients associated with each topological knot
type®13-14 For the 2977 prime knots represented with fewer than 13 crossings
there are only 76 cases that have the same first term as the trivial knot. By con-
sidering the entire invariant, these are easily eliminated. Furthermore, most —
though not all - chiral knots are distinguished by their HOMFLY polynomial?
Thus, although there are small families of knots having the same invariant, the
HOMFLY polynomial is a good assay for determining topological knot type
when dealing with small crossing and stick numbers. For a first estimate, we
use distinct HOMFLY polynomials as a surrogate for distinct topological knot
type; note that we do not identify chiral presentations.

3. Results of search.

In this section, we will describe a number of numerical calculations. Many
of these are in a rather preliminary and incomplete state. In particular, we
address Questions 1 and 2:

e How many distinct knot types are there in Geo(™ or €qu(™ as a func-
tion of the number of vertices?

i Knot 949 is an example of a chiral knot that has the same HOMFLY polynomial as its
mirror image.
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o What are the stick numbers s(K) and s'(K) of all knots K with nine
or fewer crossings?

For eo(™), partial results of research in progress are shown in Figure 4 and
Table 1. In this computation, » points are selected randomly within the unit
cube [0, 1] and connected cyclically by linear segments. The HOMFLY poly-
nomial of the resulting knot is then calculated. The polynomials are counted
to estimate the number of distinct knot types.

Figure 4 shows a plot of the number of distinct HOMFLY polynomials
observed in Beo(™ as a function of n. Note that growth in the number of
polynomials gives an estimate of the number of knot types represented. This
data clearly indicates the exponential growth in the topological knot types as
a function on n. Since, asymptotically, knots are chiral one should divide the
number of HOMFLY polynomials by two to estimate the number of topological
knot types up to mirror image.

Table 1 displays the observed stick number s(-) for all knots with nine
or fewer crossings. Where possible, exact results, such as those discussed in
Section 1.1, are given; these are marked by stars (x). Otherwise, the table indi-
cates the smallest n observed in the Monte Carlo search for which a realization
of a given knot type exists.

For (Equ("), partial results of research in progress are shown in Figure 5
and Table 2. In this case, the pivot transformation is successively applied,
beginning at the regular polygon, and the HOMFLY polynomial is calculated.
Then the number of distinct polynomials is counted. Figure 5 shows a plot
of the number of distinct polynomials obtained in the search of each space,
providing a rough estimate for the total number of distinct knot types in Equ™
as a function of n. In addition to exploring qu{™ for the relatively small values
of n shown in Figure 5, the Monte Carlo search was also performed for Equ®0),
in which case realizations of every knot listed in Table 4 were found. However,
the exploration of €qu(™ for the smaller values of n is still at an early stage.
Table 2 displays the observed equilateral stick number s'(-) for all knots with
nine or fewer crossings found thus far by these Monte Carlo searches. As in
Table 1, minimal stick numbers are marked by stars (x).

For larger n, the computational power that is required to obtain an accu-
rate approximation to the total number of knot types realizable in Geo(™ or
€qu(™) can be overwhelming. In practice, one observes only a fraction of the
total number of knot types, even after a large number of observations have
been made. For example, the case of fifty edges is shown in Figure 6a, which
plots the growth in the number of distinct knot types K observed as a function
of the number ¢ of samples taken. After a tota)l of 13,750,000 Monte Carlo
observations in €qu(®® a total of 2935 distinct HOMFLY polynomials have
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Table 1: Observed geometric stick numbers s(-) for knots with nine or fewer crossings.
Stars (x) indicate cases for which the minimal stick number is actually known.

K s(K) K s(K) K s(K)
0 3* 813 11 999 14
814 11 993 14
3 6* 815 12 994 12
816 9* 995 15
44 7* 817 9* 996 12
818 9 997 12
51 8* 819 8* 998 12
59 8* 820 8* 999 15
891 9* 939 13
61 8* 31+ 5 12 93; 13
69 8* 31 —5¢ 11 939 12
63 8* 31+ 52 12 933 12
31+ 31 8* 31 — 59 12 934 12
31 -3 8* 4, + 4 11 935 13
93¢ 14
71 9* 9, 13 937 14
T2 9* 9, 14 9ag 15
73 9* 93 12 939 13
T4 9* 94 14 940 9*
Ts 9* 9g 13 941 9*
Ts 9* 9% 13 949 9*
7 9* 9, 12 943 10
31+ 4, 10 9s 13 944 10
99 13 945 10

81 10 %10 13 946 9*
8, 11 911 13 947 12
83 12 92 12 948 12
84 10 943 13 940 11
8 12 914 14 31+ 64 13
86 12 915 11 3; -6 13
87 12 96 14 31+ 69 14
8s 11 917 14 31— 6, 14
89 12 918 13 31+ 63 13
810 12 919 13 41+ 54 14
811 10 920 13 41+ 59 15
812 12 921 14 31+3;+£3; 10*
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Figure 4: Growth in the number of distinct HOMFLY polynomials observed in Beo™),
plotted as a function of n.
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Figure 5: Growth in the number of distinct HOMFLY polynomials observed in Cqu("),
plotted as a function of n.
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Table 2: Observed equilateral stick numbers s’(-) for knots with nine or fewer crossings.
Stars (%) indicate cases for which the minimal equilateral stick number is actually known.

K 5K K 5(K)
0 3 73 12
74 12
31 6* s 11
Te 12
4, ™* Ty 12
31+ 44 11
51 8*
52 8* 8 12
813 12
61 8* 814 12
69 8* 819 9
63 8* 820 10
31+ 31 9 821 10
313 10
949 9*
71 12 945 14
72 12 946 14

been found. However the shape of the graph indicates that this number is
likely to increase significantly after more sampling.

The situation can be likened to a “fish problem,” where one wishes to
determine the number of species of fish inhabiting a lake via random sampling
of the population. The problem, in the case of knots, is complicated by the
fact that the relative proportions of species are far from being uniform. One
solution is to approximate the observed values of X with a function which can
then be used to estimate the total number of knot types possible. The data
collected during the Monte Carlo searches suggests a function of the form

K() =N (1- 4e™). (9)

Here the parameter N represents the total number of knot types realizable
with n sticks. We consider the sequence of total knot types observed after,
say, every 250,000 samples and find the best fitting curve of the form in (9)
for these data points. This is done by taking some small integer 5 > 1 and
considering successive differences of the form

Kit+37)—K(@t)=NA(1~e " )e ",
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Figure 6: Growth in the number K of distinct knot types observed in cqu®? as a function
of the number ¢ of samples. Each unit in ¢ corresponds to 250,000 samples.
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Table 3: Approximate number of knot types N in Equ(so).

N R?
3471.6 0.997536
3701.0 0.997046
3828.0 0.996360
3826.4 0.996369

LN e

A least-squares regression fitting a line to In (K(t + j) — K(¢)) will then yield a
“good” value for the parameter k. The desired parameter N is then found by
a second least-squares regression fitting a curve of the form in (9) to the data
points of K.

Table 3 shows the approximate total number of knot types N obtained by
using j = 1,2, 3,4 for the Monte Carlo searches for €qu(5?). The coefficient of
determination R? for the corresponding curve fit is also indicated in each cased
Of these, the better approximation seems to come from j = 1, in which case

K(t) = 3471.61 — 3305.46¢~0-03138¢ (10)

Figure 6b shows a plot of this function. This predicts a total of about 3,472
distinct HOMFLY polynomials, providing a conjectured lower bound for chiral
knot types in Equ5?).

4. Conclusions

The Monte Carlo approach described in Section 2 seems an effective means
for producing rough estimates, both in the general case of polygons with arbi-
trary edge length and in the case of equilateral polygons, of the total number
of knot types in each knot space and of the minimal stick number for each
topological knot type. In particular, Tables 1 and 2 in Section 3 are the only
available compilation of stick number information for all knots with nine or
fewer crossings of which we are aware.

7 The coefficient of determination R2 is a classical statistical tool measuring how well a
curve fits a data set. The better the fit, the closer R? is to 1. Given a data set {p; hieqa,... m)
with mean P and a curve ¢(%) approximating it, the coefficient of determination is defined as

the ratio
D e DA T O) el

R*= -
Ei:l(pi - 5)2
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Although the results in Section 3 are only preliminary, one lesson is clear:
The amount of sampling required to give an accurate estimates for these quan-
tities will be staggering. For example, consider the data for the Monte Carlo
search in €qu5%). After 13,750,000 observations the search has revealed 2935,
or about 85%, out of a conjectured 3,472 distinct HOMFLY polynomials. Ac-
cording to the prediction curve (10), it should take an additional 20 million
observations before finding 98% of the conjectured total.

Of course, deeper statistical analysis of the data, especially in regards to
the non-uniform distribution in the population of knot types in these spaces,

is likely to yield better information in both these areas.
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CHAPTER 8

ENTROPY OF A KNOT: SIMPLE ARGUMENTS ABOUT
DIFFICULT PROBLEM

A Yu. GROSBERG
Department of Physics and Center for Materials Science and Engineering,
Massachusetts Institute of Technology,
Cambridge, MA 02189, USA
and
Institute of Biochemical Physics, Russian Academy of Sciences,
Moscow 117977, Russia

The idea of maximally inflated tube representation of a knot is employed to examine
the question of knot entropy, which essentially reduces to how many “conforma-
tions” are there corresponding to a given knot topological type. Simple scaling
arguments are given, bringing the entire seemingly intractable problem of knot
entropy into the realm of simple conventional methods.

1 Introductory remarks

For this book, I don’t have to argue that knots are beautiful and important.
They are indeed. Knots appear in very different contexts throughout physics,
from astrophysics to string theory. They are also challenging as regards their
mathematical and/or physical understanding. To be short, they are interesting.

Most of what is known about knots mathematically has to do with their
classification and the theory of topological invariants. This has been the
main stream of knot theory since the time of P.G.Tait, W.Thomson, and
J.C.Maxwell, and at the present day it still remains in the focus of attention.

However important, the theory of invariants does not solve another major
aspect, which remains at best on the periphery of attention. I have in mind.
here what can be called the general problem of “knot entropy.” To explain,
I shall concentrate on the special case of knots made up by a long molecular
chain of a polymer, such as DNA.

In general, polymers provide a unique application for knot theory. Indeed,
while in many other arenas of physics knots appear as a result of an abstraction,
knots in DNA as well as in other polymers are very real ones. They can be
directly seen in experiments 2. They are of very obvious meaning, as polymer
molecule is a classical object very much similar to a tiny rope.

In this paper, I shall be using approach and terminology which may be
very unusual and even disturbing for the knots community. I do that because
the problem I am trying to address is so difficult that does not seem to allow
fruitful mathematical sophistication. It remains on the level where one can
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only exercise physical intuition in an attempt to extract testable (by a real
and/or computer experiment) conclusions. This is why I do not attempt doing
any mathematics and resort to physical arguments. Nevertheless, I make every
effort possible to keep mathematically or topologically oriented reader as long
as possible. If the reader can forgive me using sometimes “no knots” instead
of “trivial knot” - we can continue. Having said that, I now directly switch to
my subject.

2 Basic definitions

Imagine that we are given some polymer chain (for instance, DNA) which is
closed circular and, therefore, makes a certain knot. Even if we knew the
knot type, and were able to fully characterize it, this itself does not allow to
understand physical properties of interest, such as, for instance, averaged size of
the molecule in solution, its fluctuations, etc. All those quantities are affected
by the topology, they depend on the knot type, and this is relevant both
physically and biologically, not the topology itself. As long as thermodynamic
equilibrium is concerned, all one needs to compute is the partition function,
which can be written in the form

(K)

Zi =Y BT (1)
9

Here I use the following informal notations: K denotes the topological type of
a knot; C stays for a closed curve in three-dimensional space; E(C) is energy
of the polymer when its backbone conformation follows C; T is an absolute
temperature in energetic units; most importantly, ((:K) ... Ineans summation
over “all” curves C whose topology is that of K.

The topology-oriented reader may be wondering as to what is the energy
E(C). Physically, it can be either attractive or repulsive interaction between
parts of the polymer that come close to each other in space, although they may
be arbitrarily far apart along the chain contour. with 0 < s <1 fraction of
total length. distances. I shall not explain more about the energy; I mention
that physicists believe to have a pretty good understanding of that part, and
this is why I shall concentrate on the (mathematically) simplest case when
E(C)=0.

Other details in equation (1) may also vary: C may be a path on a lattice
for lattice models of polymers; C may be a broken line for the freely-jointed
models of polymers; many other models are also possible. I leave aside here
the (difficult) problem as to how to understand this sum for the continuous
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cases, whether Wiener measure or something else should be employed, etc.
Whatever its precise mathematical meaning, the partition function (1) is the
physical quantity of interest (not the only one, though; other quantities may
be of interest for kinetics of knotted polymers). Fx = —T'InZg = Ex — TSk
is the relevant free energy. As I assume the energetic part Ex to vanish,
the problem is about Sk, which I call entropy of a knot. For example, in
the notations of the equation (1), equilibrium dimension of a polymer can be
written as

s (R2) % ,  elmE@)T]

R’=(R%), = R =
T el-B(C)/T)
(K)

= 3 REelFxBO/T] -
C

(K)
= > REel=Sx, @)
C

where the £ = 0 condition is taken in the last transformation, and
1
Ri= / ds / ds' [7(s) — 7(s) 2 (3)

gives the gyration radius of the polymer while in microconfiguration C; 7(s)
represents the curve C, with 0 < s < 1 being the arc length along: the curve,
expressed as a fraction of total length. Of course, the average value R? depends
on topology K.

Relatively few computational studies, let alone analytical theories, have
been attempted so far to examine the problem. In the work?3, we employed the
idea of knot inflation, which is the central subject of this book, and suggested a
kind of Flory theory to describe equilibrium dimensions of a knotted polymer,
depending on both knot topology and a variety of factors controlling interac-
tions, such as temperature, solvent conditions, etc. In this article I present
a generalized and simplified version of that theory, which neglects and does
not treat the energy part (which is physically interesting, because it can be
controlled by solvent and temperature conditions).

The work is organized as follows. In the next section 3, the critical expo-
nent mu is defined which determines the size of an ideal ring polymer with the
topology of a trivial knot. This incorporates also fair amount of introductory
information about knots, useful for a polymer-oriented reader, as well as some
scaling concepts which may appear new for a topology-oriented reader. Then,
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in the section 4 we discuss the main results of the work, which is how to apply
the idea of maximally inflated knot representation to scaling analysis of knot
entropy.

3 Critical exponent for a polymer ring with the topology of a trivial
knot

I keep considering the simplest case of no interaction energy, E(C) = 0. In poly-
mer physics language, this is called “an ideal polymer,” because it is in some
ways similar to an ideal gas. Physically, if there is really no interaction between
parts of a polymer, then one would assume these parts to freely pass through
each other, with the consequence of relaxed topological constraints: such a
polymer would freely go from one knot topology to the other. Thus, what I
really want to speak about is a delicate extreme: I assume that E(C) = 0, but
there is still infinitely high, albeit infinitely narrow, barrier which prohibits
passing of the polymer segments through each other. If that is the case, then
the only remaining part of free energy is entropy

(K)

SK=ln21- (4)
c

which is precisely the entropy of a knot K. It has also clear probabilistic
meaning, as

ZéK) 1 Sk
Pr = = ) 5
K el YK €K ©)

is the probability to find the knot K upon random choice of a curve C (from a
set of interest).

8.1 A reminder: probability of a trivial knot for an N-link ring decays expo-
nentially with N.

Probabilities Px have been extensively studied numerically. Some results are
summarized in the Figure 1. Many interesting observations can be done using
this wealth of information. What becomes clear almost immediately is the fact
that the data for a trivial knot probability fit remarkably well to the equation

Po(N) = exp[—~N/No] , No =335 . 6)

The very fact of exponential behavior is by no means unexpected: it was
predicted by a theorem proven as early as in 1988 7. What is unexpected,
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Figure 1: Simulation data for probabilities to find certain knots upon random closure of an
N-segment broken line, as a function of N. (A) Early data from the review article4. At this
time, people used to think of conformations with knots being something unusual, which may
or may not be seen at all. This is why what is plotted here is probability of any non-trivial
knot Z K#0 Pk = 1—Po. (B-D) Data from the work®. The data for trivial knot probability

fit remarkably well to the exponential equation 6.

however, is the value of Ny. Apart from a highly controversial approach &, I
am not aware of any attempt to compute this quantity theoretically. It is also
even qualitatively unclear, why this number is so large. One could relate it to
the entanglement number N,, which is known in the reptation theory 1° and
which is also of order of tens or hundreds. It remains a challenge to understand
the relation of these two numbers.

Exponential formula (6) can be “understood” in terms of blobs: our poly-
mer consists of N straight segments and can be viewed as a connection of N/g
blobs, each consisting of g segments. In order for the

entire polymer to be unknotted, it is necessary that each of the blobs is
unknotted, which yields Po(N) < [’Po(g)]N/ 9. The exponential formula results
from here by replacing inequality with equality. This means that the most
“dangerous” knots, which dominate the probability, are those occurring at
relatively small scales, as opposed to the scale of a polymer as a whole. This
fact itself validates the wording employed above (“each blob is unknotted”
etc).

Thus, in N — 0o extreme, vast majority of all contours will be of non-
trivial topology.
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8.2 A conjecture about the size of an ideal trivial-knotted ring

A naive intuition often misses the difference between trivial knot, which is
“no knots” at all, and no topological constraints, which is the mixture of all
possible knots. For the later problem, computation of the size, or average
gyration radius (eq. (2) at E(C) = 0), is straightforward. The result is of the
form

RO ~ oNY? (7
where a is either a length of one straight segment if C are broken lines; or it
is a lattice constant if C are paths on the lattice; or a is a typical curvature
radius (so-called persistence length) if some more sophisticated model for C
is employed (such as, say, wormlike polymer). In what follows, let us choose

units of measurement such that a = 1. Square root formula (7) is due to the
fact that the average is dominated by the majority of contours, which is of the
random-walk type.

Now imagine, that we want to compute R for a trivial knot. As trivial
knotted rings represent very tiny subset of all contours, there are no grounds to
assume that average over the subset will yield the unchanged answer (7). On
the other hand, simple self-similarity argument suggests that R has to remain
a power law function of N, and thus we can write

thrivial ~ N*# ) (a‘ = 1) . (8)

Here u is some critical exponent, the value of u we do not yet know. Simple
arguments show that
1/2<pu<1, 9

where the left-hand-side estimate follows from the fact that more compact
contours are more likely to be non-trivially knotted, and thus the unknotted
subset is enriched with more extended forms. I stress, however, that I am
not suggesting any proof, and it is still possible that in reality p = 1/2. In
general, the problem to find g seems to be interesting and challenging. The
first attempt to approach it by means of Monte-Carlo experiment has been
reported in?, but I am not aware of any theoretical works in this direction.

In what follows, I shall simply assume that there exists some exponent p,
and shall express all other quantities of interest in terms of . What seems to
be attractive in such an approach is how many various quantities appear to be
related to u.

3.8 Applying scaling arguments: confinement of an ideal trivial knot.

The power law expression (8) reflects self-similar character of polymer confor-
mations and can, therefore, serve as the basis for far-reaching scaling consid-
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Figure 2: Schematic representation of a trivial-knot polymer confined in a tube.

erations, well known in polymer physics . As an (important) example, let us
consider the following problem. Consider a cylindrical tube of the length L
and diameter D, with axes ratio p = L/D (Figure 2). Imagine now an ideal
polymer and suppose that its ends are attached to the two opposing ends of
the tube. Imagine further, that the polymer is confined within the tube. In
this situation, although polymer is not a ring, its topology is perfectly defined
(because ends can be formally connected outside of the tube). Let us assume,
that this topology is the one of a trivial knot.

The question one may ask is this: how does the confinement affect the
entropy of a knot? Clearly, if the tube is very long, then most of the confor-
mations are more or less close to the axis line of the tube, this restricts the
number of conformations and thus reduces entropy. On the other hand, if the
tube is too short, restrictions from the sides come into play and reduce entropy
as well. It turns out that these changes in knot entropy can be expressed in
terms of .

Before approaching this problem, however, it is useful to consider a simpler
one. Imagine that one of the ends of the tube is designed as a piston and can
move freely along the tube, such as the occupied length along the tube, Ly,
is defined by the thermodynamic equilibrium of the system. What will be an
equilibrium length? In other words, what is “the most comfortable” length L,
for an unknotted polymer in the tube of a given diameter D? Mathematically,
this length corresponds to the average, and we assume that the average is the
same (to scaling accuracy) as the most probable (or entropy maximizing) value;
this assumption is a kind of mean field approximation, of course. To find Ly,
or pg = Lo/D, we can follow the lines of the scaling consideration of a similar
situation for a polymer with excluded volume 1°. Namely, let us introduce
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blobs (Figure 2) such that their sizes are controlled by the tube diameter, D.
Each blob is unknotted; indeed, its “ends” are attached to the neighboring
blobs and, therefore, its topology is defined - just as well as the topology of
the entire polymer. Therefore, the length of the polymer, g, within each blob
is given by g# ~ D (compare at eq. 8)), or g ~ DY/#. As the number of blobs
is about N/g, and each of them occupies the length about D along the tube,
we finally arrive at

Lo~ (N/g)D ~ ND~Y/» po =Lo/D~N/g~ND"Y*  (10)

Clearly, the entropy change due to the restriction in the tube is negative,
because the restriction reduces the number of possibilities, and its absolute

value of order unity per each blob. Therefore, entropy change due to the
confinement is of order

ASy~ —N/g~ —po~ —NDV+ (11)

As one would expect, both Ly and po decrease as D increases. Entropy of
confinement, |ASp|, also decreases simultaneously, because increase of D means
weakening of the restrictions.

In this argument, one assumption is actually hidden: it is assumed that
consecutive blobs prefer not to overlap. This is justified by the fact that lion’s
share of conformations of two overlapping coils correspond to non-trivial links
(for the same reason as most of rings are non-trivial knots), while our blobs
must avoid being entangled to each other, as chain as a whole is a trivial knot.

Thus, the general line of arguments is very similar to that for the “real”
polymers with excluded volume 1°. I shall, therefore, bring further scaling
arguments without going into their details.

Let us now return to the original question: suppose that L is fixed, and let
us find the entropy change due to confinement. Two cases should be considered
separately: L < Lg and L > Lg, when polymer is compressed or extended,
respectively. If L > Lg, the polymer is extended and, therefore, dominated
by the conformations which (almost) never touch the walls of the tube; vast
majority of conformations are restricted within the sausage-shaped area whose
diameter can be estimated using Pincus argument 10, yielding entropy estimate
of the form AS ~ — (L/N ”)1/ (=) which is conveniently presented in the form
AS ~ ASy (p/ po)l/(l"“). In the opposite extreme, when L < Lg, the polymer
is compressed, lion’s share of conformations are such that they fill more or
less evenly all the available volume. In this case, blobs must be based on
concentration considerations '°, and this yields AS ~ — (LD?/N3*) 1/(1=3u)
1/(1-3p)

?

which can be also rewritten as AS ~ ASq (p/po)
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The above results can be conveniently summarized in the form of the
following interpolation expression:

AS o o LNOT(NE\VED (12)
- N# LD?

1/(1—p) 1/(3u-1)
p Dbo
— = +(= . 13
bo [(Po) ( p ) ' } (13)

This reproduces both asymptotics of L > Ly and L < Lg cases, and has also
maximum at L = Lo, reflecting the fact that Lg is the most probable size for
the polymer in the tube with open ends. As all these arguments do not pretend
for more than just scaling accuracy, we don’t have to worry about inaccuracies
of the interpolation expression (13).

1

4 The central idea of this work

Consider now a polymer with the topology of an arbitrary knot. Let us assume
that this polymer occupies the spatial region of overall size R. The question is
how does the knot topology affects the conformational entropy?

To address this question, the idea of knot inflation (or, the same, ideal knot
representation !!; see also 12) was suggested 3. My favorite way to describe
this construction is the following. Imagine that the length of our polymer
is fixed and equal L. Let us now draw the tube of some very small radius
which contains our polymer as an axis and which has the same topology as
the polymer. Let us now inflate this tube. We assume, that parts of the
tube cannot penetrate each other, that the axis line remains of the length
L, and that the cross-sections of the tube remain all of the same diameter.
Then inflation will eventually stop at some maximal diameter D, and both
maximally inflated shape of the tube and, in particular, axis ratio p = L/D
are topological invariants. This is described numerously throughout this book,
albeit maybe in somewhat different words. Now comes the way (or, perhaps,
one of the ways) to actually use this topological invariant.

Let us perform the affine transformation of the maximally-inflated tube
(only the tube, not the polymer!) such that the tube fits into the sphere
of the size R; let us call this R-size tube. Length Ly and diameter Dpg of
this R-size tube are easily found from the conditions that L r/Dr = p (affine
transformation) and LgD% ~ R3 (fits into R):

Lp~ Rp*/® Dp~ Rp~/3 (14)
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Here comes the main point of this work: let us assume that conformations
of a ring polymer with the topology of a knot K are dominated by those of a
trivial knot confined within the R-size tube of K. To motivate this idea, let us
note that the topology of an unknotted polymer confined within the properly
knotted tube is bound to be that of K. On the other hand, confinement
entropy does not depend on the way the tube is embedded in the surrounding
Euclidian 3D space. Therefore, eq (13) directly applies, and, upon substituting
the values of Lg and Dg, yields

SK = Strivial +AS~

N Sivial = B2 (1) _ g3/Gu-1) (15)

Here Si:ivial is the entropy of a trivial knot (with the same value of N, of
course), and

B = R/N* (16)

characterizes the actual size of a polymer, R, as compared to the averaged size

of a trivial knot, N¥.
We can now maximize entropy with respect to R (or 8). The value

B p=3W/3 o R~ NHp(l=3u)/3 (17)

is the most probable one, and, to the approximation employed here, is also the
average. Upon substituting it into eq (15), we get the following approximate
expression for the entropy of an arbitrary knot:

Sk = Strivial — constp , (18)

where const is some number generally of the order unity which depends neither
on polymer length N nor on the knot characteristic p. Finally, we can easily
note that (i) Siriviat should be proportional to N and thus can be generally
written as Siiviat = SN, and (ii) the number of possible trajectories should
be substantially reduced such that Sk ~ 0 for maximally tightened knot, for
which p ~ N. From those two conditions, we arrive at

Sk =s[N—p| . (19)
This is the main result of the work.
5 Discussion

Equation (19) tells us that the entropy of a knot decreases with increasing knot
complexity, p; specifically, it appears linear in p. Although the scaling-based
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approach suggested in 3 and further discussed here is unable to compute an
absolute value of entropy, presented as the coefficient s, what it can do is to
follow the change of entropy from one knot to the other.

To properly understand this result, one has to keep in mind the range of
change of p. It reaches its smallest possible value of 27 for the trivial knot, and
it grows up to about N for maximally tightened knots. To scaling accuracy,
minimal value of p is negligible, because it should be compared to N. On
the other extreme, the condition that p < N means simultaneously, that the
minimal length of a polymer which is able to create a given knot is given as
N =p.

The result (19) yields very simple conclusion regarding the probabilities
of knots Pk, (5). To find it, one has to compute the normalization factor (or
the partition function), }_, exp [Sk]. To do that, it is natural to switch from
summation over all types of knots, K, to integration over p. This brings about
the corresponding Jacobian, or yet another entropy, which is the number of
different topological types at the given value of p. This quantity, X(p), has
been argued 3 to grow exponentially with p: K(p) ~ e*?. With that in mind,
one can write

eSk es[N—p]
Pk = Sk _ [N tolN—vl
ke S dptexe+sIN-v]
= exp[—(A—s)N —sp|] . (20)

—s
Given that N > p, we finally arrive at

0 when N <p
Pr(N) ~ { exp(s(N—p)—AN] whenN>p °’ (21)

where constant factor is not written. Clearly, the plot of Pg(N), according
to the result eq (21) and as shown in the Figure 3, looks somewhat similar to
the numerical data, Figure 1, C: it is peaked at intermediate value of N and
decays exponentially at large N. It follows that (A — s) = 1/Np.

Of course, the very primitive and schematic theory presented here cannot
pretend to quantitatively reproduce numerical data. However, it is interesting
to understand in which region this theory encounters difficulties: as is seen
from comparison the figures, the problems are in the moderate N region, or,
better to say, in the IV of order p region. It becomes, therefore, clear that
imperfections of the theory are in the range where knot is close to maximal
tightness, and cannot be really inflated too much. In this case, the situation is
obviously largely non-universal, it depends on the microscopic details, such as
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Probability

Figure 3: N-dependence of the probability that N-segment polymer ring will be found in the
state whose topology is characterized by a given value of p. This dependence is qualitatively
reminiscent of the one shown in Figure 1, C.

a particular mechanism of flexibility of the polymer (lattice walks as opposed
to broken line type trajectories or to worm-like ones).

Another aspect of the results is the equation (17), which tells us how
the most probable size of an (ideal) polymer depends on p, i.e. on the knot
topology. Clearly, the qualitative trend is that the polymer is getting more
compact when knot is getting more complex. This aspect was discussed in
more details in the work 3. .

To summarize, it has been shown in this article that the idea of maximally
inflated knot representation can be fruitfully used to approach the problem of
knot entropy. It does yield qualitatively reasonable predictions for knotting
probabilities. According to the work 3, it can also serve as a reasonable basis
to examine the response of a knotted polymer to a variety of physical influ-
ences, such as repulsion or attraction between polymer segments. It remains
a challenge to examine the problem of “phase segregation” of knots, as it was
mentioned in 3.

6 Additional Note

When the present work has already been completed, the Editor of this book,
Dr. A.Stasiak, paid my attention to the following interesting aspect of the
results and their comparison to computational data.

In my original version of the Figure 1, there was a mistake (noticed by
A Stasiak) in labeling data for the knots 5; and 5;. Correctly labeled figure
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indicates that the probability is higher for 5 than for 5; (Ps, < Ps,). On the
other hand, equation (21) can be treated in terms of its p-dependence: it says,
that for the polymers of a given length, N, the probability to obtain a given
knot decreases exponentially with the value of p characteristic for that knot.
Formally, this contradicts to the example of 5; and 52: topological invariant p
is higher for 5, than for 5;. However correct formally, this argument does not
rule out the theory, but requires that both the scaling nature of the theory and
its limitations be stressed once again. Specifically, one must keep in mind that
the approximate scaling theory cannot and does not pretend to be numerically
accurate; a “good” scaling theory can capture only overall tendencies and
scaling dependencies. Of course, it remains to be seen if the scaling theory
described above is “good” or not. But even if it is good to the best of my hope,
it remains a challenge to improve it and incorporate additional properties of
knots, such as writhe and others.
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CHAPTER 9

Approximating the Thickness of a Knot

Eric J. Rawdon
Department of Mathematics, Chatham College, Woodland Road,
Pittsburgh, PA 15232, USA

The thickness of a unit length C? knot is the radius of the thickest “rope” one
can place about a knot at the instant that the “rope” self-intersects. Thickness is
difficult to compute for all but a few examples. To use computers, a polygonal ver-
sion of thickness must be defined. The most natural definition does not correctly
approximate thickness so a different polygonal version is necessary. This paper
contains a definition of a continuous polygonal thickness which correctly approxi-
mates smooth thickness. Results on approximation and continuity are stated and
examples given of thickness approximations.

1 Introduction

The thickness of a C? knot was first defined in!. While several subsequent
definitions have been given in 2~% we focus our attention on the definition
in! for the remainder of this paper. Computing the exact thickness of a
knot is difficult task; the thickness of a planar circle and some torus knots
can be computed, but few other exact calculations are possible. Thus, we
need to define a polygonal version of thickness which can be implemented in
a computer application to approximate the thickness of a smooth knot. For
the computations to be stable, the polygonal thickness function must also be
continuous on an appropriate space of polygonal knots. There is a natural
definition of polygonal thickness used in - which is defined by analyzing the
intersection of non-consecutive cylinders placed about each side of the polygon.
However, it does not correctly approximate the thickness of a large class of
knots.

In this paper, we define a polygonal thickness function and sketch the proof
that it correctly approximates the thickness defined in! and is continuous. We
then use the polygonal version to approximate the smooth thickness of several
curves. In section 2, we review the theory of smooth thickness presented in!. In
section 3, we define a natural cylinder thickness function and show that it does
not correctly approximate the thickness of a planar circle. Section 4 contains
the definition of polygonal thickness and a sketch of the approximation proof.
In section 5, we consider continuity. In section 6, we show examples of thickness
approximation for knots with known and unknown thickness measures. This
paper is a shortened version of ° and is based on work from my Ph.D. thesis
10 The proofs of the theorems presented here appear in both® and 1°.
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2 Thickness Review

This section contains background material on smooth thickness from!. Sup-
pose K is a C? submanifold of ®2 which is homeomorphic to S!. We call K a
smooth knot. For each z € K, let N,(z) be the disk centered at z which lies in
the normal plane of K at x. For sufficiently small r, the union of N, (z) form a
tube about K in which N,(z) N N, (y) = @ for z # y (call r > 0 acceptable if it
satisfies this condition). Define the injectivity radius, R(K), as the supremum
of acceptable radii. Thickness, 7, is then the ratio of injectivity radius to the
length of the knot and ropelength, p, the ratio of knot length to injectivity
radius. Note that 7 and p are both scale invariant. Let minRad(K) be the
minimum radius of curvature over the points of the knot and desd(K) (doubly-
critical self-distance) be the minimum distance between distinct pairs which
are critical points of the map (z,y) — ||z — y|| (called doubly critical pairs). It

is shown in! that R(K) = min{minRad(K), él‘;fﬂ}. Polygonal versions of
minRad and dcsd are utilized in defining polygonal injectivity radius.

3 Cylinder Thickness

There is a natural definition of polygonal injectivity radius. Consider placing
cylinders of a given radius about each side of a polygonal knot. Call a radius
acceptable if no two non-consecutive cylinders intersect and define the cylinder
injectivity radius to be the supremum of acceptable radii. The cylinder injec-
tivity radius is continuous on a space of polygonal knots, however it fails to
correctly predict the injectivity radius of a planar circle of radius r (which is
r) using any sequence of inscribed n-gons.

More specifically, consider a circle of radius 1. After inscribing regular n-
gons in the circle, elementary trigonometric calculations show that the cylinder
injectivity radlus is ——-5"— As n tends to infinity, the injectivity radius actually

decreases to 3 2 Thus, a dlﬁ"erent definition of polygonal thickness is needed to
satisfy both the approximation and continuity conditions.

4 Polygonal Thickness

Our goal is to prove that if P, = K, then R(P,) = R(K). Thus, we must
define both P, — K and R(P,). Our strategy for R(P,) is to define polygonal
versions of min Rad and desd defined in section 2 and prove that these functions
converge to their smooth counterparts component-wise. This strategy does
not work. However, the minimum of the discrete versions does converge to the
minimum of the smooth versions (see theorem 4.9). In the remainder of this
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section, we define P, = K, define polygonal thickness, and sketch a proof of
the approximation theorem.

We first present some terminology needed for the definitions. P, denotes
an n-sided oriented polygonal knot with vertices {v?,v?,...,v?_;} in R and
sides {S7,ST,...,Sn_,}, where v is an endpoint of S* , and SP. For ease,
the subscripts are always taken modulo n. Let |S?| denote the length of the
stick S7* and length(P,) = Y 1, ' |S*|. The norm of the polygon is defined by

||P || = max,e{o, ,,,_1} |S? and the consecutlve edge distortion by
[Sa-

IS"! IS"I 1571
= max{ {3, [sit 1651 Kb - st il }-

Definition 4.1 Suppose {P,}32 . is a sequence of polygonal knots and K is
a smooth knot. Then, P, = K if

1. The vertices of P, lie on the smooth knot K (i.e. P, is inscribed in K).

2. The vertices of P, lie in the “correct” order along the oriented curve K,
(i.e. v} lies between v}, and v}, on K).

3. limp_yc0 || Pal| = 0.
4. limy o0 E(Py) = 1.

5. P, has the same knot type as K.

Note that properties 1-4 imply property 5 for sufficiently large n. However,
properties 1-3 are not sufficient (see ®). While properties 1-3 are standard,
property 4 appears potentially restrictive on the sequence of inscribed polygons
one can use for approximation. The following result shows that the natural
choice for a sequence of inscribed polygons satisfies properties 1-5.

Theorem 4.2 Suppose f : R — R3 is an L-periodic C? parameterization (not
necessarily by arclength) of a smooth knot K. Let P, be the polygon created by

connecting f(0) tof(é) to f(&) to. tof( (n-1L L) f(L) = f(0). Then
there exists an Ny such that P, —+ K for the sequence {P,}2% . .

To define the polygonal version of the function minRad, we must first
define an analogue of radius of curvature for a vertex of a polygon. To motivate
the radius of curvature definition, consider two equal-length line segments,
R and S, which share a common endpoint v with the external angle at v
measuring a(v). Let I, and I, be the perpendicular bisectors of R and S
respectively. If 0 < a(v) < =, then I, and [, intersect at a point P which is
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P

Figure 1: motivation for the definition of polygonal radius of curvature

distance S from the midpoints of R and S. Thus, the arc of a circle
2tan 1(,1)-

with center P, radius » 2|, and total curvature a(v) can be drawn which
an 2

is tangent to R and S at their respective midpoints. See figure 1.

Definition 4.3 For a vertex v on P,, let a(v}') be the exterior angle created

S/ n
by S?_; and S? at v?*. Then r_(v}) = I ';(“’I,) yri(vf) = ISD(IV,,) ,and
2t

—
an 5 2tan 3

minRad(Pn) = min{r_(vg), r4(vg), 7-(v7), 7+(v7), - - .r- (v3_1), 7+ (va-1)}-

Definition 4.4 For a point x on P,, let D, : P, = R be defined by D.(y) =
|z — yl]. We call y a turning point for z if y is a local maximum or local
minimum of D,;. We call (z,y) a doubly turning pair if z # y, y is a turning
point for z, and z is a turning point for y. Let C(P,) be the set of all doubly
turning pairs of P,,. Then dcsd(P,) = min(; y)ec(p,) ||z — |-

Definition 4.5 Define the polygonal injectivity radius by

R(P,) = min{minRad(P,.), i‘lci‘;(f'ﬁ} :
the polygonal thickness by
_ _R(F)
m(Pn) = length(P,)’
and the polygonal ropelength by
_ length(P,)
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magnified region with an inscribed polygon

Figure 2: dcsd need not converge for inscribed polygons

Note that 7 and p are both scale invariant.

It is true that if P, = K, then minRad(P,) - minRad(K) (see theorem
4.6). However if P, — K, dcsd(P,) need not converge to dcsd(K). In figure
2, we see a knot K where dcsd(P,) /4 dcsd(K) regardless of the sequence of
inscribed polygons chosen. The dcsd of K is realized at the antipodal pair of
the small semi-circle. However, upon magnification of the semi-circle, we see
that no inscribed polygon contributes a doubly turning pair in this section of
curve. Consequently, dcsd(P,) converges to the diameter of the larger circle.

The proof of the approximation theorem is technical and relies on three
major lemmas.

Theorem 4.6 If P, — K, then minRad(P,) = minRad(K).

Lemma 4.7 If P, - K and minRad(K) < —J—Hc";K , then lim inf J—Jdc"d,lp" >
minRad(K).

Lemma 4.8 IfP, — K and dc—‘";(& < minRad(K), then dcsd(P,) — desd(K).

Combining these three results proves the desired approximation theorem.
Theorem 4.9 If P, — K, then R(P,) — R(K), 7(P.) = 7(K), and p(P,)) —
P(K).

We can extend smooth thickness to a family of thickness functions by
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defining Ry(K) = min {k - minRad(K), %251} where 0 < k < 1. In the
definition of R(K), we assume that the rope is infinitely compressible; that
is, an unknot could be “tied” with 2x inches of one-inch radius rope. By
changing k, we can simulate tying knots with rope that is less compressible.
This was suggested first by Y. Diao!! and later discussed in?. Define 7 and
pr analogously and by a similar argument, the following theorem holds.

Theorem 4.10 If P, & K, then Ry(P,) = Rk(K), n(Pn) = m(K), and
pr(Pn) = pk(K) for 0 <k <1,

Note that if P, = K, then the cylinder injectivity radius converges to
Ry (K). Now we know that polygonal thickness correctly approximates smooth
thickness and shift our focus to showing that polygonal injectivity radius, thick-
ness, and ropelength are continuous.

5 Continuity

The proof of continuity relies on an alternate characterization of polygonal
thickness. The theorems are more easily stated if we provide the following
definitions. For two fixed points z and y on P,, let B and C be the two arcs
of P, which connect x and y. Then the total curvature between z and y is

given by tc(z,y) = ming Y a(v}), Y a(v}) p. Note that if z happens
vEB vleEC

to be a vertex, then a(z) is a summand in both terms (similarly for y). Let

Ap, = {(z,y) € P, x P, | te(z,y) > }.

Theorem 5.1 R(P,) = min{minRad(P,.),min(,,y)eAP" llig_!ll}

Definition 5.2 For a fixed n, let
P, = {(vo,v1,...,Vn-1) € R3" | the resulting polygon is a non-singular knot}.

Theorem 5.3 Ry, 7%, and px are continuous on the P, for0 < k <1.

Now we know that polygonal thickness satisfies the desired approximation
and continuity properties. The final section uses the techniques stated here to
approximate the injectivity radius of some smooth knots.
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6 Approximation

In this section, we use the polygonal versions of R, 7, and p to approximate
their respective smooth values on four different knots. The images shown in
[Rawdon Plate 1], [Rawdon Plate 2], [Rawdon Plate 3], [Rawdon Plate 4] are
created by TOROS!3, a descendent of Ying-Qing Wu’s Ming'4. In the pictures,
the radius of the tube surrounding each side of the polygon is the calculated
polygonal injectivity radius.

In [Rawdon Plate 1], we approximate the injectivity radius of a planar
circle of radius 1 (which is 1) using regular inscribed n-gons. The number
below the picture is the computed polygonal injectivity radius.

In [Rawdon Plate 2], we approximate the injectivity radius of a smooth
(2,1)-torus-knot using the algorithm in theorem 4.2. The knot lies on a torus
where the larger radius is 4 and the smaller radius is 1. Each point on the knot
has an antipodal point (on one of the cross-sectional circles of radius 1) with
which it is a doubly critical pair. Thus, the injectivity radius of this curve is
1. The number below each picture represents the computed injectivity radius
of the inscribed n-gon.

Harmonic knots!® are knots which have coordinate parameterizations given
by trigonometric polynomials. In [Rawdon Plate 3] and [Rawdon Plate 4], we
approximate the ropelength of two harmonic knot parameterizations found in
15 by applying the algorithm in theorem 4.2. The first is a figure-8 knot and the
other an 8;5-knot. The number below each picture is the computed polygonal
ropelength.

7 Conclusion

To approximate the thickness of a knot, a polygonal version of thickness is
needed. To be useful, the polygonal thickness function must correctly approx-
imate the thickness of smooth knots and be continuous. The most natural
definition of thickness fails to correctly approximate the thickness of a large
class of knots, most notably a planar circle. The polygonal thickness function
presented here satisfies both criteria. In addition, an elementary algorithm
yields appropriate thickness values.
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CHAPTER 10

Preface to Energy functions for knots: beginning to predict
physical behavior

Jonathan Simon
Department of Mathematics
The University of Towa
Towa Clity, IA 52242-1419 USA
simon@math.uiowa.edu

Ideal Knots

In November, 1991, I gave a talk on “energy functions for knots” in a
symposium on Topology and Chemistry held in Bielefeld. Topologists (e.g.
S. Fukuhara, J. O’'Hara, M. Freedman et al., G. Buck and JS) had recently
begun defining and analyzing several so-called energy functions that would sep-
arate different types of knots by infinitely high “potential walls” and produce
minimum energy conformations that I rashly called ideal.

After the talk, Andrzej Stasiak suggested that the term “ideal” should
better be used for something based on more classical considerations: think
of knotted tubes and try to minimize the amount of surface area needed to
enclose a given volume. We didn’t pursue the discussion much at that time,
and so missed the obvious connection between his thoughts and the work (with
R. Litherland) on “Thickness of knots” that I was to present at an AMS
meeting the following week. (Those results subsequently were improved®9.)

A smooth knot in 3-space has a tubular neighborhood whose cross-sections
are disks of some radius centered at each point of the knot, and perpendicular
to the knot. For each curve, we can think of making the tube-radius smaller
or larger; if we make the radius too large, then the disks will overlap. The
supremum of all radii for which the disks are pairwise disjoint is a measure
of how wrinkled or crumpled is the curve. However, if we expand the knot
by stretching equally in all directions (e.g. triple the [z, v, 2] coordinates of all
points) then this number will change; we want the tube-thickness to measure
how crumpled the knot is, as a matter of shape, not absolute size. We can
accomplish this by studying the ratio of tube-radius to the length of the curve;
the supremum of these ratios is the thickness of the knot.

What about surface area vs. volume? Theorems of Pappus (Alexandria,
340 c.e.) on figures of revolution apply equally well to solids generated by disks
(or surfaces generated by the boundaries of the disks) moving perpendicularly

The author is supported in part by NSF Grant #DMS97-06789
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to a central curve: if the disks have radius r (small enough that the disks do
not overlap) and the central curve has length ¢, then the volume of the solid
torus generated is mr2¢ and the surface area is 2r7£. So the ratio of surface area
to volume is % The first conclusion is that unless we constrain the problem,
e.g. by insisting that the length of the curve is fixed, the ratio of surface area
to volume is just a matter of scale, not of shape: without changing the shape
of the knot, we can enlarge or shrink the scale to make the ratio arbitrarily
close to zero or arbitrarily large. If we fix the scale by insisting, for example,
that the knot have arclength £ = 1, then minimizing the ratio of surface area
to volume is the same as maximizing r = %, the thickness.

For a given smooth curve, embedded tubes exist, and we can contemplate
the supremum of admissible radii. A deeper question arises when we allow
the curve to move (while preserving the knot-type) in hopes of discovering
“better” conformations. Does there exist a curve within each knot type for
which the thickness is the maximum among all curves of that knot-type? Such
a curve exists®3, but the theory does not guarantee that it is very smooth
(in the sense of differentiable of class C? vs. class C2). Except for a round
circle, it may be that an “ideal” knot is not so ideal! This is a problem we
mathematicians and scientists create when we use value-laden words to describe
technical phenomena; but still we are drawn to the question of geometric ideals.

‘We might note that while the intuitive motivations for “energy functions”
for knots and “thickness” are different (in one case, the knot is made of stuff
that somehow repels itself; in the other case the knot is made of stuff that
occupies space and excludes itself), there is a lot of mathematical similarity. It
has been observed by many people that the reciprocal of thickness, which we
may call the “rope length energy” of a knot, has the same kinds of properties as
other energy functions. We have obtained?? relations between rope-length and
other energies, leading to the result that (up to a constant of proportionality)
the crossing number of a knot is bounded by the % power of the rope-length.

In a color plate elsewhere in this volume, we illustrate two “ideal” trefoil
knots; the curves are drawn as thick tubes to make the geometry more visible.
In one, we see a trefoil knot that is “ideal” in the sense of having low minimum
distance energy (see e.g. reference 11 reprinted below). The other “ideal” trefoil
knot has large thickness as described above. Which is the more ideal?

In another color plate, we illustrate the “evolution” or “flow” of a tangled
knot to a more recognizable form, where the evolution is controlled by the
minimum distance energy mentioned above. It is difficult to call the final
conformation “ideal” because it does not have some evident quality of great
symmetry or unusual beauty. But perhaps this is as close as this particular
knot type can come to having an “ideal” realization.
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Polygonal and smooth knots

It is clear in the abovementioned illustrations that the knots being shown are
polygons. Sometimes we use computer enhancement to create the illusion that
the knots we are drawing are smooth curves or smooth tubes. But of course
the computer can only encode and communicate discrete data.

In his work on thickness of polygonal knots, E. Rawdon'® developed a
“thickness” for polygons that approximates, and converges to, the thickness
of a smooth curves that is being approximated by the polygons. The most
straightforward definition of “polygonal thickness” in fact does not work, so
one needs a more complicated version.

Several years ago, we explored an alternative approach (which has occurred
to others as well—see e.g. work of L. Kauffman®). We can use a computer to
represent a smooth curve by a finite list. of coefficients of trigonometric poly-
nomials z(t), y(t), z(t) of some degree (i.e. finite Fourier approximations).
A. Trautwein!3 found bounds on the “harmonic degree” and the crossing num-
ber of the knot in terms of each other.

Gel velocity

In the following paper!! we discuss the phenomenon of gel electrophoresis of
knotted DNA loops and, in particular, the question of whether one can compute
geometric measures of complexity for knot types that will predict which kinds
of knots move faster in the gel than which others.

The geometric property that was first observed to influence velocity was
the basic fact of being knotted: nontrivial knots move in the gel more quickly
than unknotted loops of the same intrinsic length.

The next observation was that the minimum crossing numbers of the knot
types usually predict (qualitatively) the relative velocity. This was a case
of measuring some quantity evident in “ideal” conformations (in this case,
minimum crossing number projections).

Energy functions for knots can provide even more accurate predictions than
crossing number. Knots (represented in a computer as polygons) are allowed to
flow to apparent minimum energy conformations, and those minimum energy
numbers correctly predict!! the ordering of velocity for certain knots with the
same crossing number (as well as the previously known examples with different
crossing numbers).

More recently, A. Stasiak and colleagues have shown!? that the maximum
thickness of knots (see above—again, a number taken from an “ideal” con-
formation of a polygonal knot) even gives a quantitative prediction of relative
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velocity: there is (at least for relatively simple knots, and especially within
homologous families of knots) a good linear correlation between rope-length
and gel velocity.

In order to fully test the extent to which purely geometric properties of
knot types, in particular, numbers taken from special conformations of the
knots, can predict gel velocity, we would need more experimental data on
velocities of fairly complicated knots. An alternative route might be careful
measurement of velocities (of even simple knots) under varying experimental
conditions. One essential lesson” is that the experimental conditions cannot be
ignored: a particular knot type can be faster than another one under certain
conditions, and the order reversed under different conditions.

The paper!! that is reprinted following this Preface is reprinted here with
permission of the publisher. As the present volume attests, the subjects of
thickness (i.e. rope-length), energies, and other topics in physical knot theory
have attracted considerable attention, and even some lively debate!# in the
last few years.
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Energy functions for knots: beginning to predict physical behavior

Jonathan Simon
Department of Mathematics
The University of Iowa
TIowa City, IA 52242-1419 USA

simon@math.uiowa.edu

Several definitions have been proposed for the “energy” of a knot. The intuitive
goal is to define a number u(K) that somehow measures how “tangled” or “crum-
pled” a knot K is. Typically, one starts with the idea that a small piece of the
knot somehow repels other pieces, and then adds up the contributions from all
the pieces. From a purely mathematical standpoint, one may hope to define new
knot-type invariants, e.g by considering the minimum of u(K’) as K ranges over all
the knots of a given knot-type. We also are motivated by the desire to understand
and predict how knot-type affects the behavior of physically real knots, in partic-
ular DNA loops in gel electrophoresis or random knotting experiments. Despite
the physical naiveté of recently studied knot energies, there now is enough labo-
ratory data on relative gel velocity, along with computer calculations of idealized
knot energies, to justify the assertion that knot energies can predict relative knot
behavior in physical systems. The relationships between random knot frequencies
and either gel velocities or knot energies is less clear at this time.

“Suppose you have a knotted loop of string, and you spread an electric
charge along the string and then let go; what will happen?” This question
has been a common “cocktail party” topic among knot theorists for many
years, but recently questions like this have been the objects of serious study.
The motivation is twofold: We want to develop new knot-type invariants that
describe, in intuitively satisfying ways, how complicated/tangled/interwound
one knot is relative to another, and also we want to build a mathematical
enviornment in which one can hope to model, understand, and predict how
different types of knots behave in physical situations. If one imagines different
knots tied from the same length of string, then it is at least plausible that more
complicated knots would be spatially more compact, so a quantitative measure
of complexity might be used as a quantitative measure of compaction.

This paper provides an expository introduction to knot energy functions,
preliminary announcement of our computational results on energy minima for
various knot types, and an analysis of how these energy numbers relate to
other measures of knot complexity, in particular frequency of different knots in
random knotting experiments and, most of all, relative velocity of differently
knotted DNA loops in agarose gel electrophoresis.

To provide the most direct route to the results, we present first the main
discussion, and then provide the background on knots and energy functions in
the subsequent sections.
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1 Gel velocity, random knot frequency, and topological ground
state energy of a knot

There is clear laboratory evidence that when closed DNA loops are knotted,
different types of knots behave differently in gel electrophoresis!?12:13:18,49,
The duplex loops are long enough and nicked, so they are conformationally
flexible; the differences in gel velocity are detecting different configurations (or
time-averaged conformations, as opposed to individual rigid conformations),
what the topologists would call different knot types. This differential mobility
rapidly evolved from being a discovery to being an analytical tool'23?, so that
in reference 39, the knot types are determined entirely by gel mobility, without
recourse to electron microscope confirmation that was typical in earlier papers.
The intuition is that if a “complicated” and a “simple” knot are made from
string of the same length, then the complicated knot will be, in time averaged
conformation, more tightly crumpled, hence move faster in agarose gel.

There is similarly convincing evidence that different knot types have differ-
ent probabilities of being created in random DNA knotting experiments3%:40+41,
Here the intuition might be that, other factors being equal, a particular “com-
plicated” knot is kinetically or entropically less likely to occur than a particu-
lar “simpler” one. However, this seemingly reasonable belief clashes with the
equally appealing intuition (and, in fact, a theorem?33:4%) that a very long “ran-
dom loop” is not likely to be unknotted, and in fact is likely to be a complicated
knot.

One possible way to reconcile the intuitive belief that ‘more complicated’
implies ‘less likely’ with the fact that loops of long strings ‘must’ be compli-
cated knots would be if, as the number of segments in a random polygonal
loop increases, while the probability of finding one particular simple knot type
decreases towards zero, perhaps that probability still is greater than the prob-
ability of finding one particular complicated knot type. However, in the com-
puter simulations of reference 11, there is data saying that for certain numbers
of segments, a knot of type A is more likely than a knot of type B, while for
more segments, type B is more likely than type A. It might be significant that
this phenomenon is observed for composite knots (see section 2 below for knot
terminology), but not (yet) observed for prime knots. In reference 11, and in
the computer simulations in reference 39, the ordering of prime knot types by
their probabilties among random polygons of different lengths is independent
of segment number.

There is a perfect (qualitative) correlation between relative gel velocity
and relative frequency for the first few knot types, i.e. the unknot, trefoil, and
figure-eight (see section 2 below for definitions). Knots which move faster in
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the gel are less likely to be produced by random knotting than knots which
migrate more slowly. However, when we get to knots with five crossings (so-
called knot types 5; and 52) the knot 53, which is slightly faster in the gel'?13,
seems to be more likely to occur than the slightly slower 5;%.

The crossing number (i.e. node number) of a knot type also is, initially,
a good predictor of relative frequency. However, according to Figure 3.5 of
reference 11, for large numbers of segments, the nine node composite knot
31#£31#3; is more likely to occur than the seven node knot 3;#4;.

Until we have a better understanding of the interplay between knot type
and number of segments (i.e. string length), it does not seem possible to predict
the relative frequencies of different knot types in random knotting experiments
in vitro or in virtuo*! based on one numerical measure of complexity. Predict-
ing relative gel velocity seems a more attainable goal.

As a first sorting, the crossing numbers (see section 2 below) of knot-types
seems to work very well as a predictor of relative gel velocity'®, though (Table
I, p. 4979 of reference 10, esp. band 6) the separation seems to get less clear
as the number of nodes increases. (For homologous series, e.g. of (2,n) torus
knots*? and twist knots'®, the coincidence of gel bands and crossing numbers
seems perfect.) Within the gel region associated with a given crossing number,
it may be possible to distinguish bands corresponding to different knot types
with the same crossing number, e.g. the ‘granny knot’ vs. the prime six crossing
knot 6;'8. Another situation where gel velocity distinguishes between different
knots having the same crossing number is the observation!?1® that the (2,7)
torus knots migrate slightly slower than the corresponding n-crossing twist
knots. Of course it is a tautology that we would need a numerical measure of
complexity that is finer than crossing number, if we want to distinguish knots
of the same crossing number; and apparently “nature” does indeed make such
finer distinctions. In Table 1 below, we list the first few knot types in order
of observed relative gel velocity, as well as the behavior of some homologous
families.

The energy functions E; and Upp for knots, described in sections 3.2
and 3.3 below, seem to make the distinctions we want. In Table 2, we list
the computationally estimated “topological ground state energies” for various
knots. The numbers U}‘),, p are our own calculations. The values of min Ecq
(here Eos is an approximation of E; —4) are taken from Table 2 of reference 20,
except the value for the square knot and granny, which are taken from elsewhere
in that paper. The two energy functions order the knots identically through
71. The more tightly crumpled a knot is, the higher its “energy” and, for
all knots through six crossings and most through seven, the energy ranking
respects crossing number. The sudden appearance of the (3,4) torus knot 8;9
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knot types (slow to fast)

general observations

unknot

trefoil knot 3,
figure-8 knot 4,
(2,5) torus knot 5,

twist knot 59

granny knot 3;#3; vs. 6,18
prime knots 6;, 62, 63 (no re-
ports that these were sepa-

rated by gel)

higher crossing knot types

All knots are generally ordered by
crossing number, especially through six
nodes, but less distinctly as number

grows!?,

Twist knots are slightly faster than
(2,n) torus knots with the same cross-

ing number!3.

Homologous family of twist knots are
ordered by crossing number!8.

Homologous family of (2, n) torus knots

are ordered by crossing number?42,
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early among the seven crossing knots is consistent with its anomalous physical
behavior® (and also its anomalously low minimal edge number on the cubic
lattice®”). The minimum energy for knot type 5, is slightly higher than the
minimum for 5y, so the energy functions would predict that 52 moves faster
in the gel than 5;. Likewise, the energy functions would predict that the
composite six crossing knots, i.e. the granny knot or square knot, would move
slower in the gel than the twist knot 6;. When we get to 7 and 8 crossings,
the two energy functions differ slightly in their rankings. Even through all
the eight and nine crossing prime knots, the two lists differ only occasionally,
and then only by 1-3 places, in how knots are ranked. We plan in the future
to obtain better estimates of the various minima (in particular to make more
systematic the search for possibly different local minima) and will then be
better able to reconcile, or contrast, the two rankings. For now, we accept
the overall similarity of the lists, along with conceptual similarities in the
definitions of these functions, as a strong statement that the two notions of
energy are measuring essentially the same quality of relative knot complexity.
Regarding gel velocity of DNA loops, the qualitative ranking of knots
by estimated minimum energy is consistent with all the observed
velocity differences noted in Table 1.
HERE ARE SOME ADDITIONAL NOTES ON TABLE 2.

e The (so far estimated) energy U'R,I p for the granny knot is less than for
the square knot, but the difference is less than the likely error in the
data, so no difference is reported here.

e The numbers U}, for knots of six or more crossings are rounded to the
nearest integer, to remind us that these are rougher approximations than
for the simpler knots.

e We have not yet computed a value for the composite 3;#4;, so that knot
should be inserted, perhaps first among the seven crossing knots (the
conjecture on additivity of minimum conformal energy?® would place it
just after 63).

e According to both f]?u p and min E.; , the prime seven crosing knots are
ordered 71, 72, 73, 74, 75, Tg, 77. That is, the same as their numbering
in the classical knot tables. This is a remarkable coincidence, inviting
speculation on what aesthetic sense, or intuition about complexity, led
the early tablers to list the knots in that order.

It is appropriate to say “qualitative” in the last sentence of the paragraph
above, because of the pseudo-physical nature of the knot energy functions:
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Table 2: Ranking of knot types by estimated “topological ground state” energy

knot type U | min Ecos
unknot 0 0

trefoil 34 37.2 | 704
figure-8 4; 56.9 | 104.9
(2,5) torus knot 5; | 74.9 | 126.8
twist knot 59 81.6 | 134.6

granny knot 3,#3; | 110 140.8
square knot 3, #37 110 140.8

twist knot 6; 120 | 162.8
6; 128 | 168.5
63 134 | 172.9

(2,7) torus knot 7; 139 181.0
(3,4) torus knot 8;9 | 144 197

twist knot 7, 153 190.3
73 155 192.7
820 157 203.9
T4 160 197.7
Ts 167 199.7
76 170 203.7

T 175 207.1
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these are purely geometric quantities, albeit physically motivated. However,
there is a provocative parallel between the energies discussed here, and the
calculated free energies of formation in references 40 and 41. While compar-
ing the absolute numbers is meaningless without some agreement on units, if
we compare the ratios, we get surprisingly close agreement. In reference 40,
the calculated energy of formation of the figure-8 knot at 20 [resp. 30] Kuhn
lengths and maximum MgCl, concentration (maximum salt = polymer is
most able to knot) is 1.69 [resp. 1.64] times the energy for a trefoil knot. On
the other hand, the ratio of minimum energies Uy, of the two knot types is
1.66. Obviously, more data is needed to test whether the energy Upp really
can predict so closely the relative energies of formation of different knots in
vitro.

If the prime six-crossing knots can be distinguished by gel velocity, that
would provide a good further test of our assertion that energy functions pre-
dict relative velocity. Another source of verification (or challenge, of course)
would be to carry out the detailed gel electrophoresis simulations of references
21 and 22 for knots beyond the trefoil. Another project that would seem very
interesting would be to try to relate our energy functions to other direct ge-
ometric measures of compaction, such as mean square radius of gyration or
mean span®®. The Monte Carlo study of random polygons in reference 36 can
be interpreted to say that if polygonal loops with many segments are viewed
from far away, so that only gross features such as overall diameter are dis-
cernable, then one won’t be able to see any difference between unknots and
(even complicated) knots. This seems vaguely similar to the observation one
can make from the table of energy minima, especially reference 20, that as the
crossing number gets large, there is not much difference between the energy
minima, for different knot types.

While we are focusing on knots, it should also be noted that DNA cate-
nanes exhibit interesting and useful gel behavior. In referemce 1, and the
survey reference 12, it is noted that catenanes that differ only in their linking
pattern (e.g. n-form where four loops are linked in a linear chain vs. iso-form
where there are three in a row, with the fourth linked to the one in the middle—
see [Figure 2]) are examples of DNA stereoisomers that have the same crossing
numbers but different gel velocities. Can knot energies capture this difference?
Here it will be necessary to modify the existing minimization algorithms so
as to maintain the string length of each loop. For the catenanes in [Figure
2A), we do not (yet) know whether forcing the four loops to maintain identical
lengths will produce the same energy ranking as if we allow the loops to change
relative lengths. In [Figure 2B], the only difference between the two catenanes
is the location of the long loop relative to the short ones.
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Finally, we may note that the ranking of knots by gel velocity, energy,
and (for the simplest knots, or for all knots studied if we don’t make very fine
distinctions) frequency, even is generally consistent with results in references
26, 34, and 37 on the minimum number of “sticks” needed to represent a given
knot type (the studies differ in what restrictions are placed on the geometry
of the sticks).

In view of the many correspondences, it seems reasonable to assert that
our naively defined “knot energies”, numerical measures of the tightness of a
knot (from which one obtains a measure of the complexity of a knot-type by
taking the minimum over all knots representing a given type) are succeeding in
capturing whatever it is that causes the different knot types to have different
gel velocities or different behavior in other physical situations.

In the sections below, we provide background for the preceeding discussion
and, in particular, for Table 2. In Section 2, we give a micro-introduction to
knot theory, including terminology we have been using. In Section 3, we present
several definitions of energy of a knot and describe how the data in Table 2
was obtained.

2 Knots

A knotis a simple closed curve in 3-space [Figure 3]. One can talk about smooth
knots or about polygonal ones; in the former case, ideas of differential geometry
such as total curvature?” can be used to begin measuring how complicated
a knot is. For polygons, one might compute total curvature or just count
how many sticks are needed to represent the knot; also one might restrict to
situations where all the sticks are the same length, or one might allow varying
lengths. (For the polygonal energy Upsp, we do allow lengths to very.)
Typically, knots are represented and communicated by their projections
into a plane, with the graphical convention that an apparent gap in a curve
indicates a place where one part of the knot is passing over/under the other rel-
ative to the direction of projection [Figure 4]. For a given smooth or polygonal
knot, almost all directions yield projections with only finitely many points of
singularity, all of which are all double points. The number of double points in a
particular projection of a knot is called the crossing number of the projection.
Two knots are equivalent if one can be deformed to the other without
passing the knot through itself; formally, if one is ambient isotopic to the
other; in this case, we say the two knots are of the same knot type. So a knot
type is an equivalence class of knots [Figure 5]. We shall use (K) to denote
the knot type of a particular knot K. The crossing number of a knot type is
the minimum, over all knots realizing that type, of the crossing numbers of the
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individual knots. In DNA literature, the term node is used instead of crossing.

The only knot that can be drawn with zero, one, or two crossings is the
unknot or trivial knot. (All the knots listed in this and the next paragraph are
illustrated in [Figure 1] or [Figure 5].) There are two knot types that can be
represented with a diagram having three crossings; one is the trefoil knot, the
other just the reflection of a trefoil in the plane of projection. The trefoil type
also is denoted 3;, while its mirror image is 3]. Sometimes this distinction is
ignored; we might say that 3; and 3] are the same knot type but are different
ambient isotopy types. With four crossings, we can realize knots that are trivial
or trefoils, and one new kind, called the figure-8, and often denoted 4,. It is
an interesting exercise to show that a (hence every) knot of the figure-8 type
is equivalent to its mirror image, so there’s no knot type denoted 4}. At five
crossings, there are four knot types, two and their respective mirror images.
The knot type denoted 5, is one of an infinite class called torus knots because
they can be drawn on the surface of a standard torus in space. The other five
crossing knot type, denoted 52 , is also one of an infinite class, called twist knots,
where the “clasp” at the top remains the same, but the number of “twists” at
the bottom varies.

At six crossings, the standard knot tables list three types, 6;, 62, and 63
(two of these do not interconvert with their mirror images, so we also need to
record 67 and 63). However, a new phenomenon appears at 6 crossings, that is
composition of knots. The final two knots in [Figure 1] are obtained by tying,
in succession, in the same string, first a knot 3; and then either a knot 3, or
else a knot 3. So some knots are composite, others prime. The classical knot
tables only tried to list prime knots, and just one representative for each chiral
pair; even with these restrictions, the number of knot types grows rapidly with
crossing number!4.

3 Energy Functions

3.1 Motivation and vertez-energy

It seems most plausible to try to define a self-repelling “energy” of a knot by
trying to extend the standard notion of electrostatic repelling from a finite set
of charged points to a continuous charge distribution along a curve or polygon.
However, this straightforward process fails (see e.g. reference 4). If p1,...,pn
are n points in 3-space, each carrying charge = % , so the total charge = 1,
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then the electrostatic potential of the ensemble {pi,...,pn} is

11

n—1 n
L2 Eim) @

i=1 j=p+1

If we imagine a single unit charge distributed evenly along a curve or line
segment X , we might then try to define the potential energy to be half (because
each pair (z,y) appears twice) of

/ / dz dy @
o=yl -

Unfortunately, this integral is infinite; equivalently, if the points {p;} are spaced

equally along a line segment or a circle, then the limit, as n — 0o, of the sums

(1) is infinite. The divergence of the integral (2) and the limit of the finite

sums are on the order of [ } Pl m Y 1 ~ —log(0).

To define a usable energy function along these lines, one must somehow
eliminate the “near-neighbor” effects, which are what force the above integral
to diverge. In the case of a polygon, we accomplish this (see below) by ignor-
ing the interactions between a segment and itself or adjacent segments of the
polygon. In the case of smooth curves, the divergent integral is “regularized”
by subtracting off the (infinite) energy of a standard round circle. In fact, it
turns out useful to do a similar reduction of the polygonal energy.

There are several mathematical properties that have generally been ac-
cepted as characterizing a “good” energy for knots. Here is part of the list in
reference 4:

1. The energy u(K) should be a real number, varying continuously with the
position of the polygon or curve K.

2. The function u should be well-behaved under change of scale. (The
energies Uprp and E» described below are both scale-invariant; that is,
energy is a property of the shape of a knot rather than its absolute size.)

3. The function u should be defined in a way that is consistent with the
idea that repelling energy varies inversely with distance, or some power
of it, between repelling objects.

4. The energy u should respect the topology, in the sense that in order to
deform a knot in a way that changes the knot type, that is by passing
part of the string through another part, the energy has to become infinite.
Alternatively put, the different knot types are separated by infinitely high
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potential walls. (A different, perhaps physically more realistic, approach
has been suggested by Lomonaco??, where the energy barrier to changing
knot type is finite.)

If we allow knots to flow in their configuration space, we can imagine
a knot gradually deforming to reduce energy, heading in the limit to some
conformation that is a (local) energy minimum. One implication of Property
4 above is that knot type cannot change during such an energy reducing flow.

Before going on to describe energies for polygons and smooth curves that
have the desired mathematical properties, we should cite the seminal paper
reference 17, which analyzed vertex-only potentials for polygonal knots. Let
K be a polygonal knot with vertices p1,...,p, . Motivated by equation (1),
Fukuhara defined an infinite family of energies,

ValX) Z Z dist pz,pg)" ' R

i=1 j=p+1

(This formula is a little simpler than Fukuhara’s, which includes a constant
of proportionality that depends on the number, n, of edges of the polygon.)
Fukuhara obtained the following result:

Theorem. Consider the space K of polygonal knots of n edges, in which
each edge has fized length = 1. Let Ky be a polygon in K with vertices p1,...,pn
such that for each i # j, dist (p;,p;) > 1. Then there exists an ezponent
d (which depends on n) such that the knot type of Ko remains unchanged as
Ky flows via the gradient of Uj.

This result is surprising because the energy function only “sees” vertices,
so it does not “know” if two edges of a polygon pass through each other at
interior points.

Before discussing the energies reflected in Table 2, we might also note that
a quite different approach is developed in reference 28, based on idealized fluid
flow in knotted tubes.

3.2 Energies for smooth curves

The first knot energy satisfying Properties 1-4 above, Es, was proposed by
J. O’Hara?®. It turned out that this energy has an invariance property that is
stronger than being invariant under change of scale; it is, in fact, invariant un-
der conformal transformations of 3-space® (so F; is often called the conformal
energy). Freedman and his colleagues also established!® a strong relationship
between the energy E, of a knot K and the average crossing number of K.
Here is their formulation of the energy E.
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Let K be a smooth knot in 3-space ®2. So we can view K as the image

of the standard unit circle S in the plane under a smooth map v : § — R3.
Then

Ey(K) =
1 '] 1t (4)
/ / (dlst(v(s O —arcdist('y(s),'y(t))2>|7 ()17 ()] dsdt

Here arcdist (s, ) denotes the minimum distance long the knot between points
s and ¢.

If we assume the parametrization <y is by arclength, that is the speed |y/(s)|
is always 1, then the definition simplifies to

1 1
Ba(K) = /s/s (dist (705) 7 @)F  arcdist (1(9); v(t))2) dsdt (5)

When we compare the above energy with the polygonal energy Uy p de-
fined below, we should note that E» counts each interaction of y(s) with y(t)
twice, whereas Upsp counts it just once, so in comparing theorems or compu-
tational results, we should compare Es with 2 - Upp.

The conformal energy has been studied theoretically
putationally?19:20:31,

The data presented in reference 20 (called E., in Table 2 above)
is based on a somewhat different approach to regularizing the diver-
gent integral. So, as stated in reference 20, the numbers E, are the
minima so far observed for E;(K) —

Instead of “subtracting the infinity” as is done to regularize the integral
in (4), another approach®® is to view the energy represented by two infinites-
imal segments of the curve K as having a vector attribute, and consider only
the component normal to the curve. This intuition yields another energy for
smooth knots, satisfying Properties 1-4, called the projection energy, where the
term projection refers to the projection of the vector, not a special invariance
property of the energy function. To avoid confusing the projection energy with
others discussed here, we shall use the notation Upoj, which is different from
reference 6. As before, let K be a smooth knot in 3-space R3. At each point
z of K there is (since K is smooth) a well-defined tangent line and, hence, a
well-defined normal plane N,. For each point y # z of K, let 6., be the angle
between the vector (z — y) and the plane N,. Then we define

i) = [, Lo (B e 0

3,15,16,29,30,32 414 com-
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The projection energy also is implemented in the program reference 2. The
relationship between Upoj and the average crossing number of a knot is similar
to that of the conformal energy, though the proof is simpler”.

3.3 Energies for polygons

For polygonal knots, the first energy satisfying Properties (1)—(4) was defined
in reference 4. A simpler polygonal energy, and the one we shall discuss here,
is presented in reference 43.

Let X,Y be disjoint line segments in R3. Then the minimum distance
between X and Y is a positive number which we denote MD(X,Y). Letting
£(X) denote the length of a segment X, define

_ UX)-(Y)
Unmp(X,Y) = MD(X,Y)?
For a polygon K, we define
Ump(K) = > Ump(X,Y) .

X,Y non-consecutive

segments of K

While we are interested in knots, in particular nonplanar polygons with
six or more sides, it may be helpful to work out the numbers for some simpler
cases.

Example. For a triangle, there are no pairs of nonconsecutive edges, so
we define Uprp(any triangle) = 0. For a plane quadrilateral, there are two
pairs of edges that contribute, and the energy is minimum when the figure is
a square; Upp(square) = 2 - (48) = 2. For a regular pentagon, we have five
pairs of edges, each pair contributing 1, so Upp(regular pentagon) = 5. For a
reqular hexagon, there are siz pairs of edges that contribute 1 each and three

pairs of edges that contribute ﬁ = 1 each, so Uy p(regular hezagon) = 7.

For regular n-gons with n > 7, the numbers become irrational.

These examples begin to illustrate the general phenomenon that if K is
any polygonal knot with six or more edges, then Upsp(K) > n.

The energy function Upsp satisfies Properties 1-4; in particular, it is in-
variant under change of scale. The function is not differentiable at some points,
so we cannot talk about standard gradient flow. However, it does make sense
to do a simulated annealing (“at zero degrees”) type minimization:

e Start with a polygonal knot K,
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¢ randomly perturb the polygon to a new conformation K; (making sure
that the perturbation is small enough that the knot type of Ko is not
changed),

o compare the energies Uy p(Kp) and Upp(K,),
o if UMD(K()) > UMD(KI) then replace Ky with K;.

In this way, we generate a sequence of knots converging to a knot whose
energy is a (local) minimum within the knot type of Ko. We illustrate in
[Figure 6] how an 18 segment figure-8 knot evolves from an initially compressed
conformation towards a (local) energy minimizing conformation under Upp.

If a knot type (K) can by realized among polygons with, say, 18 edges,
then there exists*3 a nonsingular polygon K with minimum energy among all
18 segment polygons representing knots of that type. (This is true whether the
knot K is prime or composite, in contrast to the conformal energy E,, where
minimum energy conformations are believed to exist for prime knots.) We may
hope to discover (estimate) the minimum energy value for a particular knot
type within a given number of segments by starting with any representative
knot and letting it flow, as in the preceeding paragraphs, to a local minimum.
Of course one needs to worry about local vs. global minima. However, in
experiments run so far, it appears that for each knot type and given number of
segments, there are relatively few distinct local minima, so we have some basis
for hoping that the best local minima we have found so far are indeed global
minima. There’s a danger of circular reasoning here, and we are beginning a
more systematic analysis of local vs. global minima for Upp.

In order to obtain ground state energy numbers for each knot type, we
need to consider what happens when the same knot is made from different
numbers of segments. We have two approaches for this.

It appears that as the number of segments increases, the minimum energy
first decreases until an “ideal” number of segments is reached, then increases
from there on. We know from reference 43 that the energy satisfies the relation
Unmp(K) > (number of segments), so the energies must eventually grow; but
the theorem does not predict the unmodality so far observed. In [Figure 7]
we show the observed Uy p energy minima, for trefoil knots made from 6-to-40
segments. One possible way to define the topological ground state energy of
a particular knot type would be to identify the optimum number of segments
and use the energy minimum for that number: So for the trefoil knot, we
would say that the minimum energy is (approximately) 74.5, attained at 14
segments. This approach may prove to be a useful one for relating energy to

knotting probability, since the relative probabilities are sensitive to segment
numbers!1:24:25,35,39,46,47,48
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Figure 6. Evolution of a 20-segment figure-eight knot




176

200

180

160

140

120

Umd

100

80

60

40

20

4 (K. Hunt/J. Simon 7/94)

- U

A OPTIMUM = 74.50
(at 14 segments)

1 Regular n-gons .I.-.
A ...l.
4 AA .-"
JAYN a
AAAAAA%
4 L
..l.- Difference ---> 37.2
=
=4 .-.
.

Number of Segments (6 - 49)
| |

| | | | | ] |
| I I T I | T T 1

5 10 15 20 25 30 35 40 45 50
Figure 7. Observed minimum energies for trefoil knots




177

500 T
450 Eg
400 +
350 +
300
Umd (K. Hunt/J. Simon 7-94)

250 ~

200 ~

OPTIMUM = 110.69

150 - (at 19 segments.)

100 +

50

Number of Segments {7-96)

O ] | ] |
1 T I I I ! 1 T

7 17 27 37 47 57 67 77 87
Figure 8. Observed minimum energies for figure-8 knots



178

Another way we can define the minimum energy for a particular knot type
is to somehow remove the phenomenon that causes Upsp to grow with the
number of segments; this is analogous to the regularization of the divergent
integral 4. In [Figure 7], we have plotted, along with the Upp minima for the
trefoil knot, the energies of regular planar n-gons, and then the differences be-
tween the trefoil energies and the regular n-gon energies. The first observation
that seems graphically obvious is that the energies of regular planar n-gons lie
on a straight line; actually, there is a bit of wiggle, with odd/even oscillation,
but the numbers are asymptotic to a straight line whose slope turns out3® to

be 162- The second observation is that the graph of Upp minima is asymp-
totically parallel to that straight line. (While it is “obvious” from the graphs
for the trefoil knot in [Figure 7] and the figure-8 knot in [Figure 8], the fact

that energy minima grow asymptotically linearly in n (= number of segments)
is a computational observation, not yet a theorem.) Assuming the graphs of
Upmp minima and energies of regular n-gons are asymptotically parallel, their
difference approaches a constant, and that constant is the value we can use
as the topological ground state energy of the knot, I:T,?J p- This is how (refer-
ring to [Figure 7] and [Figure 8] we obtain the values U, p(trefoil) ~ 37.2 and
U, p(figure-8 knot) ~ 70.4. (Rather than do curve fitting to a model we have
yet to postulate and justify, the estimates in Table 2 are simply the values
obtained from the largest segment number we have calculated for the given
knot type; these segment numbers vary from knot to knot, which is one reason
we expect to sharpen the table in the future.)

We need a great deal more computational data, or a theorem, to solidify
the belief that all knot types exhibit the kind of convergence described above
(i.e. that differences between Upsp minima and energies of regular planar n-
gons asymptotically decrease towards a constant). But all our data so far is
consistent with that assertion, so we shall continue to assume it as a working
hypothesis. This approach is very appealing because it allows us to use any
one computation of a minimum to estimate the limiting value, along with the
belief that if one computes a minimum for a still larger number of segments,
the estimate will be more accurate.

In comparing the energy minima for Upp and for min Ecos in Table 2,
it seemed initially plausible to conjecture that min Eeos(K) = 2UY p(K) — 4,
because one might think of approximating E, for some smooth knot K by
computing Upsp for an inscribed polygon and then doubling. There is excellent
agreement for the trefoil, but the data so far do not support the conjecture
for other knots. The provocative similarity in how the two energies rank knots
remains a challenge to further study.
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CHAPTER 11

PHYSICALLY-BASED STOCHASTIC SIMPLIFICATION OF
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The article describes a tool for simplification and analysis of tangled configura-
tions of mathematical knots. The proposed method addresses optimization issues
common in energy-based approaches to knot classification. In this class of meth-
ods, an initially tangled elastic rope is “charged” with an electrostatic-like field
which causes it to self repel, prompting it to evolve into a mechanically stable
configuration. This configuration is believed to be characteristic for its knot type.
We propose a physically-based model to implicitly guard against isotopy violation
during such evolution and suggest that a robust stochastic optimization procedure,
simulated annealing, be used for the purpose of identifying the globally optimal
solution. Because neither of these techniques depends on the properties of the en-
ergy function being optimized, our method is of general applicability, even though
we applied it to a specific potential here. The method has successfully analyzed
several complex tangles and is applicable to simplifying a large class of knots and
links. Our work also shows that energy-based techniques will not necessarily ter-
minate in a unique configuration, thus we empirically refute a prior conjecture that
one of the commonly used energy functions (Simon’s) is unimodal. Based on these
results we also compare techniques that rely on geometric energy optimization to
conventional algebraic methods with regards to their classification power.

1 Background

The focus of this paper is the knot classification problem, which can bé intu-
itively formulated as follows: take a piece of string tied in an arbitrary manner
whose ends were then pasted together and simplify it as much as possible. It
has been conjectured that such canonical configuration exists and is unique
for the knot’s class and can thus be used to distinguish among different knot
types. Specifically, we are interested in determining if a particular tangle can
be simplified to a circle, in which case it can be shown not to have been knotted
in the first place (the unknot detection problem). Similarly, given a tangled

©1997 IEEE. Reprinted, with permission, from IEEE TVCG, 3:262-272, July-September
1997.
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Figure 1: Knot gallery: a) unknot b) left trefoil c) right trefoil d) figure eight knot e) star
knot f) a knot identified as 933 in the Reidemeister’s table.

initial configuration that is knotted, we would like to be able to reduce it to a
state that is characteristic for the knot’s type (the general knot classification
problem). Finally, given two tangled configurations, we would like to be able
to establish if they represent a knot of the same type (the knot equivalence
problem). In the course of the work, features of space curves such as energy
distribution and their local stability are also visualized. Aside from its the-
oretical appeal, the method promises to solve practical problems common in
genetic research and polymer design.

1.1 Knot Theory

A mathematical knot is a closed curve in 3-dimensional space that does not
self-intersect and has no thickness 2. Two knots, K; and K3, are said to be
equivalent if there exists an ambient isotopy that continuously deforms K
into the shape of K, without K self-intersecting or breaking. If no such
deformation exists then K, and K3 are of two distinct types. The simplest
type of knot is the unknot, or trivial knot. This type of knot is equivalent
to the unknotted circle, 2 + y> = 1,z = 0, and is shown in Fig. la which
also displays a selection of common knot types. A knot is said to be chiral if
it is topologically distinct from its mirror image; otherwise, it is achiral. For
example, a trefoil knot 7' (Fig. 1b) is chiral and thus distinct from its mirror
T* (Fig. 1c), while a figure-eight knot (Fig. 1d) is achiral.
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1.2 Knot Classification Methods

Despite being the center of attention for many years, the problem of estab-
lishing knot equivalence still lacks a computationally infallible technique to
handle the general case. Several solutions varying in the ability to distinguish
among knot types have been proposed. These solutions can be roughly di-
vided into three broad categories: 2D transformation techniques (in which a
planar projection of the knot is manipulated isotopically), algebraic methods
(which build an homomorphic abstract model of the knot from its planar pro-
jection and attempt to simplify that model instead), and 3D transformation
techniques (where the knot is manipulated in its native space).

An approach based on Reidemeister moves 2! is representative of the first

class of methods. A Reidemeister move is one of three rules that changes the
crossings of a planar knot projection in a local area while preserving the knot
type. Reidemeister proved that two knots in three-dimensional space can be
deformed continuously, one into the other, if and only if any diagram obtained
from by projection to a plane of one knot can be transformed into any diagram
of the other via a sequence of type-preserving 2D moves he proposed. However,
while many heuristics have been proposed, a definitive method to determine
the minimal, or even correct, sequence of moves to deform one knot to another
is still an open problem.

An alternative approach to knot classification is not to transform the knot
representation (e.g., crossing diagram) directly but instead to cast the problem
into a more familiar domain. For example, it is possible to construct a poly-
nomial that preserves some topological properties of the knot as it undergoes
algebraic manipulations. Such a polynomial is calculated from the planar knot
projection. A set of variables with powers and coefficients are produced from
the arrangement of crossings of the projection. Different projections of the
same knot produce the same polynomial, therefore such a polynomial is an
invariant of ambient isotopy. Such an invariant can be used to classify knots.
If two knots are of the same type then the polynomials calculated for two knots
are the same. One of the first polynomial invariants to gain popularity was
developed by J.W. Alexander !. Alexander’s polynomial fails to distinguish
between all types of knots. Therefore it is not an invariant in a pure sense.
For example, it does not detect chirality—it cannot tell a trefoil from its mirror
image. Since that time, a number of more powerful polynomial invariants have
been discovered and include the Jones and Kauffman 2 polynomials. However,
these do not distinguish all knot types either.

The third class of techniques establishes knot equivalence by directly trans-
forming one knot onto the other through a series of isotopic, type-preserving,
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deformations in their native, three-dimensional, space. A scalar value, energy,
is typically associated with a knot as a measure of similarity between distinct
configurations. Typically, the energy will depend on the geometry of the knot
and will vary as the knot undergoes deformations and as such is not useful
as an invariant of ambient isotopy. However, it has been suggested * that the
value of energy of the configuration that minimizes the given functional may
be such an invariant and that the minimal energy configuration is a standard
form of the knot. If this is indeed true, the problem of knot classification can
be mapped to an optimization problem in which a configuration that mini-
mizes the given energy functional (or the minimal energy itself) is sought. It
is worth noting that such configuration may depend on the functional chosen
as well as the knot representation used (e.g., polygonized or continuous).

A number of energy functions have been proposed for knot invariance.
The idea of associating an electrostatic energy to a knot was proposed by
Fukuhara 7. Electrons are placed at equal intervals along a polygonal knot
thus causing it to self-repel into a configuration that is a simplification of the
original knot. O’Hara and Freedman propose an energy function based on
electrostatic repulsion and prove that, given such energy, there exists a finite
number of knot types below a given energy value 8. Buck and Simon show
with their purely geometric “minimal distance” energy function there exists
a global energy minimum which is an invariant of knot type. Freedman, He,
and Wang® give an energy function and prove that their energy bounds the
average crossing number®. Therefore, some energy bounds the number of knot
types. They also show that the minimum energy configuration of any closed
curve is a circle. Kusner and Sullivan '® and also Bryson et.al. 3 experiment
with repulsive energy potentials between pairs of line segments or vertices of
the knot. Fig. © shows how their energy is invariant under conformal (Mobius)
transformations of space.

1.3 Optimization Techniques

Optimization problems, where a minimum (or maximum) of some scalar cost
functional is desired, are often solved by iterative improvement. In this ap-
proach, at any stage of the process, a change to the current state of the system
is proposed (e.g., one of the independent variables is perturbed). If such a
change results in an improvement of the evaluated cost function, then the
change is accepted as the new state. This is iteratively applied until changes
no longer give lower cost values. This is a greedy algorithm, allowing only
transitions that result in improvement. The changes to the system can be
introduced methodically or at random. Gradient descent !° and conjugate
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gradient 1° methods are examples of deterministic methods that follow this
concept and are the method of choice for the problem at hand. For example,
Fukuhara " and Buck and Simon ¢ both evolve the knot along the gradient
of the energy potential. On the other hand, Simon?* uses a nondeterministic
descent method by performing small random perturbations of the knot and ac-
cepting the move if it lowers the energy. Opportunistic methods such as these
do not perform well in the presence of local minima as they will stop at the
first minimum found. In addition, gradient based methods tend to converge
at a prohibitively slow pace for functionals which are locally flat (i.e., contain
plateaus of nearly zero gradient strength).

It is possible to relax the strict opportunistic strategy of greedy iterative
improvement. This strategy is the approach favored by Wu?® who employs
noisy function evaluations (i.e., a user-specified fixed percentile of uphill moves
are accepted). Such ad hoc schemes permit escaping from some local minima.
However, selecting a suitable fraction of such uphill moves is rather difficult. If
too few are permitted, the system can only escape very shallow local minima;
too many, and the search becomes a purely random sampling of a prohibitively
large search space. In contrast, the research presented here and earlier in °,
employs an optimization technique that is resilient to getting stuck in local
minima through its methodical use of stochastic sampling. An important the-
oretical advantage of simulated annealing (SA) over pure stochastic sampling
is that the former has global convergence proofs to attest to its ability to
find the global minimum. An even more critical practical advantage that sets
simulated annealing apart from hill climbing techniques is that it performs a
“blind” search that does not depend on the strength (or even existence) of the
energy gradient. For example, flat plateaus are explored quite vigorously and
constitute much less of a problem.

Applying simulated annealing to minimize knot energies has been indepen-
dently researched by Ligocki'®. Ligocki’s work differs from the work presented
here in three significant ways. First, the energy functions evaluated are dif-
ferent. More importantly, the perturbation methods differ. Most notably,
Ligocki uses a fixed move size distribution (his geometric perturbation tech-
nique allows only one vertex to be moved at a time) requiring a prohibitively
slow logarithmic cooling schedule. This forces Ligocki to compromise the the-
oretical requirements of the conventional annealing and resort to “simulated
quenching,” which no longer guarantees convergence to the global minimum.
Finally, while Ligocki performs explicit geometric checks in order to avoid iso-
topy violation, we devised a physically-based model which implicitly prevents
the curve from crossing over itself.

The remaining part of the paper is structured as follows. Section 2 de-
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scribes the implementational details of the proposed algorithm, including two
physically based methods for randomly perturbing curves. Then, a series of
experiments are presented in order to illustrate the behavior of the method as
well as to verify our findings empirically. Two complex unknots and a complex
trefoil are simplified to their canonical configurations. Based on these results
we show that one of the commonly used functionals (Simon’s minimal distance
energy %) is not unimodal and we comment on the power of the energy-based
approach when it comes to distinguishing among arbitrary knots. Although,
as we point out, there may not completely disqualify energy-based approaches.
Further, we show that Simon’s energy has analytical and numerical properties
that make it difficult to optimize with deterministic techniques that are based
on gradient descent.

2 Methods

In the solution that we propose, the curve representing the knot evolves in
a self-repelling potential field generated by the functional associated with it
under the guidance of the simulated annealing algorithm. Simulated annealing
14 is a non-deterministic technique that operates within an iterative framework
similar to methods described earlier. The system evolves from state to state
through a series of local perturbations. Configurations that lower the energy
of the system are always accepted, resulting in consistent downhill behavior.
However, unlike the case of “greedy” iterative improvement, occasional uphill
moves are also accepted. The probability p of accepting such an uphill move
as the new configuration varies during the course of the procedure. p is related
to a user-adjustable parameter of the system called temperature through the
Boltzmann probability factor:

p(AE) = exp(AE/kT) (1)

where AE is the energy change of the system due to perturbation, k is Boltz-
manns’s constant and 7' is temperature. The equation comes from thermo-
dynamics and describes the energy state of atoms at thermal equilibrium and
their probable behavior as they fluctuate about the average behavior of the
system. Initially, the temperature of the system is high (we say that the sys-
tem is “melted”) and uphill transitions are accepted often, but as the system
“cools down,” fewer such transitions are accepted. Finally, when the system
“freezes,” only down-hill transitions are accepted. Therefore, the system ex-
plores the search space in a nearly unconstrained fashion during the early stages
of the search slowly narrowing its focus to the more promising areas. In clas-
sical annealing ! the temperature of the system was lowered logarithmically.



189

A much more efficient algorithm was suggested by Shu 23, who proved that
an exponential schedule can be used if the moves are drawn from Lorentzian
rather than Gaussian distribution. In either case, such sequence of stochastic
perturbations forms a Markov Chain ®, which has a proof of statistical con-
vergence to a global minimum *. That is, one can estimate the probability of
convergence to a global minimum as a function of the annealing parameters.

To implement simulated annealing, one needs the following four elements.
First, a concise description of possible states of the system is required. The
second element is a scalar objective function that is applied to the system
state. This function is the energy function to be minimized. Third, one needs a
procedure to introduce random perturbations to the system. Such a procedure,
called a “move generator,” has to produce valid states and be ergodic (i.e.,
there has to exist a sequence of perturbations that transforms any two given
configurations onto each other). In addition, a move generator has to provide
some control over the sizes of the moves so that rapidly converging algorithms
can be used. Lastly, an annealing schedule is needed that regulates the changes
in system state. The starting (melted) temperature of the system, rate of
temperature decrease (cooling), and number of iterations per time step are
part of the schedule. '

2.1 State Description and Visualization

In the proposed method, the knot is manipulated in its native 3D space and
the system configuration is described by a list of n vertices. For the sake of
visualization the knot is represented by a generalized cylinder with a spline-
interpolated curve as the axis. An alternative to fully rendering such a model
in 3D is a diagrammatic representation of all the crossings. Unfortunately,
both methods tend to result in very cluttered scenes for all but the simplest
configurations. A number of ways to aid in discerning complex geometry and
structure were recently suggested by, among others, Interrante !° and Rhein-
gans °. In their approaches, a highly structured texture is applied to the
model in order to provide additional features as an aid in scene interpreta-
tion. While originally applied to resolving ambiguities inherent in transparent
surface rendering, these methods are also applicable to opaque scenes where
clutter deemphasizes the effects of shading and occlusion. This technique was
adopted in Fig. 1 and 6.

In some situations, we may be interested in a distribution of certain fea-
tures along the curve rather than the structure of the the curve itself. In such
situations, we will use a model that is based on the knot’s Gauss code (or trip
code) &, 20 and ' which is a particularly simple transcription of the knot’s
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structure in a plain linear form. In our adaptation, a Gauss model of a knot
will be defined to be a circle that is created by enumerating all the vertices
of the polygonized knot in the order of traversal (see Fig. 8). Note that any
space curve can be represented this way even though it may be knotted. Also,
this type of “space unfolding” has a very different meaning than “knot un-
tangling” which is the subject of this paper. In addition, we will use color to
encode selected local properties of knot configurations. For example, we will
assign colors based on the potential energy of a link which is useful for iden-
tifying “tight spots” (edges in tight areas will necessarily have high energies).
Alternatively, we will color the edges by the strength of the energy gradient
(i.e., the magnitude of the self-repulsive force). This method will be useful in
investigating local stability issues as edges which are in mechanically stable
configurations have zero-strength resultant forces acting upon them.

2.2 Energy Functional

There has been a number of simplifying energy functions that were proposed
for knot classification. In our implementation we decided to use a function due
to Simon 24 which we will refer to as Eapp here. The energy is defined on a
polygonal knot K of n consecutive edges e, ez, ..., en. It is a summation over
all non-neighboring pairs of edges, defined as follows. Let len(e;) be the length
of edge e; and let md(e;, e;) be the minimum distance between non-neighboring
edges e;, ¢;:

len(e;)len(e;)
md(e;,e5)?

Emp(K) = Xn:

i,j<=n

(2)

The energy function defined by (2) has a number of advantageous mathe-
matical properties. Simon states that for each knot type represented as a polyg-
onal knot, there does exist a configuration that minimizes Epp(K). Emp(K)
is scale invariant causing energy to be dependent on the knot’s shape, not its
size. On the other hand, Ejp(K) is characterized by a non-linear, asymptotic
dependency on the number of nodes?* which makes it necessary to assure that
knots be represented by the same number of vertices for the sake of compari-
son. One (admittedly, fairly academic) drawback of the above functional is that
it does not have a continuous derivative and can potentially cause problems
with gradient-based approaches. Conveniently, this has no effect on simulated
annealing which has non-analytic nature.

It is important to notice that Simon’s energy is just one of many such
functions commonly used for the purpose of knot classification, and, arguably,
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not the most promising one. In particular, it is possible that the results pre-
sented here would be different if a different energy function was tested (i.e., it
is possible that there exists a unimodal energy function). The main practical
consideration for choosing Simon’s energy for this work was availability of tools
by Wu?® that were used to evaluate our results with respect to deterministic
methods. However, because our method in no way depends on the properties
of the functional being optimized it can be used as a general purpose tool and
can thus be applied to investigate other functions as well.

2.3 Perturbation Methods

One of the most critical technical components of the simulated annealing
method is the move generator whose purpose is to propose a change to the
system by taking the current system configuration and perturbing it slightly
(i.e, it will select a random section of the knot consisting of a random number
of vertices and replace it with a slightly different section). It is important that
such a move generator maintains isotopic property (i.e., it does not change the
type of the knot by allowing cross-overs). One way to perturb a knot is to use
purely geometric transformations (e.g., rotate segments randomly). Because
such deformations tend to result in crossovers, explicit checks are used in order
to reject invalid configurations. This is likely to result in significantly increased
computational effort, particularly in tight areas of the knot. An alternative
that we adopt in this method employs a physically-based model in order to
deform the knot. In this paradigm, the knot is modeled as a physical system
whose properties do not allow it to self-penetrate.

Two different perturbation methods are introduced here. During the an-
nealing process the system randomly chooses which perturbation method to
apply with equal probabilities. They both treat the knot as a physically based
model by associating forces such as electrostatic repulsion and elasticity with
the knot. These forces are chosen for their opportunistic qualities. Electro-
static repulsion amongst the edges of the polygonal knot helps push the knot
apart, while also maintaining ambient isotopy by not allowing the knot to cross
over itself. Spring forces help keep the length of each edge from becoming in-
finitely long due to the electrostatic repulsive force that is also applied to the
edges. It should be noted that our use of electrostatic and elastic forces for
the sake of implementing the move generators in no way determines the actual
energy associated with the knot, which may not have a physical interpretation
(compare section '2.2).

Efficient implementation of the simulated annealing process requires that
some form of control over the size distributions for the proposed perturbation
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methods is provided ?3. Both methods presented here allow for such control.
The lengths (i.e., number of nodes) of the perturbed segments as well as the
time of their physically-based evolution are random variables with Lorentzian
distributions. The Lorentzian distribution, also referred to as a Cauchy distri-
bution, is defined as:

1 /2
(2 —p)? + (T/2)

P(z,p,T)= (3)

where 41 is the mean and T is the half-width 2 of the move size distribution.
The Lorentzian distribution is chosen over the Gaussian distribution because
probability does not diminish to zero away from the mean as quickly. There-
fore, the rapid cooling schedules ,which tend to strand the process in local
energy minima, can be balanced by higher probability of crossing over high
energy barriers thus maintaining convergence of the resulting Markov Chain.

Physically Based Model

The physically based model applies forces to the knot which are calculated by
integration of ordinary differential equations. Two types of forces are used:
elastic and electrostatic. Elastic force is implemented with Hook’s law. For a
pair of particles at positions a and b, spring force between them is given by:

(va —w) -] L

Ja=|ks(Jl|]—7) + &
(=) + ket

1fb = _fa (4)
where f, is the force on a, f, is the force on b, | = a — b, r is rest length,
ks is spring constant, k4 is damping constant v, is the velocity of a, vy is the
velocity on b. It is applied between all pairs of neighboring vertices.
Electrostatic force is based on Coulomb’s law where force is inversely pro-
portional to the distance between two edges. Let a and b be the two edges.
Electrostatic force between them is approximated by the equation:

fo= M),y g, )
min

where f, is the force on a, f; is the force on b, ¢, is the charge of f,, ¢ is the
charge of f,, dpnin is the shortest distance between a and b, u is a unit vector
pointing from b to a, k is a constant of proportionality. Electrostatic repulsion
is applied between all pairs of edges, with the exception of neighboring edges,
due to singularities that are present there. Standard techniques are used to
integrate equations of motion.
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Charge Drop

In the charge drop method a number of electrostatic point charges are ran-
domly dropped in the vicinity of the knot which is also charged with a uni-
formly distributed charge of the same sign (Fig. 2). A random section (i.e.,
a set of consecutive edges) of the knot of random length is selected and it is
allowed to move while the rest of the curve remains fixed. In this scenario, the
point charges will distort the selected section by repelling the similarly charged
line segments. At the same time, the forces of repulsion between all edges of
the knot will implicitly prevent it from violating the isotopy condition during
this process. Line segment repulsion is weighted heavier than random charge
repulsion to insure that the force from charge repulsion will not overpower line
segment repulsion, resulting in a crossover. The system is advanced a random
number of iterations with the variable step size midpoint Euler method.

Figure 2: Drop charge perturbation: a. choose random segment, b. drop random charges,
c. evolve the system deterministically.

Figure 3: A sequence of operations during the “Shift Node” perturbation method: a. delete
a sequence of nodes b. insert a sequence of nodes c. evolve the knot according to their
equations of motion.

Node Shift

The second perturbation method is the node shift method which tightens and
loosens different parts of the knot. Nodes, or vertices, are shifted along the
polygonal knot followed by the application of spring force and edge repulsion
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Figure 4: Two operations are used by the “Shift Node” method: remove vertex by a triangle
move (top panel), add a vertex (bottom panel).

forces to the knot (Fig. 3). Nodes are shifted by first selecting vertex positions
to delete. A position can be deleted if the new knot configuration K’ is ambient
isotopic to the original knot K. This will be true if the move from K to K’ does
not allow any part of the knot to pass through itself. This is determined by
creating a triangle from the vertices of the selected node and its two neighbors.
This triangle represents the smooth path the line segment would travel through
in order to move to K’ (Fig. 4). If any edge intersects this triangle, then this
movement would create a crossover, possibly changing the knot type. Such
crossover would cause the move to be rejected. However, if no edge intersects
this triangle, the node is a candidate for deletion. A list of nodes to delete
are selected by beginning at a start node chosen on the knot then walking
along the knot performing triangle tests on consecutive 3 vertices. Similarly, a
sequence of nodes is added to the new configuration by creating a new vertex
position at the midpoint of edges (see Fig. 4). This simple operation cannot
affect the knot type. Once the nodes are moved around, the system is allowed
to evolve in the unbalanced potential thus generated under the influence of
electrostatic and elastic forces.

A similar method proposed in'® adds vertices to a polygonal knot in places
where potential energy is high. The node shift method presented in this paper
maintains a consistent number of vertices in the knot. Vertices are deleted
in some areas and added to other areas, which can be viewed as a shift of
vertices along the polygonal knot. The number deleted and the number added
are equal which maintains a constant problem size making the optimization
problem manageable. It also gives consistency to any mapping the user may
have defined of attributes to each node.
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2.4 Annealing Schedule

The annealing schedule is the component of the system that regulates the
temperature and the convergence of the method. Before the proper annealing
process can be initiated, it is crucial to assure that the system is thoroughly
“melted.” In the “melted” state the temperature of the system must be high
enough so that the thermal energy of the particles is large enough to jump
over the highest energy barriers, allowing for unconstrained exploration of the
entire search space. The system is at an effective melting temperature when
at least 80% of moves are accepted 3. One can automatically “melt” the
system by doubling temperature until the prescribed fraction of the moves is
accepted. From this point the system is slowly cooled taking care that at
each temperature the system should reach equilibrium before the temperature
is further decreased. In this work, the temperature is decreased when either
the system runs maz moves or the number of accepted moves exceeds 0.1 x
maz, where maz is equal to a constant times the number of vertices in the
knot. Because our moves are Cauchy-distributed, we can use a fairly rapid
exponential annealing schedule in which the temperature T decreases by a
constant ratio ?3: T, = (T1/Tp)"To, where Tp is starting temperature and
0.90 < (T1/To) < 0.994. The system is considered frozen and annealing stops
when less than a fixed fraction (e.g., 1%) of attempted moves are accepted
at any given temperature. We can terminate the process early in case of the
unknot, which has the lowest characteristic energy of all n-vertex knots ¢, by
comparing to within a tolerance the energy of the knot with energy calculated
for a regular n-gon.

3 Results

3.1 Energy Unimodality

In an initial series of experiments, we considered examples of knots that appear
to have distinct local energy minima, in the sense of an empirically stable end
state to the process initiated by the dynamics of the program. In the first
experiment, we compared the minimal energies for the trefoil and its mirror
image and found them, not surprisingly, to be identical. Similar results were
obtained for the figure-eight knot and its mirror image.

In a more involved experiment !, we considered the Kinoshita-Terasaka
Knot KT. This knot, shown in Fig. 6, is famous as the one of the small-
est knots that is undetectable by the classical Alexander polynomiall,!2. In
Fig. 6 we show a 12 crossing version of KT, labeled K712 and its 11 crossing
equivalent KT11. From the point of view of a knot theorist, the 12 crossing
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configuration is quite interesting, as it shows that the knot KT is a ribbon
knot, and consequently KT bounds a smooth disk in upper four space. In our
experiment we wanted to determine the minimal configuration of the KT knot
given either of the configurations shown in Fig. 6 as the starting point. In
order to eliminate dependency of the energy on the number of edges 2%, we
introduced additional vertices along the edges of both configurations to assure
that both were represented by a polygon with the same number of vertices
(n=56). These were used as the initial configurations for a deterministic op-
timization procedure. The final configurations, which were arrived at after
less than 4000 iterations, were visually distinct, yet quite similar to the ini-
tial states. The corresponding energy values were identical to within 0.05%
(336.303 and 336.458 respectively).

3.2 SA vs. Gradient Descent

Having determined empirically that multiple distinct minima exist for the Si-
mon’s energy, we proceeded with a set of experiments that would evaluate
the performance of the method as compared to deterministic methods. Three
tangled configurations shown in the top row of Fig. 7 were the subjects of
the tests described below. They were all executed on an SGI Indigo 2 system
configured with a 200 MHz MIPS R4400 processor and 96 MB of RAM.

Case 1

In our first experiment we used a tangled unknot represented by a polygonized
curve with 67 vertices. First, we applied a deterministic optimizer which found
a stable solution after 60,000 steps, going from the initial energy of 1561.85
to the final energy of 116.83, within a threshold value of 0.06 of the global
minimum, within 5 hours. Subsequently, the same initial configuration was
subjected to the stochastic optimization method and reached minimal energy
configuration within 115 moves, which took approximately 2 hours. Temper-
ature started at 150.0 degrees and was decreased exponentially by a constant
factor of 0.95. The annealing was considered complete (and the system deemed
frozen) when the temperature dropped below 1.0 degrees or when the system’s
energy E was within € = 0.5 of the global minimum E,,;, of an unknot of
67 vertices. The actual comparison normalized the energy by dividing energy
by the number of vertices vnum (|Z=Zais| < ¢). Final energy was 112.84 as

compared to energy of a 67 vertex urvlﬁtr‘irgt of 109.96.
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Figure 5: A stereo pair of the Ochiai knot which was used as the starting configuration for
case 2 (see text).

Figure 6: Kinoshita-Terasaka knot: 11 crossing version and 12 crossing version.
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Figure 7: The three test cases (see text) evolve under guidance of a simulated annealing

process from the initial configuration (top row), through melting and cooling, to freezing

(bottom) stages. The curves are color-coded by the potential energy with shades of red
corresponding to high, and blue to low energy.
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Figure 8: In situations where distribution of a feature along the curve rather than the

geometry of the curve itself is of interest, a Gauss model of the curve is used (see text).

The top row is colored by the potential energy (red corresponds to tight, and blue to loose

areas). The bottom row is colored by the magnitude of the energy gradient (red corresponds
to strong, blue to weak force).
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Figure 9: Distribution of the energy gradient magnitude (i.e., strength of the self-repulsive
force) along the knot. The initial and intermediate configurations for the iterative improve-
ment approach are shown in the top and bottom panels respectively. The right column shows
the configuration on the left after it was unfolded into its Gauss model. Red corresponds
to high and blue to low gradient magnitude. Nearly zero force for the second configuration
indicates a mechanically stable state that gives little guidance to gradient descent methods.



201

Energy Energy
energy x 103 energy x 103
4000 — I I - sA 000 | I b
GD )

30.00 — - 00 = B
50.00 — -

2000 — - 40.00 — —
3000 — et

10.00
20.00 -

000 10.00 Il -

" Al +
0.00 100.00 20000 30000  400.00 0.00 — T ‘move 3 105
0.00 0.50 1.00

Figure 10: Graphs of energy vs. number of iterations during Ochiai unknot (left) and
Ochiai trefoil (right) evolution (cases 2 and 3 in text) for simulated annealing (solid line)
and gradient descent (dashed line).

Case 2

In our second experiment we used an unknot represented by a polyline with
139 vertices whose tangled configuration was described by Ochiail?. A stereo
pair depicting the starting configuration is shown in Fig. 5. The energy of the
initial configuration was 4464.47. As before, gradient descent technique was
used first to untangle this configuration. Care had to be taken in selecting a
suitably small step size, otherwise, the system would attempt energy-increasing
moves. Sufficiently small step size would eventually produce a circular config-
uration. However, the convergence rate of the system was fairly slow: it took
292,000 steps and 107 hours of computation to simplify the knot. Attempts
to speed up the process via adaptive step adjustment based on the maximum
gradient strength did not produce satisfactory results. Fig. 9 shows the dis-
tribution of the energy gradient strength along the curve for the initial and an
intermediate configuration. Simulated annealing reached the minimal energy
configuration within tolerance of ¢ = 0.5 after 368 moves. Fig. 7 illustrates
the knot’s starting configuration and a number of intermediary configurations
during simulated annealing. Fig. 10 shows the associated energy graph. Tem-
perature started at 377 degrees, and was allowed to decrease by a factor of
0.95, until temperature reached 1.0 degrees or the energy was within € of the
energy of a 139 vertex unknot. The end energy of 235.30 was reached after
approximately 48 hours of wall clock time. Energy of a 139 vertex unknot is
228.52.
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Case 3

Case 3 was a 139-vertex trefoil knot obtained from Ochiai’s unknot by replac-
ing one of the over-crossings in the upper right part of the planar projection
with an under-crossing (compare top row of the center and right columns in
Fig. 7). The initial energy was 4493.9. Gradient descent method exhibited
prohibitively slow convergence and was terminated after 150,000 moves when
it failed to lower the energy of the system by more than 0.1% in 1,000 consec-
utive iterations. Simulated annealing was terminated after 840 moves during
which the temperature was lowered exponentially at the rate of 0.95 from the
melting point of 340 degrees to near freezing at 3.3 degrees. Fig. 10 shows
the associated energy graph. The final configuration shown in Fig. 7 has an
energy of 354.9 (as compared to the energy of a 139-node trefoil of 265.3).

4 Conclusions

An important contribution of this work is an empirical identification of cases
for which Simon’s energy is not unimodal. Namely, it fails to detect chirality as
well as to distinguish between distinct configurations of the K7 knot. There-
fore, we were able to determine that the minimal configuration is not unique
to the knot type, even though the minimal energy may be. This determination
provides the rationale for using a robust optimization technique for the purpose
of analyzing knot energies. It also shows Simon’s approach to knot classifica-
tion to be no more powerful than Alexander’s polynomial, and less powerful
than Jones’, HOMFLY, and Kauffman’s polynomials. It is important to note
that multimodality of Simon’s energy function may not necessarily invalidate
gradient-based methods as long as all the distinct local minima correspond to
the same energy level. Obviously, the above result has to be viewed in the
context in which it was obtained. It is still possible that a unimodal energy
function exists and the tool proposed here can be used to search for it.

In order to validate the proposed method, we applied it to three different
cases. The method was able to determine the minimum energy level for each
case and to classify the initial tangles as either the unknot or the trefoil. From
the energy graphs (Fig. 10) and the evolution sequences (Fig. 7) one can see
that the knots were allowed to freely search the solution space and take uphill
energy moves. The second and third cases illustrated configurations that pure
gradient descent had difficulty minimizing in an efficient manner, whereas sim-
ulated annealing successfully found the energy minimum. The main conclusion
drawn from these results is that Simon’s energy is plagued by numerous, nearly
flat plateans and is thus difficult to optimize with gradient descent methods,
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which use slope to guide them in their search. This conclusion is verified by the
bottom row of Fig. 9 which depicts the distribution of the gradient strength
along the curve in an intermediate configuration arrived at with the iterative
improvement method for case 2. Nearly zero-strength resultant forces acting
on all the edges of the knot are indicative of the mechanical stability of this
configuration, which causes slow convergence of the gradient-based methods.

The approach proposed here shows promising results when compared to
competing methods. Many current methods use gradient descent techniques
4 which will find a minimum, but not necessarily the global minimum. Even
if all proposed self-repelling potentials are proven to have a unique minimal
energy, our method may produce more rapid convergence than conventional
techniques. Further, it allows for a much wider class of functions to be used
as estimates of knot energies. For example, the energy for very large models
can be approximated with stochastic sampling. The resulting energy is noisy
and thus unsuitable for gradient based methods.

An important characteristic of the proposed approach is our use of a
physically-based model to implicitly enforce the isotopy requirement, which
in no way determines the function being optimized. Therefore, while the re-
sults presented here refer specifically to one individual energy (i.e., Simon’s
minimal distance) the same technique can be useful in a wide variety of other
approaches.
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Plate 1-3. Ideal geometrical representations of various types of knots as obtained by computer
simulations. We show all prime knots with up to 8 crossings and three examples of composite knots. The
last composite knot which is composed of five 4 knots is presented as a stereo pair.
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Plate 4. Symmetry breaking evolution of the (2, 33) torus knot during the tightening process simulated
with the SONO algorithm. (a) the circular tightly twisted form. (f) the colapsed discoidal form.

Chapter 1: Plate 4



212

()

(b

,.f:'l'lllil!lllllllf!'l-li"fw

ZHVAddta i iaatisinantaany

:’.
/"""'\

Plate 5. Three different forms of the (2, 99) torus knot: (a) the discoidal form elapsed
from the symmetry breaking evolution of the circular initial conformation, (b) the
elongated tight form, (b) the twisted elongated tight form.
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Plate 6. Comparison between ideal trajectories of knots and of randomly distorted
configurations: (a), (b) ideal axial trajectories of trefoil and four-noded knot; ©, (d) one of
random configurations, simulated for DNA molecule 5400 bp long undergoing thermal
motion.
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Regular n gons

8 sides 16 sides
.9481 .9871

32 sides 64 sides
.9968 .9992
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(2,1) Torus Knot

25 sgides 50 sides
.9184 .9902

100 sides 200 sides
.9975 .9994
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Figure 8 Knot
Figure 8 Knot

25 gides 50 sides
96.36 87.43

100 sides 200 sides
86.45 86.36
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8_12 Knot

50 sides 100 sides
312.61 276.17

200 sides 400 sides
270.89 269.04
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This conformation of
the trefoil knot has
maximum thickness -
for a given length of
string, it admits a uni-
form tube of maximum
radius. (The tube
shown here is thin-
ner than maximum, to
show the shape of the
knot.)

This conformation
was obtained from
the above one by
lowering the minimum
distance energy. The
curvature is now more
uniform, but the maxi-
mum tube-thickness is
smaller.

(E. Rawdon, J. Simon)

Which knot is more ”ideal”?

Chapter 10: Plate 1
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Evolution of a knot using Y.Q. Wu’s program MING

We begin with a com-
plicated polygon, and
tell the computer to
move the vertices so as
to reduce the minimum
distance energy.

The actual knot type
begins to emerge.

And we see that the
knot actually is a com-
posite of two familiar
knots.

(J. Simon)

Chapter 10: Plate 2
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Hopf link, Borromean rings, 3, and 4, knots observed in the study of a
two species lattice gas model. The iso-concentration surfaces are drawn
to visualize the chemical mechanism involved in the pattern formation.

Chapter 13: Plate 1
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CHAPTER 12
KNOTS AND FLUID DYNAMICS

H.K. Moffatt
Isaac Newton Institute for Mathematical Sciences
Clarkson Road, Cambridge, UK.

1 Introduction

Fluid mechanics provides a very natural setting for the consideration of knot-
ted or linked structures, and the manner in which these may ‘relax’ to an
equilibrium configuration of minimal energy. For we may imbed within a fluid
medium a solenoidal vector field B(x,¢) (V - B = 0) which represents the
knotted or linked structure in an appropriate way and which is ‘frozen’ in the
fluid under any continuous fluid motion, so that its topological properties are
conserved. If moreover the field B is assumed to impart a force to the fluid
medium, then an associated energy W stored in the field B may be defined.
Under the action of the force, this energy is converted to kinetic energy of mo-
tion and hence dissipated via the agency of viscosity. There is thus a natural
mechanism for the decrease of W under the constraint of conservation of field
topology; and we are then faced with the mathematical problem of determin-
ing the equilibrium field configuration, Bf(x) say, which minimises W subject
to prescribed field topology. The fluid dynamical relaxation process provides
a natural route towards this minimum energy equilibrium state.

In the following, we shall first review the general theory of relaxing fields,
as developed by Moffatt (1985), and then particularise to fields defined within
a tubular neighbourhood of a given knot K (Moffatt 1990). The internal twist
of the field within this neighbourhood (related to the ‘framing of the knot’)
affects the relaxation process, and the minimum energy attained depends upon
this twist. If the twist is zero, then the minimum energy configuration is
closely related to the ‘ideal’ configuration of Katritch et al (1996) in which the
tube length L is minimised (and cross-section S maximised) for given volume
V = LS; however the relaxation process does not constrain the cross-section
to remain circular.

If the twist is large, then the behaviour is quite different: the dominant
field component By (where r, are polar coordinates on the tube cross-section)
now tends to decrease S with consequential increase of L; at the same time, the
tube is subject to kink instabilities which decrease the internal twist, but at
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the expense of increase in the writhe of the tube axis. What is conserved in this
process is the helicity H = h®? of the tube field, where ® is the (conserved)
axial flux; and we shall show that the minimum energy scales like |h|*/? when
|h{ > 1, irrespective of knot type.

We shall adopt in what follows the language of magnetohydrodynamics
(MHD), in which B(x,t) is interpreted as the magnetic field in a perfectly
conducting fluid medium. We need not, however, feel constrained by this
interpretation; from an abstract point of view, B(x, ) is to be regarded simply
as a vector field, convected with the fluid motion in such a way that its flux
across any material element of area (i.e. consisting always of the same fluid
particles) is conserved.

2 The general theory of relaxation

The fundamental equation satisfied by any such ‘frozen’ field is well-known in
the MHD context, namely
B
%.t_ — Va(vaB) 1)
where v(x,t) is the fluid velocity. We shall suppose that the flow is volume-
preserving (incompressible) so that V - v = 0. The flow determines a time-
dependent mapping
x — X(x,1) (t>0) (2)

for each fluid particle starting at x at time ¢ = 0; and the solution of (1) is
given in terms of this mapping by
Bi(X, t) = Bj (X,O)%)—(i . (3)
Zj
The antisymmetric part of the deformation tensor 8.X;/dz; is associated with
rotation of a fluid volume element initially centred on x, while the symmetric
part represents irrotational deformation (whereby a small sphere deforms to
an ellipsoid).
Let us define the energy density of the field B as £B?; the rate of change
of this energy density is, from (1),

0 1n2 0B
By standard vector manipulation, this may be written

0

E%Bzz_v.@ua)-v.[(WB)AB] ()



225

where j = V1 B is the current associated with B. If, as we may suppose, B is
a localised field, the divergence term vanishes when integrated over the fluid

domain, and we have
M
hakial .F
s / v-Fdv (6)
where M = ; [ B%dV, and

F=j»B (7)

is the effective force per unit volume exerted by the field B on the fluid. In
electrodynamics, this is recognized as the Lorentz force, and is associated with
the Maxwell stress tensor

T;; = B;B; — 1 B%§;;

representing both tension in the lines of force of the B-field, and pressure
between adjacent lines of force. The field energy decreases through contraction
of lines of force (thus relieving tension), but this can proceed only for so long
as topological constraints present in the initial field Bo(x) = B(x, 0) permit. If
every B-line is an unknotted closed loop which can be shrunk to a point in the
fluid domain without cutting any other B-lines, then there is no topological
impediment to decrease of the field energy towards zero. This case (of trivial
topology) is however exceptional; in general even simple fields for which all field
lines are closed curves exhibit linkages that present topological barriers to this
decrease of energy. Three examples are shown in figure 1: a flux linkage, a
Whitehead link (in which the total flux trapped is zero), and a Borromean link
(in which the total flux trapped is again zero and it is the relative position of
different strands of flux that provides the topological barrier).

In each of these cases, if a closed field line C is shrunk to a point via a
volume-preserving fluid motion, then the energy of the trapped field necessarily
increases without limit. Thus for example, if C is taken to be the circle z2 +
y% = a?, it may be shrunk to a point via the incompressible strain flow

v={—az,—ay,2az) (e >0) (8)

under whose action the radius of the convected circle C is r = ae™°! at time
t. This flow involves persistent stretching in the z-direction under which the
z-component of any trapped flux increases exponentially, with consequent in-
crease of field energy. In a freely evolving situation, the contraction of C' will
presumably be arrested when an equipartition of the field energy is established
between the trapping component (in a flux tube centred on C) and the trapped
component normal to C.
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a) b) c)

Figure 1: a) Flux linkage with helicity H = 2&,®> (see §3); b) the Whitehead link, with
zero helicity; ¢) the Borromean link for which each pair of flux tubes is unlinked.

This picture has been formalised by Freedman (1988) who has proved that
in any topologically nontrivial field of closed B-lines, the field energy is indeed
bounded away from zero under any volume-preserving diffeomorphism. This
means that, if we can construct a process by which the energy of such a field
decreases monotonically, then that energy must tend to a positive limit.

Such a process may indeed be easily constructed. We simply suppose that
the velocity field v is driven in the fluid by the force F = j B starting from

rest. If the fluid has (uniform) density p and viscosity p, it then flows according
to the Navier-Stokes equation

p(%+v-Vv)=——Vp+jAB+uV2v. (9)

If the fluid is assumed to fill R?, the localised force j» B generates a localised
vorticity field w = Vav; the corresponding velocity field has a quadrupole
character (the total impulse imparted by jaB being zero) and is therefore
O(r—*) as r = |x| = oo. The kinetic energy of motion

K= %/pv2dV (10)

is therefore certainly finite. Its rate of change is

%:/v-(jAB)dV—u/(V"V)de (11)
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the second term on the right representing viscous dissipation of energy (into
heat). Coupling this with (6) gives

a

S+ M) =—p / w2dV (12)

so that the total energy certainly decreases monotonically. Since M is bounded
below and K is positive, this means that K + M must tend to a limit, and the
enstrophy of the flow must tend to zero:

/ w?dV = 0. (13)

In this limit, if we ignore the (unphysical) possibility of the appearance and
persistence of singularities in vorticity in a viscous fluid, the flow is irrotational;
again excluding singularities, the only possibility compatible with the boundary
condition v — 0 as r — oo is that v = 0 everywhere. Thus, as t — oo, the
field structure does relax to an equilibrium minimum energy structure Bf(x),
in which the force field j¥ AB¥ is in equilibrium with the pressure gradient
VpE, ie.

i#ABF = vp®, (14)

and the fluid is at rest.

The dynamical model adopted above (eqn. 9) is not the only possibility,
if the only requirements of the relaxation process are that (i) the topology of
the B-field be conserved; and (ii) energy be dissipated. The requirement (i)
is guaranteed by equation (1). The requirement (ii) may be satisfied by the
simpler ‘porous medium’ model in which v is directly related to ja B via the
equation

kv=-Vp+j~B. (15)

The pressure term is still needed in order to ensure that v remains solenoidal
(i.e. V-v =0). It is easy to show that the energy equation associated with
(15) is now 4
M 2

Kinetic energy does not appear since, in effect, in the dynamical model (15)
inertia forces are neglected. Equation (16) implies monotonic decrease of field
energy M until v = 0 (again neglecting the possibility of the appearance of
unphysical singularities of v). The model (15) has been adopted by Linardatos
(1993) and by Chui & Moffatt (1996) in the determination of a variety of two-
dimensional nonlinear magnetostatic equilibrium states.
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3 Conservation of field helicity

There is a global invariant associated with the frozen field equation (1), which
plays an important part in the subsequent application to knotted structures.
This is the field helicity H. To be specific, let us assume that the field B has
compact support in R®, and let A be a vector potential satisfying

B=V.A. 17

Then the helicity of B is defined by
= / A-BdV, (18)

the integral being over the support of B (or equivalently, over all space). As
shown by Woltjer (1958), this helicity is invariant, a result interpreted by
Moffatt (1969) in terms of the conserved linkages of magnetic field lines in a
frozen-field situation. Note that H does not depend upon the choice of gauge
for the field A.

The interpretation of H for the case that is of particular interest here,
when B is confined to a tubular neighbourhood 7 of a given knot K, has been
established by Moffatt & Ricca (1992). Suppose that the knot K is itself a
B-line of the field, and that every B-line in 7 is a closed curve which cuts any
section of 7 normal to K only once and which has winding number h around
K. Let ® be the flux of B across each section of 7 normal to K. Then

H = hd?. (19)

Moreover, as shown by Calugireanu (1959, 1961), h may be expressed as the
sum of ‘writhe’ and ‘twist’ components:

h=Wr+Tw. (20)

Here, Wr is defined as a double integral round K:

4,,% f (dx"‘::’) x'J° ) ) | (21)

and is a number, determined solely by the geometry of K, and which varies
continuously under continuous distortion of K.

If K is deformed to be nearly in a plane, then Wr tends to an integer equal
to the number of positive crossings minus the number of negative crossings in
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the projected knot. More generally, Wr is the average over all projections of
this difference between positive and negative crossings.

The twist Tw depends not only on the geometry of K, but also on the
relative geometry of any two lines of force within the tube 7. Let s be arc
length on K and let N(s) be a unit vector normal to K in the direction from
K to a given B-line in 7. Then, by definition,

Tw= (N’AN) - tds (22)

27T K
when t is a unit tangent vector on K. This can be thought of as the twist of a
ribbon whose boundaries are K and the given B-line, this twist being assumed
the same for all B-lines. The twist Tw can be further decomposed in the form

Tw=T+n
where ]
T= 2 ?{{T(s)ds (23)

with 7(s) the torsion of K, and n is the number of rotations of the vector N{s)
relative to the Frenet triad (t,n,b) on K in one passage around K. 7 and n
are well-defined only if K has no inflexion points (i.e. points of zero curvature).
If K is subjected to continuous distortion that takes it through an ‘inflexional
configuration’ (i.e. a configuration having an inflexion point) then both 7 and
n jump by an integer, the sum however varying continuously. This behaviour
was recognized by Calugareanu (1961); it was shown to be generic by Moffatt
& Ricca (1992). Details of the mechanism by which twist may be converted to
writhe have been recently investigated by Longcope & Klapper (1997).

4 Relaxation of knotted fields

Suppose now that the initial field Bg(x) of §2 is taken to be a ‘tubular field’,
each pair of field lines in the tube having winding number h as described
above. Under the relaxation process of §2, each field line ‘wishes’ to contract
in length. During this process, the helicity H = h®% = (Wr + Tw)®? is
constant, and there may have to be some kind of trade-off between writhe and
twist contributions. The volume V of the tube is also constant (under the
assumption of incompressibility). Under these conditions, the minimum (or
equilibrium) energy M¥? is determined by the flux ®, the volume V and the
helicity ‘H, and by no other parameters. On dimensional grounds, it must take
the form

ME = m(h)®2v-1/3 (24)
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Figure 2: Two distinct minimum energy states that may be expected when K is the trefoil
knot.

where m(h) is a (dimensionless) function of the dimensionless parameter
h (Moffatt 1990). We have until now restricted h to be an integer; however
we may now allow h to be any real number; if h is rational, then the B-lines
in 7 are closed curves, while if it is irrotational they do not close, but lie on
nested toroidal surfaces with axis K. Note that, by Dehn surgery (cut, twist
and reconnect the tube) the value of h may be set to any prescribed value for
the initial field. This prescription of h is equivalent to prescribing a ‘framing’
of the knot. The particular choice h = 0 constitutes ‘zero-framing’. This for
example is the choice adopted by Berger & Field (1984).

Suppose we start with this natural choice h = 0. As noted in §4, relaxation
proceeds through contraction of B-lines; for an untwisted tube, this can be
best accomplished by contraction of the axis of the tube and corresponding
increase of cross-section (to conserve volume). This process is arrested when
the tube gets so ‘fat’ that it makes contact with itself in such a way that no
further increase of cross-section is achievable. In this sense, the attainment of
a minimum has clear parallels with the concept of ‘ideal’ knot configuration,
developed by Katritch et al (1996). Of course, in the present context, the tube
cross-section is not constrained to remain circular, and some flattening of the
cross-section in regions where transverse contacts are made is to be expected.

A final caveat is needed: even when h = (, there is no guarantee of unique-
ness for the ultimate minimum energy state attained under a relaxation pro-
cess. There may be more than one minimum (each being a ‘local’ minimum
in the function space of accessible configurations), and in this case we should
speak of the ‘energy spectrum’ of the knot, this being the whole set of en-
ergy levels of minimal states. Figure 2 shows two distinct minimum energy
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Figure 3: Preferred configurations of an unknotted but twisted tube, a) for h = 1, b) for
h=n>1

states expected when K is the trefoil knot. This type of configuration has
been studied in detail by Chui & Moffatt (1995).

5 Relaxation of strongly twisted tubes

If |h| is large, then a very different behaviour is to be expected. In this sit-
uation, the twist component of field By in the tube 7T is strong compared to
the axial component B, (8 being an angular coordinate in the plane of cross-
section of T), and relaxation is achieved by shrinkage of the cross-section.S
(with then By decreasing like S'/2) and associated increase in length L of the
tube axis (with V' = LS =cst., and B, ~ L ~ S~1). This process reaches equi-
librium when By and B, are of the same order of magnitude, with B, = &/,
By ~ |h|®S'/2/V, giving S ~ |h|=2/3, L ~ |h|>/3. The associated magnetic
energy is of order B2V, i.e.

ME ~ |h|4/3<1)2V_1/3, (25)

and this result apparently holds irrespective of knot type K.

There is however a further effect that leads to reduction of magnetic en-
ergy. This reduction can be achieved by a ‘kink instability’, analogous to the
instability of an elastic wire subject to twist. This instability occurs even
for an unknotted configuration; for example if the tube 7 has circular axis,
and it is subjected to unit twist (A = 1), then it will ‘prefer’ to deform to a
figure-of-eight configuration for which the twist T'w is reduced to zero, and the
writhe Wr is increased to 1 (figure 3a); the increase in writhe energy in this
deformation is more than compensated by the complete loss of twist energy.
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a) b)

Figure 4: Conjectured minimum energy configurations for the trefoil knot when h = 6. a)
symmetric state; b) non-symmetric state.

These energy changes have been calculated for the case of a twisted wire with
standard elastic properties by Wadati et al (1989) (see also Calladine 1980),
and the calculation for a magnetic flux tube is very similar.

Likewise, if h is any positive integer n, then again twist T'w may be reduced
to zero via the deformation indicated in figure 3b. In this relaxed configuration,
Wr = n and the tube length is L ~ 2n5'/2 = 2hS'/?; the magnetic energy
M = 1B?V with B = ®/S and V = LS is still given in order of magnitude by
(25); the reduction in energy that can be achieved by the kink instability does
not therefore change its order of magnitude. Its precise calculation involves
determination of the dimensionless constant of proportionality in (25) for the
two competing configurations (one with Tw = n, Wr = 0; the other with
Tw = 0, Wr = n); this remains an open problem at present, although one may
conjecture with confidence that the second configuration (depicted in figure 3b)
wins. Similarly, for any knotted tube, twist can be converted to writhe through
kink instabilities in disjoint sections. Figure 4a illustrates what may happen
for the trefoil knot with h = 6. The tube can adjust itself so that Tw = 0,
and Wr = 3 + (3 x 1) is accounted for by the writhe (= 3) of the trefoil knot
itself and the additional writhe (= 1) of each of the three twisted arms in
a symmetrical configuration. The possibilities for multiple (non-symmetric)
minimum energy states become apparent here (figure 4b).
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CHAPTER 13
KNOTS IN BISTABLE REACTING SYSTEMS
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University of Toronto, Toronto M55 3H6 Canada

Bistable chemically reacting media can segregate into domains of two stable phases
that differ in their chemical composition and are separated by chemical fronts.
For activator-inhibitor kinetics, when the diffusion coefficient of the inhibitor is
greater than that of the activator, stable localized chemical patterns can form.
These localized structures arise from the interaction between chemical fronts as
a consequence of the fast inhibitor diffusion. In three dimensions one can build
linked and knotted chemical dissipative structures whose stability is a consequence
of their topology. In the general case, the evolution equations that govern the
pattern formation are not of gradient type but the stable chemical patterns assume
nearly ideal forms.

1 Introduction

Open chemically reacting systems forced out of equilibrium by flows of reagents
may evolve to patterned stationary or time-dependent states.! We shall be
concerned with bistable reacting media where the system may evolve to either
of two stable states that differ in their chemical compositions. In a spatially-
distributed system these two stable states may exist in different regions of
space separated by interfaces across which the chemical concentrations change
sharply, akin to a mixture of oil in water. In three dimensions a tubular
domain containing one of the stable phases may have the topology of a link or
knot embedded in a “sea” of the other stable phase.?3 These compact stable
structures rely on their topology for their existence: in the absence of a linked
or knotted geometry the tubular domains that comprise these structures shrink
to balls. Such compact stable structures are termed topologically stabilized
patterns.

These topologically stabilized patterns are seen in multi-component re-
action-diffusion systems which, in general, are not of gradient form: the pat-
terns are dissipative structures. It is then interesting to consider the factors
that determine the final geometries of the linked and knotted patterns. We
shall show that the links and knots are approximately ideal® and this fact can
be ascribed to the interactions that are responsible for their existence.
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Section 2 describes the FitzHugh-Nagumo (FHN) reaction-diffusion sys-
tem used to illustrate the formation of topologically stabilized patterns. This
model, which has its origins in nerve impulse propagation, is believed to capture
the essential features of real bistable media which support localized chemical
patterns, the antecedents of the knotted topologies discussed here. Our simu-
lations are actually carried out on a microscopic reaction model whose mean
field limit is the FitzHugh-Nagumo equation. We describe the construction of
the stochastic model in Sec. 3. As a result, the chemical patterns we find arise
from the random reactive and diffusive motion of millions of particles and their
existence demonstrates the robustness of the chemical patterns to molecular
fluctuations. The localized linked and knotted patterns are analyzed in Sec. 4
on the basis of their ideal structures, while the conclusions of this study are
given in Sec. 5.

2 Competing Interactions in Bistable Media

The chemical patterns we shall describe arise from competing activator-

inhibitor kinetics. The FitzHugh-Nagumo reaction-diffusion equation,%:®
Ou
% = —u? 4+ u—v+ D,V?u,
i}
6—: = ¢(u—av—f)+D,V%, 1)

is such an activator-inhibitor system. An increase in the concentration of the
activator u leads to an increase in its own production and that of v; an increase
in the concentration of the inhibitor v suppresses the production of chemical
species. The interplay between these two “species” is responsible for the effects
we shall describe.

For the moment suppose the system is spatially homogeneous and the
diffusion terms in Eq. (1) are absent. The u and v nullclines of the resulting
ordinary differential equation, the equations for &« = 0 and v = 0, are shown in
Fig. 1. As drawn, there are three intersections between the u and v nullclines.
Linear stability analysis shows that the outer two fixed points are stable while
the central fixed point is unstable. This is the bistable regime discussed above:
depending on the initial values of u and v, the system will evolve to either of
these two stable fixed points.

Next, suppose we reintroduce the diffusion terms and consider a spatially-
distributed system described by Eq. (1). Inhomogeneous initial states will
evolve to form domains of the two stable phases. The structure and dynamics of
these domains, which depend on the interplay between the activator-inhibitor
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0.5

0.0

Figure 1: Nullclines of the FitzHugh-Nagumo equation for parameters in the bistable regime.

The linear v nullcline intersects the cubic u nullcline in three fixed points; the outer two

denoted by filled circles are stable while the central fixed point denoted by an open circle is
unstable.

kinetics and the relative values of the diffusion coefficients of these species, are
the topics of this chapter.

The FHN reaction-diffusion equation is not of gradient form and there is
no free energy functional that controls the evolution to the final attracting
states. In order to examine the structure of Eq. (1) it is convenient to formally
solve the linear equation for the inhibitor v and write the equation for the
activator u as,

t
@% = —u3+u+DuV2u—/ dr'/ dt'G(r—r',t—t)e(u(¥',t)-B), (2)
v

where the Green function G(r,t) is given by
G(r,t) = (4nD,t)~3/2e=act=r?/4Dt 3)

From this form we can see that the activator field at space-time point (r,t) is
influenced by its value at point (r’,t') due to coupling with the inhibitor field.
In this general form the evolution equation cannot be written as the gradient
of a free energy functional. However, if ¢ is large so that v varies on a much
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faster time scale than that of u, we may let u(x',#') ~ u(r’,t) in the integral
in Eq. (2) and, after integration, obtain,

du(r,t) =-u4u+ g+DuV2u—/ dr'G(r — r')u(r',t) (4)
ot o v
with
G(r) = (4nDyr)~te™*" . (5)

Here k = (a/D,)'/? and the scaled diffusion coefficient of the activator is
D, = Dy/e. Now Eq. (4) can be written in gradient form

Ou(r,t)  OF

where the nonlocal free energy functional F is

F= /dr (V(u) + %NW’) + %/dr/dr’u(r)G(r ). (7)

The potential V is defined as V(u) = u*/4 — u%/2 — Bu/a. With these results
in hand we may review some of the features of this type of activator-inhibitor
kinetics. First, we note that if the scaled diffusion coefficient of the inhibitor
tends to zero, Eq. (4) reduces to the time-dependent Ginzburg-Landau equa-
tion (model A for a non-conserved order parameter of critical phenomena?).
It is well known that this equation exhibits domain coarsening: if the system
is prepared in the unstable state domains of the two stable phases will form
and grow. The growth law and the nature of the domains depends on whether
the potential V is symmetric or asymmetric. For an asymmetric free energy
potential with 8 # 0, if two phases are separated by a planar interface, the
more-stable phase will consume the less-stable phase at a rate determined by
the planar front velocity. For more complicated phase geometries the front
velocity and domain curvature determine the coarsening rate.®

The situation changes if D, > D,. As indicated above in the fast in-
hibitor limit the additional long-range term in the free energy functional gives
rise to a competing interaction that leads to the possibility of modulated
phases or localized patterns. These localized patterns are observed both in
the fast inhibitor limit (Eq. (4)) and in the general case or slow inhibitor limit
(Eq. (2)).°1* When the inhibitor diffuses rapidly compared to the activator,
the long-ranged v field influences the interactions among the u-field fronts,
leading to front repulsion in certain parameter regimes. Such front repulsion
can give rise to isolated structures of the less-stable phase in a sea of the more
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stable phase.®'1% In the absence of such front repulsion the small domains of
the less-stable phase would be consumed by the more-stable phase.

We also note that for a different model with a nonlocal energy functional it
was demonstrated'® 16 that compact stable patterns exist. The stable patterns
are defined by the local minima of the functional and their form is defined by
the tendency of the system to maximize surface contact area at a fixed distance
and minimize the volume of the minority state. These structures are closely
related to the two dimensional patterns that exist in the FHN system in the
large € limit!}12 and their shape can take rather complicated forms.

We shall be concerned with the limit where the inhibitor diffuses rapidly
compared to the activator and localized structures are possible. The basic

building block for the three-dimensional chemical patterns discussed here is a
tubular domain of the less-stable phase in a “sea” of the more-stable phase.
Depending on the system parameters, such tubular domains may either grow,
with fingering instabilities in some parameter ranges or shrink to balls as shown
in Fig. 2.3 Recall that because chemical reactions can change the numbers of

Figure 2: Contraction of a tubular domain to a ball (left panel); growth of a tubular domain
by fingering instabilities (right panel). System parameters are: a = 5.2, 8 = 0.33, ¢ = 0.0055
and o = 5.4, B = 0, ¢ = 0.0085, respectively. The diffusion ratio is Dy/Dg = 4.

chemical species we have non-conserved dynamics and the amount of a given
phase is not fixed by the initial preparation of the system.

Before presenting a discussion how the above considerations lead to the
possibility of stable linked and knotted patterns, we give an account of the
stochastic dynamics that is actually used to simulate the chemical patterns.
The use of a stochastic model, rather than the FHN reaction-diffusion equation,
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not only allows us to probe the mesoscale origin of chemical pattern forma-
tion, but also demonstrates that the chemical patterns we find are robust to
molecular fluctuations.

3 Stochastic Model

Microscopic Markov chain models utilize stochastic rules that simulate both the
reactive collision events that are responsible for the interconversion of chemical
species and the random walk dynamics that lead to diffusive transport in the
medium. The u and v variables in the FHN model do not directly correspond
to the concentrations of chemical species, nor is a chemical mechanism usually
associated with this kinetic equation.

In order to formulate a microscopically-based stochastic model it is first
necessary to provide a mechanism whose mass action law is the FHN kinetic
equation. Some features of the FHN kinetics seem to preclude such a mecha-
nistic description; for instance, the production of u is inhibited by a term linear
in v, a contribution not usually encountered in mass action kinetics. However,
if each local region of space is assumed to be able to accommodate only a
maximum number N of each chemical species, then such a mechanism may be
written.?3 We assume that the chemical reactions depend on the local number
of molecules of the species as well as the number of vacancies corresponding to
each species, in analogy with the dependence of some surface reactions on the
number of vacant surface sites or biochemical reactions involving complexes of
allosteric enzymes that depend on the number of vacant active sites.

The reaction mechanism consists of the cubic autocatalytic steps involving
species A and its corresponding vacancy species A*,

24+ A% 24 34,

k‘ (8)
24*+ A 5 34*.
This part of the mechanism is responsible for the bistability of the system
but, in the absence of other coupling, will simply give rise to stable states
corresponding to full occupancy or complete vacancy at a site. A second species
B involved in bimolecular reactions with A is needed to account for both the
linear and cubic parts of the FHN model. The following cyclic reaction steps
accomplish this:

A*+B X% 4A4B

k;] 1,‘3 9)

A*+B* & A4Br.
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Many mechanisms may give rise to the same chemical rate law and this mecha-
nism may be considered as the definition of the microscopic reactive dynamics.
Assuming mass action kinetics, we may write the following chemical rate law
from a knowledge of this mechanism:

%% = {ka—k(1—a)}a(l = a) + ka(1 — a)b— kja(l — b) ,
;’_f = k3(1— a)(1—b) — ksab, (10)

where a and b are the average fractional occupancies of a site. For k3 = ks
and k3 = k3, these equations can be converted to FHN form with the linear
change of variables, a = c,u + ag and b = cpv + by where

L 2 * .
=1 k1+2k.! _ k2+k]. ap = 1 k142 1
a = 3\ Fitk; Fitk; 314k,

. 2
cb:—%ci,bozaog {1—(%}) } , (11)

and use of the scaled time variable 7 = t/7; with 7,7} = (ky + k})c2. The
parameters in (1) are related to the rate constants by

Cp _l—ao—bo _k3 Ca

2
o= —;;, ﬂ —'———‘ca , €= E (;) . (12)

Using these relations one may choose desired values of the FHN parameters a,
B and € by tuning the values of the rate constants in the mechanism. In this
way we can select parameter domains that are likely to favor isolated domain
structures where linked and knotted patterns are expected to be found.

To construct a Markov chain model we suppose the dynamics takes place
on aregular lattice and that the local spatial regions are associated with sites on
this lattice. The Markov chain model then requires that transition probabilities
be defined for the local reactive transformations at a lattice site and for the
hops from a given site to neighboring sites in order to simulate the random
walks that lead to diffusive motion of the species. Here we give a brief account
of the strategy used to build the stochastic model and its relation to the mass
action rate law. In the Appendix we give a more detailed analysis of the
Markov chain to show how the reaction-diffusion equation can be obtained.

Once a reaction mechanism has been specified, the reaction transition
probabilities are easily constructed by implementing birth-death stochastic
rules!” for the reactions. At each time step one of the six reactions in the
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mechanism (labeled by the index j) is chosen at random and takes place with
a probability given by
n,! n*! (N - l/,(gj) — u;(j))!

K

(J))! (nt — y;(j))! N! ’ (13)

P;—'YkNH

—a (nx — v

where n} = N —n,, V(’ ) and Ve () are the stoichiometric coefficients for species
 and k*, respectively, in reaction j and kgj_; = k; and ko; = ki fori=1,2,3.
Here « is a constant that determines the overall time scale of the reactive
transformations. These reaction probabilities simply state that the probability
of a given reaction step is proportional to the macroscopic rate constant for
that step, times the number of possible ways that reaction can occur for the
given numbers of A and B molecules at the site.

To simulate diffusion, random walk transition probabilities are chosen so
that the probability of a hop to a neighboring node p(n,) is linear in the frac-
tional occupancy of the site and p(0) = 0 and p(N) = 1 to insure that the the
occupation number never falls below zero or is greater than N (exclusion prin-
ciple is always satisfied).23 This choice of transition probabilities guarantees
that the diffusion coefficient is independent of n,. One may show that this
diffusion rule leads to a binomial stationary distribution (cf. Appendix),

pE =, )a"(1—-a)N "4, (14)

with a similar equation for species B. If diffusion can maintain the a local bi-
nomial distribution during the course of slow reactive interconversions between
A and B species, the time rate of change of of the average particle densities
due to reactions is given by

dn,, 6
=0 O (Ang)ipipE,pE, (15)

j=1lnang

where (Any); is the change in particle number of species « in the jth reaction.
Direct evaluation of the r.h.s. of this equation leads to the mass action law
Eq. (10). This confirms that the Markov chain model yields the mass action
law in the limit of perfect diffusive mixing.

In the Appendix we show that the reaction-diffusion equation, Eq. (1),
is obtained in the limit of slow reaction and small spatial gradients. Conse-
quently, we may use the Markov chain model in suitable parameter regimes
to simulate the reaction-diffusion system (this is the limit with which we shall
be primarily concerned in this chapter) or investigate the breakdown of such
macroscopic models due to reactive correlations.?
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3.1 Simulation details

In the simulations reported in this chapter the random walk dynamics is re-
alized by use of an auxiliary “excited” particle lattice. At each step at most
one particle per site is transferred to the excited state with a probability de-
pending on the site occupation number as described above. Next, the excited
particles are translated one lattice unit in a random direction chosen from a
set V = {vy,...,vx}. Finally, the excited particles are placed in new lattice
positions. For the three-dimensional simulations, rather than using the simple
cubic lattice, we have taken the set V' to represent the projections of the nor-
mals of the four-dimensional FCC Wigner-Seitz cell on the three-dimensional
space.!® The diffusion rule leads to mixing of particles on the lattice and, to

a good approximation, it establishes a local binomial probability distribution
of particle numbers.2 The use of a 24-direction diffusion rule is motivated by
symmetry considerations. The FCC set of directions given by the six permuta-
tions of (+1,+1,0,0) leads to a spherically symmetric discrete Laplacian with
fourth-order corrections in the lattice spacing.

‘The kinetic and diffusion parameters were the same for all simulations with
the exception of the growing patterns in Fig. 2 (right panel) whose parameters
are given in the caption. The parameters were selected to be: k; = 0.862,
k* = 0.76, ko = 0.04 and k5 = 0.006. The maximum occupancy per node was
taken to be N = 7 and the diffusion coefficient ratio was Dy/D, = 4. The
kinetic parameters correspond to the following FHN parameters: o = 5.21,
B = 0.33 and ¢ = 0.0055. The calculations were performed on 256 x 256 x 256
lattices for the Borromean rings and 4; knot, on 256 x 256 x 128 lattices for
the 3; knot and on 256 x 128 x 128 lattices for the Hopf link. The simulations
were carried out on a CAM-8 machine'® that is designed for lattice-gas models
of the type used here.

4 Links and Knots

In this section we show how the domain dynamics and existence of localized
structures described earlier can lead to stable links and knots. We consider
the regime where tubular domains shrink. A tubular domain shrinks by con-
tracting at its free ends, maintaining a fixed diameter until the final stages of
the contraction where a ball is formed as in Fig. 2. Suppose that the tubu-
lar domain has no free ends but is instead a completely connected domain in
three-dimensional space. Now the entire continuous tubular domain will con-
tract with diffusion providing an effective mean force that tends to reduce the
curvature. Such contraction may again yield a ball but it is possible that the
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local repulsion between fronts that arises from the rapidly diffusing inhibitor
species will be sufficiently strong that collapse is prevented and a stable com-
pact structure results which retains the linked or knotted topology of the initial
condition. That this is indeed the case is demonstrated by the Hopf and Bor-
romean links and 3; and 4; knots shown in Figs. 3 and 4. In these figures

Figure 3: Hopf (800K time steps) and Borromean (> 1M time steps) links. Two different
views are shown for each link.

isoconcentration surfaces corresponding to the activator are shown. The im-
perfections in these surfaces are due primarily to the fact that the dynamics is

%The stable localized three-dimensional patterns described in Refs.!5/16 are akin to the
stable ball-like configurations in Fig. 2 and are not topologically stabilized like the structures
considered in this chapter.
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Figure 4: 3; (2.6M time steps) and 4; (4M time steps) knots. Two different views are shown
for each knot.

stochastic and the concentration fields are determined by coarse graining the
particle numbers in local spatial regions; hence, molecular fluctuations exist
and their effects can be seen in these figures. Molecular fluctuations have an-
other consequence: none of these patterns is truly stable but rather metastable
since fluctuations can occasionally lead to breaking of a tubular domain. This
fluctuation effect can be controlled by changing the spatial scale by tuning the
diffusion relative to reaction. The parameters in our simulations are such that
fluctuation effects are almost negligible and the simulation results approximate
those of the FHN reaction-diffusion equation. We have never observed fluc-
tuation breaking of the Borromean rings or 3; or 4; knots on the time scale
of our simulations; we have observed breaking of the Hopf link for sufficiently
long times for some realizations of the stochastic evolution.
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Plots of the local curvature and torsion provide quantitative information
about the geometrical structure of the patterns. The curvature (o) is defined
as, 20

|Ro X Rog|
K= ——a .

16
TN (16)

To compute this quantity the curve R(o) was extracted from an analysis of
the concentration fields of the links and knots. This curve was constructed
so that the parameterization of the line o was approximately proportional to
the natural parameterization s. Equation (16) is invariant with respect to the
change of variable ¢ = o(s). The curvatures of the 3; and 4, knots are shown
in Fig. 5. From this figure one can see that the 3; knot has the expected three-

0.10
0.08

0.06

x(o)

0.04

0.02

Figure 5: Local curvatures as a function of ¢ for the 3; knot (dashed line) and the 4; knot
(dotted line).

fold symmetry to a good approximation. Its curvature is nearly constant at a
value of around & = 0.05 except for three region of & where it assumes small
values. In these regions the tubular domain passes through a knot loop and the
tube has a nearly linear segment. More significant variations of the curvature
with o are seen for the 4; knot. Its more complex form leads to additional
regions where a tubular domain must pass through a knot loop leading to
stronger variations in the curvature.
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An examination of the local torsion, 7(c), defined by

_ (Ry XRew) ‘Row
R, x Rw|2

provides information on the planarity of the structures. The local torsion is
shown in Fig. 6. One can see large segments of o where the torsion is near

1(0)

-0.20

Figure 6: Local torsion as a function of ¢ of the 3; (dashed line) and 4, (dotted line) knots.

zero for both knots, indicating planarity. The 3; knot is built from three such
planar regions as expected (one can see some deviation from prefect symmetry
likely due to transient effects in the relaxation to the final stable knot), while
the 4; knot is built from four such planar regions with smaller extent.

4.1 Ideal links and knots

It is difficult to predict the final stable forms of the links and knots in the
bistable reacting medium. As discussed above, in general there is no free
energy functional whose minimization yields the stable structures. The main
feature that is responsible for the formation of these chemical patterns is the
front repulsion that arises through the mediation of the fast diffusion of the
inhibitor field. Some insight into the concentration fields that underlie these
linked and knotted structures can be gained by examining the concentration



247

profiles of both the activator and inhibitor species. In the colour plate we
display the composite picture of the two iso-surface fields: B-field concentration
0.16 and A-field concentration 0.5. The A field is sharp and its iso-surface is
insensitive to the exact value of the concentration. From the form of the iso-
surface profiles we deduce that the filament repulsion is mediated by the B
field and the thickness of the resulting tube is approximately independent of
the filament surroundings. A two-dimensional picture of these concentration
profiles for a cut through a three-dimensional Borromean ring pattern is shown
in Fig. 7. One sees the features described above: the A field is very sharp while
the B field concentration that couples the fronts is diffuse.

Figure 7: Concentration fields in a two-dimensional cut through the Borromean rings.

We now discuss the ideality of the linked and knotted chemical patterns.
An ideal form of a knot or link, constructed from a tube of uniform diameter,
has the highest ratio of volume to surface area.? The knotted patterns in the
bistable chemical medium appear as iso-surfaces of the concentration fields and
can be approximated to a good degree by uniform tubes drawn around closed
filaments. Some deviations from ideality are to be expected since we can see
that the tubular domains corresponding to the iso-concentration surfaces do
not have uniform diameters. However, these deviations are not large and it is
interesting to examine the extent to which such ideality applies.

To determine the ideal configurations we extracted the curves R(o) from
the three-dimensional concentration patterns as discussed above. Tubular do-
mains with given radii were then constructed with the curves R(o) at their
centers. The ideal configurations of the 3; and 4; knots are shown in Fig. 8

Deviations from uniformity of the knotted patterns make it preferable to
use integral characteristics of the patterns for the extraction of the system
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Figure 8: Approximately ideal representations of the 3; and 4; knots. A tubular domains
of radius 17 are built around the middle line of the patterns.

parameters. The Weyl formula for the volume of the tube in three dimensions
relates the volume of the tube to the tube length and diameter:

V= %sz : (18)
where V, D and L are the tube volume, diameter and length, respectively. In

Table 1 we compare the computed volume to diameter ratio for two iso-surface
concentrations and compare the results with the data for the ideal knots.*

length(L) | volumex1/64 L/D
Pattern (0.13) ] (0.16) | (0.13) | (0.16) | 1deal
31 knot 666 12968 | 8437 16.7 205| 16.4
4, knot 887 17983 | 11392 | 218 | 274 | 21.2
Borromean | 427 x 3 | 25909 | 16265 10.5 13.3
Hopf 264 x 2 | 10291 | 6715 6.6 8.2 6.1

Table 1: Length to diameter ratios for various knots and links.

From this Table we observe that the radii of the tubular domains, deter-
mined using Eq. (18) and the measured lengths and volumes, are the same,
regardless of the type of link or knot. The diameter of the tubular domain
is determined by the front repulsion, which depends on the local kinetics and
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diffusion coefficients, and the curvature of the front. Since the diffusion coeffi-
cients and kinetic parameters are the same for all knots and links, we expect the
diameters of the tubular domains to be the same. The nearly ideal forms are
achieved through evolution where the volume of the less-stable phase shrinks,
maintaining a constant diameter, until the final stable pattern is reached. We
find D ~ 20 and D = 16 for the 0.13 and 0.16 iso-concentration surfaces, re-
spectively. This indicates that a consistent tubular representation is possible
for all structures. The theoretical radii of the patterns, computed using the
length of the filaments and the theoretical length to diameter ratio?, are close
to those of the 0.13 iso-concentration surface, indicating the ideal character of
the observed knots and links.

5 Conclusion

The linked and knotted patterns we have described in this chapter should
be observable in experiments on chemical and other systems. Experiments on
the iodide-ferrocyanide-sulfite system?!~23 in quasi two-dimensional geometries
have shown the existence of labyrinthine and patterns and localized structures
which involve front repulsion for their existence. The main difficulty in finding
the three-dimensional topologically stabilized structures is the experimental
preparation of the proper initial conditions. Perhaps one way to find such
structures is to start from random initial conditions. Since the the compact
patterns lie in the parameter regime where tubular domains shrink to balls, any
structures that are not topologically stabilized will shrink and the structures
of interest will survive.

The chemical system we have considered provides an example where the
final linked or knotted geometry is the result of the evolution of a nonlin-
ear, dissipative system where there is no free energy functional. The links
and knots are compact attracting states of the reaction-diffusion equation (or
more specifically the Markov chain dynamics in our stochastic model). In
this sense the factors governing the evolution and forms of the patterns are
quite different from other cases where potential energy functions have been
associated to knots to determine their geometry?* or applications that use the
non-dissipative Euler equations of fluid mechanics?® As discussed above, the
stable structures arise from the fact that one is in a parameter regime where
the tubular domains containing one of the phases shrink, but the geometry of
the tubular domain in conjunction with the repulsion between fronts prevents
collapse and leads to a stable pattern.

bWe use the value 27 for the Hopf link.
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The structures we have described are also quite distinct from the linked
and knotted vortex filaments seen in excitable and oscillatory media, even for
the same FitzHugh-Nagumo model explored here.2%:2? The excitable regime
corresponds to the case where the system is monostable. The stable fixed point
is susceptible to finite amplitude perturbations which lead to large excursions
in phase space before return to the fixed point. The singular filaments are
the cores of three-dimensional spiral waves. Since our tubular domains are
composed of one of the two bistable states and have no phase field associated
with them that can give rise to twist in the filaments, their structure is actually
much simpler than that of vortex filaments.

The fact that the links and knots assume nearly ideal forms seems natural
in view of the factors that determine their structure: tubular domain contrac-

tion and front repulsion. It would be interesting to explore further the factors
that determine the geometries of these stable structures.
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Appendix: System evolution in the Boltzmann approximation

The analysis in Sec. 3 can be made rigourous by analyzing the system in
the Boltzmann approximation. In this case the particle distributions at dif-
ferent nodes are considered to be independent so that the state probability
distribution is approximated by the product of the reduced 1-node probability

distributions:
P({n}, {m:},t) = [[ p(n,m,x,1) . (19)

The evolution of the node probability distribution is described by the
Markov process where the transition matrix is the composition of diffusion
and reaction operators:

p(n,m,x,t+1) = WEWPe (@ WP (B)p(n, m,x, ) . (20)

The operators WPs and WP are non-local and depend on the states at
the surrounding nodes and have the following form:
!

Di=(a,b) _ a1 EI_ _an ,
Wn,n, (e) = [1 é(1 N)+ (1 c)N Ot n

/ !

+5(1 = Dwner+ (1= Fowrmar,  (2D)
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where € is the average particle density of the neighbouring sites:
é(r,t)N = E an(n m,r',t) Z (n)(x', 1) (22)
r 'eN(r) n ’GN(r)

We seek a solution of Eq. (20) in the following form:
oo
p(nr m,r, t) = E Esps (n; m, a(r’ t)’ b(l‘, t)) ) (23)
s=0

with an additional constraint: ({n,m}), = N {a(r t),b(r,t)} for any partial
sum. We expand the evolution operator in a series of powers of the ordering
parameter:

o0
& =) &D,. (24)

s=0
and rewrite the diffusion and collision operators as:
WP (¢(r, 1)) = WPe (a(r,t)) +¢ [VvDa (&(r,t)) — WP (a(r, t))] (25)
WC=1+¢C. (26)

Following the standard Chapmann-Enskog procedure?® we arrive at the fol-
lowing equations at the zeroth and first orders:

WP2WPspo (-, -,r,8) = po(-, -, 1, 1) (27)
DOPO('; ~,I‘,t) [Db + Db + C]po( o X )+ WD“WDbpl( y Ty tX28)

where we denoted the difference in Eq. (25) by D=(9}) and used the invariance

of po(r,t) under the action of the commuting operators WD= and WPe,
The stationary probability distribution of (27) is binomial. To show this
it is convenient to consider the generating function!” of the distribution

fs(z,y,1,1) Z z"y"ps(n, m, a(r,1),b(x, 1)) . (29)

n,m=0

In the generating function representation the diffusion operator takes the form:

WP (q) = [1-a(l-z)] (1 + ! ]_anz> (30)
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and the particle number expectation value is given by:

({n’m}>Pn = {axfs(z’y)’ayf(w)y)} (31)

z,y=1

From the above equation we obtain the evolution equation for the particle
number expectation under the action of operator W24 (a):

N

-1 -1
<n>v"\/o,(a)p =af(1,1) + -N"‘axfs (z,9)

N
=a+
z,y=1

(n)p, (32)

and, at equilibrium:

_ 1 1
<n>ﬁa(a)po(r,t) = C(r, t) - ”ﬁ(n>Po(".t) 24N A(")Po(" t) + O(vS) (33)

The eigenvalues of the operator (30) are {L—k/N : k=0,...,N} and the
corresponding eigenfunctions are:

d(z)= (1—a(l-2) " F(1 -2}, (34)

so that the zeroth order approximation is given by a local binomial distribution.
The collision operator in the generating function representation has the
following form:

& = F(l-2)e e+ K (1~ 2)2" 8ye 0
~ - 1
+k2(1 — :c)x N+1 y&,ym—N - k2(1 ) N+16 'yw
- N 1
+k3(1 — y)x0sy — ka(1 — )(:cy)NH(? nyN , (35)

where k; and k! are the reaction rates. Acting with the operators in (31) on
equation (28) and approximating the spatial average by the Laplace operator
we arrive at the FitzHugh-Nagumo system of equations (1). The reaction rates
k; and k* are proportional to the probabilities of transitions p; of Eq. (13).
Computatlons yield the following relations between the mass action and the
lattice gas kinetics coefficients:

NI

k= N3(N = 3)!

kl and kz 3= kz 3. (36)
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CHAPTER 14

NEW DEVELOPMENTS IN TOPOLOGICAL FLUID
MECHANICS: FROM KELVIN’S VORTEX KNOTS TO
MAGNETIC KNOTS

RENZO L. RICCA
Department of Mathematics, University College London,
Gower Street, London WC1E 6BT, UK
and
ISIS, TP 728, EC Joint Research Centre,
21020 Ispra (VA), Italy

E-mail: ricca@math.ucl.ac.uk

In this paper we review classical and new results in topological fluid mechanics
based on applications of first principles of ideal fluid mechanics and knot theory to
vortex and magnetic knots. After some brief historical remarks on the first original
contributions to topological fluid mechanics, we review basic concepts of topological
fluid mechanics and local actions of fluid flows. We review some classical, but little
known, results of J.J. Thomson on vortex links, and discuss Kelvin’s conjecture on
vortex knots. In the context of the localized induction approximation for vortex
motion, we present new results on existence and stability of vortex filaments in the
shape of torus knots. We also discuss new results on inflexional magnetic knots
and possible relaxation to minimal braids. These results have potentially important
applications in disciplines such as astrophysics and fusion plasma physics.

1 Kelvin’s vortex atoms and the origin of topological fluid mechan-
ics

The use of topological ideas in fluid mechanics dates from the original studies
of Gauss »® on linked orbits and electric circuits, from Lord Kelvin’s *3-1* first
investigations on vortex knots, and from Maxwell’s '° thoughts on magnetic
flux tubes (see the table in Figure 1 below).

Gauss’s work was followed by the studies of Listing on topological proper-
ties of surfaces (among which the famous one-sided band, wrongly attributed
to Mobius), and by the work of Riemann on analytic properties of irrotational
flows embedded in multiply connected regions (with applications to fluid flows
in presence of holes).

But it was Kelvin (then W. Thompson), who gave the greatest impe-
tus to applications of topological ideas to physics. His work was inspired by
Helmholtz’s ® influential paper on vortex motion, and was motivated by the
search for a fundamental theory of matter. Kelvin’s theory assumed the exis-
tence of a dynamical fluid ether permeating everything, in which natural forces
were generated. Kelvin’s realization that vortex filaments in inviscid fluid were
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Linking number formula | Applications to vector fields
(C.F. Gauss, 1833) (J.C. Maxwell, 1873)
Classification of knots Applications to vortices
(P.G. Tait, 1867) (Lord Kelvin, 1867)

Figure 1: First contributions to the origin of topological fluid mechanics.

permanent, dynamical entities, led him to envisage a vortex atom theory 13,
whose fundamental constituents, the atoms, were knotted vortices embedded
in the ether. In absence of dissipation the topology of vortex structures, given
for example by the linking of two vortices, is frozen in the fluid, so that knotted
and linked structures remain knotted and linked indefinitely. For Kelvin the
topological specificity of each knot and link type provided a useful paradigm to
represent chemical elements and compounds. By interpreting knotted vortices
as elemental building blocks, and links as compounds, it was possible to envis-
age chemical structures ordered in a way similar to the modern periodic table
of elements. The puzzle of quantization of energy, revealed by the spectral
studies of light, could thus find a simple and natural explanation in terms of
the discrete specificity of the knot types. These ideas became part of a topo-
logical theory of matter3? ante-litteram. The mathematical study of knots and
links thus became an integral part of Kelvin’s programme, and this study was
carried out by his friend and collaborator Tait. The results of Tait’s work2®
that included the first classification tables of knots, were published in a series
of three remarkable papers destined to become the foundations of modern knot
theory.

Other contributions followed soon. Most notably the work of J.J. Thom-

n 36 on vortex links (see Section 3 below) and the studies of fluid flows
in multiply connected domains (see, for example, Lamb’s Hydrodynamics *6).
These ideas survived for some time. In Lichtenstein’s mathematical theory
of hydrodynamics,!® for example, the importance of topology is emphatically
stressed by two chapters dedicated to the subject.

While Kelvin’s dream of explaining atoms as knotted vortices in a fluid
ether never came to fruition, his work was seminal in the development of
topological fluid mechanics. The recent revival is mainly due to the work of
Moffatt 2% on topological interpretation of helicity, and Arnold! on asymptotic
linking number of space-filling curves. Modern developments have been influ-
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enced by the recent progress in the theory of knots and links, and by access
to fast computer and sophisticated numerical diagnostics. Various research
areas now benefit from use of topological techniques and fluid mechanics (an
overview of the present state of the art is given, for example, by the article of
Ricca & Berger ®°).

We list here some current research topics relevant to topological fluid me-
chanics: 22

e Knotted and linked solutions to Euler’s equations:

topological classification of fluid flows;

relationships between topology and dynamics;

role of invariants and integrability;

relationships between topology and stability properties.

o Energy relazation for topologically complex structures:

magnetic knots and braids;

electrically charged links;

relationships between topology and energy;

energy spectra for physical knots and links.

e Dynamical systems and measure-preserving flows:

|

existence theorems for 3-D vector fields;

|

topologically complex closed and chaotic orbits;

relationships between topology and Hamiltonian flows;

Lie-algebras of invariants.

e Change of topology and complezity measures:

singularity formation;

bifurcation theory and classification of singularities;

|

physical reconnection mechanisms;

measures of topological complexity and diagnostics.
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2 Basic concepts in topological fluid mechanics

2.1 Topological equivalence classes for frozen fields

We consider an ideal and perfectly conducting fluid in an infinite domain D of
IR3. Motion of fluid particles is given by a smooth velocity field u = u(X, ),
where X denotes the position vector and ¢ time. The velocity field satisfies the
solenoidal condition in D and the condition to be at rest at infinity:

Viu=0 , D, (1)
u=0 , asX-o0. (2)

Fluid particles move in D from one position to another. If a = X(a, 0) denotes
the initial position of a fluid particle at time ¢t = 0, then we have a flow map
v; induced by u so that each particle at the initial position a and time ¢ =0
is sent to the final position X(a,t) by

pr:a—X, Viel, (3)

where I denotes some finite time interval. The flow map ¢ is continuous, one-
to-one and onto, with inverse. For an incompressible fluid the flow map is
volume preserving, with Jacobian

8X;
J_det(aaj)_l. (4)

Let 2 = (X, t) be a solenoidal (V-2 = 0) vector field in the fluid domain
D. Then, the evolution of the vector field € is governed by the following master
equation:

on

E:Vx(uxﬂ). (5)
If © is the vorticity w = V x u, eq. (5) is the Helmholtz equation for the
transport of vorticity in ideal fluids (Euler’s equations). Alternatively, if
is the magnetic field B, then eq. (5) governs the evolution of B in ideal
magnetohydrodynamics (MHD). Equation (5) admits formal integral solutions
called Cauchy equations, given by

d 0X;

that conserve topology. This means that while the field geometry changes
smoothly from one configuration to another by continuous actions of flow maps,
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Figure 2: Topologically equivalent configurations of a fluid pretzel.

the initial field topology is conserved. Equation (6) encapsulates both the con-
vection of the field from the initial position a to the final position X, and
the simultaneous rotation and distortion of fluid elements by the deformation
tensor 8X;/0a;. Since this tensor is a time-dependent diffeomorphism of posi-
tions, it maps continuously the initial field distribution 2(a,0) to (X, t) by
establishing a topological equivalence between the two fields. Hence, we write

0(a,0) ~ N(X, 1) . (7)

Under these conditions the field £ is said to be ‘frozen’ in the fluid and initial
and final configurations are said to be isotopic to each other.

Continuous deformations of fluid structures are often complicated by twist-
ing and folding actions of fluid flows. The five configurations of a fluid pretzel
shown in Figure 2 provide a striking example of equivalent isotopies of a fluid
structure by (non-trivial) flow maps.

2.2 Action of local flows and Reidemeister’s moves

Ideal topological fluid mechanics deals essentially with the study of fluid struc-
tures that are continuously deformed from one configuration to another by
ambient isotopies. Since the fluid flow map ¢ is both continuous and invert-
ible, then ¢, (K) and ¢;,(K) generate isotopies of a fluid structure K (for
example a vortex filament) for any {t1,%2} € I. Isotopic flows generate equiv-
alence classes of (linked and knotted) fluid structures. In the case of (vortex
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|
1

Figure 3: The three types of Reidemeister’s moves can be performed by natural actions of
local fluid flows on fluid flux tube strands.

or magnetic) fluid flux tubes, fluid actions induce continuous deformations in
D. One of the simplest deformations is local stretching of the tube. From
a mathematical viewpoint this deformation corresponds to a time-dependent,
continuous re-parametrization of the tube centreline. This re-parametrization
(via homotopy classes) generates ambient isotopies of the flux tube, with a
continuous deformation of the integral curves.

It is well known (see, for example, Kauffman !1) that knot topology is
conserved under the action of the Reidemeister moves (see Figure 3). In the
context of the Euler equations these moves are performed quite naturally by the
action of local flows on flux tube strands. If the fluid in (D — K) is irrotational,
then these fluid flows (with velocity u) must satisfy the Dirichlet problem for
the Laplacian of the stream function ¥, that is

u=Vy v

in (D-K 8
vz,"b =0 } ( ) ! ( )
with normal component of the velocity to the tube boundary u; given. Equa-
tions (8) admit a unique solution in terms of local flows? and these flows are
interpretable in terms of Reidemeister’s moves performed on the tube strands.
Note that boundary conditions prescribe only u;, whereas no condition is im-
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posed on the tangential component of the velocity. This is consistent with
the fact that tangential effects do not alter the topology of the physical knot
(or link). The three types of Reidemeister’s moves are therefore performed by
local fluid flows, which are solutions to (8), up to arbitrary tangential actions.

2.3 Ideal versus ‘real’ topological fluid mechanics

Relationships between topology and dynamics of fluid structures are very lit-
tle explored. Questions about topology and dynamics or stability of linked
vortices, topology and energy levels of magnetic loops, or energy relaxation of
knotted magnetic fields, are still very little studied.

In ideal conditions (i.e. in absence of dissipative effects) all topological
properties and physical quantities are conserved. These form a set of scalar and
vector invariants that guide the evolution of the system towards (homotopic)
solutions, whose existence is guaranteed by the diffeomorphisms associated
with the flow maps. Changes in the topology of the system occur only if
singularities, bifurcations and dissipative effects are present. Clearly, if we
want to model ‘real’ flow maps, then we cannot neglect the presence of wakes,
boundary layers and other fluid regions, where dissipative effects are indeed
relevant. Similarly, we cannot neglect the presence of physical regions, where
particle trajectories have wild behaviours, with bifurcations, multiple points
and singularities. In neglecting the presence of these physical regions we are
in fact limiting the validity of the models. Results obtained by techniques of
ideal topological fluid mechanics (where dissipative effects are ignored) should
therefore be preliminary to the study of real flows, but then complemented or
adjusted by ‘real’ fluid mechanics.

3 Links of thin core vortex rings

The first mathematical study of dynamical aspects of linked vortex rings was
done by J.J. Thomson 3¢ (see also the paper by Ricca & Weber 32). His work
was inspired by Kelvin’s vortex atom theory, and provides one of the most
remarkable examples of combination of topological ideas and fluid mechanics.
Thomson’s idea was to study vortex structures, linked and knotted together,
by using thin core models of vortex rings and basic notions of linking, based
on Gauss’s formula of linking number.” Thomson tackled the problem by con-
sidering a particular geometry given by two linked vortex rings lying on the
mathematical surface of a torus II of radius R and small diameter d. The
simplest example of this kind of link was given by two inter-linked rings, C;
and C, embedded on II as shown in Figure 4.
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Figure 4: Simple link of two rings C; and (3, lying on the mathematical torus I1: the number
of components is n = 2, and the linking number of the system is Lk = 1.

" In Thomson’s view the vortex link geometry is the result of the uniform,
rigid rotation of two point vortices (representing the cross-sections of two vor-
tex filaments) around their center of mass (in the meridian plane of IT), making
one complete rotation around the great circle (of radius R) in the longitudinal
direction. The vortex filaments were given by the collection of the point vortex
positions. The resulting vortex system, made of these thin, closed vortex fil-
aments embedded in ideal fluid, is frozen. Hence, the dynamics of the system
is expected to be influenced by the type of linking.

Let A = max|X; — X}|, for points {X;,X}} € C;, 7 = 1,2, and § =
min |X; — X,| for points X; € C; and X3 € C;. If we assume that A > §,
where A = O(2R) and § = O(d), then we can show that:

Theorem (Thomson, 1883). Consider the link formed by two vortez rings
of equal circulation ® and relative linking number Lk, embedded and equally
spaced on a torus Il in D. The vortex system is steady and stable iff

M(27xp®)'/?
“IEpiT <1, (9)
where p 1s the fluid density (constant) and M = |M| and P = |P| are the

intensities of the angular momentum M, and the linear momentum P of the
system.

The simplest link system (with Lk = 1) rotates and translates as a rigid
body, with angular velocity © and translational velocity V given by

$ $ 1 64R?

Q:m, V:4—7r§0g 0,2 . (10)
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Figure 5: Example of higher-order link made of two rings: in this case n=2, Lk = 2.

Higher-order link systems (i.e. two-component link with Lk > 1) are realized
by a higher number of full rotations of the point vortex system around the
great circle (see Figure 5).

Consider now n vortex rings linked together. Following a similar construc-
tion, the n-component link is now given by n inter-linked vortices on II (see
Figure 6). The system is generated by the rigid rotation of n point vortices
equally spaced on the torus small circumference. After a long and laborious
analysis Thomson finds the following result:

Theorem (Thomson, 1883). Consider the link of n vortez rings of equal
circulation ® and relative linking number Lk, embedded and equally spaced on
a torus Il in D. The vortez system is steady and stable iff n < 6, with period
of vibration

T= 2r (11)
- s (2 (2Lk? - 1) 1 d) -
da 4q? °8

This result has been confirmed by later works in the theory of point vortex
motion in the plane33
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Figure 6: Example of higher-order link given by three rings on the torus II: n=3 and relative
linking Lk = 1.

4 Evolution and stability of thin vortex knots

4.1 Kelvin’s conjecture and vortez knot dynamics

In his vortex atom theory, Kelvin !* conjectured (see Vortex Statics, p. 123,
¢ 16) that thin vortices in the shape of torus knots could exist as steady and
stable fluid structures. Vortex knot solutions (to Euler’s equations), if existed,
could move with constant speed in the fluid and, if disturbed, vibrate about
their equilibrium configuration. From a mathematical viewpoint the search for
the existence of vortex knots remained open, and only in recent years there
has been a real progress in this study. Here we want to present and discuss
some new results.

Thin vortex knots have been found as solutions to the so-called ‘localized
induction approximation®” (LIA for short). This is an approximation of the
Biot-Savart law for Euler’s equations. Under LIA, vortex motion is governed
by a law, that after appropriate re-scaling of the time variable, takes the simple
form

LIA: u=X=X'xX"=cbh, (12)

where u is the vortex velocity, the dot denotes time-derivative and the prime
denotes derivative with respect to arc-length along the tube axis. ¢ and b
are local curvature and unit binormal to the axis. It is interesting to note
that since eq. (12) is equivalent to the non-linear Schrédinger equation® we
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have a countably infinite number of polynomial conserved quantities (soliton
invariants) that can be written as global geometric functionals!?23

Existence and steadiness of knotted solutions to LIA have been studied by
Kida !5 and Keener!? Kida’s solutions are torus knots in the physical space
and represent the first vortex knot solutions found by analytical methods. We

have:

Theorem (Kida, 1981). Let K, denote the embedding of a knotted vortes
filament in an ideal fluid in D. If K, evolves under LIA, then there exists a
class of steady solutions in the shape of torus knots K, =7, ,.

In geometric terms Kida’s solutions are closed curves embedded on the
mathematical torus, wrapping the torus p > 1 times in the longitudinal direc-
tion and ¢ > 1 times in the meridian direction (p, g co-prime integers). The
winding number is given by w = ¢/p, and self-linking given by Lk = pq, two
topological invariants of the knot type. Kida gives the solutions in terms of
fully non-linear relationships that involve elliptic functions of traveling waves.
A more direct and simpler approach has been proposed by Ricca2® and is based
on linear perturbation techniques and cylindrical polar coordinates (r, , z). By
this approach we find ‘small-amplitude’ torus knot solutions (asymptotically
equivalent to Kida’s solutions) given by

r = 1o + €0k, sin (wg + ¢o)

s k.

o= E + eo——wro cos (we + ¢o) (13)
tA 1 1/2

z= — +€gk, <1 — ——2> cos (wd + ¢o) .
To w

ro is the radius of the torus circular axis and €o = a/ro < 1 is the inverse
of the aspect ratio of the vortex, with a the radius of the vortex cross-section
and k., = O(ro) a scale factor. Moreover ¢ = (s — &t)/ro, with £ time, £ a time
re-scaled with the vortex circulation, and ¢o a constant.

4.2 New results on stabilily of vortez knots

Since torus knots have two isotopes 7, 4 and 7, , (for given p and gq), that are
topologically equivalent but geometrically different, the question of their evo-
lution and stability is particularly interesting. A linear stability analysis 2526
based on equations (13) leads to the following result:

Theorem (Ricca, 1993; 1995). Let 7, , denote the embedding of a ‘small-
amplitude’ vortez torus knot K, evolving under LIA. T, , is steady and stable
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Timet; >ty

Figure 7: Evolution of torus knot 73 3 under LIA. The knot is found to be stable as predicted
by the LIA analysis of Ricca. The knot is visualized by centering a thin tube on the knot
axis. The tube shown is therefore a virtual object and its thickness is not measured by ag.

under linear perturbations iff ¢ > p (w > 1).

Kelvin’s conjecture can be therefore tested using this criterium. Numerical
calculations 343! have been performed to check and investigate the validity of
the above result, and confirm that knots, with winding number w > 1 are
indeed stable under LIA evolution.

Figure 7 shows two snapshots of the stable knot 73 and Figure 8 shows
the knot 73 ; as it becomes unstable and unfolds. Another interesting result 3!
is the discovery of a strong stabilizing effect due to the full Biot-Savart law.
Take for example the knot 73 2: this knot becomes immediately unstable under
LIA, whereas it remains stable under Biot-Savart, travelling a considerable
distance. Although we find that these knots eventually de-stabilize (remember
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Figure 8: Evolution of torus knot 73,2 under LIA. The knot is found to be unstable as
predicted by the LIA analysis of Ricca. The knot is however stabilized when its evolution is
governed by the Biot-Savart law.

that some numerical noise is always present), the time which elapses and the
distance over which the knot travels before breaking-up is very large and has
physical significance.

Finally, let us point out that unstable vortex knots evolve under LIA to-
wards a reconnection event. This is another interesting feature of vortex knot
evolution, especially in view of the great interest for the study of singularity
formation. No doubt that these results will stimulate more numerical work and
will certainly give new impetus to the mathematical search for the existence
of steady and stable vortex knot solutions under the Euler equations.
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5 Magnetic knots, minimal braids and energy estimates

5.1 Ewvolution of inflezional magnetic knots

Magnetic knots are the physical analog of vortex knots, when we replace vortic-
ity with the magnetic field (so that the physical knot becomes a magnetic flux
tube). Magnetic knots evolve according to a dynamics given by the Lorents
force. For a solenoidal magnetic field B = B,, + B, given by a meridian (i.e.
poloidal) component B,, and an axial (i.e. toroidal) component B,, where

B, = [01 BB(Ta "9(3))1 0]1 B, = [01 0, B,(T‘)] ) (14)

with By and B, smooth functions of radius of the tube cross-section » (0 <
r < a) and azimuth angle ¥ = 9(s) (0 < ¥ < 27; s arc-length on the tube

axis), we have

. [Be® 198 .
F.L:Bazin“ 'TL'I'EE(BGZ""B.;Z) e, (15)

where F| denotes the component of the force perpendicular to the tube axis.
Here K is a scale factor (function of the geometry), and fi and &, are two unit
vectors in the principal normal direction and in the radial direction to the tube
axis. Since F; is the only component of the force responsibie for the motion
of the knot in the fluid, in a first approximation we can write F = ci, with
force proportional to curvature, along the principal normal of the knot axis.
This force induces a tension in the physical knot and a shortening of the lines
of force.

In general magnetic knots exhibit inflexional configurations. The geom-
etry of these configurations is characterized by a change in concavity in the
tube axis, at a point where curvature vanishes (inflexion point). Inflexional
states are easily identified in plane curves: in this case the inflexional geome-
try is simply given by an S-shaped curve with the inflexion point at the change
of concavity. Inflexional configurations in magnetic field structures, however,
are ubiquitous, especially in rich topologies. Moffatt & Ricca ?* showed that
the appearance of inflexional states is invariably associated with the continu-
ous exchange of writhe and twist (see Figure 9), a natural mechanism in the
evolution of magnetic structures.

The dynamics of magnetic flux tubes in inflexional configuration has been
studied by applying the Lorentz force equations to a generic deformation
through inflexion. It can be shown 22 that inflexional states represents dis-
equilibria for magnetic configurations. In particular we can state the following
result2®
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Figure 9: Competition between twist and writhe in a magnetic knot.

Theorem (Ricca, 1997). Let K., be the embedding of a magnetic knot in D.
If K has a finite number of inflezion points in isolation, then K,, evolves to
an inflezion-free configuration, possibly in braid form.

As we shall see below this result has important consequences for the first
stages of the relaxation of magnetic knots.

5.2 Relazation of inflezional knots to minimal braids

Since inflexional magnetic knots are in disequilibrium, they remove inflexions
by re-arranging the geometry to form topologically equivalent configurations
free from inflexions. In general the Lorentz force induce a natural tendency
to minimize the magnetic tension present in the tube by reducing the surplus
of internal magnetic twist (through an increase of writhing), and by remov-
ing inflexion points. This favours a deformation to topologically equivalent
inflexion-free configurations. In absence of other forces, the evolution is then
dominated by curvature forces that induce a continuous, progressive shorten-
ing of the field lines (hence of the knot) toward a minimum energy state. In
the ideal process, virtual crossings and inflexional states are naturally removed
and the knot relaxes isotopically to an inflexion-free configuration, with least
possible number of (real) crossings (‘minimal closed braid form’; see Figure 10).
In general this number of crossings is equal to, or higher than, the topological
crossing number.

Minimal braids are particular geometric representations of knot types.
From a purely topological viewpoint, any knot can be isotoped to a closed
braid by a sequence of Reidemeister’s moves (in braid theory this result is
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Figure 10: Two different knot types are shown in standard, minimal projection (on the left

hand side) and in their topologically equivalent minimal, closed braid form (on the right

hand side). Note that the knots in their standard representation exhibit at least two points

of inflexion, denoted by I; and I, in the diagram. These knots can be both isotoped to their

minimal closed braid representation, which is given by an inflexion-free configuration with
the least possible number of crossings.
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known as Markov’s theorem *). The deformation of an inflexional knot into
a closed braid representation (as is given in the ‘conjugacy class’ of the knot
type) is likely to introduce new crossings. To see this, let us consider the
two examples of isotopic transformation of knotted loops shown in Figure 10.
The diagrams on the left show two different knot types in minimal projection,
i.e. in the plane projection for which the number of crossings is the topolog-
ical crossing number Cpin. In this configuration the knots have at least two
points of inflexions (denoted by I; and I; in the diagrams; note that inflex-
ional states are intrinsic geometric features independent of projection angle
and viewing direction). The corresponding diagrams on the right, however,
show no points of inflexions, and represent the isotopic configurations of the
knots in the minimal braid form, with curvature vector pointing always inward
the braid region. Note that in passing from the minimal standard to the mini-
mal braid configuration the four crossing knot conserves the minimum number
of crossings (Cmin = Co = 4), whereas the five crossing knot (with Cpin = 5)
has the least possible number of crossings Co = 6 > Cpin. In general we
have Co > Cpin. Our analysis?® based on standard results of knot theory,'%37
shows that indeed there are infinitely many knots (whose simplest representa-
tive is the five-crossing knot) that cannot be transformed to minimal braids
by ‘equi-minimal’ isotopies (i.e. by conserving the minimum possible number
of crossings). The existence of a family of knots that have ‘non-equi-minimal’
braid representatives seem to have important consequences for the estimates
of energy minima of magnetic knots.

5.3 Possible consequences for energy estimales

Mathematical estimates of minimum energy levels based on topological infor-
mation have shown 246329 that minimum energy states of physical knots can
be related to topological quantities such as linking number and crossing num-
ber. Lower bounds for energy levels of magnetic knots are given by relations
of the kind

Emin > f(éa ‘,1 n, Cmin) ’ (16)

where Epi, denotes the ground state energy and f(-) gives the relationship
between physical conserved quantities — such as total flux &, magnetic volume
V, number of tubes n (in the case of an n-component braid or link) — and
topology (here given by Cpin). Typically, in these relations energy increases
with knot complexity. The inequality sign allows ample margins for errors, so
that these estimates are still rather qualitative. For inflexional magnetic knots,
far from their minimum energy state, our results indicate that ground energy
levels may be strongly influenced by the presence of inflexions. Since inflexions
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represents disequilibria of thin magnetic knots, inflexional knots will tend to
remove inflexions and relax to minimal braids first, before relaxing further to
their ground energy state. But minimal braids are likely to have least possible
number of crossings Co > Cmin (as for the five-crossing knot of Figure 10).
For this sub-family of minimal braids (‘non-equi-minimal’ braids) we expect
an Ep;, higher than the theoretical bound given by the equality sign in (16).

This studies find useful applications in applied disciplines, such as astro-
physics, solar physics and fusion plasma physics. For solar coronal loops, for
example, a difference in the crossing number of the relaxing magnetic braid has
important physical consequences for energy estimates, especially when these
estimates are based on theoretical models that are very sensitive to variations
in geometric and topological information. The accuracy of these estimates is
crucial to give precise evaluations of the amount of energy that can be released

into heat during flares and microflares. Future progress in this direction will
be very important for energy studies.
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CHAPTER 15
HAMILTONIAN APPROACH TO KNOTTED SOLITONS

Antti J. NIEMI
Department of Theoretical Physics, Uppsala University, P.O. Boz 803, S-75108,
Uppsala, Sweden

We describe a first principles Hamiltonian approach, where knots appear as soli-
tonic solutions to the pertinent nonlinear equations of motion. This makes it
possible to predict all properties of knotted configurations in terms of fundamen-
tal data that are only characteristics of the underlying physical environment. In
particular, no knot-specific parameters appear in this approach.

1 Introduction

The study of knots - mathematically defined as embeddings of a circle S in
three dimensional Euclidean space R® - is rapidly becoming highly important
in various physical, chemical and biological problems, ranging from early uni-
verse cosmology and the structure of elementary particles to He® superfluids,
polymers and DNA. By studying the properties of knots and the mechanisms
which lead to their formation, we learn how highly nonlinear, complex systems
organize themselves into regular global patterns.

Ideally, we would like to predict the properties of a knotted configuration
directly from those of the underlying physical environment. For this we need
a mathematical description of the environment, where the knots appear dy-
namically as solutions to the pertinent equations of motion!. In such a first
principles approach we can then make definite predictions. In particular, all
physical characteristics of any knot such as its mass (energy), length, thick-
ness, overall geometrical shape, and also the interactions between different
knots, become quantities that at least in principle can be computed directly
from the underlying theory. A first principles approach to knots can not con-
tain any intrinsically knotlike quantities, all parameters that appear in the
theory should either describe the generic, statistic properties of the physical
environment such as its temperature, viscocity etc, or then be a priori mea-
surable quantities of the microscopic pointlike constituents such as the mass
and electric charge of elementary particles, atoms etc.

The first who proposed that such a first principles approach to knots should
be possible was Lord Kelvin. In? he suggested that (thin) vortex filaments in
the shape of torus knots - a general family of knots that can be described as a
loop wrapping around the surface of a doughnut a number of times? - should
be stable. However, at the time the theoretical understanding of nonlinear



275

phenomena was insufficient for realizing his conjecture. Indeed, it could not
even be formulated in a proper mathematical framework.

Today Kelvin’s conjecture on the stability of torus knots still remains un-
proven, but now we do have a mathematically consistent formulation. More-
over, tentative numerical simulations do indicate that Kelvin's conjecture could
be realized in a definite theoretical model !.

In order to formulate Kelvin's conjecture in a mathematically consistent
manner !, we need a three dimensional Hamiltonian field theory, with knots
appearing as finite energy solitonic* solutions to the pertinent Euler-Lagrange
equations of motion. The underlying physical principles that leads us to adopt
a Hamiltonian framework with knots as solitons, are today universally accepted
as fundamental. Indeed, a physical theory which fails to admit a Hamiltonian
interpretation should be interpreted as an effective theory of some underlying
Hamiltonian structure. A Hamiltonian approach allows us to describe all prop-
erties of knots in a predictive manner, as functions of the fundamental physical
parameters which appear in the Hamiltonian. In particular, in this approach
there are no knot specific ad hoc parameters, but all properties of knots are de-
rived directly from those of the physical environment where knots are formed,
by solving the Hamiltonian equations of motion. At least in principle, we can
then compute all physical characteristics of all knots such as their stability
and overall shape including thickness, length, energy (mass), string tension
etc., and we can study their vibrational and rotational excitations and effects
of quantum mechanical and thermal fluctuations, and investigate interactions
between different knotlike configuration. The results are presented as functions
of a relatively small number of a priori known parameters that characterize
only the physical environment where the knots are formed, no adjustable or
measurable knot specific parameters are present.

Unfortunately, the equations of motion that describe knotted solitons are
highly complex nonlinear partial differential equations. Even the very con-
struction of a Hamiltonian for knots is quite nontrivial, and until very recently
no examples were known. Fortunately, it appears that this complexity also
strongly limits the possible form of Hamiltonians that describe knots, maybe
even to a point where we can eventually have a full classification. Indeed,
since a knot is a highly complicated topological object, the dynamical field i.e.
order parameter that appears in the Hamiltonian, is strongly restricted by the
requirement that it must allow for the description of the various topological
properties such as the linking number of a knot. The Hamiltonian must also be
consistent with various obvious symmetries such as rotation and translation
invariance, and the functional form of the nonlinear terms are restricted by
the requirement that the equations of motion indeed support stable knotted
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solitons. The concept of universality can also be introduced. In the present
context it states that two Hamiltonians with the same order parameter are in
the same universality class provided they differ from each other only by such
higher order derivative terms which do not influence the stability of knots.
These higher order terms in a derivative expansion become generically rele-
vant only when we are interested in higher order corrections to explicit profiles

such as the energy density distribution. But at the level where we are only
interested in global, large scale topological or stability aspects these higher
order terms are not relevant. By implementing these and possibly additional
natural principles like demanding locality of the Hamiltonian, we expect that
we may eventually succeed in obtaining a relatively simple classification of all

Hamiltonian field theory models that can describe knotted solitons.

Until now, we have found only one viable candidate of a three dimensional
Hamiltonian field theory model where knots appear as finite energy solitons .
This model is indeed highly nonlinear, to the extent that any analytic approach
to study the properties of its knots is essentially hopeless. Even a numerical
investigation of its properties is very demanding !, and is only now becom-
ing realistic with the development of a new generation of supercomputers and
novel computational techniques. Even though for the moment only very ten-
tative numerical investigations of this model have been performed, the results
are however quite encouraging and strongly suggest that it indeed describes
Kelvin’s torus knots as stable solitons. Since the theoretical principles that
lead to the construction of the model are quite restrictive, it may be essen-
tially unique for a general class of knotlike solitons, strongly supporting the
importance of the concept of universality in fundamental knot theory.

In the following we shall describe the Hamiltonian approach to knots as
solitons, introduced in!. We concentrate on the general topological properties
of this approach, but we shall also address some of the complications that
appear in numerical simulations.

2 A Knot Hamiltonian

Knots are highly complicated topological objects, and in order to analyze their
properties various invariants have been introduced. Such invariants are useful
e.g. when we wish to determine, whether two a priori different knots are
actually topologically equivalent in the sense that they can be continuously
transformed onto each other by Reidemeister moves 3. Such moves do not
allow for transformations that break the knot, and in particular do not allow
the knot to cross through itself. The most complete of such knot invariants

are the polynomial invariants introduced by Jones3. However, at the moment



277

Jones polynomials have not yet been cultivated into a effective computational
tool that could be used in connection of a Hamiltonian field theory approach.
For the present purpose it is more convenient to use the Hopf invariant, a
much more rudimentary topological invariant that computes the (self)linking
number of knots.

Besides a (self)linking number of a knot, the Hopf invariant can also be
interpreted as a winding number for maps from a unit sphere S in four dimen-
sional Euclidean space to a unit sphere S in three dimensions. This enables
us to introduce a dynamical order parameter for knots: The maps §% — §2
fall into disjoint homotopy classes, labelled by integers using the homotopy
group m3(S?) ~ Z. Since S3 is topologically identical with the three dimen-
sional Euclidean space when we identify all points at infinity, S ~ R® U {c0},
the Hopf invariant can be described using a three component unit vector
n(x) : R® > 5?2

n1(x)
n(x) = | na(x)
ng(x)

that approaches a constant vector at spatial infinity,

lim n(x) =ng
|x|—o00

Since knots are highly localized configurations in R3, this vector field n(x) with
its asymptotic boundary condition is then also an appropriate dynamical vari-
able i.e. an order parameter to describe the dynamics of knots. Furthermore,
since it is natural to expect that the relevant Hamiltonian for n(x) should be
rotation invariant, we can always select the asymptotic vector ng as

ng = 0 (1)

The Hopf invariant of m3(S?) can be represented as an integral invariant
of the field n(x). For this, we define the antisymmetric tensor

F,;]' = eabcnaainbajnc (2)

where €gpc is antisymmetric in its indices with €;23 = 1. We recognize Fj; as
the pull-back of the volume element two-form on the target $2. Since it is
closed,

dF = fz‘jkaiij =0
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we can represent it as a curl of a vector field A;,
F =dA & Fij = 6iAj - 8]'Ai (3)

Modulo a U(1) gauge transformation A; — A; + 0; we can then use (2) to
solve for A; as a functional of n(x), but unfortunately the result fails to be
local in n(x).

The Hopf invariant is the integral

1
QH = 471’/d3$ eiijijAk (4)

and one can verify that it is indeed a topological invariant of n, i.e. it remains
invariant under a local variation n — n + én,

1
5QH = Z?Féfd3x eiij,-jAk =0

This can be verified by explicitly varying Qg with respect to n(x). It can also
be verified by introducing a parametrization of n(x) in terms of a unit four
vector ®,(x) (1 = 1,2,3,4), an approach that has the advantage that is makes
the connection between the Hopf invariant and the linking number of a knot
manifest. For this, we arrange ®, into a two component complex vector Z(x)

Z1 (X) = (Dl (X) + Z‘DQ(X)
Zo (X) @3(}() + 1Py (X)

so that
1Z1* + |Za)* = 1

and use it to parametrize the unit vector n(x) by
n® = Z'o°Z (5)
with 62 the standard Pauli matrices. The two-form F;; in (2) then becomes
Fy; = i(8,210;Z — 8;210,2) (6)
and modulo a U(1) gauge transformation we have
A= %(zfaiz -8:2'7) (7)

Indeed, under a U(1) gauge transformation determined by a function y(x)
such that Z — e"Z, both F;; and n remain invariant while A; is shifted by
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A; — A; + 0;y. This implies that Qp is indeed a functional of n only, and
substituting in (4) we get

1
QH = 12? ds.’l: fl.wpafijk"pu 8i<1>y8j<1>,,8k<1>a (8)

which is the standard integral representation of the winding number for maps
83 — S3. In particular, by antisymmetry one directly finds that Qg is mani-
festly invariant under arbitrary local variations ®, — ®, + §®, so that (4) is
indeed an integer valued topological invariant of the vector field n(x).

If we parametrize the unit vector n(x) by

sin - sin @
n(x) = | cosy-sinf 9)
cosf
our choice (1) implies that
6(x) M2 0 mod or (10)

so that at large distances from the knot we approach the north pole of the target
S?% with 6(X) =~ 0. For a nontrivial Hopf invariant we then need (X.) = 7 at
some points X.. This corresponds to the south pole of the target S2. We
argue that the preimage of X, in R® coincides with the center i.e. core of the
knot, described by an embedding of a circle §* in R®. For this we observe
that the internal structure of a knot can be investigated by cutting the knot
once at its generic point with a plane that makes a right angle to its core.
This cross sectional plane is topologically identical to a sphere §2: At the
core we have 6(X,) = 7 corresponding to the south pole and outside of the
knot on the cross sectional plane we have 8(X) =~ 0 corresponding to the north
pole. The physical extent (or thickness) of the knot is then determined by the
region where 6(x) varies from § = 7 to § = 0. Furthermore, ¢(X) increases (or
decreases, depending on orientation) by 27 when we go around the core once
on the cross sectional plane. (More generally, ¢ is defined modulo 2mn where
n is an integer.) Since we have selected the cross sectional plane at a generic
point along the knot, this implies that instead of a mapping from S2 into S2,
for a knot we actually have a mapping S% x S! — §2, where the S? in the
pre-image corresponds to the cross-sectional plane at each point along the core
S* of the knot. This local, cross sectional picture of a knot described by n(x)
becomes transparent when we introduce the following parametrization of the
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four vector ®,(x),
coS ¢12 sin ¥
_ sin ¢y sin ¥
® = €OS ¢h34 cOs Y (11)
sin ¢34 cos ¥

Comparing (5), (9) we find

¢ = ¢3—¢12
6 = 2 (12)

which implies in particular, that the pre-image X, of the south pole § = 7 is
indeed a circle S € R3, parametrized by the angle ¢y, - the parameter for the

core of the knot.
For the vector field (7) we find

Ai = COS2 4 0,-(,1534 + Sin2’l9 8i¢12 (13)
and (2), (6) yields
F = dA = sin29 ddé A (d¢34 - d¢12) (14)

so that the Hopf invariant (4) becomes

1
QH = F/Sanﬂ dd A d¢34 A d¢12 (15)
Here the asserted local ST x S? structure of a knot is manifest.

We shall now proceed to the construction of the energy density (Hamil-
tonian) of knots described by the vector field n(x). Due to a global rotation
symmetry of the Hamiltonian, we conclude that the vector field n(x) can ap-
pear in the energy density only thru its derivatives. This allows us to construct
the Hamiltonian systematically, by expanding it in the powers of derivatives of
n(x). The simplest nontrivial, rotationally invariant term involves two deriva-
tives,

Ey, = ¢* / d*z O;n - On (16)

where g is a coupling constant; in natural units it is inversely proportional to
a length scale when we select n(x) to be dimensionless. The Hamiltonian (16)
is the standard action of the O(3) nonlinear o-model, known to admit stable
solitons in two dimensions*. However, for stable finite energy solitons in three
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dimensions, we need to introduce additional terms that are of higher order in
derivatives of n(x). The first such term appears at fourth order in derivatives,
and by demanding that the Hamiltonian admits a relativistic interpretation
(relevant in applications to high energy physics) this term is uniquely given by

Ey = /d3x Ff] = /d3:1: (Oin - 9;n)?

{modulo an overall dimensionless parameter, that we have normalized to unity).

The following Hamiltonian 3, !

E = By+Es (17)

is then our proposal for a Hamiltonian that describes knotted solitons. In-
deed, using Sobolev inequalities one can show® that the energy density (17) is
bounded from below by the Hopf invariant

E > c-|Qu|t

where the constant c is known to be nonvanishing. This is a strong evidence
that solitons with a nontrivial Hopf invariant i.e. with nontrivial self-linking,
should exist as solutions to the Euler-Lagrange equations of (17).

The existence of finite energy solitons in (17) is also consistent with the
Derrick scaling argument: If we assume that n(x) is a critical point of the
Hamiltonian and consider a scaling x — A - x so that n(x) — n(A - x), then
the energy density of the scaled configuration

E()) = AE2+ \"'Ey
must have an extremum at A = 1. This yields the following virial theorem
Ey, = E4 (18)

which is necessarily obeyed by a knotlike soliton. In a numerical construction
of knots this virial theorem appears as a most useful tool.

Besides F; and F4, we may also consider higher order derivative terms in
(17). But such terms are not needed for the stability of the knot, they will only
have an effect on the local details of the energy density distribution on the cross
sectional planes. As such they may be relevant in some applications, but should
not have any effect on the large distance, overall topological properties of the
knot. In this sense the minimal Hamiltonian (17) determines a universality
class.
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In constructing an actual knotted soliton, instead of the angular variables

6(x) and ¢(x) in (9) we find it more convenient to introduce real variables
U(x) and V(x) obtained by

|4
p=- arctan(-ﬁ)

6 = 2arctan\/U? + V2

Geometrically U(x) and V(x) are coordinates on a Riemann sphere, defined
by projecting S? with respect to the north pole 6 = 0. In these variables the
Hamiltonian (17) becomes

16
3 2 2 9
H= /d 1+ U2 n V2) 7 o O ULV )+(1—+ﬁ2—m)—4(3uU5,,V -0,U8,V)

(19)

3 Aspects of Numerical Solution

The Euler-Lagrage equations obtained by varying (19) with respect to U(x)
and V(x) are highly nonlinear, to the extent that an analytic solution is es-
sentially impossible. Consequently it appears that the only tools available for
studying the knots in (19) are numerical. However, it turns out that even a
numerical integration of the pertinent equations is highly nontrivial, there are
several theoretical complications that need to be resolved !.

One of the issues that we need to address concerns the (expected) chaotic
nature of the highly nonlinear equations of motion. It is a reason, why we do
not expect a direct Newton'’s iteration to converge towards a stable configura-
tion unless we somehow succeed in constructing an initial configuration which
is very close to an actual solution. Instead, we expect Newton'’s iteration to
exhibit chaotic behavior.

Since it is very difficult to construct an initial configuration which is known
to be close to an actual solution, we find it convenient to first formulate the
problem at an abstract level. For this we consider a generic static energy
functional E(q) with some variables g,. We introduce an auxiliary variable 7,
and instead of the original Euler-Lagrange equations obtained by varying F(q)
with respect to its dynamical variables q,, we extend the (stationary) Euler-
Lagrange equations of E(q) to the following parabolic gradient flow equation

dge  OF

" o (20)
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OE 6E\*
— = ~|— (21)
or 6qq
we conclude that the energy decreases along the trajectories of (20). Further-
more, if we square (20) and integrate from some initial value 7 =T to 7 — o0

we get
7 dq 2 7 §E\?
dr| — = dr| — 22
[ar(E) = [+(5) 22)
T T
Hence a 7-bounded trajectory of (20) must flow towards a stable critical point
of E(q). In particular, by starting at an initial time 7 = T from an initial
configuration ¢ = go and by following a bounded trajectory of (20), in the
7 > T limit we flow towards a stable critical point of F(qg).

In (19) the angles U(x) and V(x) correspond to the generic variables g¢q,
and by denoting Wy = U, W5 =V we find for the flow equation

Since

Walx) _  , 6B 5E,
ar 7 Wox) | Wa(x) (23)

which is the equations that we solve in an actual numerical simulation ?.
Notice that if we introduce the scaling x — A - x we find that the scaled
Hamiltonian obeys the same flow equation but with scaled variables,

OW,(x)
o( %7‘)

6Es B OFy
dWa(x) OWo(x)

= —(\%)

(24)

This implies that a flow towards a knot with coupling constant ¢ coincides
with the flow towards a topologically identical knot with coupling constant
A2g, provided we rescale the flow variable 7 into %T. Thus a knotlike soliton
is essentially unique; It is sufficient to consider the flow towards a soliton with
a definite value for the coupling constant g, as solitons with other values of ¢
are obtained from this configuration by scaling with the proper parameter A.

In a numerical simulation we need in addition to decide an optimal overall
size for the lattice that we use in formulating our simulation. If the lattice is
too small in comparison to the scale of the knot, the knot may not fit in the
lattice. On the other hand, if the lattice is too large in comparison to the knot,
we may either miss the knot entirely or use an unnecessarily large amount of
computer time in constructing it.

Since the coupling constant g in (20) is the only dimensionfull quantity that
appears in our equations, it determines the physical extent of the knot such as
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the location X, of its core and the overall thickness around this core. Besides g,
there are only dimensionless numerical factors that affect the overall size of the
knot. Since such numerical factors can only be obtained by actually solving
the equations of motion, we conclude that in general the problem of selecting
an optimal size of the numerical integration lattice can be quite involved.

In order to approach this problem, we have developed a simple renormal-
ization procedure that allows us to select the initial configuration so that the
location X, of its core approximatively coincides with the location of the core
for an actual soliton !. For this we first observe that a knotted soliton obeys
the virial theorem (18), in our present variables

9°E; = E4

By demanding that this virial theorem is also obeyed during the flow (23), we
promote the coupling constant g into a 7-dependent variable g — g(7),

oo 8

When we approach an actual knotlike soliton as 7 — oo, the variable g(7) must
then flow towards an asymptotic value g* which is the value of the coupling
for the actual soliton,

g(r) " =%g* (25)

This renormalization procedure then fixes the overall scale for the location of
the core at X, and allows us to choose the size of our lattice appropriately.
Notice that the (local) thickness of the final knot is also determined by the
asymptotic value g* of the coupling constant, through the equations of motion.
However, the renormalization (25) does not help us very much in selecting the
thickness of the initial condition so that numerical convergence is secured.
This poses a problem for which we at the moment lack a firm solution, besides
experimenting with various different types of initial configurations.
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Figure 1: When we approach an actual knotlike soliton, the coupling constant g(7) flows
towards an asymptotic value g*

Finally, on a finite size lattice we also need to determine boundary condi-
tions at the boundary of the lattice. The proper boundary condition for U(x)
and V (x) is that both vanish when we are far away from the knot. However, we
expect that on a finite lattice a simulation with such trivial boundary condi-
tions can only lead to a flow towards the trivial configuration U(x) = V(x) = 0.
In order to impose the boundary conditions properly in our numerical simu-
lation, we can adapt an iterative process where we first specify the boundary
conditions using the initial configuration Up(x), Vp(x). At later values of T
we then update these boundary conditions successively, by interpolating the
iterated configurations from the interior of the lattice to its boundary. In this
manner we expect that we eventually obtain boundary conditions that corre-
spond to those of an actual knotlike soliton. An alternative method that can
be used to determine the boundary conditions, is to start the iteration of (23)
from a sufficiently large initial lattice with boundary conditions determined by
the initial configuration. By successively shrinking the size of the lattice and
determining boundary conditions in the shrinked lattice using the appropriate
restriction of the pertinent iterated configuration from the larger lattice, we
expect to converge towards boundary conditions that coincide with those of
an actual soliton.
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Figure 2: The unknot (left) and the trefoil (right) are the simplest examples of knots that
have been constructed numerically.

In a generic simulation of the flow equation (23) we determine the length
of each time step A7_n = 7, — 7,1 adaptively, either by demanding that the
relative variation of total energy remains bounded, e.g.

AE(T,)

l _ETTT)' < 107 (26)

or then that the relative error at each lattice node remains bounded, e.g.
Wa(tn) — Wa(rn1)| < 107* (27)

We have performed ! extensive numerical simulations both for the toroidal un-
knot soliton and the simplest nontrivial torus knot, the trefoil. Qur simulations
are consistently converging towards definite fixed points, suggesting that the
present Hamiltonian indeed describes stable knotlike solitons. In particular,
our results indicate that the present model should realize Kelvin’s conjecture
on the existence of stable torus knots.

In our simulations we have found the PDE2D finite element algorithm 7
quite convenient. We have chosen a finite element approach, since it computes a
continuous piecewise polynomial approximation to the solution. In a problem
of topological nature this should be a definite advantage e.g. over a finite
difference approach, where the solution is approximated only at discrete lattice
nodes.

The simulations that we have performed, while very extensive should at
this time be still considered as tentative: These simulations, and related but
independent simulations performed by other groups, have clearly revealed the
complexity of the problem. The computers available today are simply not suf-
ficiently powerful to allow for an extensive investigation of complicated knots.
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However, it appears that with the present rate of development in computer
CPU and processor speed, we are quite soon able to make a serious, detailed
numerical investigation of knotted solitons in the present model. Indeed, we
hope that by the time this article is published, detailed realistic simulations
have already appeared in the literature. Thus the numerical study of knots,
and the realization of Kelvin’s dream apprears to finally become a reality.
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CHAPTER 16
ENERGY OF KNOTS

J. O'HARA
Department of Mathematics, Tokyo Metropolitan University,
1-1 Minami-Ohsawa, Hachiouji-Shi, Tokyo 192-03, JAPAN

A knot energy functional is a real valued functional on the space of knots that
blows up if a knot has self-intersections. We consider the regularization of modi-
fied electrostatic energy of charged knots. We study several kinds of knot energy
functionals and consider whether there exists an energy minimizer in each knot
type, which is characterized as-an embedding that attains the minimum value of
the knot energy functional within its ambient isotopy class.

1 Introduction

A koot f is an embedding from a circle S! into a 3 dimensional manifold M.
Usually we take the Euclidian space R? or the 3-sphere S% as M. A knot
type [f] is an ambient isotopy class of a knot f. When Mis R® or 8% it is
same as the equivalence class of f with respect to the orientation preserving
homeomorphisms of R* or §3.

Let us consider the problem of identifying the knot type of a given knot
diagram. Unfortunately there are no knot invariants that have been proved
to detect all the knot types completely. Our approach is to define a suitable
functional on the space of knots and define the ideal configuration for each
knot type as the embedding that attains the minimum value of the functional
within its ambient isotopy class. Suppose we can deform a knot along the
gradient flow so as to decrease the value of the functional until it comes to
a critical point. Assume that the knot type is kept unchanged during this
deformation process. Assume also that the number of critical points is finite
for each knot type. Then we can detect the knot type. In order to guarantee the
invariance of the knot type during the deformation process, crossing changes
should not be allowed. Thus we require that our functional should satisfy the
following property:

(*) If a knot degenerates to an immersion with double points then the
functional blows up.

We call our functional a knot energy functional if it satisfies the above
property. We remark that this property is not sufficient to guarantee the
existence of the ideal configuration for each knot type because a knot might
degenerates to a map that does not belong to the original knot type as is
explained in Conjecture 5 and Conjecture 12.
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Let £ be a knot energy functional. Define the minimum energy of a knot

type [f], £([f]), by

E(IfD )gél[ftlf(f)
If there is a knot fy € [f] that satisfies £(fo) = £([fo]) we call f, an energy
minimizer of [f] with respect to £ or the £-minimizer for short. Our motiva-
tion is to find a good knot energy functional which provides ideal configurations
of knots as its minimizers.

This article is arranged as follows. In §2 we define the a-energy E () as the
regularization of the r~(+1).modified electrostatic energy (a > 2) of charged
knots and give some formulae. We call a the power index of E(®), In §3 we
study E = E?). Freedman, He and Wang showed that F is Mébius invariant
and therefore that there are infinitely many E-minimizers for each prime knot
type. On the other hand Kusner and J. Sullivan conjectured that there are no
E-minimizers in any composite knot type. We give two ways to produce energy
minimizers for all the knot types later in §4 and §5. Then we give a criterion
for a knot to be E-critical. We introduce Kim and Kusner’s conjecture on the
existence of unstable E-critical (p, ¢)-torus knots (p > 2 or ¢ > 2). Finally
we introduce Freedman, He and Wang’s results that E bounds the average
crossing number and hence that only finitely many knot types can occur under
any given threshold on E. In §4 we define the (o,p)-energy functional for
knots e*? with a higher power index ap with E(®) = ae®!. We show that
only finitely many solid tori appear as tubular neighborhoods of knots under
any given e*P (ap > 2) threshold, and therefore that there are e*>P-minimizers
(ap > 2) for any knot type. We also define an a-energy polynomial for knots.
In §5 we define the (a,p)-energy functional e}3;” for knots in a Riemannian
3-manifold M. We show that there are e};’-minimizers (ap > 2) for any knot
type if M is compact or if M is the hyperbolic 3 space H®. When M = §3
we conjecture that there are (hopefully finitely many) Egs-minimizers for each
knot type. Thus the existence of energy minimizers depends on the power
index of energy, the primeness of knots, and the metric of the ambient space.
In §6 we consider several kinds of quantities such as the thickness and the self
distance. * In §7 we make some remarks on related topics. In §8 we give a
short summary.

Throughout this article we assume suitable differentiability for knots, mostly
Cc?.

This article is mostly a translation of [63]. The updated version will be
available at

“Some of them are studied in other chapters in this book, though their definitions might
be slightly different.
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http:/ /www.comp.metro-u.ac.jp/ ohara/texfiles/.
The reader is referred to [56-62] for the details unless otherwise mentioned.

2 Definition of a-energy E(%)

One of the most natural and naive candidates for a knot energy functional
would be the electrostatic energy of charged knots. Another candidate would
be the bending and twisting energy of elastic knots which will be considered
later in §7 (4). The first attempt to consider the electrostatic energy of charged
knots was made in the finite dimensional category by Fukuhara [22]. He consid-
ered the space of the polygonal knots whose vertices are charged, and studied
their modified electrostatic energy under the assumption that Coulumb’s re-

pelling force between a pair of point charges of distance r is proportional to
r~™ (m = 3,4,5, ). The reason for this modification is given in what follows.
He wrote a computer program to evolve a knot to decrease this energy.

Leth: S! = R/Z — R’ be aknot. To avoid complications we assume that
h is parametrized by the arc-length, namely, |h/(t)] = 1 (Vt € S'). Hereafter
we always assume this hypothesis whenever we denote a knot by h.

Suppose that the knot is uniformly electrically charged. (We need this
assumption of uniformity for the following reason. Suppose electrons can move
freely along a knot. Then the energy of a knot which is almost same as the
standard circle except for a small tangle can be close to that of the standard
circle itself if the tangle part carries a small charge. Thus every knot will
degenerate to the circle in order to decrease its energy.)

Then the electrostatic energy of a charged knot h(S') is given by

/ /51 x 51 Ih(w(;mdy( )

which turns out to be infinite for any knot h, because this integral blows up
around the diagonal set A = {(z,y) € S* x S'|z = y}. There are two ways
to cancel the blow-up to obtain a finite valued functional. The simplest way is
to subtract a term which blows up to the same order as |k(z) — h(y)|™" at A.
An alternative way is multiplication by a term which goes to zero to the same
order as |h(z)—h(y)| at A, as we will see in (6) and §7 (2). (Note that this can
also be viewed as subtraction after we take the logarithm.) Let us consider the
subtraction method first. In this case we can take 6(z,y)~! as the subtraction
term, where &8(z, ) is the shortest arc-length between h(x) and h(y) along the
knot, which is the same as min{|z — y|,1 — |« — y|} in this case. Then we have

som= [ (|h<x) ) y)) dedy,
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but E() is not a knot energy functional since E() takes a finite value on a
“singular knot” with a self-intersection, as we shall see in (4). Thus we are
obliged to consider the modified electrostatic energy defined under the non-
physical assumption that Coulumb’s repelling force between a pair of point
charges of distance r is proportional to #=(*+1) where o > 1. Thus modified
electrostatic energy of a charged knot h(S!) is given by

which is again infinite for any knot k. In order to determine the subtraction
term let us expand |h(z) — h(y)|™* by |z — y|. Suppose h is smooth. Since
(k',k') = 1 we have (h',h"”) = 0, (', h(®) 4+ |n"|? = 0, and so on. Therefore
Taylor’s formula implies

Ih(z +1) — h(z)|-2 = == + L@ pa | a?(2), 1)) 5o

24 24
a ((h"(z),h(2))  [R®@)?Y | ala+ 2R (@)*) 4_q
+{5( 40 LT + 1152 E (1)
for 0 <t < 1. Since .
/2 tPdt < oo (p>-1)
we can take the first n terms of
—a , a|h(z)]? o . a(h"(z),hO®)(x _
s(z,)7 + LD g, e | A CLRT@) g, o
a ((K'(2), k()  [RO@)?Y | ala+2)h"(z)! sma
+’{ ) ( 40 T )t 1152 5(z,9)

+...

as the subtraction term, where

n;{l (1<a<3),
T [e-1] (a > 3).

Therefore we can define a finite valued functional E(®) according to the value
of a as follows. When 1 < a < 3 define E(®) by

0= [ (e ) e @
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when 3 < & < 4 define E(%) by

(@) (1Y — 1 1 ah(@))? .
E (h)‘/fglxsl(lh<w>—h<y)|a EXE 246<z,y>a—2)“y’

when 4 < a < 5 define E(®) by

@h) 11 e
B (R) //sus](mm—h(y»a g 288(a,y)°

ok (x), h® )( )
248z, y)° )dmdy’

and so on. We call a the power index. Thus E(®) can be interpreted as the
regularization of the r~(e+1)_modified electrostatic energy of charged knots.
We remark that we have assumed higher differentiability of h here for the sake
of simplicity. In fact E(®(h) (1 < a < 3) can be defined if h is of class C2.
Numerical calculations of the values of E(*) have been carried out. In
connection with this, we give formulae for the asymptotic behavior of the
energy of charged n-gons as n goes to infinity. Take n points equally scattered
along a knot h(S'), and put a point charge % upon each point. Then the

r—(at+1)_modified electrostatic energy of these n points is given by

B0 = 5

z#J n

which blows up as n goes to infinity. Since E,&a)(h) corresponds to the first

term of the integrand in (2), the asymptotic behavior of E’g.")(h) as n goes to
infinity is given according to the value of a by the following.
When a =1
EQ(h) ~ ED(h) + 2(log 5 +C),

where C is Euler’s constant

C = lim <1+1+---+l—logn>,
2 n

n—oo

which appears in these formulae only when a is an integer.
Whenl<a<3

a—1

B (h) ~ E)(R) +2 (C(a)n"‘1 I ) , (3)
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when a = 3

EQ ) ~ B +2¢m* -2+ ¢ ([ W@)ae) tog 7+ 0),

when 3 <a <4

(e ~ El@) a)n® 1 2e1
E) ~ B0 + 2 (e - 27

v ( /, |h"<:c)|2d:c) (aa ~ et - 2 3> :

when a =4

E®(h) ~ EW(R) +2(¢(4)n® — < (/ |R"( a:)|2d:c) €(2)n—-2)

+§ ( [0, 19 @iz) og 3 + ),

and so on. Here ~’s in the above formulae mean that the differences between
the left hand sides and the right hand sides go to 0 as n goes to infinity.

Hereafter we consider E(®) only when a < 3 for the sake of simplicity.
Instead of E(®) (a > 3) we will study e*? in §4. When a < 3 E(®)(h) > 0
for any knot h since the integrand is non-negative and not identically zero.
In this case the regularization is done by taking the difference of the extrinsic
energy based on the distance measured in the ambient space and the intrinsic
self-energy based on the distance measured in the knot itself.

Let us investigate when E(®) becomes a knot energy functional. Suppose
h is a planar figure eight with a perpendicular double point P. Then the
contribution of the neighborhood of P to the integral (2) is given by

dsdt < % dodr
/_C e (82 +t2 % ~ 4/0‘ /0. ra—1 (4)

{<oo (a<2)

=00 (a >2).

Therefore E(®) takes a finite value for a “singular knot” with a self-intersection
and hence E(®) is not a knot energy functional if & < 2. On the other hand if
2 < a < 3 then for any b € R there is a positive constant C = C,(b) such that
if E(*)(h) < b then |h(z) — h(y)| > Cé(z,y) for any z,y € S'. This means
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that E(®) (2 < & < 3) bounds Gromov’s distortion ([26]) from above, where

Gromov’s distortion is given by

. €73 )
Distor(h) = #1; @) - h@)|’ (5)

This estimate implies that h~! satisfies Lipschitz condition. Since h is parametrized
by arc-length it means that h is a bi-Lipschitz map.

Thus we have
Theorem 1 ([56,60)) E(®) (1 < a < 3) is a knot energy functional if and only
ifa>2
We call E® (2 < a < 3) the & -energy. Let E®), which is the simplest
example, be denoted by E.
Example 2 Let ho(t) = (5 cos 27, 5= sin 2nt,0) be the standard planar cir-

cle. Then its energy is given by

E(hy) = ]d:c2/ (Sm ﬂ_y———)dy

= 2[—7rcot7ry+ ]0

= 4.

This knot energy functional E was defined in [57] and is called the Mdbius
energy in [21] et al. In fact we have

. dzdy 1
Epsy(h) = 1510{ //<|z—y|<l—e |h(z) - h(y)|? E}

-3/ { T ) e } dedy

1

We end this section with the cosine energy formula of Doyle and Schramm
([2])- Kusner and J. Sullivan remark that this is useful in numerical experi-
ments. Let S,(y) be the circle tangent to the knot h(S?) at h(z) that passes
through h(y) and alternatively let Sy(z) be the circle tangent to A(S 1) at h(y)
that passes through h(z). Let 8x(z,y) be the angle between S:(y) and Sy(z)
at h(z) or h(y). Then

_ (1 — cosOn(z,y))dzdy
0= [, o e Rt ©
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3 Properties of E = E®?)

3.1 Continuity

The knot energy functional E is continuous with respect to the C2-topology.
Namely, for a given knot h and a positive constant €, there are positive con-
stants ég, 6y, 62 such that if a knot h; satisfies

Ih(&?) — hl(:c)| < 60,
W (z) — ki ()] < b1,
[2"(z) — hy(2)] < 62

for all z € S! then
E(h) - E(hy) < e.

On the other hand E is not continuous with respect to the C'-topology.
If a knot degenerates to an immersion which is piecewise of class C?, but not
of class C!, then its energy blows up.

3.2 Mobius invariance

In order to state the theorem of the Mobius invariance of F, let us extend the
domain of the knot energy functional. Let X be S, R, or an interval in R. Let
f: X — R3? be an embedding of class C? which is not necessarily parametrized
by arc-length. By reparametrization and rescaling E can be written as

1 1 ! I
sn=ff (If(w) —FWF - 6f<f<m),f<y>)2) F@IF W)y, (7)

where 87(f(x), f(y)) is the shortest arc-length between f(z) and f(y) along
the knot.

Freedman, He and Wang showed that E is Mobius invariant.
Theorem 3 ([21]) Let f : S* — R® be a knot and let T be a Mébius transfor-
matign of R U {00}, i.e. a composition of reflections with respect to spheres
in R°,

(1) If T o f(S') C R? then E(T o f) = E(f).

(2) If T o f(S") passes through oo then E((T o f) N R®) = E(f) — 4.

Proof.® (a) Put

|T'(P)| = | det DT(P)|?

b After a suggestion of S. Nayatani.
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for P € R®. (When T is a Mobius transformation of R™ U {co} the argument
is parallel if we put |[T"(P)| = |det DT(P)|7.) In particular, when T is a
reflection with respect to a sphere of radius r with center 0, |T'(P)| = TR
Then

IT(P) - T(Q)| = |T'(P)IT"(Q)IIP - Q|
for P,Q € R? and

(T o £) ()] = IT'(f(2))*|£'(=)]

for f: 8! or R — R®. Therefore

(To ) @)I(To £ @) _ ')l (vl
Tof(z)-Tof(y) |fle)- fly)l*

(b) Let ho be the standard planar circle. Then E(hg) = 4 (Example 2).

Therefore for a closed knot f : §1 — R* we have

B F@Urel 1 )
E(f)—//sxxsx(lf(w)—f(y)lz |ho(z)—ho(y>|2)“y+4 ®)

and for an open knot g : R — R> we have

2=/ . ( = |g(y))||2 = w) dedy.

Put 77! = Ty o by : (0,1) —» R, where Tp is a Mobius transformation that
maps ho((0,1)) onto R. Then 7 is a diffcomorphism. For an open knot k :
(0,1) - R®

. (Fory@llkor)(s) 1
B) = //RR( kor(t) — kor(s)P |t—s|2)‘”ds
- ( F@UFG)] 1T o ho) (@) |(Ts o ho>'<y)|) dody
(0,1)x(0,1)

(8)

|k(z) = k(¥)]2  |To o ho(z) — To 0 ho(y)|?
KRG 1 m
oo (e e - ) & 0

(8) and (9) imply (1) of the theorem and (8), (9) and (10) imply (2) of the
theorem if we put T o f = k. O
There are two important corollaries of the Mdébius invariance property.
Among all the open knots only the straight lines give the absolute minimum
value of E, namely 0. Theorem 3 (2) implies that only the standard planar
circle gives the absolute minimum value of E of closed knots, namely 4.
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3.3 Egzistence of E-minimizers

In order to state the theorem about the existence of the E-minimizers let us
recall the following definitions. A composite knot is a knot which is a connected
sum of two non-trivial knots. A prime knot is a knot which is not a composite
knot.

Theorem 4 ([21]) There is an E-minimizer for any knot type of a prime knot.

Sketch of Proof. Let [f] be a knot type of a prime knot. Take a sequence of
knots {fi, f2,---} in [f] such that

Jm B(f.) = E(1f]) = jnt B(7)

We can always choose a converging subsequence by suitable reparametrization,
rescaling, and congruent transformation of R®. Take the limit fo, of a con-
verging subsequence. There is a possibility that f., is the trivial knot because
a tangle in f,, might shrink to a point as n goes to infinity. This is called a
“pull-tight”. Make a new sequence {f;, f2,---} in [f] by applying Mdbius
transformations if necessary so that each f, is in a “relaxed position” and so
that we do not have a pull-tight any more.

Take the limit fo of a converging subsequence. Then f., belongs to
the same knot type [f] and E(fw) = E([f]), which means that fo is an
E-minimizer. O

Here are some remarks.

The number of E-minimizers for each non-trivial prime knot type is not
finite. Let fo be an E-minimizer and T be any Mobius transformation. Then
T o fo, or its mirror image if necessary, belongs to the same knot type and
takes the same value of F as fy, and therefore is again an E-minimizer of the
same knot type.

It is not known whether there exist any critical points in the trivial knot
type except for the standard planar circle. Up to now numerical experiments
suggest that there are none ([46}). If this is correct, it would give an alternative
proof of Hatcher’s results that the space of the trivial knots in S* deformation
retracts onto the space of great circles in $ ([28]).

On the other hand, as is seen later, Kusner and J. Sullivan conjecture that
there are unstable critical points in the (p, ¢) torus knot type if p or q is greater
than 2.

Since E does not blow up even if we have a pull-tight, E is unable to evolve
a small tangle. This is why a higher power index is used or the total squared
curvature functional is added in numerical experiments as in [23], [27] and [72].
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We can not apply the proof of Theorem 3 to composite knot types. Let
[f1],[f2] be knot types of non-trivial knots and let [f;if;] be the knot type
of their connected sum. Take a sequence of knots {gi,9s,---} in [filf2] with
lim, o E(gn) = E([f1ff2]). In this case we can not prevent pull-tights of
both components corresponding to [fi] and [f] at the same time. When
we evolve one component by a Mobius transformation, it might make the
other component smaller. In fact Kusner and J. Sullivan observed that the
both components shrink to points in numerical experiments ([41]). Consider
the corresponding open knot by a reflection with respect to a sphere with
center on the knot. Then the above phenomenon means that both components
corresponding to [f,] and [f,] are getting far from each other. If there is enough
distance the interaction of both components in the integral would converge to 0.
Therefore the energy of the open knot corresponding to [f1f2] would converge
to the sum of the energies of the open knots corresponding to [f1] and [f].
Applying a reflection with respect to a sphere again to make knots closed, one
is lead to the following conjecture.

Conjecture 5 ([41]) (1) There are no E-minimizers in composite knot types.
(2) Let [f1],[f2] be knot types. Then

E([filf]) = E([A1]) + E((f2]) — 4.

3.4 Gradient

The first variation or the gradient of E can not be expressed by local data of
knots because F is defined as an integral of global quantities.
Let f be a knot of class C*. Let Ps(a) - R® — R3 be the orthogonal

projection onto the plane which is perpendicular to f'(x):

Ly WL

Let Gy : §* — R? be given by
Gy(=)

_ Pioy(fly) - f(x)) 1 d [ f(a) |f'(y)l
B 2/51 {2 If(y) - f@)>  |f'(2)ldz (If’(w)|>} 17 (y) - e

Then Gy is the L%-gradient of E ([21]), namely we have
f g

- [ (G1@.p@)F @)

d
EE(f + ep)

e=0
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for a map p : S' — R® of class C?, where (,) is the standard inner product of
R

3.5 Criterion for criticality

A necessary condition for a knot to be critical with respect to E is given in
[61] as follows. Let & be a knot of class C* that is parametrized by arc-length.

Put
Ait)= | {/ (2|:((yy))—_ o 5?(3,3) dy}d:"

Then h is critical with respect to F if the following two conditions are satisfied:
(1) There holds det(h'(0), 2'(t), Px(t)) = 0 for any t € S'.
(2) If B'(t) = £A'(0) then Py(t) = Ch'(0) for some C € R.

3.6 Unstable E-critical torus knots

In this subsection we introduce Kim and Kusner’s results on the energy of
torus knots on Clifford tori in S* ([35]).

We can define the energy Eg~(f) of an embedding f : S or R — R™ by
the same formula (2). As is mentioned in the proof of Theorem 3, the Mgbius
invariance property also holds for Er~. Let o be stereographic projection from
$% C R* onto R*U{c0}. Then o can be extended to a Mbius transformation
of R* U {00}. Therefore if o o f(S') C R® for a knot f in S® then Ep«(f) =
Ep«(o o f) = E(oo f). Thus it is equivalent to consider Egs|gs instead of E.

Let T, be a Clifford torus of radius r (0 <7 < 1) in §3 C C?:

T, = {(2,w) € §* C C%;|z| = r,|w| = V1 - r2},
and let f.., , be a (p, ¢) torus knot on T:
fripg 1(0,27] 3 8 ("'epoi7 mé’"") e S cct (11)
Kusner and Stengle showed

—{r’(1 - r*)p® + ¢}
r2(1 — r2)21-P(2P — 1)2 4 21-9(29 — 1)

Epi(fripq) = 4 + 47 Z Res
|z|<1

7 (12)

where the summation is taken over the residues inside the unit disk.
On the other hand $! acts isometrically on S% by

. ipt
a:Slae’tH(at:Sa'a( z)l—»( e,-qtz )653).
w eTw
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With regard to this action, Ep«|gs is invariant and f, ;4 is an orbit. Therefore
Palais’ principle of symmetric criticality ([64]) implies that if

a
—ER4|S3(fr,p,q) r=ro =0 (13)

or
then fr, p,q is critical for Eps|gs.

Since a (p,q) torus knot is prime Theorem 4 guarantees that there is an
E-minimizer. Using numerical experiments Kim and Kusner conjectured that
0 0 fro,p.q Where 7o is obtained by (13) is a stable local minimum for E if and
only if p = 2 or ¢ = 2. On the other hand, when (p,q) = (2,3), i.e. in the
trefoil case, formula (12) implies that Egs|gs(fr2,3) takes the minimum value
approximately 74.41204 at ro ~ 0.880, which is close to the minimum energy
of the trefoil obtained by numerical experiments.

3.7 Finiteness of knot types

Let f : X — R® be an embedding, where X is §*, R or an interval in R. Put
1) -1 g

|f(z) - F()l

Then the average crossing number ([FH)) of f is given by

¢r: X x X\ A>3 (z,y)

wlf) = v [ 1deDssldedy (14)

_ w)f() £(z) - 1),
= 47r//xXx @-IF W

where (f'(z), f'(y), f(z) — f(y)) is the scalar triple product. Freedman, He
and Wang showed that E bounds the average crossing number from above.
Namely:

(1) For any f : R — R® ac(f) < & E(f). Therefore if we denote the
minimum crossing number of a knot type [f] by ¢([f]) Theorem 3 implies

ellf) < 5-(B() - 4).

Hence if E(f) < 67 + 4 ~ 22.8 then f(S*) is the unknot. It does not seem
that this quantity 67 + 4 is sharp. Numerical experiments implies that the
minimum value of E of non-trivial knots is about 74 which is attained by a
trefoil.

(2) For any f: S —» R* ac(f) < 2L E(f) +

3=
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Since there are only finitely many knot types whose minimum crossing
numbers are less than a given number =, only finitely many knot types can
occur under any given energy threshold.

We would like to remark that if we change the integrand of (14) to be the
Jacobian of ¢¢, det(D¢y), instead of its absolute value, then the integral gives
a summand of the self linking number ([9-11], [65]). It is defined on knots
with non-vanishing curvature as ‘

2), £ (), f(z) — £(u)) 1l
sl(f) = 4w//51xsl @) - TP =T gy J, T

where 7(t) is the torsion

('), £ (1), "' (1))
L7 @) '

The self linking number is Z-valued and is not a knot invariant.

7(t) =

4 Higher power index

As we saw in the last section there are F-minimizers in prime knot types
(Theorem 4) but it is conjectured that there are no E-minimizers in composite
knot types (Conjecture 5). There are potentially two ways to produce energy
minimizers for each knot type. One is to make the power index of the energy
greater than 2, and the other is to change the ambient space. In this section
we consider the first approach. Since it does not seem easy to study E(®) when
a > 3 we consider the following family of knot energy functionals instead. In
this section we assume that a knot h is parametrized by arc-length.

Let a > 0. Deﬁnetp,(la):SIXSl\A—aRby

(a) Jh(z)—h(y)|™! .
(2,9) = / £ld

8(z,y)~1

1 1 1
o (Ih(g) —h(y)l* 5(%9)"‘) (e #0),

For 0 < p < 0o define e*?(h) by the LP-norm of 1/;,(:') ([58]):

e®P(h) = |65 || o (51x51)-
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Hélder’s inequality implies that if 1 < p; < ps then e*P:(h) < e*P2(h) for any
a and h.
When 0 < a,p < 400 e*P(h) is given by

=2 [ Ao wr } p d”““’r - 9

Therefore E(®) = ae®! (1 < a < 3) and in particular E = 21
When (a,p) = (0,00) we have

" (h) = log(Distor(h)), (16)

where Distor(h) is Gromov’s distortion given by (5).
Since (1) implies limy_,, P (z,y) = 371" (x)[?, we have

2,00 l " 2
2(h) > 5 max W(2)].

We call the product ap the power index of e*?. When (o, p) = (0,00)
we define the power index ap to be 2. Since the integrand is non-negative and
not identically zero, e*?(h) > 0 for any knot h. We can define e*? similarly
for an embedding from R or an interval into R®.

The formula (1) implies that the integrand of (15) is O(|z — y|®~%)P) near
the diagonal set A, hence e*? is well-defined if and only if (2 —a)p > —1. The
estimate (4) shows that e*? does not blow up even if a knot has a double point
if ap < 2. Just like in the case of E(®), e*? (ap > 2) bounds the distortion
from above. Therefore we have
Theorem 8 ([60]) e*? is well-defined if and only if a,p satisfies

1
a<2 or p<—— (2<a<4),
a—2

and is a knot energy functional if and only if the power index ap > 2.
We call e*? the (a, p)-energy functional for knots if a and p satisfy the
above two conditions.

The properties of e*? depend on whether the power index ap = 2 or
ap > 2. The quantity e*P (ap = 2) bounds a Lipschitz constant of h~*
whereas €™? (ap > 2) controls the behavior of 2. There exists a positive
constant A = A(e, p) such that for any b € R if e*P(h) < b then h' satisfies

B (z) — K'(y)] < LK'(z) - k' (y) < ABTo §(z, y) oD (17)
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for all z,y € S, where /h/(z) - h'(y) is the angle between A'(z) and h'(y)
([60]). In other words if e*P(h) with ap > 2 is finite then A can not have a
sudden turn.

This inequality shows that e*? (ap > 2) blows up if a knot has a pull-tight,
which implies that e*? is not Mobius invariant if ap > 2.

The behavior of e®? when a knot has a pull-tight is given as follows.
Proposition 7 ([58]) Consider a line segment. Put a small 1-tangle T in the
center of the line segment to make an open knot. Shrink the tangle T to a point
while keeping its shape similar. Under this pull-tight process the value of e*P
of the open knot behaves according to the power index ap as follows:

(1) If ap > 2 then the value of e*P blows up.

(2) If ap = 2 then the value of e*P converges to a posttive constant which
depends on the shape of the tangle T'.

(3) If ap < 2 then the value of e*P converges to 0 which is equal to the
value of e*P of the straight line segment. Note that in this case e*P is not a
knot energy functional.

Let us give a brief explanation. Consider the behavior of the contribution
of the tangle T to the integral (15) under the pull-tight process. Suppose the
tangle T shrinks to half its size. Then the integrand becomes 2°? times larger
on T x T, whereas the area of T x T becomes 2~2 times smaller. Thus the
effect of pull-tight vanishes when ap = 2.

The inequality (17) implies
Theorem 8 ([60]) Suppose ap > 2. Then for any b € R there is a set of
finitely many solid tori T; C R® which satisfies the following two conditions:

(1) If e*P(h) < b then h(S') is included in some T; after an orientation
preserving congruent translation of R®.

(2) If e*P(h) < b and h(S") C T; then h(S') intersects each meridian disk
of T; transversely at one point.

As a corollary only finitely many knot types can occur under any given
threshold of e*? (ap > 2). On the other hand, when (a,p) = (0,00) there
is a b € R such that there are infinitely many knot types that satisfy %> =
log(Distor) < b ([25]).

Theorem 8 implies the existence of energy minimizers. Let [h] be any knot
type. Take a sequence {h1, hy,---} in [h] such that

lim e*?(h,) = e*P([h]) = inf e®P(h).
lm €*2(h,) = e P([H]) = inf e*(F)
Take a converging subsequence {k,, }. The above theorem ensures that there

is a solid torus T such that infinitely many h,,’s are included in T} in a good
manner. Let ho, be their limit. Then hy is also contained in T; in a good
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manner and hence belongs to the same knot type [h]. Therefore h, is an
e*P-minimizer for [h]. Thus we have

Corollary 9 ([60]) There is an e*P-minimizer for any knot type if ap > 2.
We conjecture that the number of e*P-minimizers (ap > 2) for each knot
type is finite. We remark that the number of the solid tori associated to e*P-
minimizers (ap > 2) in the sense of Theorem 8 is finite.

As an another corollary of Theorem 8, only finitely many knot types can
occur under any given threshold of e*? (ap > 2). On the other hand, when
(a,p) = (0,00) there is a b € R such that there are infinitely many knot types
that satisfy e%® = log(Distor) < b ([25]).

For 0 < a < 2 define the a-energy polynomial E,(f')(t) of a knot h by
an exponential generating function of (e®™(h))™:

Efla)(t) = /./51 . exp(tw,(la)(m,y))dmdy

//H e"p{'f? ((hm = A~ 6(x,1y>a>} ddy

ea,2h 2 9 ea,3h 3
G ) PN G )

= 1+e*'(h)t+ B

Then E,(:’)(t) is a well-defined knot energy functional for any ¢ > 0.

5 Energy of knots in a Riemannian manifold

An alternative approach to produce energy minimizers for all the knot types
is to change the ambient space.

5.1 General cases

Let f : S' — M be a smooth embedding into a Riemannian manifold M =
(M, g). Let dp(f(z), f(y)) be the infimum of the lengths of the paths which
join f(z) and f(y), and let §¢(f(x), f(y)) be the shortest arc-length between
the two points. Define

ext (f) = (18)
1 1 1 P ’
/Rt e 6f<f<w),f<y))a} @7 @iz

for

pZ—(z; (0<a<2) or ;%—i>p_>_% 2<ax<4).
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We call ap the power index of e3;”. If p = 1 we write Eg?) = ae? M and if

a = 2 in addition we write E M E(Z)

The well-definedness of e};” is a consequence of Nash’s theorem which guar-
antees that any manifold M can be embedded isometrically into the Euclidian
space RY for sufficiently large N ([54]).

Note that e3;”(f) > 0 for any knot f since the integrand is non-negative.
The Jacobian term |f'(z)||f'(y)| makes ej;” invariant under reparametrization.

Just like in the Euclidian case ej;” is a knot energy functional. More
precisely, for any b€ R there is a positive constant C = C(a, b,1) such that if
a knot f of length I satisfies 3,7 (f) < b then dp(f(z), f(y)) > Cés(f(z), f(y))
for all z,y € S'.

We call €};” the unit density (o, p)-energy functional for knots in

M. Whenp =1 Eg;) = ae‘;,}l can be interpreted as the regularization of
modified electrostatic energy of charged knots under the assumption that the
electric density is constantly equal to 1. In this case the total quantity of
electric charge is equal to the length 5 of a knot f(S!).

Since there are no standard homotheties in M we can not normalize a knot
so that its length is 1. This allows us two other ways of generalizing (15) as is
explained in [62]. One is scale invariant when M = R® and the other is defined
under the assumption that the total quantity of electric charge is equal to 1
when p = 1. These three definitions differ from each other only by a power of
lf. We consider the unit density energy here because it seems most suitable
to produce energy minimizers.

Let M be a compact manifold and let b € R. Then there is a positive
constant ; = I;(M,a,p;b) such that if e3;"(f) < b then the length I; of the
knot f(S') satisfies I < ll If ap > 2 there is a positive constant I, =
l,(M, e, p; b) such that if e3;°(f) < b then Iy > I,. Therefore neither a tangle
nor a knot itself shrinks to a pomt in this case, which allows us to use the same
argument as in the Euclidian case (Corollary 9) to obtain
Theorem 10 Let M be a compact manifold. Then there is an e Mp -minimizer
for any knot type if the power index ap > 2.

5.2 The spherical case

On the other hand when the power index ap = 2 we conjecture that it depends
on the metric of the ambient space whether there are energy minimizers or not.
To see this, let us consider Eps when the ambient space M is the 3-dimensional
sphere $* C R* or the 3-dimensional hyperbolic space H®, which are manifolds
with constant curvature £1. Note that Eg: and Ep«|gs are different. Since
dss > dp« we always have Ess < Eps|ss. Recall that in the Euclidian case
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there are infinitely many F gs-minimizers in prime knot types whereas it is
conjectured that there are no Eps-minimizers in composite knot types.

Let S, be a circle in §° C R* with radius 7 (0 < r < 1). Then Egs(S,) is
a decreasing function of r with

Esa(sl) - 0,
IIH)IEsa(ST) = ERa(h0)=4.

This implies that Egs is not Mdbius invariant.
Let 7, denote the trefoil on the Clifford torus T, C S* C C? of radius
(0 < r < 1), which was given as fy.s 3 in (11). Then

* B2
Ess(’f,.)=27r/ 9 5r L dz.

. . . 2
-~ | 4arcsin’ \/1'2 sin?z 4+ (1 —r2)sin? 32 %

K

Numerical experiment by Ligocki [47] implies that Egs(7,) is concave with
respect to r and takes the minimum value approximately 54.3263 at r =
0.861388. On the other hand the spherical energy of a trefoil with a small
“pulled-tight” tangle is greater than Egs([Trefoil]) — 4 ~ 70.

From these two examples we conjecture that the value of Fga increases
if a tangle or a knot itself shrinks to a point. This can be explained roughly
as follows. Suppose a tangle or a knot itself shrinks to a point by a M&bius
transformation. Then Egs|g: is invariant. Since dgs > drs we always have
Egs < Epsgs. Since dgs/dps converges to 1 as dps goes down to 0, the
contribution of the shrinking part to Es: converges to that to Egs|gs, which
makes Egs greater. Thus we are lead to
Conjecture 11 There are { hopefully finitely many ) Egs -minimizers for any
knot type.

5.8 The hyperbolic case

On the contrary we have an opposite conjecture in the hyperbolic case. Let
{S,} be a family of circles of radius r in hyperbolic space. Then Egs(S;) is
an increasing function of r with

ERs(h()) = 4,

lia Eips (5,
lim Eys(S,) = oo.

Thus we are lead to
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Conjecture 12 There are no Eys-minimizers in any knot type. Any knot
will shrink to a point if it evolves itself so as to decrease its value of Egs.
On the other hand when the power index ap > 2 we have

lji% e (Sr) = rlin;o ez (S,) = oo.
In fact if ap > 2 then for any b € R there is a positive constant I3 = l3(a,p;b)
such that if eZ7(f) < b then Iy < l3. Therefore there is a compact subset
K, C H?® such that if e}5(f) < b then f(S') is included in K, after an
isometric transformation of H>. Then Theorem 5.1 implies
Theorem 13 There is an e‘;{’f -minimizer for any knot type if the power index
ap > 2.

6 Thickness and self distance

There are two more kinds of knot energy functionals , which are not derived
from electrostatic energy. One is the “thickness” studied in [75], [30], and
[31], which indicates how much a knot can be fattened, and the other is “self
distance” which indicates “how close a knot approaches itself”. In this section
we assume that a knot h: S' = R/Z — R?® is parametrized by arc-length.

The normal embedding radius or Simon’s thickness ([75]) of a knot
h, ner(h), is given by

ner(h) = Sllp{’f‘ > OIDh(z) (T) n Dh(y)(r) = ¢((€ # y)},

where Dy (,)(r) is the normal disk of h(S') of radius r at 2(z). The normal
embedding radius is locally controlled by the curvature and globally by the
doubly critical self distance which will be given below ([75]).

The inflation radius ir(h) of a knot & is defined by

ir(h) = sup{eo|Ne(h(S")) is homeomorphic to D% x §! (0 < Ve < )},

where N(h(S')) is the e-neighborhood of h(S?).
Clearly ner(h) < ir(h).
Put
Ap: 8 x ST\ A 3 (z,y) — |h(z) - h(y)| € R,

where A is the diagonal set.

Define the minimum distance md(k) of a knot A to be the smallest
(possibly degenerate) local minimum value of A, if one exists, otherwise put
md(h) = max,x, An(z,y).



Define the doubly critical self distance dcsd(h) of a knot h ([75]) to be
the smallest critical value of Aj, namely

desd(h) = Iggg{lh(w) — h(y)| : '(z) L(h(z) — h(y)), h'(y) L(h(z) — h(y))}
Put
Ahe = An(z,): 8\ {2} 3 y = |h(z) -~ h(y)| € R.

Let xn(z) > 0 be the smallest critical value of Ay ,. Then Kuiper’s self
distance sd(h) of a knot h ([39]) is defined by

sd(h) = inf xa(z)

inf {|h(z) - h(y)| : '(z) L(h(z) - h(y))}-

zFY

The self distance and the doubly critical self distance are not stable under
slight perturbations. For example sd(h) might be attained by an inessential
critical pair of points which will disappear by a slight perturbation. Let

NO(h) = {g: S — B : [h(z) - 9()| <, |(z) ~¢(z)] < ¢ (Va € S"))

be the e-neighborhood of h with respect to the C'-topology. Define the es-
sential self distance ess.sd(h) and essential doubly critical self distance
ess.dcsd(h) of a knot h by

ess.sd(h) = inf sup sd(g),
0 9eN G (h)
ess.dcsd(h) = inf sup decsd(g).
>0 9eND(n)

Clearly ess.sd(h) > sd(h) and ess.dcsd(h) > edcsd(h).

Let Bn(z) be the smallest (possibly degenerate) local minimum value of
Apn . if one exists, otherwise put fx(x) = max,cs1 Ap2(y). Then the radius
of monotonicality or the beads radius of a knot h, rm(h), is defined by

rm(h) = 1&{1 Br(z)
— Bh(z)(r) N h(S") is connected (0 < Vr < 7o, Vz)
= sup {7‘0 >0 h(S') is not included in Bh(z)(ro) (V) )

where Bp(r) C R? denotes the 3-ball of center P and radius r > 0.
If h is a non-trivial knot then Ay , has a (possibly degenerate) local mini-
mum for any z € S! because otherwise ~(S!) bounds a disk. In this case the
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last condition “h(S?) is not included in By(4)(ro) (Vz)” in the right hand side
is not necessary.
By definition we have

sd(h) < desd(h) < md(h),
sd(h) < rm(h) < md(h),
rm(h) < 2ir(h).

The relation between these quantities and e*? is as follows. If ap > 2
then there is a positive constant A’ = A’(«a, p) such that

sd(h) > A'e™P(h)" 53 (19)
for any knot h ([60]). Since
sd(h) < min{ess.sd(h),dcsd(h), ess.dcsd(h), md(h), rm(h),2ir(h)}

this means that e®? (ap > 2) bounds these quantities except for the normal
embedding radius. In general e*? (ap > 2) does not bound the normal em-
bedding radius because e*? (ap > 2) does not bound the curvature |h"| unless
(e,p) = (2,00). On the other hand Proposition 7 implies that e*? (ap = 2)
does not bound these quantities. (19) means that e*? (ap > 2) bounds sd™!
from above. As we saw in Theorem 6, e*? (ap = 2) bounds the distortion
from above. We conjecture that sd™! bounds the distortion from above.

7 Remarks

7.1 Computer experiments

Computer algorithms aimed at finding ideal configurations of knots will be
found elsewhere in this book. For numerical experiments the reader is referred
to such articles as [1], [6], [8], [22,23], [27], [41], [46], [73,74], [77], and home
pages such as [24], [29], [72], and [81]. See also the remarks after Thorem 4.

7.2 Other kinds of knot energy functionals

As we mentioned in section 2, we can define other kinds of knot energy func-
tional by multiplying by a term which goes to zero to the same order as
[h(z) — h(y)|? at the diagonal set. Let 6,(y) be the angle between h(y) — h(zx)
and A'(z). The normal projection energy of Buck and Orloff ([7]) is given

by
sin’ 0. (y)
En dl‘d
#l /fss h(z) - ()
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The symmetric normal projection energy of Buck is given by

|sm0 )sin b, (z)|
sn, dl'dy
p(f //Sl xst  [Mz) = Wy)l?

7.3 Generalizations of E

Several kinds of generalizations of E which keep the Mobius invariance property
have been carried out. An energy functional for links is studied in [41] and [42].
Lin defined “X-energy” for knots ([48]). Generalizations to higher dimensions
are studied in [2] and [41].

7.4  Kirchhoff elastica

In order to define the ideal configuration of a knot one might ask what actu-
ally happens if one forms a knot in a piece of elastic wire. According to the
Bernoulli-Euler theory the bending energy of an elastic rod is proportional to
the total squared curvature x(2). A Critical point of x(?) is called an elastica.
Langer and Singer showed that ([43-45])

(1) If f is a closed planar elastica then f is equal to the circle or a figure
eight which is unique up to similarity or a multiple cover of one of these two.

(2) The knot types of non-planar closed elasticae are (p,q)-torus knots
with p > 2q.

(3) The only stable closed elastica in R? is the singly-covered circle.

T. Kawakubo takes the twisting energy into consideration ([33]). He stud-
ies a functional on the space of framed knots, where the framing is not neces-
sarily Z-valued.

7.5 Random knotting

A random knotting probability Py (N) is the probability that a Gaussian ran-
dom polygon of N steps belongs to a knot type K. Deguchi and Tsurusaki
proposed an asymptotic formula

Pi(N) ~ C(K)N"®) exp(~N/N(K)) (N > 1).

They evaluated Px(N) and explicitly obtained optimum values of the param-
eters for curves fitting the numerical data ([13,14]).

8 Summary

Here is a table of the answers and conjectures to our motivational problems:
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Table 1: Are there energy minimizers, and if so, how many?

Energy M=S5? M =R} M=H

Prime knots :

YES, §§ = 00
Ey = 28?‘,”1 Conj. YES, §f < 0 Conj. NO
Composite knots :
Conj. NO
T YES YES after rescaling
3P
exr (ip>2) Conj. § < o0 Conj. § < YES

Conj. means Conjecture.
# denotes the number of the minimizers for each knot type.

Q: Can we define ideal configurations for knots as energy minimizers?
Q: If so, is the number of energy minimizers in each knot type finite?
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CHAPTER 17
MOBIUS-INVARIANT KNOT ENERGIES

R.B. KUSNER
Department of Mathematics, University of Massachusetts,
Amherst, MA, USA 01003-4515

J.M. SULLIVAN
Department of Mathematics, University of Illinois,
Urbana, IL, USA 61801-2975

There has been recent interest in knot energies among mathematicians and natural
scientists. When discretized, such energies can lead to effective algorithms for
recognizing when two curves represent the same knot. These energies may also
help model physical systems, such as long protein chains or DNA knots, subject
to van der Waals interactions. Knot energies often are normalized to be scale-
invariant; some important energies are also invariant under Mébius transformations
of space. We describe computer experiments with such Mébius-invariant knot
energies. We also discuss ways of extending these to energies for higher-dimensional
submanifolds. The Appendix gives a table of computed Mobius-energy-minimizing
knots and links through eight crossings. (This article is an updated version of our
report! in Geometric Topology.)

1 Introduction

Is there an optimal way to tie a knot in space, or to embed a more general sub-
manifold? And is there a natural way to evolve any embedding isotopically to
an optimal one, so that we could detect whether two embeddings are isotopic?

One approach to such questions is to associate to any submanifold an en-
ergy, and look for minimizers or critical points of this energy. If the energy is
infinite for immersions which are not embeddings, then presumably its gradi-
ent flow will prevent self-crossings and preserve isotopy type. One way to get
an energy with an infinite barrier against self-crossings is to think of spread-
ing charge along the submanifold and then consider the electrostatic potential.
Such an energy for knots was introduced by Ohara? and studied by Freedman,
He and Wang.? (A new regularization of this energy has recently been found by
Brylinski.%) We define an analogous knot energy for k-dimensional submani-
folds in n-dimensional euclidean space R™ (or the sphere S™). Our knot energy
is again a repulsive potential between points on the submanifold, depending
only on first-order data. It is given by a regularized inverse power law, with
the power chosen to make the energy scale-invariant and the regularization to
make it invariant under conformal (M6bius) transformations of the ambient
space.
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The gradient flow of our knot energy appears to lead to optimal embed-
dings, both theoretically and computationally. In particular, for classical knots
and links, we have used our knot energy to create an algorithm, implemented
in Brakke's evolver,® to untangle complicated curves to a simple represen-
tative for their knot type by gradient descent. In most cases, we reach the
energy minimum. For instance, all unknots we have tried evolve to the round
circle, and both curves in the famous Perko pair evolve to the same configura-
tion, proving they are the same knot. Thus in most cases, this is an effective
algorithm for classifying knots. However, we have also found certain links with
several distinct local minima at different energy values; for these rare cases,

gradient descent methods will not always reach the same final configuration.

Knot energies for curves were introduced into mathematics motivated by
physical considerations; they are closely related to classically defined energies
for divergence-free vector fields which arise in modeling incompressible fluid
flow 7 These new knot energies may help to model certain natural phenomena.
For example, the inverse power laws in knot energies seem related to some
of the energies involved in arising in protein folding problems. And recent
experiments suggest that the speed of DNA knots in electrophoresis gels is
correlated to other notions of knot energy.®910:11,

For surfaces, we have previously modeled!? another Mobius-invariant en-
ergy, the elastic bending energy popularized by Willmore,'® in the evolver.
It is known that this energy describes the behavior of lipid vesicles, and in
fact such vesicles have been observed undergoing Mdbius transformations in
laboratory experiments.'* To model these vesicles in more detail, one might
like to include a van der Waals interaction between different surface molecules;
perhaps our Mdobius-invariant knot energy would be an interesting choice for
modeling such a nonlocal interaction. Our knot energies in higher dimensions
or codimensions do not have obvious physical interpretation or application, al-
though they have been useful, for example, in the topological study of knotted
spheres in four-space.!®

Our paper is organized as follows: in section 2, we define our family of knot
energies for submanifolds of arbitrary dimensions. The next section explores
the particular case of energies for knots and links, while section 4 discusses
alternative regularizations of the knot energy. Section 5 shows why we should
not expect minimizers fot composite knots. We discuss the discretizations we
have implemented in the evolver, and their success in untangling complicated
unknots, in the following two sections. Section 8 relates knot energy to other
measures of geometric complexity, like crossing number and ropelength. The
next two sections discuss critical points for the energy which are guaranteed
by symmetry, and the construction in this way of Hopf links with distinct local
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minima for the energy. Section 11 considers the energy for higher-dimensional
submanifolds in a bit more detail. Finally, we have computed energy mini-
mizers for all knots and links up through eight crossings, and present in the
last section the results of this computation and a table of their energies; our
appendix shows stereoscopic pictures of the Mdbius-energy minimizers.

2 Defining Mobius Energies

Recall Coulomb’s Law which asserts that the potential energy between a pair of
unit point charges at points x and y in R® is given by the reciprocal 1/|z — y|
of their distance in space. If we imagine charge uniformly spread over a k-
dimensional oriented submanifold M of R", the total energy would be given
by a double integral over all pairs of points on M of some inverse power of
distance. Although for physical charges in R® we might think of using the
power n — 2, we prefer to choose the power 2k, which makes the integrand
scale-invariant. (Without scale invariance, we would need a constraint on the
size of M to get nontrivial energy minima.)

Of course, the description we have given so far ignores the fact that such
an integrand will blow up as x approaches y, in such a way that the integral
will be infinite for any M. So we include a regularizing factor f and define

Es(M) = //MXM %— dvoly(z) dvolp(y).

If we did not have the factor of f, this integrand clearly would be scale-
invariant. In fact, it is also easy to show (see Figure 1) that it would be
invariant under inversion (z — z/|z|? =: ), and hence under the full confor-
mal group of Mobius transformations of R® U{oo}. Note that when computing
the energy, we can view M as a submanifold of S C R"*! via stereographic
projection, instead of R®. This follows because stereographic projection from
5™ to R™ U {00} extends to a Mdbius transformation of R**! U {00}, and the
formula for energy is independent of the ambient dimension.

Thus we would like to choose our regularizer f (which is supposed to
vanish as z approaches y) to be independent of scale and also to be Mdbius-
invariant. We will allow this function f to depend on first-order information—
the tangent planes to M at the points x and y—although this was suppressed
in the notation used above.

Given a point 2 € M and any other point p in space, there is a unique
round k-sphere S;(p) tangent to M at = and passing through p. Thus given
two points = and y of M, we have two oriented k-spheres S,(y) and Sy(z)
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L~

Figure 1: Here & and § are the inversions of = and y in the sphere shown. The similar
triangles prove |#||§| /| — #|> = |zllyl/ |z — y|2. Since the conformal expansion factor for
inversion from M to M at z is |F/|z|, the volume element changes by the k** power
dvol o (%) = (|| / |])*d volps(z). Combining these facts shows the integrand of our energy
is M6bius-invatiant.

which meet at equal angles at  and y. These spheres, and in particular the
angle at which they meet, are defined in a M&bius-invariant manner.

By the angle between these k-spheres, we mean the angle between their
tangent k-planes at points of intersection. In fact, a configuration of two ori-
ented k-planes in R” is described by & principal angles a;,...ax, but perhaps
most useful is the combined angle a whose cosine is the inner product of two
simple unit k-vectors u3 A---Auy and v1 A - - - A vy, representing the two planes:

cosa = [Jcosa; =detfu; - vj] = (ug A+ Aug) - (vr A~ Awg).

We propose taking f(z,y) to be some function of these angles a; between
the spheres S;(y) and Sy(z). It should be nonnegative, to keep the energy
well-behaved, and should vanish when the angles are zero, in order to cancel
the singularity in the integrand. We would like the energy E; to have the
following basic properties, which qualify it as a “knot energy”:

e E;(M) is nonnegative, and zero only for M = S*, the round k-sphere;

o E¢(M) is infinite for immersions which are not embeddings, creating a
barrier against M “crossing itself”;

e E¢(M) is finite for all compact k-dimensional embedded smooth sub-
manifolds M C R"™.
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The first two properties will be true for essentially any f which is a nonnegative
function of the angle ¢, vanishing only at 0. The third property follows if f
vanishes sufficiently fast at 0 to regularize the integral.

Note that our Mébius energies E¢(M) are somewhat like “quadratic forms”
on the space of oriented submanifolds. We can also examine the associated
“bilinear form” Ef(M,N), given by the double integral over M x N. If we
interpret M and N as chains or integral currents, then indeed this cross-energy
will be linear in each argument, but only for pos1t1ve multiples. We can think
of the first submanifold M defining a potential PM at all points of space. Then
E¢(M,N) is just the integral of this potential over the points of N. Since f
depends on the tangent planes of M and NN, the potential PJ{,[ is a function not
merely of points in space, but of k-vectors at those points. In the language of
geometric measure theory, PM is a parametric integrand, and in fact we might
think of E as given by a bilinear parametric integrand.

3 The Excess-Length Picture and a Standard Choice of Regular-
ization

One good choice for the regularization in the energy Ej is fo := (1 — cosa)®.

For the remainder of this paper, we will study mostly this particular energy;

we will write simply E for the energy Ey, with this choice of f. This energy

E generalizes the energy E for knots K C R® studied by O’Hara? and by

Freedman, He and Wang:?

PK) = //KxK(lz jy|2 - dK(;,Z/)2> do(z) doxc(v),

where dg (z,y) is the shorter arclength distance within K from z to y. In fact,
Peter Doyle and Oded Schramm!8 introduced, in the one dimensional case,
the idea of a regularization by a multiplicative factor depending on angle, and
observed that E(K) = E(K) — 4 when the factor used is f = (1 — cosa).
(Recently, Brylinski* has proposed another regularization: if we define

= // |z - yI* dsk (z) dsk (y),
KxK

then this function of a complex number s can be meromorphically continued
from the right halfplane to the entire plane, and Brylinski shows that it has
poles only at the negative odd integers, and thus in particular not at s = —2.
It turns out that B_3(K) = E(K) —4 = E(K).)
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o(K

" o)
a(Sy(2))

(Se(v))

(a) (b)

Figure 2: The excess-length picture shows how to calculate the potential Px (z) for a curve
K in the sphere. When we apply the stereographic projection o (from z as north pole) the
spheres S;(y) and Sy(x) become straight lines at angle a. The integral of 1 — cosa is the
excess length of o(K) over that of the straight line.

One way Doyle and Schramm explained the equivalence of E and E is
through a picture which interprets the potential Px(z) := PI{P(x) as an ex-
cess length. Given a curve K in S™, we want to evaluate Px on a tangent
direction at some point z € S™. To compute this, rotate the sphere so that
z is at the north pole, and then stereographically project to R* (sending z to
infinity). Rotate this euclidean space so that the given tangent direction at z
becomes the vertical direction. (Figure 2 shows this in the case n = 2, when
we are projecting a curve from the two-sphere to the plane; although here all
embedded curves are unknotted, the energy still makes sense.) If o(K) is the
stereographic projection of the curve K, then we can check that Px(z) equals
the integral fa( K)(l —cos @) ds,( k), where in this picture the angle « is simply
the angle that the tangent to o(K) makes with the vertical. (Our stereographic
projection is scaled nonstandardly, to take the equatorial sphere to a sphere
of half the size; the extra factor of 1/2 is needed because we want to use an
inversion in a unit sphere in R**!.)

If K is a closed curve, and z is not on K, this integral is simply the length
of o(K'), because the cosa term integrates to zero. Thus the potential at
points not on K does not depend on tangent directions, and in fact is the
same as it would be if we used no regularization, setting f = 1. Integrating
along a second, disjoint curve L, we see that the cross energy E(K, L) equals
the unregularized energy E;(K,L). (This is what Dave Auckly and Lorenzo
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Sadun!” refer to as the additive link property for the energy E.)

But of course for z on K, we need the regularization, as o(K) is an infi-
nite curve in R™, asymptotic at either end to a vertical line. Notice that the
difference between the length of the curve o(K) and its vertical progression is
given by the integral of 1 — cos, which gave the potential Px. Each term is
infinite, but their difference is the excess length of o(K) compared with the
vertical straight line, which is finite if K is smooth enough at z.

One might hope to use the same picture to define energies for k-dimensional
submanifolds. If a submanifold M is stereographically projected from a point
x € M, the image is asymptotic at infinity to a flat k-plane. However, this
image submanifold has infinite excess area when compared to this k-plane,
since its distance from the k-plane varies as we approach infinity in different
directions (unless z is an umbilic point of M). Thus a naive definition of energy
in terms of excess area will not work; in other words the energy E(;_cosq) is
not finite for dimensions k > 1. Our choice of fy = (1 — cos @)* overcomes this
difficulty, although we do not have an equally nice geometric picture for the
resulting energy E.

4 Other Mobius-Invariant Knot Energies

The Mobius energy F has been useful—theoretically, and from the perspective
of computer experiments—but other M6bius-invariant knot energies are pos-
sible. First we might consider another regularizer f in our general energy Ey.
Discussions with Doyle, Schramm, and Bill Thurston have focused our atten-
tion on f = |sina| as giving an interesting energy for curves. One problem
here is that f is not differentiable, so E; does not have a well-behaved gradient
flow, and it is hard to model numerically. Higher powers of this function give
regularizers for k-submanifolds; perhaps in this case there are further good
choices for f.

Our Ey is defined in terms of first-order information at the two points z and
y in the double integral. If we allow the use of higher-order information, there
are other possibilities for the regularization. For two-dimensional surfaces,
Auckly and Sadun!? have suggested a regularization using the squared-mean-
curvature integral (which is second-order data), but this is difficult to bound
below.

We have also proposed a “holomorphic” energy for embedded Riemann
surfaces by considering a relative energy within conformal classes. We choose
a reference embedding of a surface in space; then the energy of any conformally
equivalent embedding is given by comparing the straight-line distance between
a pair of points on the surface with the corresponding distance on the reference
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surface. We have yet to find a proper regularization for this energy, but for
spheres there is of course a unique conformal class, and the round sphere serves
as a natural reference surface. This idea of relative energy should extend
to rather general subsets of R", and in fact we have already succeeded in

regularizing it for embedded 1-complexes or “knotted graphs”.'®

5 Prime Decomposition

We are interested in minimizing E; within isotopy classes. Given a submanifold
M C R*, we write [M] = {N: N ~ M} for its isotopy class, and

Ey(M)) = jnf E/(N)

for the infimum energy. One basic result® is that prime knot types have E-
minimizing representatives—this infimum is achieved. On the other hand, it
seems that under energy minimization, composite knots decompose into their
summands in a natural way. More generally, given a pair of k-dimensional
submanifolds M and N, there are two ways to naturally combine or add their
isotopy classes [M] and [N], in such a manner that minimizing the energy
seems to separate the two pieces again.

Most trivial is the disjoint union [M]U[N], obtained by embedding M and
N in disjoint balls in R™. It is clear that by placing M and N far apart from
each other (or equivalently scaling each one down) we can make their cross-
energy Ef(M, N) arbitrarily small. Since the energy of the union is the sum
of the self-energies and the cross-energy, it is thus clear that

E; ([M]U[N]) = E¢([M]) + E¢([N]).

Even a submanifold of several topological components may not be decompos-
able in this way as a disjoint union; in this case we say it is essentially linked.

There is also a natural notion of the connected sum [M]#[N], which is
well defined when M and N are both connected. (Of course, if M or N
has more than one component, we simply must specify which components are
to be connected.) We say a submanifold is prime if the only way it can be
decomposed as a connected sum is when one summand is isotopic to a trivial
S*. Using Mébius invariance, we find that

E;([M]#[N)) < Ef([M]) + Ez(IN]).

To check this, consider @ ~ M and R ~ N each having E; within any given
€ > 0 of the respective infimum values. Deform a small neighborhood of
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Figure 3: After applying Mébius transformations to Q in [M] and R in [N] to get large round
pieces, we can weld them together to make this representative for [M]#[N], with energy not
much more than E¢(Q) + Ef(R).

some point on @ to be flat, changing the energy only by ¢, and then apply
a Mobius transformation mapping this small piece of a k-plane to almost all
of a round S*. Apply the same procedure to some point on R. Welding the
resulting submanifolds together in the obvious way, we get a submanifold P
in the class [M]#][N] (resembling a round k-spherical “head” with copies of @
and R attached as small “ears”—see Figure 3) with

E;(P) < Ef(Q) + E¢(R) + 3e,

where the last £ includes the interaction terms between the two “ears”. In-
fimizing yields the desired inequality.

In fact, we conjecture equality holds for infima of the energy E, and more-
over, that minimization of E leads to a natural “conformal connected sum
decomposition” of a submanifold into E-minimizing, essentially linked, prime
submanifolds. This phenomenon has been observed in our computational in-
vestigations of the energy E for knots, links and surfaces in R?, described in
the next section. Figure 4 shows what we expect is a minimizing sequence for
the energy of a connected sum of two trefoil knots. (Note that we consider left-
and right-handed trefoils to be distinct isotopy classes, and that this matters
when taking connected sum. Of course they have the same energy, so are not
considered separately in our later knot tables.)
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Figure 4: We expect that an energy-minimizing sequence for this “square knot” type, the
connected sum of a left-handed and a right-handed trefoil knot, will begin as above. The
knot (a) has energy approximately 150, while (b) has energy approximately 142. The limit
energy of the sequence is approximately 140.824, or exactly twice the energy of the critical
trefoil of Section 9.

6 Discretization and Computer Experiments

In order to gain some intuition into the behavior of the Mdbius energy, espe-
cially for knots and links, we have implemented various discretizations of E
and its gradient flow, and carried out computer experiments using Brakke’s
evolver. All our discrete models work with polyhedral surfaces or polygonal
knots and links. These have infinite energy E, since they have sharp corners,
so we must work with some discretization of the energy, which is supposed to
model the energy of a nearby smooth curve or surface.

One discretization for curves, the cosine energy, places point charges at
the midpoints of all edges of the polygon. The charge at x equals the length
Iz of the edge. For this energy, we sum (1 — cosa)l,l,/|z — y|? over all pairs
T # y; here a is the angle between two circles passing through the midpoints z
and y. In fact, @ can be more easily computed as the angle between the edge
at z, and the edge at y reflected in the perpendicular bisector of ZF (so that
it also passes through z).

If we approximate some smooth curve by polygonal segments, this dis-
cretization seems to give emergy values quite close to the true energy of the
smooth curve, even when the polygonal approximation is relatively coarse.
However, its gradient flow is problematic, since some edges tend to get very
short, and then sometimes fail to line up with their neighbors. We can avoid



325

Number of edges | 80 160 | 320 640
Cosine energy | 70.85 | 70.52 | 70.44 | 70.42
Edge energy | 72.24 | 71.21 | 70.79 | 70.59
Vertex energy | 69.16 | 69.84 | 70.14 | 70.28

Table 1: These discrete energies were computed for minimal polygonal trefoil knots with
equal edge lengths in S3, approximations to the symmetric critical trefoil whose true energy
E =~ 70.41204 is computed in Section 9.

this problem by adding a “Hooke” term to the energy, which tends to keep all
the edges in the polygon at some fixed length by pretending the edges are stiff
springs with that equilibrium length.

The edge energy discretization is the same, but without the (1 — cosa)
factor in the summand. This models the unregularized energy E;, but of course
the discrete sum is finite. The idea is that if we wrote down a discretization
for the formula for E, the regularization term would depend only on the edge
lengths of the polygon, and not on its position in space. This subtracted term
in fact is smallest when the edge lengths are equal, so leaving it out of the
energy we minimize simply helps keep edge lengths equal (as the Hooke energy
did). Note also that the exact integral of 1/|z — y|? over a pair of disjoint
line segments in space is not an elementary function of their endpoints; this is
why we concentrate the charges at the edge midpoints in the edge and cosine
energies.

Finally, the vertex energy places a charge at each vertex v of the polygonal
knot. The charge !, equals the average of the adjacent edge lengths. Again we
merely sum l,l,,/|v — w|? without any regularization. This vertex energy is the
one we have used for most of our gradient flows. For informational purposes, we
also compute the sum of {,l,,/d?(v, w), which is subtracted from the vertex or
edge energies as a regularization. We report the values of all three discretized
energies for our final knots. All three seem to converge as the number of
segments used increases, though the cosine energy is by far the most accurate.
Table 1 reports these energies computed for polygonal approximations to the
critical trefoil knot whose energy can be computed exactly (see Section 9).

There have been some previous experiments with the energy E by other
researchers: Kazushi Aharal® has used a method like our vertex energy with
Hooke terms to compute several simple examples, and a program of Steve
Bryson?® was able to approximate the minimal trefoil. Others, including Buck,
Orloff and Simon,?!+2? Fukuhara,?® and Gunn,?* have done experiments with
other repulsive energies for explicitly polyhedral knots; some of these do not



326

model any energy for smooth knots. Since our experiments were first reported,
some other groups®>2® have suggested using simulated annealing to find global
minimizers for knot energies. We have not found that to be necessary, as the
simpler gradient descent methods almost always lead to the global minimum.

Of course, the vertex-based discretization (by which we flow) does not have
an infinite barrier to changing knot type. Two segments can cross each other
in space if their endpoints stay far away. But in practice, this does not happen
as long as we keep edge lengths short enough near tight crossings. We can do
this either with the Hooke energy, forcing all edges to be short, or by selectively
refining edges whose contribution to the knot energy has become large during
the evolution. The latter method seems preferable, as it concentrates the
vertices where they are needed, and in the case of links does not constrain

the relative lengths of the components. As always, we view our polygons as
approximations of smooth curves; this “retriangulation” merely maintains a
good approximation.

As always with the evolver, formulas for the exact gradients of the dis-
crete energies are programmed into the computer code. Thus, at any given
configuration the gradient is known exactly (without testing different pertur-
bations) and the conjugate gradient method is used to flow towards a critical
point.

We have also implemented some discretizations of energies for surfaces of
dimension two, though not for submanifolds of arbitrary dimension. Here,
one discretization is like the vertex energy, ignoring regularization and placing
a charge at each vertex equal to one third of the area of the surrounding
triangles. This energy seems to work nicely for surfaces in R*, but for surfaces
in R® it is too rigid: the high power in the 1/7* repulsive energy (needed
for surfaces) means that vertices are influenced mostly just by their nearest
neighbors. Thus the discrete surface seems to get locked into a particular,
nearly equilateral triangulation, without much freedom to move. It is also not
clear if this energy models any Ey.

For surfaces in space, we have had more success with a discretization of
the (1—cos a)? energy which places a charge at the center of each face, equal to
its area, and computes the angle between the tangent planes at pairs of faces.
We have computed, for instance, a tube around a trefoil knot (see Figure 5)
with energy about 638, but we have yet to do comprehensive experiments with
this energy. As with the similar cosine energy for links, we must pay special
attention to keep the triangulation from degenerating during the evolution.
Dennis Roseman!® has made use of both of our discretizations for surface
energies to simplify knotted and unknotted surfaces in four space.
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Figure 5: This torus, in the isotopy class of a tubed trefoil knot, seems to minimize energy,
with E ~ 638. In S3, it would evidently be the orbit of a small circle under a rigid rotation.

7 Untangling Unknots

For any prime knot type, the existence of an E-minimizer is guaranteed by
the result of Freedman, He and Wang?® already mentioned. But this leaves
open the interesting question of whether the same knot type might have other
critical points for E, and in particular further local minima. Of course, the
E-gradient flow will be most useful for classifying knots if no other minima
exist.

Of special interest are tangled unknots. Recently, it has been announced?”
that algorithms (based on methods of Haken) can determine if a polygonal
curve is unknotted in nondeterministic polynomial time. There is no efficient
algorithm known for geometrically untangling an unknotted curve, though ac-
cording to Hatcher’s solution®® of the Smale Conjecture, there is no obstruc-
tion to finding a flow which evolves any unknotted curve to a round circle.
We would be surprised if the E-flow accomplished this, but we were equally
amazed to see that the (discrete) flow did untangle the example? in Figure 6.
Although initially the evolution seems to lead to a large loop caught in a tight
slip-knot, perhaps it is the Mébius invariance which lets different parts of the
curve grow or shrink as necessary to untangle the unknot to a round circle.
The full process is shown in our six-minute video,2® along with other examples
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Figure 6: The tangled unknot (a) quickly rounds off to the smooth curve (b). Eventually
loops grow as needed to swing out around the knobs, giving the curve (c), which can then
shrink these loops to pull them through. The curve (d) clearly has no further obstacles to
becoming a round circle, and indeed quickly evolves there.

of evolutions towards E-minimizing knots and links.

Of course, our experiments showing how this one curve untangles leave
open the basic question: are there any E-critical unknotted curves besides
the round circle? A negative answer would give an elegant analytic proof of
Hatcher’s theorem.

8 Crossing Numbers and Ropelength

Knots and links are often studied by means of planar projections with marked
crossings. Any two projections of equivalent knots can be obtained from each
other by a sequence of Reidemeister moves.3? The topological crossing number
c([K]) of the link type [K] is defined as the minimum number of crossings in
any planar projection.

From a three-dimensional geometric perspective, perhaps more interesting
is the average crossing number A(K) of the space curve K, which is the aver-
age number of crossings in planar projections of the curve, averaged over all
possible orthogonal projections. This can be computed by a formula of Gauss:

a0 = [ ml(u X0 &2V g @) doc)

|z — 9|3
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where u and v are the unit tangent vectors to K at z and y, respectively. In
our computations, we discretize this for a polygonal link as a double sum over
all pairs of edges, using the edge vectors for u and v, and the edge midpoints
for z and y. It is clear that A(K) > ¢([K]) for any link.

One result of Freedman, He and Wang? is a relation between the energy E
and the crossing number, namely E(K) > 2w¢([K]). This follows from a similar
relation between the energy of any curve and its average crossing number, once
we apply a Mdbius transformation to send one point of the curve to infinity.
They also show that E(K) > £2rA(K)— 3. They prove these results only for
knots, although it is easy to check they remain true for our link energy. Note,
in this context, their normalization of the energy for links different from ours:
they count cross terms between different components only half as much as the
self-energy terms. We believe our normalization is more natural, providing a
good ordering of all links by energy, independent of how many components
they have.

Another scale-invariant (but not Mobius-invariant) geometric measure of
the complexity of space curve K is its ropelength L(K), which is the arclength
divided by “thickness”—essentially the diameter of the biggest embedded tubu-
lar neighborhood 3%+32 It is known®311:34 that A(K) < CL(K)*/3 for a universal
constant C' < 1/4, and similarly3® that certain energies similar to ours are also
at most L(K)*/® times a constant. It would be interesting to prove this for
the M&bius energy.

Since the standard projection of any knot type has a minimal number of
crossings, we usually like to reduce any projection of that knot to the standard
one only using Reidemeister moves which decrease the number of crossings.
But sometimes this is impossible. The projection of our initial curve shown in
Figure 6(a) has 32 crossings, and it is easy to check that no moves are applicable
except the ones which increase crossing number. It seems that at least four
extra crossings must be introduced to move this diagram to the zero-crossing
picture of the unknot. Therefore, before our experiments, it was reasonable to
think that the corresponding three-dimensional (but nearly planar) example
might not untangle under the E-flow.

9 Critical Knots and Links from Group Actions

One can also ask about the existence of further critical points for truly knotted
curves. Perhaps the simplest of these are the (p, ¢) torus knots and links. These
curves can be realized as (unions of) orbits of points under rigid rotations of
53, which rotate one two-plane at speed p and the perpendicular one at speed
g. (These rotations can also be viewed as Mdbius circle actions on R U c.)
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Figure 7: The E-critical orbital (3,5) torus knot (a), with energy just over 265, is not stable,
while the knot (b), with energy numerically computed to be slightly under 260, seems stable
and presumably is the minimizer.

In earlier work with Denise Kim,3® explicit E-critical torus knots and links
were constructed, by varying the ratio of radii of the torus containing these
orbits until we reach a critical ratio, then using the “principle of symmetric
criticality”.

Once we have reduced the energy to a function on the space of orbits
(which is finite dimensional, and in this case can be parametrized by the ratio
of radii), this principle asserts that at a critical point of the reduced energy,
the corresponding knot or link is critical for E among all variations. To see
this, note that if the gradient of E did not vanish, we could simply average it
over the orbit to get a variation through orbits which changed (to first order)
the reduced energy, contradicting the fact that we are at a critical point on
the orbit space.

It can be shown!® that for large p and g (each at least 3) these orbital
(p, q) torus knots and links are unstable for E (compare Figure 7), hence they
are not the E-minimizers which are guaranteed to exist by the direct method.?
In particular, there is more than one critical point for E within each of these
isotopy types. On the other hand, the orbital (2, q) torus knots do appear to
be the E-minimizers, at least experimentally; as ¢ — 0o, these converge to an
E-critical double-helix (see Figure 8) whose pitch, close to 1.454, is a universal
constant.
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Figure 8: This double helix, critical for E, is a limit of minimizing (2, g) torus knots for large
¢; many knot minimizers seem to include segments which look like a piece of this helix. We
show a stereo pair of pictures; to see the stereoscopic effect, look at one figure with the left
eye and the other with the right eye (either by crossing the eyes or by straightening them,
perhaps with the aid of a stereo viewer).

The energies of these orbital critical points can be computed by an ana-
lytic formula, derived with Gil Stengle.®® This is obtained by using the circle
action to reduce the double integral for E to an explicit single integral of a
meromorphic differential around the unit circle S C C, and evaluating this
as a residue sum. For example, the critical trefoil (or (2,3) torus knot, see
Figure 9) has Mdbius energy

-2+ -1

A2 2 ~
E = 47” min(4r +9) ) Res — =~ 70.41204,
where the sum is over poles within the unit circle, and the minimum is achieved
at r =~ 1.857.

10 Hopf Links and Electrons on S?

We can find more examples of links with several E-critical points, and presum-
ably several local minima, by examining the special case of Hopf links with the
methods of the previous section. Recall that the Hopf fibration of S3 is given
by the orbits of the usual action of S* C C* on S C C?. Each fiber is a great
circle, and each pair of fibers has linking number 1. We call the union of any
p fibers a p-component geometric Hopf link; for a given p, all such links are
isotopic. We can find E-critical points for this link type among such geometric
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Figure 9: All these are views of the same critical trefoil, the presumed energy minimizer,
differing only by Mobius transformations. The view (a), which is a different planar projection
of the same space curve shown in the Appendix, is a (2, 3)-torus knot in space, while (b) is
dually a (3, 2)-torus knot. The view (c) shows how any curve can be shown as a large circle
with a small “ear”, while (d) is a randomly chosen view.

Hopf links by lifting a finite set of points from S?, the orbit space for the Hopf
action.

Explicitly, suppose that in our p-component Hopf link (I'y,...,I'p), each
component I'; corresponds to the point z; on S2. Then we can compute

1
E(F], ‘..,Pp) = 471'2 Z a—:,
i#j

where d;; = |z; — z;| is the straight-line distance in R® between the points x;
and z;. In other words, the Mdbius energy of a geometric Hopf link is simply (a
multiple of) the ordinary Coulomb energy of the corresponding point charges in
R® constrained to lie on the round sphere. Thus, in this case, the residue sum
for E has a simple geometric interpretation; it would be interesting to know
whether this interpretation could be extended beyond Hopf links to torus knots
and links.

When the number of components p is less than 4, it is easy to see that there
is only one critical configuration of charges on S? (or thus of Hopf circles in $3).
This is the global minimum for the Coulomb energy, with the points spaced
equally around the equator, corresponding to (p,p) torus links. But when
p = 4 there are two distinct critical configurations: the equatorial configuration
(or geometric (4,4) torus link) is an unstable equilibrium, while the global
minimum has points at the vertices of a regular tetrahedron (the link havine



333

(a) (b)

Figure 10: Two stable configurations of sixteen point charges on the sphere, shown with
the closest pairs joined with edges. Configuration (a) has tetrahedral symmetry and lower
energy; configuration (b) has amphichiral Dg symmetry and slightly higher energy.

fallen off the torus in S3).

In the early part of this century, just before the discovery of quantum
mechanics, there was interest in this problem, because it was thought that
stable configurations of electrons on a sphere might explain the periodic table
of elements. With this in mind, configurations of p < 8 points were analyzed
in detail by Foppl.37

To examine the structure of critical geometric Hopf links in general, con-
sider a variation which moves each of the corresponding points z; by Az;, and
set u;; = (z; — x;)/di; and vy; = (Ax; — Az;)/dij. Then to second order, the
change in energy is

AE = 2rn* Z di (2'0,']' S Ui — Vij Vg5 + 6(1)47]' . u,-j)Q) .

i#j
Of course, if the points z; are to remain on S?, we must also impose on the
variation the constraint Az; -z; =0fori=1,...,p.

We have done extensive numerical experiments to find such stable configu-
rations of p point charges on S2. These indicate that for p < 16 there is a single
minimum. When p = 16 there seem to be two stable configurations, shown in
Figure 10. One has tetrahedral A4 symmetry of order 12 and E =~ 7336.010;
the other has amphichiral dihedral Dg symmetry of order 16 and E = 7336.697;
the first local minimum seems to attract about three-quarters of the random
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configurations we start with. For configurations of greater numbers of points,
not surprisingly there are again usually distinct local minima.

Our experiments also suggest that the corresponding geometric Hopf links
are Mobius-energy stable. Thus, the 16-component Hopf link gives the first
known example of a link type with distinct local minima for the knot energy E.
In general, we conjecture that the Morse index for an equilibrium configuration
of point charges equals that of the corresponding geometric Hopf link. The
configuration space of distinct points on S? has plenty of cohomology, so we
expect to find many unstable extrema by viewing the reduced energy as an
equivariant Morse function.®® (In this context, Kawazumi®® has investigated

critical points of a logarithmic repulsive potential.)

11 Surfaces and Submanifolds

In the case of surfaces and higher dimensional submanifolds, we know much less
about the existence of E-stationary examples or E-minimizers. Presumably,
for instance, the round S? is the unique critical point for spheres in R® (again
consistent with the Smale Conjecture), and prime knotted spheres in R* have
E-minimizing representatives.

Using a simple scaling argument we are able to prove some partial regular-
ity results in general dimensions. For example, tangent cones (if they exist) to
k-dimensional submanifolds with finite E must be flat k-planes.!® Presumably
E-minimizers have tangent cones everywhere, from which it follows that they
are at least C! submanifolds; in fact, we expect all E-minimizers to be real
analytic submanifolds.

To explicitly compute the energy E of a submanifold it is helpful to rewrite
the formulas for the angle . If two points z and y on M C R® are separated
by the vector r = z — y, and the tangent spaces to M at these points are
spanned by 81, 82,...,8; and by t1,ts,... , %, then we do not have to find the
spheres S;(y) and Sy(z) in order to determine how they meet. Instead, note
that S,(y) is tangent to M at z, while the tangent space to Sy(z) there is
obtained by reflecting the tangent space T, (M) in the vector r, and is thus
spanned by the vectors &; := ¢; — 2(r - t;)r/r%. Observe that the #; have the
same inner products with each other as the ¢; do; however, this basis for the
tangent space to Sy(x) has the wrong orientation, because of the reflection.

Define a (k + 1) x (k + 1) matrix A by setting Ago := 7%/2, Ag; := 71 - t;,
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A,‘o =8;7r, Aij =8;: tj. Thus we have
7‘2/2 vee T tj

A=
8T ... Si-tj

By row reduction applied to the leading row and column of A, we find det 4 =
det[s, t;]. This latter determinant is the one used to find cos a, so we get

TcosalslA---/\skI|t1/\---Atk|=detA,

where the minus sign comes from the reversal of orientation by the reflection.

Note that by choosing principal angles we can arrange the s; and ¢; to be
orthogonal sets of vectors with the property that s;-t; = 0 unless i = j. Then
the formula above simplifies to

2 k 2 k
-r r (sj-7)(r - t5)
—— cosa I 1ssllt;1 = ?_Z 13 s 1) HSJ tj. (1)
j=1 j=1 i

As an example, let us compute the energy of a k-dimensional Clifford torus
of radii ry, ..., 7. We have

T* = §Y(ry) x --- §(ry) C S2*~1 c C*,
parameterized by the map f(6y,...,0;) = (rie®%,... ,rpe®). This embed-

ding is homogeneous, so the energy density is constant; thus we can compute
E(T) with a single integral over T

for any fixed y, say y = f(0,...,0). We find it easier, though, to compute
this integral not by fixing this y and letting z = f(¢1,...,¢x) vary, but by

rotating so that z = f(61,...,6;) and y = f(—61,...,—6;), where 20; = ¢;.
The tangent vectors at these pomts zandyares; = (0,...,0,ir;e%,0,... ,0)
and t; = (0,...,0,ir;e~% 0,...,0). Their difference vector is r = z — y=

2i(T1 sin 01, cee T sinek)
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It is a simple matter to compute the inner products:

2
i85 =ti-t; =08y,  8i-tj = 0ijT 2 cos ¢,

—toor =22 f,
8j T =tj 1 =1;sin"j,

rer=4%r2sin0; = 2Y r2(1 - cos ¢).
J J J J

Define an angle ¢ by cos¢ = [ cos¢;. Then using the formula (1) for cosa,
we find that

Y. r¥(1/cosg; ~1)
Zr( - cos¢;) |

cosa = o8 P

which gives

1—cosa

> 17 (1 — cos ¢;)(1 — cos ¢/cos ;)
(- cos¢>]~))2 '

_1
rer 2

For k = 2 we can now explicitly evaluate the integral (2). We find

om p2m 2
area(T) / / (}ﬂ) r1d¢r r2dds

2
_ 2r12r22// ((r1 +72)(1 — cos ¢1)(1 cos¢2)2) déy dba

. (r2( l—cos¢1)+722(1—cos¢2))
_ 2 (rf +r22)2/ VI =cosés(r? +3(1 — cos ¢2)7f)

7z
(2r + (1 — cos ¢o)12)*

E(T)

ds

73 3rf + 14rir} + 3r3
6 rira(r? +12)

This is a rational function of the r;, homogeneous of degree 0. It has a global
minimum at r; = rg, corresponding to the minimal Clifford torus in S3, the
lift of the equator under the Hopf map. We conjecture that this surface (see
Figure 11) has the minimum MGbius energy for any unknotted torus in S3; its
energy is 57%/3. In fact, this should be the absolute minimum for E among
all nonspherical embedded surfaces in S* (or R?).

By the technique of symmetric criticality mentioned earlier, we do know
that this surface is a critical point for E; and for any k, in fact, the k-torus of
equal radii in $2¥~! is a critical point for the k-dimensional energy E.
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Figure 11: The minimal Clifford torus in S3, shown stereographically projected to R3, has
energy E = 573/3, presumably the lowest of any nonspherical surface.

12 A Table of Knots and Links Minimizing Mébius Energy

We have computed experimentally (with help from a group of undergradu-
ate students at the Five Colleges Geometry Institute’) what seem to be
E-minimizers for all the essential prime knots and links with less than nine
crossings; these are pictured in the Appendix. Most of these knots have a
two-bridge or rational tangle decomposition into segments where two partic-
ular strands twist around each other a certain number of half-turns.?! This
decomposition seems to be reflected in the shapes of the energy minimizers:
each twisted piece resembles several half-turns of the E-critical double-helix
(see Figure 8), up to Mobius transformations (which can send a half-turn of
the helix into a pair of large arcs near infinity). It would be nice to prove that
this is the shape of a minimizer, but at present it is not even known whether,
for instance, a minimizer is a real analytic curve.

We computed an approximation to each knot or link by evolving at least
9000 steps with the conjugate gradient method, refining as necessary when
edges had high energy. We included all the knots and links through eight
crossings as well as a few nine-crossing knots and the (2, 15) torus knot.

In Table 2, the first column lists the name of the knot or link from the
standard tables*? and its Conway notation.4® The next three columns list
the energy of our approximate minimizer, computed with each of the three
discretizations. Finally, we list the average crossing number, and the number
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Knot or Link | Ecos |Eedge|{Evert| A { Ne Knot or Link| Ecos | Eedge [Evert| A | Ne
01 0.0 o0.1] -o0.1| 0.0] 256 81 62[217.4] 218.3[216.7]11.1| 798
22 2| 39.5| 39.9| 39.2| 2.3| 192 83 53(220.3| 220.9|219.5|11.1| 776
3 3| 70.4] 70.8] 70.1| 4.1| 264 83 44(220.9| 221.1(220.1|11.1| 836
42 4] 99.1| 99.5| 98.7| 5.5] 320 93, 5,2,2—|221.9|224.1|223.7|11.3]1568
4 22(104.9]| 105.2|1104.6| 5.5| 602 82 5121224.11224.81223.3111.3] 898
51 5(126.8]| 127.3{126.3{ 6.9 360 8§ 2421226.2| 226.81225.4{11.4] 934
KY) 32(134.6(135.0|134.1| 7.0| 574 84 413]226.2|226.7{225.4|11.3| 878
63 2,2,2—1136.81137.1(136.5| 6.9; 534 8§ 422(227.9]227.4{227.2{11.2| 998
5% 212(138.9] 139.3|138.4( 7.1| 674 8 3321228.6|229.2|227.8|11.3| 914
6? 6]154.1]154.6(153.6| 8.2| 584 8,';' 323(229.6 229.7(228.9(11.2| 974
61 42(162.8(163.4(162.1| 8.4| 640 ’I§ 6*21231.14 231.6|230.6{10.7 760
6§ 33(164.5(164.9{163.8{ 8.4| 684 87 41121231.3231.2|230.5|11.4| 880
7? 3,2,2~(166.0| 166.4(165.7| 8.5 560 8s 2312(232.4 232.9(231.6(11.5(1002
62 312(168.5]|169.1|167.9| 8.6 746 8{’ 4,2,2(232.7] 233.5|231.8(11.3| 862
62 222/170.0] 169.8(169.4| 8.5| 722 8 3113(233.21 233.3(232.4|11.4( 906
63 2112(172.9| 173.2|172.4] 8.7| 914 811 3212(233.7| 233.8(232.9(11.4 (1034
7o 21,2,2— |173.9| 174.3{173.5| 8.9 592 85 3,3,2(234.0] 234.6[233.2[11.3| 954
63 2,2,2|174.6| 175.2(174.2| 8.6] 756 83 2,2,24+|(234.1 234.0(233.4|11.5]1220
71 71181.0{ 181.7(180.4| 9.7] 504 9; 9l234.6| 235.6(233.7(12.3| 576
72 52(190.3|191.0(189.6| 9.8| 728 812 22221235.1| 234.6(234.411.4[1036
7s 43[192.7] 193.2|191.9[ 9.7] 756 8z 3122(235.2 | 235.3]234.8[11.5[1406
83 4,2,2—1194.2| 194.7(193.8| 9.8| 612 82 21212(237.8| 287.5|237.1(11.6|1176
72 412]196.6]197.2|195.9] 9.9] 820 813  31112|237.9]238.1(237.1|11.5| 982
810 3,3,2—(197.0| 197.3(196.7|10.2| 680 810  3,21,21238.7]239.3(237.9(11.5|1006
Ts 313[197.7] 198.1(197.1] 9.9 940 814 22112|238.7]238.7237.9]11.6| 956
63 6*[197.9198.3{197.4| 9.2| 492 83 31,2,2(238.9( 239.4(238.1[11.5| 900
72 232]198.7{ 199.1|198.0| 9.8| 796 82, 21,2,2+(239.3|239.1|238.6(11.7|1180
s 3221199.7{200.0({199.0| 9.9| 902 82 22,2,2|239.6| 240.0|238.9|11.6 {1044
87, 22,2,2— | 203.3| 203.8{202.9110.2] 826 82, 3,2,2+ [241.6241.3]241.2]11.6 {1700
72 3112(203.6 | 203.8(203.2]10.1|1224 82, 211,2,2(243.0243.2|242.3|11.6|1114
Te 2212|203.7 | 204.0]203.1|10.2| 970 8% 2,2,2,2(243.1|243.8(242.3|11.5| 844
83 31,2,2—|203.7| 204.3|203.2(10.3]| 700 815 21,21,2(243.1|243.0(242.5|11.7{1154
820 3,21,2— | 203.9] 204.4]203.4[10.4] 720 87 (2,2)(2,2)|245.8] 246.5245.1]11.5] 906
72 13,2,21204.4| 205.1/203.7|10.0( 808 82 211112(246.0 248.1|247.7|11.7|1868
73 2,2,2+ [205.4| 206.0(204.7110.3| 890 83 6*3(260.5| 261.2(259.8(|12.0( 828
8¢ 2,2,2,2——[206.0]| 206.5/205.5| 9.8( 672 83 6%2:.20|264.4| 264.8(263.7{12.1| 916
77 21112[207.1] 207.0{206.5[10.2{1080 816  6%2.20|264.5] 264.8|263.9[12.4] 862
83 81207.9 208.7]207.1|11.0| 512 82,  6%2:2(264.8(265.1|264.1|12.1| 894
82,  211,2,2—(208.2| 208.5(207.6|10.3| 912 817 6*2.2(265.1| 265.7|264.4|12.3| 832
72 21,2,2/208.9| 209.4[208.210.1| 916 82, 6*21(266.0| 266.2(265.3|12.2| 998
821 21,21,2—|209.5] 210.0|209.0[10.5| 852 818 8*[283.9] 284.3|283.4|12.6| 844
83 (2,2)(2,2-)|216.3|216.5|215.8(10.5| 758 93; 2111112{284.1|284.2(283.9|13.3|2616
84 2,2,2,2—[217.2| 217.7|216.6|10.9| 752 940 9% [329.6| 329.9(329.4|14.3]1640
83, (2,2)—(2,2){217.4] 217.7|216.9|10.6| 720 151 15|394.2 395.6|392.8[20.2|1022

Table 2: Approximate Mobius energies of links through eight crossings (see text).
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of edges for this polygonal link. Note that the average crossing number would
change somewhat if we applied a M6bius transformation to our link, though
the other values should stay constant. If we started with a different initial
configuration, we might get to the same minimizer in a different picture, and
the value shown for A would be different.

We believe that the cosine energy is significantly more accurate than the
other discretizations, and have ordered the table by its values. Note that the
edge energy tends to be a bit higher, and the vertex energy a bit lower.

Recall® that the minimum energy E for a knot type is at least 2mc, where
c is the topological crossing number. Our experiments suggest this inequality
is far from sharp: the minimum of the ratio E/c seems closer to 2%, achieved
by the Hopf link 22. However, we still expect our ordering of knots by Mobius
energy to list knots of small crossing number first. In fact, this is reflected in our
table, though it seems that nonalternating links have significantly less energy
than their crossing number would suggest—evidently two over-crossings in a
row require less twisting from a three-dimensional perspective. The ordering
of rational (or two-bridge) knots by our energy seems quite predictable from
their Conway names (their structure as rational tangles). Indeed, for each k,
the lowest energy alternating k-crossing link in the table is the (2, k) torus link
with notation k. The highest energy two-bridge link is 21 - --12.

Many of the non-alternating links in the table have the notation p,q,2—
and in each case, this link is very close in energy to plg, a link with one less
crossing. Note that the link p, 2,2— consists of a (2, p) torus link together with
the core circle of the torus which links it twice.

Suppose we look at the highest energy knots and links for a fixed number of
crossings. These in general seem to be knots based (in Conway’s nomenclature)
on the planar diagrams 6*, 8*, etc., in which all regions have at least three
sides. In fact, 6* (the Borromean rings, 63) and 8* (8;3), which each have
significantly more energy than all others with the same number of crossings,
each fit into the class of so-called “Turk’s-head” knots, with very symmetric
planar diagrams. The energy minimizers stay close to this plane, with the
strands weaving up and down only slightly, and presumably this accounts for
the high energy. The highest-energy link of seven crossings, 6*2 (72) is in fact
the Borromean rings with one of the six crossings replaced by a double half-
twist. It thus also has a symmetric planar picture, although we would have to
apply Mobius transformations to the picture in the Appendix to see this.

We have included in the table four knots of nine crossings, which we believe
to be extreme for energy. We expect that 5,2,2—~ (92;) has the lowest energy
of any nine crossing link. The (2,9) torus knot 9 (9;) presumably has the
lowest energy among alternating knots and links. The knot 2111112 (931)
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is presumably highest-energy among arithmetic nine-crossing knots. And 9*
(940) should have the highest energy overall. We have also included the (2,15)
torus knot to indicate the limiting helical behavior.

The Appendix shows stereo pictures of the approximate minimizer for each
link. We made no particular effort to choose an optimal projection or Mobius
representative for the minimizers; often, as for 72, there is some conformal sym-
metry that fails to be Euclidean for our representative. To see the stereoscopic
effect, look at the left figure with the right eye and the right one with the left
eye (by crossing the eyes). Please see our report! in Geometric Topology for a
version of these pictures printed instead for straight-eyed viewing.
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Rational links with two-term continued fractions

&

32

33
43

53



52 212 6,
<

72 412 8,
A &

7, 313 84
© &S

62 222 Ts
DS &
82 422 81

Most rational links with three-term continued fractions

512

413

322

323



T

2212

811

2222

G

3112

&

3113

3212

More rational links with three- or four-term continued fractions



345

(Y

&

3122 2312

&y

21112 21212

D (PR
>

(D

pe%

8,5 31112 22112

&

&
<5
S
&

211112 21 2111112

3. (6
I3 (D

8 3,32

Rational links with long continued fractions, and the (3, 4) torus knot
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63 222 7322
72 21,2,2 83 4,22
82, 211,22 82 22,22
85  21,21,2 80 3,212
8 3,3,2 83 31,2,2

Links with Conway notation a,b,c



63  2,2,2— 72 21,22-
7 322- 83 31,2,2@
8  422- % 82,  211,2,2—
92,  5,2,2— 82, 2222-
8,  21,21,2- 80  3,21,2—

Most nonalternating links
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8} 2,2,2,2 8 (2,2)(2,2)
8 (2,2)(2,2-) 8% (2,2)-(2,2)
83 2,2,2,2— 8% 2,2,2,2——
73 2,2,2+ 83 2,2,2++
82, 3,2,24 82, 21,2,2+

The remaining links based on 1*



83 6*3 82, 6*21
) 68 &
8,  6%2.2 8,6  6%2.20
82,  6*2:.2 8 6%2:.20

% @\/3
818 8* 940 9*

The links based on 6*, 8* or 9*
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CHAPTER 18
AN INTRODUCTION TO HARMONIC KNOTS

AARON K. TRAUTWEIN
Department of Mathematics
Carthage College
2001 Alford Park Drive, Kenosha, WI 53140, USA
E-mail: akt@carthage.edu
hup://www.carthage.edw/~trautwn

An harmonic knot is a knot in three-dimensional space that can be expressed
parametrically in the form (x(t), y(¢), z(¢)) where each coordinate function is a
trigonometric polynomial. Since every knot is ambient isotopic to an harmonic knot,
we are able to define the harmonic index of a knot as the smallest degree of any
harmonic knot in the knot class. The harmonic index of a knot is related to its
superbridge index and crossing number. In particular, there is a bound on harmonic
index computed from the crossing number and vice versa. This bound allows us to
compute the superbridge index of the figure-eight knot and the granny knot and to show
that only finitely many knot types occur with any given harmonic index. We provide
explicit harmonic parametrizations of the trefoil knot, the figure-eight knot, the (2, 5)
and the (3, 4) torus knots, and the granny knot.

1 Introduction

In this paper, we define and give examples of harmonic knots. An harmonic
knot is a knot in three-dimensional space that can be expressed parametrically in the
form (x(?), y(¥), z(t)) where each coordinate function is a finite trigonometric
polynomial. Harmonic knots provide nice representations of smooth knots because
of the simplicity of the coordinate functions involved. An example of an harmonic
knot is the trivial knot since it can be parametrized in R? as k(f) = (sin(?), cos(?), 1).

Even though harmonic knots provide particularly nice representations of
smooth knots, up to now little research has been done to find harmonic knots and to
determine their properties. The only harmonic knots that have studied substantially
are Lissajous knots. A Lissajous knot is an harmonic knot in which each of the
coordinate functions is a trigonometric monomial. Bogle, Hearst, Jones, and Stoilov
showed in ! that a Lissajous knot necessarily has Kervaire invariant zero so that the
trefoil knot, the figure-eight knot, and the (2, 5) torus knot are not Lissajous.
However, we will show that the trefoil knot, the figure-eight knot, and the (2, 5)
torus knot can be represented as harmonic knots.
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We give the formal definition of an harmonic knot in section 2 and show that
every knot is equivalent to an harmonic knot. In sections 3, 4, and 5 we establish
relationships between the harmonic index of a knot and knot theoretic indices such
as the crossing number and superbridge index. The technique used to find explicit
parametrizations of harmonic knots and examples of such parametrizations are given
in section 6. Harmonic parametrizations for all knots through eight crossings are

available in 2 and via the internet at >.

2 Harmonic knots - definition, existence, and index

Let fn(0), gn(f), and hx(?) be trigonometric polynomials of degree less than or

equal to N. We say Ty: [0, 2m) — R? defined by
Tn@ = (fn®, gn @), hn()

isan N degree trigonometric polynomial parametrization if at least one of fi(?),
gn(®, or hy(¢) has a nonzero N* degree coefficient. We call the image of Ty in %3
an N degree trigonometric polynomial curve. If Ty: [0, 2m) — R is an N** degree
trigonometric polynomial parametrization, we say Ty is regular if Ty is 1:1, its
image in X3 is a simple, closed curve, and Ty'() # (0, 0, 0) for all 7 in [0, 27). We
call the image of Ty in this case a regular N** degree trigonometric polynomial
curve.

Definition 2.1 An N degree harmonic knot is a knot with a regular N degree
trigonometric polynomial parametrization.

The trivial knot (unknot) is a 15! degree harmonic knot since it can be
represented parametrically by k(#) = (sin(?), cos(?), 1).

Definition 2.2 We say two knots K; and K) are equivalent, denoted K; = Kj, if they
are ambient isotopic. If two knots are equivalent, we say the knots are in the same
knot class or that the knots are of the same fype. The collection of all knots
equivalent to a knot X is denoted by [K].

Definition 2.3 A knot K is tame if it is ambient isotopic to a simple, closed polygon
in K3, A knot K is wild if it is not tame.

Assume that a closed curve C is represented by a continuous, vector function
r(t) = (r{p), rx(0), r3(t)) of period L which is not constant in any interval. For each
unit vector u, define m(C, u) to be the number of maxima of the function wr(¢) (i.e.
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the number of parameter values ¢y for which uer(tp) 2 u-r(t) for ¢ within some
neighborhood of fp) in a fundamental period. The crookedness of C, denoted m(C),
is the min {m(C, u):u is a unit vector }. In 4 Milnor showed a knot X is tame if its
crookedness is finite. By finding the number of extrema (the crookedness) of an
harmonic parametrization, we obtain the following theorem.

Theorem 2.4 All harmonic knots are tame.

Below in Examples 2.5 and 2.6, we give the parametric functions for two
harmonic knots. Each knot is identified by its common name according to its knot
type. After each example is a figure representing the image of the function in R3 as
a “knotted tube,” that is, this simple, closed curve has been drawn as the center of a
tube having a nonzero radius.

Example 2.5 Harmonic parametrization of the trefoil (3, knot).

x(£) = 41cos(?) — 18sin(r) — 83cos(2t) — 83sin(27) — 11cos(3r) + 27sin(3¢r)
(1) = 36¢0s(r) + 27sin(r) — 113cos(21) + 30sin(%) + 11cos(3¢) — 27sin(37)
2(2) = 45sin(?) — 30cos(2¢) + 113sin(2) — 11cos(37) + 27sin(31)

200
1007
z0

-100

-200
-200

Figure 1: Harmonic trefoil knot.
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Example 2.6 Harmonic parametrization of the figure-eight knot (4, knot).
x(t) = 32cos(f) - S1sin(z) — 104cos(2t) — 34sin(2r) + 104cos(3r) - 91sin(37)
y(t) = 94cos(r) + 41sin(r) + 113cos(2) — 68cos(3t) — 124sin(3r)

2(f) = 16cos(f) + 73sin¢) - 211cos(2r) — 39sin(2t) — 99cos(3r) — 21sin(3¢)

300

2001
100
70
-100]

-200]

-3001

Figure 2: Harmonic figure-eight knot.

In 2 we show every tame knot is equivalent to an harmonic knot. Using basic
theorems about first order Fourier approximations of smooth (C!) functions (see ),
we show that given a simple, closed, smooth curve K in R3, it is possible to find a
regular trigonometric polynomial curve that lies “close enough” to K to be of the
same knot type. In particular, we show there is a regular trigonometric polynomial
curve lying in a normal disk tubular neighborhood of K that has the property that it
never reverses direction with respect to the orientation induced on this tube by the
curve K. The following theorem results.

Theorem 2.7 If K is a tame knot then for some N there is an N** degree harmonic
knot K* of the same knot type as K.
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Since each knot class contains harmonic knots, we are able to define a new
knot invariant based on the degrees of the harmonic knots in a knot class called the
harmonic index.

Definition 2.8 Let X be a tame knot. The harmonic index of K, denoted d[K], is the
minimum integer N such that there is an N degree harmonic knot of the same knot
type as K.

For all knots, the harmonic index is greater than or equal to 1 by definition.
The harmonic index of the trivial knot is 1 since the trivial knot has an harmonic
parametrization given by k(z) = (sin(z), cos(r), 1).

3 Superbridge index and harmonic index

If X is a tame knot, K can be represented by a continuous real-valued vector
function k(1) = (x(¥), y(t), z(t)) of period 2z. We can count the number of local
maximum points relative to a given direction, and this is a measure of the
complexity of the knot. To allow for whole intervals of such points, we must be
careful in the method used in our counting. For a continuous map f: R — R, a
critical component is a nondegenerate interval J (necessarily closed) such that f is
constant on J and there is no interval J* such that fis constant on J*, J # J*, and
Jc J*. A critical point is a point A at which f has a local maximum or minimum.
Note that this does make sense whether or not X is smooth, though for smooth
knots, “critical” has a different meaning.

Let u be a fixed unit vector in R3. The dot product u«k(?) is a smooth real-
valued function of ¢ of period 2z. If uek(?) is constant on R, i.e. X lies in a plane,
define b,(K) = 1. If uek(?) has infinitely many critical commonest or infinitely many
critical points, define b,(K) = co. Otherwise, we can choose ¢ in R so that o, is not
contained in a critical component of u«k(z) and o is not a critical point of uek(r). In
this case define uek(?) to be the number of connected critical components of uek(?)
added to the number of critical points where uek(f) has local maxima in the interval
[, o + 27). The minimum of b,(K) over all directions u was defined by Schubert
in 6 to be the bridge number of K denoted b(K). Kuiper examined Schubert's bridge
number in 7 and defined a new knot invariant, the superbridge number. Kuiper's
definition of this new invariant is given below.
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Definition 3.1 Let K be a tame knot. Then the superbridge number of K, denoted
sb(K) is
max { by(K):u is a direction vector in R*}.

The trefoil knot K in Figure 1 has only two maxima in the direction u pointing
toward the positive z-axis so. However, it is impossible to draw a trefoil so that in
all directions we see only two maxima. In particular, in Figure 1 there are directions
where we see three maxima (but no number higher). Hence the superbridge number
of this trefoil is 3. Using the definitions of the bridge number of a knot K and the
superbridge number of a knot K, we are now able to define bridge index and the

superbridge index of K.

Definition 3.2 Let K be a tame knot. Then the bridge index and the superbridge
index of K are
b{K] =min { b(K).K* is of the same knot type as K }
and
sb[K]=min { sb(K): K* is of the same knot type as K },
respectiveiy.

For a tame knot K, Kuiper showed in 7 that b[K]< sb[K] (strict-inequality).
This inequality also follows from Milnor's analysis of total curvature in 4. By
finding the maximum possible number of connected critical components where a
trigonometric polynomial can have local maxima, we obtain the following theorem.

Theorem 3.3 Let K be a tame knot. Then sb[K]<d[K].

Since the b{K]<sb[K] as a simple corollary we see that the bridge index of a
knot type is strictly less than its harmonic index. In particular, we can place a lower
bound on the harmonic index of a non-trivial knot.

Corollary 3.4 All non-trivial knots K have harmonic index > 3.

In general, for non-torus knots the superbridge index is not known. In some
cases, however, since the superbridge index of a knot is less than or equal to its
harmonic index, we can use the harmonic index of a knot as an upper bound for the
knot's superbridge index and harmonic index. Below in Corollary 3.5, we find the
superbridge index of the figure-eight knot and the granny knot using the low degree
parametrizations for these knots given in section 6.
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Corollary 3.5 The superbridge index and the harmonic index of the figure-eight
knot are 3. The superbridge index and the harmonic index of the granny knot are 4.

4 Torus knots and harmonic index

Definition 4.1 A torus knot is a knot whose image lies on the surface of a torus in
R3. Torus knots are identified by by giving two numbers pand ¢ 2<p<gq,pand g
coprime) which represent the number of times the knot crosses a meridian and a
longitude on a torus, respectively. A (p, g) torus knot can be represented
parametrically on a torus of radius 1/4 by K}, ,(9) = (x(©), y(#), z(r)) where

x(t) = cos(pr) + (1/4) cos(pt)cos(gt)

y(t) = sin(pt) + (1/4)sin(pr)cos(gr)

2(H) = (1/4)sin(gr)

Using standard trigonometric identities, we see that this is a p + g degree
trigonometric polynomial curve in R3. The parametrization of the (p, g) torus knot
above does not necessarily give the minimum harmonic degree. Kuiper showed in 7
that if K, , is a (p, ¢) torus knot then sb/K, ;] is the minimum of {2p, g}. For
example, a (2, 5) torus knot can be drawn so that in every direction there are less
than or equal to four local maxima. From Kuiper's result and Theorem 3.3 we
obtain the following result.

Corollary 4.2 If K}, 4 is a (p, q) torus knot (2 < p < q, p and q coprime) then
min {2p, q} <d[Kp,]<p +gq.

In some cases, the superbridge index of a (p, ¢) torus knot can actually be
used to determine the knot's harmonic index. In particular, in Corollary 4.3 below
we are able to find the harmonic index of for the 3 knot (the (2, 3) torus knot), the
51 knot (the (2, 5) torus knot), and the 8,9 knot (the (3, 4) torus knot) since
appropriate low degree harmonic parametrizations exist for these knots (see section
6).

Corollary 4.3 The harmonic index of the 31 knot, the 51 knot, and the 8;9 knot are
3, 4, and 4, respectively.



360
§  Crossing number and harmonic index

Another measure of the complexity of a knot is the knot's crossing number. In
this section we will relate the crossing number of a knot to its harmonic index.
Before we discuss this relationship, we recall the definition of the crossing number
of a knot class. The crossing number of a knot class is the smallest crossing number
of all diagrams representing knots from the given class, denoted c/K].

Since the sb/K] < d[K], and they coincide for the trivial knot, the trefoil knot,
the (2, 5) and (3, 4) torus knots, the figure-eight knot, and the granny knot, one
might expect that sb/K] = d[K] for all knots K. However, by relating the crossing
number of a knot to its superbridge index we will show this is not true. The theorem
below proven in 2 uses Bocher's work on Finite Fourier series > and Bezout's
Theorem 8 to relate the harmonic index and crossing number of a knot. Using this

theorem we will show that for (2, g) torus knots with ¢ large that sb[K ,] is strictly
less than d[K3 4].

Theorem 5.1 If K is a tame knot then

(a) c[K] <2(d[K])? and

(b) d[K] <2(c[K] + 1)

In particular, if we bound either d[K] or c[K], we bound the other.

The superbridge index of the (2, 49) knot is 4 by 7. The crossing number of
the (2, 49) knot is 49 (see ? or 10), so by Theorem 5.1(a) above the harmonic index
of the (2, 49) knot must be 5 or greater. Hence, in general for a tame knot K, sb/K]
is not equal to d(K].

Corollary 5.2 The superbridge index of the (2, 49) torus knot does not equal its
harmonic index.

Since the number of knot types having a given crossing number is finite (see 10),
Theorem 5.1(b) also implies the following corollary.

Corollary 5.3 The number of knot types having a given harmonic index is finite.
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6 Examples of harmonic knots

In this section we give examples of harmonic knots having minimal harmonic
degree. Each parametrization was constructed by approximating the coordinate
function of a polygonal knot using finite Fourier series. To get the lowest possible
harmonic degree when Fourier approximating a polygonal knot, the total number of
maxima and minima in most directions must be “relatively” the same. To obtain a
polygonal knot with this property, an energy minimizing algorithm was applied to
the polygonal knot to find a low energy conformation. This low energy
conformation was another polygonal knot equivalent to the original knot which had
the desired “spreading” of maxima and minima. The algorithm used was developed
by Simon in !! and 12,

After a minimum energy polygonal knot was found, the coordinate functions
of this polygonal knot (expressed as 2z periodic, continuous, piecewise linear
functions) were approximated using finite Fourier series. The resulting harmonic
curve was then checked to be of the same knot type as the original knot by graphing
using Maple 3. If the harmonic curve was of a different type, a higher degree
harmonic curve was tried. Sometimes when using this technique to find harmonic
knots, we iterated the process passing from minimum energy polygons to Fourier
approximations of polygons to inscribed polygons (perhaps with more edges).
Harmonic parametrizations for all knots through eight crossings are available in 2
and 3.

Example 6.1 5; Knot — (2, 5) torus knot

x(#) = 88cos(f) + 115sin(z) — 475cos(2r) — 127sin(2f) — 87cos(3¢) + 36sin(3) +
11cos(4t) — 19sin(4s)

¥(2) = 89cos(f) — 32sin(¥) — 172cos(2f) + 294sin(2t) + 76cos(37) + 102sin(37) —
61cos(4r) + 113sin(4¢)

2(H) = 44cos(r) — 69sin(?) + 34cos(2r) + 223sin(2¢) + 16cos(36)+ 120sin(31) +
42cos(4¢) — 125sin(4¢)

Example 6.2 §;9 Knot — (3, 4) torus knot

x(H) = - 26c0s() + 6sin(t) + 8cos(2r) + 12sin(2¢) + 49cos(3¢) - 68sin(31)
36c0s(41) — 13sin(4r)

¥(0) = 23cos(f) + 66sin(r) + 2sin(2r) + 77cos(3t) + 67sin(3r) — Ycos(4?) — 3sin(4f)

2(8) = - 15cos(t) + 16sin(r) — 11cos(2t) — 15sin(27) + 47cos(3) — 37sin(30) +
51cos(4f) + 19sin(4)
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Example 6.3 Granny Knot

x(t) = — 22c0s(f) - 128sin(t) — 44cos(3r) — 78sin(3r)
y(t) = - 10cos(2¢) - 27sin(2f) + 38cos(4¢) + 46sin(41)
z(t) = T0cos(3¢) — 40sin(3r)

81):“

Figure 3: Harmonic granny knot.
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CHAPTER 19

Fourier Knots

Louis H. Kauffman
Department of Mathematics, Statistics and Computer Science
University of Illinoss at Chicago
851 South Morgan Street
Chicago, IL 60607-7045

This paper introduces the concept of Fourier knot. A Fourier knot is a knot that is
represented by a parametrized curve in three dimensional space such that the three
coordinate functions of the curve are each finite Fourier series in the parameter.

That is, the knot can be regarded as the result of independent vibrations in each of
the coordinate directions with each of these vibrations being a linear combination
of a finite number of pure frequencies.

1 Introduction

The previously studied Lissajous knots [1] constitute the case of a single fre-
quency in each coordinate direction. Not all knots are Lissajous knots, and
in fact the trefoil knot and the figure eight knot are the first examples of
non-Lissajous knots. The first section of this paper sketches the proof that
every tame knot is a Fourier knot. Subsequent sections give robust examples
of Fourier representations for the trefoil, the figure eight and a class of knots
that we call Fibonacci knots. In the case of the trefoil we have given a minimal
Fourier representation in the sense that it has single frequencies in two of the
coordinate directions and a combination of frequencies in the third direction.
The paper ends by pointing out the usual compact non-linear trigonometric
formula for torus knots, and raises the question of the finite Fourier series
representations for these knots.

On completing an early draft of this paper, we learned that an extensive
study of Fourier knots (there called Harmonic Knots) has been carried out
by Aaron Trautwein in his 1995 PhD Thesis 7] at the University of Iowa
under the direction of Jon Simon. While the independently obtained results
of the present paper are primarily illustrative of the idea of Fourier knots,
Trautwein’s pioneering work establishes relationships between the complexity
of the harmonic representation and knot theoretic indices such as crossing
number and superbridge index. The interested reader should consult this work.

Acknowledgment. The author thanks the National Science Foundation for
support of this research under grant number DMS-9205277.
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2 Every Knot is a Fourier Knot

In considering problems about knots it is interesting to have an equation for
the knot or link under consideration. By an equation for a knot I mean the
specification of a parametrized curve in three dimensional space of the form

X(t) = A(t)
Y(t) = B()
Z(t) = C(t)

where A, B, C are smooth functions of the variable ¢ with (for a knot) a total
period of P > 0, specifying an embedding of the circle into three dimensional
space. Here the circle is the quotient space of the interval from 0 to P , [0, P],
obtained by identifying the ends of the interval to each other with the quotient
topology.

A function F(t) is said to be a finite Fourier series if it has the form

F(t) = A1Cos(K\T + Ly) + ... + ANCos(KNT + Lx)

where A;,4s,...An and K1,Ks,...Kn and Lq,L3,Ls,...Ln are given constants
and K1,K,,.. Ky are each rational numbers. Of course, F(t) can also be
expressed in terms of the Sin function or as a combination of Sin and Cos
functions, since Sin(X + 7/2) = Cos(X).

Definition. A knot K embedded in three dimensional space will be called
a Fourier knot if it has an equation (as described above) with each of the
functions A,B,C a finite Fourier series.

Definition. A knot K is said to be tame if every point p of K in R?® (Euclidean
three-space) has a neighborhood such that the intersection of K with that
neighborhood is equivalent to a standard pair of three-dimensional ball and
diameter-arc of that ball.

It is well known that every tame knot can be represented topologically by
equations where A4,B and C are smooth (i.e. infinitely differentiable) functions.
It then follows by standard approximation theorems for Fourier series that A,
B and C can be taken to be finite Fourier series. Thus we have proved the

Theorem. Every tame knot is (topologically equivalent to) a Fourier knot.
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3 Lissajous Knots and the Arf Invariant

One class of Fourier knots that have been studied are the Lissajous knots. In a
Lissajous knot there is one term in each of the Fourier series. Thus a Lissajous
knot has the form

X(t) = Al COS(KIt + Ll)
Y(t) = AQCOS(Kzt + Lz)
Z(t) = A3Cos(Kst + L3)

In it is proved that the Arf invariant of a Lissajous knot is neccessarily
equal to zero. This means that many knots are not Lissajous [1]. In particular
the trefoil knot and the figure eight knot are not Lissajous knots. This leads
to the question: if a tame knot K is not Lissajous, what is the ”simplest”
representation of K in terms of finite Fourier series?

In [1] the next section we shall give a definite answer to this question in
the case of the trefoil knot, and a conjecture in the case of the figure eight
knot. In all cases, when one answers this question there is also the parallel
question of obtaining Fourier equations for the knot K that are robust in the
sense that plots of these equations yield pleasing images that can be explored
geometrically.

Since knots of non-zero Arf invariant are neccessarily not Lissajous, it will
be useful for us to recall one definition of the Arf invariant. An interested
reader can apply this definition to find examples of Fourier knots that are not
Lissajous knots. There are algebraic definitions of the Arf invariant and a
fundamental geometric definition as well. See [2] or [3] for more details.

We recall an algebraic definition of the Arf invariant by first defining an in-
teger valued invariant, a(K), associated to any oriented knot K. The invariant
a(K) is defined by the (recursive) equation (*)

a(K4) = a(K_) = Lk(Ko)

where Ky, K_ and Kj are three diagrams that differ at a single crossing as
shown in Figure 1, and Lk(K,) denotes the linking number of the link of two
components Kp. K, and K_ are each knot diagrams, differing from each
other by a single switched crossing. Kj is obtained from either K, or K_
by smoothing that crossing. A smoothing is accomplished by reconnecting the
strands at the crossing so that the arcs no longer cross over one another (as
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shown in Figure 1). Both the switching and the smoothing operations can
change the topological type of the diagram. Smoothing always replaces a knot
by a link of two components. Thus Ky is a such a link. By definition, a(K) is
equal to zero if K is topologically equivalent to an unknotted circle.

a(K,) - a( K ) =

Figure 1: Switching Relation

Lk( Kg )

Note that in Figure 1 we have implicitly assigned signs of +1 or —1 to the
two types of oriented crossings. This number, +1 or —1, is called the sign of
the crossing. The linking number of a link L is defined by the equation

Lk(L) = Zpe(p)/2

where the summation runs over all the crossings in K that are between two
components of K. Crossings of any given component with itself are not counted
in this summation.

It is a (non-obvious) fact that the recursive equation (*) defines a topo-
logical invariant of knots and links. It is, in fact part of a much larger scheme
of things. For example it is the second coefficient of the Conway polynomial.
One way to define the Arf invariant, Ar f(K), is by the equation

Arf(K) = a(K)(mod2).

Thus the Arf invariant of K is either 0 or 1 depending upon the parity of
a(K). See Figure 2 for a sample calculation of the Arf invariant of the trefoil
knot.
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a(T) - a(U) = Lk(L)
aT)-0 =1
ﬁ(T) =1

Figure 2: a(Trefoil)

It is a remarkable fact that Lissajous knots have Arf invariant zero. I do
not know if every knot of vanishing Arf invariant is a Lissajous knot.

4 A Fourier Trefoil Knot

Consider the following equations

z = Cos(2T),
y = Cos(3T + (1/2)),
z = (1/2)Cos(5T + (1/2)) + (1/2)Sin(3T + (1/2)).

These equations define a trefoil knot, showing that the trefoil knot is a Fourier
knot where only one coordinate needs to be a combination of frequencies. The
proof that these equations give a trefoil knot is left to the reader. One way
to verify this is to use a computer to draw the pictures in three dimensions
and then examine the results. Figure 3 illustrates a computer drawing of this
Fourier trefoil. The drawing illustrates what I mean by a robust representation
of the knot. The knot does not come ambiguously close to itself, and the form
of the drawing is aesthetically pleasing. The author wishes to acknowledge
Lynnclaire Dennis [4] for inspiring him to search for the Fourier trefoil. In her
book ”The Pattern” Ms. Dennis draws a picture of a knot (the Pattern knot)
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that closely resembles our Fourier trefoil. In projection the Pattern knot looks
like a Lissajous figure with frequencies 2 and 3 and the Pattern knot is a trefoil
knot. This led to trying combinations of frequencies for the third coordinate,
and eventually to the equations above with pure frequencies 2 and 3 in two
directions and the combination of frequencies 5 and 3 in the third direction.
The Pattern knot is more spherically symmetrical than the Fourier trefoil, and
does not have an obvious equation.

X = cos(2*t)
y = cos(3*t+ 1/2)
Z = (1/2)cos(5*t + 1/2) + sin(3*t + 1/2))

Figure 3: The Fourier Trefoil

I would also like to mention an experiment that I performed with the
Fourier trefoil in the form of a (hand-drawn) diagram corresponding to the
knot in Figure 3. I gave this diagram as input to Ming, a knot energy program
written by Ying-Quing Wu at the University of Jowa. (A diagrammatic inter-
face for Ming was written by Milana Huang at the Electronic Visualisation Lab
at the University of Illinois). Ming sets the knot on a descending energy trajec-
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tory, following Jon Simon’s energy for the knot. The result of this experiment
is that the flat knot diagram quickly unfurls into a three dimensional geome-
try very similar to the Fourier trefoil and nearly stabilizes in this form. Then
slowly the knot moves off this slightly higher energy level and settles into the
familiar symmetry of the (empirically) known energy minimum for the trefoil
knot. Thus there appears to be a ”point of inflection” in this particular way
of descending to minimum energy for the trefoil knot. This experiment points
to a wide range of possible explorations, investigating the gradient descent for
knot energy from particular starting configurations for a knot.

X = 10*COS(T) + 10*COS(3*T)

¥ = 6*SIN(T) + 10*SIN(3*T)

Z = 4*SIN(3*T) - 10*SIN(6*T)

Figure 4: The Fourier Figure Eight Knot
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5 A Fourier Figure Eight Knot

The following equations describe a figure eight knot.

z = Cos(t) + Cos(3t),
y = .6Sin(t) + Sin(3t),
z = .4Sin(3t) — Sin(6t).

See Figure 4.
I do not know if there is a simpler Fourier representation for this knot.

6 A Series of Fibonacci Fourier Knots

Recall the Fibonacci series

1,1,2,3,5,8,13,21,34, 55,89, 144, ....

The n-th term, f,, of the series is equal to the sum of the previous two
terms, and f; = f, = 1. Consider the equations

z = Cos(87),
y = Cos(13T + .5),
z = .5C0s(21T + .5) + .58in(13T + .5),

and more generally

z = Cos(fnT),
y = Cos(fat1T + .5),
z = .5C08(faq2T + .5) + .5Sin(frn1T + .5).

The last set of equations defines a knot that we shall dub F(n), the n-th
Fibonacci knot. Thus F(3) is the Fourier trefoil of Section 3, and the first
equations we have written in this section denote F(6). In Figure 5 we illustrate
a computer drawing of F(6).

The Fibonacci Fourier knots provide a strong class of knots for investiga-
tion using computer graphics.
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X = COS(6*T)

¥= COS(13%T+.5)

Z= 5*COS(21*T + 5) + 5*SIN(13*T + .5)

Figure 5: A Fibonacci Fourier Knot
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7 Torus Knots

Recall that a knot that winds P times around a torus in one direction and @
times in the other direction - a torus knot of type (P, @) - has the equation

z = Cos(T)(1 + .5Cos((Q/P)T)),
y = Sin(T)(1 + .5Cos((Q/P)T)),
z = .58in((Q/P)T).

Now use the trigonometric identities

cos(a)cos(b) = .5(cos(a + b) + cos(a — b)),
sin(a)cos(b) = .5(sin(a + b) + sin(a = b)).

The equations above then become

z = cos(T) + .25¢cos((1 + Q/P)T) + .25¢co0s((1 — Q/P)T)
y = 8in(T) + .25 x sin((1 + Q/P)T) + .25 x sin((1 — Q/P)T)
z = .5sin((Q/P)T)

Thus torus knots are Fourier knots, and we can ask if these are simplest Fourier
representations for torus knots. The parametrization shown above appears in
[6]. T am indebted to Peter Roegen for pointing this out.
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CHAPTER 20

Symmetry is a vast subject, significant in art and nature.
Mathematics lies at its roots, and it would be hard to find
a better one on which to demonstrate the working of the

mathematical intellect.  [Hermann Weyl, Symmetry [We])

Symmetric knots and billiard knots.
by Jozef H.Przytycki

Symmetry of geometrical figures is reflected in regularities of their
algebraic invariants. Algebraic regularities are often preserved when
the geometrical figure is topologically deformed. The most natural,
intuitively simple but mathematically complicated, topological objects
are knots.

We present in this papers several examples, both old and new, of
regularity of algebraic invariants of knots. Qur main invariants are the
Jones polynomial (1984) and its generalizations.

In the first section, we discuss the concept of a symmetric knot, and
give one important example — a torus knot. In the second section, we
give review of the Jones type invariants. In the third section, we gently
and precisely develop the periodicity criteria from the Kauffman bracket
(ingenious version of the Jones polynomial). In the fourth section, we ex-
tend the criteria to skein (Homflypt) and Kauffman polynomials. In the
fifth section we describe r? periodicity criteria using Vassiliev-Gusarov
invariants. We also show how the skein method may be used for r? pe-
riodicity criteria for the classical (1928) Alexander polynomial. In the
sixth section, we introduce the notion of Lissajous and billiard knots
and show how symmetry principles can be applied to these geometric
knots. Finally, in the seventh section, we show how symmetry can be
used to gain nontrivial information about knots in other 3-manifolds,
and how symmetry of 3-manifolds is reflected in manifold invariants.
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1 Symmetric knots.

We analyze, in this paper, symmetric knots and links, that is, links
which are invariant under a finite group action on $° or, more generally,
a 3-manifold.

For example, a torus link of type (p,q) (we call it T} ;) is preserved
by an action of a group Z, @ Z, on S (c.f. Fig. 1.1 and Example 1.1).

— )

Fig. 1.1. The torus link of type (3,6), Tz ¢

Example 1.1 Let $% = {z,2 € C x C : |z1|*+|2|? = 1}. Let us con-
sider an action of Z, ® Z, on S® which is generated by T, and Ty, where
Tp(z1,22) = (€*™/P21, 2) and Ty(21, 22) = (21,€2™/92,). Show that this
action preserves torus link of type (p,q). This link can be described as
the following set {(21,22) € §%: 2z = ez"i(%+%),z2 = e2"t/9} | where t
is an arbitrary real number and k is an arbitrary integer.

If p is co-prime to q then T), 4 is a knot and can be parameterized by:

Ryt (e2m't/p, e27rit/q) € SS C CZ'
In this case Z, ® Zy = Z,q with a generator T = T,T,.

Subsequently, we will focus on the action of a cyclic group Z,,. We
will mainly consider the case of an action on $° with a circle of fixed
points. The new link invariants, (see Section 2), provide efficient criteria
for examining such actions.

Definition 1.2 A link is called n-periodic if there exists an action of Z,,
on §3 which preserves the link! and the set of fized points of the action

'More precisely we require an existence of an embedding of circles, realizing the
link, which is equivariant under the group action.
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is a circle disjoint from the link. If, moreover, the link is oriented then
we assume that a generator of Z, preserves the orientation of the link
or changes it globally (that is on every component).

2 Polynomial invariants of links

We will describe in this section polynomial invariants of links, crucial
in periodicity criteria. We start from the skein (Jones-Conway or Hom-
flypt) polynomial, P(v,z) € Z[v!,2*!] (ie. Pp(v,2) is a Laurent
polynomial in variables v and 2).

Definition 2.1 The skein polynomial invariant of oriented links in S°
can be characterized by the recursive relation (skein relation):

(i) v=1Pr, (v,2) —vPr_(v,2) = 2PL,(v,2), where Ly, L_ and Lo are
three oriented link diagrams, which are the same outside a small
disk in which they look as in Fig. 2.1,

and the initial condition

(ii) Pr, =1, where Ty denotes the trivial knot.

X X X
/ \ /N
L, L L,

Fig. 2.1

We need some elementary properties of the skein polynomial:

Proposition 2.2 (a) ([L-M]) z2o™D)=1 Py (v, 2) € Z[v*!, 2] where com(L)
is the number of link components of L. That is we do not use neg-
ative powers of z. Furthermore the constant term, with respect to
variable z, is non-zero.

(b) Pp(v,2)— Pr,,,,,, is divisible by (v™" — v)? ~ 2*. Here T; denotes
the trivial link of ¢ components.
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(c) Let Pp(v,2) = 2°mD)=1 Py (v, 2), then Pr(v,z)—(v"! —p)com(L)-1

is divisible by (v — v)% - 22

(d) Pp(v,z) = (v32) Pr(v,2) mod(u2 1,22+1)
for some j and k where j = (k — com(L)) mod 2. In particular
P = 6P mod(%:%},zz + 1) where § equals to 1 or —1 and L
denotes the mirror image of L.

Proof:

(a)-(c) Initial conditions and recurrence relation give immediately that
Pr(v,2) € Z[v¥!,2]. (c) holds for trivial links from the definition
(the difference is zero). To make inductive step, first notice that
Pr(v, 2) satisfies the skein relation v‘lf’L+ (v,2) —vP_(v,2) =
2% Py, (v, z) where € is equal to 0 in the case of the selfrossing of
L4 and € = 1in the mixed crossing case. We can rewrite the skein
relation so that the inductive step is almost obvious:

'v—l(pL+ _ (v—l _ v)comL+—l) _ ’U(PL_ _ (,v—l _ ’v)comL__l) —

z2e(ij0 _ (1}—1 _ ,v)comLo-l) + (,v--l _ v)comL+—25(,v—1 _ ,0)25 _ 226)

Namely the last term in the equality is always divisible by (v~1 —
v)? — 22 therefore if two other are divisible then the last one is.
We completed the proof of (c). From (c) follows that Pr(1,0) = 1,
thus the second part of (a) follows. (b) is just a weaker version of

(©)-

(d) It can be derived from the relation of Pr,(e?*"#/6,+1) and the first
homology group (modulo 3) of the 2-fold branched cyclic cover of
(83, L) [L-M, Yo-1, Ve].

O

Definition 2.3 Let L be an unoriented diagram of a link. Then the
Kauffman bracket polynomial (L) € Z[A¥!] is defined by the following
properties:

1 (0)=1
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2. (QUL)=-(A+ A7%)(L)
3. (X)) = AX) + 4710 ()

The Kauffman bracket polynomial is a v:lnmriant of the Jones polyno-
mial for oriented links. Namely, for A = ¢™% and D being an oriented
diagram of L we have

Vi(t)=(-4%™P <D > 1)

where w(D) is the planar writhe (twist or Tait number) of D equal to

the algebraic sum of signs of crossings.
Kauffman noted that V(t) = Pr(¢, vt~ %) In particular 71V, —

tVp_ =Vt - ﬁ)VLo- Proposition 2.2 gives us:

Corollary 2.4 (a) [Jo]. Fora knot K, Vk(t) € Z[t*'] and Vk(t)-1
is divisible by (t — 1)(¢3 - 1).

(b) [Yo-1]. Fora knot K, Vi(t)—8Vi(t™1) is divisible by £EL, where
6 equals to 1 or —1.

In the summer of 1985 (two weeks before discovering the “bracket”),
L. Kauffman invented another invariant of links [Ka], F,(a, 2) € Z[a*!, 2%,
generalizing the polynomial discovered at the beginning of 1985 by
Brandt, Lickorish, Millett and Ho [B-L-M, Ho]. To define the Kauffman
polynomial we first introduce the polynomial invariant of link diagrams
Ap(a, z). It is defined recursively by:

(1) Ao(a,2) =1,
(i) A (a,2) = al(a,2); A\D(a, z) = a~'A((a, 2),
~ ‘
(iii) Ap,(a,z)+ Ap_(a,2) = 2(Ay(a,2) + Ap,(a, 2)).
The Kauffman polynomial of oriented links is defined by
Fi(a,z) = a*P)Ap(a, z)

where D is any diagram of an oriented link L.
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Remark 2.5 Let F*(a,z) be the Dubrovnik variant of the Kauffman
polynomial 2. The polynomial F* satisfies initial conditions Fr =
(222 4+ 1)"~! and the recursive relation avPFp - a¥P-)Fp =
z(a“"(D")F]:“,0 - a“’(l-),“)FBm). Lickorish noted that the Dubrovnik poly-
nomial is just a variant of the Kauffman polynomial:

Fi(a,2) = (~1)@™O=0 Fy(ia, —i2), ([Li]).

Proof.
We check the formula for trivial links and then show that if it holds for
three terms of the skein relation it also holds for the fourth one.

(i) Fr,(ia,—iz) = (=1)-D(2222 _ 1yn-1 = Fz (g, 2).

(i) (ia)*(PH) Fp, (ia, —iz)+(ia)*P-) Fp_(ia, —iz) = (—iz)((ia)*Do) Fp +
(ia)*(P=) Fp_ ). This reduces to a“’(D’f)Fl*)+ ~a¥(D-)FE = z(aw(D")Fl*)D-i-
(—1)com(Do)—com(Dos) qu(Deo) F* D which gives the skein relation
for Fj(a,2).

3 Periodic links and the Jones polynomial.

Periodicity of links is reflected in the structure of new polynomials of
links. We will describe this with details in the case of the Jones poly-
nomial (and the Kauffman bracket), mostly following [Mu-2, T-1, P-3,
Yo-1] but also proving new results. Let D be an r-periodic diagram of an
unoriented r-periodic link, that is ¢(D) = D where ¢ denote the rota-
tion of R? along the vertical axis by the angle 2 /7. In the coordinates
of R3 given by a complex number (for the first two real co-ordinates)
and a real number (for the third) one gets: ¢(z,t) = (e?"/"2,t). ¢
is a generator of the group Z, acting on R3 (and 53 = R®U o). In
particular ¢" = Id. See Fig. 3.1.

2Kauffman described the polynomial F* on a postcard to Lickorish sent from
Dubrovnik in September ’85. :



Fig. 3.1

By the positive solution to the Smith Conjecture [Sm, Thur], every 1-
periodic link has an r-periodic diagram, thus we can restrict ourselves
to considerations of these, easy to grasp, diagrams. With the help of
elementary group theory we have the following fundamental lemma.

Lemma 3.1 Let D be an unoriented r-periodic link diagram, r prime.
Then the Kauffman bracket polynomial satisfies the following “periodic”
formula:

D =A'"D _ +A7D mod r
sym(/\/) sym( X)) sym() ()
where D , D _ and D denote three @-invariant dia-
am(O) s¥m(X) sym() () 4

grams of links which are the same outside of the Z,-orbit of a neighbor-
hood of a fized single crossing, c (i.e. ¢, p(c),..., " ~*(c)) at which they

differ by replacing X by >< or) (, respectively.

Proof: Let us build the binary computational resolving tree of D us-
ing the Kauffman bracket skein relation for every crossing of the orbit
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(under Z, action), ¢, ¢(c),..., 9" "1(c). The tree has therefore 2" leaves
and a diagram at each leaf contributes some value (polynomial) to the
Kauffman bracket polynomial of D = D , see Fig. 3.2. The

syM(\)

idea of the proof is that only extreme leaves, D _ and D ,
sym () sym() ()
contribute to < D > mod r.

Dsym(X)

o(c) m¢ (©

o /\ /\ b

Fig. 3.2

We need now some, elementary, group theory:

Let a finite group G acts on a set X, that is every element g € G “moves”
X (9: X — X) and hg(z) = h(g(z)) for any z € X and h,g € G. Fur-
thermore we require that the identity element of G is not moving X
(e(z) = = where e is the identity element of G). The orbit of an element
Zo in X is the set of all elements of X which can be obtained from z by
acting on it by G (O, = {x € X | there is g such that g(z¢) = z}).
The standard, but important, fact of elementary group theory is that
the number of elements in an orbit divides the order (number of ele-
ments) of the group. In particular if the group is equal to Z,, r prime,
then orbits of Z, action can have one element (such orbits are called
fixed points) or r elements.

After this long group theory digression, we go back to our leaf diagrams
of the binary computational resolving tree of D. We claim that Z, acts
on the leaf diagrams and the only fixed points of the action are extreme

leaves D _ and D . All other orbits have r elements and
sym(<) sym() ()
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they would cancel their contribution to < D > modulo . To see these
we introduce an adequate notation: Let ¢; = ¢(c)and Dsg’ = 5r1, where
8; =2 or) (, denote the diagram of a link obtained from D by smooth-
ing the orbit of crossings, ¢y, ...cr—1 according to indices s;. D
are leaves of our binary computational resolving tree of D, and the Z,
action can be fully described by the action on the indices g, ..., $r—1.
Namely ¢(8o,..-8r—2, $r—1) = (8r1,80, -+, Sr—2). From this description
it is clear that the only fixed point sequences are (<,...,.)<,X) and
()(yy) (;) () and that diagrams from the given orbit represent equiv-
alent (ambient isotopic) links, they just differ by the rotation of B3,

From this follows that the contribution to < D > of an r element orbit
is equal to 0 modulo 7. Thus all leaves, but the fixed points, do not
contribute to < D > modulo r. The contribution of the fixed point
leaves is expressed in the formula of Lemma 3.1. O

Corollary 3.2 Let D° be an oriented r-periodic link diagram, v prime,
and D the same diagram, orientation forgotten.

(i ) Then the Kauffman bracket polynomial satisfies the following

formula:
A" <D >-A""<D >=
sym(/\/) sym(><)
2r _ p—2r
(A7 -A7")< Dsym(,"() > mod (1)
(i ) Let fpo(A) = (—A%)~¥(P°) < D > then
—_ A, —4rp = 21 _ A-2r ° '
A" fps o +AVfpe =(A"-AT")fp ., mod(r)
Here D° =D°. De =D and D° =
sym(+ ? sym(— sym(0
vm() sym( X)) () sym(X) (@
D o) denote three p-invariant oriented diagrams of links which
sym

are the same outside of the Z,-orbit of a fized single crossing and
which at a neighborhood of the crossing differ by replacing X by

R org;



(iii )

-7 . — Vo — (47/2 _ 4-7/2 o
VD iy ~ VYD) = (8 T WDs, ) ™od (7)
Proof:
(i ) Use Lemma 3.1 for D _ and D and reduce the
D sym(\) sym(><)
term .
sym() ()
(ii ) (i) can be written as:
- 3“’(ng ) Ar ° _(_ SW(DSm_) - ° — 2r _
( A) v (+)OA stym(+) ( A) YA fDaym(—)——(A
A””)(—A3)w(DSﬂ'"(°))ngym(o) mod () and using the equality w(D;’ym(+)) =

w(Djym(_)) +2r = w(D‘s’ym(o)) + r, one gets the congruence (ii).

(iil) This follows from (ii) by putting Vi(¢) = fr(4), for t = A4,

O

Lemma 3.1 and Corollary 3.2 have several nice applications:
to symmetric knots, periodic 3-manifolds and to analysis of connections
between skein modules of the base and covering space in a covering (see
Section 7). Below are two elementary but illustrative applications to
periodic links.

Theorem 3.3 ([T-1, P-3]) (i) If L is an r-periodic oriented link (r
is a prime), then its Jones polynomial satisfies the relation

Vi(t) = Vi(t™!) mod (r,t" - 1).

(ii) Let us consider a polynomial Vy,(t) = (t2)~3*DVy(t) which is an
invariant of an ambient isotopy of unoriented links. lk(L) denotes
here the global linking number of L, any orientation of L gives the
same Vi,(t).

If L is an r-periodic unoriented link (r is an odd prime), then
Vi(t) = Vi(t™) mod(r, " —1).
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Theorem 3.4 Let K be an r-periodic knot with linking number k with
the fized point set azis. Then

(t(k+1)/2 . t(_k-l)/2) - (t(k—-l)/2 _ t(l—k)/2)

tr(k—l)/2VK(t) = 5

mod (r,t"—1).

In particular:

(a) If k is odd then Vk(t) = Lty =t/ - 4092 4 -
t3=B/2 4 {1-B/2 mod (r, " - 1),

(b) Ifk is even then t"/*Vi (t) = %ﬁ)k—/zﬂ—l)k/zm;ﬁ mod (7,1~
1.

Proof:

3.3(i) From Corollary 3.2(iii) follows that Vs, sy = VD2, _, 10d (ryt"—
1). On the other hand we can change D° to its mirror image D°
by a sequence of changes of type D;’ym( e D;’ym(_). Therefore
Vpe(t) = Vpo(t) mod (r,t" — 1). Theorem 3.3(i) follows because

Vpo(t) = Vpo(t~1).

3.3(ii) The link L may be oriented so that ¢ (a generator of the Z,
action) preserves the orientation of L (first we orient L, = L/Z,
the quotient of L under the group action and then we lift the
orientation up to L). For such an oriented L we get from (i):

Vi(t) = V(1) mod (r,t" — 1)
and thus
(t3)2 LV (1) = (17) LV (t7!) mod (r,t" — 1)
and consequently
Vi(t) = t3* BV, (471) mod (r, ¢ — 1).

For r > 2, lk(L) = 0 mod r so Theorem 3.3(ii) follows.
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3.4 We proceed as in the proof of 3.3(i) except that instead of aiming
at mirror image we aim the appropriate torus knot. To see this
it is convenient to think of our link L being in a solid torus and
simplify its quotient L, = L/Z, in the solid torus (see Section 7).
The formula for the Jones polynomial of the torus knot, T, x), was
found by Jones [Jo]:

t(k+l)/2 _ t(—k—l)/2 _ tT(t(k—l)/2 _ t(l—k)/z
t—t-1 )
In Section 7, we discuss elementary proof of the formula and give a

short proof of the generalization of the Jones formula to the solid
torus (modulo r) using Lemma 3.1.

VT(r,k)(t) - tr(k—l)/2

O

Theorem 3.3 is strong enough to allow Traczyk [T-1] to complete
periodicity tables for knots up to 10 crossings (for » > 3), that is, to
decide whether the knot 10,q; is 7-periodic.

Example 3.5 The knot 10101 (Fig.3.3) is not r-periodic for r > 5.

(—~>
SN

Fig. 3.3
The Jones polynomial for 10101 is equal to
Vioy, (1) = t2 =383+ 7t* —10¢° + 1415 — 14" + 1318 — 1167 + 7410 — 441 4412,

Thus, for v > 5 it follows that Vig,,,(t) # Vio,, (™! mod (r,t" — 1). In
particular, it follows that Vyp,,,(t) = t7! + 2 + 3t2 mod (5,t° — 1) and
also Vyg,g, (t) = 3t73 + 5t72 + 6t + 4t% + 4¢3 mod (7,17 — 1).
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Remark 3.6 Theorem 3.3 and 3.4 do not work for knots and r = 3. It
is the case because by Corollary 2.4, for any knot, Vk(t) = 1 mod (t3 -
1). One should add that the classical Murasugi criterion using the
Alezander polynomial, Theorem 5.3 ([Mu-1]) is working for r = 3, and
Traczyk developed the method employing the skein polynomial, Theorem

4.10(a) ([T-2, T-3)).
Yokota proved in [Yo-1] the following criterion for periodic knots

which generalize Theorem 3.3 and is independent of Theorem 3.4.

Theorem 3.7 Let K be an r-periodic knot (r is an odd prime) with
linking number k with the fized point set azis. Then

(a) If k is odd then Vi (t) = Vg(t™1) mod (r,t* — 1),

(b) If k is even then Vi (t) = t"Vg(t~1) mod (r,ti;_—‘ll).

We can extend Theorems 3.3, 3.4 and 3.7 (or rather show its limits)
by considering the following operations on link diagrams:

Definition 3.8 (i) A t; move is an elementary operation on an ori-
ented link diagram L resulting in the diagram ty(L) as shown on

Fig. 3.4. :
L X ty move _../\//\/_ \ tk(L)

k positive half twists
Fig. 3.4

(ii) A 1, move, k even, is an elementary operation on an oriented link
diagram L resulting in the diagram t;(L) as shown on Fig. 3.5.

N~ _

k half twists (k even)

Fig. 3.5

(i1i) The local change in a link diagram which replaces parallel lines by
k positive half-twists is called a k-move; see Fig.3.6.
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\/:\/ k move -_/\/KX

k positive half twists
Fig. 3.6

Lemma 3.9 Let Ly be an unoriented link obtained from Lo by a k
4k k
move. Then < Ly >= A* < Lo > +A-3+24 (1

Proof: 1t follows by an induction on k. O

Corollary 3.10 If L and L' are oriented ts,,t2, equivalent links (that
is L and L' differ by a sequence of ta,,t2,-moves) then

VL(t) = 7 VL(t) mod (r, t:'T—11), for some integer j.

Proof: For k = 2r we have from Lemma 3.9 < Ly, >= A¥ < Lo >
+ATSH2(AY - DNATHL < L, >, Thus < Ly >= AY < Lo >

mod (A% - 1)’}4L":_|_'1—1 and Corollary 3.10 easily follows. O

4 Periodic links and the generalized Jones poly-
nomials.

We show here how periodicity of links is reflected in regularities of skein
and Kauffman polynomials. We explore the same ideas which were
fundamental in Section 3, especially we use variations of Lemma 3.1.

Let R be a subring of the ring Z[v¥!, 2F!] generated by v¥!, z and
v = Tet us note that z is not invertible in R.

Lemma 4.1 For any link L its skein polynomial Pr(v, ) is in the ring

R.

Proof: For a trivial link T,, with n components we have Pr, (v, z2) =
(”—IT_”)""'1 € R. Further, if Py (v,2z) (respectively Pr_(v,z)) and
Pry(v,z) are in R then Pr_(v,z) (respectively Pr, (v,2z)) is in R as
well. This observation enables a standard induction to conclude 4.1.
Now we can formulate our criterion for r-periodic links. It has an espe-
cially simple form for a prime period (see Section 5 for a more general
statement). O
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Theorem 4.2 Let L be an r-periodic oriented link and assume that r
is a prime number. Then the skein polynomial Pr(v,z) satisfies the
relation

Pr(v,2) = Pr(v7!,~2) mod (r,2")

where (r,2") is an ideal in R generated by r and z".
In order to apply Theorem 4.2 effectively, we need the following fact.

Lemma 4.3 Suppose that w(v,2) € R is written in the form w(v,2) =
Y ui(v)z', where ui(v) € Z[v¥). Then w(v,2) € (r,2") if and only if
for any i < v the coefficient u;(v) is in the ideal (r,(v™! — )" ).

Proof: < Suppose u;(v) € (r,(v™'=v)""*) for i < r. Now u;(v)z* =
(v™1 - v)""H2ip(v) = (’Flz—"”)”iz’p('v) mod r, where p(v) € Z[vtl].
Thus u;(v)2* € (r,2") and finally w(v, 2) € (r,2").
= Suppose that w(v, 2) € (r,2"), that is, w(v, z) = 2"w(v, z)mod r for
some W(v,z) € R. The element W(v, z) can be uniquely written as a

sum W(v, z) = 2(v, 2) + 50 L572)7T;(v), where (v, 2) € Z[vF?,7]
and %;(v) € Z(v¥F!). Thus, for i < r (j = r — i) we have u;(v) =
(v™! —v)~G,_;(v) mod r and finally u;(v) € (r,(v"1—v)""*) fori < r.
a

Example 4.4 Let us consider the knot 113ss, in Perko’s notation [Per],
see Fig.4.1. The skein polynomial Pi1,4,(v, 2) is equal to

(3=5v"2 440 =07+ (4— 100724507422 + (1607 40 ™*) 2% —v 7225,

Let us consider the polynomial Py, (v,2) — Pr1,, (v, —2). The coef-
ficient uo(v) for this polynomial is equal to 5(—v=2+v?) +4(v*—v*) —
v~84+v% and thus for r > 7 we have uo(v) & (v, (v"1—0v)") = (r,v™"=0").
Now, from Lemma 4.8 we have Piyq(v,2) — Prig(v1,—2) € (7,27).
Therefore from Theorem 4.2 it follows that the knot 1l3sg is not r-
periodic for r > 7.
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Fig. 4.1

Theorem 3.3 is a corollary of Theorem 4.2 as Vi(t) = Pr(t,t1/2 —
t=1/2),

The periodicity criterion from Theorem 3.3 is weaker than the one
from Theorem 4.2: the knot 1138 from Example 4.4 has a symmetric
Jones polynomial

Vitge(t) = Vllsss(t_l) =t 22—t 4+1-t+ t27

and therefore Theorem 3.3 can not be applied in this case. Theorem 3.4
is also not sufficient in this case (linking number 5 cannot be excluded

5/2 4 4—5/2
as Vige(t) = zwi_}_:jﬁi = Vg, mod (" - 1)).

Now let us consider the Kauffman polynomial Fy(a,z). Let R’ be
a subring of of Z[aF!, 2¥!] generated by a¥!, 2 and “—“’:—_1 It is easy to
check that Kauffman polynomials of links are in R’ (compare Lemma
4.3).

Theorem 4.5 Let L be an r-periodic oriented link and let r be a prime
number. Then the Kauffman polynomial Fy, satisfies the following rela-
tion

Fr(a,z) = Fr(a™', 2) mod (r,2"),

where (r,z") is the ideal in R’ generated by r and 2".

In order to apply Theorem 4.5 we will use the appropriate version
of Lemma 4.3.
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Lemma 4.6 Suppose that w(a, z) € R' is written in the form w(a,z) =
i vi(a)?', where vi(a) € Z[aT]. Then w(a,z) € (r,2") if and only if
for any i < r the coefficient v;(a) is in the ideal (r,(a+ a1)""1).

Example 4.7 Let us consider the knot 1043 from Rolfsen’s book [Ro],
see Fig.4.2. This knot has a symmetric skein polynomial, that is Py, (v, 2) =
Piog (v, —2). Consequently, Theorem 4.2 can not be applied to ezam-
ine the periodicity of this knot. So let us apply the Kauffman polynomial
to show that the knot 104 is not r-periodic for r > 7. It can be calcu-
lated ([D-T, P-1]) that Fyo,(a,2) — Fio,(67%,2) = 2(a® + 3a® + 20 -
2071 = 3a73 —a75) 4+ 22(...).

Now let us apply Lemma 4.6 for i = 1 and let us note that for
r > 7 we have a® + 3a® + 2a — 2a“1 -3a32-a5¢(r(a + a“l)"'l)
(Note that for r = 5 we have a® + 3a® + 2a — 2a™! — 3a=3 — a~% =
a(at+a ) -aata ) =(a-a)(at+a ") € (5 (at 0‘1)4))

10 44

Fig. 4.2

We can reformulate Theorem 4.5 in terms of the Dubrovnik version
of the Kauffman polynomial:

Theorem 4.8 Let L be an r-periodic oriented link and let r be a przme
number. Then the Dubrovnik polynomial F} € R" = Z[a*?, 2=0— azal 2 C
Z[a*!, 2%1] satisfies the following relation

Fz(a’ Z) = Ff(a-l, _2) mod (1", zr),

where (r,2") is the ideal in R" generated by v and 2".
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In the last part of this section we will show how to strengthen The-
orems 4.2 and 4.5.

One can also modify our method so it applies to symmetric links
with one fixed point component. We consider more general setting in
Section 7 (symmetric links in the solid torus).

Proof of Theorems 4.3 and 4.5 is very similar to that of Theorem
3.3. Instead of Lemma 3.1 we use the following main lemma (which
is of independent interest), proof of which is again following the same
principle (Z, acting on the leaves of a computational tree) as the proof
of Lemma 3.1.

Lemma 4.9 (i) Let L and L denote three

, L
sym(X) sym(X) sym(X)
p-invariant diagrams of links which are the same outside of the
Z.-orbit of a fized single crossing and which at the crossing differ

by replacing /\'I by X or 3, respectively. ¢, as before denotes
the generation of the Z, action. Then

a" P P (ay2)+a™"Pp (a,z)=2"PL (a,z) mod r.
sym(_/ ) sym(/ ) sym(, 4 )

(it) Consider four r-periodic unoriented diagrams L , L L
31!""'(X) sym(><) sym~)
and L 00" Than the Kauffman polynomial of unoriented dia-

sym

grams diagrams, Ar(e, z), satisfies:

) mod r.

A +A =2 (A _ +A
sym(X) sym(><) sym() sym() ()

Traczyk [T-3] and Yokota [Yo-2] substantially generalized Theorems
4.2 and 4.5. Lemma 4.9 is still crucial in their proofs, but detailed study
of the skein polynomial of the torus knots is also needed. I simplified
their proof by using Jaeger composition product [P-5].

Theorem 4.10 Let K be an r-periodic knot (r an odd prime number)
with linking number with the rotation azis equal to k and Py (v,z) =
o P2iz? then:
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(a) (Traczyk) If Po(K) = T agiv® then ag; = agips mod 1 ezcept pos-
sibly when 2i + 1 = £k mod r.

(b) (Yokota) Pyi(K) = by Po(K) mod 7 for 2i < r — 1, where numbers
by; depends only on r and k mod .

One can also use the Jaeger’s skein state model for Kauffman poly-
nomial to give periodicity criteria yielded by the Kauffman polynomial.
I have never written details of the above idea (from June 1992), and

Yokota proved independently criteria yielded by the Kauffman polyno-
mial [Yo-3, Yo-4].

Theorem 4.11 ((Yokota)) Let K be an r-periodic knot (r an odd
prime number) with the linking number with the rotation azis equal to
k, and let (“":_1 + 1)F*(a,2) = Ym0 7' (Fo(a,2) = Po(v,2) for
v=a"1), then for 2i < r —3:
(i) F2i(K) = bgi Fo(K) mod r,
Fyi41 =0 mod r except i = 0 where Fy € Z[a*"] mod r

(ii) Let P*(a,z) = P(v,z) for a = v~ and Jk(a,z) = (a-.a—l +

1)F(a, z) — (2=272) P (a, 2) and let J(a,2) = Yimg Jiz'. Then
for 0 < i < r—1 Ji(a,k) = 0 mod r except for i = 1 when
Ji(a; K) € Z[a*"] mod r

Define J; (a; K) as a polynomial obtained by gathering all terms
in Ji(a; K') which have degree £l mod r. Then:

For each l and for 0 <2i<r -3

Jrt2ig(a; K) = b xJyk(a, K) mod r

Jrt2i41(a; K) = 0 mod v ezcept J,41(a; K) which modulo T is in
Z.[a%7).

5 ri-periodic links and Vassiliev invariants.

The criteria of r-periodicity, which we have discussed before, can be
partially extended to the case of r?-periodic links. We assume that 7 is
a prime number and the fixed point set of the action of Z,¢ is a circle
disjoint from the link in question (trivial knot by the Smith Conjecture)
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We will not repeat here all criteria where r is generalized to r?
[P-3], but instead we will list one pretty general criterion using Vassiliev-
Gusarov invariants (compare [P-4]).

Definition 5.1 Let K*9 denote the set of singular oriented knots in S>
where we allow only immersion of S with, possibly, double points, up
to ambient isotopy. Let ZK*9 denote the free abelian group generated
by elements of K*9 (i.e. formal linear combinations of singular links).
In the groun ZK®9 we consider resolving singularity relations ~: K., =

/ N

K K, K

Fig. 5.1

ZK%9| ~ is clearly Z-isomorphic to ZK. Let Cy, be a subgroup
of ZK*9| ~= ZK generated by immersed knots with m double points.
Let A be any abelian group. The m’th Vassiliev-Gusarov invariant is a
homomorphism f : ZK — A such that f(Cpmy1) = 0.

Theorem 5.2 (i) Let K be an oriented r?-periodic knot and f a
Vassiliev-Gusarov invariant of degree m < ri. Then f(K) =
f(K) mod r, where K is the mirror image of K.

(ii) Let K be an oriented ri-periodic knot with the linking number
k with the fixed point set axis, and let f be a Vassiliev-Gusarov
invariant of degree m < 19. Then f(K) = f(T(rq) where T(rq )
is the torus knot of type (9, k).

Proof of Theorem 5.2 is similar to the previous one and again bases
on the fundamental observation that f(Kgym(+))—f(Ksym(=)) = 0 mod r.

Our method allows also to prove quickly the classical Murasugi con-
gruence for 79 periodic knot, using the Alexander polynomial.
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Theorem 5.3 Show that by applying our method to Alezander polyno-
mial we obtain the following version of a theorem of Murasugs:

AL(t) = AL+t + 2 + .+ 27! mod ¢

where L, is the quotient of an ri-periodic link L and X is the linking
number of L and z azis.

Proof: Sketch.
Construct the binary computational tree of the Alexander polynomial

of L, and the associated binary tree for Alexander polynomial L mod-

ulo r. For the Alexander polynomial of L, we use the skein relation
Arp.,(t) = Ar,_(t) = (112 —=t71/2)Ap, (t) and for the 79 periodic link
L the congruence (related to Lemma 4.8(i)):

ALy ) = DL () = (2 =7 %)AL(t) mod 7.

sym(0)

Finally we use the fact that Alexander polynomial of a split link is zero,
and that Agrepy = (1+t+ 82+ ...+ *71)* I mod r. O

Remark 5.4 If r9 = 2 then the formula from the previous ezercise
reduces to:

Ap(t)= A2, )1+t +2+ ...+ ) mod 2.

Similar formula can be proven, for other Z,-symmetry of links. Namely:
a knot (or an oriented link) in R3 is called strongly plus amphicheiral if
it has a realization in R® which is preserved by a (changing orientation)
central symmetry ((z,y,2) — (~2,—y,—2)) ; “plus” means that the
involution is preserving orientation of the link. One can show, using
“skein” considerations, as in the case of Theorem 5.3, that if L is a
strongly + amphicheiral link, then modulo 2 the polynomial AL(t) is a
square of another polynomial.

Hartley and Kawauchi [H-K] proved that AL(t) is a square in gen-
eral. For ezample if L(2m + 1) is a Turks head link - the closure of the
3-string braid (01051)*™ 1, then its Alezander polynomial satisfies:

m+1 _ ,—m—1
Ap(amtr) = 2 2 )?
a—at
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where a + a~! =1 —t —t! and the Alezander polynomial is described
up to an invertible element in Z[t¥]. This formula follows immediately
by considering the Burau representation of the 3-string braid group [Bi,

Buj.

6 Lissajous knots and billiard knots.

A Lissajous knot K is a knot in R3 given by the parametric equations
z = cos(ngt + ¢5)

y = cos(nyt + ¢y)
z = cos(n,t + ¢;)

for integers 7, 7y, 7z- A Lissajous linkis a collection of disjoint Lissajous
knots.

The fundamental question was asked in [BHJS]: which knots are

Lissajous?
It was shown in [BHJS] and [J-P] that a Lissajous knot is a Z2-symmetric
knot (2-periodic with a linking number with the axis equal to +1 or
strongly plus amphicheiral) so a "random” knot is not Lissajous (for
example a nontrivial torus knot is not Lissajous). Lamm constructed
infinite family of different Lissajous knots [La].

One defines a billiard knot (or racquetball knot) as the trajectory
inside a cube of a ball which leaves a wall at rational angles with respect
to the natural frame, and travels in a straight line except for reflecting
perfectly off the walls; generically it will miss the corners and edges, and
will form a knot. We show in [J-P] that these knots are precisely the
same as the Lissajous knots. We define general billiard knots, e.g. taking
another polyhedron instead of the ball, considering a non-Euclidean
metric, or considering the trajectory of a ball in the configuration space
of a flat billiard. We will illustrate these by various examples. For
instance, the trefoil knot is not a Lissajous knot but we can easily realize
it as a billiard knot in a room with a regular triangular floor.
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The left handed trefoil knot in a room
with a regular triangular floor ("Odin’s triangle")

Fig. 6.1

Theorem 6.1 Lissajous knots and billiard knots in a cube are the same
up to ambient isotopy.

A billiard knot (or link), is a simple closed trajectory (trajectories) of
a ball in a 3-dimensional billiard table. The simplest billiards to con-
sider would be polytope (finite convex polyhedra in R3). But even for
Platonian bodies we know nothing of the knots they support except
in the case of the cube. It seems that polytopes which are the prod-
ucts of polygons and the interval ([-1,1]) (i.e. polygonal prisms) are
more accessible. This is the case because diagrams of knots are billiard
trajectories in 2-dimensional tables. We will list some examples below
(compare [Ta]).

Example 6.2 (i) The trivial knot and the trefoil knot are the trajec-
tories of a ball in a room (prism) with an acute triangular floor.
In Fig.6.2(a), the diagram of the trivial knot is an inscribed trian-
gle A1 whose vertices are the feet of the triangle’s altitudes. If we
move the first vertez of Ay slightly, each of its edges splits into two
and we get the diagram of the trefoil. We should be careful with
the altitude of the trajectory: We start from level 1 at the vertex
close to the vertex of A1 and opposite to the shortest edge of Aj.
Then we choose the vertical parameter so that the trajectory has
3 mazima and three minima (Fig.6.2(b)).
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(b)
The trefoil knot as trajectory of a ball in
a room whose floor is an acute triangle.

Fig. 6.2

(ii) The trivial knot is a trajectory of a ball in a room with an right
triangular floor, Fig.6.3.

The trivial knot can be realized as a trajectory of a ball in
any room with a right triangular floor.

Fig. 6.8

(iii) If the floor of a room is a general obtuse triangle, it is an open
problem whether any knot can be realized as the trajectory of a
ball in it. However we have general theorem that periodic points
are dense (in the phase space of the billiard flow) in a rational
polygon (that is, all polygonal angles are rational with respect to
n) [BGKT].
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Example 6.2(i) is of interest because it was shown in [BHJS] that the
trefoil knot is not a Lissajous knot and thus it is not a trajectory of
a ball in a room with a rectangular floor. More generally we show in
Section 3 that no nontrivial torus knot is a Lissajous knot. However, we
can construct infinitely many torus knots in prisms and in the cylinder.

Example 6.3 (i) Any torus knot (or link) of type (n,2) can be re-
alized as a trajectory of a ball in a room whose floor is a regular
n-gon (n > 3). Fig.6.1 shows the (3,2) torus knot (trefoil) in the
reqular triangular prism; Fig.6.4(a) depicts the (4,2) torus link in
the cube; and Fig.6.4(b)(c) illustrates the (5,2) torus knot in a

room with a regular pentagonal floor.

%
NN

The Hopf link in a cube

©)

The torus knot of type (5,2) as a trajectory of a ball in a room with a regular pentagonal floor.
Fig. 6.4

(ii) The (4,3) torus knot is a trajectory of a ball in a room with the
regular octagonal floor; Fig.6.5(a).
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(ai

1

The torus knot of type (4,3) as a trajectory of a ball The torus knot of type (8,3) as a trajectory of a ball in

in a room with a regular octagonal floor. a room with a regular octagonal floor.

Fig. 6.5

(iii) Figures 6.5(b) and 6.6 illustrate how to construct a torus knot (or
link) of type (n,3) in a room with a regular n-gonal floor forn > 7.

(iv) Any torus knot (or link) of type (n,k), where n > 2k + 1, can be
realized as a trajectory of a ball in a room with a regular n-gonal
floor. The pattern generalizes that of Figures 6.4(b), 6.5(b) and
6.6. Edges of the diagram go from the center of the i** edge to the
center of the (i + k)" edge of the n-gon. The ball bounces from
walls at altitude 0 and its trajectory has n mazima and n minima.
The whole knot (or link) is n-periodic.



The torus knot of the type (7,3) realized as a trajectory of a ball in a room
with a regular heptagonal floor.

Fig. 6.6

Example 6.4 Let D be a closed billiard trajectory on a 2-dimensional
polygonal table. If D is composed of an odd number of segments, then we
can always find the “double cover” closed trajectory D?) in the neigh-
borhood of D (each segment will be replaced by two parallel segments
on the opposite sides of the initial segment). This idea can be used to
construct, for a given billiard knot K in a polygonal prism (the projec-
tion D of K having an odd number of segments), a 2-cable K® of K
as a billiard trajectory (with projection D®). This idea is illustrated in
Fig.6.1 and 6.4(c) (the (5,2) torus knot as a 2-cable of a trivial one).
Starting from Ezample 2.3(iv) we can construct a 2-cable of a torus knot
of the type (n,k) in a regular n-gonal prism, for n odd and n > 2k + 1.

It follows from [BHJS] that 3-braid alternating knots of the form
(0105 1)% are not Lissajous knots as they have a non-zero Arf invariant
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(Corollary 6.12). For k = 1 we have the figure eight knot and for k = 2
the 8;3 knot [Ro].

Example 6.5 (i) The Listing knot (figure eight knot) can be realized
as a trajectory of a ball in a room with a regular octagonal floor,
Fig. 6.7.

(i1) Fig.6.8 describes the knot 8,5 as a trajectory of a ball in a room
with a regular octagonal floor. This pattern can be extended to
obtain the knot (or link) which is the closure of the three braid
(0105 1) in a regular 4k-gonal prism (k > 1).

(a) View from top

(b) View from side

Graphics generated by M. Veve

The Listing (figure eight) knot as a trajectory of a ball in a room with a regular octagonal floor.

Fig. 6.7
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The knot 8 18 [Ro), realized as a trajectory of a ball in

aroom with a regular octagonal floor.

Fig. 6.8

In the example below we show that the cylinder D? x [—1, 1] support
an infinite number of different knot types (in the case of a cube it was
shown in [La]).

Example 6.6 (i) Any torus knot (or link) of type (n,k), where n >
2k + 1, can be realized as a trajectory of a ball in the cylinder;
compare Fig.6.4(b), Fig.6.5(b) and Fig.6.6.

(ii) Every knot (or link) which is the closure of the three braid (0,05 )%*
can be realized as the trajectory of a ball in the cylinder. See Fig.
6.7(b) for the case of k = 1 (Listing knot) and Fig. 6.8 for the
case of k = 2 and the general pattern.

Any type of knot can be obtained as a trajectory of a ball in some
polyhedral billiard (possibly very complicated). To see this, consider a
polygonal knot in R and place “mirrors” (walls) at any vertex, in such
a way that the polygon is a “light ray” (ball) trajectory.

Conjecture 6.7
Any knot type can be realized as the trajectory of a ball in a polytope.
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Conjecture 6.8
Any polytope supports an infinite number of different knot types.

Problem 6.9

1. Is there a convez polyhedral billiard in which any knot type can be
realized as the trajectory of a ball?

2. Can any knot type be realized as the trajectory of a ball in a room
with a regular polygonal floor?

3. Which knot types can be realized as trajectories of a ball in a cylin-
der (D* x [-1,1])?

The partial answer to 6.9(3.) was given in [J-P] and [L-O]. In particular
Lamm and Obermeyer have shown that not all knots are knots in a
cylinder (e.g. 52 and 8¢ are not cylinder knots). The new interesting
feature of [L-O] is the use of ribbon condition.

Below we list some information on Lissajous knots (or equivalently
billiard knots in a cube).

Theorem 6.10 ([BHJS]) An even Lissajous knot is 2-periodic and an
odd Lissajous knot is strongly + amphicheiral. A Lissajous knot is called
odd if all, 1z, n, and n, are odd. Otherwise it is called an even Lissajous
knot.

Theorem 6.11 ([J-P]) In the even case the linking number of the azis
of the Z,-action with the knot is equal to *1.

Corollary 6.12 (i) ([BHJS].) The Arf invariant of the Lissajous
knot is 0.

(i1) ([J-P]) A nontrivial torus knot is not a Lissajous knot.

(iit) ([J-P]) For n, = 2 a Lissajous knot is a two bridge knot and its
Alezander polynomial is congruent to 1 modulo 2.
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Theorem 6.13 ([La]) Let 7,7, > 1 be relatively prime integers and
K the Lissajous knot with n, = 291y — 0y — 1y and ¢, = 21’,;7%1#,
¢y = 21%; ¢z =0.

Then the Lissajous diagram of the projection on the z — y plane is
alternating. Above knots form an infinite family of different Lissajous
knots.

Motivated by the case of 2-periodic knots we propose

Conjecture 6.14
Turks head knots, (e.g. the closure of the 3-string braids (ay0;")*+1),
are not Lissajous. Observe that they are strongly + amphicheiral.

We do not think, as the above conjecture shows, that the converse
to Theorem 6.11 holds. However for 2-periodic knots it may hold (the
method sketched in Section 0.4 of [BHJS] may work).

Problem 6.15
Let K be a Zy-periodic knot, such that the linking number of the axis of
the Zy-action with K is equal to £1. Is K an even Lissajous knot?

The first prime knots (in the knot tables [Ro]) which may or may not
be Lissajous are 83, 8¢ (75 is constructed in [Lal).

7 Applications and Speculations

A lot can be said about the structure of a manifold by studying its sym-
metries. The existence of Z, action on a homology sphere is reflected in
the Reshetikhin-Turaev-Witten invariants. In our description we follow
[K-P]. Let M be a closed connected oriented 3-manifold represented as
a surgery on a framed link L C $3. Let » > 3, and set the variable A
used in the Kauffman skein relation to be a primitive root of unity of
order 2r. In particular, A?" = 1. Recall that the invariant Z,(M) is
given by:

7,(M) = k=272 B[L(Q, )] (2)
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In L(Q) each component of L is decorated by an element €2 from the
Kauffman bracket skein module of a solid torus (see Proposition 7.3):

[(r—3)/2]
Q= Z [ei)e
1=0
Elements e; satisfy the recursive relation:

€41 = %€ — €,

where 2 can be represented by a longitude of the torus, and eg = 1,€; =
z. The value of the Kauffman bracket skein module of the skein element
e;, when the solid torus is embedded in $2 in a standard way, is given
by [ei] = (—1)"42—:—;—:%. [e;] is the version of the Kauffman bracket,
normalized in such a way that [f] = 1 and [L] = (-A? — A7%Z)(L). In
the equation (2), 7 is a number which satisfies n?[Q,] = 1, and &3 is a
root of unity such that

K8 = A—6—1‘('r+1)/2-

Finally, o7, denotes the signature of the linking matrix of L.

Theorem 7.1 (K-P)
Suppose that M is a homology sphere and r is an odd prime. If M is
r-periodic then

I.(M)(A) = &% - T,(M)(A™') mod (r)
for some integer j.

Theorem 7.1 holds also for Z,-homology spheres.

Skein modules can be thought as generalizations to 3-manifolds of
polynomial invariants of links in $2. Our periodicity criteria (especially
when link and its quotient under a group action are compared), can be
thought as the first step toward understanding relations between skein
modules of the base and covering space in a covering. We will consider
here the Kauffman bracket skein module and the relation between a
base and covering space in the case of the solid torus.
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Definition 7.2 ([P-2, H-P-2])

Let M be an oriented 3-manifold, Ly, the set of unoriented framed links
in M (0 allowed), R = Z[A*!, and RL;, the free R module with basis
Lgr. Let Sy be the submodule of RL¢, generated by skein expressions
Ly —ALy— AL, where the triple L+, Lo, Lo, is presented in Fig.7.1,
and LUT, + (A? + A7%)L, where Ty denotes the trivial framed knot.
We define the Kauffman bracket skein module (KBSM), S2. (M), as
the quotient Sz,00(M) = RLr /52,00

X )

oo

Fig. 7.1.

Notice that L(Y) = —A3L in 83 .o(M); we call this the framing relation.
In fact this relation can be used instead of LUT; + (A% + A~2)L relation.

Proposition 7.3 ([H-P-1, P-2])

The KBSM of a solid torus (presented as an annulus times an interval),
is an algebra generated by a longitude of the solid torus; it is Z[A*!)
algebra isomorphic to Z[A*!][z] where z corresponds to the longitude.

Let the group Z, acts on the solid torus (S! x [1/2,1]) x [0,1]) with
the generator ¢(2,t) = (e2™/72,t). where 2 represents an annulus point
and ¢ an interval point. Let p be the r-covering map determined by the
action (see Fig. 7.2). We have the “transfer” map p;! from the KBSM
of the base to the KBSM of the covering space (modulo ) due to the
generalization of Lemma 3.2. where 2 represent an annulus point and
t an interval point. To present the generalization in the most natural
setting we introduce the notion of the “moduli” equivalence of links and
associated moduli skein modules.
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Definition 7.4 (i) We say that two links in a manifold M are moduli

equivalent if there is a preserving orientation homeomorphism of
M sending one link to another.

(ii) Let G be a finite group action on M. We say that two links L and
L' in M are G moduli equivalent if L' is ambient isotopic to g(L)
for some g € G.

(i1) We define moduli KBSM (resp. G moduli KBSM) as KBSM di-
vided by moduli (resp. G moduli) relation. We would use the
notation SJ'. (M) (resp. S8§.,(M)).

Lemma 7.5 Let the group Z,, r prime, act on the oriented 3-manifold
M and let L = Lyym(cr) be a framed singular link in M which satisfies
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(L) = L where ¢ : M — M is the generator of the Z,-action, and Z,
has no fized points on L. Then in the skein module SZ,Z,go(M ) one has
the formula

=A + AL d
sym(X) syM(,-\) sym() () moeT

where L and L denote three p-invariant dia-
sym(\) sym(/\ sym() () i

grams of links which are the same outside of the Z.-orbit of a neigh-
borhood of a fized singular crossing at which they differ by replacing

Lgym(er) by X or >, or)(, respectively.
Notice that in the case of an action on the solid torus, ¢ is isotopic to
identity, thus Z, moduli KBSM is the same as KBSM.

We can use Lemma 7.5 to find the formula for a torus knot in a solid
torus modulo r, for a prime 7.

Theorem 7.6 The torus knot T\ satisfies:

— gh=1 _ A-dr(gh-1 _‘$1—k)
)

z—z-1

k+1
T(r, k) = A= (Z

where z =  + 27! is a longitude of the solid torus (an annulus times
an interval).

One can prove Theorem 7.6 by rather involved induction (compare ex-
ample 7.7), however modulo r Theorem 7.6 has very easy proof using
Lemma 7.5. Namely T, is an r cover of a knot T} and for Ty
one has T} k42 = A(z + 27Ty k41 — A?T1k in KBSM, thus Ty i =

k1, —k—1_ g4—4( k=1_ 1—k .
Alk-1) (=2 x—ﬁc“l(z z )) Now one compares binary computa-

tional trees of Ty x and T, % (modulo 7) using lemma 7.5, to get mod r
version of Theorem 7.6.

In fact for any regular r covering p : M — M, we have the transfer map
( mod r):

1 8o 00( M) —+S (M) mod r
which is a Z homomorphism and p;l(w(A)L) = w(A")p~ (L) mod .
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Example 7.7 We compute here the torus link T ) in the KBSM of a
solid torus. We will prove that for an odd k (that is when Ty = Ko
is a knot):

—k-1 _ A—S(mk—l — g1-k)

z—z1

k+1
L(2, k) = 4212 H-e

and for an even k:

x—k—l _ A_S(a:k"l _ zl—k)

z—z-1

k+1 _
L(2,k) = 42D +2476
The formulas follow inductively from the following, easy to check, re-
currence relation (k > 2), compare Fig 7.3.:

L(2,k) = A2 L2~ AT LY+ AT LA LY

W by = A%2Ly 1 —A%Laj—3—2A~4uy

where ux = z for k odd and uy = —A% — A% for k even. If we denote
xnt:__;_— n_l, Chebyshev polynomial in the variable z = z + z71,

then in odd cases the formula can be written as:

€np =

L(2,k) = A2-V (e, — A8 _y)

a b
/’— //—
— f/—y D—’ =
R R
ab
L(2,k) "

Corollary 7.8 (Traczyk)

(a) A3es is represented in the solid torus by a 2-component link being
a closure of the 3-braid A = 010201; Fig. 7.4.
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(b) In $3, the closed braid links A2"+1 form an infinite family of (sim-
ple) links whose Jones polynomial differ only by an invertible ele-
ment in Z[ti%].

(¢c) There are infinite families of links sharing the same Jones poly-
nomial (e.g. 2 +2+172)).

Lem=epate)s T 4 DTS
A
At =2~ =An -Ate

Fig. 74
Proof:

(a) Using the formula of Example we have Lo3 = A*(ez — A~%¢;).
The necessary calculation is shown in Fig. 7.4.

(b) e3 is an eigenvector of the Dehn twist on the solid torus and any
braid, v, is changed by a Dehn twist to AZy. Thus A27+1 = g6rA
in the KBSM of the solid torus.

Closed braids A2"+! form an infinite family of different 2-component
links in $2 (linking number equal to k).

(¢) Consider a connected sum of A2"+1 and A2m+1, For fixed n + m
one has an infinite family of different 3-component links with the
same Jones polynomial. For m = —n—1 one get the family of links

with the Jones polynomial of the connected sum of right handed
and left handed Hopf links (thus (¢t + t=1)3?).

(]

We do not know which e,, can be realized by framed links in a solid
torus, however we have:

Lemma 7.9 Ife, is realized by a framed link then n = 2% — 1 for some

k.
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Proof: Consider the standard embedding of a solid torus in $3. Then
< en >a=—1= (—1)""1%£L on the other hand for a link L one has
< L>_y=(=2)°™)-1 Thusn=2¥-10
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