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Preface

The basis for the modern theory of elastoplasticity was laid in the nineteenth-
century, by Tresca, St. Venant, Lévy, and Bauschinger. Further
major advances followed in the early part of this century, the chief contrib-
utors during this period being Prandtl, von Mises, and Reuss. This
early phase in the history of elastoplasticity was characterized by the in-
troduction and development of the concepts of irreversible behavior, yield
criteria, hardening and perfect plasticity, and of rate or incremental con-
stitutive equations for the plastic strain.

Greater clarity in the mathematical framework for elastoplasticity theory
came with the contributions of Prager, Drucker, and Hill, during the
period just after the Second World War. Convexity of yield surfaces, and
all its ramifications, was a central theme in this phase of the development
of the theory.

The mathematical community, meanwhile, witnessed a burst of progress
in the theory of partial differential equations and variational inequalities
from the early 1960s onwards. The timing of this set of developments was
particularly fortuitous for plasticity, given the fairly mature state of the
subject, and the realization that the natural framework for the study of
initial boundary value problems in elastoplasticity was that of variational
inequalities. This confluence of subjects emanating from mechanics and
mathematics resulted in yet further theoretical developments, the out-
standing examples being the articles by Moreau, and the monographs
by Duvaut and J.-L. Lions, and Temam. In this manner the stage was
set for comprehensive investigations of the well-posedness of problems in
elastoplasticity, while the simultaneous rapid growth in interest in numer-
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ical methods ensured that equal attention was given to issues such as the
development of solution algorithms, and their convergences.

The interaction between elastoplasticity and mathematics has spawned
among many engineering scientists an interest in gaining a better under-
standing of the modern mathematical developments in the subject. In the
same way, given the richness of plasticity in interesting and important
mathematical problems, many mathematicians, either students or mature
researchers, have developed an interest in understanding the mechanical
and engineering basis of the subject, and its connections with the mathe-
matical theory. While there are many textbooks and monographs on plas-
ticity that deal with the mechanics of the subject, they are written mainly
for a readership in the engineering sciences; there does not appear to us
to have existed an extended account of elastoplasticity which would serve
these dual needs of both engineering scientists and mathematicians. It is
our hope that this monograph will go some way towards filling that gap.

We present in this work three logically connected aspects of the theory of
elastic-plastic solids: the constitutive theory, the variational formulations of
the related initial boundary value problems, and the numerical analysis of
these problems. These three aspects determine the three parts into which
the monograph is divided.

The constitutive theory, which is the subject of Part I, begins with a
motivation grounded in physical experience, whereafter the constitutive
theory of classical elastoplastic media is developed. This theory is then cast
in a convex analytic setting, after some salient results from convex analysis
have been reviewed. The term “classical” refers in this work to that theory
of elastic-plastic material behavior which is based on the notion of convex
yield surfaces, and the normality law. Furthermore, only the small strain,
quasi-static theory is treated. Much of what is covered in Part I will be
familiar to those working on plasticity, though the greater insights offered
by exploiting the tools of convex analysis may be new to some researchers.
On the other hand, mathematicians unfamiliar with plasticity theory will
find in this first part an introduction that is self-contained and accessible.

Part II of the monograph is concerned with the variational problems in
elastoplasticity. Two major problems are identified and treated: the primal
problem, of which the displacement and internal variables are the primary
unknowns; and the dual problem, of which the main unknowns are the
generalized stresses.

Finally, Part III is devoted to a treatment of the approximation of the
variational problems presented in the previous part. We focus on finite ele-
ment approximations in space, and both semi- and fully discrete problems.
In addition to deriving error estimates for these approximations, attention
is given to the behavior of those solution algorithms that are in common
use.

Wherever possible we provide background materials of sufficient depth
to make this work as self-contained as possible. Thus, Part I contains a
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review of topics in continuum mechanics, thermodynamics, linear elastic-
ity, and convex analytic setting of elastoplasticity. In Part II we include a
treatment of those topics from functional analysis and function spaces that
are relevant to a discussion of the well-posedness of vatriational problems.
And Part III begins with an overview of the mathematics of finite elements.

In writing this work we have drawn heavily on the results of our joint col-
laboration in the past few years. We have also consulted, and made liberal
use of the works of many: we mention in particular the major contribu-
tions of G. Duvaut and J.-L. Lions, C. Johnson, J.B. Martin, H.
Matthies, and J.C. Simo. While we acknowledge this debt with grat-
itude, the responsibility for any inaccuracies or erroneous interpretations
that might exist in this work, rests with its authors.

We thank our many friends, colleagues and family members whose inter-
est, guidance, and encouragement made this work possible.

W.H.
Iowa City

B.D.R.
Cape Town



Contents

Preface vii

I Continuum Mechanics
and Elastoplasticity Theory 1

1 Preliminaries 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Some Historical Remarks . . . . . . . . . . . . . . . . . . . 5
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Continuum Mechanics and Linear Elasticity 15
2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Balance of Momentum; Stress . . . . . . . . . . . . . . . . . 23
2.3 Linearly Elastic Materials . . . . . . . . . . . . . . . . . . . 28
2.4 Isotropic Elasticity . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 A Thermodynamic Framework for Elasticity . . . . . . . . . 33
2.6 Initial–Boundary and Boundary Value Problems

for Linear Elasticity . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Thermodynamics with Internal Variables . . . . . . . . . . . 38

3 Elastoplastic Media 41
3.1 Physical Background and Motivation . . . . . . . . . . . . . 41
3.2 Three-Dimensional Elastoplastic Behavior . . . . . . . . . . 48



xii Contents

3.3 Examples of Yield Criteria . . . . . . . . . . . . . . . . . . . 61
3.4 Hardening Laws . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 The Plastic Flow Law in a Convex-Analytic Setting 71
4.1 Some Results from Convex Analysis . . . . . . . . . . . . . 72
4.2 Basic Plastic Flow Relations of Elastoplasticity . . . . . . . 83

II The Variational Problems of Elastoplasticity 95

5 Results from Functional Analysis and Function Spaces 97
5.1 Results from Functional Analysis . . . . . . . . . . . . . . . 98
5.2 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 The Spaces Cm(Ω), Cm(Ω), and Lp(Ω) . . . . . . . 108
5.2.2 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . 112
5.2.3 Spaces of Vector-Valued Functions . . . . . . . . . . 120

6 Variational Equations and Inequalities 125
6.1 Variational Formulation

of Elliptic Boundary Value Problems . . . . . . . . . . . . . 125
6.2 Elliptic Variational Inequalities . . . . . . . . . . . . . . . . 137
6.3 Parabolic Variational Inequalities . . . . . . . . . . . . . . . 146

7 The Primal Variational Problem of Elastoplasticity 151
7.1 The Primal Variational Problem . . . . . . . . . . . . . . . 151
7.2 Qualitative Analysis of an Abstract Problem . . . . . . . . 158
7.3 Analysis of the Primal Problem . . . . . . . . . . . . . . . . 167
7.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 172

8 The Dual Variational Problem of Elastoplasticity 177
8.1 The Dual Variational Problem . . . . . . . . . . . . . . . . 178
8.2 Analysis of the Stress Problem . . . . . . . . . . . . . . . . 182
8.3 Analysis of the Dual Problem . . . . . . . . . . . . . . . . . 195
8.4 Rate Form of Stress–Strain Relation . . . . . . . . . . . . . 200

III Numerical Analysis
of the Variational Problems 203

9 Introduction to Finite Element Analysis 205
9.1 Basics of the Finite Element Method . . . . . . . . . . . . . 207
9.2 Affine Families of Finite Elements . . . . . . . . . . . . . . 210
9.3 Local Interpolation Error Estimates . . . . . . . . . . . . . 214
9.4 Global Interpolation Error Estimates . . . . . . . . . . . . . 220



Contents xiii

10 Approximation of Variational Problems 223
10.1 Approximation of Elliptic Variational Equations . . . . . . 224
10.2 Approximation of EVI of the First Kind . . . . . . . . . . . 227
10.3 Approximation of EVI of the Second Kind . . . . . . . . . . 229
10.4 Approximation of Parabolic Variational Inequalities . . . . 235

11 Approximations of the Abstract Problem 237
11.1 Spatially Discrete Approximations . . . . . . . . . . . . . . 238
11.2 Time-Discrete Approximations . . . . . . . . . . . . . . . . 240
11.3 Fully Discrete Approximations . . . . . . . . . . . . . . . . 246
11.4 Convergence Under Minimal Regularity . . . . . . . . . . . 253

12 Numerical Analysis of the Primal Problem 271
12.1 Error Analysis of Discrete Approximations

of the Primal Problem . . . . . . . . . . . . . . . . . . . . . 272
12.2 Solution Algorithms . . . . . . . . . . . . . . . . . . . . . . 281
12.3 Convergence Analysis of the Solution Algorithms . . . . . . 293
12.4 Regularization Technique and A Posteriori Error Analysis . 302
12.5 Fully Discrete Schemes with Numerical Integration . . . . . 310

13 Numerical Analysis of the Dual Problem 319
13.1 Time-Discrete Approximations of the Stress Problem . . . . 321
13.2 Time-Discrete Approximations of the Dual Problem . . . . 327
13.3 Fully Discrete Approximations of the Dual Problem . . . . 331
13.4 Predictor–Corrector Iterations . . . . . . . . . . . . . . . . . 344
13.5 Computation of the Closest Point Projections . . . . . . . . 353

Bibliography 355

Index 365



1
Preliminaries

1.1 Introduction

The theory of elastoplastic media is now a mature branch of solid and
structural mechanics, having experienced significant development during
the latter half of this century. In particular, the classical theory, which
deals with small-strain elastoplasticity problems, has a firm mathemati-
cal basis, and from this basis further developments, both mathematical
and computational, have evolved. Small-strain elastoplasticity is well un-
derstood, and the understanding of its governing equations can be said to
be almost complete. Likewise, theoretical, computational, and algorithmic
work on approximations in the spatial and time domains are at a stage at
which approximations of desired accuracy can be achieved with confidence.

The finite-strain theory has evolved along parallel lines, although it is
considerably more complex and is subject to a number of alternative treat-
ments. The form taken by the governing equations is reasonably settled,
though there is as yet no mathematical treatment of existence, uniqueness,
and stability analogous to those of the small-strain case. Computationally,
great strides have been made in the last two decades, and it is now possible
to solve highly complex problems with the aid of the computer.

This monograph focuses on theoretical aspects of the small-strain theory
of elastoplasticiy with hardening assumptions. It is intended to provide
a reasonably comprehensive and unified treatment of the mathematical
theory and numerical analysis, exploiting in particular the great advantages
to be gained by placing the theory in a convex-analytic context.
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The monograph is divided into three parts. The first part contains the
first four chapters and provides a detailed introduction to plasticity, in
which the mechanics of elastoplastic behavior is emphasized. The equations
describing elastoplastic behavior are subsequently recast in the language
and setting of convex analysis. In particular, the flow law can be written
in terms of either the dissipation function or the yield function. Thus, it
is possible to present the flow law in two alternative yet equivalent forms,
which are dual to each other.

The second part of the monograph is taken up with mathematical con-
siderations of the elastoplasticity problem. It begins with some prepara-
tions on basic knowledge from functional analysis and weak formulations
of boundary value problems. These are the contents of Chapters 5 and 6.
Depending on the form of the flow law used, we obtain two formulations for
the elastoplasticity problem: the primal variational formulation, which uses
the dissipation function to describe the flow law, and the dual variational
formulation, which uses the yield function to describe the flow law. The
two forms are equivalent. The main task of the second part is a thorough
mathematical treatment of the well-posedness of the two alternative for-
mulations of the small-strain problem. The primal variational problem is
analyzed in Chapter 7, and the dual variational problem in Chapter 8.

Numerical analysis of the elastoplasticity problem is the topic of the
third part. For the convenience of the reader, we introduce the basic ideas
of the finite element method and some typical finite element interpolation
results in Chapter 9. We then review some standard results in the error
analysis for finite element approximations of boundary value problems for
differential equations and inequalities. This is followed by error analysis of
various semidiscrete and fully discrete approximations for both the primal
and dual variational problems. We also discuss convergence properties of a
number of solution algorithms commonly used in practice.

Plasticity is a vast research area, and it is impossible to touch on every
aspect of this area in a single volume. Thus, several important topics are
not included in this monograph, for example, applications of elastoplasticity
theory to the analysis of engineering structures, which have been covered
in many books on elastoplasticity directed at the engineering community
(see, for example, Martin [83] and Chen and Han [22]).

In this book, we deal exclusively with hardening elastoplasticity. The
reader will find in Temam [122] a comprehensive mathematical treatment
of the elastic, perfectly-plastic problem.

Details of the implementation and behavior of specific algorithms are
omitted, as are other topics, such as viscoplasticity, and matters pertain-
ing to the finite-strain problem. These topics are given a comprehensive
treatment in the monograph by Simo and Hughes [116] and the extended
survey by Simo [114]. Both of these works, and many of the references cited
in them, contain a wealth of numerical examples.
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The list of the references at the end of the book includes only those that
are more relevant to the present exposition, and we do not attempt to make
the list complete.

This work summarizes some recent results on mathematical analysis and
numerical analysis of the elastoplasticity problem. We hope that it will be
useful to those readers who wish to know more about recent developments
in the analysis of the elastoplasticity problem and to those who are prepar-
ing to carry out research in the area of plasticity. For the convenience of
the reader, we include brief introductions to various mathematical materi-
als that should be sufficient for reading the book. In this way, it will not be
necessary to have any extensive prior knowledge of advanced mathemat-
ical topics, such as functional analysis and convex analysis. Nevertheless,
some degree of maturity in mathematics and some knowledge of mechanics
are expected from the reader. We hope that the book will also be helpful
to those whose main interests lie in the solution of plasticity problems in
engineering practice. We are convinced that attempts at solving practical
problems in this area—as, indeed, is the case in many other areas—would
benefit from a background in the theoretical aspects of the subject.

1.2 Some Historical Remarks

Early works on plasticity. It is generally agreed that the origin of plas-
ticity dates back to a series of papers by Tresca from 1864 to 1872 (see
[125]) on the extrusion of metals. In this work the first yield condition was
proposed: The condition, known subsequently as the Tresca yield criterion,
stated that a metal yields when the maximal shear stress attains a critical
value. In the same time period, St. Venant [6] introduced basic constitutive
relations for rigid, perfectly plastic materials in plane stress, and suggested
that the principal axes of the strain increment coincide with the principal
axes of stress. Lévy [76] derived the general equations in three dimensions.
In 1886, Bauschinger [8] observed the effect that now carries his name: A
previous plastic strain with a certain sign diminishes the resistance of the
material with respect to the next plastic strain with the opposite sign. In
a landmark paper in 1913, von Mises [92] derived the general equations for
plasticity, accompanied by his well-known pressure-insensitive yield crite-
rion (J2-theory, or octahedral shear stress yield condition).

In 1924, Prandtl [101] extended the St. Venant–Levy–von Mises equa-
tions for the plane continuum problem to include the elastic component
of strain, and Reuss [111] in 1930 carried out their extension to three di-
mensions. In 1928, von Mises [93] generalized his previous work for a rigid,
perfectly plastic solid to include a general yield function and discussed the
relation between the direction of plastic strain increment and the smooth
yield surface, thus introducing formally the concept of using the yield func-
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tion as a plastic potential in the incremental stress–strain relations of the
flow theory.

Compared to perfect plasticity, the development of incremental consti-
tutive relations for hardening materials proceeded more slowly. In 1928,
Prandtl [102] attempted to formulate general relations for hardening be-
havior. In 1938, Melan [91] generalized the foregoing concepts of perfect
plasticity by giving incremental relations for hardening solids with smooth
yield surface and discussing uniqueness results for elastoplastic incremental
problems for both perfectly plastic and hardening materials, based on some
limiting assumptions.

Since 1940, the theory of plasticity has seen relatively more rapid devel-
opment. In 1949, Prager [100] obtained a general framework for the plastic
constitutive relations for hardening materials with smooth yield functions
and recognized the relationship between the convexity of the yield surface
plus the normality law and the uniqueness of the associated boundary value
problem. Drucker [32], in 1951, proposed his material stability postulate.
With this concept, the plastic stress–strain relations together with many
related fundamental aspects of the subject may be treated in a unified
manner. In 1953, Koiter [72] generalized the plastic stress–strain relations
for nonsmooth yield surfaces and obtained some uniqueness and variational
results. He introduced the device of using more than one yield function in
the stress–strain relations, the plastic strain increment receiving a contri-
bution from each active yield surface and falling within the normal cone to
the yield surface. For further details, see [73].

A detailed description of the early development of plasticity theory and
a comprehensive list of references on plasticity published before 1980 can
be found in Życzkowski [136], which also contains a wealth of discussions
on various aspects of plasticity.

Recent mathematical and numerical analysis of problems in plas-
ticity. Mathematical and numerical aspects of the quasistatic problem in
elastoplasticity have been the subject of sustained attention since the 1970s.
The first systematic mathematical study of the boundary value problems of
elastoplasticity is due to Duvaut and Lions [33], who considered the prob-
lem for an elastic perfectly plastic material and formulated the problem as
a variational inequality. Moreau [95, 96] considered the same issues, but
from a more geometric viewpoint. Johnson [64] subsequently extended the
analysis in [33] by approaching the problem in two stages; in the first stage
the velocity is eliminated and the problem becomes a variational inequal-
ity posed on a time-dependent convex set. The second stage involves the
solution for the velocity.

The theory for perfectly plastic materials was advanced greatly through
the introduction and investigation of the space BD(Ω) of functions of
bounded deformation [88, 90, 123, 124]. This space is essential for a proper
study of the perfectly plastic problem, since discontinuity surfaces (sli-
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plines) may be accommodated within this framework; the framework of
Sobolev spaces, on the other hand, is not appropriate. A comprehensive
summary account of the mathematical theory of perfect plasticity in the
framework of the space BD(Ω) can be found in [122], which is, however,
confined to the total strain, or holonomic, problem, an approximate model
in which a one-to-one relationship between stress and strain is assumed.

Analysis of the elastoplastic problem with hardening, on the other hand,
can be achieved within the framework of Sobolev spaces. There are two
alternative formulations of the problem, depending on the form of the flow
law. One formulation makes use of the yield function in the plastic flow
law and will be called the dual formulation in this work, for reasons that
will become clear in Chapter 4. An alternative approach is to express the
plastic flow law in terms of the dissipation function, which leads to the
primal formulation of the problem. The primal and dual formulations are
extensions, respectively, of the displacement and stress problems in linear
elasticity.

The first analysis of the dual formulation of the hardening problem is due
to Johnson [66], who gave an existence and uniqueness result. A detailed
analysis of the primal formulation of the hardening problem was presented
by Han, Reddy, and Schroeder [56]. The unknowns are the displacement
and internal variables, while the problem takes the form of a variational
inequality of the mixed kind: It is an inequality both because of the presence
of a nondifferentiable functional in the formulation and because the problem
is posed on a closed convex cone in a Hilbert space.

Analyses of finite element approximations of the elastoplastic problem
have enjoyed limited but steady attention. Johnson [65] considered a for-
mulation of the elastic, perfectly-plastic problem in which stress is the
primary variable and derived error estimates for the fully discrete (that is,
discrete in both time and space) problem. In a later work, Johnson [67]
analyzed fully discrete finite element approximations of the elastoplasticity
problem with hardening, in the context of a mixed formulation in which
stress and velocity are the variables. Related work can also be found in
Hlaváček [60], and summary accounts in Hlaváček, Haslinger, Nečas, and
Lov́ı̌sek [61], and Korneev and Langer [74].

The dual formulation is a popular approach in practice for the hardening
problem; see, for example, the comprehensive treatments of computational
aspects of the problem by Simo [114], and by Simo and Hughes [116].
However, while there exist some results on stability, consistency, and con-
vergence for certain numerical approximation schemes, the whole picture
is by no means complete.

In comparison, numerical analysis of the primal formulation of the hard-
ening problem did not receive attention until recently. Various schemes
for approximating the primal formulation of the hardening problem were
analyzed for the first time in [56].
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A more classical approach to the analysis and numerical analysis of the
hardening plasticity problem is taken by Bonnetier [13], and by Li and
Babuška [77, 78]. First, spatial discretization is carried out using finite el-
ements, and the resulting semidiscrete problem is written as a system of
highly nonlinear ordinary differential equations. Then it is shown that as
the finite element mesh size approaches zero, the solution of the semidis-
crete problem converges, and the limit is the solution of the plasticity prob-
lem.

The recent work of Han and Reddy [55] provides a comprehensive treat-
ment of the mathematical and numerical analysis of the elastoplasticity
problem with hardening. Two alternative variational formulations of the
problem are described in a connected way. The formulation based on the
dissipation function is defined to be the primal problem, largely because it
is a kinematically based formulation: The unknown variables are the dis-
placement, the plastic strain, and internal variables. The formulation based
on the yield function is referred to as the dual formulation, the stress being
a main unknown. The question of existence and uniqueness of solutions is
addressed, taking each of these formulations in turn as a point of depar-
ture. Various approximation schemes for each formulation are studied. The
schemes considered include semidiscrete approximations in which either
the spatial domain or the time domain is discretized, and fully discrete ap-
proximations where discretization is carried out with respect to both space
and time. Error estimates for these approximations are derived, not only
for the approximate stress, but also for the approximate displacement; in
comparison, the study in [67] is confined to one involving the stress and
velocity, and results on convergence are presented only for the stress.

The resulting discrete systems are nonlinear and large. Various solution
algorithms are used in practice to solve these systems. Some popular solu-
tion algorithms are discussed in [55], and for the first time convergence of
some of the solution algorithms is proved rigorously.

The present monograph is an expanded and updated version of our pre-
vious work [55].

1.3 Notation

Throughout this work we will use the popular mathematical symbol ∀ to
stand for “for any” or “for all.” The letter c will denote a generic constant
independent of certain quantities (which are clear from the context). The
value of c may differ at different places.

Vectors, tensors. Some pertinent results from vector and tensor analysis
are summarized here for convenience. More comprehensive sources can be
found in the literature (see, for example, Lemaitre and Chaboche [75]).
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We will use boldface italic letters to denote vectors and tensors. We
adopt the summation convention for repeated indices, unless stated other-
wise. Most often, vectors are denoted by lowercase boldface italic letters,
and second-order tensors by lowercase boldface Greek letters. Fourth-order
tensors are usually denoted by uppercase boldface italic letters.

Our discussion applies to Euclidean space R
d of any dimension d (in

practice, d = 1, 2, 3). However, for definiteness of exposition and because of
its importance in applications, we will give the presentation in the context
of three-dimensional space. Thus, we will make use of a Cartesian coordi-
nate system with an orthonormal basis {e1, e2, e3} that is chosen once and
for all . Where it is necessary to show components of a vector or a tensor,
these will always be relative to the orthonormal basis {e1, e2, e3}.

A second-order tensor τ is a linear operator mapping vectors to vectors
and may be identified with a matrix. For any vector a, τa represents a
vector such that the action of τ on a is linear; that is, τ (αa + βb) =
ατa + βτb for any scalars α, β, and any vectors a and b. We will always
use ai, 1 ≤ i ≤ 3, to denote the components of the vector a, and τij ,
1 ≤ i, j ≤ 3, the components of the second-order tensor τ . With the basis
defined, the action of the second-order tensor τ on the vector a may be
represented in the form

τa = τijajei.

The scalar products of two vectors a and b, and of two second-order
tensors (or matrices) σ and τ , are denoted by a · b and σ : τ and have the
component representations

a · b = aibi, σ : τ = σijτij .

The magnitudes of a vector a and a second-order tensor τ are defined by

|a| = (a · a)
1
2 , |τ | = (τ : τ )

1
2 .

The vector product c = a ∧ b of two vectors a and b is a vector with
components defined by

ci = εijkajbk,

where εijk is the permutation symbol: εijk = +1 for (i, j, k) a cyclic per-
mutation of (1, 2, 3), −1 for (i, j, k) an anticyclic permutation, and is zero
otherwise.

The tensor product a⊗b of two vectors a and b is a second-order tensor
defined by the relation

(a⊗ b)c = (b · c)a ∀ c.

Viewed as a matrix, we have the representation

a⊗ b = abT .
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Thus the tensor product a⊗b has the components aibj . The nine quantities
ei⊗ej form a basis for the space of the second-order tensors, and any such
tensor τ can be represented in the form

τ = τijei ⊗ ej .

Since we will be working with a fixed basis, there is little point in making
a formal distinction between the tensor τ and the 3 × 3 matrix of its
components, so that unless otherwise stated, τ will represent the tensor
and the matrix of its components. With this understanding, it is merely
necessary to point out that all the usual matrix operations such as addition,
transposition, multiplication, inversion, and so on, apply to tensors, and the
standard notation is used for these operations. Thus, for example, τT and
τ−1 are, respectively, the transpose and inverse of the tensor (or matrix)
τ .

We will use M3 to denote the space of all the symmetric 3×3 matrices (or
second-order symmetric tensors). We will use M3

0 to denote the subspace
of M3 with vanishing trace; that is,

M3
0 = {τ ∈ M3 : tr τ = 0},

where as usual, tr τ = τii is the trace of τ .
One special and important second-order tensor is the identity I, which

is defined by the relation Ia = a for any vector a. The components of the
identity tensor I are the Kronecker delta

δij =
{

1 if j = i,
0 otherwise.

Every second-order tensor τ may be additively decomposed into a devi-
atoric part τD and a spherical part τS ; these are defined by

τS = 1
3 (tr τ )I, τD = τ − 1

3 (tr τ )I,

so that

τ = τD + τS .

For spatial domains of dimension d, a second-order tensor τ is identified
with a d×d matrix, and the formulae for its deviatoric and spherical parts
are modified to

τS = 1
d (tr τ )I, τD = τ − 1

d (tr τ )I.

For planar problems, for example, d = 2.
The only higher-order tensors that will occur are those of fourth order,

which will appear as tensors of material moduli. These will be denoted by
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uppercase boldface italic letters. A fourth-order tensor C may be defined as
a linear operator mapping the space of second-order tensors into itself. The
action of a fourth-order tensor C on a second-order tensor τ is denoted
by Cτ and is the second-order tensor with components Cijklτkl, where
Cijkl are the components of C relative to the canonical orthonormal basis
ei⊗ej ⊗ek⊗el, 1 ≤ i, j, k, l ≤ 3. An important special fourth-order tensor
is the identity tensor I, which satisfies Iτ = τ for any symmetric second-
order tensors τ . This identity tensor has the component representation

Iijkl = 1
2 (δikδjl + δilδjk).

We use the same symbol I for both the second-order and fourth-order
identity tensors.

Invariants of second-order tensors (or 3×3 matrices). The problem
of finding a scalar λ and a nonzero vector q with

τq = λq

leads to the eigenvalue problem of solving the characteristic equation

det (λI − τ ) = 0.

This equation can be written equivalently as

λ3 − I1λ
2 + I2λ− I3 = 0,

where I1(τ ), I2(τ ), and I3(τ ) are the principal invariants of τ . The invari-
ants are defined by

I1 = tr τ = τii = λ1 + λ2 + λ3,

I2 = 1
2{(tr τ )2 − tr τ 2} = 1

2 (τiiτjj − τijτji) = λ1λ2 + λ2λ3 + λ3λ1,

I3 = det τ = λ1λ2λ3.

Here, λ1, λ2, and λ3, the eigenvalues of τ , are the roots of the charac-
teristic equation (a multiple root is counted repeatedly according to its
multiplicity).

We denote by

ι(τ ) = (I1(τ ), I2(τ ), I3(τ ))

the set of three invariants of τ . The eigenvalues λi of a matrix τ are often
denoted by τi (note the single index) and are called the principal compo-
nents of τ .

Scalar, vector, and tensor fields. The gradient of a scalar field φ(x)
is denoted by ∇φ and is the vector defined by

∇φ =
∂φ

∂xi
ei.
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The divergence divu and gradient ∇u of a vector field u(x) are respectively
a scalar and a second-order tensor field, defined by

divu =
∂ui

∂xi
,

∇u =
∂ui

∂xj
ei ⊗ ej .

Thus the components of ∇u are ∂ui/∂xj . The transpose of ∇u is denoted
by (∇u)T and is the second-order tensor with components ∂uj/∂xi. The
divergence div τ of a second-order tensor τ is a vector defined by

div τ =
∂τij
∂xj

ei.

For a scalar-valued function f(u) of a vector variable u = (u1, u2, u3)T ,
its derivative with respect to u can be identified with a vector,

∂f(u)
∂u

=
∂f(u)
∂ui

ei.

For a scalar-valued function f(τ ) of a second-order tensor τ = (τij), the
derivative with respect to τ is a second-order tensor,

∂f(τ )
∂τ

=
∂f(τ )
∂τij

ei ⊗ ej .

If f(τ ) is a matrix-valued function of a second-order tensor variable τ , then
its derivative with respect to τ is a fourth-order tensor with components

∂f(τ )
∂τij

=
∂fkl(τ )
∂τij

ek ⊗ el.

For a time-dependent quantity z, we will use ż to denote the partial
derivative of z with respect to the temporal variable t.

Landau’s notation for orders of magnitude. We will use the “big oh”
(O) and “little oh” (o) symbols in the following senses. Given two functions
f(t) and g(t) of a real variable t, we say that f(t) is of a lower order of
magnitude than g(t) as t → 0+ and write

f(t) = o(g(t)), t → 0+,

if

lim
t→0+

f(t)
g(t)

= 0.

We say that f(t) is dominated by g(t) as t → 0+, and write

f(t) = O(g(t)), t → 0+,
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if for some positive constants c and δ,

|f(t)| ≤ c |g(t)|, t ∈ (0, δ).

These definitions can be easily adapted to cover other similar expressions,
such as

f(t) = o(g(t)), t → 0,

or

xn = O(yn), n → ∞,

for two sequences of numbers {xn} and {yn}.



2
Continuum Mechanics and Linear
Elasticity

We will be concerned with bodies that at the macroscopic level may be
regarded as composed of material that is continuously distributed. By this
it is meant, first, that such a body occupies a region of three-dimensional
space that may be identified with R

3. The region occupied by the body
will of course vary with time as the body deforms; it is convenient, then,
for the purpose of keeping track of the evolution of the body’s behavior
to locate any point in the body by its position vector x with respect to
some previously chosen origin 0, at a fixed time. For simplicity we will
take this to be at the time t = 0, and we will assume that the body
is undeformed and unstressed in this state, unless stated otherwise. The
region occupied by the body at the time t = 0 is denoted by Ω, and is
called the reference configuration. To emphasize the identification between
points in the region Ω and points in the undeformed body we will often
refer to a point x ∈ Ω as a material point . If we go further and place a
set of Cartesian axes at 0, then the position vector x has components xi

(i = 1, 2, 3) with respect to the orthonormal basis {e1, e2, e3} associated
with this set of axes. The situation is illustrated in Figure 2.1, in which Ωt

is the current configuration, the region occupied by the body at the current
time t.

Second, it is assumed that both the properties and the behavior of such
a body can be described in terms of functions of position x in the body
and time t. Thus, for example, we may associate with the body a scalar
temperature distribution θ that varies within the body and with the passage
of time, so that the value of the temperature of a material point x at time
t is represented by the function θ(x, t), or equivalently by θ(x1, x2, x3, t).
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Ω

Ωt

x

y(x, t)

u(x, t)

Figure 2.1: Current and undeformed configurations of an arbitrary material
body

It will be necessary at some stage to stipulate the properties assumed
or expected of functions defined on the body. For the time being there is
no need to be too specific about this, except to say that functions will be
assumed to possess as many derivatives as are required in order for what
follows to make sense. Later we will have to be very careful indeed about
the specification of function spaces to which these functions are required
to belong.

The study of the behavior of continuous media conveniently begins with a
development of a suitable framework within which the motion of the body
can be described. This framework is quite independent of any agencies
acting on the body, and it is also independent of the constitution of the
body. In other words, we are concerned in the first instance solely with the
geometry of motion. This is known as kinematics, and we now proceed to
set out a framework that will be adequate for future needs.

2.1 Kinematics

As mentioned above, the position of a body in an undeformed state is
identified with a region Ω in R

3. With time the body moves and deforms,
as a result of the action of various forces (we are not interested in the
details of these forces at this point), so that at time t it occupies a new
region Ωt, called the current configuration at time t, as is shown in Figure
2.1. This deformation may be described mathematically by introducing a
vector-valued function y of position and time, called the motion. Thus a
material particle initially located at x will have position y(x, t) at time t .
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Clearly, we must have y(x, 0) = x. For simplicity we denote functions and
their values by the same symbol, so that the motion is described by the
equation

y = y(x, t), (2.1)

or in component form,

yi = yi(x1, x2, x3, t), 1 ≤ i ≤ 3,

for x ∈ Ω and t ∈ [0, T ].
The function y will have to satisfy certain conditions if it is used to model

adequately the motion of the body. First, we must ensure that no two points
get mapped to a single point by y; in other words, y must be one-to-one.
Second, we must ensure that the motion is orientation-preserving; that is,
the Jacobian J , defined by

J = det
(
∂yi
∂xj

)
, (2.2)

must be positive. Here,

∇y =
(
∂yi
∂xj

)
stands for the Jacobian matrix whose (i, j)th element is ∂yi/∂xj . Hence,
every element of nonzero volume in Ω is mapped to an element of nonzero
volume in Ωt. We are using here the result from calculus that dy = Jdx,
where dx and dy denote the volume elements in Ω and Ωt.

A sufficient condition for the motion y to be invertible is that there exist
a constant c(Ω) > 0, depending only on Ω, such that

sup
Ω

|∇y − I| < c(Ω).

This result, as well as others on the invertibility of the motion, may be
found in [24].

Instead of adopting the function y as the primary unknown variable, it
is more convenient to introduce the displacement vector u by

u(x, t) = y(x, t) − x

and to replace the motion by the displacement as the primary unknown. Of
course, the displacement alone does not give complete information about
the deformation of the body. We need to be able to distinguish, for example,
between a simple rigid body motion, in which the body is translated and
rotated to a new position without deformation (Figure 2.2), and a situation
in which the body indeed assumes a new shape. The quantity that we use to
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Figure 2.2: An example of rigid body motion

measure deformation is the strain tensor . Let us now see how this quantity
arises.

Consider a point x in Ω and two fibers of material particles emanating
from x. These fibers are described by vectors ∆x and δx, as is shown in
Figure 2.3. The notion of strain emerges naturally if we consider the changes
in lengths of these fibers, and the change in the angle between them, under
the motion y. The fiber ∆x is mapped to the fiber ∆y ≡ y(x+∆x)−y(x).
Likewise, the fiber δx becomes the fiber δy ≡ y(x + δx) − y(x). Here, for
simplicity in writing, we drop the time variable t in the expression for the
motion y. We are now in a position to measure changes in lengths and
angles.

We assume that the motion is smooth and may be differentiated as many
times as required. Then it is possible to expand the term y(x + ∆x) in a
Taylor series about x to get

y(x + ∆x) = y(x) + ∇y∆x + o(|∆x|),

with a similar expression for y(x + δx). Thus

∆y ≡ y(x + ∆x) − y(x) = ∇y∆x + o(|∆x|).

Since ∇y(x) = I + ∇u(x), it follows that

∆y = ∆x + ∇u∆x + o(|∆x|).

In exactly the same way we arrive at the expression

δy = δx + ∇u δx + o(|δx|).

We can now consider the expression
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Ω y

x

x + δx

y + δy

y + ∆y

Ωt

x + ∆x

Figure 2.3: Deformed and undeformed configurations of material line ele-
ments

∆y · δy − ∆x · δx = (∇u∆x) · δx + (∇uδx) · ∆x

+ (∇u∆x) · (∇uδx) + o(|δx|2 + |∆x|2). (2.3)

Though no confusion need arise, it is worth emphasizing that the gradient
in (2.3) is with respect to the variable x.

The point about the expression (2.3) is that if the body deforms as a
rigid body, then obviously we must have ∆y · δy = ∆x · δx for any pair
of fibers emanating from any point in the body, since these fibers will not
change in length, nor will the angle between them. Thus the right-hand
side of (2.3) is identically zero in a rigid body motion. We now go one step
further and consider the limit of (2.3) as the lengths of the fibers go to zero.
Set h = max{|∆x|, |δx|}, n = ∆x/h, and m = δx/h; these are assumed
to be fixed vectors independent of h. Now divide both sides of (2.3) by h2,
and take the limit as h → 0. This gives

lim
h→0

∆y · δy − ∆x · δx
h2 = n ·

[
∇u + (∇u)T + (∇u)T∇u

]
m

≡ 2n · η(u)m. (2.4)

We define the strain tensor η associated with the displacement u by

η(u) = 1
2

[
∇u + (∇u)T + (∇u)T∇u

]
; (2.5)

in component form this expression reads

ηij(u) = 1
2 (ui,j + uj,i + uk,iuk,j).

Though we have been explicit about the fact that the strain is defined for
a particular displacement field by writing η(u), very often we will simply
denote the strain by η or ηij when there is no danger of confusion.
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So we see that the strain tensor is defined in such a way that it is zero if
the body undergoes a rigid body motion.

The components of η are easily interpreted by referring back to equation
(2.4) and by giving the fibers ∆x and δx specific orientations. First, sup-
pose that we identify δx with ∆x at an arbitrary point in the body, and
suppose that ∆x is chosen so that it lies parallel to the x1-axis. Then (2.4)
becomes

lim
h→0

|∆y|2 − |∆x|2
h2 = 2 e1 · ηe1 = 2 η11,

since ∆x/h = e1 here. Thus we see that in this situation η11 equals half
the net change in length (squared) of a material fiber originally oriented so
that it points in the x1 direction. The other two diagonal components of
the strain are interpreted in a similar way.

To see how the off-diagonal components of η may be interpreted we
return to (2.4) and now choose ∆x and δx at an arbitrary point in the
body in such a way that they have equal lengths h and lie parallel to the
x1 and x2 axes, respectively. Then (2.4) gives

lim
h→0

∆y · δy − ∆x · δx
h2 = lim

h→0

∆y · δy
h2

= 2 e1 · ηe2

= 2 η12. (2.6)

Thus the component η12 gives a measure of the change in angle between
two fibers originally at right angles to each other and oriented so that they
were in the x1 and x2 directions. The remaining off-diagonal components
are interpreted in a similar way.

Because the components of the strain have the interpretations described
above, the diagonal components are referred to as direct strains, while the
off-diagonal components are referred to as shear strains.

Earlier we had the result that for a rigid body motion the strain tensor
is zero. Now consider a situation in which the strain tensor is zero; then we
see from the above interpretation of its components and the observation
that the axes may be chosen arbitrarily that no changes in length of fibers
take place, nor are there any changes in angles between fibers. Thus the
converse is also true: If η = 0, then the body necessarily undergoes a rigid
body motion.

Infinitesimal strain. There are many problems of practical interest for
which the deformations can be regarded as “small” in some sense, and
under such circumstances it is natural to consider whether the formulation
of the problem might be simplified by exploiting this feature. Of course, it is
necessary first to formalize and to quantify what is meant by “small,” and
for the purposes of this work the following definition suffices: A body is said
to undergo infinitesimal deformation if the displacement gradient ∇u is
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sufficiently small so that the nonlinear term in (2.5) can be neglected. When
this is the case, we may replace the strain tensor η by the infinitesimal
strain tensor ε, which is defined by

ε(u) = 1
2 (∇u + (∇u)T ). (2.7)

Setting h = |∇u|, in the case of infinitesimal strains we assume that h 
 1
and that to within an error of O(h2) as h → 0, ε and η coincide.

Characterization of rigid body motions for infinitesimal strain.
We have seen earlier that the strain tensor η vanishes if and only if the
body undergoes a rigid body motion. Since we will study problems in the
context of infinitesimal strains, it is necessary to characterize a rigid body
motion for situations in which terms of O(h2) are neglected. Suppose that
the body undergoes an infinitesimal rigid body motion, that is, one for
which

ε(u) = 0.

Then

∇u = −(∇u)T ,

so that the displacement gradient is skew. Thus the most general represen-
tation of the motion in such a situation is given by

y(x) = y0 + ω(x− x0),

or, equivalently, by

u(x) = u0 + ω(x− x0),

where x0 is any point, ω is a skew tensor, and y0 and u0 are either given
or arbitrary vectors (for a proof of this result, see [75], Section 3.6). If the
motion is a pure translation, then ω = 0, while if on the other hand the
motion is a pure rotation, then u0 = 0. An infinitesimal rigid body motion
may be written alternatively as

u(x) = u0 + w ∧ (x− x0),

where w is the unique axial vector corresponding to ω; that is, ωa = w∧a
for any vector a.

Changes in volume; incompressibility. We require a simple measure
of the local change in volume accompanying a motion. The volume of the
reference configuration is

V0 =
∫

Ω
dx,
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while the volume of the current configuration is

Vt =
∫

Ωt

dy.

Thus the change in volume as a result of the deformation y is simply given
by

∆V ≡ Vt − V0 =
∫

Ωt

dy −
∫

Ω
dx.

Since Ωt = y(Ω, t), we may use the conventional technique for change of
variables in an integral to write∫

Ωt

dy =
∫

Ω
J dx,

where the Jacobian J has been defined in (2.2). Thus the change in volume
is

∆V =
∫

Ω
(J(x) − 1) dx. (2.8)

Once again we are interested in determining the expression for the change in
volume for situations in which the underlying deformation can be regarded
as infinitesimal. For this purpose we set h = |∇u| and write the Jacobian
in terms of u; thus

J = det (∇y)
= det (I + ∇u)
= 1 + divu + O(h2).

This result follows directly from the definition of the determinant or from
the identity (see, for example, [21], page 48)

det (A + B) = (1 + B : A−T ) detA + (1 + A : B−T ) detB

for all invertible matrices A and B. Substitution in (2.8) yields the result
that to within an error of O(h2),

∆V =
∫

Ω
divu dx.

In other words, the quantity divu represents the change in volume per unit
volume in an infinitesimal deformation.

A deformation that experiences no change in volume is called isochoric;
for such a deformation we have

J = 1 ∀x ∈ Ω, t ∈ [0, T ]. (2.9)
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When an isochoric deformation is infinitesimal, then to within an error of
O(h2) the displacement field satisfies the condition

tr ε(u(x, t)) = divu(x, t) = 0 ∀x ∈ Ω, t ∈ [0, T ]. (2.10)

It may alternatively happen that a material has the property, possibly
idealized, that it is unable to experience a change in volume. This ideal-
ization is often made in the case of materials for which, for the range of
conditions under which they are being analyzed, the volume change ob-
served is negligible. Such materials are referred to as incompressible. Note
the difference between isochoric deformations and incompressible materials;
in the former case a particular deformation is accompanied by no change
in volume so that (2.9) and (2.10) are consequences of the deformation,
while in the latter case it is a property of the material that no matter what
the deformation, the body is unable to undergo any change in volume. In
this case the conditions (2.9) or (2.10) represent constraints on the possible
classes of deformations that are admitted.

2.2 Balance of Momentum; Stress

In this section we move away from the purely geometric nature of kinemat-
ics and investigate the consequences for material bodies of the fundamental
laws of balance of linear and angular momentum. A further development
is the introduction in this context of the notion of stress as a tensorial
quantity that characterizes the state of internal forces acting in a body. All
variables are assumed to have the requisite degree of smoothness consistent
with developments in this section.

It is particularly convenient to develop the notions of momentum and
stress in the context of the reference configuration; that is, we exploit the
fact that field variables are functions of reference position x and time t,
so that while the momentum and stress at time t are quantities associated
with the configuration of the body at time t, these can easily be expressed,
via the mapping (2.1), as functions defined over the reference configuration
Ω.

The equations corresponding to local balance of linear and angular mo-
mentum are obtained by writing down the expressions that correspond to
balance of linear and angular momentum for an arbitrary subset of the
body. The local forms of these laws then follow from the arbitrariness of
the subset and appropriate smoothness assumptions on the variables.

Now let Ω represent the reference configuration of the body, as before,
and Ωt the current configuration. Furthermore, let Ω′ be an arbitrary subset
of Ω, which is mapped by the motion to an arbitrary subset Ω′

t of Ωt. Under
these circumstances we may express global quantities associated with the
current configuration as integrals over the reference configuration.
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The velocity field u̇ and acceleration field ü corresponding to a displace-
ment field u(x, t) are defined by

u̇(x, t) =
∂u(x, t)

∂t
,

ü(x, t) =
∂2u(x, t)

∂t2
.

Thus, the linear momentum of the subset Ω′
t of Ωt at time t is defined by∫

Ω′
ρu̇ dx,

and its angular momentum by∫
Ω′

x ∧ ρu̇ dx,

in which ρ denotes the mass density of the body, that is, the mass per unit
reference volume of the body.

The body is subjected to a system of forces, which are of two kinds.
There is the body force b(x, t), which represents the force per unit reference
volume exerted on the material point x at time t by agencies external to the
body; gravity is a canonical example, the body force in this case being ρge,
where g is the gravitational acceleration and e is the unit vector pointing
in the downward vertical direction. The second kind of force acting on the
body is the surface traction. To define this force field it is convenient to
begin by introducing, for a given unit vector n, the stress vector sn(x, t):
If γ is a regular surface in Ω̄ passing through x and having unit normal n
at x, then sn(x, t) is the current force per unit reference area exerted by
the portion of Ω on the side of γ towards which n points, on the portion of
Ω that lies on the other side. Let Γ′ denote the boundary of Ω′; then the
surface traction at time t is defined to be the stress vector sn(x, t) (x ∈ Γ′)
acting on Γ′, with n defined to be the outward unit normal on Γ′ (see
Figure 2.4). While we have chosen to define quantities such as forces and
momentum in terms of the reference configuration of the body, there is no
difficulty in restating these definitions in terms of the current configuration.

The laws of balance of linear and angular momentum may now be stated.

Balance of linear momentum. The total force acting on Ω′
t is equal

to the rate of change of the linear momentum of Ω′
t; expressed in terms of

integrals over the reference configuration,∫
Ω′

ρü dx =
∫

Ω′
b dx +

∫
Γ′
sn ds. (2.11)

Note that in this identity we have used the fact that

∂

∂t

∫
Ω′

(·) dx =
∫

Ω′

∂

∂t
(·) dx,
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Ω′

Ω

Ω′ Γ′Γ′

ν sn(x, t)

Figure 2.4: The surface traction vector field

since Ω′ is chosen independent of time.

Balance of angular momentum. The total moment acting on Ω′
t is

equal to the rate of change of the angular momentum of Ω′
t; expressed in

terms of integrals over the reference configuration,∫
Ω′

x ∧ ρü dx =
∫

Ω′
x ∧ b dx +

∫
Γ′
x ∧ sn ds. (2.12)

We have the following two important results.

Cauchy’s Reciprocal Theorem. Given any unit vector n,

sn = −s−n. (2.13)

This result is clearly a generalization to deformable bodies of Newton’s
third law of action and reaction.

Existence of the stress tensor. There exists on Ω × [0, T ] a second-
order tensor field τ , called the first Piola–Kirchhoff stress field, with the
property that

τn = sn (2.14)

for each unit vector n.

The derivation of the reciprocal theorem of Cauchy and the proof of the
existence of the stress tensor are treated in detail in [2] (page 404), [48]
(page 45), and [75] (Section 4.1).

We are now in a position to obtain local forms of the two balance laws. In
the following we assume that all variables have the degree of differentiability
consistent with the manipulations that are carried out.
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We begin with the law of balance of linear momentum. From the rela-
tionship (2.14) between the surface traction and stress tensor we obtain,
using a variant of the Green–Gauss theorem,∫

Γ′
sn ds =

∫
Γ′
σn ds =

∫
Ω′

Div τ dx,

so that (2.11) becomes∫
Ω′

(ρü− b− Div τ ) dx = 0. (2.15)

Here Div is the divergence operator with respect to the reference configu-
ration and expressed in terms of derivatives with respect to xj . Since the
domain Ω′ is arbitrary, the integrand in (2.15) must vanish. We thus obtain
in local form the equation of motion

Div τ + b = ρü. (2.16)

In component form, the equation of motion reads

∂τij
∂xj

+ bi = ρüi, 1 ≤ i ≤ 3.

For situations in which all the given data are independent of time, the
response of the body will also be independent of time. In this case we have
u = u(x), τ = τ (x), and the equation of motion becomes the equation of
equilibrium

∂τij
∂xj

+ bi = 0, 1 ≤ i ≤ 3. (2.17)

We have chosen to present the arguments leading to the equation of motion
in the setting of the reference configuration, with x and t as independent
variables. Since the motion

y = y(x, t)

is invertible, it is also possible to treat y as the independent variable and
to carry out the development in the current configuration. That is, we
have x = x(y, t) after carrying out the inversion, and so, for example, the
velocity u̇ has the alternative representation

∂

∂t
y(x, t) = u̇(x(y, t), t) ≡ v(y, t).

Similar transformations can be carried out with respect to all variables,
and the principles of balance of linear and angular momentum are then
expressed in terms of integrals over the current configuration Ωt. As far as
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the stress goes, an argument identical to that which leads to the existence
of the first Piola–Kirchhoff stress tensor gives the existence of a tensor
σ, called the Cauchy stress, that has the property that the force per unit
current area tν on an elemental surface having unit normal ν is given by

σν = tν . (2.18)

The Cauchy stress therefore has the same relationship to the current con-
figuration as does the first Piola–Kirchhoff stress to the reference configu-
ration.

The use of the principle of balance of linear momentum, when applied in
the current configuration, leads to the equation of motion in the form

divσ + b = ρta

in which a is the acceleration and ρt is the mass density per unit current
volume. Here div is the divergence operator in the current configuration,
so that divσ = (∂σij/∂yj)ei.

It can be shown that the first Piola–Kirchhoff and Cauchy stresses are
related according to

σ = J−1τ (I + ∇u)T . (2.19)

We have not as yet examined the consequences of the equation (2.12)
for balance of angular momentum; by carrying out manipulations similar
to those that lead to (2.16), it is possible to show that this balance law
implies that

τ (I + ∇u)T

is symmetric. Equivalently, we have the classical result that the Cauchy
stress is symmetric:

σT = σ, or σji = σij . (2.20)

Stress and the balance laws for infinitesimal deformations. For
problems in which deformations are assumed infinitesimal, the distinction
between the reference and current configurations may be ignored. To begin
with, we may neglect the term ∇u appearing in (2.19); furthermore, since
J = det (I + ∇u) = 1 + divu + O(h2), we may set J ≈ 1. Likewise,
ρt = J−1ρ ≈ ρ, to within an error O(h). Thus the distinction between the
first Piola–Kirchhoff and Cauchy stresses disappears. In addition, since

∂

∂xj
=

∂yi
∂xj

∂

∂yi
=
(
δij +

∂ui

∂xj

)
∂

∂yi
,



28 2. Continuum Mechanics and Linear Elasticity

it follows that when ∇u is small, we may replace derivatives with respect
to yj by derivatives with respect to xj . In summary, then, the principles
of balance of linear and angular momentum are, in local form, and for
infinitesimal deformations,

divσ + b = ρü, (2.21)
σT = σ. (2.22)

2.3 Linearly Elastic Materials

We are moving towards a situation in which the behavior of a material body
is described by a system of partial differential equations. So far, we have
the equation of motion (2.16) and the strain–displacement relation (2.5);
equivalently, if we assume that the deformation is infinitesimal, we will
deal with equations (2.21) and (2.7). In either case these represent, when
written out in component form, a total of nine equations: three from the
equation of motion and six from the strain–displacement relation (taking
into account the symmetry of ε). The total number of unknowns is fifteen:
three components of displacement, six components of the strain and six
components of the stress (again accounting for the symmetry of ε and σ).
Thus it is clear that six additional equations are required if we are to have
a problem that is at least in principle solvable.

Physical considerations also dictate that the description of the problem
so far is incomplete: The kinematics have been described, and the balance
laws are accounted for, but as yet there is no description of the particular
material behavior. This information, embodied in the constitutive equations
of the material, will provide the remaining equations of the problem.

Later on, we will embark on a detailed study of the constitutive equa-
tions that describe elastoplastic behavior. An essential precursor to such
a study is an understanding of the equations governing elastic behavior.
We review in this section the salient ideas, confining attention to linearly
elastic materials.

A body is linearly elastic if the stress depends linearly on the infinitesimal
strain, that is, if the stress and strain are related to each other through an
equation of the form

σ = Cε, (2.23)

where C, called the elasticity tensor , is a linear map from the space of
symmetric matrices or second-order tensors into itself. Like σ, ε, u, and
other variables, the elasticity tensor is a function of position in the body.
It does not, however, depend on time. If the density ρ and the elasticity
tensor C are independent of position, the body is said to be homogeneous.
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The map C may be represented as a fourth-order tensor as follows: Rel-
ative to the orthonormal basis {ei} we have

σij = ei · σej
= ei · (Cε)ej
= ei · (C(εklek ⊗ el))ej
= ei · (C(ek ⊗ el))ejεkl
= Cijklεkl,

where Cijkl, the components of C, are defined by

Cijkl = ei · (C(ek ⊗ el))ej .

It follows that the constitutive equation (2.23) has the component form

σij = Cijklεkl. (2.24)

Properties of the elasticity tensor. Without loss of generality, we may
assume the elasticity tensor to have the symmetry properties

Cijkl = Cjikl = Cijlk. (2.25)

This is argued as follows. Since ε is symmetric, we have, from (2.24),

σij = Cijklεlk = Cijlkεkl.

Hence

σij =
1
2

(Cijkl + Cijlk) εkl.

Similarly, using the symmetry of σ, we have

σij =
1
2

(Cijkl + Cjikl) εkl.

Therefore, the relation (2.24) can be equivalently expressed as

σij =
1
4

(Cijkl + Cijlk + Cjikl + Cjilk) εkl.

In other words, if necessary, we may redefine the tensor C for the relation
(2.24) such that the symmetry properties (2.25) hold.

Later, when we consider elastic constitutive equations that are derived
from a strain energy or free energy function, it will be seen that the elas-
ticity tensor possesses the additional symmetry property

Cijkl = Cklij . (2.26)
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The elasticity tensor is positive definite if

ε : Cε > 0 for all nonzero symmetric second-order tensors ε. (2.27)

Furthermore, C is said to be strongly elliptic (see [82, 127]) if

(a⊗ b) : C(a⊗ b) > 0 for all nonzero vectors a and b. (2.28)

In component form, (2.28) reads

Cijklaiakbjbl > 0 if aiai > 0 and bibi > 0.

Finally, C is said to be pointwise stable ([82], page 321) if there exists a
constant α > 0 such that

ε : Cε ≥ α |ε|2 for all symmetric second-order tensors ε. (2.29)

It should be clear from these definitions that pointwise stability implies, but
is not implied by, strong ellipticity. It is also clear that pointwise stability
is equivalent to pointwise positive definiteness, under the assumption that
C is continuous on Ω.

Sometimes it is convenient to work not with stress as a function of strain,
but the other way around. If the relationship (2.23) is invertible (and this
will always be the case for real materials) then we may write

ε = Aσ, (2.30)

where the fourth-order tensor A is known as the compliance tensor ; it is
the inverse of C and therefore has the property that

A(Cε) = ε ∀ ε, εT = ε,

and

C(Aσ) = σ ∀σ, σT = σ.

2.4 Isotropic Elasticity

It is often the case that materials possess preferred directions or symme-
tries. For example, timber can be regarded as an orthotropic material, in
the sense that it possesses particular constitutive properties along the grain
and at right angles to the grain of the wood. The greatest degree of symme-
try is possessed by a material that has no preferred directions; that is, say,
its response to a force is independent of its orientation. This property is
known as isotropy, and a material with such a property is called isotropic.
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Isotropic linearly elastic materials occur in abundance, and so form an
important subclass of materials whose properties we need to model math-
ematically. The most striking mathematical effect of isotropy is that it re-
duces the twenty-one independent components Cijkl of C (taking account
of the symmetry properties (2.25) and (2.26)) to two. Of course, these two
material coefficients are not unique, and a new pair may be generated by
combining a given pair in different ways. The most appropriate choice of
material coefficients for isotropic elastic materials will depend on the ap-
plication in mind. We will discuss some of the more common variants.

First, for an isotropic linearly elastic material we have the result that
the components of the elasticity tensor are given by

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.31)

where δij is the Kronecker delta. In coordinate-free form the elasticity ten-
sor is defined to be the fourth-order tensor C that satisfies

(a⊗ b) : C(c⊗ d) = λ (a · b)(c · d) + µ [(a · c)(b · d) + (a · d)(b · c)]
(2.32)

for all vectors a, b, c, and d. The scalars λ and µ are called Lamé moduli .
The stress-strain relation (2.23) in this case is easily found to be given by

σ = λ (tr ε)I + 2µ ε. (2.33)

For the purpose of interpreting the moduli, and of defining alternative
pairs of moduli for isotropic elastic materials, it is convenient to carry out
an orthogonal decomposition of both the stress and the strain into what
are known as spherical and deviatoric components; the first is associated
solely with volumetric changes, while the latter is associated with shearing
stresses and deformations. To achieve this decomposition we recall that any
second-order tensor τ may be written in the form

τ = τD + τS , (2.34)

where the deviatoric and spherical parts τD and τS of τ are defined,
respectively, by

τD = τ − 1
3 (trτ )I, τS = 1

3 (tr τ )I. (2.35)

The maps τ → τD and τ → τS can be regarded as orthogonal projections
on the space of second-order tensors when this space is equipped with the
inner product τ : σ = τijσij . Indeed, we have (τD)S = (τS)D = 0, and

τD : τS = (τ − τS) : τS

= τ : τS − |τS |2

= τij
1
3τkkδij − |τS |2

= 1
3τiiτkk − |τS |2

= 0,
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since |τS |2 = 1
3 (τii)2. The constitutive equation can thus be written in the

uncoupled form (by applying the operators (·)D and (·)S successively to
(2.33))

σD = 2µ εD, (2.36)
σS = λ (tr ε)IS + 2µ εS = 3 (λ + 2

3µ) εS . (2.37)

The scalar µ is also known as the shear modulus (for reasons that are
evident from (2.36)), while the material coefficient K ≡ λ+ 2

3µ is known as
the bulk modulus because it measures the ratio between the spherical stress
and volume change. Thus an alternative pair of elastic coefficients to the
Lamé moduli is {µ,K}. Note that the shear modulus is often denoted by
G, especially in the engineering literature.

Yet another important alternative pair of material coefficients arises from
direct consideration of the behavior of the length of an elastic rod when it is
subjected to a uniaxial stress. Suppose that the Cartesian axes are aligned
in such a way that an isotropic elastic rod lies parallel to the x1-axis (see
Figure 2.5) and is subjected to a uniform stress with σ11 �= 0 and all other
components being zero. The effect will be that the rod experiences only
direct strains, on account of its isotropy. We are interested here first in the
ratio σ11/ε11 and second in the ratio ε22/ε11, or, equivalently, ε33/ε11. The
associated material coefficients are known, respectively, as Young’s modulus
and Poisson’s ratio:

Young’s modulus E =
σ11

ε11
,

Poisson’s ratio ν = −ε22
ε11

.

Thus Young’s modulus measures the slope of the stress–strain curve and
is analogous to the stiffness of a spring, while Poisson’s ratio measures
lateral contraction. Since we expect a tensile stress to be accompanied by
an extension of the material and since we also know from experience that
most common materials would respond to an extension in one direction with
a contraction in the transverse direction (think of what happens when a
rubber band is extended), it follows that one expects both E and ν to be
positive quantities. We will see later that further restrictions are placed on
the ranges of E and ν by thermodynamic or mathematical considerations.

From (2.31) it is a straightforward task to obtain a relationship between
the pairs {λ, µ} and {E, ν}. Since for the case of pure tension we have

σ =

⎛⎝ σ11 0 0
0 0 0
0 0 0

⎞⎠ and ε =

⎛⎝ ε11 0 0
0 ε22 0
0 0 ε22

⎞⎠ ,

it follows that

E =
µ(2µ + 3λ)

µ + λ
(2.38)
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σ11

x1

x2

σ11

Figure 2.5: A rod in a state of uniaxial stress

and

ν =
λ

2(µ + λ)
. (2.39)

The constitutive relation (2.33) can be put in an alternative useful form
involving E and ν by inverting it and making use of (2.38) and (2.39); this
gives

ε = E−1[(1 + ν)σ − ν(trσ)I]. (2.40)

The conditions of pointwise stability and strong ellipticity introduced ear-
lier both lead to constraints on admissible ranges for the material constants.
Indeed, it is possible to show ([82], page 241) that an isotropic linearly elas-
tic material is

(a) pointwise stable if and only if µ > 0 and 3λ + 2µ > 0 (or, in terms
of Young’s modulus and Poisson’s ratio, if and only if E > 0 and
−1 < ν < 1

2 );

(b) strongly elliptic if and only if µ > 0 and λ+ 2µ > 0 (or if and only if
E > 0, and ν < 1

2 or ν > 1).

2.5 A Thermodynamic Framework for Elasticity

The developments in the preceding sections were described in a purely me-
chanical framework, without bringing into play any thermodynamic con-
siderations. Since it is our intention in this monograph to deal only with
processes that take place under isothermal conditions, it would appear that
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there is indeed no need to take account of thermodynamics. This is, how-
ever, not quite the case. Since the primary goal is to present a theory of
elastoplasticity and since plasticity as a constitutive theory can be conve-
niently developed within a thermodynamic framework, it will be necessary
to bring thermodynamics into play, albeit in the context of isothermal pro-
cesses. Plasticity is most conveniently described in the framework of ther-
modynamics with internal variables. We postpone discussion of internal
variable theories to Section 2.7, while in this section we sketch the basic
thermodynamic theory within which linear elasticity can be described.

Suppose that a material body is subjected to a body force b in its interior
and a surface traction s on the boundary. Suppose also, for now, that the
body is subjected to thermal equivalents of these mechanical sources: In
its interior the heat source r per unit volume, and across its boundary the
heat flux q per unit area.

We begin with the first law of thermodynamics, which is essentially a
statement of balance of energy. This law states that for any part Ω′ of the
body Ω, the rate of change of total internal energy plus kinetic energy is
equal to the rate of work done on that part of the body by the mechanical
forces, plus the heat supply. Mathematically the law may be expressed in
the form

d

dt

∫
Ω′

(e + 1
2 ρ|u̇|

2) dx =
∫

Ω′
b · u̇ dx +

∫
Γ′
s · u̇ ds +

∫
Ω′

r dx−
∫

Γ′
q · n ds.

(2.41)

Here e represents the internal energy per unit volume, u̇ is the velocity
vector, and Γ′ = ∂Ω′ is the boundary of Ω′. The minus sign in front of the
term involving the heat flux appears because n is the outward unit normal
vector to the surface, while q is the heat flux per unit area in the direction
of n, so that −

∫
Γ′ q ·n ds is the total flow of heat across Γ′ into the body.

This law may be simplified by the use of the divergence theorem: Indeed,
observe that ∫

Γ′
s · u̇ ds =

∫
Γ′
σn · u̇ ds

=
∫

Ω′
σ : ∇u̇ dx +

∫
Ω′

divσ · u̇ dx

=
∫

Ω′
σ : ε̇ dx +

∫
Ω′

divσ · u̇ dx,

where in the last step we invoked the symmetry of σ. Substituting this
result in (2.41) and making use of equation (2.16) of balance of momentum,
we obtain the first law in the form

d

dt

∫
Ω′

e dx =
∫

Ω′
σ : ε̇ dx +

∫
Ω′

r dx−
∫

Γ′
q · n ds.
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Here and below we use the notation ε̇ = ε(u̇). The local form of this law may
be obtained by assuming first that all variables in the above relation are
sufficiently smooth, and then by converting the surface integral involving
the heat flux to a volume integral with the use of the divergence theorem.
This gives ∫

Ω′

(
ė− σ : ε̇− r + div q

)
dx = 0,

which in turn leads to the local form

ė = σ : ε̇ + r − div q. (2.42)

The second essential postulate of thermodynamics is the second law. For
this we require first the notion of the entropy η per unit volume, and the
absolute temperature θ > 0. The entropy flux across the bounding surface
Γ′ into the body Ω′ is given by −

∫
Γ′ θ

−1q ·n ds, while the entropy supplied
by the exterior is given by

∫
Ω′ θ

−1r dx. The second law states that the rate
of increase in entropy in the body is not less than the total entropy supplied
to the body by the heat sources. That is,

d

dt

∫
Ω′

η dx ≥
∫

Ω′
θ−1r dx−

∫
Γ′
θ−1q · n ds. (2.43)

By the same process used to obtain the local form (2.42) of the first law
from (2.41) we may obtain the local form of the second law, which reads

η̇ ≥ −div (θ−1q) + θ−1r. (2.44)

The inequalities (2.43) and (2.44) are known as the Clausius–Duhem form
of the second law of thermodynamics.

It is customary in elasticity and elastoplasticity to work with the Helmholtz
free energy ψ, defined by

ψ = e− ηθ,

rather than with the internal energy. With this substitution and the use of
(2.42), the local form of the second law becomes

ψ̇ + ηθ̇ − σ : ε̇ + θ−1q · ∇θ ≤ 0. (2.45)

The inequality (2.45) is known as the local dissipation inequality .
Now we specialize to the situation in which subsequent developments

will take place, namely, that of isothermal processes. Thus the tempera-
ture distribution in a body is assumed to be uniform and equal to the
ambient temperature. Furthermore, it is assumed that there is no flow of
heat, and also that there is no heat supply from the exterior. Under these
circumstances the local dissipation inequality takes the simpler form

ψ̇ − σ : ε̇ ≤ 0. (2.46)



36 2. Continuum Mechanics and Linear Elasticity

Henceforth we will at all times make the assumptions just described, so
that temperature will not appear as a variable. Furthermore, both the heat
flux vector and heat supply will be assumed zero in what follows.

Elastic constitutive equations. We are now in a position to obtain the
equations describing elastic material behavior. We define an elastic material
to be one for which the constitutive equations take the form

ψ = ψ(ε), (2.47)
σ = σ(ε). (2.48)

That is, the free energy and stress depend only on the current strain; there
is no dependence on the history of behavior, for example. It should be re-
marked that the more general point of departure is to take the free energy
and stress to be functions of the displacement gradient ∇u rather than the
strain. That these variables in fact depend on ∇u through its symmetric
part, the strain ε, is a consequence of the principle of material frame in-
difference (see [82]). We circumvent these considerations by assuming from
the outset a dependence on ε rather than on ∇u.

The functions appearing in (2.47) and (2.48) are assumed to be suffi-
ciently smooth with respect of their arguments that as many derivatives as
required may be taken.

It is an immediate consequence of the local dissipation inequality that
the stress is determined by ψ through the relation

σ =
∂ψ

∂ε
. (2.49)

To see this, we substitute (2.47) in the local dissipation inequality (2.46)
to obtain (

∂ψ

∂ε
− σ

)
: ε̇ ≤ 0. (2.50)

Then (2.49) follows from the fact that (2.50) holds for all ε̇. The linearly
elastic material is recovered from (2.49) by assuming that the free energy
is a quadratic function of the strain; that is,

ψ(ε) = 1
2ε : Cε, (2.51)

or

ψ(ε) = 1
2Cijklεijεkl.

Then the constitutive equation (2.23) is immediately recovered from (2.49)
by substitution of (2.51). The thermodynamic framework is not entirely
equivalent to the mechanical framework adopted earlier, though. One dis-
tinction lies in the symmetries of C. From (2.49) and (2.51) we find that

σ = 1
2 (C + CT ) ε.
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Here 1
2 (C+CT ) is the symmetric part of C. Replacing C by 1

2 (C+CT ) in
(2.51) does not change the value of ψ(ε). Hence in the definition (2.51) we
will replace C by its symmetric part, though for convenience we continue
to denote this symmetrized tensor by C. We then have

C =
∂2ψ

∂ε∂ε
, (2.52)

and in addition to the symmetries given in (2.25) (these still hold, in view
of the symmetry of the stress and strain), we must have the additional
symmetry

Cijkl = Cklij . (2.53)

We will henceforth take as a basis for the description of linearly elastic
material behavior the thermodynamic framework, so that in particular, the
symmetry (2.53) will be assumed valid. Note that this symmetry is satisfied
with the coefficients (2.31) for isotropic elastic materials.

2.6 Initial–Boundary and Boundary Value
Problems for Linear Elasticity

The stage has now been reached where it is possible to give a clear and
complete formulation of the problems that need to be solved in order to
obtain a complete description of the deformation of a linearly elastic body.
Suppose such a body initially occupies a domain Ω ⊂ R

3 and that the
body has boundary Γ, which comprises nonoverlapping parts Γu and Γt

with Γ = Γ̄u ∪ Γ̄t. Suppose that the body force b(x, t) is given in Ω, the
displacement ū(x, t) is given on the part Γu of the boundary, and the
surface traction s̄(x, t) is given on the remainder Γt of the boundary, for
t ∈ [0, T ]. The initial values of the displacement and velocity are given
by u(x, 0) = u0(x) and u̇(x, 0) = u̇0(x). Then the initial–boundary value
problem of linear elasticity is the following: Find the displacement field
u(x, t) that satisfies, in Ω and for t ∈ [0, T ],

the equation of motion

divσ + b = ρü, (2.54)

the strain–displacement relation

ε(u) = 1
2

(
∇u + (∇u)T

)
, (2.55)

the elastic constitutive relation

σ = Cε, (2.56)
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the boundary conditions

u = ū on Γu and σn = s̄ on Γt, (2.57)

and the initial conditions

u(x, 0) = u0(x) and u̇(x, 0) = u̇0(x), x ∈ Ω. (2.58)

We may take the displacement vector field as the primary unknown, and
eliminate the stress and strain from the governing equations by substitu-
tion; this gives the equation of motion in the form

div (Cε(u)) + b = ρü. (2.59)

Similarly, the second boundary condition in (2.57) becomes

(Cε(u))n = s̄ on Γt. (2.60)

When the data are independent of the time, or when the data can be reason-
ably approximated as being time-independent, the initial–boundary value
problem becomes a boundary value problem. In this case the body force
b(x) is given in Ω, the displacement ū(x) is given on Γu and the surface
traction s̄ is given on Γt. The problem is now to find the displacement field
u(x) that satisfies the equation of equilibrium

divσ + b = 0 in Ω (2.61)

together with (2.55)–(2.57). As before, the stress can be eliminated from
this problem to give (2.59) with the right-hand side equal to zero.

The variational formulation of the boundary value problem for linear
elasticity, (2.61) and (2.55)–(2.57), will be discussed in Chapter 6, as well
as the question of well-posedness of this problem.

2.7 Thermodynamics with Internal Variables

The thermodynamic theory presented in Section 2.5 is not entirely ade-
quate for modeling the behavior of a wide range of phenomena. There are
situations involving chemically reacting continuous media, for example, in
which it is necessary to account for the individual reactions taking place.
This may be accomplished by adding to the conventional variables (tem-
perature, strain, and so on) a number of internal variables that represent
the degree of advancement of the various reactions.

A similar situation obtains in the case of elastoplastic media, the focus of
attention of this monograph. Whereas the theory of continuum thermody-
namics in its standard form, as presented in Section 2.5, is quite adequate
as a framework for the discussion of elasticity, and even of thermoelasticity,
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it is essential that hidden or internal variables be introduced in order that
the theory may serve as a basis for the mathematical description of elasto-
plastic material behavior. The characteristic features of plasticity will be
discussed at length in Chapter 3 and subsequent chapters. In this conclud-
ing section of Chapter 2 we extend the thermodynamic theory of Section
2.5 by presenting the theory of thermodynamics with internal variables in a
form that will suffice as a basis for the theory of plasticity later. The funda-
mental references here are those of Coleman and Gurtin [27] and Halphen
and Nguyen [49]; in addition, the survey article of Gurtin [47] is a good
source for further details, as is the text by Lemaitre and Chaboche [75].

The first and second laws of thermodynamics remain valid in their earlier
forms (2.42) and (2.45); here we are concerned with a constitutive theory
that will be an extension of that for elastic materials presented earlier. As
in that situation we specialize from the outset to isothermal processes in
which the temperature is constant and there is no heat flux.

Then we consider materials for which the Helmholtz free energy and
stress are given as functions of the strain and a set of m internal variables
ξ1, ξ2, . . . , ξm. Some of these may be scalars and some tensors, depending
on the application.

The constitutive equations are thus of the form

ψ = ψ(ε, ξ1, . . . , ξm), (2.62)
σ = σ(ε, ξ1, . . . , ξm). (2.63)

Unlike the case of elasticity, in which historical effects are irrelevant, the
above representations do not suffice for the case in which internal variables
are present, and it is necessary to add to this pair of equations an evolution
equation in which the rate of change of each of the ξi is given by an equation
of the form

ξ̇i = βi(ε, ξ1, . . . , ξm), 1 ≤ i ≤ m. (2.64)

Later we will adopt a specialized form of (2.64), but for now it is impor-
tant merely to note that such an equation is necessary to complete the
description of constitutive behavior.

As in Section 2.5 we assume that all functions appearing in (2.62)–(2.64)
are sufficiently smooth with respect to their arguments that as many deriva-
tives as required may be taken.

By introducing (2.62) and (2.64) in the reduced dissipation inequality
(2.45) we find that (

∂ψ

∂ε
− σ

)
: ε̇ +

∂ψ

∂ξi
: ξ̇i ≤ 0. (2.65)

In view of the arbitrariness of the rate of change ε̇ appearing in (2.65) we
conclude that

σ =
∂ψ

∂ε
. (2.66)
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We now introduce the thermodynamic forces χi conjugate to ξi; these are
defined by

χi = − ∂ψ

∂ξi
, 1 ≤ i ≤ m. (2.67)

Then, taking account of (2.66) we see that

χi : ξ̇i ≥ 0. (2.68)

The inequality (2.68) will play a major role later in the construction of a
constitutive theory for plastic materials. The left-hand side may be inter-
preted as a rate of dissipation due to those internal agencies modeled by the
internal variables; indeed, we have here a quantity that is a scalar product
of force-like variables (χi) with the rate of change of strain-like variables
(ξi). Under these circumstances (2.68) declares that the dissipation rate
due to internal agencies is nonnegative.



3
Elastoplastic Media

In this chapter we begin to look at the features that characterize elasto-
plastic materials and at how these physical features are translated into a
mathematical theory. The theory has grown slowly during this century,
with the impetus for development coming alternately from physical under-
standing of such materials and from insight into how the physical attributes
might be modeled mathematically. We will eventually arrive, towards the
end of this chapter, at a theory that is now regarded as classical and that
incorporates all the main features of elastoplasticity. This theory may be
further generalized, and placed in a unifying framework, if the ideas and
techniques of convex analysis are employed. While the entire theory could
easily have been developed ab initio in such a framework, we have cho-
sen instead to focus first on giving a clear outline of the main features of
the mathematical theory, without introducing any sophisticated ideas from
convex analysis. In this way, we hope that the connection between physical
behavior and its mathematical idealization may be more readily seen. Once
such a theory is in place, the business of abstraction and generalization,
using the tools of convex analysis, may begin.

3.1 Physical Background and Motivation

It is perhaps useful to begin by summarizing briefly what is understood
by linearly elastic behavior. The details were discussed at some length in
Chapter 2; briefly, one might say that elastic materials are those for which



42 3. Elastoplastic Media

the stress is completely determined by the strain, and vice versa. For linear
elasticity, furthermore, the relation between the stress and the strain is
linear.

To illustrate the fundamental features of elastoplastic materials, we con-
sider for simplicity a situation of uniaxial stress in a body; that is, σ ≡ σ11
is nonzero, while all other components of the stress are zero. Such a sit-
uation would apply in the case of a thin rod to which is applied at each
end, and acting in opposite directions, a force per unit area of intensity σ
(Figure 3.1(a)). In this idealized situation the stress does not depend on
the position. Alternatively, one might prefer to consider a situation of uni-
axial stress in which stress is a function of position, and for the purpose of
developing a constitutive theory we then consider the relationship between
stress and strain at a fixed but arbitrary point in the body.

Suppose that the graph of stress σ versus strain ε ≡ ε11 is plotted in
order to record the history of behavior during a program of loading. For
example, if the force acting on the rod is gradually increased, we will have
a corresponding change of length in the rod, and therefore a corresponding
increase in strain. For an elastoplastic material it will be observed that up to
a value σ0, say, of stress, the material behaves in a linearly elastic fashion. If
the applied force, and hence also the stress, is increased further, behavior
deviates from the linear relation in the manner shown in Figure 3.1(b);
various possibilities may arise here, but a common feature, particularly
of metals, is that there is a decrease in the slope of the curve of stress
versus strain. This slope will continue to decrease, and eventually a variety
of phenomena may take place. For example, the material may rupture,
at which point the experiment will necessarily be regarded as concluded.
Alternatively, the slope may reach a value of zero, after which it becomes
negative (Figure 3.1(c)). Yet another alternative is that the curve has a
point of inflection, after which the slope begins to rise again (Figure 3.1(d)).
All of these features, and others yet, are important, the importance of any
particular feature depending on the application in question and on the
range of stress that is expected to be experienced. The situation in Figure
3.1(b), in which the curve continues to rise, albeit at a slope less than that
when σ < σ0, is known as hardening behavior. The situation shown in
Figure 3.1(c) for strains greater than ε̄, in which the slope is negative, is
known as softening. This behavior is encountered in materials such as soil
and concrete, both of which may be modeled adequately as elastoplastic
materials. The kind of stiffening behavior shown in Figure 3.1(d) is seen
in the stress–strain curves of some metals. The stress σ0 is known as the
initial yield stress; it is the threshold of elastic behavior reached from a
state of zero stress and zero strain.

To some extent the curves in Figure 3.1 are idealizations of what one
would actually encounter in practice, in the sense that some local features
may be absent. Consider, for example, the stress–strain curve of mild steel,
shown in Figure 3.2(a). This curve exhibits the following features. First,
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Figure 3.1: (a) An elastoplastic rod in uniaxial tension; (b) stress–strain
behavior showing hardening; (c) stress–strain behavior showing hardening
and softening; (d) stiffening in the plastic range
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Figure 3.2: (a) The stress–strain curve for mild steel, and (b) its perfectly
plastic idealization

there is the linearly elastic region, represented by the section OA of the
curve. There is then a sharp and sudden drop in stress, after that the curve
has a slope that is barely discernible from zero. This is the section BC
of the curve. Hardening behavior then ensues (CD), followed by softening
(DE) and, eventually, rupture. A theory that attempts to incorporate all
of these features will necessarily be complex, with little consequent reward.
Certainly, a feature such as section AB of the curve may be omitted from
a model without impairing to any significant degree the viability of the
resulting theory. Furthermore, in some applications of practical interest
the observed behavior would not include that corresponding to the point C
and beyond of the stress–strain curve. For such applications, it is natural
to replace the curve of Figure 3.2(a) by the idealized curve of Figure 3.2(b).
This is the case of perfect plasticity , in which zero hardening occurs or is
assumed to occur.

Similar behavior will be observed if the sense of the applied forces is
changed so that the stress is compressive (σ < 0). In this case the strain is
also negative, and a typical response would be that shown in Figure 3.3(a).
Variants, corresponding to the different features shown in Figures 3.1(b),
(c), and (d), also occur. The response in compression does not necessarily
mirror that in tension; the initial compressive yield stress (−σ′

0) may differ
in magnitude from the tensile yield value σ0, and the nature of the curve
for σ < −σ′

0 may also differ from the corresponding part for σ > σ0 of the
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Figure 3.3: (a) Behavior in tension and compression; (b) the path-
dependence of plastic behavior

curve in tension. In other words, the function σ(ε) is not necessarily an odd
one.

The above considerations illustrate clearly the nonlinearity inherent in
plastic behavior. The next feature that we introduce is that of irreversibil-
ity, or path-dependence. By this it is meant that unlike the case of elasticity,
the state of stress does not revert to its original state upon removal of ap-
plied forces. Instead, it is observed that a reversal in the stress takes place
elastically . This is illustrated in Figure 3.3(b). If the direction of loading is
reversed at σ1 > σ0, the path followed is not the original curve (if this were
the case, we would in fact merely have nonlinearly elastic behavior); rather,
the material behaves elastically, and the path followed is the straight line
BC having slope E, the same slope as that of the line segment OA. This
phenomenon is known as elastic unloading . Elastic behavior continues until
the new yield stress −σ′

1 is reached, after which the curve CD would be
followed if the stress were to be decreased further. We thus have an initial
elastic range, that is, σ ∈ (−σ′

0, σ0), which includes the unstressed, unde-
formed state (the origin). We also have subsequent elastic ranges, such as
the interval (−σ′

1, σ1), that are reached only as a result of plastic deforma-
tion having taken place.

It is the feature of irreversibility that sets an elastoplastic material apart
from an elastic one; the nonlinear behavior described before is not a feature
peculiar to plastic materials, since nonlinearly elastic behavior is possible,
and indeed common. But the feature of irreversibility implies that we no
longer have a one-to-one relationship between stress and strain. In order to
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Figure 3.4: Dependence of the stress–strain response on the rate of loading

know the state of stress corresponding to a given strain it is necessary to
know the history of loading, as Figure 3.3(b) illustrates.

A further feature of elastoplastic behavior that we will incorporate in
the general theory is that of rate-independence. To see what this implies,
consider once again the situation that gives rise to the stress–strain curve of
Figure 3.1(b), but suppose this time that the experiment is repeated a few
times, the force being applied at a different rate each time. It is found that
the elastic response is unchanged, while the response in the plastic range
(when σ > σ0) differs, in a manner shown in Figure 3.4. We will neglect
this feature of rate-dependence, thereby restricting the theory either to
those materials in which rate-dependence is not a significant phenomenon,
or to those situations in which processes occur at rates sufficiently low that
rate-dependent effects can be neglected.

The mechanical behavior that we characterize as plastic is very different,
at the microstructural or crystalline level, from elastic behavior. It is not
appropriate to go into the details here except to point out that at such
a level, elastic behavior arises from the deformation of crystal lattices,
whereas plastic behavior is typically characterized by irreversible slipping
occurring along preferred glide planes. In the plastic range both of these
kinds of deformation take place, so that the total strain is made up of an
elastic and a plastic component. In other words, we may decompose the
strain additively, as shown in Figure 3.5, into an elastic component e and
a plastic component p: ε = e + p. The elastic part of the strain is given,
as before, by Hooke’s law; that is, e = σ/E. The matter of finding the
plastic component is an issue that we still have to address. It is clear, of
course, from the irreversible nature of plastic behavior that it is unrealistic
to expect to have a relationship of the form σ = σ(p) or p = p(σ), since
such a relation takes no account of the stress history. Instead, we resolve
the question of the plastic constitutive relation by seeking an expression for
the plastic strain rate. In particular, we pose the question in the following
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Figure 3.5: Decomposition of the strain into elastic and plastic parts

way: Given the state of stress and the history of behavior of the material
point, express the plastic strain rate as a function of the stress and of the
history. The motivation for such an approach may be seen from Figure
3.3(b): At σ = σ1 the plastic strain rate will be nonzero only if the stress
increases. If the stress decreases, so that we have elastic unloading, then
elastic behavior takes place, and the plastic strain rate is consequently zero.

Suppose then that we follow the curve OAB in Figure 3.3(b). At the
point B the region of elastic behavior is the interval (−σ′

1, σ1). Thus a
decrease in stress at B will lead to elastic behavior along the straight line
BC. This is known as elastic unloading . On the other hand, if the stress is
increased at B or decreased at C, then plastic deformation will take place.
This behavior is known as plastic loading or plastic hardening . In other
words,

ṗ = 0 if

⎧⎨⎩ σ ∈ (−σ′
1, σ1)

or σ = σ1 and σ̇ < 0
or σ = −σ′

1 and σ̇ > 0,
(3.1)

and

ṗ =
σ̇

h
if
{

σ = σ1 and σ̇ > 0
or σ = −σ′

1 and σ̇ < 0. (3.2)

Here h, a measure of the degree of hardening, is a positive scalar that de-
pends on the history. In the simple example considered here the hardening
constant is defined by

1
h

=
1
ET

− 1
E
,

where E is Young’s modulus, the slope of the elastic curve, and ET is the
slope of the stress–strain curve at σ = σ1 in Figure 3.3(b).

Equation (3.2) does not hold for the limiting case ET → 0 of a perfectly
plastic material. For this case, the plastic strain rate is nonzero, but its
value has to be determined by other considerations.
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3.2 Three-Dimensional Elastoplastic Behavior

We now embark on the task of constructing a theory of elastoplasticity
for arbitrary three-dimensional behavior, by generalizing in an appropriate
way those features of plasticity that were discussed in the last section in
the context of the one-dimensional situation. There will be other features
as well that are absent when a one-dimensional problem is considered and
that will have to be incorporated here.

Isothermal behavior. While thermal effects are important in certain
practical situations, the theory of elastoplastic behavior can be developed
fully in an isothermal context, that is, one in which it is assumed that no
temperature changes take place and no flow of heat occurs. We will assume
throughout for convenience that isothermal conditions obtain, so that tem-
perature will not be a variable in the theory that is being developed.

Rate-independence. As mentioned in the previous section, it is gener-
ally the case that plastic behavior is rate-dependent: The response of the
material depends on the rate at which the process takes place. There is
a wide range of materials, however, that respond in an essentially rate-
independent fashion for slow processes, and there is likewise a wide range
of practical situations in which such slowly varying processes occur. This
type of behavior is called quasistatic: In addition to the rate-independence
of the material, the rate at which deformation takes place is sufficiently low
for the inertial term in the equation of motion (2.16) to be neglected. We
will develop a theory of plasticity for quasistatic situations in which the
material is assumed to be rate-independent. The appropriate extension to
rate-dependent behavior is the theory of viscoplasticity (see, for example,
[75, 80, 114] for accounts of viscoplasticity).

The primary variables. We begin by deciding on the primary variables
in terms of which the theory will be constructed. The variables required
for a complete description of material behavior are essentially of two kinds:
kinematic or geometric variables, and force- or stress-like variables.

The first kinematic variable of interest is the strain ε, which characterizes
the local deformation. We will show shortly that the total strain can be
decomposed into two parts: the elastic strain e, due to the elastic behavior
of the material point, and the plastic strain p, which characterizes the
irreversible part of the deformation. The elastic and plastic strains, like the
total strain, are symmetric second-order tensors.

In addition to these variables we need kinematic quantities that will ac-
count for the internal restructuring that takes place during plastic behavior.
For this purpose it is convenient to introduce a set of internal variables,
denoted collectively by ξ = (ξi)mi=1. These internal variables characterize
features such as hardening, and may be scalars or tensors. The theory of
thermodynamics rules out internal variables that are vectors (see [27], page
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610), and we will therefore exclude right from the outset vectorial internal
variables. Certainly, this does not cause any problems with regard to ad-
equate modeling of physical behavior, since there are no vectorial internal
variables that come to mind.

The precise role of the plastic strain in the internal variable theory will
become clear shortly; in particular, it will be seen that it would be prema-
ture to assume the plastic strain to be one of the internal variables, since
the additive decomposition of the strain, and the existence of the plastic
strain, follow as consequences of the thermodynamics of internal variables.
There are instances, though, in which it happens that the plastic strain can
be identified with one of the internal variables; one such example is that of
linear kinematic hardening (see Section 3.4).

Whether or not internal variables are required will depend on the partic-
ular features that one would wish to incorporate in the theory. An obvious
example is hardening behavior, which is conveniently characterized through
an appropriate choice of internal variables. Other possibilities also exist (see
[75], page 60).

The stress-like variables are of two kinds: the stress σ, and a set χ =
(χi)mi=1 of internal forces that are generated as a result of the internal re-
structuring that occurs during plastic deformation. Clearly, the intention is
that these internal forces be conjugate to the internal variables ξ = (ξi)mi=1
in the same way in which the stress is a quantity conjugate to the strain,
in the sense that the quantity (internal force) × (rate of change of inter-
nal variable) gives a rate of work done, or one of dissipation. The precise
relationship between the conjugate forces and the kinematic variables will
become clear when we carry out this development in the framework of
thermodynamics with internal variables, as set out in Section 2.7.

For convenience we will set Σ = (σ,χ), and this (m + 1)-tuple will be
known as the generalized stress, while we will refer to the (m + 1)-tuple
P ≡ (p, ξ) as the generalized plastic strain. Thus Σ and P are conjugate
in the sense that the product Σ : Ṗ ≡ σ : ṗ + χi : ξ̇i represents the rate
of dissipation due to plastic deformation; this product will be of particular
significance later.

Thermodynamic considerations. As was discussed in Section 2.7, for
elastoplastic materials it is sufficiently general to consider the free energy
and the stress to be given as functions of the total strain and the set of
internal variables. The constitutive equations are thus of the form

ψ = ψ(ε, ξ), (3.3)
σ = σ(ε, ξ). (3.4)

We will in fact show later that the decomposition of strain into elastic and
plastic parts may be deduced from the theory presented here, and that the
free energy can equivalently be written as a function of elastic strain and
internal variables.
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To complete the specification of the constitutive equations it is also nec-
essary to express the evolution of the internal variables as functions of the
dependent variables, that is,

ξ̇ = β(ε, ξ). (3.5)

Returning once again to Section 2.7 we see that as a consequence of the
second law of thermodynamics, the stress is given by

σ =
∂ψ

∂ε
. (3.6)

Furthermore, the internal forces χ introduced earlier are now defined to be
those quantities conjugate to the internal variables in the sense that

χi = − ∂ψ

∂ξi
, i = 1, . . . ,m. (3.7)

Alternatively, the internal forces may enter the second law directly by rec-
ognizing that the scalar quantity χi : ξ̇i represents internal dissipation.
Either way, the reduced dissipation inequality now becomes

χi : ξ̇i ≥ 0. (3.8)

Additive decomposition of strain. We show next how it is possible,
in the present framework, to deduce from thermodynamic considerations
the decomposition of the strain into its elastic and inelastic parts. The
approach followed is similar to that in [80].

We begin by temporarily replacing the strain by the stress as an indepen-
dent variable in the constitutive description. This is achieved by introducing
the Gibbs free energy h, which is defined through a Legendre transformation
by the formula

h(σ, ξ) = σ : ε− ψ.

Then the relation conjugate to (3.6) is

ε =
∂h

∂σ
. (3.9)

If we set A = ∂ε/∂σ and Bi = ∂ε/∂ξi, then the strain rate is given by

ε̇ = Aσ̇ + Biξ̇i. (3.10)

Now, it is known (see, for example, [80]) that for crystalline solids the elastic
compliance A is insensitive to irreversible processes, so that its dependence
on ξ may be neglected. That is, A = A(σ), and it follows that Bi = Bi(ξ),
1 ≤ i ≤ m, since

0 =
∂

∂ξi

∂ε

∂σ
=

∂

∂σ

∂ε

∂ξi
=

∂Bi

∂σ
.
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Thus the strain may be decomposed additively in the form

ε = e(σ) + p(ξ), (3.11)

where the elastic strain e depends only on the stress, while the plastic
strain p is a function only of the internal variables. These strains are given
by the formulae

e(σ)(t) =
∫ t

0
A(σ(s))σ̇(s) ds ≡

∫ σ(t)

0
A(σ) dσ

and

p(ξ)(t) =
∫ t

0
B(ξ(s))ξ̇(s) ds ≡

∫ ξ(t)

0
B(ξ) dξ.

In the case where A is independent of σ, the elastic strain is given as a
function of stress by (2.30), that is,

e = Aσ or σ = Ce, (3.12)

and we see that the fourth-order compliance tensor A is the inverse of the
elasticity tensor C.

Free energy as a function of elastic strain and internal variables.
Since (3.9) and (3.11) imply that

∂eij
∂σkl

=
∂εij
∂σkl

=
∂εkl
∂σij

=
∂ekl
∂σij

,

it follows from a theorem of multivariable calculus that a potential function
he(σ) exists such that

e =
∂he

∂σ
. (3.13)

This potential function in turn has the Legendre transform ψe(e) defined
by

ψe = σ : e− he

and with the property that

σ =
∂ψe

∂e
. (3.14)

Since σ : e = ψe(e) + he(σ), it now follows by the properties of Legendre
transformations that

h(σ, ξ) = σ : (e + p) − ψ(ε, ξ)
= he(σ) + σ : p(ξ) − ψp(ξ),
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where the inelastic part ψp of the free energy is given by

ψp(ξ) = ψ(ε, ξ) − ψe(e).

The function ψp indeed depends only on the internal variables, since

ε =
∂h

∂σ
=

∂he

∂σ
+ p(ξ) − ∂ψp

∂σ
,

whence it is seen that ∂ψp/∂σ = 0.
Summarizing, the Helmholtz free energy ψ and Gibbs free energy h may

be decomposed additively into elastic and plastic parts according to

ψ(ε, ξ) = ψe(e) + ψp(ξ) ≡ ψ̂(e, ξ), (3.15)
h(σ, ξ) = he(σ) + hp(ξ), (3.16)

where e = ε− p(ξ).
If we return to the second law (2.46) and this time use (3.15), then we

obtain (3.14) and are left with the reduced dissipation inequality in the
form

σ : ṗ + χi : ξ̇i ≥ 0, (3.17)

or, more concisely,

Σ : Ṗ ≥ 0, (3.18)

where the conjugate forces are now defined by

χi = − ∂ψ̂

∂ξi
= −∂ψp

∂ξi
, 1 ≤ i ≤ m. (3.19)

It is worth pointing out that (3.17) is not in conflict with (3.8), since the
internal forces χi are defined in two different ways: either by (3.7) or by
(3.19).

Example 3.1. To fix ideas, and to provide a concrete working example for
later developments, we give an example on what the free energy function
looks like for a very common case, namely, that corresponding to coupled
linear kinematic and linear isotropic hardening. Hardening has been dis-
cussed briefly in the previous section in the one-dimensional context and
will be treated in a little more detail later. Suffice to say for now that for this
case there are two internal variables, a tensor α corresponding to the back
stress in kinematic hardening and a nonnegative scalar γ that determines
expansion of the yield surface in isotropic hardening (the notion of the yield
surface will be introduced below, while kinematic and isotropic hardening
laws will be discussed in detail in Section 3.4). Thus we set ξ = (ξ1, ξ2),
ξ1 = α, and ξ2 = γ, while the conjugate forces are denoted by χ = (a, g).
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For the case in which the elastic behavior of the material is linear, the
elastic part of the Helmholtz free energy ψe necessarily has the form

ψe(e) = 1
2e : Ce, (3.20)

so that (3.14) gives

σ = Ce = C(ε− p), (3.21)

the generalized Hooke’s law.
For linear hardening behavior the plastic part of the Helmholtz free en-

ergy takes the form

ψp(α, γ) = 1
2k1|α|2 + 1

2k2γ
2, (3.22)

where k1 and k2 are nonnegative scalars associated with kinematic and
isotropic hardening, respectively. The conjugate forces are immediately ob-
tained from (3.19) and are

a = −k1α, (3.23)
g = −k2γ. (3.24)

�

Plastic incompressibility. The next postulate is one that has not been
discussed previously, since it is not one that manifests itself in an obvious
way in a one-dimensional situation. In metal plasticity it is observed that
changes in volume are almost exclusively of an elastic nature. That is, there
is no change in volume accompanying plastic deformation, so that following
the discussion leading to (2.10) in Section 2.1, we assume

trp = pii = 0. (3.25)

The elastic region and yield surface. We have seen earlier in the
discussion of one-dimensional behavior that at any stage there is a well-
defined (open) region of elastic behavior, and that values of stress outside
this range cannot be reached without plastic behavior taking place. In order
to see how to characterize this behavior in a multidimensional context,
consider the situation in which the stress–strain graph takes the form shown
in Figure 3.6(a); stress is an odd function of strain, and hardening takes
place at a constant rate, determined by the scalar h. Thus the initial elastic
range is the interval (−σ0, σ0). Furthermore, when elastic unloading takes
place at a stress σ1 (σ1 > σ0), the new elastic range is assumed to be
the interval (−σ0 + hp, σ0 + hp). This is an example of linear kinematic
hardening , which we will revisit in a more general context in Section 3.4.
In this situation there is a single internal variable ξ, so that the generalized
strain is P = (p, ξ), while the corresponding generalized stress is taken to be
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(b)

Σ1

(a)

σ σ

σ0

−σ0

σ0

−σ0

Σ2

pε

Figure 3.6: (a) Stress–strain curves for kinematic hardening; (b) the situa-
tion in generalized stress space

Σ = (σ, χ), where χ, known as the back-stress, represents the translation
of the initial elastic region in stress space. For this simple case of linear
kinematic hardening the back-stress is related to the plastic strain through
χ = −k1p, as we saw in the example earlier.

Now it is clear from Figure 3.6 that for any given value of plastic strain
p, the region of elastic behavior is the range of values of σ satisfying the
inequality |σ + χ| < σ0. Rewriting this in terms of components of the
generalized stress, we find that the elastic range is given by

|Σ1 + Σ2| < σ0.

This is the shaded area illustrated in Figure 3.6(b). The above discussion
may be summarized by saying that at all times, the generalized stress lies
in the closed set S (that is, the interior region plus its boundary) defined
by

S = {Σ = (Σ1,Σ2) : |Σ1 + Σ2| ≤ σ0}.

Purely elastic behavior takes place when Σ lies in the interior of S, while
plastic loading may take place only when Σ lies on the boundary of S.
Finally, the region exterior to the set S is not attainable.

The concept of a fixed region of admissible generalized stresses, though
illustrated in a rather simple context, is in fact a key ingredient of the theory
of plasticity. We now proceed to formalize this postulate. It is assumed
that at all times, the generalized stress lies in a closed, connected set S of
admissible generalized stresses. The interior of this set is called the elastic
region and is denoted by E . The boundary of S is denoted by B and is
known as the yield surface. The region Sc (the complement of the region
of admissible stresses) is not attainable.
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The significance of an elastic region is that purely elastic behavior takes
place when Σ ∈ E or when the generalized stress moves from B to the
interior of S. The latter behavior is known as elastic unloading . Plastic
behavior takes place only if Σ lies on the yield surface and continues to lie
on the yield surface; this is known as plastic loading .

The above discussion may be made easier if we assume momentarily that
we can describe the surface B and the elastic region E with the use of a
function φ: B = {Σ : φ(Σ) = 0} and E = {Σ : φ(Σ) < 0}. Then we make
the following assumptions about the rate of change of generalized plastic
strains:

Ṗ = 0 if

⎧⎨⎩
φ(Σ) < 0
or
φ(Σ) = 0 and φ̇ < 0;

(3.26)

Ṗ may be nonzero only if φ(Σ) = 0 and φ̇ = 0.

The requirement that

φ = φ̇ = 0 (3.27)

during plastic loading is known as the consistency condition.
It is convenient, particularly in practice, to consider the nature of the

projection of the yield surface onto the space of stresses. That is, we con-
sider the function φ(σ) ≡ φ(σ,χ) for fixed χ, as shown in Figure 3.7.

Now suppose that φ(σ,χ) = 0 and the stress rate is such that

∂φ

∂σ
: σ̇ > 0. (3.28)

Since for plastic loading we have

0 = φ̇ =
∂φ

∂σ
: σ̇ +

∂φ

∂χi

: χ̇i, (3.29)

it is clear that there has to be a corresponding change in the forces χ, and
consequently also in the projection of the yield surface in the stress space.
This therefore defines a new, or current, yield surface in the stress space
(see Figure 3.7 for the case where χ is a scalar). On the other hand, if
φ(σ,χ) = 0 and elastic unloading takes place, then by the definition of
elastic behavior there will be no change in the internal variables, nor in
the forces conjugate to these variables. Consequently, we will have, from
(3.26),

0 > φ̇ =
∂φ

∂σ
: σ̇, (3.30)

all χ̇ being zero. The yield surface in operation remains unchanged. In
Section 3.4, when we consider specific forms of hardening behavior, we will
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σ1

φ(σ, χ) = 0

φ̄(σ)|χ=χ1 = 0

φ̄(σ)|χ=0 = 0

σ2

φ(σ, 0) = 0

φ(σ, χ1) = 0

Figure 3.7: The yield surface φ(σ, χ) = 0 and its projection onto stress
space
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be able to give simple geometric interpretations to the manner in which the
surface φ = 0 changes under conditions of plastic loading. For completeness
it should be added that the defining feature of a perfectly plastic material
is that the elastic region, and hence also the yield surface, depends only
on the stress; we thus have φ(σ) = φ(σ) = 0. Plastic behavior takes place
when

0 = φ̇ =
∂φ

∂σ
: σ̇; (3.31)

geometrically, the stress moves around the yield surface during plastic de-
formation, and the yield surface in the stress space remains unchanged by
this behavior. Such a situation is known as neutral loading to distinguish
it from those situations, such as when hardening takes place, in which the
surface φ = 0 changes during the course of plastic deformation.

These ideas are also readily illustrated for the one-dimensional example
discussed earlier. Indeed, in Figure 3.3(b) the initial elastic region in the
stress space is simply (−σ′

0, σ0). But upon plastic loading it is seen that
the subsequent elastic region expands and becomes the interval (−σ′

1, σ1).
We will find it useful in subsequent developments to view elastic regions
and their associated yield surfaces in these two alternative forms: one, as
a fixed region in the space of generalized stresses, and two, as a region in
the space of stresses that can change.

Maximum plastic work. The final postulate that we require for a com-
plete theory of plasticity has its origins in the work of von Mises, Taylor,
and Bishop and Hill (see [80] for further details). The postulate of maxi-
mum plastic work, which can be justified on physical grounds by appealing
to the behavior of crystals undergoing plastic deformation, can be stated
as follows in its original form: Given a state of stress σ for which φ(σ) = 0
and a plastic strain rate ṗ associated with σ, then

σ : ṗ ≥ τ : ṗ (3.32)

for all admissible stresses τ , that is, stresses τ satisfying φ(τ ) ≤ 0.
This postulate may be stated in an alternative form by introducing the

rate of plastic work W (ṗ) = σ : ṗ associated with a plastic strain rate ṗ.
Then the postulate of maximum plastic work states that

W (ṗ) = max{τ : ṗ : φ(τ ) ≤ 0}.

The principle of maximum plastic work is a vital constituent of the theory
of plasticity. Depending on the viewpoint adopted, it may be treated as a
postulate, as has been the case here, or it may be obtained as a consequence
of an alternative postulate. The latter is a popular route, in which it is
common to take as a fundamental assumption the postulate on stability
due to Drucker; this is the route followed, for example, in [83] for the case



58 3. Elastoplastic Media

of nonsoftening materials. It can then be shown that maximum plastic work
follows from the stability postulate.

We will adopt the postulate of maximum plastic work in a more general
form, which incorporates the dissipation, or rate of plastic work, due to
the internal variables. First, we will assume that the zero generalized stress
Σ = 0 always belongs to S, the space of admissible or achievable generalized
stresses. Secondly, we extend the classical form of the principle of maximum
plastic work by postulating the following: Given a generalized stress Σ ∈ S
and an associated generalized strain rate Ṗ , the inequality

Σ : Ṗ ≥ T : Ṗ (3.33)

holds for all generalized stresses T ∈ S.
In particular, we see that (3.33) is in accord with the reduced dissipation

inequality (3.18), since we have, choosing T = 0 (recall that 0 ∈ S by
assumption),

Σ : Ṗ ≥ 0.

Consequences of the maximum plastic work inequality. There are
two major consequences of the maximum plastic work inequality. First, it
can be shown that the generalized plastic strain rate Ṗ associated with a
generalized stress Σ on the yield surface B is normal to the tangent hyper-
plane at the point Σ to the yield surface B. This result is generally referred
to as the normality law . In the event that the yield surface is not smooth,
the normality law states that Ṗ lies in the cone of normals at Σ. Second,
it can be shown that the region E (or S) is convex .

We will not attempt to give a rigorous proof of these two assertions here;
this will be left for Chapter 4, where the role of the maximum plastic work
inequality and its consequences can be seen more clearly with the theory
placed in a convex-analytic framework.

To obtain the normality law, here we consider the case that the yield
surface is smooth. Let Σ′ be a unit tangent vector lying on the tangent
hyperplane of the yield surface at Σ. Consider a sequence of generalized
stresses T = Σ + Σ′

ε that lie on the yield surface and have the property
that Σ′

ε → 0 and

Σ′
ε

‖Σ′
ε‖

→ Σ′ as ε → 0.

Then from (3.33) we have

Σ′
ε : Ṗ ≤ 0,

and thus,

Σ′
ε

‖Σ′
ε‖

: Ṗ ≤ 0.
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Ṗ

T

Σ + Σ′
ε

Σ

Σ′

Figure 3.8: Convexity of the yield region and the normality law

Taking the limit ε → 0, we get

Σ′ : Ṗ ≤ 0.

Since (−Σ′) is also a unit tangent vector, we have

−Σ′ : Ṗ ≤ 0.

Therefore,

Σ′ : Ṗ = 0

for any vector Σ′ tangent to the yield surface at Σ. Hence, Ṗ is normal to
the yield surface at Σ. To show that S is a convex set we must show that
S lies to one side of the tangent plane at any point Σ ∈ B, as shown in
Figure 3.8. Since Ṗ lies in the normal to the surface at Σ, we must show
equivalently that the scalar product (Σ − T ) : Ṗ for any T ∈ S is always
nonnegative; this is precisely (3.33).

With the normality law established, it is possible to express the general-
ized plastic strain rate in a useful form if the yield surface is smooth, that
is, if it has a well-defined gradient at each point. Since Ṗ lies parallel to
the normal to B at Σ, we may write

Ṗ = λ∇φ(Σ), (3.34)

where λ is a nonnegative scalar, called the plastic multiplier . This equation
may be further reduced by writing out separately the components corre-
sponding to p and ξi, in the form

ṗ = λ
∂φ

∂σ
, (3.35)

ξ̇i = λ
∂φ

∂χi

, 1 ≤ i ≤ m. (3.36)
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The conditions on λ may be given in succinct form through a complemen-
tarity condition; that is,

λ ≥ 0, φ ≤ 0, λ φ = 0. (3.37)

The last of conditions (3.37) expresses the fact that λ and φ are not si-
multaneously nonzero, while the first two conditions constrain the signs of
λ and φ. The last condition then implies that positive λ is possible only
when φ = 0, in which case plastic deformation takes place, while negative
φ implies that λ must be zero, in which case the plastic deformation rate
is zero.

Assume that at a certain time t0, the condition φ(t0) = 0 is satisfied.
Here, we use the notation φ(t) ≡ φ(Σ(t)). Since the generalized stress is
constrained by the condition φ ≤ 0 at all times, we must have φ̇(t0) ≤
0, assuming the derivative to exist. Furthermore, if φ̇(t0) < 0, then the
generalized stress has the tendency to move towards the interior of S, and
we have elastic unloading, so that λ = 0. Plastic loading, for which λ > 0,
may take place only if φ̇(t0) = 0. Summarizing, we have the consistency
condition:

When φ = 0, λ ≥ 0, φ̇ ≤ 0, λφ̇ = 0. (3.38)

Example 3.1 (continued). Returning to the example introduced earlier
for the case of perfect plasticity, if the yield function is given by

φ(σ) = Φ(σ) − c0 ≤ 0,

where c0 is a constant, then the extension to kinematic and isotropic hard-
ening entails the introduction of terms that describe translation and ex-
pansion of the yield surface (see Section 3.4). That is, the yield function
now becomes, with Σ = (σ,a, g),

φ(Σ) = Φ(σ + a) + g − c0 ≤ 0, (3.39)

so that the yield surface translates by an amount (−a) and expands by an
amount (−g). The flow law (3.35)–(3.36) becomes

(ṗ, α̇, γ̇) = λ(n,n, 1), (3.40)

where n = ∇Φ(σ +a). Thus we see that the kinematic hardening variable
α may be identified with the plastic strain p and the multiplier λ ≥ 0
with the rate of change of the internal variable γ characterizing isotropic
hardening. �

Summary of the equations of elastoplasticity. We are now in a
position to summarize in one place the equations for the initial–boundary
value problem for elastoplastic media. Since this exposition is confined to
rate-independent plasticity, which is a valid approximation in the case of
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processes occurring relatively slowly, it follows that the inertial term in
the equations of motion (2.16) will be negligible in such processes. This
term is therefore omitted. The resulting equations nevertheless describe
processes that are not static, and for this reason we refer to the behavior
that is modeled here as quasistatic, to emphasize that on the one hand it
is not dynamic in the conventional sense (so that the inertial term may be
omitted), yet time rates do appear in the governing equations. Thus the
problem that emerges is indeed an initial–boundary value problem. We now
summarize the variables and the equations of this problem:

Kinematic variables
displacement u
strain ε = 1

2

(
∇u + (∇u)T

)
plastic strain p
elastic strain e = ε− p
internal variables ξ = (ξ1, ξ2, . . . , ξm)
generalized plastic strain P = (p, ξ1, ξ2, . . . , ξm)

Dynamic variables
stress σ
conjugate forces χ = (χ1,χ2, . . . ,χm)
generalized stress Σ = (σ,χ1,χ2, . . . ,χm)

Scalar functions
free energy ψ(ε, ξ) = ψ̂(e, ξ)

= ψe(e) + ψp(ξ)
yield function φ(Σ)

Equilibrium equation
divσ + b = 0

Constitutive equations
σ = ∂ψe/∂e
χi = −∂ψp/∂ξi, 1 ≤ i ≤ m

Ṗ = λ∂φ/∂Σ
λ ≥ 0, φ ≤ 0, λ φ = 0
when φ = 0, λ ≥ 0, φ̇ ≤ 0, λ φ̇ = 0

3.3 Examples of Yield Criteria

The theory developed thus far gives very little indication of the nature of
yield criteria or, equivalently, of the elastic region. The aim of this section
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is to introduce a few concrete examples of yield criteria that are typical, as
well as important in practice.

The intention is to provide examples of the yield function φ(Σ). Since
most yield criteria for hardening materials are constructed by extending the
criteria that pertain to perfect plasticity, we begin in this section by looking
at yield criteria for this special case. The following section is devoted to
the extensions that are necessary in order to model hardening effects.

Now, in the case of perfect plasticity there are no internal variables ξ,
and hence no conjugate forces χ. There is thus no loss of generality in
replacing Σ by σ as the argument for the yield function φ.

The simplest yield criteria make use of the assumption of plastic isotropy.
When this is the case, it follows that the dependence of φ on σ is necessarily
through the scalar invariants of σ; for the definition of the invariants, see
Section 1.3. The assumption of plastic incompressibility permits a further
simplification: Since there is no change in volume accompanying plastic
deformation, the spherical part of the stress is assumed to have no influence
on the response in the plastic range. Thus instead of expressing φ as a
function of the stress invariants, it is possible to go one step further and
write φ as a function of the invariants of the stress deviator σD, defined in
(2.35) by

σD = σ − 1
3 (trσ)I. (3.41)

The first invariant, or trace, of any deviatoric tensor vanishes, so we may
now write

φ = φ(I2(σD), I3(σD)), (3.42)

where again the function φ and its value are denoted by the same symbol,
there being no danger of confusion.

The von Mises yield criterion. This is the simplest yield criterion.
It is based on the assumption that the threshold of elastic behavior is
determined by the elastic shear energy density

1
4µ

σD : σD =
1
4µ

tr (σD)2,

which is an alternative second invariant and is therefore denoted by

1
2µ

I ′2(σ
D),

where I ′2(σ
D) = 1

2 tr (σD)2. The threshold value at which plastic deforma-
tion occurs is determined by appealing to the one-dimensional situation: In
this case, with the axes aligned so that σ11 is the only nonzero component
of the stress, yielding will occur when σ11 = σ0, the initial yield stress in
tension, which is an easily determined quantity. It is readily found that in
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the one-dimensional case, I ′2(σ
D) = 2

3σ
2
0 . The von Mises yield criterion is

therefore given by

φ(σ) = I ′2(σ
D) − 2

3σ
2
0 = 0. (3.43)

In component form the expression reads
1
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

+ 6(σ2
12 + σ2

23 + σ2
13)

]
− σ2

0 = 0. (3.44)

This yield surface may be readily visualized by considering various special
cases in which the stress state is three-dimensional or less. For example,
if the axes are aligned locally with the principal axes of σ, then (3.44)
becomes

1
2

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
− σ2

0 = 0; (3.45)

this is the equation of a right circular cylinder of radius
√

2
3σ0 that is

inclined at equal angles to the three coordinate axes (σ1, σ2, σ3), as is shown
in Figure 3.9.

Another important special case is that of plane stress, for which σi3 = 0.
There are again three independent components of the stress, and (3.44)
becomes in this case

(σ2
11 − σ11σ22 + σ2

22 + 3σ2
12) − σ2

0 = 0. (3.46)

This is the equation of an ellipsoid relative to the axes (σ11, σ22, σ12).

The Tresca yield criterion. A significant feature of the von Mises yield
criterion is that the yield surface is smooth, so that all of the results in
Section 3.2, including for example the normality law, apply to this case.
However, yield surfaces need not be smooth, and there are in fact impor-
tant examples of yield surfaces that are piecewise smooth, in the sense that
they are made up of smooth manifolds whose intersections form corners,
or vertices. The Tresca yield criterion is one such standard example. This
criterion is based on the assumption that the elastic threshold is reached
when the maximum shear stress reaches a particular value. The assump-
tions of isotropy and plastic incompressibility are also made here. In terms
of the principal stresses, the maximum shear stress is given by

1
2 max

i �=j
|σi − σj |.

As with the von Mises yield condition, the threshold value is obtained
in terms of the yield stress in one-dimensional tension σ0; the maximum
shear stress in this case is obviously 1

2σ0, so that the Tresca yield surface
is defined by

φ(σ) = max
i �=j

|σi − σj | − σ0 = 0. (3.47)
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σ3

σ2

σ1

Figure 3.9: The von Mises and Tresca cylinders in principal stress space

von Mises

Tresca

σ1

σ2

Figure 3.10: The von Mises and Tresca yield surfaces in biaxial stress space
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Relative to the axes defined by the principal stress directions the yield
surface corresponding to the Tresca criterion is a right hexagonal prism
with its axis equally inclined to the three principal axes. The axis of the
prism thus coincides with that of the von Mises cylinder, and in fact the
cylinder circumscribes this hexagonal prism, as is shown in Figure 3.9. This
function can be expressed in terms of the second and third invariants of
σD:

φ(σ) = φ̃(I ′2(σ
D), I3(σD))

= 4I ′2(σ
D)3 − 27I3(σD)2 − 9σ2

0I
′
2(σ

D)2 + 6σ4
0I2(σ

D) − σ6
0 .(3.48)

A special case worth considering is that of biaxial stress, in which the only
nonzero principal stresses are σ1 and σ2; the yield surface (or rather, curve)
is obtained from the intersection of the surface in Figure 3.9 with the σ1-σ2
plane, and is shown in Figure 3.10. The circumscribing von Mises curve is
also shown in the figure.

Anisotropic yield criteria. In the absence of conditions of isotropy,
yield criteria obviously have a more complex form than those that have
been examined hitherto. In particular, it is no longer possible to express
such criteria as functions solely of scalar invariants. Here we give a brief
indication of the form taken by yield criteria for the general case in which
the material is anisotropic in the plastic range.

A typical example is a generalization of the von Mises yield criterion
(3.43), which assumes the form

φ(σ) = 1
2 σ : Dσ − k2 = 0, (3.49)

in which D is a fourth-order tensor possessing the symmetries

Dijkl = Dklij = Djikl. (3.50)

If the assumption of independence of mean stress is retained, then the yield
function must be invariant under additions of spherical tensors to the stress.
That is, we require that

φ(σ + αI) = φ(σ) ∀α ∈ R,

or

(σ + αI) : D(σ + αI) − σ : Dσ = 0 ∀α ∈ R.

Expansion and simplification of the left-hand side yields the condition

Dijkk = Diikl = 0, (3.51)

which must be satisfied by the components of D.
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A special case of the criterion (3.49) is that due to Hill, in which there
exist three mutually perpendicular planes of symmetry. If a basis is chosen
such that the three basis vectors are normal to the three planes of symme-
try, then the tensor D has only nine independent components (as opposed
to fifteen if it satisfies only (3.50) and (3.51)), and

σ : Dσ = D(σ22 − σ33)2 + B(σ11 − σ33)2 + C(σ11 − σ22)2

+ Dσ2
23 + Eσ2

13 + Fσ2
12,

where D1111 = B + C, D1122 = −C, D1133 = −B, and so on.

3.4 Hardening Laws

With some concrete examples of yield criteria available for perfectly plastic
materials, it is now a relatively straightforward matter to generalize to
the case of materials that experience hardening. In order to do this it
becomes necessary to include internal variables in the description of the
yield criteria, as has been indicated before.

Isotropic hardening. This type of hardening is characterized by a single
scalar internal variable, which is denoted here by γ. The corresponding
scalar conjugate force is denoted by g. It is generally the case that γ is
chosen to be some measure of accumulated plastic deformation. Two typical
choices are the total plastic dissipation Wp, defined by

Wp(t) =
∫ t

0
σ(τ) : ṗ(τ) dτ,

and the equivalent plastic strain p(t), a scalar measure of the total plastic
strain, defined by

p(t) =
√

2
3

∫ t

0
|ṗ(τ)| dτ.

The reason for the inclusion of the factor
√

2
3 in the definition of equiv-

alent plastic strain may be seen by appealing to the special case of one-
dimensional strain: When this is the case, symmetry and the fact that
trp = 0 leads to

ṗ =

⎡⎣ ṗ1 0 0
0 − 1

2 ṗ1 0
0 0 − 1

2 ṗ1

⎤⎦ .

It follows that
√

2
3 |ṗ| = |ṗ1|.
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An isotropic hardening yield criterion is one in which the yield function
takes the form

φ(Σ) = φ(σ, g) = Φ(σ) + G(g) −
√

2
3 σ0, (3.52)

where G(·) is a monotone increasing function satisfying G(0) = 0. There-
fore, as can be seen from (3.52), isotropic hardening amounts to the pro-
jection of the yield surface in the stress space expanding isotropically (in
the sense that it retains its original shape) by an amount that is deter-
mined by the function value G(g), and therefore by the amount of plastic
deformation that has already taken place, as shown earlier in Figure 3.7.

Since the free energy now has the form

ψ̂(e, γ) = 1
2e : Ce + ψp(γ),

the conjugate force g is determined as a function of γ from

g = −(ψp)′(γ). (3.53)

As an example, consider the case of the von Mises yield criterion with
isotropic hardening. In this situation the yield function becomes

φ(σ, g) = I ′2(σ
D) −

√
2
3σ0(1 − g).

If we set

ψp(γ) = 1
2k2γ

2

as before, then g = −k2γ, and the region of admissible stresses comprises
those pairs (σ, g) for which

I ′2(σ
D) ≤

√
2
3σ0(1 − g).

Thus, for example, in a situation of biaxial stresses the yield surface at any
time is an ellipse that is similar to the initial ellipse, or initial yield surface.
This is shown in Figure 3.11.

It is possible to accommodate more general forms of isotropic hardening,
in which the expansion of the yield surface depends nonlinearly on γ. For
example, suppose that ψp is given by

ψp(γ) = 1
2k2γ

2 + (k∞ − k3)(γ + β−1e−βγ) − k3γ,

where k2 > 0 as before and k∞ ≥ k3 > 0. Then

g(γ) = −k2γ + (k3 − k∞)(1 − e−βγ) + k3.

The meaning of the constants in these functions can be gleaned from the
one-dimensional situation, illustrated in Figure 3.12.
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k1p

A

B

C

Figure 3.11: Isotropic and kinematic hardening behavior: A is the initial
yield surface (k1 = k2 = 0), B is a subsequent yield surface after isotropic
hardening (k1 = 0, k2 �= 0), and C is a subsequent yield surface with
kinematic hardening (k1 �= 0, k2 = 0)

k∞

k2

γ

k3

−g(γ)

k3 + (k∞ − k3)[1 − exp(−βγ)]

Figure 3.12: A nonlinear isotropic hardening function
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Kinematic hardening. The nature of kinematic hardening has been de-
scribed briefly in Section 3.2; whereas isotropic hardening causes the initial
yield surface to undergo a homogeneous expansion, kinematic hardening is
characterized by a translation of the initial yield surface. The most com-
mon form is linear kinematic hardening, with which the name of Prager is
generally associated. In this case there is again a single internal variable α,
which is generally taken to be the plastic strain tensor p. The free energy
takes the form

ψ(e,p) = 1
2e : Ce + 1

2k1|p|2,

in which k1 > 0 is the hardening constant. The corresponding conjugate
force, denoted by a, is found to be

a = −k1p.

The yield function is obtained by introducing a translation into the stan-
dard or initial function. Thus

φ(Σ) = φ(σ,a) = Φ(σ + a).

For the von Mises yield condition, for example, the elastic region comprises
the set of generalized stresses for which

φ(σ,a) < 0 ⇐⇒ |σD + aD| <
√

2
3σ0.

The translation of the yield surface due to kinematic hardening is illustrated
in Figure 3.11.

It is not a simple matter to extend these ideas to the case of nonlinear
kinematic hardening. In fact, it is not possible to do this within the frame-
work constructed here. Instead, it would be necessary to turn to a model
encompassing a nonassociated flow law, in which there is an additional
scalar function ϕ(Σ), distinct from the yield function φ(Σ), which serves
as a potential for the rate of change of internal variables in the sense that

Ṗ = λ
∂ϕ

∂Σ
.

The form of the yield criterion remains unchanged, though, and is still
given by φ(Σ) = 0.

The extension of the standard theory to incorporate nonlinear kinematic
hardening in this way is not pursued here; a good reference on the topic is
the work by Lemaitre and Chaboche ([75], Sections 5.4.3 and 5.4.4).

Combined kinematic and isotropic hardening. There is no difficulty
in combining isotropic and kinematic hardening in a single model. When
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this is the case, there are two internal variables, the plastic strain p (assum-
ing that we deal with linear kinematic hardening) and the scalar internal
variable γ, and the free energy takes the uncoupled form

ψ(e,p, γ) = 1
2e : Ce + 1

2k1|p|2 + ψp(γ).

The conjugate forces are determined as functions of the internal variables
in the usual way as before, and the yield function now becomes

φ(σ,a, g) = Φ(σ + a) + G(g) −
√

2
3 σ0 ≤ 0.

The yield function may also contain parameters that determine the rela-
tive influence of kinematic and isotropic hardening. For example, one may
employ a function of the form

φ(σ,a, g) = Φ(σ + θa) + (1 − θ)G(g) −
√

2
3 σ0 ≤ 0

in which 0 ≤ θ ≤ 1. The value of θ then determines the extent of each of the
two forms of hardening and includes the limiting cases θ = 0 for isotropic
hardening only, and θ = 1 for kinematic hardening only.



4
The Plastic Flow Law in a
Convex-Analytic Setting

The previous chapter has been devoted to the presentation of the basic
theory of elastoplasticity in a fairly classical manner. While this theory
is adequate in its own right, it is highly advantageous from the point of
view of carrying out a mathematical and numerical analysis of the ensu-
ing initial–boundary value problem to recast the constitutive theory in a
convex-analytic framework. That will be the aim of this chapter.

We begin in Section 4.1 by collecting together some definitions and results
from convex analysis that are of relevance to later developments. Further
details, including proofs of results, may be found in Rockafellar [113] and
Ekeland and Temam [34]; the former monograph is concerned entirely with
convex analysis on finite-dimensional spaces, while the latter develops the
theory in an infinite-dimensional (topological vector) space context.

The first place in which we will need to draw on results from convex
analysis will be in Section 4.2, in which the elastoplastic initial–boundary
value problem is formulated. These results will be required in particular in
the formulation of the constitutive relations, which are idealized as point-
wise relations involving scalars, vectors, and tensors, so that the setting is
finite-dimensional. In later chapters, on the other hand, where variational
problems are discussed, results from infinite-dimensional convex analysis
will be required. Thus the review of basic results from convex analysis will
be carried out in an infinite-dimensional setting, with particular examples
from R

n being given where appropriate.
Basic results from functional analysis will be reviewed in the following

chapter. It will be necessary in this chapter to refer occasionally to some
concepts introduced there, but we will keep such references to a minimum.
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The reader interested only in the forms of the variational problems for
elastoplasticity and the analysis and discrete approximations of the varia-
tional problems may skip most of the material in this chapter. To be able
to follow later developments in this work, the reader needs to be familiar
with the three equivalent formulations of the flow law and the contents of
Examples 4.8 and 4.9.

4.1 Some Results from Convex Analysis

Let X be a normed vector space, with topological dual X ′, the space of the
linear continuous functionals on X. For x ∈ X and x∗ ∈ X ′ the action of x∗

on x is denoted by 〈x∗, x〉. In the finite-dimensional case, X ′ is isomorphic
to, and hence may be identified with, X. For example, the dual space of
the Euclidean space R

d may be identified with R
d itself, and the action

of a vector v ∈ (Rd)′ = R
d on u ∈ R

d is usually defined to be the scalar
product of the two vectors:

〈v,u〉 = v · u.

Examples of infinite-dimensional normed spaces and their duals—in par-
ticular, function spaces—will be given in Section 5.2.

Convex sets. Let Y be a subset of X. The interior and boundary of Y
are denoted respectively by int (Y ) and bdy (Y ). The subset Y is said to
be convex if

for any x, y ∈ Y and 0 < θ < 1, θx + (1 − θ)y ∈ Y. (4.1)

In other words, the subset Y is convex if and only if the line segment joining
any two points of Y lies entirely in Y .

The normal cone to a convex set Y at x, denoted by NY (x), is a set in
X ′ defined by

NY (x) = {x∗ ∈ X ′ : 〈x∗, y − x〉 ≤ 0 ∀ y ∈ Y }. (4.2)

The set NY (x) is indeed a cone, since for any x∗ ∈ NY (x) and any λ > 0,
λx∗ ∈ NY (x). When x ∈ int (Y ), we clearly have NY (x) = {0}, while
at least in a finite-dimensional context, for x ∈ bdy (Y ), NY (x) can be
identified with the cone of normals at x in the space X. These notions are
illustrated in Figure 4.1; in the figure, the boundary bdy (Y ) is smooth
at x, and the normal cone NY (x) degenerates to the one-dimensional set
spanned by the outward normals at x. At the nonsmooth boundary point
y, on the other hand, NY (y) is a nontrivial cone.

Convex functions. It will be convenient to allow functions to take values
of ±∞. Let f be a function defined on X, with values in R ≡ R ∪ {±∞},
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NY (x)

NY (y)

Y

y

x

Figure 4.1: The normal cone to a convex set

the extended real line. The effective domain of f , denoted by dom (f), is
defined by

dom (f) = {x ∈ X : f(x) < ∞}.

The epigraph of f , denoted by epi (f), is the set of ordered pairs in X × R

defined by

epi (f) = {(x, α) ∈ X × R : f(x) ≤ α}.

That is, the epigraph of f consists of the set of points that lie above the
graph of f .

The function f is said to be convex if

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) ∀x, y ∈ X, ∀ θ ∈ (0, 1). (4.3)

The function f is said to be strictly convex if the strict inequality in (4.3)
holds whenever x �= y. Here we follow the convention that ∞ + ∞ = ∞
and (−∞) + (−∞) = −∞, while an expression of the form ∞ + (−∞) is
undefined. We note that a function is convex if and only if its epigraph is
a convex set.

Some other properties of functions on a normed vector space, not particu-
larly related to convexity, will also be of relevance later and are summarized
here. The function f is said to be positively homogeneous if

f(αx) = αf(x) ∀x ∈ X, ∀α > 0,
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(a) (b) (c)

f(x0)

x0

Figure 4.2: Illustrations in one dimension of (a) a strictly convex function;
(b) a positively homogeneous function; and (c) a lower semicontinuous func-
tion

proper if

f(x) < +∞ for at least one x ∈ X and f(x) > −∞ ∀x ∈ X,

and lower semicontinuous (l.s.c.) if

lim inf
n→∞

f(xn) ≥ f(x) (4.4)

for any sequence {xn} converging to x. These definitions are illustrated in
Figure 4.2 for the case in which X = R. A continuous function is lower
semicontinuous, but the converse is not true.

It can be shown that f is l.s.c. if and only if its epigraph is closed and that
every proper convex function in a finite-dimensional space is continuous on
the interior of its effective domain.

A sequence {xn} in a normed space X converges weakly to an element
x ∈ X if and only if

lim
n→∞

〈x∗, xn〉 = 〈x∗, x〉 ∀x∗ ∈ X ′.

If X is a finite-dimensional space, then the concepts of weak and strong
convergence coincide. In Chapter 5 we will encounter the notion of weak
convergence in a normed space, and in the context of function spaces will
see the connection between this type of convergence and the convergence
of Fourier series (see Section 5.2). For now, what is of particular interest
is the notion of weak lower semicontinuity of a function. A function f is
weakly lower semicontinuous (abbreviated weakly l.s.c.) if the inequality
(4.4) holds for any sequence {xn} converging weakly to x. Obviously, a
weakly l.s.c. function is l.s.c. Conversely, we have a very useful result: If f
is convex and l.s.c., then it is weakly l.s.c.
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A function g : X → [0,∞] is called a gauge if

g(x) ≥ 0 ∀x ∈ X,

g(0) = 0, (4.5)
g is convex, positively homogeneous, and l.s.c.

We remark that the conventional definition of a gauge (see [113]) is that of
a function with all the above properties, excluding the lower semicontinuity.

For any set S ⊂ X, the indicator function IS of S is defined by

IS(x) =
{

0 x ∈ S,
+∞ x �∈ S,

(4.6)

and the support function σS is defined on X ′ by

σS(x∗) = sup{〈x∗, x〉 : x ∈ S}. (4.7)

If f is a function on X with values in R, the conjugate (often referred to
as the Legendre–Fenchel conjugate) function f∗ of f is defined by

f∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)}, x∗ ∈ X ′. (4.8)

From this definition it is easily seen that the support function is conjugate
to the indicator function:

I∗S = σS . (4.9)

Furthermore, if f is proper, convex, and l.s.c., then so is f∗, and in fact,

(f∗)∗ ≡ f∗∗ = f. (4.10)

In particular, if S is nonempty, convex, and closed, its indicator function
IS is proper, convex, and l.s.c. So for such a set S,

IS = σ∗
S = I∗∗S . (4.11)

Given a convex function f on X, for any x ∈ X the subdifferential ∂f(x)
of f at x is the (possibly empty) subset of X ′ defined by

∂f(x) = {x∗ ∈ X ′ : f(y) ≥ f(x) + 〈x∗, y − x〉 ∀ y ∈ X}. (4.12)

A member of ∂f(x) is called a subgradient of f at x. According to the
definition, when f(x) = +∞, ∂f(x) = ∅. In the context of functions on
R

d, if f is differentiable at x, then

∂f(x) = {∇f(x)}.

At a corner point (x0, f(x0)), the subdifferential ∂f(x0) is the set of the
slopes of all the lines lying below the graph of f and passing through the
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x0

f

∂f(x0)

Figure 4.3: Subgradient of a nonsmooth, convex function of a single variable

point (x0, f(x0)). This is illustrated in Figure 4.3. For the special case of
the indicator function it is evident from (4.2) that

∂IS(x) = NS(x) for x ∈ S. (4.13)

A result of fundamental importance in later developments is that for a
proper, convex, and l.s.c. function f ,

x∗ ∈ ∂f(x) iff x ∈ ∂f∗(x∗). (4.14)

We have the following results.

Lemma 4.1. Let f be a proper, convex, l.s.c. function on a normed space
X, and define

dom (∂f) ≡ {x ∈ X : ∂f(x) �= ∅}.

Then

(a) dom (∂f) �= ∅ and dom (∂f) is dense in dom (f);

(b) for any proper, convex, l.s.c. functions f and g on X,

∂f(x) = ∂g(x) ∀x ∈ X

if and only if

f = g + constant.
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Lemma 4.2. Let g be a gauge on a reflexive Banach space X. Define a
closed convex set K in X ′ by

K = {x∗ ∈ X ′ : 〈x∗, x〉 ≤ g(x) ∀x ∈ X}. (4.15)

Then

(a) g is the support function of K;

(b) the function g∗ conjugate to g is the indicator function of K:

g∗(x∗) =
{

0 x∗ ∈ K,
+∞ otherwise;

(c) K = ∂g(0);

(d) x∗ ∈ ∂g(x) ⇐⇒ x ∈ ∂g∗(x∗) = NK(x∗).

Maximal responsive relations. To set the stage for a complete specifica-
tion later of the flow law in three equivalent alternative forms, we introduce
and explore the properties of a particular multivalued map. Consider a cor-
respondence G : x → G(x) that associates with each x ∈ X a (possibly
empty) set in X ′.

Definition 4.3. (a) Let G be a map that associates with each x ∈ X a
set G(x) ⊂ X ′. The map G is said to be responsive if

0 ∈ G(0) (4.16)

and if for any x1, x2 ∈ X,

〈y1 − y2, x1〉 ≥ 0 and 〈y2 − y1, x2〉 ≥ 0 (4.17)

whenever y1 ∈ G(x1) and y2 ∈ G(x2).

(b) A responsive map G is said to be maximal responsive if there is no other
responsive map whose graph properly includes the graph of G. Equivalently,
G is maximal responsive if the condition

〈y1 − y2, x1〉 ≥ 0 and 〈y2 − y1, x2〉 ≥ 0 ∀ y2 ∈ G(x2), ∀x2 ∈ X (4.18)

implies that y1 ∈ G(x1).

Figure 4.4 illustrates a simple one-dimensional maximal responsive map.
The following theorem makes plain the significance of maximal responsive
maps in this context.

Theorem 4.4. [38] Let G be a multivalued map on X, with G(x) ⊂ X ′ for
any x ∈ X. Then the following statements are equivalent:
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G(0)

X

G(X)

0

Figure 4.4: An example of a maximal responsive map

(a) the mapping G is maximal responsive;

(b) there exists a gauge g on X such that

G(x) = ∂g(x) ∀x ∈ X.

Furthermore, when G is maximal responsive, it determines g uniquely,
and with the set dom (G) = {x ∈ X : G(x) �= ∅}, we have

g(x) =
{

〈x∗, x〉 ∀x∗ ∈ G(x), x ∈ dom (G);
+∞ ∀x �∈ dom (G).

(4.19)

Remark. The above theorem is similar in nature to results that connect
maximal cyclic monotone maps with the gradients of convex l.s.c. functions
(see, for example, [113], [130]).

Proof of Theorem 4.4. Assume first that the condition (b) holds. It
follows from Lemma 4.2(d) that

G(x) = {x∗ ∈ K : 〈x∗, x〉 ≥ 〈y∗, x〉 ∀ y∗ ∈ K}, (4.20)

since G = ∂g, where K is defined by (4.15). In particular, (4.17) holds.
Property (4.16) follows from the observation that 0 ∈ K = ∂g(0) (Lemma
4.2(c)). To show that G is maximal, consider any pair (x̄, x̄∗) such that

〈x∗ − x̄∗, x〉 ≥ 0 and 〈x̄∗ − x∗, x̄〉 ≥ 0 (4.21)

for all x ∈ X, x∗ ∈ G(x). We must verify that x̄∗ ∈ G(x̄). We have, from
the first part of (4.21) and the definition G(x) = ∂g(x), that

〈x̄∗, x〉 ≤ g(x) ∀x ∈ X,
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so that x̄∗ ∈ K. The second part of (4.21) then implies by (4.20) that
x̄∗ ∈ G(x̄), as required.

Conversely, suppose that (a) holds. We show that

G(0) ⊃ G(x) ∀x ∈ X. (4.22)

Consider any x and x∗ ∈ G(x). From (4.17),

〈x∗ − x∗, x〉 ≥ 0 and 〈x∗ − x∗, x〉 ≥ 0

whenever x∗ ∈ G(x). Hence the pair (0, x∗) has the property that

〈x∗ − x∗, x〉 ≥ 0 and 〈x∗ − x∗, 0〉 ≥ 0

whenever x∗ ∈ G(x), and so (0, x∗) could be added to the graph of G
without violating (4.17). Since G is maximal responsive, we must have
x∗ ∈ G(0), whence (4.22).

The above argument actually establishes that G(0) coincides with the
set

K = {x∗ ∈ X ′ : 〈x∗ − x∗, x〉 ≥ 0 ∀x ∈ X, x∗ ∈ G(x)}. (4.23)

This set is closed and convex, and contains 0, by property (4.16). From
(4.22) and (4.23),

x∗ ∈ G(x) ⇒ x∗ ∈ G(0) = K ⇒ x ∈ NK(x∗). (4.24)

Let g be the support function of K. Since g is the support function of a
closed convex set containing 0, it is a gauge ([113], Chapter 15), and

x∗ ∈ ∂g(x) ⇐⇒ x ∈ NK(x∗).

Moreover, ∂g is a responsive map. Furthermore, (4.24) implies that the
graph of G is included in the graph of ∂g. Inasmuch as G is maximal
responsive, we may conclude that G = ∂g, whence part (b).

To establish the uniqueness of g, we recall (Lemma 4.1) that two l.s.c.
proper convex functions have the same subdifferential if and only if they
differ by an additive constant. We fix this constant by the requirement that
g(0) = 0, thereby defining g uniquely.

To establish (4.19), we note that g is the support function of K, de-
fined by (4.15), so that from (4.20), g(x) = 〈x∗, x〉 when x∗ ∈ G(x). Since
dom (G) = dom ∂(G) = dom (D) (Lemma 4.1), we also have g(x) = +∞
when x �∈ dom (G), whence (4.19). �

Polar functions. It will be useful in discussing the admissible region in
the context of convex analysis to consider this region as a closed convex set
K whose boundary (the yield surface) is the level set of a convex function
g; that is, for some constant c0 > 0,

K = {x∗ ∈ X ′ : g(x∗) ≤ c0}.
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Figure 4.5: An illustration of the gauge gK corresponding to a set K ⊂ R

Given a closed convex set K, it is in fact possible to define g in such a way
that it is a gauge, so that epi (g) is a closed convex cone containing the
origin. Furthermore, this function g has a special relation to the support
function σK .

We define the gauge gK of the set K by

gK(x∗) = inf{µ > 0 : x∗ ∈ µK}, (4.25)

where µK = {µy : y ∈ K}. From Lemma 4.2(a) and (4.25), we see that
an alternative form for gK is

gK(x∗) = inf{µ > 0 : 〈x∗, x〉 ≤ µσK(x) ∀x ∈ X}. (4.26)

Note that gK(x∗) can take on the value +∞ (when x∗ �∈ µK for any µ > 0).
An illustration of the function gK is given in Figure 4.5. Now assume that
σK(x) = 0 if and only if x = 0. Then gK and σK are related by

gK(x∗) = sup
0�=x∈domσK

〈x∗, x〉
σK(x)

. (4.27)

In other words, we have the inequality

〈x∗, x〉 ≤ gK(x∗)σK(x) ∀x ∈ dom (σK), x∗ ∈ dom (gK). (4.28)

Let x∗ ∈ bdy (K). Then

sup
0�=y∈dom (σK)

〈x∗, y〉
σK(y)

= 1, (4.29)
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and the supremum is achieved when y = x, the conjugate to x∗ in the sense
of Lemma 4.2(d). Thus for x∗ ∈ K and x∗ ∈ ∂σK(x), x �= 0, we have

〈x∗, x〉 = gK(x∗)σK(x). (4.30)

Hence whereas IK and σK are conjugate in the sense of (4.9), the relation-
ships (4.28) and (4.30) define gK and σK as polar conjugates of each other;
gK is the polar function of σK , and we write gK = σ◦

K . Furthermore, just as
σ∗∗
K = σK , it can be shown that σ◦◦

K = σK (for this the lower semicontinuity
of σK is required).

This type of relationship between pairs of functions has also been inves-
tigated by Hill [59], who refers to such pairs as dual potentials.

The following result will allow us later to establish the normality law in
a form involving the yield function.

Lemma 4.5. Let g be nonnegative and convex, with g(0) = 0 and x a point
in the interior of dom (g) such that g(x) > 0. Set C = {z : g(z) ≤ g(x)}.
Then y ∈ NC(x) if and only if there exists λ ≥ 0 such that y ∈ λ∂g(x).

Remark. Lemma 4.5 appears in [113] as Corollary 23.7.1. Here we include
a simplified proof of the result following [38].

Proof of Lemma 4.5. First we assume that y ∈ λ∂g(x). From the defi-
nition of the subdifferential, we have

λ g(z) ≥ λ g(x) + 〈y, z − x〉 ∀ z ∈ X,

from which

〈y, z − x〉 ≤ λ [g(z) − g(x)] ≤ 0 ∀ z ∈ C,

since λ ≥ 0. Thus, y ∈ NC(x).
Conversely, assume that y ∈ NC(x). We need to show that there are

λ ≥ 0 and y0 ∈ X ′ such that

g(z) ≥ g(x) + 〈y0, z − x〉 ∀ z ∈ X. (4.31)

If y �= 0 and 〈y, z − x〉 = 0, then x ∈ bdy (C), and since C is convex,
z ∈ (intC)c, the complement of intC. Hence, g(z) ≥ g(x) and (4.31) holds.
Assume then that 〈y, z − x〉 < 0. For z ∈ X\C, we have g(z) − g(x) ≥ 0.
Thus (4.31) holds for any λ ≥ 0. Finally, suppose that z ∈ C. We see that

g(z) − g(x) − µ 〈y, z − x〉 =
{
g(z) − g(x)
〈y, z − x〉 − µ

}
〈y, z − x〉 ≥ 0,

provided that

µ > max{(g(z) − g(x))/〈y, z − x〉 : z ∈ C}.

The result follows with λ = µ−1. �
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Duality theory and a posteriori error analysis. Duality theory in
convex analysis is a powerful tool for the purpose of deriving a posteri-
ori error estimates for some problems and numerical procedures, includ-
ing regularization methods. We briefly review the general framework for
a posteriori error analysis presented in Han [50]. In Section 12.4 we will
use regularization methods to solve some variational problems arising in
plasticity; we will show there how the general framework discussed below
can be used to derive a posteriori error estimates for the solutions of the
regularized problems.

Let Z and S be two normed spaces, and Z ′ and S′ their dual spaces.
Assume that there exists a linear continuous operator F ∈ L(Z, S), with
dual F ∗ ∈ L(S′, Z ′). Let J be a function mapping Z × S into R, and
consider the minimization problem

inf
z∈Z

J(z, Fz). (4.32)

Recalling the definition (4.8), we see that the conjugate function of J is

J∗(z∗, s∗) = sup
z∈Z,s∈S

[〈z∗, z〉 + 〈s∗, s〉 − J(z, s)] ,

for z∗ ∈ Z ′, s∗ ∈ S′.
We have the following result ([50]).

Theorem 4.6. Assume that:

(a) Z is a reflexive Banach space, and S a normed space;

(b) the functional J : Z × S → R is proper, l.s.c., and strictly convex;

(c) there exists z0 ∈ Z such that J(z0, Fz0) < ∞ and s → J(z0, s) is
continuous at Fz0;

(d) J(z, Fz) → ∞ for any z ∈ Z such that ‖z‖Z → ∞.

Then the problem (4.32) has a unique solution y ∈ Z. If we define

D(y, z) = J(z, Fz) − J(y, Fy) (4.33)

for any z ∈ Z with J(z, Fz) < ∞, then

D(y, z) ≤ J(z, Fz) + J∗(F ∗s∗,−s∗) ∀ s∗ ∈ S′. (4.34)

In our application of the theorem later in Section 12.4, the problem (4.32)
is a variational inequality of the second kind (cf. Section 6.2, which provides
a brief introduction to elliptic variational inequalities), y is the solution to
the variational inequality, and we take z in (4.34) to be the solution of a
regularized problem. The auxiliary variable (the dual variable) s∗ appearing
in (4.34) will be suitably chosen from the relation satisfied by the solution
of the regularized problem. A positive lower bound, in terms of the “error”
‖y− z‖, will be established for the quantity D(y, z) defined in (4.33). Then
(4.34) will provide an a posteriori error estimate for the solution of the
regularized problem.
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4.2 Basic Plastic Flow Relations of Elastoplasticity

We now return to the subject of Chapter 3, where the equations governing
elastoplastic behavior were introduced, and show how these equations can
be recast in the framework of convex analysis. Naturally, the focus will be
on the yield criterion and flow law as summarized, for example, in (3.34)–
(3.38).

Recall from Section 3.2 that the convexity of the yield surface and the
normality law (3.34) were both obtained as consequences of the maximum
plastic work inequality. The argument used to arrive at these properties was
somewhat heuristic, though, but the results presented in the last section,
particularly Lemma 4.2 and Theorem 4.4, will not only provide a means
of establishing those same results in a more rigorous fashion, but will also
allow us to derive results of greater generality. Specifically, the restriction
to smooth yield surfaces will be dropped, and furthermore, we will be able
to derive various alternatives to the standard form of the plastic flow law.

In this section it will be convenient to equate X with the set of generalized
plastic strain rates. Recall that a generalized plastic strain is of the form
P = (p, ξ), where p is the plastic strain and ξ the set of internal variables.
Thus, in referring to the results in Section 4.1, it is useful to make the
substitution

x ←→ Ṗ .

Likewise, we equate X ′ with the set of generalized stresses Σ = (σ,χ),
where χ is the set of thermodynamic forces, and make the association

x∗ ←→ Σ.

Suppose, then, that the yield surface constitutes the boundary of a closed
region K. We refer to the interior of this set as the elastic region. Likewise,
as in Section 3.2, the set K may be represented in the form

K = {Σ : φ(Σ) ≤ 0},

so that the yield surface is the set of points Σ that satisfy φ(Σ) = 0, while
the elastic region is given by the set of points Σ for which φ(Σ) < 0.

Against this background, we now return to Theorem 4.4 and to the no-
tion of maximal responsiveness. Let G be a responsive map having as its
values subsets of X ′. Then the condition (4.16) implies that the set of
thermodynamic forces corresponding to zero generalized plastic strain rate
contains the zero generalized stress. Relation (4.17), on the other hand,
is a generalization of the maximum plastic work inequality (3.33); indeed,
for the case of perfect plasticity, (4.17) becomes, by an obvious change of
notation,

(σ0 − σ1) : ṗ0 ≥ 0 and (σ1 − σ0) : ṗ1 ≥ 0



84 4. The Plastic Flow Law in a Convex-Analytic Setting

whenever σ0 ∈ G(ṗ0) and σ1 ∈ G(ṗ1), and comparison with (3.32) estab-
lishes the relationship between these two sets of conditions.

Figure 4.4 in the last section shows a simple example of a maximal re-
sponsive map, of the kind that occurs in perfect plasticity.

Given the close relationship between the notion of responsiveness and
the maximum plastic work inequality, it is natural to enquire as to the
conditions under which one may deduce from responsiveness properties the
convexity of the yield surface and the normality rule, in the same way
as these properties follow from the maximum plastic work inequality. The
answer lies in Theorem 4.4 read together with Lemma 4.2: We see there
that maximal responsiveness implies the existence of a closed convex set K
of achievable values of the generalized stress, and furthermore, it implies
also a generalized normality rule in the sense that

Ṗ ∈ NK(Σ). (4.35)

But Theorem 4.4 goes much further than this, in that it implies the equiv-
alence between the formulation (4.35) and the formulation

Σ ∈ G(Ṗ ). (4.36)

Since

Σ ∈ int (K) =⇒ NK(Σ) = {0},

we see from (4.35) that in the elastic region, Ṗ = 0.
To summarize, the existence of a maximal responsive map on X is equiv-

alent to the existence of a convex elastic region and the normality law.
We turn next to the function g that appears in Lemma 4.2. In the context

of plasticity this function, the support function of K, is known as the
dissipation function, and is denoted by D. Thus we have the association

g ←→ D

in Lemma 4.2. The nomenclature arises from the use of the definition (4.7),
which gives

D(Ṗ ) = sup{T : Ṗ : T ∈ K} = Σ : Ṗ , (4.37)

say, in which Σ is the point at which the supremum is achieved, and the
term on the extreme right-hand side is the rate of plastic work, or dissipa-
tion.

The Legendre–Fenchel conjugate D∗ is the indicator function of the set
K of admissible generalized stresses, and part (d) of Lemma 4.2 implies
that (4.35) is equivalent to the condition

Σ ∈ ∂D(Ṗ ). (4.38)
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D(x)

∂D(0) = G(0)
x

Figure 4.6: The support function D corresponding to the map G in Figure
4.4

The connection between the support function D and the maximal respon-
sive map is then made via Theorem 4.4.

Returning to the example shown in Figure 4.4, Figure 4.6 shows the
support function corresponding to G, as well as the relationship

G = ∂D. (4.39)

This equation identifies D as a pseudopotential for Σ (see [94, 95]).
The rich structure embodied in the theory of Section 4.1 therefore per-

mits three equivalent formulations of the flow law in plasticity:

G maximal responsive,
Σ ∈ G(Ṗ )

(I)

�

D convex, positively homogeneous, l.s.c.,
D(Ṗ ) ≥ 0, D(0) = 0, (II)
Σ ∈ ∂D(Ṗ )

�

K closed, convex, contains 0,
D∗ = indicator function of K, (III)
Ṗ ∈ ∂D∗(Σ) = NK(Σ).

Here G = ∂D.
The formulation (III) is well known, and goes back to Moreau [94]. For-

mulation (II) is sometimes mentioned as a consequence of (III). Formulation
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(I) was presented for the first time in [38], though it has some connection
with the works of Rice [112] and Hill [59].

These three formulations show clearly the minimal assumptions that need
to be made if an acceptable classical theory of plasticity is to emerge. In
particular, we see that (I) and (II) do not require the assumption of an
elastic region and a yield surface: These are consequences.

Practical considerations would dictate which of these formulations would
be most appropriate for the problem at hand. For example, (III) is the most
often used, and in fact has been the goal of the theory developed in Chapter
3. Formulation (II) has been used in [19, 36, 84, 86]; we will see later that
it leads to a variational formulation of the initial–boundary value problem,
which can be regarded as the natural extension of the corresponding dis-
placement problem for linear elasticity. Formulation (I) has limitations in
that it is not simple or natural to formulate evolution equations in this form,
except perhaps for problems posed in one dimension. The major benefit of
(I), though, is that it resolves the issue of how much information needs
to be added to the assumption of the maximum plastic work inequality in
order for this inequality to form the basis of an internal variable theory of
plasticity.

Polar functions: the relationship between the yield and dissipa-
tion functions. We turn now to the discussion of polar functions in
Section 4.1 and to the consequences of polar relationships in plasticity.
From (4.25) we see that it is possible to define a gauge g (the subscript
K is omitted without any ambiguity) corresponding to which the region of
admissible stresses may be expressed in the form

K = {Σ : g(Σ) ≤ c0}. (4.40)

The function g thus defined is just one possible representation of the yield
function, albeit an important one, in that it is the representation corre-
sponding to which the yield function is a gauge. To distinguish this from
other representations, we refer to the gauge g as the canonical yield func-
tion. It is defined by

g(Σ) = inf{µ > 0 : Σ ∈ µK}, (4.41)

which also makes it clear that every yield surface can be represented by a
gauge. We use distinct symbols here and henceforth to distinguish between
an arbitrary representation (f) of a yield surface and its representation by
means of the canonical function (g).

Assume that D(Λ) = 0 if and only if Λ = 0. We see from (4.27) that g
and D are related by

g(Σ) = sup
0�=Λ∈dom (D)

Σ : Λ
D(Λ)

.
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Now consider the case in which Σ ∈ ∂K, the boundary of K; then

sup
0�=Λ∈dom (D)

Σ : Λ
D(Λ)

= 1,

and the supremum is achieved when Λ = Ṗ , where Ṗ is conjugate to Σ in
the sense of an equality in (4.37). Thus for Σ ∈ K ∩ ∂D(Ṗ ) and Ṗ �= 0,

Σ : Ṗ = g(Σ)D(Ṗ ). (4.42)

Hence, whereas D and D∗ are conjugate in the Legendre–Fenchel sense, D
and g are polar in the sense of (4.42).

With the concept of the canonical yield function and its properties at our
disposal, it is now possible, with the aid of Lemma 4.5, to give a generalized
version of the classical form (3.34) of the flow law.

Lemma 4.7. Let g be nonnegative and convex, with g(0) = 0 and Σ a point
in the interior of dom (g) such that g(Σ) > 0. Set K = {T : g(T ) ≤ g(Σ)}.
Then Ṗ ∈ NK(Σ) if and only if there exists λ ≥ 0 such that

Ṗ ∈ λ∂g(Σ).

Various results follow from the lemma. Firstly, the reduction to (3.34) is
obvious in the case of smooth functions g. Secondly, it is possible to char-
acterize the multiplier λ. Indeed, we have

Ṗ ∈ λ∂g(Σ) ⇐⇒ λ g(T ) ≥ λ g(Σ) + Ṗ : (T − Σ) ∀T .

By setting first T = 0, then T = 2Σ, and by using the properties of g, we
arrive at the identity

λ = D(Ṗ ). (4.43)

Thus the scalar multiplier has a simple interpretation as the dissipation
associated with a particular internal variable rate.

Lemma 4.7 may also be applied to the dissipation function. Setting g = D
and defining

C = {Q : D(Q) ≤ D(Ṗ )}

for given Ṗ �= 0, we have immediately, for Σ related to Ṗ through (4.38),

Σ ∈ NC(Ṗ ) or Σ ∈ λ∂D(Ṗ )

for some λ > 0 (we exclude the possibility λ = 0, since Σ �= 0). The
situation is illustrated in Figure 4.7: In X ′ the conjugate pair (Σ, Ṗ ) is
such that Ṗ lies in the normal cone to K (the level set g(Σ) ≤ 1) at
Σ, while in X we find that Σ lies in the normal cone to C (the level set
D(Q) ≤ D(Ṗ ) at Ṗ ).
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Figure 4.7: The relationship between the admissible region K and its sup-
port function D

We conclude this section with several concrete examples that illustrate
the theory presented here.

Example 4.8. Combined linear kinematic and isotropic harden-
ing. We continue the discussion of Example 3.1 in Section 3.2 for the case
of coupled linear kinematic and isotropic hardening with an arbitrary yield
function. For this case there are two internal variables, a symmetric tensor
α corresponding to the back-stress in kinematic hardening and a scalar γ
that determines the expansion of the yield surface in isotropic hardening.
Thus we set ξ = (α, γ) ∈ M3 × R+ = X, while the conjugate force is de-
noted by χ = (a, g). Recall that M3 is the set of all the symmetric matrices
of order 3, and R+ denotes the half real line of nonnegative numbers. The
part of the free energy function associated with hardening is now

ψp(α, γ) = 1
2k1|α|2 + 1

2k2γ
2, (4.44)

where k1 and k2 are nonnegative scalars associated with kinematic and
isotropic hardening, respectively. As is shown in Example 3.1, the stress
and conjugate forces are

σ = Ce = C(ε− p), (4.45)
a = −k1α, (4.46)
g = −k2γ. (4.47)
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For the case of kinematic and isotropic hardening the yield function is, with
Σ = (σ,a, g), of the form

φ(Σ) = Φ(σ + a) + g − c0 ≤ 0. (4.48)

From the preceding theory we see that it is always possible to express φ
as a gauge g in Σ.

With the yield function given by (4.48), the flow law (4.35) becomes

(ṗ, α̇, γ̇) = λ(n,n, 1), (4.49)

where n = ∇Φ(σ+a). It is also seen that the kinematic hardening variable
α may be identified with p, and the multiplier λ ≥ 0 with the rate of change
of the internal variable γ characterizing isotropic hardening. In particular,
then, α ∈ M3

0 .
A simple example of a dissipation function is the function corresponding

to the von Mises yield condition. For this case we have

Φ(σ) = |σD| ≡
√
σD
ijσ

D
ij ,

where σD = σ − 1
3 (trσ) I is the deviatoric part of σ. The tensor n =

(σD + aD)/|σD + aD| on the right-hand side of (4.49) is a unit tensor. It
follows that γ̇ = |ṗ|, and so γ can be interpreted as the equivalent plastic
strain. It is now convenient to identify the kinematic hardening variable α
with p; then the Helmholtz free energy function may be expressed in the
form

ψ(e,p, γ) = 1
2 e : C e + 1

2 k1|p|2 + 1
2 k2γ

2.

We can rewrite the flow law (4.49) in the equivalent form

(ṗ, γ̇) = λ(n, 1),

or

(ṗ, γ̇) ∈ NK(ã, g),

where

ã = σ + a = σ − k1p

and

K = {(ã, g) : |ãD| + g − c0 ≤ 0, g ≤ 0}.

Equivalently, the flow law can be rewritten as

(ã, g) ∈ ∂D(ṗ, γ̇). (4.50)
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Using the definition (4.37), the dissipation function can be computed, for
(q, µ) ∈ M3

0 × R+, according to

D(q, µ) = sup
{
ã : q + g µ : |ãD| + g ≤ c0, g ≤ 0

}
= sup

{
ãD : q + g µ : |ãD| + g ≤ c0, g ≤ 0

}
= sup

{
|ãD| |q| + g µ : |ãD| + g ≤ c0, g ≤ 0

}
= sup {(c0 − g) |q| + g µ : g ≤ 0}
= sup {c0 |q| + g (µ− |q|) : g ≤ 0} .

Therefore, for (q, µ) ∈ M3
0 × R+,

D(q, µ) =
{

c0 |q| if |q| ≤ µ,
+∞ if |q| > µ.

(4.51)

We observe also that (4.50) can be rewritten in the form

D(q, µ) ≥ D(ṗ, γ̇) + (σ − k1p) : (q − ṗ) − k2γ (µ− γ̇)
∀ q ∈ M3

0 , µ ∈ R.
(4.52)

�

Example 4.9. Linear kinematic hardening. We now consider a special
case of the previous example. In the relations of Example 4.8, we let k2 =
0 and drop the variables γ and g. As a result, we obtain corresponding
relations for the elastoplastic deformation of a material undergoing the
linear kinematic hardening with the von Mises yield condition. We need
only one internal variable to describe the evolution of the yield surface in
the kinematic hardening, and this variable is identified with the plastic
strain p. The plastic flow law is

ṗ ∈ NK(σ − k1p),

where

K = {ã : |ãD| − c0 ≤ 0}.

The plastic flow law can be equivalently written as

σ − k1p ∈ ∂D(ṗ),

where the dissipation function

D(q) = c0 |q|

is now finite and Lipschitz continuous. �

Example 4.10. Bending and extension of a beam. The theory pre-
sented earlier applies in general situations and is not dictated by any phys-
ical assumptions other than those embodied in the properties possessed by



4.2 Basic Plastic Flow Relations of Elastoplasticity 91

�
�
�
�
�
�
�

�
�
�
�
�
�
�

N

M

κ

ξ

Figure 4.8: Generalized stresses and plastic strains acting on a rigid-plastic
beam

the sets and functions appearing there. In particular, while our prime moti-
vation has been evolution laws for continuous media, there is no restriction
in applying the results to more specialized situations, such as those arising
from theories for particular structural types such as beams, plates, and
shells.

Consider, for example, a rigid-perfectly-plastic beam of arbitrary cross-
section, subject to bending and extension. The Kirchhoff assumption is
imposed; that is, sections initially plane and normal to the axis of the
beam remain plane and normal after deformation. The two generalized
plastic strains are the axial extension ξ at the centroidal axis and the
cross-sectional rotation κ (see Figure 4.8), so we write P = (ξ, κ). Under
these circumstances it is a straightforward matter to show that the region
K of admissible forces consists of those values of bending moment M and
axial force N satisfying

±aM ≥ b2N2 − 1, (4.53)

where a and b are constants depending on the cross-sectional geometry and
yield stress (see Figure 4.9(a)). The forces conjugate to κ and ξ are thus
M and N . According to (4.40) it is possible to express the region K as a
level set {Σ : g(Σ) ≤ 1}, where g is a gauge and Σ = (M,N). To do this
we rewrite (4.53) as

±aM + 1 ≥ b2N2 (4.54)

and complete the square to get

(1 ± aM)2 ≥ b2N2 +
a2

4
M2, (4.55)
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Figure 4.9: The yield surface and �-level set of the dissipation function, for
the rigid-plastic beam

whence the canonical yield function is

g(Σ) ≡ ∓a

2
M +

(
b2N2 +

a2

4
M2

)1/2

≤ 1. (4.56)

The dissipation function is then found from

D(Ṗ ) = sup
Σ∈K

Σ : Ṗ

= sup
g(M,N)≤1

(MṖ1 + NṖ2)

= sup
g(M,N)=1

(MṖ1 + NṖ2).

Consider any Ṗ satisfying Ṗ ∈ λ∂g(Σ) for Σ such that g is differentiable,
that is, for the set{

(M,N) : |N | < 1
b
, M = ±1

a
(1 − b2N2)

}
.

For these values we have Ṗ = λ∂g/∂Σ, from which we find, after some
manipulation, that

D(κ̇, ξ̇) =
a

4b
ξ̇2

κ̇
+

1
a
κ̇.
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When g(Σ) = 1, M = 0, and N = ±1/b, g is not differentiable. At these
points

D(κ̇, ξ̇) = ±1
b
ξ̇.

The level set {Q : D(Q) ≤ D(Ṗ )} is shown in Figure 4.9(b). �



5
Results from Functional Analysis and
Function Spaces

The focus of Part II of this monograph will be, firstly, on the construction
of variational formulations of the initial–boundary value problem of elasto-
plasticity, and, secondly, on the well-posedness of these variational prob-
lems. There are a number of tools from functional analysis that are called
upon in the course of such analyses, and naturally the variational problems
themselves are posed on particular function spaces. For these reasons we
begin Part II by reviewing, in this chapter, those results from functional
analysis that are pertinent to subsequent developments. We also collect
in one place a number of results pertaining to function spaces, especially
Sobolev spaces.

The overviews are not intended to be comprehensive, and full details
may be found in monographs devoted to functional analysis and function
spaces. The text [106] by Reddy may be consulted for an introduction to
functional analysis that is aimed at those interested in variational problems
and finite elements. Extended summary accounts of the relevant subject
matter may also be found in Zeidler [128, 131, 132] and in Dautray and
Lions [30]. There exist a number of accessible accounts of function spaces
and, in particular, the theory of Sobolev spaces, some examples of which
are Adams [1], Dautray and Lions [30], Reddy [106], Renardy and Rogers
[109], and Zeidler [129, 131].

The reader who is familiar with the basics of functional analysis, Sobolev
spaces, variational formulations of boundary value problems, and varia-
tional inequalities may skip Chapters 5 and 6 and go on directly to Chap-
ter 7.
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5.1 Results from Functional Analysis

We assume that the notion of a vector, or linear, space and the standard
properties of vector spaces are familiar to the reader. All vector spaces are
assumed to be defined over the field of real numbers.

Normed spaces and Banach spaces. Let V be a vector space. A semi-
norm on V is a map | · | : V → R

+ that is subadditive and positively
homogeneous; that is,

|u + v| ≤ |u| + |v|, |αv| = |α| |v| ∀u, v ∈ V, ∀α ∈ R. (5.1)

It can be shown that the properties (5.1) imply that |0| = 0 and |v| ≥ 0 for
all v ∈ V .

A norm ‖ · ‖ on V is a seminorm that has the additional property of
positive definiteness:

‖v‖ = 0 iff v = 0. (5.2)

If ‖·‖ is a norm on V , then the pair (V, ‖·‖) is called a normed space. Usually,
the norm ‖ · ‖ defined over the space V is conventional or is clear from the
context, and we simply denote the normed space by V . The notion of norm
is a generalization of the absolute value for real numbers. The quantity ‖v‖
is used to measure the length of a vector v ∈ V , while ‖u − v‖ is used to
measure the distance between two vectors u and v in V .

Two norms ‖ · ‖ and ||| · ||| on a normed space V are said to be equivalent
if there are positive constants c1 and c2 such that

c1‖v‖ ≤ |||v||| ≤ c2‖v‖ ∀ v ∈ V. (5.3)

It is a well-known result that on a finite-dimensional space, any two norms
are equivalent. On the other hand, an infinite-dimensional space can be
endowed with different norms that are not equivalent. For instance, both
‖v‖(1) = max0≤x≤1 |v(x)| and ‖v‖(2) =

∫ 1
0 |v(x)| dx are norms on the space

of continuous functions C([0, 1]), but these norms are not equivalent. In
the study of boundary value problems, it is sometimes more convenient to
use a norm different from, yet equivalent to, the conventional norm of the
function space for the problem.

A sequence {vn} in a normed space V converges (strongly) to v ∈ V if
and only if limn→∞ ‖vn − v‖ = 0. When this is the case, we write vn → v
and say that v is the (strong) limit of the sequence {vn}. If ‖ · ‖ and ||| · |||
are equivalent norms on V , then a sequence {vn} ⊂ V converges to v in
the norm ‖ · ‖ if and only if it converges to v in ||| · |||.

Let A be a subset of a normed space V . The set A is said to be closed in
V if and only if vn ∈ A and vn → v imply that v ∈ A. The closure A of A
is the smallest closed set in V containing A. Loosely speaking, the closure
A is obtained from the set A by adding the “boundary points” of A. The
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set A is dense in V if for every v ∈ V there exists a sequence {vn} in A
such that vn → v. A canonical example is that the set of rational numbers
is dense in the space of the real numbers, with the absolute value as the
norm. Finally, A is said to be bounded if for some constant M , ‖v‖ ≤ M
for every v ∈ A.

Closely related to the study of the convergence of sequences is the notion
of a Cauchy sequence. A Cauchy sequence {vn}∞n=1 in V is a sequence that
has the property that for any ε > 0 there exists a number N(ε) such that
‖vn − vm‖ < ε for all n,m > N(ε). Certainly, all convergent sequences are
Cauchy sequences, though the converse is not true. A subset A of a normed
space V is complete if and only if every Cauchy sequence in A has a strong
limit in A.

A complete normed space is called a Banach space. Hence a Banach
space is characterized by the property that any Cauchy sequence converges
in the space. The following statement establishes a relationship between
completeness and closedness in normed spaces.

Proposition 5.1. A subset of a Banach space is complete if and only if
it is closed.

Linear operators and linear functionals. Let V and W be vector
spaces. A map L : V → W is also called an operator . The operator L is
linear from V to W if it is additive and homogeneous, that is, if

L(u + v) = L(u) + L(v),
L(αv) = αL(v),

for all u, v ∈ V and α ∈ R. For a linear operator L, we often write L(v) as
Lv. A linear operator is called a linear functional if W = R.

The range R(L) and kernel , or null, space N (L) of L are subspaces of
W and V , defined respectively by

R(L) = {w ∈ W : w = L(v) for some v ∈ V },
N (L) = {v ∈ V : L(v) = 0}.

The range R(L) is the set of the images under the mapping L, while the null
space N (L) consists of the solutions of the equation L(v) = 0. Obviously,
0 ∈ N (L).

A special operator worth mentioning explicitly is the projection operator
P : V → V , from a vector space V into itself, which is defined to have the
property

P 2 = P, or P 2v = Pv, ∀ v ∈ V.

A simple example is the (orthogonal) projection onto the closed ball B(0, r) =
{x ∈ R

d : ‖x‖ ≤ r} in the Euclidean space R
d:

P (x) =
{

x if x ∈ B(0, r),
rx/‖x‖ otherwise.
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If V and W are normed spaces and L is a map from V into W , then L
is said to be continuous if vn → v in V implies that L(vn) → L(v) in W .
Furthermore, the map L is said to be bounded if for any r > 0, there is a
constant R ≥ 0 such that

‖L(v)‖ ≤ R ∀ v ∈ V, ‖v‖ ≤ r.

When L is a linear operator, the boundedness of L is characterized by the
existence of a constant M ≥ 0 such that

‖L(v)‖ ≤ M‖v‖ ∀ v ∈ V. (5.4)

The properties of continuity and boundedness are equivalent in the case of
linear operators: A linear operator is continuous if and only if it is bounded.

An operator L from V to W is said to be Lipschitz continuous if there
exists a constant c > 0 such that

‖L(v1) − L(v2)‖ ≤ c ‖v1 − v2‖ ∀ v1, v2 ∈ V.

Lipschitz continuous operators are continuous, but the converse is not true
in general. On the other hand, a linear operator is Lipschitz continuous if
and only if it is continuous.

Bilinear forms. Let V and W be vector spaces. A map b : V ×W → R is
called a bilinear form if it is linear in each slot, that is, for any v1, v2, v ∈ V ,
w1, w2, w ∈ W , and α, β ∈ R,

b(αv1 + βv2, w) = α b(v1, w) + β b(v2, w),
b(v, αw1 + βw2) = α b(v, w1) + β b(v, w2).

A bilinear form b : V ×W → R is continuous (or bounded) if there exists a
constant M > 0 such that

b(v, w) ≤ M‖v‖V ‖w‖W ∀ v ∈ V, w ∈ W. (5.5)

For the case in which W = V , we say that the bilinear form is symmetric
if

b(v1, v2) = b(v2, v1) ∀ v1, v2 ∈ V, (5.6)

and V -elliptic if there exists a constant α > 0 such that

b(v, v) ≥ α‖v‖2 ∀ v ∈ V. (5.7)

Isomorphisms; completions. A linear continuous map L from V to W
is an isomorphism if and only if L is both injective, that is, one-to-one, and
surjective, that is, R(L) = W .

If V is a normed space, then its completion is a Banach space V̂ , which has
the property that there exists an isomorphism from V onto a dense subspace
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of V̂ . A standard example is that the completion of the continuous function
space C([0, 1]) in the norm ‖v‖0 = (

∫ 1
0 |v(x)|2dx)1/2 is the Lebesgue space

L2(0, 1).

The space L(V,W ); dual space. Let V and W be normed spaces. We
denote by L(V,W ) the space of all bounded linear operators from V to W .
For L ∈ L(V,W ), from (5.4) the quantity

‖L‖ = sup
0�=v∈V

‖Lv‖
‖v‖ = sup

‖v‖≤1
‖Lv‖ (5.8)

is well-defined; furthermore, it can be shown that ‖L‖ thus defined is a
norm on L(V,W ). The space L(V,W ) endowed with the norm (5.8) is a
Banach space if W is a Banach space.

The space L(V,R) of bounded linear functionals on V is known as the
dual space of V and is denoted by V ′. Clearly, then, since R is complete,
V ′ is a Banach space with the norm

‖L‖ = sup
‖v‖≤1

|Lv|. (5.9)

Often, we will use � for a bounded linear functional on a normed space V
and denote the action of � on a member v ∈ V by 〈�, v〉 rather than �(v).
Here, 〈·, ·〉 is the duality pairing between V ′ and V . In Section 5.2 we will
see examples of duality in the context of the function space Lp(Ω).

Monotone and strongly monotone operators. The notion of mono-
tonicity is an extension of the concept of an increasing function of one real
variable. An operator T : V → V ′ is said to be monotone if

〈T (u) − T (v), u− v〉 ≥ 0 ∀u, v ∈ V.

Furthermore, if there exists a constant c > 0 such that

〈T (u) − T (v), u− v〉 ≥ c ‖u− v‖2 ∀u, v ∈ V,

then T is called a strongly monotone operator.

Biduals and reflexivity. The dual V ′ of a normed space V is a Banach
space, and V ′ itself also has a dual V ′′ ≡ (V ′)′, called the bidual of V . The
bidual is, of course, a Banach space. It is possible to show that there exists
a bounded linear map J from V to its bidual that is one-to-one, and that
furthermore is an isometry : ‖Jv‖ = ‖v‖ for all v ∈ V . Thus it is possible
to identify V with a subspace J(V ) of V ′′. The normed space V is said to
be reflexive if we in fact have

J(V ) = V ′′. (5.10)

We then write loosely V ′′ = V to indicate the identification between V and
its bidual. Obviously, a reflexive normed space must be a Banach space.
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A canonical example of a reflexive Banach space is Lp(Ω) for p ∈ (1,∞),
in which Ω ⊂ R

d is an open set. The spaces L1(Ω) and L∞(Ω), on the other
hand, are not reflexive, as will be seen in the next section.

Weak and weak∗ convergence. In modern analysis, the typical strat-
egy employed in showing that a minimization problem has a solution in-
volves several steps. Under appropriate assumptions one chooses a mini-
mizing sequence, shows that the minimizing sequence is bounded, extracts
from the bounded minimizing sequence a subsequence that converges in
some sense, and finally proves that the limit is a minimizer. Now, over a
finite-dimensional space, any bounded sequence contains a convergent sub-
sequence. But infinite-dimensional spaces do not enjoy this property; for
example, the sequence

{1, sinπx, cosπx, . . . , sinnπx, cosnπx, . . . }

is bounded in the space L2(0, 1) with the norm ‖v‖ = (
∫ 1
0 |v(x)|2dx)1/2

and yet has no convergent subsequence. Fortunately, for many commonly
used spaces, and in particular for reflexive Banach spaces, any bounded
sequence does contain what is known as a weakly convergent subsequence.
Thus, by the device of weak convergence we are able to make use of the stan-
dard strategy when studying minimization problems in infinite-dimensional
spaces.

Let V be a normed space and V ′ its dual. A sequence {vn} in V is said
to converge weakly in V to v if

lim
n→∞

〈�, vn〉 = 〈�, v〉 ∀ � ∈ V ′. (5.11)

The notation

vn ⇀ v

is used to indicate weak convergence. Strong (norm) convergence implies
weak convergence, but the converse does not hold, with the exception of
finite-dimensional spaces, for which the two forms of convergence coincide.

From the theory of Fourier series, we know that for any v ∈ (L2(0, 1))′ =
L2(0, 1),

〈v(x), sinnπx〉 =
∫ 1

0
v(x) sinnπx dx → 0,

〈v(x), cosnπx〉 =
∫ 1

0
v(x) cosnπx dx → 0,

as n → ∞. Therefore, the bounded sequence

{1, sinπx, cosπx, . . . , sinnπx, cosnπx, . . . }
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converges weakly to 0 in the space L2(0, 1).
Let V be a normed space and V ′ its dual. A sequence {�n} in V ′ is said

to converge weakly∗ in V ′ to � if

lim
n→∞

〈�n, v〉 = 〈�, v〉 ∀ v ∈ V. (5.12)

Weak∗ convergence is denoted by

�n
∗
⇀ �.

We note that {�n} converges weakly in V ′ to � if and only if

lim
n→∞

〈�n, v〉 = 〈�, v〉 ∀ v ∈ V ′′.

Thus weak∗ is a novel concept only if V is not reflexive.

Compactness and weak compactness. A subset V1 of a normed space
V is said to be (sequentially) compact if every bounded sequence in V1 has
a subsequence that converges in V1. Likewise, V1 is weakly compact if every
bounded sequence in V1 has a subsequence that converges weakly in V1.

A linear operator L : V → W is said to be compact if the image under
L of a bounded sequence in V contains a subsequence converging in W ;
that is, if {vn} ⊂ V is bounded, then there exists a subsequence {vnj} and
w ∈ W such that Lvnj

→ w in W . If in the above definition convergence is
changed from strong to weak, Lvnj

⇀ w in W , then L is said to be weakly
compact . Evidently, L is compact if and only if it maps bounded sets to
compact sets.

The following result will be important in later developments.

Theorem 5.2 (Eberlein–Smulyan). A reflexive Banach space V is
weakly compact; that is, if {vn} is a bounded sequence in V , then it is pos-
sible to extract from {vn} a subsequence that converges weakly in V . If,
furthermore, the limit v is independent of the subsequence extracted, then
the whole sequence {vn} converges weakly to v.

Embeddings. Embedding results are especially important when we com-
pare Sobolev spaces with different indices; details of Sobolev spaces are
given in the next section. Let V and W be normed spaces with V ⊂ W . If
there is a constant c > 0 such that

‖v‖W ≤ c ‖v‖V ∀ v ∈ V, (5.13)

we say V is continuously embedded in W , and write

V ↪→ W.

This property can be interpreted in various ways; for example, (5.13) states
that the identity operator I : V → W is bounded, or equivalently, continu-
ous. Thus the continuous embedding of V in W implies also that if vn → v
in V , then vn → v in W .
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The subspace V is said to be compactly embedded in W if

vn ⇀ v in V implies that vn → v in W.

This property is expressed in the form

V ↪→↪→ W,

and is equivalent to the statement that the identity operator from V into
W is compact.

Dual operators. The generalization to normed spaces of the notion of
the transpose of a matrix has many applications in functional analysis.
To carry out such a generalization we begin with normed spaces V and
W and their duals V ′ and W ′. Let A be a linear operator with domain
D(A) ⊂ V and range in W . Given w′ ∈ W ′ we pose the question, under
what conditions does there exist v′ ∈ V ′ such that

〈w′, Av〉 = 〈v′, v〉 ∀ v ∈ D(A)? (5.14)

It can be shown that a necessary and sufficient condition for (5.14) to hold
is that D(A) be dense in V ; when this is the case, v′ is determined uniquely
by w′. When D(A) is the whole space V , then this procedure defines a linear
operator A′ from W ′ to V ′ such that A′w′ = v′. The operator A′ is called
the dual operator of A, and we may write

〈w′, Av〉 = 〈A′w′, v〉 ∀ v ∈ V, w′ ∈ W ′.

If D(A) = V and A is bounded, then A′ is also bounded, and

‖A′‖ = ‖A‖.

The following important theorem records further relationships between a
bounded linear operator and its dual.

Theorem 5.3 (Closed Range Theorem). Let V and W be two Banach
spaces, and let A be a bounded linear operator from V to W with dual
operator A′. Then the following statements are equivalent:

(a) R(A) is closed in W .

(b) R(A′) is closed in V ′.

(c) R(A) = [KerA′]◦ ≡ {w ∈ W : 〈�, w〉 = 0 ∀ � ∈ KerA′}.

(d) R(A′) = [KerA]◦ ≡ {� ∈ V ′ : 〈�, v〉 = 0 ∀ v ∈ KerA}.

The next result follows directly from the closed range theorem.

Corollary 5.4. The following results hold:

R(A) = W iff ‖A′�‖ ≥ c1‖�‖ ∀ � ∈ W ′,

R(A′) = V ′ iff ‖Av‖ ≥ c2‖v‖ ∀ v ∈ V.
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The Babuška–Brezzi condition for bilinear forms [4, 17]. Suppose
that b : V ×W → R is a continuous bilinear form; that is,

|b(v, w)| ≤ αb‖v‖V ‖w‖W ∀ v ∈ V, w ∈ W. (5.15)

The bilinear form b(·, ·) is said to satisfy the Babuška–Brezzi condition if
there exists a constant βb > 0 such that

sup
0�=w∈W

|b(v, w)|
‖w‖W

≥ βb‖v‖V ∀ v ∈ V. (5.16)

The following theorem relates the Babuška–Brezzi condition to the closed
range theorem.

Theorem 5.5. Let b : V × W → R be a continuous bilinear form, and
define bounded linear operators B : V → W ′ and B′ : W → V ′ according
to

b(v, w) = 〈Bv,w〉 = 〈B′w, v〉 ∀ v ∈ V, w ∈ W.

Then the following are equivalent:

(a) The bilinear form b(·, ·) satisfies the Babuška–Brezzi condition (5.16).

(b) The operator B is an isomorphism from (KerB)⊥ onto W ′, where

KerB = {v ∈ V : b(v, w) = 0 ∀w ∈ W}.

(c) The operator B′ is an isomorphism from W onto (KerB)◦, where

(KerB)◦ = {� ∈ V ′ : 〈�, v〉 = 0 ∀ v ∈ KerB}.

The Babuška–Brezzi condition plays a crucial role in the analysis of
mixed, or saddle-point, variational problems.

Inner products and Hilbert spaces. An inner product is a general-
ization of the ordinary vector scalar product in R

d to an arbitrary vector
space. Let V be a vector space. An inner product on V is a symmetric
bilinear form (·, ·) : V × V → R that is also positive definite; that is, (·, ·)
has the following properties:

(u, v) = (v, u) ∀u, v ∈ V,

(αu1 + βu2, v) = α(u1, v) + β(u2, v) ∀u1, u2, v ∈ V, α, β ∈ R,

(v, v) ≥ 0 ∀ v ∈ V, and (v, v) = 0 ⇐⇒ v = 0.

A space V endowed with an inner product (·, ·) is called an inner product
space. When the definition of (·, ·) is clear, we will simply denote the inner
product space by V .
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Every inner product generates a norm according to

‖v‖ = (v, v)1/2,

so that every inner product space is a normed space.
A complete inner product space is called a Hilbert space. Hence a Hilbert

space is a Banach space whose norm is induced by an inner product.
The following theorems summarize well-known and fundamental proper-

ties of inner products and Hilbert spaces.

Theorem 5.6 (Cauchy–Schwarz Inequality). Let V be an inner prod-
uct space. Then

|(u, v)| ≤ ‖u‖ ‖v‖ ∀u, v ∈ V.

Theorem 5.7 (Riesz Representation Theorem). There exists an iso-
metric isomorphism from a Hilbert space V onto its dual V ′. More precisely,
for any � ∈ V ′ there exists a unique u ∈ V such that

〈�, v〉 = (u, v) ∀ v ∈ V.

Conversely, for any u ∈ V , the mapping v → (u, v) determines an � ∈ V ′.
Furthermore, ‖�‖ = ‖u‖.

By the Riesz representation theorem, we may identify a Hilbert space
with its dual. Consequently the Hilbert space can also be identified with
its bidual. Therefore, we have the following result.

Corollary 5.8. Every Hilbert space is reflexive.

Combining the results of Corollary 5.8 and Theorem 5.2, we see that in
a Hilbert space, every bounded sequence has a weakly convergent subse-
quence.

On an inner product space V ,

vn ⇀ v =⇒ ‖v‖ ≤ lim inf
n→∞

‖vn‖.

In other words, in an inner product space, the norm function ‖ · ‖ is weakly
l.s.c. This result is easily proved by noting that for a fixed w ∈ V , the map-
ping v → (w, v) defines a linear continuous functional on V , and therefore

‖v‖2 = (v, v) = lim
n→∞

(v, vn) ≤ ‖v‖ lim inf
n→∞

‖vn‖.

We will use this result in Section 8.2.
The next well-known result is useful in proving the unique solvability of

elliptic variational problems.

Theorem 5.9 (Lax–Milgram Lemma). Let V be a Hilbert space, b :
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V × V → R a bilinear form that is both continuous and V -elliptic, and
� : V → R a bounded linear functional. Then the problem

b(u, v) = 〈�, v〉 ∀ v ∈ V

has a unique solution u ∈ V , and for some constant c > 0 independent of
�,

‖u‖ ≤ c ‖�‖.

Later, in Section 8.2, we will use the following result from the theory of
monotone operators.

Theorem 5.10. Assume that V is a Hilbert space and that T : V → V ′

is strongly monotone and Lipschitz continuous. Then for any � ∈ V ′, the
equation T (u) = � has a unique solution u ∈ V .

Theorem 5.11 (Projection Theorem). Let K be a nonempty closed
convex subset in a Hilbert space V and let u ∈ V . Then there exists a unique
element u0 ∈ K such that

‖u− u0‖ = inf
v∈K

‖u− v‖.

The element u0 is called the projection P (u) of u on K and is characterized
by the inequality

(u− u0, v − u0) ≤ 0 ∀ v ∈ V.

Using the inequality characterization of the projection, it is easy to verify
that the projection operator is nonexpansive, that is,

‖P (u) − P (v)‖ ≤ ‖u− v‖ ∀u, v ∈ V,

and monotone, that is,

(P (u) − P (v), u− v) ≥ 0 ∀u, v ∈ V.

Corollary 5.12. If K is a closed subspace of a Hilbert space V , then for
any u ∈ V there exists a unique element u0 ∈ K such that

(u− u0, v) = 0 ∀ v ∈ V.

The map u → Pu = u0 is linear and defines an orthogonal projection onto
K.

5.2 Function Spaces

We introduce in this section some function spaces that will be relevant to
the subsequent developments in this monograph. The function spaces to
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be discussed include the spaces Cm(Ω) and Cm(Ω) of m-times continu-
ously differentiable functions on Ω and Ω, the Lebesgue spaces Lp(Ω), the
Sobolev spaces Wm,p(Ω), and their Hilbert space specializations Hm(Ω) =
Wm,2(Ω). The spaces will be defined on an open bounded domain Ω ⊂ R

d

that will be assumed to possess certain prescribed condition of smooth-
ness. In order to give a proper treatment of time-dependent problems, we
will later introduce vector-valued function spaces, which permit functions
of space and time to be interpreted as maps from a time interval into a
Banach or Hilbert space of functions.

5.2.1 The Spaces Cm(Ω), Cm(Ω), and Lp(Ω)

Let Ω be a bounded domain in R
d (d ≤ 3 for most applications). Before

going on to discuss function spaces, we introduce the useful multi-index
notation.

Multi-index notation. Let Z
d
+ denote the set of all ordered d-tuples of

nonnegative integers. A member of Z
d
+ will usually be denoted by α or β,

where, for example,

α = (α1, α2, . . . , αd) ,

each component αi being a nonnegative integer.
We denote by |α| the sum |α| = α1 + α2 + · · · + αd, called the length of

α, and by Dαv the partial derivative

Dαv =
∂|α|v

∂xα1
1 ∂xα2

2 · · · ∂xαd

d

.

Thus if |α| = m, then Dαv will denote one of the mth partial derivatives
of v. For example, α = (1, 0, 3) belongs to Z

3
+, with |α| = α1 + α2 + α3 =

1 + 0 + 3 = 4, and in this case the partial derivative Dαv is the fourth
derivative defined by

Dαv =
∂4v

∂xα1
1 ∂xα2

2 ∂xα3
3

=
∂4v

∂x1
1 ∂x

0
2 ∂x

3
3

=
∂4v

∂x1 ∂x3
3
.

Spaces of continuous and continuously differentiable functions.
We denote by C(Ω) the space of all real-valued functions that are continu-
ous on Ω. Since Ω is open, a function from the space C(Ω) is not necessar-
ily bounded; consider, for example, the continuous function v(x) = lnx on
(0, 1). We denote further by C(Ω) the space of functions that are bounded
and uniformly continuous on Ω. The notation C(Ω) is consistent with the
fact that a bounded and uniformly continuous function on Ω has a unique
continuous extension to Ω. The space C(Ω) is a Banach space with the
norm

‖v‖C(Ω) = sup{|v(x)| : x ∈ Ω} ≡ max{|v(x)| : x ∈ Ω}.
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For any nonnegative integer m, Cm(Ω) is defined to be the space of
functions that together with their derivatives of order less than or equal to
m are continuous; that is,

Cm(Ω) = {v ∈ C(Ω) : Dαv ∈ C(Ω) for |α| ≤ m}.

We likewise set

Cm(Ω) = {v ∈ C(Ω) : Dαv ∈ C(Ω) for |α| ≤ m}.

It is common practice to write C(Ω) and C(Ω) instead of C0(Ω) and C0(Ω).
The space Cm(Ω) can be endowed with the seminorm

|v|Cm(Ω) =
∑

|α|=m

‖Dαv‖C(Ω),

and it becomes a Banach space when endowed with the norm

‖v‖Cm(Ω) =
m∑
j=0

|v|Cj(Ω) =
∑

|α|≤m

‖Dαv‖C(Ω).

Finally, we set

C∞(Ω) = {v ∈ C(Ω) : v ∈ Cm(Ω) ∀m ∈ Z+}

and

C∞(Ω) = {v ∈ C(Ω) : v ∈ Cm(Ω) ∀m ∈ Z+}.

These are spaces of infinitely differentiable functions.

Hölder spaces. A function v defined on Ω is said to be Lipschitz contin-
uous if for some constant c,

|v(x) − v(y)| ≤ c |x− y| ∀x,y ∈ Ω.

More generally, v is said to be a Hölder continuous function with exponent
β ∈ (0, 1] if for some constant c,

|v(x) − v(y)| ≤ c |x− y|β for x,y ∈ Ω.

We define C0,β(Ω) to be the Hölder space of functions in C(Ω) that are
Hölder continuous with the exponent β. With the norm

‖v‖C0,β(Ω) = ‖v‖C(Ω) + sup
{ |v(x) − v(y)|

|x− y|β : x,y ∈ Ω, x �= y
}
,

the space C0,β(Ω) becomes a Banach space.
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For a nonnegative integer m and β ∈ (0, 1], we define the Hölder space

Cm,β(Ω) =
{
v ∈ Cm(Ω) : Dαv ∈ C0,β(Ω) for all α with |α| = m

}
,

which is a Banach space when it is endowed with the norm

‖v‖Cm,β(Ω)

= ‖v‖Cm(Ω) +
∑

|α|=m

sup
{ |Dαv(x) −Dαv(y)|

|x− y|β : x,y ∈ Ω, x �= y
}
.

The spaces Lp(Ω). For any number p ∈ [1,∞), we denote by Lp(Ω) the
space of (equivalence classes of) measurable functions v for which∫

Ω
|v(x)|p dx < ∞,

where integration is understood to be in the sense of Lebesgue. The space
Lp(Ω) is a Banach space when endowed with the norm ‖ · ‖0,p,Ω defined by

‖v‖0,p,Ω =
(∫

Ω
|v(x)|p dx

)1/p

.

The reason for including the zero in the subscript of the notation ‖ · ‖0,p,Ω
will become clear when Sobolev spaces are introduced. When there is no
danger of confusion, reference to the domain Ω will be omitted in the symbol
for norms. It will also be convenient to write ‖ · ‖0,Ω or even ‖ · ‖0 for the
norm on L2(Ω) when this is unlikely to be ambiguous.

The quantity ‖·‖0,p is a norm only when it is understood that u represents
an equivalence class of functions, two functions being equivalent if they are
equal almost everywhere (a.e.), that is, equal everywhere except on a subset
of Ω of Lebesgue measure zero.

The definition of the spaces Lp(Ω) can be extended to include the case
p = ∞ in the following manner. We define the essential supremum (denoted
by ess sup) of any measurable function v by

ess supΩ v = inf{M ∈ (−∞,∞] : v(x) ≤ M a.e. in Ω}.

Then v is said to be essentially bounded above if ess supΩv < ∞. A similar
definition of essential infimum may be given, leading to the notion of a
function that is essentially bounded below. We say that v is essentially
bounded if both ess supΩv and ess infΩv are finite.

Then we may define

L∞(Ω) = {v : v is essentially bounded on Ω}.

This space is a Banach space when endowed with the norm

‖v‖0,∞,Ω = ess supΩ|v|.
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Since all continuous functions on a bounded closed set are bounded, we
have

C(Ω) ↪→ L∞(Ω).

The case p = 2 is special, in that L2(Ω) is an inner product space (indeed,
a Hilbert space) when endowed with the inner product

(u, v)0,Ω =
∫

Ω
u(x) v(x) dx.

This inner product, in turn, generates the norm ‖ · ‖0,2,Ω.
Let v be a function defined on Ω. We say that v ∈ Lp

loc(Ω) if for any
proper subset Ω′ ⊂⊂ Ω, v ∈ Lp(Ω′).

We summarize in the following theorem two important inequalities.

Theorem 5.13.
(a) (The Minkowski Inequality) If u, v ∈ Lp(Ω), 1 ≤ p ≤ ∞, then

u± v ∈ Lp(Ω) and

‖u± v‖0,p ≤ ‖u‖0,p + ‖v‖0,p.

(b) (The Hölder Inequality) Let p, q, and r be numbers satisfying
p, q, r ≥ 1 and p−1 + q−1 = r−1. Suppose that u ∈ Lp(Ω) and v ∈
Lq(Ω). Then uv ∈ Lr(Ω) and

‖uv‖0,r ≤ ‖u‖0,p‖v‖0,q.

For the special case p = q = 2, the Hölder inequality reduces to the
Cauchy–Schwarz inequality

‖uv‖0,2 ≤ ‖u‖0,2‖v‖0,2 ∀u, v ∈ L2(Ω).

Dual spaces and reflexivity. We define the dual exponent q of p ∈ [1,∞)
by 1/p + 1/q = 1 (with the usual convention that q = ∞ when p = 1).
Then the topological dual [Lp(Ω)]′ of Lp(Ω) may be identified with Lq(Ω).
In particular, L2(Ω) may be identified with its dual space. For 1 < p < ∞
the roles of p and q are symmetric, and so it is clear that

Lp(Ω) = (Lq(Ω))′ = (Lp(Ω))′′.

Thus the spaces Lp(Ω) are reflexive for 1 < p < ∞.
The spaces L1(Ω) and L∞(Ω) are not reflexive, though it is possible to

identify L∞(Ω) with the dual of L1(Ω); this identification is expressed in
the form

L∞(Ω) = (L1(Ω))′.

On the other hand, L1(Ω) can be identified only with a proper subspace of
(L∞(Ω))′.
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5.2.2 Sobolev Spaces
Assumptions about domains. We introduce a definition that will suffice
for most purposes when smoothness assumptions about the boundary of a
domain need to be made.

For any point x = (x1, x2, . . . , xd) ∈ R
d, set

y = xd and x̂ = (x1, x2, . . . , xd−1) ∈ R
d−1.

An open set Ω in R
d is said to have a Lipschitz-continuous boundary Γ if

there exist constants α > 0 and β > 0, a finite number of local coordinate
systems (x̂m, ym), and local maps fm, m = 1, . . . ,M , that are Lipschitz-
continuous on their respective domains of definition {x̂m : |x̂m| ≤ α} such
that

Γ = ∪M
m=1{(x̂m, ym) : ym = fm(x̂m), |x̂m| ≤ α},

and for m = 1, . . . ,M ,

{(x̂m, ym) : fm(x̂m) < ym < fm(x̂m) + β, |x̂m| ≤ α} ⊂ Ω,

{(x̂m, ym) : fm(x̂m) − β < ym < fm(x̂m), |x̂m| ≤ α} ⊂ R
d\Ω.

The situation is depicted in Figure 5.1 for the two-dimensional case. More
generally, we say that the boundary is of class X if the functions fm are of
class X, and that it is smooth if X = C∞.

With a slight abuse of terminology, a domain with a Lipschitz boundary
is also referred to as a Lipschitz domain, with obvious modifications in
nomenclature for boundaries of other classes. In the following, we always
assume that Ω is a Lipschitz domain, unless stated otherwise. We note,
though, that such an assumption is, in fact, not needed for some of the
results stated below, for example, in Theorem 5.14 (b) and (c).

Distributions. As a prelude to introducing the Sobolev spaces we review
the definition and properties of distributions, which permit the notion of
differentiation to be extended to functions that are not differentiable in the
classical sense.

We first introduce the space C∞
0 (Ω) of smooth functions with compact

support , defined to be functions in C∞(Ω) that vanish outside a compact
subset of Ω. In particular, then, for any φ ∈ C∞

0 (Ω) we have φ = 0 in a
neighborhood of the boundary Γ of Ω.

The space of functions with compact support does not have a “standard”
norm topology, but it suffices for our purposes to define convergence in this
space as follows: A sequence {φk} in C∞

0 (Ω) is said to converge to φ in
C∞

0 (Ω) if
(a) there exists a compact set K in Ω such that φk vanishes outside K

for any k, and

(b) for each multi-index α, Dαφk → Dαφ uniformly in Ω.
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Figure 5.1: An illustration of the definition of a domain with Lipschitz-
continuous boundary

The space C∞
0 (Ω) endowed with this notion of convergence is called the

space of test functions and is denoted by D(Ω).
A distribution on Ω is a continuous linear functional on D(Ω). That is,

a linear functional � on D(Ω) is a distribution if and only if

φk → φ in D(Ω) implies 〈�, φk〉 → 〈�, φ〉.

The space of distributions is denoted by D′(Ω).
Any locally integrable function u ∈ L1

loc(Ω) may be identified with a
distribution, in the sense that there exists a unique distribution �u for
which

〈�u, φ〉 =
∫

Ω
uφ dx ∀φ ∈ D(Ω).

In this case we write u for both the function and the associated distribution.
By an appropriate extension of the classical Green’s formula it is possible

to define derivatives of any order for distributions. Indeed, given u ∈ D′(Ω)
and a multi-index α with |α| = m, the (distributional) derivative Dαu of u
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is a distribution defined by

〈Dαu, φ〉 = (−1)m〈u,Dαφ〉 ∀φ ∈ D(Ω).

For the case in which u is m-times continuously differentiable, Dαu coin-
cides with the corresponding mth-order derivative in the classical sense.

The Sobolev spaces Wm,p(Ω) . For any nonnegative integer m and real
number p ≥ 1 or p = ∞, we define

Wm,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) for any α ∈ Z
d
+ with |α| ≤ m},

where derivatives are taken in the distributional sense. Norms in the spaces
Wm,p(Ω) are defined by

‖v‖m,p,Ω =
( ∑
|α|≤m

‖Dαv‖p0,p,Ω
)1/p

, 1 ≤ p < ∞, (5.17)

and

‖v‖m,∞,Ω = max
|α|≤m

‖Dαv‖0,∞,Ω. (5.18)

With the norm defined above, the space Wm,p(Ω) becomes a Banach space.
We also introduce here the seminorms on the spaces Wm,p(Ω):

|v|m,p,Ω =
( ∑
|α|=m

‖Dαv‖p0,p,Ω
)1/p

, 1 ≤ p < ∞,

|v|m,∞,Ω = max
|α|=m

‖Dαv‖0,∞,Ω.

The space Wm,p(Ω) is reflexive if and only if 1 < p < ∞. We note here
that W 0,p(Ω) = Lp(Ω).

The case p = 2 is special, in that Wm,2(Ω) may be assigned an inner
product. We set Wm,2(Ω) ≡ Hm(Ω) and define the inner product on this
space by

(u, v)m,Ω =
∑

|α|≤m

(Dαu,Dαv)0,Ω,

where as before, (·, ·)0,Ω denotes the L2(Ω) inner product. With this inner
product, Hm(Ω) is a Hilbert space. The corresponding norm will be denoted
by ‖·‖m,2,Ω or simply by ‖·‖m,Ω, or even ‖·‖m, depending on the particular
context.

Given the definition of the Sobolev norm (5.17) or (5.18), it follows that
convergence in Wm,p(Ω) of a sequence {vl}∞l=1 to a function v is equivalent
to the requirement that

Dαvl → Dαv in Lp(Ω), for |α| ≤ m.
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A similar result holds for weak convergence in Wm,p(Ω).
Some properties regarding embeddings and inclusions are summarized in

the following theorem.

Theorem 5.14. The following statements are valid:

(a) Wm,p(Ω) ↪→↪→ W k,p(Ω) if m > k.

(b) D(Ω) ⊂ Wm,p(Ω).

(c) Cm(Ω) ↪→ Wm,p(Ω).

(d) C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω); in other words, a function
in Wm,p(Ω) can be approximated by a sequence of functions smooth
up to the boundary.

(d) (Sobolev compact embedding) If k < m− d/p with 1 ≤ p ≤ ∞, then
Wm,p(Ω) ↪→↪→ Ck(Ω); in particular, Wm,p(Ω) ↪→↪→ Ck(Ω).

It is possible also to define Sobolev spaces Wm,p(Ω) for noninteger values
of m. We will require such spaces only for the case of functions defined on
the boundary Γ of the domain Ω, so we give here a brief review for this
situation.

The space W s,p(Γ) for noninteger s. Let Ω be a bounded domain in R
d

(d ≥ 2) with Lipschitz boundary Γ. Suppose that 1 ≤ p < ∞ and σ ∈ (0, 1).
For a function v ∈ Lp(Γ), set

Fσ(v) =
∫

Γ×Γ

|v(x) − v(y)|p
|x− y|d−1+σ p

ds(x) ds(y)

and

‖v‖σ,p,Γ =
(∫

Γ
|v|p ds + Fσ(v)

)1/p

.

Then W σ,p(Γ) is defined to be the space of functions v ∈ Lp(Γ) for which
‖v‖σ,p,Γ < ∞. This is a Banach space with the norm ‖ · ‖σ,p,Γ; furthermore,
it is reflexive for 1 < p < ∞.

More generally, for s = m + σ with m ∈ Z+ and σ ∈ (0, 1), the space
W s,p(Γ) is defined in a similar way: It consists of all the functions v such
that any tangential derivatives of order less than or equal to m of the func-
tion v belong to Lp(Γ), and any tangential derivative Dαv of order |α| = m
satisfies Fσ(Dαv) < ∞.

Trace theorems. A uniformly continuous function v on a bounded do-
main Ω with boundary Γ has a well-defined boundary value, usually denoted
by v|Γ. This property may be expressed in an alternative manner by the
introduction of a map γ called the trace operator, which associates with
each v ∈ C(Ω) its boundary value γv = v|Γ, a function belonging to C(Γ).
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For a function v ∈ Wm,p(Ω) the issue of its boundary value is less
straightforward: the restriction of v to Γ need not make sense, since Γ
is a set of measure zero, and two functions in Wm,p(Ω) are identified if
they are equal a.e. Fortunately, it is possible to extend the notion of the
trace operator for continuous functions in C(Ω) to functions in Wm,p(Ω)
for certain ranges of the indices m and p. This result is summarized in the
following.

Theorem 5.15 (Trace Theorem). Assume that 1 ≤ p ≤ ∞ and
m > 1/p. Then there exists a unique bounded linear surjective mapping γ :
Wm,p(Ω) → Wm−1/p,p(Γ) such that γv = v|Γ when v ∈ Wm,p(Ω) ∩ C(Ω).

In future, when the trace γv of a Sobolev function v on the boundary is
defined, we will simply write v for the trace γv.

The trace theorem can be extended to higher-order derivatives on the
boundary. In order to avoid complications arising from compatibility con-
ditions we confine attention to higher-order normal derivatives, since, for
example, the tangential derivative of a function is completely defined if the
function itself is known along a boundary.

Let n = (n1, . . . , nd)T denote the outward unit normal to the boundary
Γ of Ω, assumed here to be smooth. The kth normal derivative of a function
v ∈ Ck(Ω) is then defined by

∂kv

∂nk
≡ ni1 · · ·nik

∂kv

∂xi1 · · · ∂xik

.

The following theorem states the fact that this definition can be extended
to functions in certain Sobolev spaces.

Theorem 5.16 (Second Trace Theorem). Assume that Ω is a bounded
open set with a Ck,1 boundary Γ. Assume that 1 ≤ p ≤ ∞ and m >
k+1/p. Then there exist unique bounded linear and surjective mappings γj :
Wm,p(Ω) → Wm−j−1/p,p(Γ) (j = 0, 1, . . . , k) such that γjv = (∂jv/∂nj)|Γ
when v ∈ Wm,p(Ω) ∩ Ck,1(Ω).

It is important to note that the ranges of the trace operators are proper
subsets of Lp(Γ). On the other hand, it can be shown that Wm−j−1/p,p(Γ)
is dense in Lp(Γ), for j = 0, 1, . . . , k.

The space Wm,p
0 (Ω). With the definition of traces at our disposal, it is

now possible to consider those subspaces of Sobolev spaces characterized
by the fact that the functions vanish on the boundary. To this end we define

Wm,p
0 (Ω) = {v ∈ Wm,p(Ω) : γjv = 0 for j < m− 1/p}.

This space may be equivalently defined by

Wm,p
0 (Ω) = the closure of C∞

0 (Ω) in Wm,p(Ω).
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Immediately we see that any function in Wm,p
0 (Ω) can be approximated by

a sequence of C∞
0 (Ω) functions with respect to the norm of Wm,p(Ω).

From the definition and the second trace theorem, Wm,p
0 (Ω) is a closed

subspace of Wm,p(Ω). When p = 2, we write Hm
0 (Ω) to replace Wm,2

0 (Ω).
In particular, we will frequently use the space

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 a.e. on Γ}.

Equivalent norms. The following result can be used to generate various
equivalent norms (cf. the definition (5.3)) on Sobolev spaces. Recall that
over the Sobolev space W k,p(Ω), |v|k,p,Ω is the seminorm defined by

|v|k,p,Ω =
(∫

Ω

∑
|α|=k

|Dαv|p dx
)1/p

.

Theorem 5.17 (Equivalent Norm Theorem). Let Ω be an open,
bounded, connected set in R

d with a Lipschitz boundary, k ≥ 1, 1 ≤ p < ∞.
Assume that fj : W k,p(Ω) → R, 1 ≤ j ≤ J , are seminorms on W k,p(Ω)
satisfying two conditions:

(H1) 0 ≤ fj(v) ≤ c ‖v‖k,p,Ω ∀ v ∈ W k,p(Ω), 1 ≤ j ≤ J .

(H2) If v is a polynomial of degree less than or equal to k−1 and fj(v) = 0,
1 ≤ j ≤ J , then v = 0.

Then, the quantity

‖v‖ = |v|k,p,Ω +
J∑

j=1

fj(v)

or

‖v‖ =
(
|v|pk,p,Ω +

J∑
j=1

fj(v)p
)1/p

defines a norm on W k,p(Ω), which is equivalent to the norm ‖v‖k,p,Ω.

Proof. We will prove that the quantity

‖v‖ = |v|k,p,Ω +
J∑

j=1

fj(v)

is a norm on W k,p(Ω) equivalent to the norm ‖v‖k,p,Ω. That

‖v‖ =
(
|v|pk,p,Ω +

J∑
j=1

fj(v)p
)1/p
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is also an equivalent norm can be proved similarly.
By the condition (H1), we see that for some constant c > 0,

‖v‖ ≤ c ‖v‖k,p,Ω ∀ v ∈ W k,p(Ω).

So we need only to show that there is another constant c > 0 such that

‖v‖k,p,Ω ≤ c ‖v‖ ∀ v ∈ W k,p(Ω).

We argue by contradiction. Suppose that this inequality is false; then we
can find a sequence {vl} ⊂ W k,p(Ω) with the properties

(a) ‖vl‖k,p,Ω = 1,

(b) ‖vl‖ ≤ 1/l

for l = 1, 2, . . . . From Property (b), we see that as l → ∞,

|vl|k,p,Ω → 0

and

fj(vl) → 0, 1 ≤ j ≤ J.

Since {vl} is a bounded sequence in W k,p(Ω), and since

W k,p(Ω) ↪→↪→ W k−1,p(Ω),

there is a subsequence of the sequence {vl}, still denoted by {vl}, and a
function v ∈ W k−1,p(Ω) such that

vl → v in W k−1,p(Ω), as l → ∞.

This property and |vl|k,p,Ω → 0 as l → ∞, together with the uniqueness of
a limit, imply that

vl → v in W k,p(Ω), as l → ∞

and

|v|k,p,Ω = lim
l→∞

|vl|k,p,Ω = 0.

We then conclude that v is a polynomial of degree less than or equal to k−1.
On the other hand, from the continuity of the functionals fj , 1 ≤ j ≤ J ,
we find that

fj(v) = lim
l→∞

fj(vl) = 0, 1 ≤ j ≤ J.
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Using the assumption (H2), we see that v = 0, which contradicts the fact
that

‖v‖k,p,Ω = lim
l→∞

‖vl‖k,p,Ω = 1.

The proof of the result is now completed. �

Many useful inequalities can be derived as consequences of Theorem 5.17.
For example, let us apply the theorem to the special case k = 1, p = 2,
J = 1, and

f1(v) =
∫
∂Ω

|v| ds.

We can then conclude that there exists a constant c > 0, depending only
on Ω, such that the inequality

‖v‖1,Ω ≤ c |v|1,Ω ∀ v ∈ H1
0 (Ω) (5.19)

holds. This result is known as the Poincaré–Friedrichs inequality. It follows
from (5.19) that the seminorm | · |1 is a norm on H1

0 (Ω), equivalent to the
usual H1(Ω)-norm.

More generally, if Γ0 is an open, nonempty subset of the boundary Γ,
then there is a constant c > 0, depending only on Ω, such that

‖v‖1,Ω ≤ c |v|1,Ω ∀ v ∈ H1
Γ0

(Ω). (5.20)

Here,

H1
Γ0

(Ω) = {v ∈ H1(Ω) : v = 0 a.e. on Γ0}.

This inequality can be derived by applying Theorem 5.17 with k = 1, p = 2,
J = 1, and

f1(v) =
∫

Γ0

|v| ds.

Korn’s first inequality. We now give details of an inequality that is of
central importance in elasticity and elastoplasticity. Let Ω be a nonempty,
open, bounded, and connected set in R

3 with a Lipschitz boundary. Given
a function u ∈ [H1(Ω)]3, the linearized strain tensor is defined by (2.7).
Then Korn’s inequality states that there exists a constant c > 0 depending
only on Ω such that

‖u‖2
[H1(Ω)]3 ≤ c

∫
Ω
|ε(u)|2dx ∀u ∈ [H1

0 (Ω)]3. (5.21)

This inequality can be proved first for C∞
0 (Ω) functions by an integration

by parts technique (if we use the equivalent norm ‖∇ · ‖[L2(Ω)]3 in the
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space [H1
0 (Ω)]3), and then extended to [H1

0 (Ω)]3 by a density argument.
The inequality (5.21) is a special case of the more general Korn’s first
inequality (cf. [24])

‖u‖2
[H1(Ω)]3 ≤ c

∫
Ω
|ε(u)|2dx ∀u ∈ [H1

Γ0
(Ω)]3, (5.22)

where Γ0 is a measurable subset of ∂Ω with meas (Γ0) > 0, and

[H1
Γ0

(Ω)]3 = {v ∈ [H1(Ω)]3 : v = 0 a.e. on Γ0}.

The space W−m,p(Ω). Let m be a positive integer, p a real number
satisfying 1 ≤ p < ∞, and q the conjugate number of p, i.e., q = (1−1/p)−1

if 1 < p < ∞, and q = ∞ if p = 1. Then W−m,q(Ω) is defined to be the
dual space of Wm,p

0 (Ω). Since D(Ω) is dense in Wm,p
0 (Ω), it follows that

W−m,q(Ω) ⊂ D′(Ω); in other words, W−m,q(Ω) is a space of distributions.
This property is made more concrete in the following result.

Theorem 5.18. A distribution � belongs to W−m,q(Ω) if and only if it
can be expressed in the form

� =
∑

|α|≤m

Dαuα,

where uα are functions in Lq(Ω).

A space with negative index that will be used often is H−1(Ω), the dual
space of H1

0 (Ω). Given any function f ∈ L2(Ω), we can naturally define an
H−1(Ω) function � through the relation

〈�, v〉 =
∫

Ω
f v dx ∀ v ∈ H1

0 (Ω),

and we identify � with f . For this reason, for f ∈ H−1(Ω) and v ∈ H1
0 (Ω),

sometimes we use the notation
∫
Ω f v dx to represent the duality pairing

〈f, v〉 on H−1(Ω) ×H1
0 (Ω).

5.2.3 Spaces of Vector-Valued Functions
When dealing with initial–boundary value problems, it makes a great deal
of sense to treat functions of space and time as maps from a time interval
into a Banach space such as those that have been discussed earlier in this
section. To begin, let X be a Banach space and T a positive number; then
the space Cm([0, T ];X) (m = 0, 1, . . . ) consists of all continuous functions
v from [0, T ] to X that have continuous derivatives of order less than or
equal to m. This is a Banach space when endowed with the norm

‖v‖Cm([0,T ],X) =
m∑

k=0

max
0≤t≤T

‖v(k)(t)‖X ,



5.2 Function Spaces 121

where v(k)(t) denotes the kth time derivative of v. We write C([0, T ], X)
for the case m = 0.

Turning next to Lebesgue spaces, for 1 ≤ p < ∞ the space Lp(0, T ;X)
consists of all measurable functions v from [0, T ] to X for which

‖v‖Lp(0,T,X) ≡
(∫ T

0
‖v(t)‖pX dt

)1/p
< ∞.

This is a Banach space with the norm ‖v‖Lp(0,T,X), provided that the mem-
bers are understood to represent equivalence classes of functions that are
equal a.e. on (0, T ).

The extension of this definition to include the case p = ∞ is carried
out in the usual way: The space L∞(0, T ;X) consists of all measurable
functions v from [0, T ] to X that are essentially bounded. This is a Banach
space with the norm

‖v‖L∞(0,T,X) ≡ ess sup0≤t≤T ‖v(t)‖X .

If X is a Hilbert space with inner product (·, ·)X , then L2(0, T ;X) is a
Hilbert space with the inner product

(u, v)L2(0,T ;X) =
∫ T

0
(u(t), v(t))X dt.

The following theorem summarizes some properties of these spaces.

Theorem 5.19. Let m = 0, 1, . . . , and 1 ≤ p ≤ ∞. Then
(a) C([0, T ];X) is dense in Lp(0, T ;X), and the embedding is continuous.

(b) If X ↪→ Y , then Lp(0, T ;X) ↪→ Lq(0, T ;Y ) for 1 ≤ q ≤ p ≤ ∞.

Let X ′ be the topological dual of a separable normed space X. Then for
1 < p < ∞ the dual space of Lp(0, T ;X) is given by

[Lp(0, T ;X)]′ = Lq(0, T ;X ′) with
1
p

+
1
q

= 1. (5.23)

Furthermore, if X is reflexive, then so is Lp(0, T ;X).
It is necessary to define in an appropriate way derivatives with respect

to the time variable for functions that lie in the spaces Lp(0, T ;X). The
approach is similar to that taken in the case of generalized derivatives of
distributions; that is, we take as a starting point the elementary integration
by parts formula∫ T

0
φ(m)(t) v(t) dt = (−1)m

∫ T

0
φ(t) v(m)(t) dt,

which holds for all functions φ ∈ C∞
0 (0, T ) and v ∈ Cm([0, T ];X); here

(·)(m) ≡ dm(·)/dtm. A function v ∈ L1
loc(0, T ;X) is then said to possess an
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mth generalized derivative if there exists a function w ∈ L1
loc(0, T ;Y ) such

that∫ T

0
φ(m)(t) v(t) dt = (−1)m

∫ T

0
φ(t)w(t) dt ∀φ ∈ C∞

0 (0, T ), (5.24)

where X and Y are appropriate Banach spaces. When (5.24) holds, we write
simply w = v(m). For the case in which Y = X = R and v ∈ Cm(0, T ),
(5.24) reduces to the classical integration by parts formula.

The following lemma gives an important property of generalized deriva-
tives.

Lemma 5.20. Let V be a reflexive Banach space and H a Hilbert space
with the property that V ↪→ H ↪→ V ′, the continuous embedding V ↪→ H
being dense. Let 1 ≤ p, q ≤ ∞, with 1/p + 1/q = 1. Then any function u ∈
Lp(0, T ;V ) possesses a unique generalized derivative u(m) ∈ Lq(0, T ;V ′) if
and only if there is a function w ∈ Lq(0, T ;V ′) such that∫ T

0
(u(t), v)Hφ(m)(t) dt = (−1)m

∫ T

0
φ(t)〈w(t), v〉V ′×V dt

for all v ∈ V, φ ∈ C∞
0 (0, T ). Then u(m) = w, and for almost all t ∈ (0, T ),

dm

dtm
(u(t), v)H = 〈w(t), v〉V ′×V ∀ v ∈ V.

For an integer m ≥ 0 and a real p ≥ 1, we define by Wm,p(0, T ;X) the
space of functions f ∈ Lp(0, T ;X) such that f (i) ∈ Lp(0, T ;X), i ≤ m.
This is a Banach space with the norm

‖f‖Wm,p(0,T ;X) =

{
m∑
i=0

‖f (i)‖pLp(0,T ;X)

}1/p

.

We use the shorthand notation Hm(0, T ;X) for Wm,p(0, T ;X) when p = 2.
If X is a Hilbert space, Hm(0, T ;X) is also a Hilbert space with the inner
product

(f, g)Hm(0,T ;X) =
∫ T

0

m∑
i=0

(
f (i)(t), g(i)(t)

)
X

dt.

We record the fundamental inequality

‖f(t) − f(s)‖X ≤
∫ t

s

‖ḟ(τ)‖Xdτ, (5.25)

which holds for s < t and f ∈ W 1,p(0, T ;X), p ≥ 1. Here, ḟ = df/dt. On
several occasions we will also need the continuous embedding property

H1(0, T ;X) ↪→ C([0, T ], X); (5.26)
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in particular, there exists a constant c > 0 such that

‖v‖C([0,T ],X) ≤ c ‖v‖H1(0,T ;X) ∀ v ∈ H1(0, T ;X).

We will also need the property

C∞([0, T ];X) is dense in H1(0, T ;X). (5.27)

A theorem of Lebesgue. The following result is useful when we localize
a global relation; in particular, it will be used in proving Theorem 7.3
in Section 7.2 on the existence of a solution for an abstract variational
inequality.

Theorem 5.21. Assume that X is a normed space, f ∈ L1(a, b;X). Then

lim
h→0

1
h

∫ t0+h

t0

‖f(t) − f(t0)‖X dt = 0 for almost all t0 ∈ (a, b).

We see that the theorem implies that

lim
h→0

1
h

∫ t0+h

t0

f(t) dt = f(t0) for almost all t0 ∈ (a, b),

where the limit is understood in the sense of the norm of X: that is,

lim
h→0

∥∥∥ 1
h

∫ t0+h

t0

f(t) dt− f(t0)
∥∥∥
X

= 0 for almost all t0 ∈ (a, b).



6
Variational Equations and Inequalities

In this chapter we review some standard results for boundary value and
initial–boundary value problems, paying particular attention to weak or
variational formulations. The first section will be concerned with elliptic
variational equations, and this will be followed by a review of some material
on elliptic variational inequalities. Because the variational form taken by
elastoplastic problems resembles that of parabolic variational inequalities,
we also include some material on this class of problems.

The numerical approximation of variational problems by the finite ele-
ment method will be considered later, in Chapter 10.

6.1 Variational Formulation of Elliptic Boundary
Value Problems

We begin with some model elliptic boundary value problems. Let Ω be a
bounded domain in R

d with a Lipschitz continuous boundary Γ. The unit
outward normal vector n = (n1, . . . , nd)T exists a.e. on Γ, and we will use
∂u/∂n to denote the normal derivative of u on Γ.

Consider the boundary value problem corresponding to the Poisson equa-
tion with homogeneous Dirichlet boundary condition

−∆u = f in Ω,
u = 0 on Γ. (6.1)
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Here ∆ denotes the Laplacian operator, defined by

∆u =
∂2u

∂xi∂xi
.

A classical solution of the problem (6.1) is a smooth function u ∈ C2(Ω)∩
C(Ω) that satisfies the differential equation (6.1)1 and the boundary con-
dition (6.1)2 pointwise. Necessarily we have to assume f ∈ C(Ω), but this
condition does not guarantee the existence of a classical solution of the
problem. One purpose of the introduction of the weak formulation is the
removal of the high smoothness requirement on the solution; once this (pos-
sibly unrealistic) restriction is removed, it is easier to obtain results on the
existence of a (weak) solution.

To derive the weak formulation corresponding to (6.1), we temporarily
assume that it has a classical solution u ∈ C2(Ω) ∩C(Ω). We multiply the
differential equation (6.1)1 by an arbitrary function v ∈ C∞

0 (Ω) (the space
of so-called smooth test functions), and integrate the relation over Ω, to
obtain

−
∫

Ω
∆u v dx =

∫
Ω
f v dx.

Next, we integrate by parts, and recalling that v = 0 on Γ, we have∫
Ω
∇u · ∇v dx =

∫
Ω
f v dx. (6.2)

This relation has been derived under the assumptions u ∈ C2(Ω) ∩ C(Ω)
and v ∈ C∞

0 (Ω). However, for the relation (6.2) to make sense, we require
only that u, v ∈ H1(Ω), assuming that f ∈ L2(Ω). Then since H1

0 (Ω) is the
closure of C∞

0 (Ω) in H1(Ω), (6.2) is valid for any v ∈ H1
0 (Ω). Meanwhile, the

solution u is sought in the space H1
0 (Ω). Therefore, the weak formulation

of the boundary value problem (6.1) is

u ∈ H1
0 (Ω),

∫
Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀ v ∈ H1

0 (Ω). (6.3)

Actually, we do not even need the assumption f ∈ L2(Ω). It suffices to
assume that f ∈ H−1(Ω), as long as we interpret the integral

∫
Ω f v dx as

the duality pairing 〈f, v〉 between H−1(Ω) and H1
0 (Ω).

We have shown that if u is a classical solution of (6.1), then it is also
a solution of the weak formulation (6.3). Conversely, suppose that u is a
weak solution with the additional regularity u ∈ C2(Ω) ∩ C(Ω). Then for
any v ∈ C∞

0 (Ω) ⊂ H1
0 (Ω), from (6.3) we obtain∫

Ω
(−∆u− f) v dx = 0.
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So we must have −∆u = f in Ω; that is, the differential equation (6.1)1 is
satisfied. Also, u satisfies the homogeneous Dirichlet boundary condition
pointwise. Thus a weak solution of (6.3) with the additional regularity
condition is also a classical solution of the boundary value problem (6.1).
In the event that the weak solution u does not have the regularity u ∈
C2(Ω)∩C(Ω), we will say that u formally solves the boundary value problem
(6.1).

Now we set V = H1
0 (Ω) and let a(·, ·) : V × V → R be the bilinear form

defined by

a(u, v) =
∫

Ω
∇u · ∇v dx for u, v ∈ V,

and � : V → R the linear functional defined by

〈�, v〉 =
∫

Ω
f v dx for v ∈ V.

Then the weak formulation of the problem is

u ∈ V, a(u, v) = 〈�, v〉 ∀ v ∈ V. (6.4)

The bilinear form a(·, ·) is V -elliptic, thanks to the Poincaré–Friedrichs
inequality (5.19); and it is also continuous, as is readily verified. Finally, the
functional � is bounded and linear. By the Lax–Milgram lemma (Theorem
5.8), therefore, the problem (6.4) has a unique solution u ∈ V .

A formulation of the kind (6.1), that is, in the form of a partial differential
equation and a set of boundary conditions, will be referred to henceforth as
the classical formulation of a boundary value problem, while a formulation
of the kind (6.4) will be known as a weak or variational formulation. The
term “weak” derives from the fact that less regularity is sought in solutions
to (6.4), since u need belong only to H1

0 (Ω). On the other hand, for a
solution u of (6.1) to make sense, it is required that u ∈ C2(Ω) ∩ C(Ω).

We established above a formal equivalence between the classical formula-
tion (6.1) and the weak formulation (6.4). Such a formal equivalence result
is not completely satisfactory, since the classical pointwise formulation is
actually not the physically natural form. Indeed, for physical processes in
general, the classical pointwise formulation is usually derived from a fun-
damental physical law that is posed as an integral balance law , that is, as
an equation or inequality involving integrals over the domain (or arbitrary
subdomains) and its boundary. By assuming appropriate smoothness of
the relevant quantities in the integral balance law, one can then obtain the
pointwise statement of the balance law. Now, both the integral balance law
and the weak formulation make sense as long as each expression in the for-
mulations is well-defined; also, the required regularity assumptions are far
weaker than those used in the derivation of the weak formulation from the
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boundary value problem, which in turn is obtained from the integral bal-
ance law. Naturally, one may ask the question, are the integral balance law
and the weak formulation equivalent under the weakest possible regular-
ity assumption, namely, that the integrals appearing in these formulations
make sense as Lebesgue integrals? A satisfactory answer can be found in
the work of Antman and Osborn [3] (see also the monograph [2]), where it
is shown that precisely formulated versions of the integral balance laws of
motion and of the principle of virtual work (that is, the weak formulation)
are equivalent. Thus we see that between a classical formulation and a weak
formulation for a physical process, the weak formulation is the form that
is physically more natural.

The approach taken in the remainder of this work will always be to
regard variational or weak formulations as fundamental. In particular, the
elastoplastic problems formulated in classical form in Chapter 4 will be
recast in variational form later in the following chapters, and it is the
variational forms that will be studied in detail.

The case of nonhomogeneous Dirichlet boundary conditions may be dealt
with as follows. Suppose that instead of (6.1)2 the boundary condition is

u = g on Γ, (6.5)

where g ∈ H1/2(Γ) is given. Since there exists a surjection from H1(Ω) onto
H1/2(Γ) (see Theorem 5.15), it follows that there is a function G ∈ H1(Ω)
such that γG = g. Thus, setting

u = w + G,

the problem may be transformed into one of seeking w that satisfies

−∆w = f + ∆G in Ω,
w = 0 on Γ.

There is no problem in posing this problem in a weak form, since f + ∆G
belongs to H−1(Ω). Indeed, the variational formulation for the transformed
problem takes the following form: Find w ∈ H1

0 (Ω) such that∫
Ω
∇w · ∇v dx =

∫
Ω

(f v −∇G · ∇v) dx ∀ v ∈ H1
0 (Ω).

Since nonhomogeneous Dirichlet boundary conditions can be rendered ho-
mogeneous in this way, for convenience we consider henceforth only prob-
lems with homogeneous Dirichlet conditions.

Consider next the Neumann problem of determining u that satisfies

−∆u + u = f in Ω,
∂u/∂n = g on Γ. (6.6)
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For simplicity, assume that f ∈ L2(Ω), g ∈ L2(Γ). The appropriate space
in which to formulate this problem in weak form is H1(Ω). Multiplying
(6.6)1 by an arbitrary smooth test function v ∈ C∞(Ω), integrating over
Ω, and performing an integration by parts, we obtain∫

Ω
(∇u · ∇v + u v) dx =

∫
Ω
f v dx +

∫
Γ

∂u

∂n
v ds.

Then, use of the Neumann boundary condition (6.6)2 in the boundary term
leads to the relation∫

Ω
(∇u · ∇v + u v) dx =

∫
Ω
f v dx +

∫
Γ
g v ds ∀ v ∈ C∞(Ω).

Since C∞(Ω) is dense in H1(Ω) and the trace operator γ is continuous from
H1(Ω) to L2(Γ), we see that the above relation holds for any v ∈ H1(Ω).
Thus the weak formulation of the boundary value problem (6.6) is to find
u ∈ H1(Ω) such that∫

Ω
(∇u · ∇v + u v) dx =

∫
Ω
f v dx +

∫
Γ
g v ds ∀ v ∈ H1(Ω). (6.7)

This problem has the form

u ∈ V, a(u, v) = 〈�, v〉 ∀ v ∈ V, (6.8)

where V = H1(Ω) and a(·, ·) and 〈�, ·〉 are defined by

a(u, v) =
∫

Ω
(∇u · ∇v + u v) dx,

〈�, v〉 =
∫

Ω
f v dx +

∫
Γ
g v ds.

Again, applying the Lax–Milgram lemma, it is not difficult to show that
the weak formulation (6.8) has a unique solution. Thus, a classical solution
u ∈ C2(Ω)∩C1(Ω) of the boundary value problem (6.6) is also the solution
of the weak formulation (6.8). Conversely, it can be shown that a solution
to (6.8) with the additional regularity u ∈ C2(Ω) ∩ C1(Ω) is a classical
solution of the boundary value problem (6.6).

The Neumann problem for the Poisson equation is given by

−∆u = f in Ω,
∂u/∂n = g on Γ, (6.9)

where f ∈ L2(Ω) and g ∈ L2(Γ) are given. The study of this problem is
more delicate than that of (6.6). We will see that in general, (6.9) does not
have a solution, and when the problem does have a solution u, this solution
is not unique, since any function of the form u+c, c ∈ R, also satisfies (6.9).
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Formally, the corresponding weak formulation is

u ∈ H1(Ω),
∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx +

∫
Γ
g v ds ∀ v ∈ H1(Ω).

(6.10)

A necessary condition for (6.10) to have a solution is that the given data
satisfy ∫

Ω
f dx +

∫
Γ
g ds = 0; (6.11)

this is easily seen by taking v = 1 in (6.10). The condition (6.11) is also
a sufficient condition for the problem (6.10) to have a solution. Indeed,
the problem (6.10) is most conveniently studied in the quotient space V =
H1(Ω)/R, where each element v̇ ∈ V is an equivalence class v̇ = {v+ t : t ∈
R}, and any v ∈ v̇ is called a representative element. Applying Theorem
5.17, it is not difficult to show that over the space V , the quotient norm
‖v̇‖V ≡ inft ‖v + t‖1 is equivalent to the seminorm |v|1 for any v ∈ v̇. It is
then easy to see that

a(u̇, v̇) =
∫

Ω
∇u · ∇v dx, u ∈ u̇, v ∈ v̇,

defines a bilinear form on V , which is continuous and V -elliptic. Because
of the condition (6.11),

〈�, v̇〉 =
∫

Ω
f v dx +

∫
Γ
g v ds

is a well-defined linear form on V . To see that � is continuous, we have

〈�, v̇〉 =
∫

Ω
f (v + t) dx +

∫
Γ
g (v + t) ds ∀ t ∈ R

and hence

|〈�, v̇〉| ≤ inf
t
{‖f‖0,Ω‖v + t‖0,Ω + ‖g‖0,Γ‖v + t‖0,Γ} .

Using the definition of the quotient norm, we have

inf
t
{‖v + t‖0,Ω + ‖v + t‖0,Γ} ≤ c inf

t
‖v + t‖1,Ω = c ‖v̇‖V .

Thus,

|〈�, v̇〉| ≤ c ‖v̇‖V ,

i.e., � is continuous on V .
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Hence, we can apply the Lax–Milgram lemma to conclude that the prob-
lem

u̇ ∈ V, a(u̇, v̇) = 〈�, v̇〉 ∀ v̇ ∈ V

has a unique solution u̇. It is easy to see that any u ∈ u̇ is a solution of
(6.10).

Mixed boundary conditions are also possible, such as in the problem

−∆u + u = f in Ω,
u = 0 on ΓD,

∂u/∂n = g on ΓN .
(6.12)

Here, ΓD and ΓN form a nonoverlapping decomposition of the boundary
∂Ω. That is, ΓD and ΓN are relatively open, ∂Ω = ΓD∪ΓN , and ΓD∩ΓN =
∅. The appropriate space in which to pose this problem in weak form is
now

V ≡ H1
ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. (6.13)

Then the weak problem becomes one of finding u ∈ V such that (6.8) holds,
with

a(u, v) =
∫

Ω
(∇u · ∇v + u v) dx

and

〈�, v〉 =
∫

Ω
f v dx +

∫
ΓN

g v ds.

Under suitable assumptions, say f ∈ L2(Ω) and g ∈ L2(ΓN ), we can again
apply the Lax-Milgram lemma to conclude that the weak problem has a
unique solution.

The issue of existence and uniqueness of solutions to the problems just
discussed may be treated in the more general framework of arbitrary linear
elliptic PDEs of second order. Suppose that the boundary Γ is partitioned
according to Γ = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, ΓD and ΓN being open
subsets of Γ. Consider the boundary value problem

−Dj(aijDiu) + biDiu + cu = f in Ω,
u = 0 on ΓD,

aijDiunj = g on ΓN .
(6.14)

Here n = (n1, . . . , nd)T is the unit outward normal on ΓN , Di denotes the
derivative ∂/∂xi, Dij stands for the second derivative ∂2/∂xi∂xj , and the
indices i and j range between 1 and d.
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The given functions aij , bi, c, f , and g are assumed to satisfy the following
conditions:

aij , bi, c ∈ L∞(Ω);
the partial differential operator is uniformly elliptic in

the sense that there exists a constant θ > 0 such that
aijξiξj ≥ θ |ξ|2 ∀ ξ = (ξi) ∈ R

d, a.e. in Ω;
f ∈ L2(Ω);
g ∈ L2(ΓN ).

(6.15)

The weak formulation of the problem (6.14) is obtained again in the
usual way by multiplying the differential equation in (6.14) by an arbitrary
test function v ∈ H1

ΓD
(Ω), integrating over Ω, performing an integration

by parts, and applying the specified boundary conditions. As a result, we
get the following weak formulation: Find u ∈ H1

ΓD
(Ω) such that∫

Ω
(aijDiuDjv + bi(Diu) v + c u v) dx =

∫
Ω
f v dx +

∫
ΓN

g v ds

∀ v ∈ H1
ΓD

(Ω).
(6.16)

The issue of well-posedness of this problem is settled by appealing to
the Lax–Milgram lemma. The space V = H1

ΓD
(Ω) is a Hilbert space, with

the standard H1-norm. The assumptions (6.15) ensure that the lefthand
side of (6.16) defines a bounded bilinear form on V , and the right-hand
side a bounded linear form on V . What remains to be established is the
V -ellipticity of the bilinear form.

By elementary manipulations, it can be shown that the bilinear form is
V -elliptic if additionally, one of the following three conditions is satisfied,
with b = (b1, . . . , bd)T and θ the ellipticity constant in (6.15):

c ≥ c0 > 0, |b| ≤ B a.e. in Ω, and B2 < 4 θ c0

or

b · n ≥ 0 a.e. on ΓN , and c− 1
2 div b ≥ c0 > 0 a.e. in Ω

or

meas(ΓD) > 0, b = 0, and inf
Ω

c > −θ/c̄,

where c̄ is the best constant in the Poincaré inequality∫
Ω
v2 dx ≤ c̄

∫
Ω
|∇v|2 dx ∀ v ∈ H1

ΓD
(Ω).

This best constant can be computed by solving a linear elliptic eigenvalue
problem: c̄ = 1/λ1, with λ1 > 0 the smallest eigenvalue of the eigenvalue
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problem

−∆u = λu in Ω,
u = 0 on ΓD,

∂u

∂n
= 0 on ΓN .

A special and important case is that corresponding to bi = 0; in this case
the bilinear form is symmetric, and V -ellipticity is assured if c ≥ c0 > 0,
or c ≥ 0 and meas (ΓD) > 0.

Linear elasticity. Since many of the developments later on can be seen in
some ways as an extension of the basic theory for the boundary value prob-
lem of linear elasticity, this problem and its well-posedness are discussed
here.

The equations that govern the behavior of elastic bodies have been pre-
sented earlier in Chapter 2 and are repeated here for convenience. Let Ω
be a bounded domain in R

d with a Lipschitz continuous boundary Γ. The
governing equations for static behavior are

the equation of equilibrium −divσ = f

the elastic constitutive law σ = Cε(u)

the strain–displacement equation ε(u) = 1
2 (∇u + (∇u)T )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ in Ω.

(6.17)

Suppose that the boundary Γ is divided into two complementary parts Γu

and Γg, where Γu and Γg are open, Γu∩Γg = ∅, and Γu �= ∅. The boundary
conditions are assumed to be

u = 0 on Γu,
σn = g on Γg.

(6.18)

In order to formulate this problem in a weak form we introduce the space
of admissible displacements V defined by

V = [H1
Γu

(Ω)]d ≡ {v = (vi) : vi ∈ H1(Ω), vi = 0 on Γu, 1 ≤ i ≤ d}.

We first eliminate the variable σ from the first two equations of (6.17) to
obtain

−div (C ε(u)) = f in Ω.

Then multiplication of the above equation by an arbitrary member v of V ,
integration over Ω, use of the integration by parts formula, and imposition



134 6. Variational Equations and Inequalities

of the boundary condition (6.18)2 lead to the problem of finding u ∈ V
such that

a(u,v) = 〈�,v〉 ∀v ∈ V, (6.19)

where

a(u,v) =
∫

Ω
Cε(u) : ε(v) dx, (6.20)

〈�,v〉 =
∫

Ω
f · v dx +

∫
Γg

g · v ds. (6.21)

The question of well-posedness of the problem (6.19) is once again settled
by appealing to the Lax–Milgram lemma. The continuity of the bilinear
form and the linear functional are fairly straightforward to verify, while
the V -ellipticity of a(·, ·) follows from the assumption that C is pointwise
stable (see (2.29)) and the use of Korn’s inequality (5.22). We thus have
the following result.

Theorem 6.1. The problem defined by (6.19)–(6.21) has a unique solution
u ∈ V under the stated hypotheses. Furthermore, there is a constant c > 0
such that

‖u‖V ≤ c (‖f‖L2(Ω) + ‖g‖L2(Γg)). (6.22)

Minimization problems. The term “variational” in the description of
problems of the form (6.4) derives from the association with minimization
problems, for the case in which the bilinear form a(·, ·) is symmetric. Indeed,
assuming the symmetry of a(·, ·), we can consider the problem of minimizing
the functional J : V → R, defined by

J(v) = 1
2a(v, v) − 〈�, v〉,

among all functions in V . It is not difficult to show that the condition
satisfied by a minimizer of J(·) is precisely (6.4). Conversely, under the
additional assumption that a(·, ·) is V -elliptic, a solution of (6.4) is also
a minimizer of the functional J(·). Thus, under the stated assumptions,
the weak formulation and the minimization problem are equivalent, and
the existence of a unique minimizer of J may be inferred from the unique
solvability of the weak formulation concluded by the Lax–Milgram lemma.
We remark that the framework of weak formulations is more general than
that of minimization problems in that the bilinear forms are not assumed
to be symmetric.

For functionals of a more general nature, the following proposition gives
conditions under which a unique minimizer exists (cf. [99], Proposition
2.2.1).

Proposition 6.2. Let X be a reflexive Banach space, K a nonempty,
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closed, convex subset of X, and f a proper, convex, l.s.c. functional on K.
Assume that

f(x) → ∞ as ‖x‖X → ∞, x ∈ K. (6.23)

Then there exists x0 ∈ K such that

f(x0) = min
x∈K

f(x).

If f is strictly convex on K, then the solution x0 is unique.

Proof. Existence. Define α = infx∈K f(x). Since f is proper, it follows
that −∞ ≤ α < ∞. From the definition of infimum, there exists a sequence
{xn} in K such that

f(xn) → α as n → ∞.

By the coerciveness assumption (6.23), we see that the sequence is bounded,
and so by Theorem 5.1 there exists a subsequence, again denoted by {xn},
such that xn ⇀ x0 for some x0 ∈ X. Since K is closed and convex, it is
sequentially weakly closed (cf. [34]). Hence xn ⇀ x0 and x0 ∈ K.

Since f is convex and l.s.c., it is weakly l.s.c. (see Section 4.1), and thus

f(x0) ≤ lim inf
n→∞

f(xn) = α,

which implies that f(x0) = α, i.e., x0 ∈ K is a minimizer of f over K.

Uniqueness. Suppose that the problem has two distinct solutions, x1 and
x2. Then 1

2 (x1 + x2) ∈ K and, since f is strictly convex,

f
( 1

2 (x1 + x2)
)
< 1

2f(x1) + 1
2f(x2) = f(x1).

This contradicts the assumption that x1 minimizes f over K. �

Mixed variational problems. This class of variational problems may
be regarded as an extension of the standard elliptic problem (6.4). It arises
generally in one of two ways: as a result of either the introduction of addi-
tional dependent variables as unknowns in a problem or the introduction of
extra unknown variables to eliminate constraints of a problem. The mixed
problem is then posed on the Cartesian product V ×Q of two spaces V and
Q, Q being the space for the additional unknowns, and the problem takes
the following form. Let a(·, ·) be a bilinear form defined on V as before,
and let b(·, ·) : V × Q → R be another bilinear form, and � and m linear
functionals defined respectively on V and on Q. Then the problem is one
of finding u ∈ V and p ∈ Q that satisfy

a(u, v) + b(v, p) = 〈�, v〉 ∀ v ∈ V,
b(u, q) = 〈m, q〉 ∀ q ∈ Q.

(6.24)
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are sometimes referred to as saddle-point problems because in the event
that a(·, ·) is symmetric, the problem (6.24) can be shown to be equivalent
to the saddle-point, or minimax, problem of finding (u, p) ∈ V × Q such
that

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀ v ∈ V, q ∈ Q,

where L(v, q) = 1
2a(v, v) + b(v, q) − 〈�, v〉 − 〈m, q〉. However, it should be

stressed that not every mixed problem may be posed as a saddle-point
problem, so that the formulation (6.24) is more general, and will in fact be
the formulation favored in these developments.

As an example of a mixed variational problem arising in linear elasticity,
we return to (6.17), but this time agree to use as variables both the dis-
placement u and the stress σ. Multiplying the equilibrium equation by an
arbitrary function v ∈ V = [H1

Γu
(Ω)]d, integrating over Ω, performing an

integration by parts, and using the boundary condition (6.18)2, we obtain
the equation∫

Ω
σ : ε(v) dx =

∫
Ω
f · v dx +

∫
Γg

g · v ds ∀v ∈ V. (6.25)

Next, set

Q = [L2(Ω)]d×d
sym ≡

{
τ ∈ [L2(Ω)]d×d : τij = τji, 1 ≤ i, j ≤ d

}
;

this is the space of admissible stresses. The second equation from the con-
stitutive law (6.17)2 is employed in the form

ε(u) = Aσ,

where A = C−1 is the elastic compliance tensor. Now take the scalar
product of this constitutive equation with an arbitrary member τ ∈ Q and
integrate to obtain∫

Ω
Aσ : τ dx−

∫
Ω
ε(u) : τ dx = 0 ∀ τ ∈ Q. (6.26)

Equations (6.25) and (6.26) make up the mixed variational problem of
determining (u,σ) ∈ V ×Q that satisfy

a(σ, τ ) + b(τ ,u) = 0 ∀ τ ∈ Q,
b(σ,v) = 〈�,v〉 ∀v ∈ V,

(6.27)

in which

a(σ, τ ) =
∫

Ω
Aσ : τ dx,

b(τ ,v) = −
∫

Ω
ε(v) : τ dx,

〈�, τ 〉 = −
∫

Ω
f · v dx−

∫
Γg

g · v ds.

(6.28)
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Returning to the general case, clearly the question of well-posedness of
mixed problems will be closely tied to the choices of V and Q, and to the
properties of the two bilinear forms that appear in the problem. The key
to the question of existence is Theorem 6.3 below. First, assume that both
bilinear forms are continuous, so that

|a(u, v)| ≤ ‖a‖ ‖u‖ ‖v‖ ∀u, v ∈ V,
|b(v, q)| ≤ ‖b‖ ‖v‖ ‖q‖ ∀ v ∈ V, q ∈ Q; (6.29)

then it is possible to define bounded linear operators A : V → V ′, B : V →
Q′, and B′ : Q → V ′ that satisfy

〈Au, v〉 = a(u, v) ∀u, v ∈ V,
〈Bv, q〉 = 〈B′q, v〉 = b(v, q) ∀ v ∈ V, q ∈ Q.

(6.30)

Furthermore, define the kernels KerB and KerB′ of B and B′ by

KerB = {v ∈ V : b(v, q) = 0 ∀ q ∈ Q},
KerB′ = {q ∈ Q : b(v, q) = 0 ∀ v ∈ V }. (6.31)

Then the following result holds.

Theorem 6.3 (Babuška [4], Brezzi [17]). Let V and Q be Banach
spaces. Suppose that the bilinear form a(·, ·) is symmetric, continuous and
KerB-elliptic. Suppose furthermore that b(·, ·) is continuous, and that there
exists a constant β > 0 such that

sup
v∈V

b(v, q)
‖v‖ ≥ β ‖q‖Q\KerB′ ∀ q ∈ Q. (6.32)

Then there exists a solution (u, p) to (6.24) for any � ∈ V ′ and m ∈ Q′,
with u being unique and p being uniquely determined up to a member of
KerB′.

In (6.32), the quotient norm ‖q‖Q\KerB′ is defined by

‖q‖Q\KerB′ = inf
q0∈KerB′

‖q + q0‖.

It is quite straightforward to show that if meas (Γu) �= 0, then the mixed
variational problem of linear elasticity (6.27)–(6.28) satisfies all the con-
ditions of Theorem 6.3, with KerB′ = {0}, and therefore has a unique
solution.

6.2 Elliptic Variational Inequalities

The analysis of variational inequalities has its origins in the work of Fichera
[40], who studied inequalities arising in unilateral problems of elasticity.
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u(x)

fg(x)

Figure 6.1: A membrane supported by an obstacle; one-dimensional view

Significant contributions were also made by Lions and Stampacchia [79].
In the literature there are several monographs devoted the theory and nu-
merical solution of variational inequalities; see, for example, Duvaut and
Lions [33], Friedman [42], Glowinski [44], Glowinski, Lions, and Trémolières
[45], Kikuchi and Oden [70], Kinderlehrer and Stampacchia [71], and Pana-
giotopoulos [99]. In this section we give a brief introduction to some well-
known results on the existence and uniqueness of solutions to standard
elliptic variational inequalities (EVI). The presentation on well-posedness
given here follows that of [44].

As an example of a problem that leads to an elliptic variational inequality,
let us consider the obstacle problem. We need to determine the equilibrium
position of an elastic membrane that (1) passes through a curve Γ, the
boundary of a planar domain Ω; (2) lies above an obstacle of height g; and
(3) is subject to the action of a vertical force of density f , where f is a
given function.

The unknown variable of the problem is the vertical displacement u of
the membrane. Since the membrane is fixed along the boundary Γ, we see
that u = 0 on Γ. To make the problem meaningful, we assume that the
obstacle function satisfies the condition g ≤ 0 on Γ. We will assume that
g ∈ H1(Ω) and f ∈ H−1(Ω). Thus the set of admissible displacements is

K = {v ∈ H1
0 (Ω) : v ≥ g a.e. in Ω}.

The principle of minimum potential energy asserts that the displacement
u is a minimizer of the total energy; that is,

u ∈ K : J(u) = inf{J(v) : v ∈ K}, (6.33)

where the energy functional is given by

J(v) =
∫

Ω

(1
2
|∇v|2 − f v

)
dx.

The set K is nonempty, because the function max{0, g} belongs to K. Also,
it is easy to see that K is closed and convex. Now, the energy functional J
is strictly convex, coercive, and continuous on K. Hence the minimization
problem (6.33) has a unique solution u ∈ K, which is also characterized by
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the variational inequality

u ∈ K,

∫
Ω
∇u · ∇(v − u) dx ≥

∫
Ω
f (v − u) dx ∀ v ∈ K. (6.34)

Now we derive the corresponding boundary value problem for the weak
formulation (6.34). Assume that f ∈ C(Ω) and g ∈ C(Ω). Suppose that the
solution u of (6.34) is sufficiently smooth; more precisely, u ∈ C2(Ω)∩C(Ω).
We then perform an integration by parts in (6.34) to obtain∫

Ω
(−∆u− f) (v − u) dx ≥ 0 ∀ v ∈ K. (6.35)

We let v = u + φ, φ ∈ C∞
0 (Ω), and φ ≥ 0, in (6.35),∫

Ω
(−∆u− f)φdx ≥ 0 ∀φ ∈ C∞

0 (Ω), φ ≥ 0.

We see then that

−∆u− f ≥ 0 in Ω.

If u(x0) > g(x0) at x0 ∈ Ω, then we can find a neighborhood U(x0) ⊂ Ω
of x0 and a number δ > 0 such that u(x) > g(x) + δ for x ∈ U(x0). Then
in (6.35) we take v = u± δ φ with φ ∈ C∞

0 (U(x0)) and ‖φ‖∞ ≤ 1,

±
∫

Ω
(−∆u− f)φdx ≥ 0 ∀φ ∈ C∞

0 (U(x0)), ‖φ‖∞ ≤ 1.

Therefore, ∫
Ω
(−∆u− f)φdx = 0 ∀φ ∈ C∞

0 (U(x0)),

from which we get

(−∆u− f)(x0) = 0.

In conclusion, we have shown that if the weak solution of the problem (6.34)
is sufficiently smooth, then it satisfies the relations

u− g ≥ 0, −∆u− f ≥ 0, (u− g) (−∆u− f) = 0 in Ω. (6.36)

Thus the domain Ω can be decomposed into two parts. On one part, Ω1,
the membrane has no contact with the obstacle, and so

u > g and − ∆u− f = 0 in Ω1.

The second of these equations expresses the condition of equilibrium, or
balance of forces. On the other part, Ω2, there is contact between the
membrane and the obstacle, so that

u = g and − ∆u− f > 0 in Ω2.
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The second relation expresses the fact that the net force exerted by the
obstacle on the membrane is positive. We notice that the region of contact,
{x ∈ Ω : u(x) = g(x)}, is an unknown a priori.

Conversely, from (6.36) we can derive the variational inequality (6.34).
To see this, we first have∫

Ω
(−∆u− f) (v − g) dx ≥ 0 ∀ v ∈ K.

Since ∫
Ω
(−∆u− f) (u− g) dx = 0,

we have ∫
Ω
(−∆u− f) (v − u) dx ≥ 0 ∀ v ∈ K,

and after an integration by parts,∫
Ω
∇u · ∇(v − u) dx ≥

∫
Ω
f (v − u) dx ∀ v ∈ K.

The obstacle problem is a canonical example of a class of inequality prob-
lems known as elliptic variational inequalities (EVIs) of the first kind . We
remark that not every variational inequality is derived from a minimization
principle. The feature of a variational inequality arising from a quadratic
minimization problem is that the bilinear form of the inequality is symmet-
ric. In our general framework, we do not need the symmetry assumption
on the bilinear form.

The abstract form of the EVI of the first kind is the following. Let V be
a real Hilbert space with inner product (·, ·) and associated norm ‖ · ‖, K
a subset of V . Let a : V ×V → R be a continuous, V -elliptic bilinear form.
Given a linear functional � : V → R, it is required to find u ∈ K satisfying

a(u, v − u) ≥ 〈�, v − u〉 ∀ v ∈ K. (6.37)

Variational inequalities of the first kind may be characterized by the fact
that they are posed on convex subsets; indeed, if the set K is in fact a
subspace of V , then the problem becomes a variational equation.

Theorem 6.4. Let V be a real Hilbert space, a : V ×V → R a continuous,
V -elliptic bilinear form, � : V → R a bounded linear functional, and K ⊂ V
a nonempty, closed and convex set. Then the EVI (6.37) has a unique
solution u ∈ K.

In the proof of Theorem 6.4 we will use the following well-known result.

Theorem 6.5 (Banach Fixed-Point Theorem). Let X be a Banach
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space. Assume that f : X → X is a contractive mapping, that is, for some
κ ∈ [0, 1),

‖f(x) − f(y)‖ ≤ κ ‖x− y‖ ∀x, y ∈ X.

Then f has a unique fixed point x ∈ X, f(x) = x.

Proof of Theorem 6.4. We rewrite the inequality (6.37) in the form
of an equivalent fixed-point problem. To do this, we first apply the Riesz
representation theorem (Theorem 5.7) to claim that there exists a unique
member L ∈ V such that ‖L‖ = ‖�‖ and

〈�, v〉 = (L, v) ∀ v ∈ V.

For any fixed u ∈ V , the mapping v → a(u, v) defines a linear, continuous
form on V . Thus applying the Riesz representation theorem again, we have
a mapping A : V → V such that

a(u, v) = (Au, v) ∀ v ∈ V.

Since a(·, ·) is bilinear and continuous, it is easy to verify that A is linear
and bounded, with

‖A‖ ≤ M.

For any θ > 0, the problem (6.37) is therefore equivalent to one of finding
u ∈ K such that

((u− θ (Au− L)) − u, v − u) ≤ 0 ∀ v ∈ K. (6.38)

If PK denotes the orthogonal projection onto K, then (6.38) may be written
in the form

u = PK (u− θ (Au− L)) . (6.39)

Recall that the projection operator PK is nonexpansive. We show that by
choosing θ > 0 sufficiently small, the operator defined by the right-hand
side of (6.39) is a contraction. Indeed, for any v1, v2 ∈ V , we have

‖PK (v1 − θ (Av1 − L)) − PK (v2 − θ (Av2 − L)) ‖2

≤ ‖ (v1 − θ (Av1 − L)) − (v2 − θ (Av2 − L)) ‖2

= ‖(v1 − v2) − θ A(v1 − v2)‖2

= ‖v1 − v2‖2 − 2 θ a(v1 − v2, v1 − v2) + θ2‖A(v1 − v2)‖2

≤ (1 − 2 θ α + θ2M2) ‖v1 − v2‖2.

Here α > 0 is the V -ellipticity constant for the bilinear form a(·, ·).
Thus if we choose θ ∈ (0, 2α/M2), then the operator defined by the

right-hand side of (6.39) is a contraction. Then by Theorem 6.4, the prob-
lem (6.39), and equivalently the problem (6.37), has a unique solution. �
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Figure 6.2: An elastic body in frictional contact with a rigid obstacle

We note that Theorem 6.4 is a generalization of the Lax–Milgram lemma.
The obstacle problem (6.34) is clearly an elliptic variational inequality of
the first kind. All the conditions stated in Theorem 6.4 are satisfied, and
hence the obstacle problem (6.34) has a unique solution.

A second class of variational inequalities arises as a result of the pres-
ence of nondifferentiable functions. As an example, we consider a reduced
problem arising in frictional contact between an elastic body and a rigid
foundation (cf. [70]). The elastic body occupies a bounded domain Ω with
a Lipschitz boundary Γ. A part ΓC of the boundary is in contact with a
rigid obstacle (Figure 6.2); contact between the body and the obstacle is
assumed to frictional, with friction governed by a reduced Coulomb law.
For this problem ΓC is assumed to be known in advance, as is the nor-
mal surface traction on ΓC . The differential equations of the problem are
given by (6.17) on the domain Ω, but the boundary conditions now differ:
The boundary is assumed to be partitioned into three nonoverlapping re-
gions Γu, Γg, and ΓC . The boundary conditions on Γu and Γg are given
in (6.18). To describe the boundary condition on ΓC , we first introduce
some notation. On the boundary Γ we define the normal displacement to
be un = u · n and the tangential displacement ut = u − unn. Then we
have the decomposition

u = unn + ut

for the displacement. Similarly, σn is the stress vector, and we define its
normal component σn = (σn) · n and the tangential stress vector σt =
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σn− σnn. In this way, we have the decomposition

σn = σnn + σt

for the stress vector. On ΓC , we impose the condition

σn = −G,
|σt| ≤ G,
|σt| < νFG =⇒ ut = 0,
|σt| = νFG =⇒ ut = −λσt for some λ ≥ 0.

(6.40)

Here, G > 0 and the friction coefficient νF > 0 are prescribed functions,
G, νF ∈ L∞(ΓC). From (6.40), we see that

σt · ut = −νFG |ut| on ΓC .

Then the variational problem corresponding to (6.17), (6.18), and (6.40)
becomes one of finding the displacement field u ∈ V ≡ [H1

Γu
(Ω)]3 (see

(6.13) for the definition of the space) that satisfies∫
Ω
Cε(u) : ε(v) dx +

∫
ΓC

νFG |vt| ds−
∫

ΓC

νFG |ut| ds

≥
∫

Ω
f · (v − u) dx +

∫
Γg

g · (v − u) ds (6.41)

−
∫

ΓC

G (vn − un) ds ∀v ∈ V.

For simplicity, we assume as before that f ∈ [L2(Ω)]3 and g ∈ [L2(Γg)]3.
The problem (6.41) is an example of an EVI of the second kind. To give

the general framework for this class of problems, in addition to the bilinear
form a(·, ·) and the linear functional �, we introduce a proper, convex, and
lower semicontinuous (l.s.c.) functional j : V → R (see Chapter 4 for the
definitions). The functional j is not assumed to be differentiable. Then the
problem of finding u ∈ V that satisfies

a(u, v − u) + j(v) − j(u) ≥ 〈�, v − u〉 ∀ v ∈ V (6.42)

is referred to as an EVI of the second kind.
The key difference between an EVI of the first kind and one of the second

kind is that the former is an inequality as a result of the problem being
formulated on a convex subset rather than on the whole space; the latter
is an inequality due to the presence of the nondifferentiable term j(·).
Theorem 6.6. Let V be a real Hilbert space, a : V ×V → R a continuous,
V -elliptic bilinear form, � : V → R a bounded linear functional, and j :
V → R a proper, convex, and l.s.c. functional on V . Then the EVI of the
second kind (6.42) has a unique solution.
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Proof. Showing uniqueness is straightforward. Since j is proper, j(v0) <
∞ for some v0 ∈ V . Thus a solution u of (6.42) satisfies

j(u) ≤ a(u, v0 − u) + j(v0) − 〈�, v0 − u〉 < ∞,

that is, j(u) is a real number. Now let u1 and u2 denote two solutions of
the problem (6.42); then

a(u1, u2 − u1) + j(u2) − j(u1) ≥ 〈�, u2 − u1〉,
a(u2, u1 − u2) + j(u1) − j(u2) ≥ 〈�, u1 − u2〉.

Adding the two inequalities, we get

−a(u1 − u2, u1 − u2) ≥ 0,

which implies, by the V -ellipticity of a(·, ·), that u1 = u2.
The proof of existence is more involved. First consider the case in which

a(·, ·) is symmetric; under this additional assumption, the inequality (6.42)
is equivalent to the minimization problem

u ∈ V, J(u) = inf{J(v) : v ∈ V }, (6.43)

where

J(v) = 1
2 a(v, v) + j(v) − 〈�, v〉.

Since j is proper, convex, and l.s.c., from a result in convex analysis (cf. [34])
it is bounded below by a bounded affine functional, that is,

j(v) ≥ 〈�j , v〉 + c0 ∀ v ∈ V,

where �j is a continuous linear form on V and c0 ∈ R. Thus by the stated
assumptions on a, j, and �, we see that J is proper, convex, and l.s.c., and
has the property that

J(v) → ∞ as ‖v‖ → ∞.

Applying Proposition 6.2, we see that the problem (6.43), and hence the
problem (6.42), has a solution.

Consider next the general case without the symmetry assumption. Again
we will convert the problem into an equivalent fixed-point problem. For any
θ > 0, the problem (6.42) is equivalent to

(u, v − u) + θ j(v) − θ j(u)
≥ (u, v − u) − θ a(u, v − u) + θ 〈�, v − u〉 ∀ v ∈ V.

Now for any u ∈ V , consider the problem of finding w ∈ V such that

(w, v − w) + θ j(v) − θ j(w)
≥ (u, v − w) − θ a(u, v − w) + θ 〈�, v − w〉 ∀ v ∈ V. (6.44)
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From the previous discussion we see that this problem has a unique solution,
which is denoted by w = Pθu. Obviously, a fixed point of the mapping
Pθ is a solution of the problem (6.42). We will show that for sufficiently
small θ > 0, Pθ is a contraction and hence has a unique fixed point by
Theorem 6.4.

For any u1, u2 ∈ V , let w1 = Pθu1 and w2 = Pθu2. Then we have

(w1, w2 − w1) + θ j(w2) − θ j(w1)
≥ (u1, w2 − w1) − θ a(u1, w2 − w1) + θ 〈�, w2 − w1〉,

(w2, w1 − w2) + θ j(w1) − θ j(w2)
≥ (u2, w1 − w2) − θ a(u2, w1 − w2) + θ 〈�, w1 − w2〉.

Adding the two inequalities and simplifying, we get

‖w1 − w2‖2 ≤ (u1 − u2, w1 − w2) − θ a(u1 − u2, w1 − w2)
= ((I − θ A)(u1 − u2), w1 − w2) ,

where the operator A is defined by the relation a(u, v) = (Au, v) for any
u, v ∈ V , as in the proof of Theorem 6.4. Hence

‖w1 − w2‖ ≤ ‖(I − θ A)(u1 − u2)‖.

Now for any u ∈ V ,

‖(I − θ A)u‖2 = ‖u− θ Au‖2

= ‖u‖2 − 2 θ a(u, u) + θ2‖Au‖2

≤ (1 − 2 θ α + θ2M2) ‖u‖2.

Here M and α are the continuity and V -ellipticity constants of the bilin-
ear form a(·, ·). Therefore, again, for θ ∈ (0, 2α/M2) the mapping Pθ is a
contraction on the Hilbert space V . �

With the identification

a(u,v) =
∫

Ω
Cijklui,jvk,l dx,

j(v) =
∫

ΓC

νFG |vt| ds,

〈�,v〉 =
∫

Ω
f · v dx +

∫
Γg

g · v ds−
∫

ΓC

G (vn − un) ds,

we see that the contact problem (6.41) is an elliptic variational inequality
of the second kind. It is easy to verify that the conditions stated in Theo-
rem 6.6 are satisfied, and hence the problem (6.41) has a unique solution.
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It happens in some applications that the bilinear form a satisfies the
V -ellipticity condition only on the subset K; that is, there is a constant
c0 > 0 such that

a(v, v) ≥ c0‖v‖2 ∀ v ∈ K.

In such a situation we cannot apply Theorems 6.4 and 6.6 to draw conclu-
sions about the solvability of the variational inequality, and instead Propo-
sition 6.2 must be invoked.

Results on the regularity of solutions to EVIs are important in deriving
optimal order error estimates of numerical solutions. Some regularity results
can be found in the references introduced at the beginning of the section.

6.3 Parabolic Variational Inequalities

Parabolic variational inequalities arise in a way very similar to that of the
elliptic variational inequalities that have been discussed, when time is also
present as an independent variable. We briefly review some abstract results
for parabolic variational inequalities.

Let V and H be two real Hilbert spaces such that V ⊂ H and V is
dense in H. We identify H with its dual space H ′. Let K be a nonempty,
closed and convex subset of V . Let A be a linear continuous functional from
V to V ′ with 〈Av, v〉 ≥ α ‖v‖2

V . The definition a(u, v) = 〈Au, v〉 induces
a bilinear form a : V × V → R that is continuous and V -elliptic. Let
f ∈ L2(0, T ;V ′) for some time interval [0, T ], and suppose that the time
derivative ḟ ∈ L2(0, T ;V ′). Finally, let u0 ∈ K be a given initial value.
Then a parabolic variational inequality of the first kind is a problem of the
following form: Find a function u ∈ L2(0, T ;V ) with u̇ ∈ L2(0, T ;V ′) and
u(0) = u0, such that for almost all (a.a.) t ∈ [0, T ], u(t) ∈ K and

(u̇(t), v − u(t)) + a(u(t), v − u(t)) ≥ 〈f(t), v − u(t)〉 ∀ v ∈ K. (6.45)

The following result is found in Glowinski, Lions, and Trémolières [45]
(Chapter 6, Section 2).

Theorem 6.7. In addition to the above assumptions, assume further that
f(0) −Au0 ∈ H. Then the parabolic variational inequality of the first kind
(6.45) has a unique solution. Furthermore,

u, u̇ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

To describe the problem corresponding to a parabolic variational inequal-
ity of the second kind, we introduce a functional j : V → R. Following
Duvaut and Lions [33] (Chapter 1, Section 5), we assume that j : V → R

is proper, convex, and l.s.c. and that there exists a family of differentiable
functions jk on V such that the following three conditions are satisfied:
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•
∫ T

0
jk(v(t)) dt →

∫ T

0
j(v(t)) dt for any v ∈ L2(0, T ;V );

• there is a sequence uk bounded in V such that j′k(uk) = 0 for any k;

• if vk ⇀ v, v̇k ⇀ v̇ in L2(0, T ;V ) and
∫ T

0
jk(vk) dt is bounded from

above, then

lim inf
k→∞

∫ T

0
jk(vk) dt ≥

∫ T

0
j(v) dt.

Ellipticity of the bilinear form a can be weakened to the coerciveness con-
dition

a(v, v) + λ ‖v‖2
H ≥ α ‖v‖2

V ∀ v ∈ V

for some constants λ ≥ 0 and α > 0. Finally, with regard to the initial
value function u0, assume that j(u0) ∈ R and that there exists a sequence
{u0k} such that u0k → u0 in V , and ‖Au0k + j′k(u0k)‖H is bounded.

Theorem 6.8. Under the above assumptions, there is a unique solution to
the problem of finding a function u ∈ L2(0, T ;V ) with ∂u/∂t ∈ L2(0, T ;V ′)
and u(0) = u0 such that for a.a. t ∈ [0, T ],

(u̇(t), v − u(t)) + a(u(t), v − u(t)) + j(v) − j(u(t))
≥ 〈f(t), v − u(t)〉 ∀ v ∈ V.

(6.46)

Furthermore, u̇ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

It is possible to formulate the problems (6.45) and (6.46) in a unified
manner. Indeed, set

K =
{
v : v ∈ L2(0, T ;V ), v̇ ∈ L2(0, T ;V ′), v(t) ∈ K a.e. t ∈ [0, T ]

}
,

Ku0 = {v : v ∈ K, v(0) = u0},

where u0 ∈ H is given. A general form of the parabolic variational inequal-
ity is then

u ∈ Ku0 ,

∫ T

0
(u̇, v − u) dt +

∫ T

0
[a(u, v − u) + j(v) − j(u)] dt

≥
∫ T

0
〈f, v − u〉 dt ∀ v ∈ K, (6.47)

and its equivalent local form is

u ∈ Ku0 , (u̇(t), v − u(t)) + a(u(t), v − u(t)) + j(v) − j(u(t))
≥ 〈f(t), v − u(t)〉 ∀ v ∈ K, for a.a. t ∈ [0, T ]. (6.48)
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To avoid the unnatural assumptions on f(0) and u0 in Theorem 6.7 and
on the nondifferentiable functional j in Theorem 6.8, one can resort to an
analysis of the weak form of the problem of finding u ∈ L2(0, T ;V ) with
u(t) ∈ K for a.a. t ∈ [0, T ] such that∫ T

0
(v̇, v − u) dt +

∫ T

0
[a(u, v − u) + j(v) − j(u)] dt

≥
∫ T

0
〈f, v − u〉 dt ∀ v ∈ Ku0 . (6.49)

It is easy to show that a solution of the problem (6.47) satisfies the relation
(6.49), but not conversely. The following result on the weak formulation
(6.49) is found in [45].

Theorem 6.9. Assume that K is a nonempty closed convex subset of V ,
u0 ∈ K. Let a : V ×V → R be a bilinear elliptic form on V , and j : K → R

a convex l.s.c. functional with the property that |
∫ T

0 j(v) dt| < ∞ for any
v ∈ L2(0, T ;K). Then for any f ∈ L2(0, T ;V ′), there exists a unique func-
tion u ∈ L2(0, T ;V ) with u(t) ∈ K for a.a. t ∈ [0, T ] such that (6.49) is
satisfied.

Results on the regularity of solutions to parabolic variational inequalities
exist and are very useful in accurately predicting convergence orders of
numerical approximations. The following is one such example ([16]).

Theorem 6.10. For the problem (6.45) in which H = L2(Ω), V = H1
0 (Ω),

a(u, v) =
∫

Ω
∇u · ∇v dx, 〈f, v〉 =

∫
Ω
f v dx,

and K = {v ∈ H1
0 (Ω) : v ≥ 0 a.e. on Ω}, assume that

f ∈ C([0, T ];L∞(Ω)), ḟ ∈ L2([0, T ];L∞(Ω)),

and

u0 ∈ W 2,∞(Ω) ∩K.

Then there is a unique solution of (6.45) satisfying

u ∈ L2([0, T ];H2(Ω)), u̇ ∈ L2([0, T ];H1
0 (Ω)) ∩ L∞([0, T ];L∞(Ω)),

and (
∂u+(t)

∂t
, v − u(t)

)
+ a(u(t), v − u(t)) ≥ 〈f(t), v − u(t)〉

for all v ∈ K, t ∈ [0, T ], where ∂u+(t)/∂t denotes the right-hand derivative
of u with respect to t.
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The elastoplasticity problem studied in this work will be formulated in
two alternative forms as time-dependent variational inequalities involving
the first time derivatives of certain quantities. However, our variational in-
equalities differ in several aspects from the standard parabolic variational
inequalities presented above. First, the plasticity problems to be considered
are quasistatic, so that we do not have the first term on the lefthand side
of either (6.45) or (6.46), while the time derivative appears in other terms
of the formulation. Secondly, one of our variational inequality formulations
(the primal variational formulation) is of mixed kind, that is, it is a varia-
tional inequality both by virtue of the presence of a nondifferentiable term
and by the fact that the problem is posed over a convex subset of the whole
space.



7
The Primal Variational Problem of
Elastoplasticity

The initial–boundary value problem of elastoplasticity may be formulated
in two alternative ways, depending on which of the two forms of the plastic
flow law (see Section 4.2) is adopted. We describe as the primal problem
the version that takes as its point of departure the flow law in the form
(4.38), while the dual problem is formulated using the form (4.35) of the
flow law.

This chapter is devoted to the formulation and analysis of the primal
variational problem of elastoplasticity. In Section 7.1 we introduce the vari-
ational formulation of the primal problem. This is followed, in Section 7.2,
by the formulation and analysis of an abstract variational inequality of
which the primal variational problem is a special case. In Section 7.3 the
results on the abstract problem obtained in Section 7.2 are applied to the
primal problem. Finally, in Section 7.4 we consider the continuous depen-
dence of the solution of the primal problem on the input data; an estimate
is derived for the continuous dependence of the solution of a particular
primal problem Prim1, defined in Section 7.1, on various input data.

7.1 The Primal Variational Problem

Rather than work at the greatest possible level of generality, we focus on
the problem corresponding to linear elastic behavior and linear hardening
laws. We will pay particular attention to the special case of an elastoplas-
tic material with either or both of linear kinematic hardening and linear
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isotropic hardening.

Basic relations. The flow law of the problem takes the form (4.38), which
involves the dissipation function D. For convenience we reproduce here the
full set of governing equations, which are assumed to be posed on a bounded
Lipschitz domain Ω with boundary Γ.

The unknown variables are the displacement u, the plastic strain p, and
the internal hardening variables ξ, which are required to satisfy, in Ω,
the equilibrium equation

divσ + f = 0, (7.1)

the strain–displacement relation

ε(u) = 1
2 (∇u + (∇u)T ), (7.2)

the constitutive relations

σ = C (ε(u) − p), (7.3)
χ = −H ξ, (7.4)

and the flow law

(ṗ, ξ̇) ∈ Kp,

D(q,η) ≥ D(ṗ, ξ̇) + σ : (q − ṗ) + χ : (η − ξ̇) ∀ (q,η) ∈ Kp,
(7.5)

where Kp = domD. The dissipation function D is a gauge, that is, it is
nonnegative, convex, positively homogeneous, and l.s.c., with D(0) = 0.

Properties of material parameters. When analyzing the elastoplas-
ticity problem, we need to make some assumptions about the material
parameters. These assumptions encapsulate realistic properties of elasto-
plastic materials.

The elasticity tensor C has the symmetry properties

Cijkl = Cjikl = Cklij ; (7.6)

it is assumed, furthermore, that C has bounded and measurable compo-
nents, that is,

Cijkl ∈ L∞(Ω), (7.7)

and that it is pointwise stable: There exists a constant C0 > 0 such that

Cijkl(x)ζijζkl ≥ C0|ζ|2 ∀ ζ = (ζij) ∈ M3, a.e. in Ω. (7.8)

The hardening modulus H, viewed as a linear operator from R
m into itself,

is assumed to be symmetric in the sense that

ξ : Hλ = λ : Hξ ∀ ξ,λ ∈ R
m. (7.9)
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It is further assumed that H has bounded and measurable components,
that is,

Hij ∈ L∞(Ω), (7.10)

and that it is positive definite in the sense that a constant H0 > 0 exists
such that

ξ : Hξ ≥ H0|ξ|2 ∀ ξ ∈ R
m, a.e. in Ω. (7.11)

We see that the compliance tensor C−1 has the same symmetry properties
as C and is also pointwise stable in the sense that a constant C ′

0 > 0 exists
such that

C−1
ijkl(x)ζijζkl ≥ C ′

0|ζ|2 ∀ ζ ∈ M3, a.e. in Ω.

The inverse H−1 of the hardening modulus possesses the same properties
as H: It is a symmetric operator whose matrix representation has uniformly
bounded components. Furthermore, there exists a constant H ′

0 > 0 such
that

χ : H−1χ ≥ H ′
0|χ|2 ∀χ ∈ R

m, a.e. in Ω.

Initial and boundary value conditions. For convenience we confine our
attention to the homogeneous Dirichlet (displacement) boundary condition

u = 0 on Γ. (7.12)

The treatment of other boundary conditions does not present any essential
difficulty. The initial condition is

u(x, 0) = 0. (7.13)

Function spaces. We introduce here the function spaces corresponding
to the variables of interest.

The space V of displacements is defined by

V = [H1
0 (Ω)]3.

To define the space of plastic strains we first introduce the space

Q = {q = (qij)3×3 : qji = qij , qij ∈ L2(Ω)}

with the usual inner product and norm of the space [L2(Ω)]3×3. Then the
space Q0 of plastic strains is the closed subspace of Q defined by

Q0 = {q ∈ Q : tr q = 0 a.e. in Ω}.
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The space M of internal variables is defined by

M = [L2(Ω)]m

with the usual L2(Ω)-based inner product and norm. We will also need the
product space Z = V × Q0 ×M , which is a Hilbert space with the inner
product

(w, z)Z = (u,v)V + (p, q)Q + (ξ,η)M

and the norm ‖z‖Z = (z, z)1/2Z , where w = (u,p, ξ) and z = (v, q,η).
Corresponding to the set Kp = dom (D), we define

Zp = {z = (v, q,η) ∈ Z : (q,η) ∈ Kp a.e. in Ω}, (7.14)

which is a nonempty, closed, convex cone in Z.

Functionals and the bilinear form. We introduce the bilinear form
a : Z × Z → R defined by

a(w, z) =
∫

Ω
[C(ε(u) − p) : (ε(v) − q) + ξ : Hη] dx, (7.15)

the linear functional

�(t) : Z → R, 〈�(t),z〉 =
∫

Ω
f(t) · v dx, (7.16)

and the functional

j : Z → R, j(z) =
∫

Ω
D(q,η) dx, (7.17)

where as before, w = (u,p, ξ) and z = (v, q,η).
The bilinear form a(·, ·) is symmetric as a result of the symmetry prop-

erties of C and H. From the properties of D, j(·) is a convex, positively
homogeneous, nonnegative, and l.s.c. functional. Note, however, that in
general, j is not differentiable (cf. (4.51) for the case of combined linear
kinematic and isotropic hardening with the von Mises yield function).

The primal variational formulation. To arrive at a primal variational
formulation of the problem, we begin by integrating the relation (7.5) and
use the expressions (7.3) and (7.4) to obtain (ṗ, ξ̇) ∈ Zp and∫

Ω
D(q,η) dx ≥

∫
Ω
D(ṗ, ξ̇) dx

+
∫

Ω

[
C (ε(u) − p) : (q − ṗ) −H ξ : (η − ξ̇)

]
dx (7.18)

∀ (q,η) ∈ Zp.
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We next take the scalar product of (7.1) with v − u̇ for arbitrary v ∈ V ,
integrate over Ω, and perform an integration by parts with the use of the
expression (7.3) for σ to obtain∫

Ω
C (ε(u) − p) : (ε(v) − ε(u̇)) dx =

∫
Ω
f · (v − u̇) dx ∀v ∈ V. (7.19)

We now add (7.18) and (7.19) to obtain the variational inequality

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t),z − ẇ(t)〉,

which is posed on the space Zp.
The primal variational problem of elastoplasticity thus takes the follow-

ing form.

Problem Prim. Given � ∈ H1(0, T ;Z ′), �(0) = 0, find w = (u,p, ξ) :
[0, T ] → Z, w(0) = 0, such that for almost all t ∈ (0, T ), ẇ(t) ∈ Zp and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t),z − ẇ(t)〉 ∀ z ∈ Zp. (7.20)

We have seen that if w is a classical solution of the problem defined by
(7.1)–(7.5) and (7.12)–(7.13), then it is a solution of the problem Prim.
Conversely, reversing the argument leading to the inequality (7.20), we see
that if w is a smooth solution of Problem Prim, then w is also a classical
solution of the problem defined by (7.1)–(7.5) and (7.12)–(7.13). Thus the
two problems are formally equivalent.

From the point of view of a theoretical analysis it is more convenient
to view the inequality (7.20) as one posed on the whole space Z, rather
than on Zp. Observing that j(z) = ∞ for z �∈ Zp and bearing in mind the
requirement ẇ(t) ∈ Zp, we can express the relation (7.20) in the following
equivalent form:

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t),z − ẇ(t)〉 ∀ z ∈ Z. (7.21)

The definition

∂j(ẇ) = {w∗ ∈ Z ′ : j(z) ≥ j(ẇ) + 〈w∗, z − ẇ〉 ∀ z ∈ Z} (7.22)

of the subdifferential of j(·) (cf. (4.12)) permits us to rewrite (7.21) in
the form of an equation and an inclusion. Indeed, by using (7.22) and
introducing the variable w∗, we see that the problem Prim is equivalent to
the problem of finding functions w: [0, T ] → Z and w∗: [0, T ] → Z ′ such
that for almost all t ∈ (0, T ),

a(w(t), z) + 〈w∗(t), z〉 = 〈�(t),z〉 ∀ z ∈ Z, (7.23)
w∗(t) ∈ ∂j(ẇ(t)). (7.24)

From the definition of the subdifferential and the positive homogeneity of
j, we observe that the relation (7.24) is equivalent to the pair of conditions

〈w∗(t), z〉 ≤ j(z) ∀ z ∈ Z (7.25)
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and

〈w∗(t), ẇ(t)〉 = j(ẇ(t)). (7.26)

We notice that in the case where there is no plastic deformation, the
problem Prim reduces to the boundary value problem of linear elasticity.
To see this, setting p = 0 and ξ = 0, we obtain from (7.20) that∫

Ω
Cε(u) : ε(v − u̇) dx =

∫
Ω
f · (v − u̇) dx ∀v ∈ [H1

0 (Ω)]3,

i.e., ∫
Ω
Cε(u) : ε(v) dx =

∫
Ω
f · v dx ∀v ∈ [H1

0 (Ω)]3,

which is the linear elasticity problem (6.19) when the homogeneous dis-
placement condition is specified on the whole boundary.

Combined linear kinematic and isotropic hardening with von Mises
yield condition. Later on, in order to make the results more accessible,
they will be presented in the context of the special cases of combined lin-
ear kinematic and isotropic hardening, or linear kinematic hardening only,
together with the von Mises yield condition (see Examples 4.8 and 4.9).
Besides their simplicity, these special cases, owing to their popular usage,
are also important particular applications of the general theory developed
in this work. Another important special case, namely, that corresponding
to linear isotropic hardening, can be analyzed in a way very similar to that
for the combined linear kinematic and isotropic hardening material.

We now turn to the formulation of the problem for the case of combined
linear kinematic and isotropic hardening with the von Mises yield function.
From Example 4.8 it is seen that the unknown variables for this special case
are the displacement u, the plastic strain p, and the isotropic hardening
variable γ. The spaces V and Q0 of displacements and plastic strains are
unchanged, and the space M of internal variables is simply M = L2(Ω).

In this special context the constraint set Zp of Z is given by

Zp = {z = (v, q, µ) ∈ Z : |q| ≤ µ a.e. in Ω}.

The bilinear form a : Z × Z → R becomes

a(w, z)

=
∫

Ω
[C(ε(u) − p) : (ε(v) − q) + k1p : q + k2γµ] dx

=
∫

Ω
[Cijkl(εij(u) − pij)(εkl(v) − qkl) + k1pijqij + k2γµ] dx,

(7.27)
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where w = (u,p, γ) and z = (v, q, µ). The functional j defined in (7.17) is

j(z) =
∫

Ω
D(q, µ) dx

with the dissipation function D corresponding to the von Mises yield func-
tion being given by

D(q, µ) =
{

c0|q| if |q| ≤ µ,
+∞ if |q| > µ.

(7.28)

The linear functional �(t) is as in (7.16). With these identifications, we
arrive at the following primal variational problem of elastoplasticity for the
combined linear kinematic–isotropic hardening material with the von Mises
yield function.

Problem Prim1. Given � ∈ H1(0, T ;Z ′), �(0) = 0, find w = (u,p, γ) :
[0, T ] → Z with w(0) = 0 such that for almost all t ∈ (0, T ), ẇ(t) ∈ Zp

and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t),z − ẇ(t)〉 ∀ z ∈ Zp. (7.29)

Again, the formal equivalence of Problem Prim1 to the classical form of
the problem can be established by a standard procedure. We take the vari-
ational problem Prim1 as fundamental.

Linear kinematic hardening with von Mises yield condition. The
problem for a material undergoing linear kinematic hardening only, to-
gether with the von Mises yield function, can be formally viewed as a
degenerate case of Problem Prim1 with k2 = 0. The unknown variables in
this case are the displacement u and the plastic strain p, and the spaces V
and Q0 are as previously defined. The solution space is now Z = V ×Q0,
with the inner product

(w, z)Z = (u,v)V + (p, q)Q

and the norm ‖z‖Z = (z, z)1/2Z , where w = (u,p) and z = (v, q). This
time, instead of (7.28), the dissipation function takes the simple form

D(q) = c0|q| ∀ q ∈ Q0, (7.30)

so that the function

j(z) =
∫

Ω
D(q) dx for z = (v, q) ∈ Z

is finite on the whole space Z. The bilinear form a : Z × Z → R is

a(w, z)

=
∫

Ω
[C(ε(u) − p) · (ε(v) − q) + k1p · q] dx

=
∫

Ω
[Cijkl(εij(u) − pij)(εkl(v) − qkl) + k1pijqij ] dx, (7.31)
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while the linear functional �(t) is unchanged from (7.16). We can now define
the primal variational problem corresponding to linear kinematic hardening
material with the von Mises yield function.

Problem Prim2. Given � ∈ H1(0, T ;Z ′), �(0) = 0, find w = (u,p) :
[0, T ] → Z with w(0) = 0 such that for almost all t ∈ (0, T ),

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t),z − ẇ(t)〉 ∀ z ∈ Z. (7.32)

7.2 Qualitative Analysis of an Abstract Problem

We find it convenient to study the primal variational problem in the frame-
work of an abstract variational inequality. Apart from elastoplasticity, an-
other application in which this variational inequality may be found is some
contact problems with frictions. This section is devoted to the study of the
well-posedness of the abstract problem. Once the issues of existence and
uniqueness of a solution to the abstract problem have been settled, we will,
in the next section, return to the primal problem of elastoplasticity and
will apply the abstract results to that problem.

The abstract problem takes the following form.

Problem Abs. Find w : [0, T ] → H, w(0) = 0, such that for almost all
t ∈ (0, T ), ẇ(t) ∈ K and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t), z − ẇ(t)〉 ∀ z ∈ K. (7.33)

Here H denotes a Hilbert space and K a nonempty, closed, convex cone in
H. The bilinear form a : H×H → R is symmetric, bounded, and H-elliptic,
that is,

a(w, z) = a(z, w) ∀w, z ∈ H,

and there exist constants c0, c1 > 0 such that

|a(w, z)| ≤ c1‖w‖H‖z‖H , a(z, z) ≥ c0‖z‖2
H ∀w, z ∈ H.

We assume that � ∈ H1(0, T ;H ′), �(0) = 0, and that j : K → R is non-
negative, convex, positively homogeneous, and Lipschitz continuous, but
not necessarily differentiable.

We remark that a solution w(t) of the problem Abs actually lies in the
set K for almost all t ∈ [0, T ]. This follows from the elementary formula

w(t) =
∫ t

0
ẇ(t) dt,

the condition ẇ(t) ∈ K for a.a. t ∈ [0, T ], and the property that K is a
closed, convex cone in H.
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We call the problem Abs a variational inequality of the mixed kind be-
cause it has features of variational inequalities of both the first kind (the
presence of the convex set K) and the second kind (the presence of the
nondifferentiable functional j).

Questions of existence and uniqueness of solutions to this problem were
first investigated in the context of elastoplasticity with linear kinematic
hardening by Reddy [104]. The results were extended in Han, Reddy, and
Schroeder [56] to cover the elastoplasticity problem with combined linear
kinematic and isotropic hardening. The present treatment follows closely
that of Han and Reddy [55].

The functional j may be extended from K to the whole space H by
introducing the functional J : H → R ∪ {+∞} through the formula

J(z) =
{

j(z) if z ∈ K,
+∞ if z �∈ K.

Since K is a nonempty, closed, and convex cone, and since j is convex, pos-
itively homogeneous, and Lipschitz continuous on K, the extended func-
tional J is proper, positively homogeneous, convex, and l.s.c. From now
on, we will identify j with J ; that is, we will use the same notation j(z)
to denote the extension of j(z) from K to H by ∞ for z �∈ K. With this
identification, (7.33) is equivalent to

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t), z − ẇ(t)〉 ∀ z ∈ H;

in other words, the form of the problem is not affected by whether the test
functions z are taken in H or only in K. There is an advantage in posing
the variational inequality on the whole space, though, in that the standard
solvability result, Theorem 6.6, can be applied directly to a sequence of
approximation problems; see the proof of Lemma 7.1 below. We also observe
that Problem Abs is equivalent to the problem of finding functions w:
[0, T ] → H, w(0) = 0, and w∗(t): [0, T ] → H ′ such that for almost all
t ∈ (0, T ),

a(w(t), z) + 〈w∗(t), z〉 = 〈�(t), z〉 ∀ z ∈ H, (7.34)
w∗(t) ∈ ∂j(ẇ(t)), (7.35)

where ∂j(ẇ(t)) denotes the subdifferential of j(·) at ẇ(t).
As has been observed in the last section, because of the positive homo-

geneity of j, the relation w∗(t) ∈ ∂j(ẇ(t)) is equivalent to

〈w∗(t), z〉 ≤ j(z) ∀ z ∈ H and 〈w∗(t), ẇ(t)〉 = j(ẇ(t)). (7.36)

A feature of the proof of the existence result presented below is that
it employs a discretization method closely related to one that is used in
practice for computational purposes (see, for example, Reddy and Mar-
tin [107], [108]). The method of proof has interesting parallels with the
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time-discrete approximations of Problem Abs, for which an estimate of the
rate of convergence of the approximations is derived in Chapter 11.

We now prove that the problem Abs is uniquely solvable in an appropri-
ate space setting to be made precise below, and that the solution is stable
with respect to perturbations in the data �.

Existence. The proof of existence involves two stages: the first entails
discretizing in time and establishing the existence of a family of solutions
{wn}Nn=1 to the discrete problems. The second stage involves construct-
ing piecewise linear interpolants wk of the discrete solutions {wn}Nn=1 and
showing that as the time step-size k approaches zero, the limit of these
interpolants is in fact a solution of Problem Abs.

Time-discretization involves a uniform partitioning of the time interval
[0, T ] according to

0 = t0 < t1 < · · · < tN = T, where tn − tn−1 = k, k = T/N.

We write �n = �(tn), which is well-defined, since � ∈ H1(0, T ;H ′) implies
� ∈ C([0, T ];H ′) by the embedding theorem

H1(0, T ;X) ↪→C([0, T ];X)

for any Banach space X. Corresponding to a sequence {wn}Nn=0, we define
∆wn to be the backward difference wn − wn−1, and δwn = ∆wn/k to be
the backward divided difference, n = 1, 2, . . . , N .

We first study a problem that is a semidiscrete counterpart of the contin-
uous problem Abs. Notice that no summation is implied over the repeated
index n.

Lemma 7.1. For any given {�n}Nn=0 ⊂ H ′, �0 = 0, there exists a unique se-
quence {wn}Nn=0 ⊂ H with w0 = 0 such that for n = 1, 2, . . . , N , ∆wn ∈ K
and

a(wn, z − ∆wn) + j(z) − j(∆wn) ≥ 〈�n, z − ∆wn〉 ∀ z ∈ H. (7.37)

Furthermore, there exists a constant c, independent of k, such that

‖∆wn‖H ≤ c ‖∆�n‖H′ , n = 1, . . . , N. (7.38)

Proof. The inequality (7.37) may be rewritten as

a(∆wn, z − ∆wn) + j(z) − j(∆wn)
≥ 〈�n, z − ∆wn〉 − a(wn−1, z − ∆wn). (7.39)

We proceed inductively. For n = 1, since the bilinear form a(·, ·) is continu-
ous and H-elliptic, the functional j(·) is proper, convex, and l.s.c., and the
functional defined by the right-hand side of (7.39) is bounded and linear,
the problem (7.39) has a unique solution ∆w1 = w1 by Theorem 6.6. Ob-
viously, j(∆w1) < ∞. Hence, ∆w1 ∈ K. Assuming now that the solution
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wn−1 is known, we can similarly show the existence and uniqueness of the
solution wn = ∆wn + wn−1.

To derive the estimate (7.38), set z = 0 in (7.39) to get

a(∆wn,∆wn) ≤ 〈∆�n,∆wn〉 − a(wn−1,∆wn)
− j(∆wn) + 〈�n−1,∆wn〉. (7.40)

We now show that −a(wn−1,∆wn) − j(∆wn) + 〈�n−1,∆wn〉 ≤ 0. By re-
placing n by (n − 1) and setting z = ∆wn−1 + ∆wn ∈ K in (7.37) we
obtain

0 ≤ a(wn−1,∆wn) − 〈�n−1,∆wn〉 + j(∆wn−1 + ∆wn) − j(∆wn−1)
≤ a(wn−1,∆wn) − 〈�n−1,∆wn〉 + j(∆wn),

where we used the convexity and positive homogeneity of j(·). Hence from
(7.40) we obtain the inequality

a(∆wn,∆wn) ≤ 〈∆�n,∆wn〉,

from which the estimate (7.38) follows by the H-ellipticity of a(·, ·). �

Lemma 7.2. Assume that � ∈ H1(0, T ;H ′) with �(0) = 0. Then the solution
{wn}Nn=0 defined in Lemma 7.1 satisfies

max
1≤n≤N

‖wn‖H ≤ c ‖�̇‖L1(0,T ;H′), (7.41)

N∑
n=1

‖δwn‖2
Hk ≤ c ‖�̇‖2

L2(0,T ;H′). (7.42)

Proof. We write

wn =
n∑

k=1

∆wk.

Using (7.38) and (5.25) we have

‖wn‖H ≤
n∑

k=1

‖∆wk‖H ≤ c

n∑
k=1

‖∆�k‖H′ ≤ c

∫ T

0
‖�̇(τ)‖H′ dτ.

The inequality (7.41) now follows by taking the maximum over all n.
To derive (7.42) we again begin by using (5.25) to get

‖∆wn‖H ≤ c ‖∆�n‖H′ ≤ c

∫ tn

tn−1

‖�̇(τ)‖H′ dτ ;

thus

‖δwn‖2
H k ≤ c

∫ tn

tn−1

‖�̇(τ)‖2
H′ dτ
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using the Cauchy–Schwarz inequality. We now sum over n to obtain

N∑
n=1

‖δwn‖2
H k ≤ c

∫ T

0
‖�̇(τ)‖2

H′ dτ

as desired. �

We now construct a piecewise linear interpolant wk of {wn}Nn=0 by setting

wk(t) = wn−1 + δwn (t− tn−1)

for tn−1 ≤ t ≤ tn, 1 ≤ n ≤ N . Clearly, wk ∈ L∞(0, T ;H), while ẇk ∈
L2(0, T ;H). For any sequence {zn}Nn=1 ⊂ H, we define a step function z(t)
by

z(t) = zn for tn−1 ≤ t < tn, n = 1, . . . , N − 1,
z(t) = zN for tN−1 ≤ t ≤ tN .

Let zN+1 = 0. We divide both sides of (7.37) by k and use the positive
homogeneity of j to obtain

a(wn, z − δwn) + j(z) − j(δwn) − 〈�n, z − δwn〉 ≥ 0 ∀ z ∈ H.

Taking z = (zn + zn+1)/2 in the above inequality, multiplying by k, and
summing over n from 1 to N , we find that

N∑
n=1

k a(wn, (zn + zn+1)/2 − δwn) +
N∑

n=1

k j((zn + zn+1)/2)

−
N∑

n=1

k j(δwn) −
N∑

n=1

k 〈�n, (zn + zn+1)/2 − δwn〉 ≥ 0. (7.43)

Let us manipulate each of the sums in (7.43). For the first sum, we have

N∑
n=1

k a(wn, (zn + zn+1)/2) =
∫ T

0
a(wk(t), z(t)) dt,

N∑
n=1

k a(wn, δwn) ≥
∫ T

0
a(wk(t), ẇk(t)) dt.

Using the convexity of j, we can bound the second sum,

N∑
n=1

k j( 1
2 (zn + zn+1)) ≤

N∑
n=1

k

2
(j(zn) + j(zn+1)) =

∫ T

0
j(z(t)) dt− k

2
j(z1).
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Easily, the third sum can be rewritten as

N∑
n=1

k j(δwn) =
∫ T

0
j(ẇk(t)) dt.

To deal with the last sum, we use the following relations:

N∑
n=1

k 〈�n, 1
2 (zn + zn+1)〉 =

∫ T

0
〈�k(t), z(t)〉 dt,

and
N∑

n=1

k 〈�n, δwn〉 =
∫ T

0
〈�k(t), ẇk(t)〉 dt +

N∑
n=1

〈∆�n,∆wn〉

≤
∫ T

0
〈�k(t), ẇk(t)〉 dt + c k

∫ T

0
‖�̇(t)‖2

H′dt,

where �k(t) represents the piecewise linear interpolant of {�n}Nn=0 and c is
the constant appearing in (7.38).

Thus, from (7.43) we see that wk satisfies the variational inequality

0 ≤ Jk

≡
∫ T

0

[
a(wk(t), z(t) − ẇk(t)) + j(z(t)) − j(ẇk(t)) (7.44)

− 〈�k(t), z(t) − ẇk(t)〉
]
dt− 1

2 k j(z1) + 1
2c k

∫ T

0
‖�̇(t)‖2

H′dt.

From (7.41), (7.42), and the definition of wk, we see by direct evaluation
that for some constant c independent of k,

‖wk‖L∞(0,T ;H) ≤ c and ‖ẇk‖L2(0,T ;H) ≤ c.

Now we fix a step-size k0 > 0 and consider the sequence of step-sizes
kl = 2−lk0, l = 0, 1, . . . . It follows that there exists a subsequence {wkli }
of the sequence {wkl} and a function w ∈ H1(0, T ;H) such that

wkli
∗
⇀ w in L∞(0, T ;H) and ẇkli ⇀ ẇ in L2(0, T ;H) as i → ∞.

It remains to show that w satisfies the variational inequality (7.33). We
return to (7.44) and consider each of the terms appearing there.

First, using the fact that wkli (0) = 0 we obtain

lim sup
i→∞

−
∫ T

0
a(wkli (t), ẇkli (t)) dt = − lim inf

i→∞
1
2 a(w

kli (T ), wkli (T ))

≤ − 1
2 a(w(T ), w(T ))

= −
∫ T

0
a(w(t), ẇ(t)) dt.
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Next,

lim sup
i→∞

∫ T

0
a(wkli (t), z(t)) dt = lim

i→∞

∫ T

0
a(wkli (t), z(t)) dt

=
∫ T

0
a(w(t), z(t)) dt.

From the properties of j, it is easy to verify that the functional
∫ T

0 j(z(t)) dt
is convex and l.s.c. on L1(0, T ;K), and so is weakly l.s.c. on L1(0, T ;H).
Since we also have

ẇkli ⇀ ẇ in L1(0, T ;H) as i → ∞,

it follows that ∫ T

0
j(ẇ(t)) dt ≤ lim inf

i→∞

∫ T

0
j(ẇkli (t)) dt.

This inequality in turn implies that ẇ(t) ∈ K for almost all t ∈ [0, T ].
This leaves the terms involving the approximation �kli (t) to the lin-

ear functional �(t). By the assumption and the construction we have that
�, �kli ∈ L2(0, T ;H ′); furthermore, since for tn−1 ≤ t ≤ tn we have

‖�(t) − �kli (t)‖H′ ≤ ‖�(t) − �(tn−1)‖H′ +
|t− tn−1|

kli
‖��n‖H′

≤ 2
∫ tn

tn−1

‖�̇(τ)‖H′ dτ,

and thus

‖�(t) − �kli (t)‖2
H′ ≤ 4 kli

∫ tn

tn−1

‖�̇(τ)‖2
H′ dτ,∫ T

0
‖�(t) − �kli (t)‖2

H′ dt ≤ c kli
2
∫ T

0
‖�̇(τ)‖2

H′ dτ.

It follows that �kli → � in L2(0, T ;H ′) as i → ∞.
Hence, as i → ∞,∫ T

0
〈�kli (t), z(t) − ẇkli (t)〉 dt →

∫ T

0
〈�(t), z(t) − ẇ(t)〉 dt.

The groundwork is now complete. Using the above results we have

0 ≤ lim sup
i→∞

Jkli

≤
∫ T

0

[
a(w(t), z(t) − ẇ(t)) + j(z(t))

− j(ẇ(t)) − 〈�(t), z(t) − ẇ(t)〉
]
dt
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for any step function z corresponding to a step-size kli , i = 1, 2, . . . . Ap-
proximating any z ∈ L2(0, T ;K) by its piecewise averaging step functions
zkli , it then follows that∫ T

0

[
a(w(t), z(t) − ẇ(t)) + j(z(t)) − j(ẇ(t)) − 〈�(t), z(t) − ẇ(t)〉

]
dt ≥ 0

(7.45)

for all z ∈ L2(0, T ;K). Here we have used the Lipschitz continuity of j on
K and the fact that

z ∈ L2(0, T ;K) =⇒ zkli (t) ∈ K for a.a. t ∈ [0, T ].

Now, for any t0 ∈ (0, T ), let h > 0 be such that t0+h < T . For an arbitrary
z ∈ K, we define

z(t) =
{

z t0 ≤ t ≤ t0 + h,
ẇ(t) otherwise.

Obviously, z(t) ∈ L2(0, T ;K). We take this z(t) in (7.45) to obtain

1
h

∫ t0+h

t0

[a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) − 〈�(t), z − ẇ(t)〉] dt ≥ 0.

Then we take the limit h → 0. Applying the Lebesgue theorem (Theo-
rem 5.21), we find that w satisfies the variational inequality (7.33) a.e. on
[0, T ]. By the Sobolev embedding theorem, H1(0, T ;H) ↪→ C([0, T ];H),
and we observe that w ∈ L∞(0, T ;H) and ẇ ∈ L2(0, T ;H) is equivalent to
w ∈ H1(0, T ;H).

Uniqueness. The technique for the proof of uniqueness is standard. Sup-
pose that Problem Abs has two solutions, w1 and w2. Denote by ∆w the
difference w1 − w2. From (7.33), on setting w = w1, z = ẇ2 ∈ K and then
w = w2, z = ẇ1 ∈ K, respectively, we have

a(w1,∆ẇ) + j(ẇ1) − j(ẇ2) ≤ 〈�,∆ẇ〉,
−a(w2,∆ẇ) + j(ẇ2) − j(ẇ1) ≤ −〈�,∆ẇ〉.

Adding the two inequalities, we get

a(∆w,∆ẇ) =
1
2

d

dt
a(∆w,∆w) ≤ 0.

We integrate the above inequality and use the initial conditions w1(0) =
w2(0) = 0 to find that

a(∆w(t),∆w(t)) ≤ 0, t ∈ [0, T ].

Then the H-ellipticity of a(·, ·) yields ∆w(t) = 0 for t ∈ [0, T ], as required.
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The above results are summarized in the following theorem.

Theorem 7.3. (Existence and uniqueness) Let H be a Hilbert space;
K ⊂ H a nonempty, closed, convex cone; a: H ×H → R a bilinear form
that is symmetric, bounded, and H-elliptic; � ∈ H1(0, T ;H ′) with �(0) = 0;
and j : K → R nonnegative, convex, positively homogeneous, and Lips-
chitz continuous. Then there exists a unique solution w of Problem Abs
satisfying w ∈ H1(0, T ;H). Furthermore, w : [0, T ] → H is the solution to
Problem Abs if and only if there is a function w∗(t): [0, T ] → H ′ such that
for almost all t ∈ (0, T ),

a(w(t), z) + 〈w∗(t), z〉 = 〈�(t), z〉 ∀ z ∈ H, (7.46)
w∗(t) ∈ ∂j(ẇ(t)). (7.47)

We observe that from (7.46), w∗ has the regularity property

w∗ ∈ H1(0, T ;H ′). (7.48)

We remark that the existence proof above can be trivially modified for
Problem Abs under the more general assumption � ∈ W 1,p(0, T ;H ′), 1 ≤
p ≤ ∞. We notice that for 1 ≤ p ≤ ∞, W 1,p(0, T ;H ′) ↪→ C([0, T ];H ′).
When 1 ≤ p < ∞, (7.42) can be replaced by

N∑
n=1

‖∆wn‖pH ≤ c kp−1‖�̇‖pLp(0,T ;H′).

As a result, {wk} is uniformly bounded in W 1,p(0, T ;H). Then the solution
w belongs to W 1,p(0, T ;H). Similarly, if � ∈ W 1,∞(0, T ;H ′), then w ∈
W 1,∞(0, T ;H). We confine ourselves, however, to the Hilbert space case
p = 2.

Stability. Let �(1), �(2) ∈ H1(0, T ;H ′) be given, with �(1)(0) = �(2)(0) = 0,
and let w(1) and w(2) be the corresponding solutions whose existence is
assured by Theorem 7.3. Thus we have, for almost all t ∈ (0, T ), ẇ(1)(t) ∈
K, ẇ(2)(t) ∈ K, and for all z ∈ K,

a(w(1)(t), z − ẇ(1)(t)) + j(z) − j(ẇ(1)(t))
≥ 〈�(1)(t), z − ẇ(1)(t)〉, (7.49)

a(w(2)(t), z − ẇ(2)(t)) + j(z) − j(ẇ(2)(t))
≥ 〈�(2)(t), z − ẇ(2)(t)〉. (7.50)

Set e = w(1) −w(2). Taking z = ẇ(2)(t) ∈ K in (7.49) and z = ẇ(1)(t) ∈ K
in (7.50), and adding the two resultant inequalities, we obtain

1
2

d

dt
a (e(t), e(t)) ≤ 〈�(1)(t) − �(2)(t), ẇ(1)(t) − ẇ(2)(t)〉.



7.3 Analysis of the Primal Problem 167

Observing that e(0) = 0, we have

1
2
a (e(t), e(t)) ≤

∫ t

0
〈�(1)(t) − �(2)(t), ė(t)〉 dt

= 〈�(1)(t) − �(2)(t), e(t)〉 −
∫ t

0
〈�̇(1)(t) − �̇(2)(t), e(t)〉 dt.

Since a(·, ·) is H-elliptic, we have

‖e(t)‖2
H

≤ c ‖�(1)(t) − �(2)(t)‖H′‖e(t)‖H + c

∫ t

0
‖�̇(1)(t) − �̇(2)(t)‖H′‖e(t)‖Hdt.

Set M = sup0≤t≤T ‖e(t)‖H ; then

‖e(t)‖2
H ≤ c ‖�(1)(t) − �(2)(t)‖H′M + c

∫ t

0
‖�̇(1)(t) − �̇(2)(t)‖H′M dt.

Hence

M2 ≤ cM ‖�(1) − �(2)‖L∞(0,T ;H′) + cM ‖�̇(1) − �̇(2)‖L1(0,T ;H′),

and so

M ≤ c
(
‖�(1) − �(2)‖L∞(0,T ;H′) + ‖�̇(1) − �̇(2)‖L1(0,T ;H′)

)
.

Now, �(1)(0) = �(2)(0) = 0 by assumption; we have

�(1)(t) − �(2)(t) =
∫ t

0

(
�̇(1)(t) − �̇(2)(t)

)
dt,

and hence

‖�(1) − �(2)‖L∞(0,T ;H′) ≤ ‖�̇(1) − �̇(2)‖L1(0,T ;H′).

In conclusion, we have proved the following stability result.

Theorem 7.4. (Stability) Under the assumptions of Theorem 7.3, the
solution of Problem Abs depends continuously on �; more precisely, for
�(1), �(2) ∈ H1(0, T ;H ′) with �(1)(0) = �(2)(0) = 0, the corresponding solu-
tions w(1) and w(2) satisfy

‖w(1) − w(2)‖L∞(0,T ;H) ≤ c ‖�̇(1) − �̇(2)‖L1(0,T ;H′).

7.3 Analysis of the Primal Problem

The groundwork has now been laid for a proper analysis of the primal
problem of elastoplasticity. Indeed, since this problem is a special case of
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the abstract problem analyzed in Section 7.2, all that is required is to verify
the validity of various assumptions for the primal problem. This will then
lead to a result on the well-posedness of the primal variational problem.

Consider then the primal variational problem Prim (cf. Section 7.1).
The associated bilinear form a(·, ·) is given in (7.15). In general, we cannot
expect a(·, ·) to be Z-elliptic, since

a(z, z) =
∫

Ω
[C(ε(v) − q) : (ε(v) − q) + η : Hη] dx

for z = (v, q,η) ∈ Z, and we have at best

a(z, z) ≥ c (‖ε(v) − q‖2
[L2(Ω)]3×3 + ‖η‖2

[L2(Ω)]m).

On the other hand, it is possible to exploit the fact that the problem is
actually posed on the set Zp defined in (7.14), and z ∈ Zp imposes a
constraint on the relation between the components q and η. We introduce
the assumption

z = (v, q,η) ∈ Kp =⇒ β |q|2 ≤ η : Hη for some constant β > 0. (7.51)

The assumption is satisfied in important special cases that are of frequent
use in practice. As an example, for the problem with linear kinematic hard-
ening, that is, the problem Prim2, we have Kp = Q0, η = q, and H = k1I.
Since k1 > 0, the condition (7.51) is satisfied with β = k1. As another ex-
ample, consider the problem with linear isotropic hardening. In this case,
we have Kp = {(q, η) ∈ Q0 × M : |q| ≤ η} and H = H = k2. Hence,
η Hη = k2|η|2 ≥ k2|q|2 for any (q, η) ∈ Kp, i.e., the condition (7.51) is
satisfied with β = k2.

With the assumption (7.51), we can show that the bilinear form a(·, ·)
defined in (7.15) is Z-elliptic on Zp, in that for some constant c0 > 0,

a(z, z) =
∫

Ω
[C(ε(v) − q) : (ε(v) − q) + η ·Hη] dx

≥ c0
(
‖v‖2

V + ‖q‖2
Q + ‖η‖2

M

)
∀ z = (v, q,η) ∈ Zp. (7.52)

Indeed, using (7.8), (7.11), and (7.51), we have, for z = (v, q,η) ∈ Zp,

C(ε(v) − q) : (ε(v) − q) + η : Hη

= C(ε(v) − q) : (ε(v) − q) + 1
2 η : Hη + 1

2 η : Hη

≥ C0|ε(v) − q|2 + 1
2 β |q|2 + 1

2 H |η|2

= C0(|ε(v)|2 + |q|2 − 2 ε(v) : q) + 1
2 β |q|2 + 1

2 H |η|2

≥ C0(|ε(v)|2 + |q|2 − d |ε(v)|2 − d−1|q|2) + 1
2 β |q|2 + 1

2 H |η|2

(0 < d < 1)
= C0(1 − d) |ε(v)|2 + [C0(1 − d−1) + 1

2 β]|q|2 + 1
2 H |η|2.
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Choosing d ∈ (0, 2C0/(2C0 + β)), we obtain

C(ε(v) − q) : (ε(v) − q) + η : Hη ≥ c
(
|ε(v)|2 + |q|2 + |η|2

)
for all z = (v, q,η) ∈ Zp, from which an application of Korn’s inequality
(5.21) yields (7.52).

Theorem 7.5. Under the assumption (7.51) and the assumptions made
in Section 7.1, the problem Prim has a solution.

We will only give a sketch of the proof, since it can be carried out in
a manner that parallels that of the existence proof in Section 7.2. In Sec-
tion 7.2, the bilinear form is assumed to be elliptic on the whole space; this
condition is now replaced by a weaker condition, (7.52). Thus, we cannot
apply Theorem 6.6 to claim the existence of a solution to a semidiscrete
approximation. Instead, we will use Proposition 6.2.

As in Section 7.2, we divide the time interval [0, T ] into N equal parts
with step-size k = T/N . Since we do not have the ellipticity of the bilinear
form on the whole space, Lemma 7.1 is replaced by the following result.

Lemma 7.6. For any given {�n}Nn=0 ⊂ Z ′, �0 = 0, there exists a sequence
{wn}Nn=0 ⊂ Z with w0 = 0 such that for n = 1, . . . , N , ∆wn ∈ Zp and

a(wn, z − ∆wn) + j(z) − j(∆wn) ≥ 〈�n, z − ∆wn〉 ∀ z ∈ Zp, (7.53)

and there is a constant c > 0 independent of k such that

‖∆wn‖Z ≤ c ‖∆�n‖Z′ , n = 1, . . . , N. (7.54)

Proof. We rewrite (7.53) as

a(∆wn, z − ∆wn) + j(z) − j(∆wn)
≥ 〈�n, z − ∆wn〉 − a(wn−1, z − ∆wn) (7.55)

for all z ∈ Zp. Now define the functional

f(z) = 1
2 a(z, z) + j(z) − 〈�n, z〉 − a(wn−1, z).

Then f is proper, convex, and l.s.c. Furthermore, from the inequality (7.52)
we have

f(z) → ∞ as ‖z‖Z → ∞ for z ∈ Zp.

An application of Proposition 6.2 yields the existence of an element in Zp,
denoted by ∆wn = wn −wn−1, such that

f(∆wn) = inf
z∈Zp

f(z).

Equivalently, ∆wn ∈ Zp is a solution of (7.55), and hence wn a solution
of (7.53). The estimate (7.54) follows from the same argument given in the
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proof of Lemma 7.1, and from the properties that ∆wn ∈ Zp and a(·, ·) is
Z-elliptic on Zp. �

The estimate (7.54) is crucial for the existence proof. Once we have this
estimate, the rest of the proof follows in a manner similar to that given in
Section 7.2.

In general, if we do not have ellipticity of a(·, ·) on the whole space Z, we
cannot prove uniqueness and stability of a solution to the problem. For the
rest of the section we will focus on the analysis of two important special
cases for which we do have ellipticity on the whole space: combined linear
kinematic and isotropic hardening, and linear kinematic hardening only.
Thus the results of Section 7.2 may be applied directly to these two cases.

The problem with combined linear kinematic and isotropic hard-
ening. We are concerned here with the variational problem Prim1 stated
in Section 7.1. We identify H in Theorem 7.3 with Z = (H1

0 (Ω))3 ×Q0 ×
L2(Ω), and define

K = {z = (v, q, µ) ∈ Z : |q| ≤ µ a.e. in Ω}.

In addition to the assumptions on the material made in Section 7.1, we
assume for the hardening coefficients k1 and k2 that there exist positive
constants k1 and k2 such that

k1 ≥ k1 > 0, k2 ≥ k2 > 0 a.e. on Ω.

We will show that the bilinear form a(·, ·) defined in (7.27) is Z-elliptic. The
remaining assumptions of Theorem 7.3 are obviously true; in particular, the
functional j(·) inherits the properties that Theorem 7.3 requires of it from
the corresponding properties of the dissipation function D.

Lemma 7.7. The bilinear form a : Z × Z → R defined in (7.27) is Z-
elliptic, that is, there exists α > 0 such that

a(z, z) ≥ α ‖z‖2
Z ∀ z ∈ Z.

Proof. For any z = (v, q, µ) ∈ Z we have, using the pointwise stability
assumption on C (cf. (7.8)),

a(z, z) ≥ C0

∫
Ω
|ε(v) − q|2dx + k1

∫
Ω
|q|2dx + k2

∫
Ω
|µ|2dx

≥ C0θ

∫
Ω
|ε(v)|2dx +

(
k1 −

1
1 − θ

) ∫
Ω
|q|2dx + k2

∫
Ω
|µ|2dx,

for every θ ∈ (0, 1). The result then follows by choosing θ = k1/(2C0 + k1)
and using Korn’s inequality (5.21). �
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Applying Theorems 7.3 and 7.4 to Problem Prim1, we thus have the
following result.

Theorem 7.8. Under the assumptions made on the data in Section 7.1,
the quasistatic elastoplasticity problem Prim1 has a unique solution w =
(u,p, γ) ∈ H1(0, T ;Z). Furthermore, if w(1) and w(2) are the solutions
corresponding to �(1), �(2) ∈ H1(0, T ;Z ′) with �(1)(0) = �(2)(0) = 0, then

‖w(1) −w(2)‖L∞(0,T ;Z) ≤ c ‖�̇(1) − �̇
(2)‖L1(0,T ;Z′).

The problem with linear kinematic hardening. The quasistatic prob-
lem of elastoplasticity with linear kinematic hardening, Problem Prim2 in
Section 7.1, is a special case of the more general problem with combined
kinematic and isotropic hardening treated above. Besides its importance in
certain applications, the problem with linear kinematic hardening allows a
simpler treatment. We still assume, for some positive constant k1,

k1 ≥ k1 > 0 a.e. on Ω.

The details of this problem are summarized in (7.30)–(7.32) and (7.16).
From Lemma 7.7 (with k2 = 0) it is seen that a(·, ·) is Z-elliptic, and we
have the following theorem.

Theorem 7.9. Under the assumptions made in Section 7.1, the quasistatic
elastoplasticity problem with linear kinematic hardening, that is, the prob-
lem Prim2, has a unique solution w = (u,p) ∈ H1(0, T ;Z). Furthermore,
if w(1) and w(2) are the solutions corresponding to �(1), �(2) ∈ H1(0, T ;Z ′)
with �(1)(0) = �(2)(0) = 0, then

‖w(1) −w(2)‖L∞(0,T ;Z) ≤ c ‖�̇(1) − �̇
(2)‖L1(0,T ;Z′).

Remark. It is important to observe that the presence of some kind of
hardening is essential in order that the problem be well-posed in Sobolev
spaces. For example, if we return to the proof of Lemma 7.7, it is seen there
that the scalar θ is zero for the case of perfect plasticity (k1 = k2 = 0).
This is a clear warning that an alternative approach is required for perfect
plasticity. The physical situation also alerts one to the need for a different
approach: In materials that are realistically idealized as perfectly plastic, it
is found that singularities such as shear bands and slip lines occur; these
amount to discontinuities in components of displacement, so that one no
longer can expect to have u(t) ∈ V . Rather, it is necessary to seek solutions
in the space BD(Ω) of functions of bounded deformation; these are vector-
valued functions that are integrable, and the corresponding strains of which
are bounded measures. A treatment of this class of problems may be found
in [88, 122, 123].
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7.4 Stability Analysis

The application of plasticity theory in the solution of engineering problems
involves the selection of the input data such as the material constants.
These data are mostly determined through physical experiments, and are
subject to various errors. In reality, it is impossible to specify the data as-
sociated with a plasticity problem exactly. As a result, the problem in hand
is only an approximation of the real problem. Evidently, it is important to
know whether small changes in the input data cause only small changes in
the solution of the plasticity problem.

Since the plasticity problem describes complicated deformation processes,
it is reasonable to expect that a quantitative analysis of the continuous de-
pendence of the solution on the input data is a difficult task. Nevertheless,
it is still possible to provide some analysis on the stability of the problem in
the context of particular situations. For the abstract variational inequality
studied in Section 7.2, one of the results proved is a stability estimate of
the effect of perturbations in the linear functional associated with applied
loads. In the context of a concrete plasticity problem, usually some more
results on stability can be proved. Here we take the problem Prim1 as an
example and derive a stability estimate for the solution with respect to per-
turbations in the material properties C, k1, k2, c0, and the load functional
�.

Thus for the deformation of an elastoplastic material with combined lin-
ear kinematic–isotropic hardening and subject to the von Mises yield cri-
terion, suppose that we are given two sets of data, viz. C(1), k

(1)
1 , k

(1)
2 ,

c
(1)
0 , �(1) and C(2), k

(2)
1 , k

(2)
2 , c

(2)
0 , �(2). These data satisfy the condi-

tions stated in Section 7.1. We denote the corresponding solutions by
w(1) = (u(1),p(1), γ(1)) and w(2) = (u(2),p(2), γ(2)). By Theorem 7.8,
w(1) ∈ H1(0, T ;Z) with w(1)(0) = 0 is the unique function with the prop-
erty that for almost all t ∈ (0, T ), ẇ(1)(t) ∈ Zp and

a(1)(w(1)(t), z − ẇ(1)(t)) + j(1)(z) − j(1)(ẇ(1)(t))

≥ 〈�(1)(t), z − ẇ(1)(t)〉 (7.56)

for all z = (v, q, µ) ∈ Zp. Here the space setting is as before, so that

Z = (H1
0 (Ω))3 ×Q0 × L2(Ω),

Zp = {z = (v, q, µ) ∈ Z : |q| ≤ µ a.e. in Ω}.

The bilinear form a(1)(·, ·) and functional j(1)(·) are defined by

a(1)(w, z) =
∫

Ω

[
C(1)(ε(u) − p) : (ε(v) − q) + k

(1)
1 p : q + k

(1)
2 γµ

]
dx

and

j(1)(z) = c
(1)
0 j0(z)
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with

j0(z) =
∫

Ω
D0(q, µ) dx

and

D0(q, µ) =
{

|q| if |q| ≤ µ,
+∞ if |q| > µ.

Similarly, w(2) ∈ H1(0, T ;Z), w(2)(0) = 0 is the unique function with the
properties that for almost all t ∈ (0, T ), ẇ(2)(t) ∈ Zp and

a(2)(w(2)(t), z − ẇ(2)(t)) + j(2)(z) − j(2)(ẇ(2)(t))

≥ 〈�(2)(t), z − ẇ(2)(t)〉 (7.57)

for all z = (v, q, µ) ∈ Zp, where

a(2)(w, z) =
∫

Ω

[
C(2)(ε(u) − p) : (ε(v) − q) + k

(2)
1 p : q + k

(2)
2 γµ

]
dx

and

j(2)(z) = c
(2)
0 j0(z).

We are interested in estimating the difference

e = w(1) −w(2) ≡ (ue,pe, γe).

We take z = ẇ(2)(t) ∈ Zp in (7.56) and divide the inequality by c
(1)
0 to

obtain

− 1

c
(1)
0

a(1)(w(1)(t), ė(t)) + j0(ẇ(2)(t)) − j0(ẇ(1)(t))

≥ − 1

c
(1)
0

〈�(1)(t), ė(t)〉. (7.58)

Similarly, from (7.57) we obtain

1

c
(2)
0

a(2)(w(2)(t), ė(t)) + j0(ẇ(1)(t)) − j0(ẇ(2)(t))

≥ 1

c
(2)
0

〈�(2)(t), ė(t)〉. (7.59)

We now add (7.58) and (7.59) to find that

− 1

c
(1)
0

a(1)(w(1)(t), ė(t)) +
1

c
(2)
0

a(2)(w(2)(t), ė(t))

≥ − 1

c
(1)
0

〈�(1)(t), ė(t)〉 +
1

c
(2)
0

〈�(2)(t), ė(t)〉.
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Then

a(2)(e(t), ė(t)) ≤ a(2)(w(1)(t), ė(t)) − c
(2)
0

c
(1)
0

a(1)(w(1)(t), ė(t))

+
〈c(2)0

c
(1)
0

�(1)(t) − �(2)(t), ė(t)
〉
.

Using the fact that a(2)(·, ·) is symmetric, the above inequality can be
rewritten as

1
2

d

dt
a(2)(e(t), e(t))

≤
∫

Ω

[(
C(1) − c

(2)
0

c
(1)
0

C(2)
)(

ε(u(1)) − p(1)
)

: (ε(u̇e) − ṗe)

+
(
k

(1)
1 − c

(2)
0

c
(1)
0

k
(2)
1

)
p(1) : ṗe +

(
k

(1)
2 − c

(2)
0

c
(1)
0

k
(2)
2

)
γ(1)γ̇e

]
dx

+
〈c(2)0

c
(1)
0

�(1)(t) − �(2)(t), ė(t)
〉
.

We now integrate the relation from 0 to t and use the initial condition
e(0) = 0 to obtain

1
2
a(2)(e(t), e(t))

≤
∫

Ω

[(
C(1) − c

(2)
0

c
(1)
0

C(2)
)(

ε(u(1)) − p(1)
)

: (ε(ue) − pe)

+
(
k

(1)
1 − c

(2)
0

c
(1)
0

k
(2)
1

)
p(1) : pe +

(
k

(1)
2 − c

(2)
0

c
(1)
0

k
(2)
2

)
γ(1)γe

]
dx

−
∫ t

0

∫
Ω

[(
C(1) − c

(2)
0

c
(1)
0

C(2)
)(

ε(u̇(1)) − ṗ(1)
)

: (ε(ue) − pe)

+
(
k

(1)
1 − c

(2)
0

c
(1)
0

k
(2)
1

)
ṗ(1) : pe +

(
k

(1)
2 − c

(2)
0

c
(1)
0

k
(2)
2

)
γ̇(1)γe

]
dx dt

+
〈c(2)0

c
(1)
0

�(1)(t) − �(2)(t), e(t)
〉

−
∫ t

0

∫
Ω

〈c(2)0

c
(1)
0

�̇
(1)

(t) − �̇
(2)

(t), e(t)
〉
dx dt.
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Set M = ‖e‖L∞(0,T ;Z) and

C(C, c0, k1, k2)

= max
{∥∥∥C(1) − c

(2)
0

c
(1)
0

C(2)
∥∥∥
L∞(Ω)

,
∣∣∣k(1)

1 − c
(2)
0

c
(1)
0

k
(2)
1

∣∣∣, ∣∣∣k(1)
2 − c

(2)
0

c
(1)
0

k
(2)
2

∣∣∣}.
Using the Z-ellipticity of the bilinear form a(2)(·, ·), we find that for some
constants c1, c2 > 0,

‖e(t)‖2
Z

≤ c1 C(C, c0, k1, k2)
(
‖w(1)(t)‖Z +

∫ t

0
‖ẇ(1)(t)‖Zdt

)
M

+ c2

(∥∥∥c(2)0

c
(1)
0

�(1)(t) − �(2)(t)
∥∥∥
Z′

+
∫ t

0

∥∥∥c(2)0

c
(1)
0

�̇
(1)

(t) − �̇
(2)

(t)
∥∥∥
Z′
dt
)
M.

Since w(1)(0) = 0 and �(1)(0) = �(2)(0) = 0, we have, for some constants
c1, c2 > 0,

‖e(t)‖2
Z ≤ c1 C(C, c0, k1, k2)

∫ t

0
‖ẇ(1)(t)‖ZdtM

+ c2

∫ t

0

∥∥∥c(2)0

c
(1)
0

�̇
(1)

(t) − �̇
(2)

(t)
∥∥∥
Z′
dtM.

It is then easy to see that

‖w(1) −w(2)‖L∞(0,T ;Z)

≤ c1 C(C, c0, k1, k2) ‖ẇ(1)‖L1(0,T ;Z) + c2

∥∥∥c(2)0

c
(1)
0

�̇
(1) − �̇

(2)
∥∥∥
L1(0,T ;Z′)

.

(7.60)

The estimate (7.60) clearly shows that the solution of the problem Prim1
depends Lipschitz continuously on the material properties and the applied
forces. The constants c1 and c2 in the estimate depend only on the continu-
ity constant and Z-ellipticity constant of the bilinear form a(2)(·, ·). A more
careful derivation of the estimate (7.60) will reveal concrete expressions of
these constants, so (7.60) can be used both as an a priori error estimate
(by taking w(1) as the unknown solution and w(2) as its approximation)
and an a posteriori error estimate (by taking w(2) as the unknown solution
and w(1) as its approximation).

The estimate (7.60) can also be used in a stability analysis of the stress
σ with respect to perturbations in the input data. For the two sets of
data, the corresponding stresses are σ(1) = C(1)(ε(u(1))−p(1)) and σ(2) =
C(2)(ε(u(2))−p(2)). Evidently, the stress difference σ(1)−σ(2) depends on
the perturbations in the data also in a Lipschitz manner.



8
The Dual Variational Problem of
Elastoplasticity

This chapter has a purpose parallel to that of Chapter 7, in that the dual
variational problem of elastoplasticity will be studied in detail. This prob-
lem takes as its point of departure the flow law in the form (4.35), that is,
the statement of the flow law that makes use of the yield surface and the
normality law.

Since the dual and primal forms are two different formulations of the
same problem, the two formulations are equivalent, in a sense to be made
precise in Theorem 8.3 below. Once such a correspondence is established, it
follows that well-posedness of the dual variational problem may be inferred
from the results of Chapter 7. Nevertheless, a direct analysis of the dual
variational problem is of interest in its own right, and the main purpose of
the chapter is to give such a qualitative analysis de novo.

The dual problem has been the most popular framework for both math-
ematical analyses of, and computational approaches to, the problem of
elastoplasticity. The unknown variables in the dual variational problem are
the generalized stress and the displacement. Our analysis starts with a
consideration of the well-posedness of the so-called stress problem, in Sec-
tion 8.2, in which the explicit appearance of the displacement is eliminated
from the formulation. We study the full dual variational problem, where the
displacement variable is present, in Section 8.3. Error analyses of various
numerical approximation schemes will be taken up later, in Chapter 13.

The analysis presented here draws on those of Johnson [66] and Matthies
[88], but there are some significant differences. First, the safe load condition,
an essential ingredient of an analysis of well-posedness, is phrased in a
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different way here. Second, the problem is firmly embedded in the mixed
variational framework of Babuška and Brezzi [4, 17].

8.1 The Dual Variational Problem

We begin by formulating the dual problem that makes use of the flow law in
the form (4.35). This will lead to a problem in which the unknown variables
are the generalized stress Σ = (σ,χ) and the displacement u.

The space V of displacements is, as before,

V = [H1
0 (Ω)]3,

and the space of stresses is defined by

S = {τ = (τij)3×3 : τji = τij , τij ∈ L2(Ω)}.

We continue to regard internal variables at a point as being members of a
finite-dimensional space X isomorphic to R

m. The conjugate forces likewise
are regarded as members of X (strictly speaking, they are members of X ′,
the topological dual of X, but we may ignore this distinction in the finite-
dimensional case). Thus we introduce the space M of conjugate forces

M = {µ = (µj) : µj ∈ L2(Ω), j = 1, . . . ,m}.

Further, let

T = S ×M.

This space is endowed with the inner products induced by the natural inner
products on S and M . Admissible generalized stresses are those that belong
to the set K pointwise. We accordingly define the convex subset

P = {T = (τ ,µ) ∈ T : (τ ,µ) ∈ K a.e. in Ω}. (8.1)

We now introduce the bilinear forms associated with the dual problem:
These are

ā : S × S → R, ā(σ, τ ) =
∫

Ω
σ : C−1τ dx, (8.2)

b : V × S → R, b(v, τ ) = −
∫

Ω
ε(v) : τ dx, (8.3)

c : M ×M → R, c(χ,µ) =
∫

Ω
χ : H−1µ dx, (8.4)

and the bilinear form

A : T × T → R, A(Σ,T ) = ā(σ, τ ) + c(χ,µ) (8.5)
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for Σ = (σ,χ) and T = (τ ,µ). Here C−1 is the compliance tensor , which
is inverse to the elasticity tensor C in the sense that

C−1(Cε) = ε and C(C−1σ) = σ

for all matrices or second-order tensors ε and σ. Likewise, H−1 is the in-
verse to the hardening modulus H. Recalling the material properties stated
in Section 7.1, we see that the compliance tensor C−1 has the same sym-
metry properties as C and is pointwise stable in the sense that a constant
C ′

0 > 0 exists such that

C−1
ijkl(x)ζijζkl ≥ C ′

0|ζ|2 ∀ ζ ∈ M3, a.e. in Ω. (8.6)

Also, the inverse H−1 of the hardening modulus possesses the same proper-
ties as H: It is a symmetric operator whose matrix representation has uni-
formly bounded components. Furthermore, there exists a constant H ′

0 > 0
such that

χ : H−1χ ≥ H ′
0|χ|2 ∀χ ∈ R

m, a.e. in Ω. (8.7)

The bilinear form A(·, ·) is symmetric, continuous, and T -elliptic; that
is, there exist constants αA, βA > 0 such that

|A(Σ,T )| ≤ αA‖Σ‖T ‖T ‖T ∀Σ,T ∈ T , (8.8)
A(T ,T ) ≥ βA‖T ‖2

T ∀T ∈ T . (8.9)

The ellipticity property (8.9) follows easily from (8.6) and (8.7) of the
moduli C−1 and H−1; indeed, we may take βA = min{C ′

0, H
′}.

The bilinear form b(·, ·) is continuous; that is, for some constant αb > 0,

|b(v, τ )| ≤ αb‖v‖V ‖τ‖S ∀v ∈ V, τ ∈ S. (8.10)

Furthermore, for some constant βb > 0,

sup
0�=τ∈S

|b(v, τ )|
‖τ‖S

≥ βb‖v‖V ∀v ∈ V. (8.11)

This property is readily derived by setting τ = ε(v); then |b(v, τ )|/‖τ‖S =
‖ε(v)‖S ≥ c ‖v‖V , using Korn’s inequality (5.21).

We will also need the linear functional

�(t) : V → R, 〈�(t),v〉 = −
∫

Ω
f(t) · v dx. (8.12)

The dual variational problem is obtained through the standard procedure
from the equilibrium equation

divσ + f = 0 in Ω
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and the flow law

(σ̇E − σ̇) : C−1(τ − σ) − χ̇ : H−1(µ− χ) ≤ 0 ∀ (τ ,µ) ∈ K,

in which σ̇E = Cε(u̇) is the elastic stress rate.

Problem Dual. Given � ∈ H1(0, T ;V ′) with �(0) = 0, find (u,Σ) =
(u,σ,χ) : [0, T ] → V × P with (u(0),Σ(0)) = (0,0) such that for almost
all t ∈ (0, T ),

b(v,σ(t)) = 〈�(t),v〉 ∀v ∈ V, (8.13)
A(Σ̇(t),T − Σ(t)) + b(u̇(t), τ − σ(t)) ≥ 0 ∀T = (τ ,µ) ∈ P. (8.14)

The formal equivalence of Problem Dual to the classical problem can be
readily established.

We notice that when there is no plastic deformation, the problem Dual
is reduced to a linear elasticity problem. To see this, we set χ = 0 and
allow σ, τ ∈ S. Then from (8.14), we obtain∫

Ω
σ̇ : C−1(τ − σ) dx−

∫
Ω
ε(u̇) : (τ − σ) dx ≥ 0 ∀ τ ∈ S.

Since S is a linear space, we get∫
Ω
σ̇ : C−1τ dx−

∫
Ω
ε(u̇) : τ dx = 0 ∀ τ ∈ S,

and upon integrating with respect to time,∫
Ω
σ : C−1τ dx−

∫
Ω
ε(u) : τ dx = 0 ∀ τ ∈ S.

Similarly, from (8.13), we get

−
∫

Ω
ε(v) : σ dx = −

∫
Ω
f · v dx ∀v ∈ [H1

0 (Ω)]3.

Thus we have recovered the mixed formulation (6.25)–(6.26) of the linear
elasticity problem with the homogeneous displacement boundary condition.

In dealing with the constraint (8.13) of the dual problem, Theorem 5.5
will play a crucial role. For convenience, we restate the result here.

Proposition 8.1. Let V and S be two Hilbert spaces. Let b : V ×S → R be
a continuous bilinear form. Define two bounded linear operators B : S → V ′

and B′ : V → S′ by

b(v, s) = 〈Bs, v〉 = 〈B′v, s〉 for v ∈ V, s ∈ S.

Then the following statements are equivalent:
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(a) the bilinear form b(·, ·) satisfies the Babuška–Brezzi condition

sup
0�=s∈S

|b(v, s)|
‖s‖S

≥ c0‖v‖V ∀ v ∈ V ;

(b) the operator B is an isomorphism from (KerB)⊥ onto V ′, where

KerB = {s ∈ S : b(v, s) = 0 ∀ v ∈ V };

(c) the operator B′ is an isomorphism from V onto (KerB)◦, where

(KerB)◦ = {f ∈ S′ : 〈f, s〉 = 0 ∀ s ∈ KerB}.

For the bilinear form b(·, ·) defined in (8.3), the Babuška–Brezzi condition
is satisfied (cf. (8.11)). Thus, if we define the operators B : S → V ′ and
B′ : V → S′ by

b(v, τ ) = 〈Bτ ,v〉 = 〈B′v, τ 〉 for v ∈ V, τ ∈ S,

then we have the following result.

Lemma 8.2. For the bilinear form b defined in (8.3), the operator B is an
isomorphism from (KerB)⊥ onto V ′, and the operator B′ is an isomor-
phism from V onto (KerB)◦. Here

KerB = {τ ∈ S : b(v, τ ) = 0 ∀v ∈ V },
(KerB)◦ = {f ∈ S′ : 〈f, τ 〉 = 0 ∀ τ ∈ KerB}.

We now address the issue of the equivalence of the dual variational prob-
lem to the primal problem, in a precise sense. The primal problem is formu-
lated in Section 7.1. The dual form and the primal form are two different
formulations of the same elastoplasticity problem, with the only distinc-
tion that two different, yet equivalent , forms of the flow law are employed.
Hence, we have the following equivalence theorem.

Theorem 8.3. Assume f ∈ H1(0, T ;V ′). Then (u,p, ξ) ∈ H1(0, T ;Z) is
a solution of the problem Prim if and only if (u,σ,χ) ∈ H1(0, T ;V × T )
is a solution of the problem Dual, where (u,p, ξ) and (u,σ,χ) are related
by

σ = C (ε(u) − p),
χ = −H ξ,

or equivalently,

p = ε(u) −C−1σ,

ξ = −H−1χ.
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Theorem 8.3 allows us to deduce the well-posedness of the dual form of
an elastoplasticity problem from that of its primal form, as long as the
well-posedness of the primal form of the problem has been established. In
this chapter, however, our main purpose is to give a qualitative analysis of
the dual variational problem by considering this problem directly.

8.2 Analysis of the Stress Problem

In this section we analyze the stress problem that is a reduced form of
the problem Dual. By a stress problem we mean a problem in which the
sole unknown variable is the (generalized) stress; that is, the displacement
variable is formally eliminated. To derive the stress problem corresponding
to the constraint set (8.1) we introduce the time-dependent constraint set

P(t) = {T = (τ ,µ) ∈ P : b(v, τ ) = 〈�(t),v〉 ∀v ∈ V }. (8.15)

We then view (8.13) as a constraint on the variable σ(t), and the variable
w(t) ≡ u̇(t) as a Lagrangian multiplier for the constraint. Eliminating
the variable w(t) from Problem Dual, we then have the following stress
problem.

Problem Dual1. Given � ∈ H1(0, T ;V ′), �(0) = 0, find Σ = (σ,χ) :
[0, T ] → P with Σ(0) = 0 such that for almost all t ∈ (0, T ), Σ(t) ∈ P(t)
and

A(Σ̇(t),T − Σ(t)) ≥ 0 ∀T ∈ P(t). (8.16)

In order to show the well-posedness of the stress problem Dual1, we
impose the following assumption on the structure of the set P.

Assumption 8.4. There is a constant c > 0 with the property that for
any Σ1 = (σ1,χ1) ∈ P and any σ2 ∈ S, there exists χ2 ∈ M such that
|χ2| ≤ c |σ2| and Σ1 + Σ2 ∈ P, where Σ2 = (σ2,χ2).

Assumption 8.4 is an alternative, and more transparent, way of stating
the safe load condition used, for example, in [66]. For materials undergoing
combined linear kinematic and isotropic hardening, the set K in (8.1) is
defined by the relation (cf. Example 4.8)

φ(Σ) = Φ(σ + a) + g − c0 ≤ 0 for Σ = (σ,a, g).

Here we have identified χ with the pair (a, g). Now suppose that Σ1 =
(σ1,a1, g1) ∈ P, σ2 ∈ S. Then at any point x ∈ Ω,

φ(Σ1) = Φ(σ1 + a1) + g1 − c0 ≤ 0.

We need to find a pair (a2, g2) such that

φ(Σ1 + Σ2) = Φ(σ1 + σ2 + a1 + a2) + g1 + g2 − c0 ≤ 0.
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Figure 8.1: Illustration of the safe load condition

Obviously, it suffices to take

a2 = −σ2, g2 = 0.

Then we have Σ1 + Σ2 ∈ P, and |(a2, g2)| = |σ2|, that is, the constant c
in Assumption 8.4 for this case can be taken to be equal to 1 (see Figure
8.1). In a similar way, Assumption 8.4 can be shown to hold for the special
cases of linear kinematic or isotropic hardening only, but it is of course
degenerate for perfect plasticity.

We note that in Assumption 8.4, the element Σ1 is arbitrary in P. In
particular, we can take Σ1 = 0, and then Assumption 8.4 states that for
any σ ∈ S, there exists χ ∈ M such that |χ| ≤ c |σ| and Σ = (σ,χ) ∈ P.

The following result is a simple consequence of Lemma 8.2 and Assump-
tion 8.4.

Lemma 8.5. The set P(t) defined in (8.15) is nonempty, closed, and con-
vex.

Proof. The closedness and convexity of the set P(t) follow from the corre-
sponding properties of the set P defined in (8.1). So we need to prove only
that the set P(t) is nonempty. Lemma 8.2 assures the existence of σ ∈ S
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such that

b(v,σ) = 〈�(t),v〉 ∀v ∈ V.

Using Assumption 8.4 (with Σ1 = 0 there), we can find χ ∈ M such that
(σ,χ) ∈ P. Hence, (σ,χ) ∈ P(t). �

Later on we will employ a regularization method as in [64, 88] by making
use of the Yosida regularization Jε defined by

Jε(T ) =
1
2 ε

‖T − ΠT ‖2
T ,

where Π is the projection operator onto P and ε > 0 is a small regularization
parameter. Some basic properties of the functional Jε are summarized in
the following lemma.

Lemma 8.6. The functional Jε is convex and is Gâteaux differentiable with
the derivative

J ′
ε(T ) =

1
ε
(T − ΠT ). (8.17)

Here a member of T ′ is identified with its image in T under the Riesz
isomorphism. The Gâteaux derivative is monotone.

Proof. By the definition of the projection,

‖T − ΠT ‖ = inf{‖T − T 1‖ : T 1 ∈ P}.

The projection is characterized by the inequality

(T − ΠT ,T 1 − ΠT ) ≤ 0 ∀T 1 ∈ P.

By definition of the Gâteaux derivative, for any T 1 ∈ T ,

(J ′
ε(T ),T 1) = lim

t→0

1
t

[Jε(T + tT 1) − Jε(T )].

We have

‖T + tT 1 − Π(T + tT 1)‖2

= ‖(T − ΠT ) + tT 1 + ΠT − Π(T + tT 1)‖2

= ‖T − ΠT ‖2 + 2 t (T − ΠT ,T 1)
+ (T − ΠT ,ΠT − Π(T + tT 1)) + ‖tT 1 + ΠT − Π(T + tT 1)‖2.

The last term is of order O(t2), since Π is nonexpansive (cf. Section 5.1),
and so

‖tT 1 + ΠT − Π(T + tT 1)‖ ≤ |t| ‖T 1‖ + ‖ΠT − Π(T + tT 1)‖ ≤ O(|t|).
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Now on one hand, by the characterizing inequality of the projection,

(T − ΠT ,ΠT − Π(T + tT 1)) ≥ 0.

On the other hand,

(T − ΠT ,ΠT − Π(T + tT 1))
= (T − Π(T + tT 1),ΠT − Π(T + tT 1)) − ‖ΠT − Π(T + tT 1)‖2.

Again, by the characterizing inequality and the nonexpansiveness of the
projection,

(T − ΠT ,ΠT − Π(T + tT 1)) ≤ O(t2).

Thus, ∣∣∣1
t

[Jε(T + tT 1) − Jε(T )] − 1
ε

(T − ΠT ,T 1)
∣∣∣ = O(|t|).

So the Gâteaux derivative J ′
ε(T ) is given by the formula (8.17).

It is easy to see that J ′
ε(T ) is monotone; hence the functional Jε(T ) is

convex. �

As in the proof of the existence result for the primal variational problem,
existence of a solution to Problem Dual1 is approached by first considering
a time-discrete approximation to the problem. Again, we use a uniform
partition of the time interval [0, T ]: 0 = t0 < t1 < · · · < tN = T , with
tn = nk, n = 0, . . . , N , and k = T/N .

Problem Dual1k. Given {�n}Nn=0 ⊂ V ′, �0 = 0, find Σk
n = (σk

n,χ
k
n) ∈

Pn, Σk
0 = 0 such that for n = 1, 2, . . . , N ,

A(∆Σk
n,T − Σk

n) ≥ 0 ∀T ∈ Pn. (8.18)

The constraint set Pn is defined by

Pn ≡ P(tn) = {T = (τ ,µ) ∈ P : b(v, τ ) = 〈�n,v〉 ∀v ∈ V }.

Lemma 8.7. There exists a unique solution to Problem Dual1k.

Proof. We notice that (8.18) is equivalent to

Σk
n ∈ Pn, A(Σk

n,T − Σk
n) ≥ A(Σk

n−1,T − Σk
n) ∀T ∈ Pn.

This is an elliptic variational inequality of the first kind, and we can apply
Theorem 6.4 to get the existence of a unique solution for this inequality. �

Let us give another proof of Lemma 8.7 without making use of Theorem
6.4. This second proof is interesting in that the same idea will be used to
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prove the existence result for the problem Dual in the next section. For
this reason, we provide the second proof next.

Second proof of Lemma 8.7. We first prove that for any n, the vari-
ational inequality (8.18) has a solution Σk

n ∈ Pn. By Lemma 8.2, there
exists a unique element σ0 ∈ (KerB)⊥ such that

b(v,σ0) = 〈�n,v〉 ∀v ∈ V

and

‖σ0‖S ≤ c ‖�n‖

for some constant c independent of �. Here and below, the notation �n =
�(tn) is used. Using Assumption 8.4, it is then possible to find a χ0 ∈ M
such that Σ0 = (σ0,χ0) ∈ P and

‖χ0‖ ≤ c ‖σ0‖ ≤ c ‖�n‖.

Now we rewrite (8.18) as

A(Σk
n,T − Σk

n) ≥ A(Σk
n−1,T − Σk

n) ∀T ∈ Pn (8.19)

and consider its regularization

A(Σk
n,ε,T ) +

(
J ′
ε(Σ

k
n,ε),T

)
= A(Σk

n−1,T ) ∀T ∈ KerB ×M, (8.20)

using the functional Jε. We write Σk
n,ε = Σ0+Σ1,ε, with Σ1,ε = (σ1,ε,χ1,ε)

and σ1,ε ∈ KerB. The variational equation

A(Σ1,ε,T ) + (J ′
ε(Σ0 + Σ1,ε),T ) = A(Σk

n−1 − Σ0,T )
∀T ∈ KerB ×M

(8.21)

follows from (8.20). Now define the operator L : T → T ′ by

〈LΣ1,ε,T 〉 = A(Σ1,ε,T ) + (J ′
ε(Σ0 + Σ1,ε),T ) , T ∈ T .

Since A(·, ·) is T -elliptic and J ′
ε is monotone (see Lemma 8.6), the operator

thus defined is strongly monotone on KerK ×M . Furthermore, it is easy
to show that L is Lipschitz continuous. Therefore, by Theorem 5.10, the
problem (8.21) has a unique solution Σ1,ε ∈ KerK ×M .

Next, we derive a uniform bound for the sequence {Σk
n,ε}ε. To do this,

set T = Σ1,ε in (8.21) to obtain

A(Σ1,ε,Σ1,ε) + (J ′
ε(Σ0 + Σ1,ε),Σ1,ε) = A(Σk

n−1 − Σ0,Σ1,ε). (8.22)

Since Jε is convex, we have

Jε(Σ0) ≥ Jε(Σ0 + Σ1,ε) + (J ′
ε(Σ0 + Σ1,ε),−Σ1,ε) .
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Noting that Σ0 ∈ P, we have Jε(Σ0) = 0. Therefore,

(J ′
ε(Σ0 + Σ1,ε),Σ1,ε) ≥ Jε(Σ0 + Σ1,ε) ≥ 0. (8.23)

Then from (8.22), we find that

A(Σ1,ε,Σ1,ε) ≤ A(Σk
n−1 − Σ0,Σ1,ε).

The T -ellipticity of the bilinear form A and the uniform boundedness of
Σk

n−1 and Σ0 independent of ε lead to the bound

‖Σ1,ε‖ ≤ c
(
‖Σk

n−1‖ + ‖Σ0‖
)
≤ c,

so that

‖Σk
n,ε‖ ≤ ‖Σ0‖ + ‖Σ1,ε‖ ≤ c;

in other words, the sequence {Σk
n,ε}ε is uniformly bounded. Hence, there is

a subsequence of {Σk
n,ε}ε, still denoted by {Σk

n,ε}ε, and an element Σk
n ∈ T

such that

Σk
n,ε ⇀ Σk

n in T as ε → 0.

Since Σk
n,ε = Σ0 + Σ1,ε satisfies the constraint

b(v,Σk
n,ε) = b(v,Σ0) = 〈�n,v〉 ∀v ∈ V,

we see immediately that

b(v,Σk
n) = 〈�n,v〉 ∀v ∈ V.

Let us prove next that the limit Σk
n satisfies the inequality (8.19). Again,

because of the convexity of the functional Jε, we have

0 = Jε(T ) ≥ Jε(Σk
n,ε) +

(
J ′
ε(Σ

k
n,ε),T − Σk

n,ε

)
∀T ∈ Pn,

that is, (
J ′
ε(Σ

k
n,ε),T − Σk

n,ε

)
≤ −Jε(Σk

n,ε) ≤ 0 ∀T ∈ Pn.

Thus, if in (8.21) we replace T ∈ KerB × M by T − Σk
n,ε with T ∈ Pn,

then

A(Σk
n,ε,T − Σk

n,ε) ≥ A(Σk
n−1,T − Σk

n,ε) ∀T ∈ Pn. (8.24)

Since Σk
n,ε ⇀ Σk

n as ε → 0, we have, as ε → 0,

A(Σk
n,ε,T ) → A(Σk

n,T )
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and

A(Σk
n−1,T − Σk

n,ε) → A(Σk
n−1,T − Σk

n)

for arbitrary T . From the identity

2A(Σk
n,ε,Σ

k
n) −A(Σk

n,Σ
k
n) = A(Σk

n,ε,Σ
k
n,ε) −A(Σk

n,ε − Σk
n,Σ

k
n,ε − Σk

n),

we find that

2A(Σk
n,ε,Σ

k
n) −A(Σk

n,Σ
k
n) ≤ A(Σk

n,ε,Σ
k
n,ε),

and by taking the limit ε → 0,

A(Σk
n,Σ

k
n) ≤ lim inf

ε→0
A(Σk

n,ε,Σ
k
n,ε).

Thus, from (8.24) with ε → 0, we see that

A(Σk
n,T − Σk

n) ≥ A(Σk
n−1,T − Σk

n) ∀T ∈ Pn,

that is, Σk
n satisfies (8.19).

Finally, it is required to show that Σk
n ∈ Pn. As we have seen above, the

constraint related to the bilinear form b(·, ·) is satisfied; so we only need to
show that Σk

n ∈ P. From (8.23),

Jε(Σk
n,ε) ≤

(
J ′
ε(Σ

k
n,ε),Σ1,ε

)
.

Using (8.22), we then have

Jε(Σk
n,ε) ≤ A(Σk

n−1 − Σk
n,ε,Σ1,ε).

Now the uniform boundedness of Σk
n,ε and Σ1,ε yields

Jε(Σk
n,ε) ≤ c,

that is,

‖Σk
n,ε − ΠΣk

n,ε‖2 ≤ c ε. (8.25)

Since the functional f(Σ) = ‖Σ − ΠΣ‖2 is convex and l.s.c., it is also
weakly l.s.c. Thus, as ε → 0 we find from (8.25) that

‖Σk
n − ΠΣk

n‖ = 0;

in other words, Σk
n ∈ P.

Uniqueness. Assume that there are two elements Σk,1
n ,Σk,2

n ∈ Pn such
that

A(Σk,1
n ,T − Σk,1

n ) ≥ A(Σk
n−1,T − Σk,1

n ) ∀T ∈ Pn, (8.26)

A(Σk,2
n ,T − Σk,2

n ) ≥ A(Σk
n−1,T − Σk,2

n ) ∀T ∈ Pn. (8.27)
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We set T = Σk,2
n in (8.26), T = Σk,1

n in (8.27), and add the two resulting
inequalities to obtain

A(Σk,1
n − Σk,2

n ,Σk,1
n − Σk,2

n ) ≤ 0.

Then the T -ellipticity of A(·, ·) immediately yields Σk,1
n − Σk,2

n = 0. �

The next step is to derive some useful bounds for the time-discrete solu-
tions.

Lemma 8.8. For the solution {Σk
n = (σk

n,χ
k
n)}Nn=0 of the problem Dual1k,

the estimate

‖∆Σk
n‖ ≤ c ‖∆�n‖, n = 1, . . . , N (8.28)

holds for some constant c. Consequently, assuming � ∈ H1(0, T ;V ′), we
have

max
0≤n≤N

‖Σk
n‖ ≤ c ‖�̇‖L1(0,T ;V ′) (8.29)

and

N∑
n=1

‖∆Σk
n‖2 ≤ c k ‖�̇‖2

L2(0,T ;V ′). (8.30)

Proof. The estimates (8.29) and (8.30) are simple consequences of (8.28)
and Σk

0 = 0. So here we give a proof only for the estimate (8.28).
From the fact that Σk

n−1 = (σk
n−1,χ

k
n−1) ∈ Pn−1, we know that σk

n−1
satisfies

b(v,σk
n−1) = 〈�n−1,v〉 ∀v ∈ V. (8.31)

By Lemma 8.2, there is a unique element σ2 ∈ (KerB)⊥ such that

b(v,σ2) = 〈∆�n,v〉 ∀v ∈ V (8.32)

and

‖σ2‖ ≤ c ‖∆�n‖. (8.33)

Using Assumption 8.4, we can choose χ2 ∈ M such that

‖χ2‖ ≤ c ‖σ2‖ (8.34)

and with the notation Σ2 = (σ2,χ2),

Σk
n−1 + Σ2 ∈ P. (8.35)
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By (8.31), (8.32), and (8.35), we see that Σk
n−1 + Σ2 ∈ Pn. From (8.33)

and (8.34) we have

‖Σ2‖ ≤ c ‖∆�n‖. (8.36)

Thus, taking T = Σk
n−1 + Σ2 in (8.18) we get

A(∆Σk
n,∆Σk

n) ≤ A(∆Σk
n,Σ2).

The continuity and T -ellipticity of A(·, ·) then yield

‖∆Σk
n‖ ≤ c ‖Σ2‖,

and the estimate (8.28) follows from (8.36). �

Corresponding to the partition of the time interval [0, T ] with the step-
size k, we define piecewise linear functions �k(t) and Σk(t) by the formulae

�k(t) =
t− tn−1

k
�(tn) +

tn − t

k
�(tn−1),

Σk(t) =
t− tn−1

k
Σk

n +
tn − t

k
Σk

n−1

for t ∈ [tn−1, tn], n = 1, . . . , N . For the derivative of Σk(t), we have the
formula

Σ̇
k
(t) =

1
k

∆Σk
n, t ∈ (tn−1, tn), n = 1, . . . , N.

So from Lemma 8.8 we see that the sequence {Σk}k is uniformly bounded
in H1(0, T ; T ):

‖Σk‖H1(0,T ;T ) ≤ c ‖�̇‖L2(0,T ;V ′). (8.37)

Therefore, there exists a subsequence of {Σk}k, still denoted by {Σk}k,
and an element Σ ∈ H1(0, T ; T ) such that

Σk ⇀ Σ in H1(0, T ; T ) as k → 0. (8.38)

In particular, four simple consequences of (8.37) and (8.38) (resorting to a
subsequence if necessary) are that

Σk → Σ in L2(0, T ; T ) as k → 0, (8.39)
Σk → Σ in T for a.a. t ∈ [0, T ] as k → 0, (8.40)

Σ̇
k
⇀ Σ̇ in L2(0, T ; T ) as k → 0, (8.41)

‖Σ‖H1(0,T ;T ) ≤ lim inf
k→0

‖Σk‖H1(0,T ;T ) ≤ c ‖�̇‖L2(0,T ;V ′). (8.42)
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The aim now is to prove that the limit Σ is a solution of the problem
Dual1. First, since {Σk

n}Nn=0 ⊂ P, by the convexity of P it follows that
Σk(t) ∈ P for t ∈ [0, T ]. Then the closedness of the set P and the limit
relation (8.40) imply that Σ(t) ∈ P for a.a. t ∈ [0, T ].

Secondly, we show that

b(v,σ(t)) = 〈�(t),v〉 ∀v ∈ V, a.a. t ∈ [0, T ]. (8.43)

To do this, let v ∈ L2(0, T ;V ) be an arbitrary function. Corresponding to
the time-interval partition for Σk(t), we can construct a piecewise constant
function vk(t) (for example, by piecewise averaging) such that

vk → v in L2(0, T ;V ) as k → 0.

From the defining relation

b(v,σk
n) = 〈�n,v〉 ∀v ∈ V

we can easily show that∫ T

0
b(vk(t),σk(t)) dt =

∫ T

0
〈�k(t),vk(t)〉 dt.

Taking the limit k → 0 in the above relation, we get∫ T

0
b(v(t),σ(t)) dt =

∫ T

0
〈�(t),v(t)〉 dt.

Since this relation holds for any v ∈ L2(0, T ;V ), we can localize the relation
and, using arguments similar to those in the proof of Theorem 7.3, conclude
that (8.43) holds. Thus, Σ(t) ∈ P(t) for a.a. t ∈ [0, T ].

Finally, we need to show that (8.16) holds. Let T = (τ ,µ) ∈ H1(0, T ; T )
with the property that T (t) ∈ P(t) for t ∈ [0, T ]. Let T k(t) be the piecewise
linear interpolant of T (t) based on the time-interval partition for Σk(t).
Then we have

T k(tn) = T (tn) ∈ Pn, n = 1, . . . , N.

It is well known that for the piecewise linear interpolation,

T k → T in L2(0, T ; T ) as k → 0. (8.44)

On the other hand, applying (5.25) and Cauchy–Schwarz inequality, we
have

N∑
n=1

‖∆T (tn)‖2 ≤ c k

∫ T

0
‖Ṫ (t)‖2 dt. (8.45)
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Then we consider the expression∫ T

0
A(Σ̇

k
(t),T k(t) − Σk(t)) dt

=
N∑

n=1

∫ tn

tn−1

A((1/k) ∆Σk
n,T

k(t) − Σk(t)) dt

=
N∑

n=1

A(∆Σk
n,

1
2 (T (tn) + T (tn−1)) − 1

2 (Σk
n + Σk

n−1))

=
N∑

n=1

A(∆Σk
n,T (tn) − Σk

n)

+ 1
2

N∑
n=1

A(∆Σk
n,∆Σk

n − ∆T (tn)). (8.46)

By (8.18),

A(∆Σk
n,T (tn) − Σk

n) ≥ 0, n = 1, . . . , N.

Using (8.30) and (8.45), we have∣∣∣∣∣
N∑

n=1

A(∆Σk
n,∆Σk

n − ∆T (tn))

∣∣∣∣∣
≤ c

N∑
n=1

‖∆Σk
n‖

(
‖∆Σk

n‖ + ‖∆T (tn)‖
)

≤ c

(
N∑

n=1

‖∆Σk
n‖2 +

N∑
n=1

‖∆T (tn)‖2

)
≤ c k

→ 0 as k → 0.

Thus,∫ T

0
A(Σ̇(t),T (t) − Σ(t)) dt = lim

k→0

∫ T

0
A(Σ̇

k
(t),T k(t) − Σk(t)) dt ≥ 0.

(8.47)

This relation holds for any T = (τ ,µ) ∈ H1(0, T ; T ) with the property
that T (t) ∈ P(t) for t ∈ [0, T ]. By a standard density argument, we can
claim that (8.47) holds for any T ∈ L2(0, T ; T ) with the property that
T (t) ∈ P(t) for almost all t ∈ [0, T ]. Then, again by the standard procedure
of passing to the pointwise inequality, we obtain (8.16), and so Σ is a
solution of the problem Dual1.
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Uniqueness of the solution to Dual1 can be proved in much the same
way as in the case of the abstract problem in Section 7.2, and the proof is
therefore omitted here.

We summarize the main results proved so far in the following theorem.

Theorem 8.9. The problem Dual1 has a unique solution Σ, and Σ ∈
H1(0, T ; T ) with

‖Σ‖H1(0,T ;T ) ≤ c ‖�̇‖L2(0,T ;V ′).

Remarks.
1. As in the case for the abstract problem studied in Section 7.2, if we

assume that � ∈ W 1,p(0, T ;V ′) for some p ∈ (1,∞], then the problem
Dual1 has a unique solution Σ, and Σ ∈ W 1,p(0, T ; T ). This is due
to the fact that the regularity of the solution Σ is obtained from the
estimate (8.28) and the regularity assumption on �.

2. Since the solution to the problem Dual1 is unique, any sequence
of the time-discrete approximations, and not merely a subsequence,
converges to the solution.

3. A curious feature of the proof of well-posedness of the dual problem
is the fact that Assumption 8.4 plays an essential role, yet the equiv-
alent primal problem does not require an equivalent or analogous
assumption.

The last result of the section is a stability estimate for the solution of the
problem Dual1. Thus, suppose that the functions �(1), �(2) ∈ H1(0, T ;V ′)
are given, and define

P(1)(t) = {T = (τ ,µ) ∈ P : b(v, τ ) = 〈�(1)(t),v〉 ∀v ∈ V },
P(2)(t) = {T = (τ ,µ) ∈ P : b(v, τ ) = 〈�(2)(t),v〉 ∀v ∈ V }.

By Theorem 8.9, there exist unique functions Σ(1),Σ(2) ∈ H1(0, T ; T ),
Σ(1)(0) = Σ(2)(0) = 0, such that for almost all t ∈ (0, T ), Σ(1)(t) ∈ P(1)(t),
Σ(2)(t) ∈ P(2)(t), and

A(Σ̇
(1)

(t),T − Σ(1)(t)) ≥ 0 ∀T ∈ P(1)(t), (8.48)

A(Σ̇
(2)

(t),T − Σ(2)(t)) ≥ 0 ∀T ∈ P(2)(t). (8.49)

By Lemma 8.2, there exists a unique element σ1(t) ∈ (KerB)⊥ such that

b(v,σ1(t)) = 〈�(1)(t) − �(2)(t),v〉 ∀v ∈ V

and

‖σ1(t)‖S ≤ c ‖�(1)(t) − �(2)(t)‖V ′ .
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By Assumption 8.4, we can find a χ1(t) ∈ M such that

‖χ1(t)‖M ≤ c ‖σ1(t)‖S

and Σ(2)(t) + Σ1(t) ∈ P, where Σ1(t) = (σ1(t),χ1(t)). Thus

‖Σ1(t)‖T ≤ c ‖�(1)(t) − �(2)(t)‖V ′ (8.50)

and Σ(2)(t)+Σ1(t) ∈ P(1)(t). Now we set T = Σ(2)(t)+Σ1(t) in (8.48) to
obtain

A(Σ̇
(1)

(t),Σ(2)(t) + Σ1(t) − Σ(1)(t)) ≥ 0,

which can be rewritten as

A(Σ̇
(1)

(t),Σ(1)(t) − Σ(2)(t)) ≤ A(Σ̇
(1)

(t),Σ1(t)). (8.51)

Similarly, we have the inequality

A(Σ̇
(2)

(t),Σ(2)(t) − Σ(1)(t)) ≤ A(Σ̇
(2)

(t),Σ2(t)) (8.52)

for some Σ2(t) satisfying

‖Σ2(t)‖T ≤ c ‖�(1)(t) − �(2)(t)‖V ′ . (8.53)

We now add (8.51) and (8.52) to obtain

A(Σ̇
(1)

(t) − Σ̇
(2)

(t),Σ(1)(t) − Σ(2)(t))

≤ A(Σ̇
(1)

(t),Σ1(t)) + A(Σ̇
(2)

(t),Σ2(t)),

i.e.,

1
2

d

dt
A(Σ(1)(t) − Σ(2)(t),Σ(1)(t) − Σ(2)(t))

≤ A(Σ̇
(1)

(t),Σ1(t)) + A(Σ̇
(2)

(t),Σ2(t)).

We then integrate the above inequality and use the condition Σ(1)(0) −
Σ(2)(0) = 0. After some manipulations, we obtain

1
2
A(Σ(1)(t) − Σ(2)(t),Σ(1)(t) − Σ(2)(t))

≤
∫ t

0
c
(
‖Σ̇(1)

(t)‖T + ‖Σ̇(2)
(t)‖T

)
‖�(1)(t) − �(2)(t)‖V ′dt

≤ c

{∫ t

0

(
‖Σ̇(1)

(t)‖2
T + ‖Σ̇(2)

(t)‖2
T

)
dt

}1/2

×
{∫ t

0
‖�(1)(t) − �(2)(t)‖2

V ′dt

}1/2

,
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which implies

‖Σ(1) − Σ(2)‖2
L∞(0,T ;T )

≤ c
(
‖�̇(1)‖L2(0,T ;V ′) + ‖�̇(2)‖L2(0,T ;V ′)

)
‖�(1) − �(2)‖L2(0,T ;V ′).

We have thus proved the following stability result.

Theorem 8.10. For given �(1), �(2) ∈ H1(0, T ;V ′), �(1)(0) = �(2)(0) = 0,
the corresponding solutions Σ(1) and Σ(2) of the problem Dual1 satisfy
the inequality

‖Σ(1) − Σ(2)‖2
L∞(0,T ;T )

≤ c
(
‖�̇(1)‖L2(0,T ;V ′) + ‖�̇(2)‖L2(0,T ;V ′)

)
‖�(1) − �(2)‖L2(0,T ;V ′).

Thus, the solution of the problem Dual1 is locally stable with respect to
the data �.

8.3 Analysis of the Dual Problem

In this section we extend the existence and uniqueness result for the stress
problem to that of the dual variational problem Dual defined in Sec-
tion 8.1. In addition to Assumption 8.4, we need another assumption on
the structure of the constraint set K. Recall that K is a subset of a finite-
dimensional space, defined by

K = {Σ ∈ M3 ×X : φ(Σ) ≤ 0}.

Here, the dimension of the space X is m < ∞.

Assumption 8.11. For any Σ ∈ K, and any κ ∈ [0, 1), we have κΣ ∈ K
and

inf
x∈Ω

dist(κΣ(x), ∂K) > 0.

This assumption is easy to verify for practically important situations.
For example, for combined linear kinematic–isotropic hardening materials,
Σ = (σ,a, g), and with a positive constant c0,

φ(Σ) = Φ(σ + a) + g − c0.

If the function Φ is positively homogeneous and Lipschitz continuous, As-
sumption 8.11 is satisfied. Indeed, let λ > 0 be the Lipschitz constant for the
function Φ. Let Σ = (σ,a, g) ∈ K, κ ∈ [0, 1), and define Σ1 = (σ1,a1, g1).
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We have

φ(κΣ + Σ1)
= Φ(κ (σ + a) + σ1 + a1) + κ g + g1 − c0

= κ [Φ(σ + a) + g − c0] + Φ(κ (σ + a) + σ1 + a1) − Φ(κ (σ + a))
+ g1 − (1 − κ) c0

≤ λ |σ1 + a1| + g1 − (1 − κ) c0.

Obviously, for Σ1 in a neighborhood of the origin, defined by the relation

|Σ1| ≡ |σ1| + |a1| + |g1| ≤
1 − κ

max{λ, 1} c0,

we have φ(κΣ + Σ1) ≤ 0, that is, κΣ + Σ1 ∈ K. Hence Assumption 8.11
is satisfied.

The main purpose of the section is to prove the following result.

Theorem 8.12. Under Assumptions 8.4 and 8.11, the dual variational
problem Dual has a solution (u,Σ), u ∈ H1(0, T ;V ), Σ ∈ H1(0, T ; T ),
and Σ is unique.

Proof. Let w denote the velocity variable u̇. As in the last section, we
will prove the result by first analyzing a time-discrete approximation of
the problem Dual. We use the uniform partition of the time interval [0, T ]
with the step-size k = T/N , where N is the number of subintervals. Then
the time-discrete approximation problem is the following.

Problem Dualk. Let wk
0 = 0 and Σk

0 = 0. For n = 1, 2, . . . , N , find
(wk

n,Σ
k
n) = (wk

n,σ
k
n,χ

k
n) ∈ V × P satisfying

b(v,σk
n) = 〈�n,v〉 ∀v ∈ V, (8.54)

A(δΣk
n,T − Σk

n) + b(wk
n, τ − σk

n) ≥ 0 ∀T = (τ ,µ) ∈ P. (8.55)

We first prove that the problem Dualk has a solution. This is done by in-
troducing a regularization of the problem (8.54)–(8.55): Find (wk

n,ε,Σ
k
n,ε) ∈

V × T such that

b(v,σk
n,ε) = 〈�n,v〉 ∀v ∈ V, (8.56)

A(δΣk
n,ε,T ) + b(wk

n,ε, τ ) + (J ′
ε(Σ

k
n,ε),T ) = 0 ∀T = (τ ,µ) ∈ T . (8.57)

Again by Lemma 8.2 we have a unique element σ0 ∈ (KerB)⊥ such that

b(v,σ0) = 〈�n,v〉 ∀v ∈ V,

and for some constant c,

‖σ0‖S ≤ c ‖�n‖.
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We now apply Assumption 8.4 to 2σ0, rather than to σ0 as in the analysis
of the stress problem. Then we have an element in M , denoted by 2χ0,
such that (2σ0, 2χ0) ∈ P and

‖χ0‖ ≤ c ‖σ0‖ ≤ c ‖�n‖.

Set Σ0 = (σ0,χ0). By Assumption 8.11 (with κ = 1
2 ), we claim that

Σ0 ∈ K a.e. in Ω and d0 ≡ inf
x∈Ω

dist(Σ0(x), ∂K) > 0. (8.58)

As in the proof of Lemma 8.7, we write Σk
n,ε = Σ0 + Σ1,ε. The element

Σ1,ε = (σ1,ε,χ1,ε) ∈ KerB ×M is determined from

1
k
A(Σ1,ε,T ) + (J ′

ε(Σ0 + Σ1,ε),T ) =
1
k
A(Σk

n−1 − Σ0,T )

∀T = (τ ,µ) ∈ KerB ×M,
(8.59)

which is the restriction of equation (8.57) to KerB×M . Furthermore, the
problem (8.59) has a unique solution Σ1,ε ∈ KerB × M . In other words,
we have proved the existence of Σk

n,ε ∈ T such that

A(δΣk
n,ε,T ) + (J ′

ε(Σ
k
n,ε),T ) = 0 ∀T = (τ ,µ) ∈ KerB ×M. (8.60)

The lefthand side of (8.60) defines a linear continuous form on T . Hence, by
Lemma 8.2 there exists an element wk

n,ε ∈ V such that (8.57) is satisfied.
Therefore, the regularized problem (8.56)–(8.57) has a solution.

We will take the limit ε → 0 on the pair (wk
n,ε,Σ

k
n,ε) to obtain a solution

to the problem (8.54)–(8.55). To do this, we need to bound (wk
n,ε,Σ

k
n,ε)

uniformly with respect to ε. Such a uniform bound on Σk
n,ε is given in the

proof of Lemma 8.7. So here we need only derive a uniform bound for wk
n,ε.

We prove first that ‖J ′
ε(Σ

k
n,ε)‖ is uniformly bounded. For x ∈ Ω, if

Σk
n,ε(x) ∈ K, then by (8.17), J ′

ε(Σ
k
n,ε(x)) = 0. Now assume that Σk

n,ε(x) �∈
K. Define

j(x) =
Σk

n,ε(x) − ΠΣk
n,ε(x)

|Σk
n,ε(x) − ΠΣk

n,ε(x)|
.

Since K is a closed convex set in M3 ×X, j(x) is normal to a hyperplane
L separating K and Σk

n,ε(x), and for some constant δ0 > 0,

L = {T ∈ M3 ×X : j(x) : T = δ0}.

Now noting that Σ0(x) + d0j(x) ∈ K and 0 ∈ K, we have

j(x) : Σk
n,ε(x) ≥ δ0
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and

j(x) : (Σ0(x) + d0j(x)) ≤ δ0.

Hence

j(x) : (Σk
n,ε(x) − Σ0(x)) ≥ d0,

that is,

|Σk
n,ε(x) − ΠΣk

n,ε(x)| ≤ 1
d0

(Σk
n,ε(x) − ΠΣk

n,ε(x)) : (Σk
n,ε(x) − Σ0(x)).

This inequality holds for any x ∈ Ω, whether Σk
n,ε(x) ∈ K or not. There-

fore,

‖J ′
ε(Σ

k
n,ε)‖ ≤ 1

d0
(J ′

ε(Σ
k
n,ε),Σ

k
n,ε − Σ0). (8.61)

We next let T = Σk
n,ε − Σ0 ∈ KerB × M in (8.60). From (8.61) and the

uniform boundedness (with respect to ε) of Σk
n,ε, we obtain

‖J ′
ε(Σ

k
n,ε)‖T ≤ − 1

d0
A(δΣk

n,ε,Σ
k
n,ε − Σ0) ≤ c (8.62)

for some constant c independent of ε. Returning to (8.57) with µ = 0, by
the Babuška–Brezzi condition (8.11), the bound (8.62), and the uniform
boundedness of Σk

n,ε, we find that

βb‖wk
n,ε‖V ≤ sup

τ∈S

|b(wk
n,ε, τ )|

‖τ‖S
≤ c

(
‖δΣk

n,ε‖T + ‖J ′
ε(Σ

k
n,ε)‖T

)
≤ c,

where c is independent of ε.
Now that Σk

n,ε and wk
n,ε have been shown to be uniformly bounded

independent of ε, we can extract a subsequence of {(wk
n,ε,Σ

k
n,ε)}ε, still

denoted by {(wk
n,ε,Σ

k
n,ε)}ε, and find an element (wk

n,Σ
k
n) ∈ V × T such

that

(wk
n,ε,Σ

k
n,ε) ⇀ (wk

n,Σ
k
n) as ε → 0.

Then proceeding as in the proof of Lemma 8.7, we can show that Σk
n ∈ P

and that (wk
n,Σ

k
n) is a solution of the problem (8.54)–(8.55). Here, the

limit of the term b(wk
n,ε,σ

k
n,ε) is computed as follows (recalling the decom-

position σk
n,ε = σ0 + σ1,ε with σ1,ε ∈ KerB):

b(wk
n,ε,σ

k
n,ε) = b(wk

n,ε,σ0) → b(wk
n,σ0) = b(wk

n,σ
k
n) as ε → 0.
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So far, we have proved that the time-discrete approximation problem
Dualk has a solution. The next step is to take the limit as k → 0 of the
sequence {(wk

n,Σ
k
n)}n to obtain a solution of the dual variational problem

Dual. To do this, we need some uniform bounds (with respect to the
step-size k) on the sequence {(wk

n,Σ
k
n)}n. From Lemma 8.8, we have the

estimate (8.28) for the quantity ‖∆Σk
n‖T . It remains for us to derive a

uniform bound for ‖wk
n‖V . We apply the Babuška–Brezzi condition (8.11)

for this purpose. For any τ ∈ S, Assumption 8.4 guarantees the existence of
a µ ∈ M such that (−τ ,µ) + Σk

n ∈ P and ‖µ‖ ≤ c ‖τ‖, for some constant
c > 0. We take T = (−τ ,µ) + Σk

n in (8.55) to find that

b(wk
n, τ ) ≤ A(δΣk

n, (−τ ,µ))
≤ c ‖δΣk

n‖T (‖τ‖S + ‖µ‖M )
≤ c ‖δΣk

n‖T ‖τ‖S .

Thus

‖wk
n‖V ≤ 1

βb
sup
τ∈S

b(v, τ )
‖τ‖S

≤ c ‖δΣk
n‖T . (8.63)

Then as in the last section, corresponding to the partition of the time
interval [0, T ] with the step-size k, we define piecewise linear functions �k(t),
Σk(t), and wk(t). We have shown the existence of a subsequence of {Σk}k,
still denoted by {Σk}k, and an element Σ ∈ H1(0, T ; T ) such that the
relation (8.38) holds. Using the estimates (8.63), (8.28) and the inequality
(5.25), we have

‖wk‖2
L2(0,T ;V ) ≤ c

N∑
n=1

k ‖wk
n‖2

V

≤ c
N∑

n=1

k ‖δΣk
n‖2

T

≤ c
N∑

n=1

k ‖δ�n‖2
V ′

≤ c ‖�̇‖2
L2(0,T ;V ′).

Thus the sequence {wk}k is bounded in L2(0, T ;V ), and we can extract a
subsequence, still denoted by {wk}k, such that

wk ⇀ w in L2(0, T ;V ) as k → 0, (8.64)

for some w ∈ L2(0, T ;V ). An argument similar to that used in the proof
of Theorem 8.9 yields the result that the limit (w,Σ) is a solution of the
problem Dual; here we identify w with u̇. The limit∫ T

0
b(wk(t),σk(t)) dt →

∫ T

0
b(w(t),σ(t)) dt as k → 0
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follows from (8.64) and (8.39). From the relation

u(t) =
∫ t

0
w(t) dt

and w ∈ L2(0, T ;V ), we see that u ∈ H1(0, T ;V ).
In conclusion, we have shown the existence of a solution (u,Σ) for the

dual variational problem Dual. The uniqueness of Σ has been proved in
the last section. �

8.4 Rate Form of Stress–Strain Relation

In the literature, a popular approach in studying the dual variational for-
mulation is through the use of the rate form of the stress–strain relation,
which is obtained by eliminating the plastic multiplier λ (see Section 3.2).
For this approach, we have to assume that the yield surface is smooth. More
precisely, we assume in this section that the yield surface φ is continuously
differentiable. Then from the discussion in Section 3.2, the flow law is of
the form

Ṗ = λ∇φ(Σ), (8.65)

where the plastic multiplier λ and the yield function φ satisfy the comple-
mentarity condition

λ ≥ 0, φ ≤ 0, λ φ = 0 (8.66)

and the consistency condition that when φ = 0,

λ ≥ 0, φ̇ ≤ 0, λ φ̇ = 0. (8.67)

Also we recall the relations

ṗ = ε(u̇) −C−1σ̇ (8.68)

and

ξ̇ = −H−1χ̇. (8.69)

From (8.65), (8.68), and (8.69), we find that

ε(w) −C−1σ̇ = λ
∂φ

∂σ
(8.70)

and

−H−1χ̇ = λ
∂φ

∂χ
. (8.71)
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Evidently, from (8.66) and (8.67) we see that λ = 0 if φ < 0 or, if φ = 0
and φ̇ < 0. Let us try to find a formula for λ when φ = φ̇ = 0. We have

φ̇(Σ) =
∂φ

∂σ
: σ̇ +

∂φ

∂χ
: χ̇ = 0,

which, together with the relations (8.68) and (8.69), implies

λ =
∂φ

∂σ
: C ε(w)

/(
∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
: H

∂φ

∂χ

)
. (8.72)

This formula is derived under the assumption that λ ≥ 0 exists. By the
positive definiteness of the tensors C and H, the denominator in the for-
mula (8.72) is always positive. Thus the formula makes sense only if the
numerator is nonnegative:

∂φ

∂σ
: C ε(w) ≥ 0.

We distinguish three cases according to the sign of the numerator.

Case 1. Assume that the numerator is negative. Let us show that λ = 0.
We have, no matter what is the value of λ ≥ 0,

φ̇(Σ) =
∂φ

∂σ
: σ̇ +

∂φ

∂χ
: χ̇

=
∂φ

∂σ
: C ε(w) − λ

(
∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
: H

∂φ

∂χ

)
< 0.

Thus, by the consistency condition (8.67), λ = 0.

Case 2. Assume that the numerator is positive. Let us show that λ > 0,
and consequently, λ is indeed given by the formula (8.72).

We argue by contradiction. Suppose λ = 0. Then

φ̇(Σ) =
∂φ

∂σ
: σ̇ +

∂φ

∂χ
: χ̇

=
∂φ

∂σ
: C ε(w)

> 0,

which is not allowed given that φ = 0.

Case 3. Assume that the numerator is zero. Let us show that λ = 0.
We use the consistency condition (8.67) to find that

−λ2
(
∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
: H

∂φ

∂χ

)
= 0.

Therefore, λ = 0.
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Summarizing the above discussion, we conclude the following formula

λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
∂φ

∂σ
: C ε(w)

)
+

/(
∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
: H

∂φ

∂χ

)
if φ(σ,χ) = 0,

0 if φ(σ,χ) < 0,

(8.73)

where (x)+ = max{x, 0}. This formula was mentioned, but not proved, in
[115].

Based on the formulae (8.73) and (8.70), we find that if φ(σ,χ) < 0 or

if φ(σ,χ) = 0 and
∂φ

∂σ
: σ̇ ≤ 0, then

ε(w) = C−1σ̇,

whereas if φ(σ,χ) = 0 and
∂φ

∂σ
: σ̇ > 0, then

ε(w) = C̃
−1

σ̇,

where

C̃ = C −
C

∂φ

∂σ
⊗ C

∂φ

∂σ
∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
: H

∂φ

∂χ

,

which is invertible by the assumptions on C and H. From these formulae
and the uniqueness of σ (Theorem 8.12) we see that ε(w) is uniquely
determined. Together with the condition w ∈ V , this implies that w, and
therefore also u, is uniquely determined. Therefore, under the additional
assumption that the yield function is continuously differentiable, the result
of Theorem 8.12 can be strengthened to include the uniqueness for the
displacement variable also.

The relation

σ̇ =

⎧⎪⎨⎪⎩
C ε(u̇) if φ(σ,χ) < 0, or φ(σ,χ) = 0 and

∂φ

∂σ
: σ̇ ≤ 0,

C̃ ε(u̇) if φ(σ,χ) = 0 and
∂φ

∂σ
: σ̇ > 0

(8.74)

is called the rate form of the stress–strain relation.



9
Introduction to Finite Element
Analysis

In the previous two chapters we have formulated and analyzed the primal
and dual variational formulations of the elastoplasticity problem. Later on,
we will study various numerical methods to solve the variational problems.
In all the numerical methods to be considered, we will use finite differences
to approximate the time derivative and use the finite element method to
discretize the spatial variables. The finite element method is widely used
for solving boundary value problems of partial differential equations arising
in physics and engineering, especially solid mechanics. The method is de-
rived from discretizing the weak formulation of a boundary value problem.
The analysis of the finite element method is closely related to that of the
boundary value problem.

The development of a finite element algorithm for solving a boundary
value problem includes four main steps. First, the boundary value prob-
lem is reformulated into an equivalent variational problem. Second, the
domain of the independent variables (or usually the domain of the spatial
variables, for a time-dependent problem) is partitioned into subdomains
called finite elements, and then a finite-dimensional space, called the finite
element space, is constructed as a collection of piecewise smooth functions
with a certain degree of global smoothness. Third, the variational problem
is projected to the finite element space, and in this way, a finite element
system is formed. Finally, the finite element system is solved, say by some
iterative method, and various conclusions are drawn from the solution of
the finite element system. The mathematical theory of the finite element
method also addresses issues such as a priori and a posteriori error esti-
mates, and superconvergence.
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Compared to the classical finite difference method, the development of
the finite element method is a relatively recent event. It is generally agreed
that the real engineering practice of the finite element method started in
the mid-1950s, and the mathematical analysis of the method began in the
mid-1960s. Interesting historical accounts of the method can be found in
Oden [97] and in Zienkiewicz [133]. The former gives a balanced presenta-
tion on the development of the theory and practice of the method, while the
latter is written from the viewpoint of an engineer. For readers interested
in the implementation of the finite element method, several engineering
books on the method can be consulted, e.g., Bathe [7], Hughes [63], Szabó
and Babuška [121], Zienkiewicz and Taylor [134, 135]. In particular, [121]
includes discussions on the so-called p-version of the finite element method,
where convergence of the method is achieved by increasing polynomial de-
grees, and the h-p-version of the method, where convergence is obtained
by increasing polynomial degrees and refining the mesh simultaneously.
Mathematical foundations of the finite element method can be found in
Babuška and Aziz [5], Strang and Fix [119], Oden and Reddy [98], Ciarlet
[23], and more recently, Ciarlet [25], which is an updated edition of most
parts of [23]. For the particular application to solving Navier–Stokes equa-
tions, see Girault and Raviart [43], and for a comprehensive treatment of
mixed and hybrid finite element methods, see Brezzi and Fortin [18]. The
texts by Johnson [69], Brenner and Scott [15], and Braess [14], offer easily
accessible expository accounts of basic theoretical aspects of finite element
methods.

The main purpose of this chapter is to introduce basic aspects of the
finite element method and sample results on finite element interpolation
theory. A reader familiar with the basic theoretical results of the finite
element method may skip this chapter.

The focus of this chapter is to provide a mathematical assessment for the
method; more precisely, we will discuss issues related to the convergence
and error estimations. As will be seen in later chapters, the problem of the
finite element solution error estimation can be reduced to one of estimating
finite element interpolation errors. Therefore, we will discuss how to obtain
such interpolation estimates. The theory is developed in the context of el-
ements that are obtained by affine maps from a reference element, so that
the domain Ω will be assumed to have a boundary that is polygonal in R

2

and polyhedral in R
3. Otherwise, the theory presented here will be quite

general in nature. For the case of a nonpolygonal boundary, curved elements
can usually be used to increase the accuracy of the solution; the reader can
consult the references mentioned above for detailed discussion. In form-
ing finite element systems, numerical integrations are usually performed to
compute integrals appearing in the formulations. Again, the reader can con-
sult the references mentioned above for discussions of effects of numerical
integrations on the accuracy of approximate solutions.
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This chapter draws heavily on the work by Ciarlet [23]. In the first section
we give a brief introduction to the basic ideas underlying the finite element
method, as well as a number of issues that arise in practice. Section 9.2 is
devoted to a discussion of affine families of elements and of interpolation
operators. The aim of Section 9.3 is to derive estimates of the interpolation
error on a single element. This estimate will take the form of a bound on
the Hm-seminorm of the error in terms of geometrical properties of the ele-
ment. Finally, in Section 9.4 global interpolation error estimates are derived
in appropriate Sobolev norms. Applications of the theory of finite element
interpolation error estimations will be given in the next chapter in deriv-
ing order error estimates for finite element solutions of various variational
problems, and in later chapters for error estimates of numerical solutions
of the elastoplasticity problem.

9.1 Basics of the Finite Element Method

The finite element method is based on a discretization of a weak formulation
associated with a boundary value problem. For a linear elliptic boundary
value problem defined on a Lipschitz domain Ω, the general form of the
weak formulation is

u ∈ V, a(u, v) = 〈�, v〉 ∀ v ∈ V. (9.1)

Here V is a Sobolev space on Ω. For a second-order differential equation
problem, V = H1(Ω) if the given boundary condition is natural (i.e., if the
condition involves first-order derivatives), and V = H1

0 (Ω) if the homoge-
neous Dirichlet boundary condition is specified over the whole boundary.
As is discussed in Chapter 6, a problem with a nonhomogeneous Dirichlet
boundary condition on a part of the boundary ΓD ⊂ ∂Ω can be converted
to one with the homogeneous Dirichlet boundary condition on ΓD after a
change of the dependent variable. In this case, then, the space V = H1

ΓD
(Ω).

The form a(·, ·) is assumed to be bilinear, continuous, and V -elliptic, while
� is a given linear continuous form on V .

Since V is infinite-dimensional, it is usually impossible to find the solu-
tion of the problem (9.1) exactly. The idea of the Galerkin method is to
approximate (9.1) by its discrete analogue:

uN ∈ VN , a(uN , v) = 〈�, v〉 ∀ v ∈ VN , (9.2)

where VN is a finite-dimensional space and is used to approximate the space
V . When VN consists of piecewise polynomials (or more precisely, piecewise
images of polynomials) associated with a partition of the domain Ω, the
Galerkin method (9.2) becomes the celebrated finite element method. Con-
vergence of the finite element method may be achieved by progressively
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refining the mesh or by increasing polynomial degrees or by doing both
simultaneously; then we get the h-version, p-version, or h-p-version of the
finite element method, respectively. It is customary to use h as the param-
eter for the mesh-size and p the parameter for the polynomial degree(s).
Efficient selection among the three versions of the method depends on the a
priori knowledge about the regularity of the exact solution of the problem.
Roughly speaking, over a region where the solution is smooth, high-degree
polynomials with large elements can be used, while in a region where the
solution has singularities, low-order elements together with a refined mesh
should be used. In this work we will only consider the application of the
h-version method, mainly for the reason that the solution of the elasto-
plasticity problem does not enjoy high regularity. Conventionally, for the
h-version finite element method, we use V h instead of VN to denote the
finite element space. Thus, with a finite element space V h chosen, the finite
element method is

uh ∈ V h, a(uh, vh) = 〈�, vh〉 ∀ v ∈ V h. (9.3)

Expressing the trial function uh in terms of a basis of the space V h and
taking each of the basis functions for the test function vh, we obtain an
equivalent linear system, called the finite element system, from (9.3) for
the coefficients in the expansion of uh with respect to the basis. Once the
finite element system is solved, we obtain the finite element solution uh.

The quality of the finite element solution uh, i.e., whether uh is a good
approximation of u, is determined by the regularity of the exact solution u,
the construction of the finite element space V h, and the way we solve the
finite element system resulting from (9.3). We will discuss in greater detail
the construction of V h.

To begin with, we need to define a partition Th = {Ωe}Ee=1 of the domain
Ω into a finite number of closed subsets Ωe, e = 1, . . . , E, called elements.
By this we mean that the following properties are satisfied.

(1) Each Ωe is a closed nonempty set, with a Lipschitz continuous bound-
ary.

(2) Ω = ∪eΩe.

(3) For e1 �= e2,
◦
Ωe1 ∩

◦
Ωe2= ∅.

Over each element Ωe we associate a finite-dimensional function space
Xe. We will only consider the case where each function v ∈ Xe is uniquely
determined by its values at a finite number of points in Ωe: x

(e)
i , 1 ≤ i ≤ I,

called the (local) nodal points. For example, if Ωe is a triangle and Xe is the
space of linear functions on Ωe, then we can choose the three vertices of the
triangle as the nodal points; if Xe consists of all the quadratic functions on
Ωe, then we can use the three vertices and the three side midpoints as the
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nodal points. We require that any two neighboring elements Ωe1 and Ωe2

have the same nodal points on Ωe1 ∩Ωe2 . This requirement usually leads to
a regularity condition on the finite element partition that the intersection
of any two elements must be empty, a vertex, or a common side (or face).

For convenience in practical implementation as well as in theoretical
analysis, we will also assume that there exists a fixed number of closed
Lipschitz domains, ambiguously represented by one symbol Ω̂, such that
for each element Ωe, there is a smooth mapping function Fe with Ωe =
Fe(Ω̂). A finite-dimensional function space X̂ will be introduced on Ω̂,
together with the nodal points on Ω̂ used to uniquely determine functions
in X̂. Then the local function space Xe on Ωe will be obtained through
the mapping function Fe from X̂ by Xe ◦ Fe = X̂. In most applications of
the finite element method, X̂ is a space of polynomials of certain degrees.
In this work, we will always assume that X̂ is a polynomial space. In the
case of a polygonal domain Ω, we usually partition it into triangles and
quadrilaterals. Then we may choose a right isosceles triangle or a square
for Ω̂, and correspondingly, the mapping function Fe is linear if Ωe is a
triangle, and bilinear if Ωe is a quadrilateral. Then the finite element space
can be defined to be

V h = {vh ∈ V : vh ◦ Fe ∈ X̂ ∀ e}. (9.4)

We see that if X̂ consists of polynomials, then a function from the space V h

is a piecewise image of polynomials. When Fe is linear, vh|Ωe , the restriction
of a function vh ∈ V h on Ωe is a polynomial, while if Fe is nonlinear (e.g.,
bilinear for quadrilateral elements), vh|Ωe

is in general not a polynomial.
A function from the space V h is called a finite element . Sometimes a

function in the local function space Xe is also called a finite element. When
the associated function space Xe is understood from the context, we even
call the element Ωe a finite element.

A few sentences are in order on the requirement vh ∈ V . For a second-
order boundary value problem, V is a subspace of H1(Ω). Since the re-
striction of vh on each element Ωe is a smooth function, a necessary and
sufficient condition that vh ∈ V is vh ∈ C(Ω) and vh satisfies any possible
Dirichlet boundary condition specified in V (cf. [23]).

As a consequence of the defining relations (9.1) and (9.3) for u and uh,
together with the continuity and V -ellipticity of the bilinear form a(·, ·),
Ceá’s lemma holds: (Theorem 10.1 in Chapter 10) this result estimates the
error of the finite element solution according

‖u− uh‖V ≤ c inf
vh∈V h

‖u− vh‖V . (9.5)

That is, up to a multiplicative constant, the finite element solution uh is an
optimal approximation to u among the functions from the finite element
space V h. Thus the problem of estimating the finite element solution error
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Figure 9.1: Generation of a finite element mesh by a family of affine maps

can be reduced to one of estimating the approximation error

‖u− uh‖V ≤ c ‖u− Πhu‖V , (9.6)

where Πhu is a finite element interpolant of u.
In the next several sections we will consider in some detail affine families

of finite elements and derive order error estimates for the finite element
interpolants.

9.2 Affine Families of Finite Elements

In this section we set up the machinery that is vital to a proper develop-
ment of error estimates for finite element approximations.

Affine-equivalent elements. We consider a situation in which a domain
Ω is partitioned into E finite elements, all elements being of the same ge-
ometrical type (for example, all triangles) and having the same degree of
approximation. Such a finite element mesh may be generated simply by set-
ting up a single reference element Ω̂, say, and by mapping or transforming
Ω̂ into each one of the elements Ωe in turn (Figure 9.1).

The basic idea is this: First, we define the reference element Ω̂, this
element being of the same geometrical type as the elements that make up
Ω. Next, we define an affine transformation, that is, a transformation that
maps straight lines into straight lines, by

Fe : Ω̂ → Ωe ⊂ R
d, ξ → x = Fe(ξ) ≡ T eξ + be (9.7)

and such that Fe is a bijection between Ω̂ and Ωe. Here be is a translation
vector, T e is an invertible d× d matrix, and furthermore, det(T e) > 0. We
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Figure 9.2: The constants he and ρe associated with an element

also require of Fe that it map the nodal point ξi, 1 ≤ i ≤ I, of Ω̂ to the
(locally numbered) nodal point x

(e)
i , 1 ≤ i ≤ I, of Ωe:

Fe(ξi) = x
(e)
i , i = 1, . . . , I. (9.8)

Once a set of affine transformations has been constructed in this way for
each element, we need to focus attention only on the reference element Ω̂
and the family of transformations F1, F2, . . . , FE , since these provide a
complete description of the mesh. Since X̂ consists of polynomials and Fe

is an affine mapping, we see that Xe also consists of polynomials.
When two elements Ω̂ and Ωe are related to each other by a transforma-

tion of the type (9.7) with the property (9.8), they are said to be affine-
equivalent . A set of finite elements Ω1, . . . , ΩE is called an affine family if
all elements are affine-equivalent to a single reference element Ω̂.

The relative size and shape of an arbitrary element Ωe are quantified in
a natural way by defining the quantities

he = diam (Ωe) = max {‖x− y‖ : x,y ∈ Ωe} (9.9)

and

ρe = diameter of the largest sphere Se inscribed in Ωe. (9.10)

Here and below, the vector norm ‖x‖ is the Euclidean norm.
When dealing with the reference element Ω̂, we denote the correspond-

ing quantities by ĥ and ρ̂. These quantities are illustrated in Figure 9.2:
Whereas he gives some idea of the “size” of Ωe, the ratio he/ρe gives an
indication of how “thin” the element is.

We now summarize some useful properties of the affine transformation
(9.7).

Lemma 9.1. Let Ω̂, Ωe ⊂ R
d, and Fe : Ω̂ → Ωe be the affine map from Ω̂

to Ωe defined by (9.7). If the matrix norm ‖T e‖ is defined by

‖T e‖ = sup
{
‖T eξ‖
‖ξ‖ : ξ �= 0

}
,
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then

‖T e‖ ≤ he

ρ̂
and ‖T−1

e ‖ ≤ ĥ

ρe
.

Proof. For ξ �= 0, let z = ρ̂ξ/‖ξ‖; then ‖z‖ = ρ̂ and

‖T e‖ = sup
{
‖T eξ‖
‖ξ‖ : ξ �= 0

}
= ρ̂−1 sup {‖T ez‖ : ‖z‖ = ρ̂} .

Now for an arbitrary z with ‖z‖ = ρ̂, pick up any two points ξ and η that
lie on the largest sphere Ŝ of diameter ρ̂, which is inscribed in Ω̂, such that
z = ξ − η. Then

‖T e‖ = ρ̂−1 sup
{
‖T e(ξ − η)‖ : ξ,η ∈ Ŝ

}
= ρ̂−1 sup

{
‖(T eξ + be) − (T eη + be)‖ : ξ,η ∈ Ŝ

}
≤ ρ̂−1 sup {‖x− y‖ : x,y ∈ Ωe}
≤ he/ρ̂.

The second inequality is proved similarly. �

Mappings of functions. By making use of the affine map (9.7), we can
set up an operator Ke that maps a function v defined on Ωe to a function
v̂ on Ω̂, the function v̂ being defined by

v̂(ξ) = v(x), x = Fe(ξ). (9.11)

Since Fe is a bijective mapping from Ω̂ to Ωe, the operator Ke is invertible
with inverse K−1

e mapping functions on Ω̂ to functions on Ωe, so that

K−1
e v̂ = v. (9.12)

Now let {ξi}Ii=1 be the nodal points on Ω̂, and {N̂i}Ii=1 be a set of local
basis functions defined on Ω̂ with the property that

N̂i(ξj) =
{

1 if j = i,
0 otherwise.

Usually, the function N̂i is chosen to be a polynomial, say of degree k. By
using (9.12), we can define

N
(e)
i = K−1

e N̂i, i = 1, . . . , I.

Here {N (e)
i }Ii=1 is the corresponding set of polynomial local basis functions

defined on Ωe; these functions also have the property that N
(e)
i (x(e)

i ) = 1
and N

(e)
i (x(e)

j ) = 0 for j �= i, since (9.11) implies that N̂i(ξj) = N
(e)
i (x(e)

j ).
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The local basis functions {N̂i}Ii=1 span a space X̂ (of polynomials, in
our case) on Ω̂. We can construct a projection operator Π̂ that maps any
v̂ ∈ C(Ω̂) to its interpolant Π̂v̂ in X̂, according to

Π̂ : C(Ω̂) → X̂, Π̂v̂ =
I∑

i=1

v̂(ξi)N̂i. (9.13)

Similarly, we define the projection operator Πe by

Πe : C(Ωe) → Xe, Πev =
I∑

i=1

v(x(e)
i )N (e)

i , (9.14)

where Xe = span {N (e)
i }Ii=1 and Πev is the interpolant of v in Xe. We come

now to a crucial question about such interpolations: Given a function v in
C(Ωe) and its image v̂ = Kev in C(Ω̂), are Π̂(Kev) and Ke(Πev) the same
functions? That is, if we map v to v̂ and then interpolate in Ω̂, is this the
same as first interpolating v and then mapping it? The next result answers
this question.

Theorem 9.2. Let Ω̂ and Ωe be affine-equivalent subsets in R
d. Then the

interpolation operators Π̂ and Πe satisfy the relation

Π̂(Kev) = Ke(Πev),

i.e.,

Π̂v̂ = Π̂ev.

Proof. We have from the definition (9.14),

Πev =
I∑

i=1

v(x(e)
i )N (e)

i =
I∑

i=1

v̂(ξi)N
(e)
i .

Hence

Ke(Πev) = Ke

(
I∑

i=1

v̂(ξi)N
(e)
i

)

=
I∑

i=1

v̂(ξi)KeN
(e)
i (Ke is a linear operator)

=
I∑

i=1

v̂(ξi)N̂i,

which is precisely Π̂v̂. �



214 9. Introduction to Finite Element Analysis

9.3 Local Interpolation Error Estimates

Recall from the estimate (9.6) that the error ‖u − uh‖V , measured in the
norm of the space V , can be bounded above by a constant multiple of the
interpolation error ‖u− Πhu‖V , where Πhu is the interpolant of u in V h,
defined piecewise by the formula (Πhu)|Ωe

= Πeu. The task of estimating
the finite element solution error consequently reduces to one of estimating
the interpolation error. We go one step further towards obtaining such an
estimate by deriving in this section an estimate of the interpolation error
‖v − Πev‖ for functions defined on a single finite element Ωe. Once this
estimate is found, it can be used to derive an estimate for the error of the
global interpolation of a function, defined over the entire domain Ω.

We assume that the finite-dimensional space Xe spanned by the local
basis functions {N (e)

i }Ii=1 contains polynomials of degree less than or equal
to k, for some k ≥ 1. In other words,

Xe ⊃ Pk(Ωe).

Here, Pk(Ωe) denotes the space of the polynomials on Ωe of degree less
than or equal to k. We will show that for m ≤ k + 1, an interpolation
error estimate in the Hm(Ωe)-norm can be derived for a function v that
is in Hk+1(Ωe). Here and below, we use the notation Hm(Ωe) to stand

for Hm(
◦
Ωe). So we consider the situation in which there are two spaces

Hk+1(Ωe) and Hm(Ωe) with k+1 ≥ m, and a projection operator Πe that
maps members of Hk+1(Ωe) to Hm(Ωe), the images Πev all lying in Xe,

Πe : Hk+1(Ωe) → Xe ⊂ Hm(Ωe). (9.15)

In the following, we assume k+1 > d/2; then from the Sobolev embedding
theorem (Theorem 5.14), Hk+1(Ωe) ↪→ C(Ωe). Thus for v ∈ Hk+1(Ωe),
pointwise values v(x) are well-defined. Let the projection operator Πe be
defined by (9.14). Since Pk(Ωe) ⊂ Xe by assumption, the operator Πe has
the property that

Πev = v ∀ v ∈ Pk(Ωe). (9.16)

Similarly,

Π̂v̂ = v̂ ∀ v̂ ∈ Pk(Ω̂). (9.17)

A property of the form (9.16) or (9.17) is called a polynomial invariance
property of the finite element interpolation operator. We remark that only
(9.17), the polynomial invariance property on the reference element Ω̂, is
essential in deriving finite element interpolation error estimates. The poly-
nomial invariance property (9.16) on the real element is a consequence of
(9.17) and the fact that Fe is an affine mapping. In the more general case
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when Fe is not affine, functions from Xe may not be polynomials, so (9.16)
cannot hold; nevertheless, (9.16) does not play any role in deriving error
estimates for finite element interpolations.

The main result in this section will be the following: For v ∈ Hk+1(Ωe)
and Πe satisfying the above properties, the interpolation error in the Hm-
norm, 0 ≤ m ≤ k + 1, can be estimated by

‖v − Πev‖m,Ωe ≤ c hk+1−m
e |v|k+1,Ωe ,

where he is defined in (9.9) and for an integer l, | · |l,Ωe
denotes the Sobolev

seminorm

|v|2l,Ωe
=

∑
|α|=l

∫
Ωe

[Dαv(x)]2 dx.

Recall also that the Sobolev norm ‖ · ‖l,Ωe is given by

‖v‖2
l,Ωe

=
l∑

j=0

|v|2j,Ωe
.

We start the development by presenting an important result that will be
required later.

Theorem 9.3. For any bounded set Ω0 ⊂ R
d with a Lipschitz continuous

boundary, there is a constant c, depending only on the geometry of Ω0, such
that

inf
p∈Pk(Ω0)

‖v + p‖k+1,Ω0 ≤ c |v|k+1,Ω0 ∀ v ∈ Hk+1(Ω0). (9.18)

Proof. First, we apply Theorem 5.17 to get the inequality

‖u‖k+1,Ω0 ≤ c
(
|u|k+1,Ω0 +

∑
|α|≤k

∣∣∣∣∫
Ω0

Dαu(x) dx
∣∣∣∣) ∀u ∈ Hk+1(Ω0).

Now, replacing u by v + p with v ∈ Hk+1(Ω0) and p ∈ Pk(Ω0), and noting
that Dαp = 0 for |α| = k + 1, we have

‖v + p‖k+1,Ω0 ≤ c
(
|v|k+1,Ω0 +

∑
|α|≤k

∣∣∣∣∫
Ω0

Dα(v + p) dx
∣∣∣∣)

∀ v ∈ Hk+1(Ω0), p ∈ Pk(Ω0).
(9.19)

Now construct a polynomial p̄ in Pk(Ω0) that has the property that∫
Ω0

Dα(v + p̄) dx = 0 for |α| ≤ k. (9.20)
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This can always be done: Set |α| = k; then Dαp̄ equals α1! · · ·αd! times the
coefficient of xα. The coefficient can be computed by using (9.20). Having
found all the coefficients of the terms of degree k, we set |α| = k − 1,
and use (9.20) to compute all the coefficients of the terms of degree k − 1.
Proceeding in this way, we find the polynomial p̄ for the given v.

With p = p̄ in (9.19), we have

inf
p∈Pk(Ω0)

‖v + p‖k+1,Ω0 ≤ ‖v + p̄‖k+1,Ω0 ≤ c |v|k+1,Ω0 ,

from which (9.18) follows. �

Later on, the result of Theorem 9.3 will be applied for Ω0 = Ω̂, the
reference element.

Next we need to know how the seminorms of the functions v and of v̂
are related.

Theorem 9.4. Let Ωe and Ω̂ be two affine-equivalent subsets of R
d, and

l a nonnegative integer. Then v ∈ H l(Ωe) if and only if v̂ = Kev ∈ H l(Ω̂)
and for some constant c independent of Ωe and Ω̂, the following estimates
hold:

|v̂|l,Ω̂ ≤ c ‖T e‖l|detT e|−1/2|v|l,Ωe
, (9.21)

|v|l,Ωe ≤ c ‖T−1
e ‖l|detT e|1/2|v̂|l,Ω̂, (9.22)

where T e is the matrix occurring in the affine map (9.7).

Proof. We prove (9.21); (9.22) is proved in a similar fashion. Recall the
result from multivariable calculus that if ξi = fi(x1, . . . , xd), 1 ≤ i ≤ d,
then

dξ ≡ dξ1dξ2 · · · dξd = |det(∂fi/∂xj)| dx1dx2 · · · dxd.

We have

|v̂|2
l,Ω̂ =

∑
|α|=l

∫
Ω̂

(
Dα

ξ v̂(ξ)
)2

dξ

=
∑
|α|=l

∫
Ωe

(
Dα

ξ v̂(ξ(x))
)2

|detT e|−1 dx, (9.23)

where

Dα
ξ =

∂|α|

∂ξα1
1 · · · ∂ξαd

d

for α = (α1, . . . , αd).

By an application of the chain rule we have∑
|α|=l

|Dα
ξ v̂(ξ(x))|2 ≤ c ‖T e‖2 l

∑
|α|=l

|Dα
xv(x)|2, (9.24)
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where

Dα
x =

∂|α|

∂xα1
1 · · · ∂xαd

d

for α = (α1, . . . , αd).

Hence from (9.23),

|v̂|2
l,Ω̂ ≤ c

∑
|α|=l

∫
Ωe

(Dα
xv(x))2 ‖T e‖2 l(detT e)−1 dx

= c ‖T e‖2 l(detT e)−1 |v|2l,Ωe
,

from which (9.21) follows. �

We now estimate the interpolation error in the seminorm |v−Πev|m,Ωe
.

Theorem 9.5. Let k and m be nonnegative integers such that k+1 > d/2,
k + 1 ≥ m, and

Pk(Ω̂) ⊂ X̂ ⊂ Hm(Ω̂).

Let Πe and Π̂ be the operators defined in (9.13) and (9.14). Then for any
affine equivalent element Ωe,

|v − Πev|m,Ωe
≤ c

hk+1
e

ρme
|v|k+1,Ωe

∀ v ∈ Hk+1(Ωe), (9.25)

where he and ρe are defined in (9.9) and (9.10), and c is a constant de-
pending only on Ω̂ and Π̂.

Proof. Notice that k + 1 > d/2 implies Hk+1(Ω̂) ⊂ C(Ω̂), so v̂ = Kev ∈
Hk+1(Ω̂) is continuous and the point values of Π̂v̂ are well-defined. Using
(9.17), we have, for all v̂ ∈ Hk+1(Ω̂) and all p̂ ∈ Pk(Ω̂),

|v̂ − Π̂v̂|m,Ω̂ ≤ ‖v̂ − Π̂v̂‖m,Ω̂ = ‖v̂ − Π̂v̂ + p̂− Π̂p̂‖m,Ω̂

≤ ‖(v̂ + p̂) − Π̂(v̂ + p̂)‖m,Ω̂

≤ ‖v̂ + p̂‖m,Ω̂ + ‖Π̂(v̂ + p̂)‖m,Ω̂

≤ (1 + ‖Π̂‖) ‖v̂ + p̂‖k+1,Ω̂.

Notice that ‖Π̂‖ < ∞, i.e., Π̂ is a bounded operator from Hk+1(Ω̂) to
Hm(Ω̂):

‖Π̂v̂‖m,Ω̂ ≤
I∑

i=1

|v̂(ξi)| ‖N̂i‖m,Ω̂ ≤ c ‖v̂‖C(Ω̂) ≤ c ‖v̂‖k+1,Ω̂.

The use of Theorem 9.3 now yields

|v̂ − Π̂v̂|m,Ω̂ ≤ c inf
p̂∈Pk(Ω̂)

‖v̂ + p̂‖k+1,Ω̂ ≤ c |v̂|k+1,Ω̂. (9.26)
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From Theorem 9.2 we have Π̂(Kev) = Ke(Πev), so that

v̂ − Π̂v̂ = Kev − Π̂(Kev) = Ke(v − Πev). (9.27)

Consequently, using (9.22) (replacing v by v−Πev and setting l = m) and
(9.27), we obtain

|v − Πev|m,Ωe ≤ c ‖T−1
e ‖m|detT e|1/2|Ke(v − Πev)|m,Ω̂

= c ‖T−1
e ‖m|detT e|1/2|v̂ − Π̂v̂|m,Ω̂. (9.28)

Furthermore, from (9.21) with l = k + 1,

|v̂|k+1,Ω̂ ≤ c ‖T e‖k+1|detT e|−1/2|v|k+1,Ωe
. (9.29)

Finally, substituting (9.26) in (9.28), then using (9.29) in that result, we
obtain

|v − Πev|m,Ωe
≤ c ‖T−1

e ‖m‖T e‖k+1|v|k+1,Ωe
,

which, together with the result of Lemma 9.1, leads to (9.25). �

Remarks.

1. Since we wish to evaluate |v − Πev|m,Ωe , it follows that both v and
Πev must be in Hm(Ωe) for this term to make sense. Equivalently,
v̂ and Π̂v̂ must be in Hm(Ω̂). This accounts for the assumptions
Hk+1(Ω̂) ⊂ Hm(Ω̂) and X̂ ⊂ Hm(Ω̂). Note that v ∈ Hk+1(Ωe)
implies v̂ ∈ Hk+1(Ω̂). The inclusion Hk+1(Ω̂) ⊂ Hm(Ω̂) of course
holds if m ≤ k + 1.

2. In evaluating the interpolant Πev of v, it is necessary to use the
nodal values of v. This in turn requires that v be continuous, so
that we must assume v ∈ Hk+1(Ωe) ↪→ C(Ωe), or equivalently, v̂ ∈
Hk+1(Ω̂) ↪→ C(Ω̂). By the Sobolev embedding theorem, this inclusion
holds if k + 1 > d/2 for a problem in R

d.

3. The error estimate (9.25) is proved through the use of the reference
element Ω̂. This method of proof can be termed the reference element
technique. We notice that in the proof we use only the polynomial
invariance property (9.17) of the finite element interpolation on the
reference element, and we do not need to use the polynomial invari-
ance property on the real finite element. This feature is important
when we analyze finite element spaces that are not based on affine-
equivalent elements. For example, suppose the domain is partitioned
into quadrilateral elements {Ω1, . . . ,ΩE}. Then a reference element
can be taken to be the unit square Ω̂ = [0, 1]2. For each element Ωe,
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the mapping function Fe is bilinear and maps each vertex of the ref-
erence element Ω̂ to a corresponding vertex of Ωe. The first-degree
finite element space for approximating V = H1(Ω) is

V h = {vh ∈ C(Ω) : vh ◦ Fe ∈ Q1(Ω̂), e = 1, . . . , E},

where

Q1(Ω̂) = {v : v(ξ) = a + b ξ1 + c ξ2 + d ξ1ξ2, ξ ∈ Ω̂, a, b, c, d ∈ R}

is the space of bilinear functions. We see that for vh ∈ V h, on each
element Ωe, vh|Ωe

is not a polynomial (as a function of the variable
x), but rather the image of a polynomial on the reference element.
Obviously, (9.16) does not hold, but (9.17) is still valid. For such a
finite element space, the proof of Theorem 9.5 still goes through.

4. Continuing the last remark, we comment that the reference element
technique is useful not only for theoretical error analysis, but also for
actual implementation of the finite element method. By employing
the technique, all the calculations in forming the finite element sys-
tem are done over the reference element. This simplifies the whole
implementation process, e.g., numerical integrations need to be per-
formed only on the reference element.

The two parameters he and ρe appearing in (9.25) may be reduced to
one if attention is restricted to a family of finite elements for which the
ratio he/ρe is bounded above, so that elements are not allowed to become
too “flat.” For this purpose we introduce the notion of a regular family of
finite elements: A family of partitions {Ωe}Ee=1 is said to be regular if

(i) there exists a constant σ such that he/ρe ≤ σ for all elements Ωe;

(ii) the mesh-size h = max1≤e≤E he approaches zero.

In the case of a regular family of finite elements, the error estimate of
Theorem 9.5 can be stated in terms of a norm; this is recorded in the
following result.

Corollary 9.6. Let the conditions of Theorem 9.5 hold, and {Ωe}Ee=1 be
a regular family of finite elements. Then there is a constant c such that for
any element Ωe in the family and all functions v ∈ Hk+1(Ωe),

‖v − Πev‖m,Ωe
≤ c hk+1−m

e |v|k+1,Ωe
, m ≤ k + 1. (9.30)

It is not difficult to deduce this result from Theorem 9.5. The property
(i) of a regular family of finite elements is used to replace the ratio hk+1

e /ρme
in (9.25) by c hk+1−m

e .

Example 9.7. Let Ω ⊂ R
2 be partitioned by a regular family {Ωe}Ee=1
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of triangular elements. A typical element Ωe is a triangle, and its three
vertices are used as the nodal points. The space Xe spanned by the local
interpolation functions is P1(Ωe), so that k = 1. Assuming that v belongs
to H2(Ωe), the estimate (9.30) gives

‖v − Πev‖m,Ωe ≤ c h2−m
e |v|2,Ωe (9.31)

for m = 0, 1, 2. �

9.4 Global Interpolation Error Estimates

Having established properties of finite element interpolations over individ-
ual elements, we turn now to estimating the error of the global interpolation
of a function defined on the entire domain Ω. Specifically, we have a func-
tion v ∈ C(Ω), and we construct its interpolant Πhv in the finite element
space V h according to

Πhv =
N∑
i=1

v(xi)Ni, (9.32)

where Ni, i = 1, . . . , N , are the global basis functions that span V h. Here
Ni is the global basis function associated with the node xi, i.e., Ni is a
piecewise polynomial of degree less than or equal to k, uniquely determined
by the property Ni(xj) = δij . If the node xi is a vertex x

(e)
j of the element

Ωe, then Ni|Ωe
= Ne

j . If xi is not a node of Ωe, then Ni|Ωe
= 0. Thus the

functions Ni are constructed from local basis functions Ne
i , and it is clear

that the restriction of Πhv to any element Ωe is in fact Πev.
Since we will be primarily interested in obtaining error estimates for fi-

nite element solutions of second-order problems, we need to estimate the
interpolation error ‖u−Πhu‖1,Ω (recall that m = 1 for second-order prob-
lems). In the same way as ‖u − Πeu‖m,Ωe

is estimated in terms of the
parameter he, a suitable parameter is required for the global estimate. For
this purpose, suppose that we are dealing with a regular family of finite
elements, and set

h = max
1≤e≤E

he. (9.33)

The quantity h is called the mesh parameter and is a measure of how refined
the mesh is. Hence, if it is possible to obtain an interpolation error estimate
of the form

‖u− Πhu‖1,Ω ≤ c hβ |u|k+1,Ω,

then we are assured of convergence as h → 0, provided that β > 0.
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The mesh parameter provides a natural way of quantifying the dimension
of the space V h that occurs in finite element approximations. For each value
of h the approximate solution uh is sought in a finite-dimensional space V h,
with the hope that the error ‖u−uh‖ approaches zero as h → 0. The smaller
h is, the finer the subdivision, and hence the larger the dimension of V h

will be. The family of finite element spaces V h is said to approximate V as
h → 0 if for any v ∈ V , inf{‖v − vh‖ : vh ∈ V h} → 0 as h → 0.

The following global interpolation error estimate establishes the precise
sense in which V h approximates V . Our discussion here is valid for V =
H1(Ω), V = H1

0 (Ω), or V = H1
Γ0

(Ω), Γ0 ⊂ Γ, depending on the form of the
boundary condition. When we have homogeneous Dirichlet condition on a
part or the whole boundary, we agree that those global basis functions Ni

associated with the nodes xi lying on that part of the boundary are removed
from the expression (9.32) as well as the finite element space V h. In case
Γ0 �= Γ, we assume that if the intersection of a side of some element with
the boundary is not empty, then either no Dirichlet condition is specified
on that side or the Dirichlet condition is specified on the whole side. In this
way, V h ⊂ V .

Theorem 9.8. Assume that all the conditions of Corollary 9.6 hold. Then
there exists a constant c independent of h such that for m = 0, 1,

‖v − Πhv‖m,Ω ≤ c hk+1−m|v|k+1,Ω ∀ v ∈ Hk+1(Ω). (9.34)

Proof. We notice that X̂ ⊂ H1(Ω̂) and V h ⊂ C(Ω) imply V h ⊂ H1(Ω).
Hence Πhu ∈ H1(Ω) with Πhu|Ωe

= Πeu. Applying Corollary 9.6 with
m = 0 or 1, we have

‖u− Πhu‖m,Ω =

(
E∑

e=1

‖u− Πeu‖2
m,Ωe

)1/2

≤
(

E∑
e=1

c h2(k+1−m)
e |u|2k+1,Ωe

)1/2

≤ c hk+1−m

(
E∑

e=1

|u|2k+1,Ωe

)1/2

= c hk+1−m|u|k+1,Ω. �

We make a remark on finite element interpolation of possibly discontin-
uous functions. In the above discussion of the finite element interpolation
error analysis, we assume that the function being interpolated is contin-
uous, so that it is meaningful to use its finite element interpolation de-
fined in (9.32). The continuity condition is guaranteed by the assumption
v ∈ Hk+1(Ω) and k + 1 > d/2. In case k + 1 ≤ d/2, an Hk+1(Ω)-function
is no longer necessarily continuous. Instead of (9.32), we can choose Πhv
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to be Clément’s interpolant, which is well-defined even when k + 1 ≤ d/2,
and the interpolation error estimates stated in Theorem 9.8 are still valid.
For detail, see Clément [26]. We will use the same symbol Πhv to denote
the “regular” finite element interpolant (9.32) when v is continuous, and
in case v is discontinuous, Πhv is Clément’s interpolant. In either case, we
have the error estimates (9.34).

Orthogonal projections are another possibility in case the function to be
interpolated is not continuous. Let Πh

0 : L2(Ω) → V h and Πh
1 : V → V h be

the L2(Ω)- and H1(Ω)-orthogonal projection operators, defined by

Πh
0u ∈ V h, (Πh

0u, v
h)0,Ω = (u, vh)0,Ω ∀ vh ∈ V h, (9.35)

Πh
1u ∈ V h, (Πh

1u, v
h)1,Ω = (u, vh)1,Ω ∀ vh ∈ V h, (9.36)

respectively. The orthogonal projections Πh
0u and Πh

1u are uniquely defined
for u ∈ L2(Ω) and u ∈ V . We have the following estimates for the projection
errors (cf. [103]).

Theorem 9.9. Assume that all the conditions, except that k+1 > d/2, of
Corollary 9.6 hold. Suppose the family of triangulations {Ωe}Ee=1 is quasi-
uniform. Then if u ∈ H l+1(Ω), 0 ≤ l ≤ k, we have the estimates

‖Πh
0u− u‖0,Ω + h ‖Πh

0u− u‖1,Ω ≤ c hl+1|u|l+1,Ω, (9.37)
‖Πh

1u− u‖0,Ω + h ‖Πh
1u− u‖1,Ω ≤ c hl+1|u|l+1,Ω. (9.38)

A family of partitions {Ωe}Ee=1 is called quasi-uniform if the family is
regular and there exists a constant τ > 0 such that

min1≤e≤E he

max1≤e≤E he
≥ τ.



10
Approximation of Variational
Problems

In this chapter we consider the approximation by the finite element method
of variational equations and inequalities. In Chapter 6 we have reviewed
some standard results for the well-posedness of variational equations and
inequalities. The results can also be applied to the corresponding discrete
problems over finite-dimensional spaces; in this way, we can then conclude
the well-posedness of the discretized variational equations and inequalities.
As we will see, Céa’s lemma (Theorem 10.1) reduces the task of estimating
finite element solution errors for an elliptic variational equation problem to
that of estimating approximation errors. For approximations of variational
inequalities, we will show results of the type of Céa’s lemma. Then an appli-
cation of the theory of finite element interpolation error estimates reviewed
in Chapter 9 provides order error estimates for finite element solutions of
variational equations and inequalities. Some references on finite element ap-
proximations of variational equations have been mentioned in Chapter 9.
For detailed accounts on numerical solutions of variational inequalities, the
reader may consult, among others, Glowinski, Lions, and Trémolières [45],
Glowinski [44], Kikuchi and Oden [70], Hlaváček, Haslinger, Nečas, and
Lov́ı̌sek [61], and, more recently, Haslinger, Hlaváček, and Nečas [57].
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10.1 Approximation of Elliptic Variational
Equations

Our discussion is given in the abstract framework found in the statement of
the Lax–Milgram lemma (Theorem 5.9). Let V be a real Hilbert space with
the norm ‖ · ‖. Let a(·, ·) be a bilinear form on V and � a linear functional
on V . The general form of a variational equation is then

u ∈ V, a(u, v) = 〈�, v〉 ∀ v ∈ V. (10.1)

Let V h ⊂ V be a finite element space. Then the corresponding finite
element problem is

uh ∈ V h, a(uh, vh) = 〈�, vh〉 ∀ vh ∈ V h. (10.2)

We have the following basic result about the discrete problem (10.2).

Theorem 10.1. Assume that the bilinear form a(·, ·) is V -elliptic,

∃α > 0, a(v, v) ≥ α ‖v‖2 ∀ v ∈ V, (10.3)

and is bounded,

∃M < ∞, |a(u, v)| ≤ M ‖u‖ ‖v‖ ∀u, v ∈ V. (10.4)

Assume that the linear functional � is continuous on V . Then both problems
(10.1) and (10.2) have unique solutions u and uh. Furthermore, for the
error u− uh, we have the inequality

‖u− uh‖ ≤ c inf
vh∈V h

‖u− vh‖. (10.5)

Proof. The existence and uniqueness for the problems (10.1) and (10.2)
follow from the Lax–Milgram lemma. We need only to prove the inequality
(10.5). Since V h ⊂ V , we have the following error relation from (10.1) and
(10.2):

a(u− uh, vh) = 0 ∀ vh ∈ V h.

Using the assumption (10.3), the error relation, and the assumption (10.4),
we have for any vh ∈ V h,

α ‖u− uh‖2 ≤ a(u− uh, u− uh)
= a(u− uh, u− vh)
≤ M ‖u− uh‖ ‖u− vh‖.

Thus,

‖u− uh‖ ≤ M

α
‖u− vh‖ ∀ vh ∈ V h.
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Therefore, (10.5) holds. �

The inequality (10.5) is known as Céa’s lemma in the literature. Such an
inequality was first proved by Céa [20] for the case where the bilinear form
is symmetric, and it was extended to the nonsymmetric case in Birkhoff,
Schultz, and Varga [12]. The inequality (10.5) shows that to estimate the
finite element solution error, it suffices to estimate the approximation error
infvh∈V h ‖u− vh‖.

For the rest of the section we combine Theorem 10.1 and the results on
finite element interpolation theory presented in Chapter 9 to derive error
estimates for finite element approximations of linear second-order elliptic
problems. Let V be a subspace of H1(Ω) (possibly V = H1(Ω)) and let
V h ⊂ V be a finite element space.

Theorem 10.2. Consider the variational form of a linear second-order
elliptic boundary value problem: Find u ∈ V such that

a(u, v) = 〈�, v〉 ∀ v ∈ V, (10.6)

where the bilinear form a(·, ·) is continuous and V -elliptic, and � is a linear
continuous form on V . Let V h ⊂ V be a finite element space consisting of
piecewise polynomials of degree less than or equal to k, and suppose that all
the assumptions of Corollary 9.6 hold. Then for the finite element solution
uh of (10.6), we have the following error estimate:

‖u− uh‖1,Ω ≤ c hk|u|k+1,Ω.

Proof. From (10.5) with vh = Πhu and (9.34) with m = 1 we obtain

‖u− uh‖1,Ω ≤ c ‖u− Πhu‖1,Ω ≤ c hk|u|k+1,Ω. �

It may happen in practice that the solution u is not smooth enough to
belong to Hk+1(Ω). For example, if we know from the theory of elliptic
boundary value problems that u is in H2(Ω) but not in H3(Ω), then the
use of piecewise quadratic finite element functions for a problem in R

2 will
mean that k = 2, or k + 1 = 3, and the seminorm |v|3,Ω in (9.34) does
not necessarily make sense. We overcome this problem by going back to
Section 9.3 and noting that the entire theory developed there still holds
if we replace k + 1 by r, and hence also k by r − 1, where r ≤ k + 1 is
any positive integer. Specifically, we do this in Theorems 9.3 and 9.5 and
in Corollary 9.6. Of course, r must be such that Hr(Ω̂) ↪→ C(Ω̂) (that is,
r > d/2 and r ≥ m). The estimate (9.30) then reads, for v ∈ Hr(Ωe),

‖v − Πev‖m,Ωe
≤ c hµ−m

e |v|µ,Ωe
, µ = min{k + 1, r}.

Correspondingly, the global interpolation error estimate (9.34) is changed
to

‖v − Πhv‖m,Ω ≤ c hµ−m|v|µ,Ω.
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In the context of the finite element approximation of a linear elliptic bound-
ary value problem of second order, if the solution u is in Hr(Ω) for some
r > 1, then

‖u− uh‖1,Ω ≤ c hµ−1|u|µ,Ω, µ = min{k + 1, r}. (10.7)

We mention that an estimate of the form (10.7) is still valid even if
we no longer require r (and hence µ) to be an integer. This extension is
made possible by employing the theory of interpolation of Banach spaces
and operators; for a comprehensive presentation of such an interpolation
theory, one may consult Bergh and Löfström [9].

We take one more step from the error estimate (10.7). As it stands,
the error bound involves the unknown quantity |u|µ,Ω on the right-hand
side. This dependence on u can be removed if regularity estimates for the
solution are available. Let l ≥ 0. If the boundary of the domain Ω and
the coefficients of the differential operator are smooth, and the boundary
condition does not change its type (from Dirichlet condition to Neumann
condition, or vice versa), then the solution u of a second-order elliptic
boundary value problem lies in H l+2(Ω), provided that the right-hand side
of the differential equation satisfies f ∈ H l(Ω) and the boundary condition
function satisfies g ∈ H l−1/2(∂Ω) for the Dirichlet type boundary condition
or g ∈ H l−3/2(∂Ω) for the Dirichlet type boundary condition. Furthermore,
for some constant c > 0,

‖u‖l+2,Ω ≤ c (‖f‖l,Ω + ‖g‖l̄,∂Ω), (10.8)

where, l̄ = l − 1
2 for a Dirichlet boundary value problem and l̄ = l −

3
2 for a Neumann boundary value problem. As an example, we consider
the boundary value problem with the homogeneous Dirichlet boundary
condition u = 0. The finite element theory developed here is applicable
only to polygonal domains (in R

2), but it is known that the estimate (10.8)
holds for a range of the values l, depending on the largest internal angle of
the polygon; for detail, see Grisvard [46]. We may set r = l + 2, and with
µ = min{k + 1, r}, since

|u|µ ≤ ‖u‖l+2 ≤ c ‖f‖l,

the dependence on |u|µ,Ω in (10.7) may be removed. One sample result is
the following.

Corollary 10.3. Let the conditions for Theorem 10.2 hold. Assume that
the coefficients of the partial differential equation are smooth. Assume that
Ω is a polygonal domain for which the regularity estimate (10.8) holds. Let
the right-hand side of the equation f ∈ H l(Ω) be given and the boundary
condition be u = 0. Then for some constant c,

‖u− uh‖1,Ω ≤ c hβ‖f‖l, (10.9)
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where β = min(k, l + 1).

According to Theorem 10.2 and Corollary 10.3, since the order of con-
vergence β is governed by the smaller of k and l + 1, when l ≤ k − 1, the
convergence order is governed by the smoothness of f . For example, if f is
only in L2(Ω) = H0(Ω), then it suffices to use linear finite elements.

Example 10.4. Consider the problem

− ∆u = f in Ω,
u = 0 on Γ,

where Ω ⊂ R
d is a polygonal domain. The corresponding variational for-

mulation is

u ∈ H1
0 (Ω),

∫
Ω
∇u · ∇u dx =

∫
Ω
f v dx ∀ v ∈ H1

0 (Ω),

and this problem has a unique solution. The discrete problem

uh ∈ V h,

∫
Ω
∇uh · ∇vh dx =

∫
Ω
f vh dx ∀ vh ∈ V h

also has a unique solution. Here V h ⊂ H1
0 (Ω) consists of piecewise polyno-

mials of degree less than or equal to k, corresponding to a regular triangu-
lation of the domain Ω. If f ∈ H l(Ω), l ≥ 0, and the regularity estimate
(10.8) holds (with g = 0), then the error is estimated by

‖u− uh‖1,Ω ≤ c hβ‖f‖l,Ω,

where β = min(k, l+1). Thus if linear elements (k = 1) are used, the error
is of order 1, since l + 1 will not be less than 1. �

10.2 Approximation of EVI of the First Kind

We first recall the general framework for elliptic variational inequalities
of the first kind. Let V be a real Hilbert space, and K ⊂ V nonempty,
convex, and closed. Assume that a(·, ·) is a V -elliptic and bounded bilinear
form on V and � a continuous linear functional on V . Then according to
Theorem 6.4, the elliptic variational inequality of the first kind

u ∈ K, a(u, v − u) ≥ 〈�, v − u〉 ∀ v ∈ K (10.10)

has a unique solution. Let V h ⊂ V be a finite element space, and let
Kh ⊂ V h be nonempty, convex, and closed. Then the finite element ap-
proximation of the problem (10.10) is

uh ∈ Kh, a(uh, vh − uh) ≥ 〈�, vh − uh〉 ∀ vh ∈ Kh. (10.11)
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Another application of Theorem 6.4 shows that the discrete problem (10.11)
has a unique solution under the stated assumptions on the given data.

A general convergence result of the finite element method can be found in
[44]. Here we are interested in order error estimation for the finite element
solution uh. We follow Falk [39] and first give an abstract error estimate.

Theorem 10.5. There is a constant c > 0 independent of h and u such
that

‖u− uh‖

≤ c
{

inf
vh∈Kh

[
‖u− vh‖ + |a(u, vh − u) − 〈�, vh − u〉|1/2

]
+ inf

v∈K
|a(u, v − uh) − 〈�, v − uh〉|1/2

}
. (10.12)

Proof. From (10.10) and (10.11), we find that

a(u, u) ≤ a(u, v) − 〈�, v − u〉 ∀ v ∈ K,

a(uh, uh) ≤ a(uh, vh) − 〈�, vh − uh〉 ∀ vh ∈ Kh.

Using these relations, together with the V -ellipticity and boundedness of
the bilinear form a(·, ·), we have for any v ∈ K and vh ∈ Kh,

α ‖u− uh‖2 ≤ a(u− uh, u− uh)
= a(u, u) + a(uh, uh) − a(u, uh) − a(uh, u)
≤ a(u, v − uh) − 〈�, v − uh〉 + a(u, vh − u) − 〈�, vh − u〉

+ a(uh − u, vh − u)
≤ a(u, v − uh) − 〈�, v − uh〉 + a(u, vh − u) − 〈�, vh − u〉

+ 1
2 α ‖u− uh‖2 + c ‖vh − u‖2.

Thus the inequality (10.12) holds. �

Theorem 10.5 is a generalization of Céa’s lemma to the finite element
approximation of elliptic variational inequalities of the first kind. Indeed,
the inequality (10.12) reduces to Céa’s inequality in the case of finite el-
ement approximation of a variational equation problem, because in this
case, K = V , Kh = V h, and V h ⊂ V , so

a(u, vh − u) − 〈�, vh − u〉 = 0

and

inf
v∈K

|a(u, v − uh) − 〈�, v − uh〉| = 0.

When Kh ⊂ K, we have the so-called internal approximation of the
elliptic variational inequality of the first kind. Since now uh ∈ K, the second
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term on the right-hand side of (10.12) vanishes, and the error inequality
(10.12) reduces to

‖u− uh‖ ≤ c inf
vh∈Kh

[
‖u− vh‖ + |a(u, vh − u) − 〈�, vh − u〉|1/2

]
.

Based on the inequality (10.12), it is then possible to derive order error
estimates for the approximation of some elliptic variational inequalities of
the first kind. For instance, for the obstacle problem mentioned in Section
6.2, it is shown in Falk [39] that if u, ψ ∈ H2(Ω) and if linear elements on
a regular mesh are used, then one has the optimal order error estimate

‖u− uh‖H1(Ω) ≤ c h

for some constant c > 0 independent of h.

10.3 Approximation of EVI of the Second Kind

As in Section 6.2, let V be a real Hilbert space, a(·, ·) a V -elliptic, bounded
bilinear form, � a linear continuous functional on V . Also, let j(·) be a
proper, convex, and l.s.c. functional on V . Under these assumptions, by
Theorem 6.6 there exists a unique solution of the elliptic variational in-
equality of the second kind,

u ∈ V, a(u, v − u) + j(v) − j(u) ≥ 〈�, v − u〉 ∀ v ∈ V. (10.13)

Let V h ⊂ V be a finite element space. Then the finite element approxi-
mation of the problem (10.13) is to find uh ∈ V h such that

a(uh, vh − uh) + j(vh) − j(uh) ≥ 〈�, vh − uh〉 ∀ vh ∈ V h. (10.14)

Assuming additionally that j(·) is proper also on V h, as is always the
case in applications, we can use Theorem 6.6 to conclude that the discrete
problem (10.14) has a unique solution uh and j(uh) ∈ R. We will now
derive an abstract error estimate for u− uh.

Theorem 10.6. There is a constant c > 0 independent of h and u such
that

‖u− uh‖
≤ c inf

vh∈V h

{
‖u− vh‖ + |a(u, vh − u) + j(vh) − j(u) − 〈�, vh − u〉|1/2

}
.

(10.15)

Proof. We let v = uh in (10.13) and add the resulting inequality to the
inequality (10.10) to obtain an error relation

a(u, uh − u) + a(uh, vh − uh) + j(vh) − j(u) ≥ 〈�, vh − u〉 ∀ vh ∈ V h.
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Using this error relation, together with the V -ellipticity and boundedness
of the bilinear form, we have for any vh ∈ V h,

α ‖u− uh‖2

≤ a(u− uh, u− uh)
= −a(u, uh − u) − a(uh, vh − uh) + a(uh − u, vh − u)

+ a(u, vh − u)
≤ a(u− uh, u− vh) + a(u, vh − u) + j(vh) − j(u) − 〈�, vh − u〉
≤ M ‖u− uh‖ ‖u− vh‖ + a(u, vh − u) + j(vh) − j(u) − 〈�, vh − u〉
≤ 1

2 α ‖u− uh‖2 + c ‖u− vh‖2

+ a(u, vh − u) + j(vh) − j(u) − 〈�, vh − u〉,

from which it is easy to see that (10.15) holds. �

We observe that Theorem 10.6 is a generalization of Céa’s lemma to
the finite element approximation of elliptic variational inequalities of the
second kind. The inequality (10.15) is the basis for order error estimates of
finite element solutions of various application problems.

Let us apply the inequality (10.15) to derive an error estimate for some
finite element solution of a model problem. Let Ω ⊂ R

2 be an open bounded
set, with a Lipschitz domain ∂Ω. We take

V = H1(Ω),

a(u, v) =
∫

Ω
(∇u∇v + u v) dx,

〈�, v〉 =
∫

Ω
f v dx,

j(v) = g

∫
∂Ω

|v| ds.

Here f ∈ L2(Ω) and g > 0 are given. This problem is a simplified version
of the friction problem in elasticity. We choose this model problem for its
simplicity, while at the same time it contains the main feature of an elliptic
variational inequality of the second kind. Applying Theorem 6.6, we see
that the corresponding variational inequality problem

u ∈ V, a(u, v − u) + j(v) − j(u) ≥ 〈�, v − u〉 ∀ v ∈ V (10.16)

has a unique solution. Given a finite element space V h, let uh denote the
corresponding finite element solution defined in (10.14). To simplify the
exposition, we will assume below that Ω is a polygonal domain and write
∂Ω = ∪i0

i=1Γi, where each Γi is a line segment. For an error estimation, we
have the following result.

Theorem 10.7. Assume, for the model problem, that u ∈ H2(Ω), and for
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each i, u|Γi
∈ H2(Γi). Let V h be a piecewise linear finite element space

constructed from a regular partition of the domain Ω. Let uh ∈ V h be the
finite element solution defined by (10.14). Then we have the optimal order
error estimate

‖u− uh‖H1(Ω) ≤ c(u)h. (10.17)

Proof. We apply the result of Theorem 10.6:

a(u, vh − u) + j(vh) − j(u) − 〈�, vh − u〉

=
∫
∂Ω

[∂u
∂n

(vh − u) + g
(
|vh| − |u|

)]
ds

+
∫

Ω
(−∆u + u− f) (vh − u) dx

≤
(∥∥∥∂u

∂n

∥∥∥
L2(∂Ω)

+ g
√

meas (∂Ω)
)
‖vh − u‖L2(∂Ω)

+ ‖ − ∆u + u− f‖L2(Ω)‖vh − u‖L2(Ω),

where, ∂/∂n is the normal derivative operator on ∂Ω. Using (10.15), we
get

‖u− uh‖H1(Ω)

≤ c(u) inf
vh∈V h

{
‖u− vh‖H1(Ω) + ‖u− vh‖1/2

L2(∂Ω) + ‖u− vh‖1/2
L2(Ω)

}
≤ c(u)

{
‖u− Πhu‖H1(Ω) + ‖u− Πhu‖1/2

L2(∂Ω) + ‖u− Πhu‖1/2
L2(Ω)

}
,

where Πhu ∈ V h is the piecewise linear interpolant of u. From the regularity
assumptions on u, we have

‖u− Πhu‖H1(Ω) ≤ c h |u|H2(Ω),

‖u− Πhu‖L2(∂Ω) ≤ c h2 |u|H2(∂Ω),

‖u− Πhu‖L2(Ω) ≤ c h2 |u|H2(Ω),

using Theorem 9.8. Therefore, the error estimate (10.17) holds. �

Let us return to the general case. A major issue in solving the discrete sys-
tem (10.14) is the treatment of the nondifferentiable term. In practice, sev-
eral approaches can be used, e.g., regularization technique, method of La-
grangian multipliers. Here we study the approach by approximating j(vh)
with jh(vh), obtained through numerical integrations. Then the numerical
method is to find uh ∈ V h such that

a(uh, vh − uh) + jh(vh) − jh(uh) ≥ 〈�, vh − uh〉 ∀ vh ∈ V h. (10.18)

The following convergence theorem is proved in [44, 45].
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Theorem 10.8. Assume that {V h}h ⊂ V is a family of finite-dimensional
subspaces such that for a dense subset U of V one can define mappings
rh : U → V h with limh→0 rhv = v in V , for any v ∈ U . Assume that
jh is convex, l.s.c., and uniformly proper in h, and if vh ⇀ v in V , then
lim infh→0 jh(vh) ≥ j(v). Finally, assume limh→0 jh(rhv) = j(v) for any
v ∈ U . Then for the solution of (10.18), we have the convergence

lim
h→0

‖u− uh‖ = 0.

In the above theorem, the functional family {jh}h is said to be uniformly
proper in h if there exist �0 ∈ V ′ and c0 ∈ R such that

jh(vh) ≥ 〈�0, vh〉 + c0 ∀ vh ∈ V h, ∀h.

This theorem gives some rather general assumptions under which one has
the convergence of the finite element solutions. However, it does not pro-
vide information on the convergence order of the approximations. In the
following, we prove an inequality of the form (10.15).

Theorem 10.9. Assume that

j(vh) ≤ jh(vh) ∀ vh ∈ V h. (10.19)

Let uh be defined by (10.18). Then

‖u− uh‖
≤ c inf

vh∈V h

{
‖u− vh‖ + |a(u, vh − u) + jh(vh) − j(u) − 〈�, vh − u〉|1/2

}
.

(10.20)

Proof. Choosing v = uh in (10.13) and adding the resulting inequality
to (10.18), we obtain, for any vh ∈ V h,

a(u, uh − u) + a(uh, vh − uh) + j(uh) − jh(uh) + jh(vh) − j(u)
≥ 〈�, vh − u〉.

Using the assumption (10.19) for vh = uh, we then have

a(u, uh − u) + a(uh, vh − uh) + jh(vh) − j(u) ≥ 〈�, vh − u〉 ∀ vh ∈ V h.

The rest of the argument is similar to that in the proof of Theorem 10.6
and is hence omitted. �

Let us now comment on the assumption (10.19). In some applications,
the functional j(·) is of the form j(v) = I(g |v|) in which I is an integra-
tion operator and g ≥ 0 a given nonnegative function. One method for
constructing practically useful approximate functionals jh is through nu-
merical quadrature, where jh(vh) = Ih(g |vh|), Ih denoting a numerical
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integration operator. Let {φi}i be the set of functions chosen from a basis
of the space V h, which defines the functions vh over the integration region.
Assume that the basis functions {φi}i are nonnegative. Writing

vh =
∑
i

viφi

on the integration region, we define

jh(vh) =
∑
i

|vi| I(g φi). (10.21)

Obviously, jh constructed in this way enjoys the property (10.19). We
will see next in the analysis for solving the model problem that a cer-
tain polynomial invariance property is preserved through a construction of
the form (10.21). Such a property is needed in proving optimal order error
estimates.

Let us again consider the model problem. Assume that we use linear
elements to construct the finite element space V h. Denote by {Pi} the nodes
of the triangulation that lie on the boundary, numbered consecutively. Let
{φi} be the canonical basis functions of the space V h, corresponding to the
nodes {Pi}. Then φi ≥ 0. Thus we define

jh(vh) = g
∑
i

|PiPi+1|
1
2
(
|vh(Pi)| + |vh(Pi+1)|

)
. (10.22)

Assume u ∈ H2(Ω). By Theorem 10.9, the finite element solution error
satisfies

‖u− uh‖H1(Ω) ≤ c
{
‖u− Πhu‖H1(Ω)

+ |a(u,Πhu− u) + jh(Πhu) − j(u) − 〈�,Πhu− u〉|1/2
}
,

(10.23)

where Πhu ∈ V h is the piecewise linear interpolant of the solution u. Let
us first estimate the difference jh(Πhu) − j(u). We have

jh(Πhu) − j(u)

= g
∑
i

{1
2
|PiPi+1| (|u(Pi)| + |u(Pi+1)|) −

∫
PiPi+1

|u| ds
}
. (10.24)
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Now, if u|PiPi+1
keeps the same sign, then∣∣∣ 1

2
|PiPi+1| (|u(Pi)| + |u(Pi+1)|) −

∫
PiPi+1

|u| ds
∣∣∣

=
∣∣∣ 1
2
|PiPi+1| (u(Pi) + u(Pi+1)) −

∫
PiPi+1

u ds
∣∣∣

=
∣∣∣ ∫

PiPi+1

(u− Πhu) ds
∣∣∣

≤
∫
PiPi+1

|u− Πhu| ds.

Assume that u|PiPi+1
changes its sign. It is easy to see that

sup
PiPi+1

|u| ≤ h ‖u‖W 1,∞(PiPi+1)

if u|PiPi+1
∈ W 1,∞(PiPi+1), which is implied by u|Γi

∈ H2(Γi), i =
1, . . . , i0, an assumption made in Theorem 10.7. Thus,∣∣∣ 1

2
|PiPi+1| (|u(Pi)| + |u(Pi+1)|) −

∫
PiPi+1

|u| ds
∣∣∣ ≤ c h2‖u‖W 1,∞(PiPi+1).

Therefore, if the exact solution u changes its sign only finitely many times
on ∂Ω, then from (10.24) we find that

|jh(Πhu) − j(u)| ≤ c h2
i0∑
i=1

‖u‖W 1,∞(Γi) + c ‖u− Πhu‖L1(∂Ω).

Using (10.23), we then get

‖u− uh‖H1(Ω) ≤ c
{
‖u− Πhu‖H1(Ω) +

∥∥∥∂u
∂n

∥∥∥
L2(∂Ω)

‖u− Πhu‖L2(∂Ω)

+ h [
i0∑
i=1

‖u‖W 1,∞(Γi)]
1/2 + ‖u− Πhu‖1/2

L1(∂Ω)

+ ‖ − ∆u + u− f‖L2(Ω)‖u− Πhu‖L2(Ω)

}
.

In conclusion, if u ∈ H2(Ω), u|Γi
∈ W 1,∞(Γi) for i = 1, . . . , i0, and

if u|∂Ω changes its sign only finitely many times, then we have the error
estimate

‖u− uh‖H1(Ω) ≤ c(u)h;

that is, the approximation of j by jh does not cause a degradation in the
convergence order of the finite element method.
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Remark. If f ∈ L2(Ω), then u ∈ H1+α(Ω) for some α ∈ [ 12 , 1]. It is shown
in [45] that for the finite element solution defined by (10.18) and (10.22),
the estimate

‖u− uh‖H1(Ω) ≤ c(‖f‖L2(Ω), g, ε)hmin{1/2,(α−ε)/(1−ε)}

holds for arbitrarily small ε > 0. �

If quadratic elements are used, one can construct basis functions by using
nodal shape functions and side modes (cf. [121]). Then the basis functions
are nonnegative, and an error analysis similar to the above one can be done.

10.4 Approximation of Parabolic Variational
Inequalities

The work on numerical analysis of parabolic variational inequalities is not
as abundant as that for solving elliptic variational inequalities. In [45], one
can find a detailed convergence analysis for some standard fully discrete
approximations (finite difference discretization in time and finite element
discretization in space) of the parabolic variational inequality (6.45). It is
a delicate matter to derive order error estimates for numerical solutions
if only proved solution regularity is used in derivation. To describe such
an example, let us turn to the problem setting that appears in Theorem
6.9 and to order error estimates for some numerical approximations of the
problem.

First, we give a result for fully discrete approximations, due to Johnson
[68]. We discretize the time interval I = [0, T ] into N equal parts and denote
the step-size by k = T/N and the nodal points by tn = nk, n = 0, 1, . . . , N .
Let h ∈ (0, 1] denote the mesh parameter in a finite element triangulation
of the domain Ω. Let {V h} be a family of finite-dimensional subspaces of
V , and assume that Kh = V h ∩K is nonempty. Then Kh is a nonempty,
closed, convex subset of V h. A fully discrete approximation of the problem
in Theorem 6.9 based on a backward difference approximation of the time
derivative is the following: Find uhk = {uhk

n }Nn=0 ⊂ V h such that uhk
0 is an

approximation of the initial value u0 in the sense that

‖uhk
0 − u0‖0 ≤ c h,

and such that for n = 1, 2, . . . , N ,

(δuhk
n , vh − uhk

n ) + a(uhk
n , vh − uhk

n ) ≥ 〈fn, vh − uhk
n 〉 ∀ vh ∈ Kh.

(10.25)

Recall that the solution of the continuous problem has the regularity given
in Theorem 6.9. Under the assumption that the solution u does not change
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too frequently from zero to positive values or vice versa (for the exact
meaning of this, cf. [68]), it is proved in [68] that there exists a constant c
independent of k and h such that

max
n

‖un − uhk
n ‖0 +

(
N∑

n=1

‖un − uhk
n ‖2

V k

)1/2

≤ c [(log k−1)1/4k3/4 + h].

(10.26)

An extension of this result to the case in which a generalized midpoint
approximation is considered is given by Vuik [126]. Instead of (10.25), one
solves the following problem for uhk

n :

(δuhk
n , vh − uhk

n ) + a(uhk
n−1+θ, v

h − uhk
n ) ≥ 〈fn, vh − uhk

n 〉 ∀ vh ∈ Kh.
(10.27)

Here vn−1+θ = vn−1 + θ(vn − vn−1) with θ ∈ (0, 1]. The error estimation is
rather technical and will not be repeated in full detail; instead, we point out
that the error estimate essentially differs from (10.26) in that the constant
c is replaced by c(g(µ))−1/2, in which g(µ) = min{4µ−1+2θ, 2µ− 1

2 + 3
2θ}

and µ is a constant that lies in ((1 − 2θ)/4, (1 − θ)/2] ∩ [0, c h2/k]. Under
stronger regularity conditions on the data, the estimate can be improved
to one of O(k + h).

One distinction between the convergence results for parabolic varia-
tional inequalities and equations is evident if one compares the results
for parabolic equations obtained by Douglas and Dupont [31] with those
of Vuik [126]; this concerns the order of convergence associated with the
Crank–Nicolson scheme, which corresponds to (10.27) with θ = 1

2 . It is
well known that the Crank–Nicolson scheme leads to convergence of O(k2)
when parabolic equations are approximated. In the case of variational in-
equalities, however, the lack of regularity of the solution precludes a similar
result, so that the estimate for the case θ = 1

2 cannot be improved beyond
one of the type (10.26).
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Approximations of the Abstract
Problem

As a prelude to the error analysis of various numerical schemes for solving
the primal variational problem, we will first give a convergence analysis
and derive error estimates for numerical solutions of the abstract problem,
introduced in Chapter 7, which includes the primal variational problem as
a special case. In the next chapter, we will apply the results presented here
to perform an error analysis for various numerical approximation schemes
for solving the primal problem. For convenience, let us recall the abstract
problem.

Problem Abs. Find w : [0, T ] → H, w(0) = 0, such that for almost all
t ∈ (0, T ), ẇ(t) ∈ K and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t), z − ẇ(t)〉 ∀ z ∈ K. (11.1)

Under the assumptions that

• H is a Hilbert space

• K ⊂ H is a nonempty, closed, convex cone

• a : H × H → R is a bilinear form on H, symmetric, bounded and
H-elliptic

• � ∈ H1(0, T ;H ′), �(0) = 0

• j : K → R is nonnegative, convex, positively homogeneous, and Lip-
schitz continuous
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we have the existence of a unique solution w ∈ H1(0, T ;H) of the problem
Abs. For convenience, later on we will refer to these assumptions as the
standard assumptions for the problem Abs. In this chapter we will always
assume that these standard assumptions hold. We also recall that there
exists w∗ ∈ H1(0, T ;H ′) such that

a(w(t), z) + 〈w∗(t), z〉 = 〈�(t), z〉 ∀ z ∈ H. (11.2)

In the first three sections of the chapter we will derive error estimates
for spatially discrete, time-discrete, and fully discrete approximations of the
abstract problem. Order error estimates are obtained under the assump-
tion that the solution of the problem is sufficiently regular. Notice that a
regularity theory for the elastoplasticity problem is largely not available at
the moment, and it is likely that the solution of the abstract variational
problem does not have the high regularity required for the various order
error estimates. Thus it is of interest to see whether we still have conver-
gence of the numerical solutions under the basic solution regularity proved
in Chapter 7. Such a convergence analysis is carried out in Section 11.4.

The following elementary result result will be used repeatedly:

a, b, x ≥ 0 and x2 ≤ a x + b =⇒ x2 ≤ a2 + 2 b. (11.3)

11.1 Spatially Discrete Approximations

We consider discrete internal approximations of the abstract problem Abs,
in which H is replaced by a family of finite-dimensional subspaces {Hh},
and correspondingly, the set K is replaced by a family of finite-dimensional
subsets {Kh}. The approximations are referred to as internal because of
the properties Hh ⊂ H and Kh ⊂ K. The subspaces {Hh} are intended
to be finite element spaces, though much of the analysis applies to more
general situations.

Let {Hh} be a family of finite-dimensional subspaces of H, with the
property that

lim
h→0

inf
zh∈Hh

‖z − zh‖H = 0 ∀ z ∈ H. (11.4)

Set Kh = Hh ∩ K, which is nonempty, since 0 ∈ Kh. Then a spatially
discrete internal approximation of Problem Abs is

Problem Absh. Find wh : [0, T ] → Hh, wh(0) = 0, such that for almost
all t ∈ (0, T ), ẇh(t) ∈ Kh and

a(wh(t), zh − ẇh(t)) + j(zh) − j(ẇh(t)) ≥ 〈�(t), zh − ẇh(t)〉 ∀ zh ∈ Kh.
(11.5)
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We note that for any given h, Kh is a nonempty, closed, convex cone in
Hh. Thus, the existence of a unique solution wh to Problem Absh follows
from Theorem 7.3 with H and K replaced by Hh and Kh, respectively.
We also note from Theorem 7.3 that wh ∈ H1(0, T ;H). This regularity
result implies that wh ∈ C([0, T ];H); in particular, the value wh(0) is
well-defined. From Theorem 7.4 we have the stability estimate

‖w(1)h − w(2)h‖L∞(0,T ;H) ≤ c ‖�̇(1) − �̇(2)‖L1(0,T ;H′),

for semidiscrete solutions w(1)h and w(2)h corresponding to two right-hand
sides �(1), �(2) ∈ H1(0, T ;H ′) with �(1)(0) = �(2)(0) = 0.

The main purpose of the section is to give an estimate for the semidiscrete
approximation error w − wh. For convenience we will use the notation

‖w‖2
a = a(w,w).

Note that ‖ · ‖a is a norm on H, equivalent to ‖ · ‖H .
We begin by setting z = ẇh(t) ∈ K in (11.1) to obtain

a(w(t), ẇh(t) − ẇ(t)) + j(ẇh(t)) − j(ẇ(t)) ≥ 〈�(t), ẇh(t) − ẇ(t)〉. (11.6)

We now add (11.6) to (11.5) and obtain

a(w(t), ẇh(t) − ẇ(t)) + a(wh(t), zh − ẇh(t)) + j(zh) − j(ẇ(t))
≥ 〈�(t), zh − ẇ(t)〉. (11.7)

Using (11.7), Theorem 7.3, (7.34), and (7.36), we have, for any zh ∈ Kh,

1
2

d

dt
‖w(t) − wh(t)‖2

a

= a(w(t) − wh(t), ẇ(t) − ẇh(t))
= a(w(t) − wh(t), ẇ(t) − zh) + a(w(t) − wh(t), zh − ẇh(t))
≤ a(w(t) − wh(t), ẇ(t) − zh) + a(w(t), zh − ẇh(t))

+ a(w(t), ẇh(t) − ẇ(t)) + j(zh) − j(ẇ(t)) − 〈�(t), zh − ẇ(t)〉
= a(w(t) − wh(t), ẇ(t) − zh) + j(zh) − j(ẇ(t))
− 〈w∗(t), zh − ẇ(t)〉

≤ a(w(t) − wh(t), ẇ(t) − zh) + j(zh) − j(ẇ(t)) + j(ẇ(t) − zh),

where in the last step we used (7.36), which in turn is derived using the
positive homogeneity of j(·). Alternatively, we have the regularity estimate
(7.48). Thus, we have w∗ ∈ C([0, T ];H ′), and

−〈w∗(t), zh − ẇ(t)〉 ≤ c ‖zh − ẇ(t)‖H ,

which can be used in deriving (11.8) below. Now, using the Lipschitz con-
tinuity of j(·), we find that for any zh ∈ Kh,

1
2

d

dt
‖w(t) − wh(t)‖2

a ≤ a(w(t) − wh(t), ẇ(t) − zh) + c ‖zh − ẇ(t)‖H .

(11.8)
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Since

a(w(t) − wh(t), ẇ(t) − zh)
≤ a(w(t) − wh(t), w(t) − wh(t))1/2a(ẇ(t) − zh, ẇ(t) − zh)1/2

≤ c
(
‖w(t) − wh(t)‖2

a + ‖ẇ(t) − zh‖2
H

)
,

from (11.8) we find that for any zh = zh(t) ∈ Kh,

d

dt
‖w(t) − wh(t)‖2

a

≤ c
(
‖w(t) − wh(t)‖2

a + ‖ẇ(t) − zh(t)‖2
H + ‖ẇ(t) − zh(t)‖H

)
.(11.9)

We multiply the inequality (11.9) by e−ct and integrate from 0 to t to
obtain

‖w(t) − wh(t)‖2
a ≤ c ect

∫ t

0
e−cs

(
‖ẇ(s) − zh(s)‖2

H + ‖ẇ(s) − zh(s)‖H
)
ds.

This in turn leads to the Céa-type inequality

‖w − wh‖L∞(0,T ;H) ≤ c inf
zh∈L2(0,T ;Kh)

‖ẇ − zh‖1/2
L2(0,T ;H). (11.10)

Theorem 11.1. Suppose the standard assumptions on H, K, a, �, and j
are satisfied. Assume that Hh is a finite-dimensional subspace of H, and
Kh = Hh∩K. Let w ∈ H1(0, T ;H) and wh ∈ H1(0, T ;H) be the solutions
of the problems Abs and Absh, respectively. Then the estimate (11.10)
holds.

The inequality (11.10) is the basis for various asymptotic error estimates.

11.2 Time-Discrete Approximations

We now turn to the analysis of another type of semidiscrete scheme, which
is obtained by discretizing the time domain. One such scheme has already
been seen in Section 7.1, where time-discretization was used as a first stage
in proving the existence result. Our aim in this section is to derive error
estimates for such semidiscrete approximate solutions, and this will be done
for a family of time-discrete schemes that result from approximating the
time derivative by generalized midpoint rules. Extensive work has been
carried out, both in the context of plasticity and in more general settings,
on the stability of generalized midpoint and related schemes. Further details
may be found in the survey works Simo [114] (in the context of plasticity)
and Stuart and Humphries [120] (in a more general context, but pertaining
only to ordinary differential equations).



11.2 Time-Discrete Approximations 241

As in Section 7.1, we divide the time interval [0, T ] into N equal subin-
tervals with node points tn = nk, 0 ≤ n ≤ N , where k = T/N is the
step-size. For the given linear functional � ∈ H1(0, T ;H ′) and the solution
w ∈ H1(0, T ;H), we use the notation �n = �(tn) and wn = w(tn), which
are well-defined. The symbol ∆wn is used to denote the backward differ-
ence wn − wn−1, and δwn = ∆wn/k for the backward divided difference.
In this and later sections, no summation is implied over the repeated index
n.

Let θ ∈
[ 1
2 , 1

]
be a parameter. The reason we restrict the value of θ to

be in
[ 1
2 , 1

]
is explained in the remark at the end of the section. A family

of generalized midpoint time-discrete approximations of the problem Abs
is now introduced.

Problem Absk. Find wk = {wk
n}Nn=0 ⊂ H, wk

0 = 0, such that for n =
1, . . . , N , δwk

n ∈ K and

a(θ wk
n + (1 − θ)wk

n−1, z − δwk
n) + j(z) − j(δwk

n)

≥ 〈�n−1+θ, z − δwk
n〉 ∀ z ∈ K. (11.11)

Here, �n−1+θ = �(tn−1+θ), and tn−1+θ = (n− 1+ θ) k = θ tn +(1− θ) tn−1.
For simplicity in writing, we will not explicitly exhibit the dependence

on θ of the solution wk.
In (11.11) we can replace δwk

n by ∆wk
n using the positive homogeneity

of j. An equivalent way of writing (11.11) is therefore

θ a(∆wk
n, z − ∆wk

n) + j(z) − j(∆wk
n)

≥ 〈�n−1+θ, z − ∆wk
n〉 − a(wk

n−1, z − ∆wk
n) ∀ z ∈ K. (11.12)

Then we can prove the existence of a unique solution of the problem Absk

using a procedure similar to that employed in the proof of Lemma 7.1.
We now derive an error estimate for the approximation Absk. Set en =

wn −wk
n, 0 ≤ n ≤ N , for the approximation errors. We recall that ‖w‖a =

a(w,w)1/2 defines a norm on H, equivalent to ‖w‖H . Consider the quantity

An = a(θ en + (1 − θ) en−1, δen). (11.13)

First we have

An =
1
k

[θ a(en, en) − (2θ − 1) a(en, en−1) − (1 − θ) a(en−1, en−1)]

≥ 1
k

[
θ ‖en‖2

a − (2θ − 1) ‖en‖a‖en−1‖a − (1 − θ) ‖en−1‖2
a

]
≥ 1

k

[
θ ‖en‖2

a − (2θ − 1) 1
2 (‖en‖2

a + ‖en−1‖2
a) − (1 − θ) ‖en−1‖2

a

]
.

So we have the lower bound

An ≥ 1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
. (11.14)
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Next, we derive an upper bound for An. We notice that An can be
expressed as

a(θ wn + (1 − θ)wn−1, δwn − δwk
n) − a(θ wk

n + (1 − θ)wk
n−1, δwn − δwk

n).

We use (11.11) with z = δwn for the second term on the right-hand side of
the above inequality to obtain

An ≤ a(θ wn + (1 − θ)wn−1, δwn − δwk
n)

+ j(δwn) − j(δwk
n) − 〈�n−1+θ, δwn − δwk

n〉. (11.15)

From (11.1) with z = δwk
n at t = tn−1+θ, we get

0 ≤ a(wn−1+θ, δw
k
n − ẇn−1+θ)

+ j(δwk
n) − j(ẇn−1+θ) − 〈�n−1+θ, δw

k
n − ẇn−1+θ〉,

which is added to (11.15) to yield

An ≤ a(θ wn + (1 − θ)wn−1, δwn − δwk
n) + a(wn−1+θ, δw

k
n − ẇn−1+θ)

+ j(δwn) − j(ẇn−1+θ) − 〈�n−1+θ, δwn − ẇn−1+θ〉.

After some elementary manipulation we arrive at the upper bound

An ≤ a(En,θ(w), δen) + a(wn−1+θ, δwn − ẇn−1+θ)
+ j(δwn) − j(ẇn−1+θ) − 〈�n−1+θ, δwn − ẇn−1+θ〉 (11.16)

for An, where

En,θ(w) = θ wn + (1 − θ)wn−1 − wn−1+θ. (11.17)

Combining the bounds (11.14) and (11.16), and using the Lipschitz con-
tinuity of j(·), we get

1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
≤ 1

k
a(En,θ(w), en − en−1) + c ‖δwn − ẇn−1+θ‖H ,

that is,

‖en‖2
a − ‖en−1‖2

a ≤ 2 a(En,θ(w), en − en−1) + c k ‖δwn − ẇn−1+θ‖H .
(11.18)

Set

M = max
n

‖en‖a.
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Since e0 = 0, a mathematical induction based on (11.18) reveals that for
n = 1, . . . , N ,

‖en‖2
a ≤ 2

n∑
j=1

a(Ej,θ(w), ej − ej−1) + c k
n∑

j=1

‖δwj − ẇj−1+θ‖H

= 2 a(En,θ(w), en) + 2
n−1∑
j=1

a(Ej,θ(w) − Ej+1,θ(w), ej)

+ c k

n∑
j=1

‖δwj − ẇj−1+θ‖H

≤ c ‖En,θ(w)‖HM + c
n−1∑
j=1

‖Ej,θ(w) − Ej+1,θ(w)‖HM

+ c k

n∑
j=1

‖δwj − ẇj−1+θ‖H .

Hence,

M2 ≤ c
(
‖EN,θ(w)‖H +

N−1∑
j=1

‖Ej,θ(w) − Ej+1,θ(w)‖H
)
M

+ c k

N∑
j=1

‖δwj − ẇj−1+θ‖H . (11.19)

We then apply (11.3) to find that

M2 ≤ c
(
‖EN,θ(w)‖H +

N−1∑
j=1

‖Ej,θ(w) − Ej+1,θ(w)‖H
)2

+ c k
N∑
j=1

‖δwj − ẇj−1+θ‖H ,

or

max
n

‖wn − wk
n‖H

≤ c
(
‖EN,θ(w)‖H +

N−1∑
j=1

‖Ej,θ(w) − Ej+1,θ(w)‖H
)

+ c
{
k

N∑
j=1

‖δwj − ẇj−1+θ‖H
}1/2

. (11.20)

To proceed further, we need to estimate each term on the right-hand side
of (11.20). We have the following lemmas.
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Lemma 11.2. Under the assumption ẅ ∈ L1(0, T ;H), we have

‖En,θ(w)‖H ≤ 2 θ (1 − θ) k ‖ẅ‖L1(tn−1,tn;H).

If we further assume that ẅ ∈ L∞(0, T ;H), then

‖En,θ(w)‖H ≤ θ (1 − θ)
2

k2‖ẅ‖L∞(0,T ;H).

Proof. We use the Taylor expansions of w about tn−1+θ:

wn =wn−1+θ + (1 − θ) k ẇn−1+θ +
∫ tn

tn−1+θ

(tn − t) ẅ(t) dt, (11.21)

wn−1 =wn−1+θ − θ k ẇn−1+θ +
∫ tn−1

tn−1+θ

(tn−1 − t) ẅ(t) dt. (11.22)

Hence

En,θ(w) =
∫ tn

tn−1+θ

θ (tn − t) ẅ(t) dt +
∫ tn−1+θ

tn−1

(1 − θ) (t− tn−1) ẅ(t) dt,

and the results follow. �

Lemma 11.3. Under the assumption ẅ ∈ L1(0, T ;H), we have

‖En,θ(w) − En+1,θ(w)‖H ≤ c k ‖ẅ‖L1(tn−1,tn+1;H).

If we further assume that w(3) ∈ L1(0, T ;H), then

‖En,θ(w) − En+1,θ(w)‖H ≤ c k2‖w(3)‖L1(tn−1,tn+1;H).

Proof. The first result follows from Lemma 11.2. To prove the second
result, we again use Taylor expansions of w about tn−1+θ, this time with
one more term, that is,

wn = wn−1+θ + (1 − θ) k ẇn−1+θ +
(1 − θ)2

2
k2ẅn−1+θ

+
1
2

∫ tn

tn−1+θ

(tn − t)2 w(3)(t) dt (11.23)

and

wn−1 = wn−1+θ − θ k ẇn−1+θ +
θ2

2
k2ẅn−1+θ

+
1
2

∫ tn−1

tn−1+θ

(tn−1 − t)2 w(3)(t) dt. (11.24)
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Then

En,θ(w) =
θ (1 − θ)

2
k2ẅn−1+θ +

θ

2

∫ tn

tn−1+θ

(tn − t)2 w(3)(t) dt

+
1 − θ

2

∫ tn−1

tn−1+θ

(tn−1 − t)2 w(3)(t) dt.

Thus

En,θ(w) − En+1,θ(w)

=
θ (1 − θ)

2
k2 (ẅn−1+θ − ẅn+θ)

+
1
2

[ ∫ tn

tn−1+θ

θ (tn − t)2 w(3)(t) dt

−
∫ tn−1+θ

tn−1

(1 − θ) (t− tn−1)2 w(3)(t) dt
]

− 1
2

[ ∫ tn+1

tn+θ

θ (tn+1 − t)2 w(3)(t) dt

−
∫ tn+θ

tn

(1 − θ) (t− tn)2 w(3)(t) dt
]
,

and the estimate follows. �

Lemma 11.4. Assume that ẅ ∈ L1(0, T ;H). Then

‖δwn − ẇn−1+θ‖H ≤ ‖ẅ‖L1(tn−1,tn;H).

Furthermore, if w(3) ∈ L1(0, T ;H), then

‖δwn − ẇn−1/2‖H ≤ k

8
‖w(3)‖L1(tn−1,tn;H).

Proof. The first inequality follows from (11.21) and (11.22), while the
second follows from (11.23) and (11.24). �

From (11.20) and Lemmas 11.2, 11.3, and 11.4, we obtain the following
result.

Theorem 11.5. Suppose the standard assumptions on H, K, a, �, and j
are satisfied. Let w ∈ H1(0, T ;H) and wk be the solutions of the problems
Abs and Absk, respectively. Then if ẅ ∈ L∞(0, T ;H), we have

max
n

‖wn − wk
n‖H ≤ c

√
k, (11.25)

and, if θ = 1
2 and w(3) ∈ L1(0, T ;H), we have

max
n

‖wn − wk
n‖H ≤ c k. (11.26)
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We note that the estimates (11.25) and (11.26) are probably not of op-
timal order, in that the expected error bounds should be c k and c k2,
respectively, for the two cases.

Remark. In the foregoing discussion, the parameter θ is restricted to be
in

[ 1
2 , 1

]
. Let us see whether it is feasible to use other values of θ in the

scheme (11.11). The choice θ > 1 is not good, for one will have to use a
value of � outside the time interval [0, T ]. Obviously, θ = 0 cannot be used,
for then the scheme (11.11) is meaningless. The scheme corresponding to
0 �= θ < 1

2 should never be used, for it is then unstable and would lead to
meaningless numerical results in practical computations. To see this, let us
consider the extreme case when j = 0 and K = H. Then the continuous
problem is to find w, w(0) = 0, such that at any time t ∈ [0, T ],

a(w(t), z) = 〈�(t), z〉 ∀ z ∈ H,

and the time-discrete approximation is wk
0 = 0, and for n = 1, . . . , N ,

a(θ wk
n + (1 − θ)wk

n−1, z) = 〈�n−1+θ, z〉 ∀ z ∈ H.

Now consider a perturbed problem for wk: ŵk
0 = ε, and for n = 1, . . . , N ,

a(θ ŵk
n + (1 − θ) ŵk

n−1, z) = 〈�n−1+θ, z〉 ∀ z ∈ H.

For the difference en = ŵk
n − wk

n we have e0 = ε and for n = 1, . . . , N ,

a(θ ekn + (1 − θ) ekn−1, z) = 0 ∀ z ∈ H.

Thus, for n ≥ 1,

en = −1 − θ

θ
en−1,

and as a consequence,

en = (−1)n
(

1 − θ

θ

)n

e0 = (−1)n
(

1 − θ

θ

)n

ε.

Since 0 �= θ < 1
2 , it follows that |(1−θ)/θ| > 1. Therefore, a small perturba-

tion in the initial value may cause arbitrarily large errors in the numerical
approximation.

11.3 Fully Discrete Approximations

From the point of view of applications, it is more important to consider
fully discrete approximations, where the temporal and spatial variables
are simultaneously discretized. As before, we divide the time interval I =
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[0, T ] into N equal parts and denote the step-size by k = T/N , the nodal
points by tn = nk, n = 0, 1, . . . , N , and subintervals by In = [tn−1, tn],
n = 1, 2, . . . , N . Again we use h ∈ (0, 1] for the mesh parameter of a
triangulation of the domain Ω. Let {Hh} be a family of finite-dimensional
subspaces of H, and let Kh = Hh ∩K. As is noted in Section 11.1, Kh is
a nonempty, closed, convex cone in Hh, and in H as well. Let θ ∈ [12 , 1] be
a parameter. The family of fully discrete approximation schemes that we
will analyze in this section is the following.

Problem Abshk. Find whk = {whk
n }Nn=0, where whk

n ∈ Hh, 0 ≤ n ≤ N ,
with whk

0 = 0, such that for n = 1, 2, . . . , N , δwhk
n ∈ Kh and

a(θ whk
n + (1 − θ)whk

n−1, z
h − δwhk

n ) + j(zh) − j(δwhk
n )

≥ 〈�n−1+θ, z
h − δwhk

n 〉 ∀ zh ∈ Kh. (11.27)

The remark at the end of the previous subsection applies also to the fully
discrete schemes. Hence, we do not consider the case where θ < 1

2 or θ > 1.
The first thing we do is to show the well-posedness of the problem Abshk.

Theorem 11.6. The problem Phk admits a unique solution whk. The
solution is stable in the sense that for �(1), �(2) ∈ H1(0, T ;H ′) with �(1)(0) =
�(2)(0) = 0, the corresponding solutions w

(1)hk
n and w

(2)hk
n , 0 ≤ n ≤ N ,

satisfy the inequality

max
0≤n≤N

‖w(1)hk
n − w(2)hk

n ‖H ≤ c ‖�(1) − �(2)‖L∞(0,T ;H′). (11.28)

Proof. Once again, because of the positive homogeneity of j and the cone
property of Kh, the inequality (11.27) can be rewritten as

a(θ whk
n + (1 − θ)whk

n−1, z
h − ∆whk

n ) + j(zh) − j(∆whk
n )

≥ 〈�n−1+θ, z
h − ∆whk

n 〉 ∀ zh ∈ Kh,

or

θ a(∆whk
n , zh − ∆whk

n ) + j(zh) − j(∆whk
n )

≥ 〈ln−1+θ, z
h − ∆whk

n 〉 − a(whk
n−1, z

h − ∆whk
n ) ∀ zh ∈ Kh.(11.29)

Now the existence and uniqueness results can be obtained following the
arguments used in proving Lemma 7.1.

We then derive the stability inequality (11.28). For given �(1) and �(2), let
w1,hk

n and w2,hk
n , 0 ≤ n ≤ N , be the corresponding fully discrete solutions.

Then for n = 1, 2, . . . , N , we have δw
(1)hk
n , δw

(2)hk
n ∈ Kh, and

a(θ w(1)hk
n + (1 − θ)w(1)hk

n−1 , zh − δw(1)hk
n ) + j(zh) − j(δw(1)hk

n )

≥ 〈�(1)n−1+θ, z
h − δw(1)hk

n 〉 ∀ zh ∈ Kh, (11.30)
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a(θ w(2)hk
n + (1 − θ)w(2)hk

n−1 , zh − δw(2)hk
n ) + j(zh) − j(δw(2)hk

n )

≥ 〈�(2)n−1+θ, z
h − δw(2)hk

n 〉 ∀ zh ∈ Kh. (11.31)

Let en = w
(1)hk
n − w

(2)hk
n denote the difference between the two solutions.

Taking zh = δw
(2)hk
n in (11.30) and zh = δw

(1)hk
n in (11.31), and adding

the two resultant inequalities, we obtain

a(θ en + (1 − θ) en−1, δen) ≤ 〈�(1)n−1+θ − �
(2)
n−1+θ, δen〉.

Using (11.14) for a lower bound of the left-hand side of the above inequality,
we find that for n = 1, . . . , N ,

‖en‖2
a − ‖en−1‖2

a ≤ 2 〈�(1)n−1+θ − �
(2)
n−1+θ, en − en−1〉.

Since e0 = 0, a simple induction shows that

‖en‖2
a ≤ 2

n∑
j=1

〈�(1)j−1+θ − �
(2)
j−1+θ, ej − ej−1〉

= 2 〈�(1)n−1+θ − �
(2)
n−1+θ, en〉

+ 2
n−1∑
j=1

〈(�(1)j−1+θ − �
(1)
j+θ) − (�(2)j−1+θ − �

(2)
j+θ), ej〉.

With M = maxn ‖en‖a, we then find that for n = 1, . . . , N ,

‖en‖2
a ≤ c

(
‖�(1)n−1+θ − �

(2)
n−1+θ‖H′

+
n−1∑
j=1

‖(�(1)j−1+θ − �
(1)
j+θ) − (�(2)j−1+θ − �

(2)
j+θ)‖H′

)
M.

Therefore,

M2 ≤ c
(
‖�(1)N−1+θ − �

(2)
N−1+θ‖H′

+
N−1∑
j=1

‖(�(1)j−1+θ − �
(1)
j+θ) − (�(2)j−1+θ − �

(2)
j+θ)‖H′

)
M,

that is,

max
n

‖en‖a

≤ c
(
‖�(1)N−1+θ − �

(2)
N−1+θ‖H′

+
N−1∑
j=1

‖(�(1)j−1+θ − �
(1)
j+θ) − (�(2)j−1+θ − �

(2)
j+θ)‖H′

)
. (11.32)
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We then apply the inequality (5.25) to get the estimate (11.28). �

Now we turn our attention to an error analysis for the fully discrete
scheme. The quantity of interest is the error en = wn − whk

n , 0 ≤ n ≤ N .
We consider the quantities

An = a(θ en + (1 − θ) en−1, δen), n = 1, . . . , N. (11.33)

As in (11.14), we have a lower bound for An:

An ≥ 1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
. (11.34)

To derive an upper bound for An, we write

An = a(θ wn + (1 − θ)wn−1, δwn − δwhk
n )

− a(θ whk
n + (1 − θ)whk

n−1, δwn − zhn)

− a(θ whk
n + (1 − θ)whk

n−1, z
h
n − δwhk

n ),

where zhn ∈ Kh is arbitrary. Using (11.27) to handle the last term, we
obtain

An ≤ a(θ wn + (1 − θ)wn−1, δwn − δwhk
n )

− a(θ whk
n + (1 − θ)whk

n−1, δwn − zhn)

+ j(zhn) − j(δwhk
n ) − 〈�n−1+θ, z

h
n − δwhk

n 〉. (11.35)

Now we take z = δwhk
n ∈ K in (11.1) at t = tn−1+θ to get

0 ≤ a(wn−1+θ, δw
hk
n − ẇn−1+θ) + j(δwhk

n ) − j(ẇn−1+θ)
− 〈�n−1+θ, δw

hk
n − ẇn−1+θ〉. (11.36)

Adding (11.35) and (11.36), we have

An ≤ a(θ wn + (1 − θ)wn−1, δwn − δwhk
n )

− a(θ whk
n + (1 − θ)whk

n−1, δwn − zhn)

+ a(wn−1+θ, δw
hk
n − ẇn−1+θ)

+ j(zhn) − j(ẇn−1+θ) − 〈�n−1+θ, z
h
n − ẇn−1+θ〉,

which is rewritten as

An ≤ 1
k
a(En,θ(w), en − en−1)

+ a(θ en + (1 − θ) en−1, δwn − zhn)
− a(θ wn + (1 − θ)wn−1, δwn − zhn)
+ a(wn−1+θ, δwn − ẇn−1+θ) + j(zhn) − j(ẇn−1+θ)
− 〈�n−1+θ, z

h
n − ẇn−1+θ〉,
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where En,θ(w) is the quantity defined in (11.17). Taking z = ẇn−1+θ − zhn
in (11.2) at t = tn−1+θ, we get

a(wn−1+θ, ẇn−1+θ − zhn) + 〈w∗
n−1+θ, ẇn−1+θ − zhn〉

= 〈�n−1+θ, ẇn−1+θ − zhn〉.

We thus have the upper bound

An ≤ 1
k
a(En,θ(w), en − en−1)

+ a(θ en + (1 − θ) en−1, δwn − zhn) − a(En,θ(w), δwn − zhn)
+ j(zhn) − j(ẇn−1+θ) + 〈w∗

n−1+θ, ẇn−1+θ − zhn〉

for An. From this upper bound and the lower bound (11.34), we obtain the
inequality

1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
≤ 1

k
a(En,θ(w), en − en−1) + cM ‖δwn − zhn‖H

+ c ‖En,θ(w)‖H ‖δwn − zhn‖H + c ‖ẇn−1+θ − zhn‖H ,(11.37)

where M = maxn ‖en‖a. Thus

‖en‖2
a − ‖en−1‖2

a

≤ 2 a(En,θ(w), en − en−1) + cM k ‖δwn − zhn‖H
+ c k ‖En,θ(w)‖H ‖δwn − zhn‖H + c k ‖ẇn−1+θ − zhn‖H .

A simple induction argument yields (noting that e0 = 0), for 1 ≤ n ≤ N ,

‖en‖2
a ≤ 2

n∑
j=1

a(Ej,θ(w), ej − ej−1) + cM k

n∑
j=1

‖δwj − zhj ‖H

+ c k (max
n

‖En,θ(w)‖H)
n∑

j=1

‖δwj − zhj ‖H

+ c k

n∑
j=1

‖ẇj−1+θ − zhj ‖H .

Notice that
n∑

j=1

a(Ej,θ(w), ej − ej−1)

= a(En,θ(w), en) +
n−1∑
j=1

a(Ej,θ(w) − Ej+1,θ(w), ej).
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Hence

M2 ≤ cM
(
‖EN,θ(w)‖H +

N−1∑
j=1

‖Ej,θ(w) − Ej+1,θ(w)‖H

+ k
N∑
j=1

‖δwj − zhj ‖H
)

+ c k max
n

‖En,θ(w)‖H
N∑
j=1

‖δwj − zhj ‖H

+ c k
N∑
j=1

‖ẇj−1+θ − zhj ‖H . (11.38)

Using the relation (11.3), we find from (11.38) that

max
n

‖wn − whk
n ‖a

≤ c
(
‖EN,θ(w)‖H +

N−1∑
j=1

‖Ej,θ(w) − Ej+1,θ(w)‖H

+ k
N∑
j=1

‖δwj − zhj ‖H
)

+ c
{
k max

n
‖En,θ(w)‖H

N∑
j=1

‖δwj − zhj ‖H
}1/2

+ c
{
k

N∑
j=1

‖ẇj−1+θ − zhj ‖H
}1/2

. (11.39)

Concrete error estimates follow from (11.39) if we apply the results given
in Lemmas 11.2, 11.3, and 11.4. Let us focus on the orders of the schemes
by assuming that the solution is smooth. Specifically, we assume that w ∈
W 3,1(0, T ;H). Then we also have ẅ ∈ L∞(0, T ;H). From Lemma 11.2,

max
n

‖En,θ(w)‖H ≤ c k2.

From Lemma 11.3,

N−1∑
j=1

‖Ej,θ(w) − Ej+1,θ(w)‖H ≤ c k2,
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and from Lemma 11.4,

N∑
j=1

‖δwj − ẇj−1+θ‖H ≤ c if θ �= 1
2
,

N∑
j=1

‖δwj − ẇj−1/2‖H ≤ c k.

With these inequalities, together with the triangle inequality

‖δwj − zhj ‖H ≤ ‖δwj − ẇj−1+θ‖H + ‖ẇj−1+θ − zhj ‖H ,

we obtain the following error estimates assuming w(3) ∈ L1(0, T ;H):

max
n

‖wn − whk
n ‖a

≤ c k + c k
N∑
j=1

‖ẇj−1+θ − zhj ‖H

+ c
{
k

N∑
j=1

‖ẇj−1+θ − zhj ‖H
}1/2

if θ �= 1
2

(11.40)

and

max
n

‖wn − whk
n ‖a

≤ c k2 + c k
N∑
j=1

‖ẇj−1/2 − zhj ‖H

+ c
{
k

N∑
j=1

‖ẇj−1/2 − zhj ‖H
}1/2

if θ =
1
2
. (11.41)

Since zhj ∈ Kh, 1 ≤ j ≤ N , are arbitrary, and since the finite-dimensional
subspaces satisfy the relation (11.4), we can rewrite the error estimates (11.40)
and (11.41) in the more concise forms

max
n

‖wn − whk
n ‖a

≤ c k + c
{
k

N∑
j=1

inf
zh
j ∈Kh

‖ẇj−1+θ − zhj ‖H
}1/2

if θ �= 1
2

(11.42)

and

max
n

‖wn − whk
n ‖a

≤ c k2 + c

⎧⎨⎩k
N∑
j=1

inf
zh
j ∈Kh

‖ẇj−1/2 − zhj ‖H

⎫⎬⎭
1/2

if θ =
1
2
.(11.43)



11.4 Convergence Under Minimal Regularity 253

We now summarize the results of the section in the form of a theorem.

Theorem 11.7. Suppose the standard assumptions on H, K, a, �, and j
are satisfied. Let w ∈ H1(0, T ;H) and whk be the solutions of the problems
Abs and Abshk, respectively. Then if w ∈ W 3,1(0, T ;H), we have the esti-
mates (11.42) and (11.43).

We observe that the orders are optimal with respect to the time step-size
in the error estimates (11.42) and (11.43). In particular, when θ = 1, we
have a backward Euler scheme, and it is a first-order method with respect
to the temporal step-size. When θ = 1

2 , we have the second-order accurate
Crank–Nicolson-type scheme.

11.4 Convergence Under Minimal Regularity

We assumed a certain degree of regularity of the solution in the error anal-
ysis presented in the last several sections. Since a regularity theory is still
to be developed for the elastoplasticity problem as well as the abstract
problem, it is of interest to examine whether we can show convergence of
the various numerical methods under the minimal regularity condition of
the solution provided by the existence theorem.

Recall that the problem Abs has a unique solution w ∈ H1(0, T ;H).
From the density result (5.27) we see that for any ε > 0 there is a function
w ∈ C∞([0, T ];H) such that

‖w − w‖H1(0,T ;H) ≤ ε, (11.44)

i.e., ∫ T

0
‖w(t) − w(t)‖2

Hdt +
∫ T

0
‖ẇ(t) − ẇ(t)‖2

Hdt ≤ ε2.

Since

‖w − w‖C([0,T ];H) = max
0≤t≤T

‖w(t) − w(t)‖H ≤ c ‖w − w‖H1(0,T ;H),

we also have

‖w − w‖C([0,T ];H) ≤ c ε. (11.45)

We will prove the convergence of the time-discrete solutions and fully
discrete solutions to the exact solution w of the problem Abs. A conver-
gence analysis for the spatially discrete schemes can be easily done based
on the inequality (11.10); the detailed argument is omitted, and here we
mention only that for the convergence of the spatially discrete solutions we
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need to assume the hypotheses (H1) and (H2) later as in the convergence
analysis for the fully discrete solutions.

The convergence argument below looks long, but the main idea is sim-
ple. The solution is approximated arbitrarily closely by smooth functions,
and for smooth functions we can use Taylor expansions and derive various
estimates.

Convergence of the time-discrete scheme. We first observe that the
inequality (11.20) is useful for deriving order error estimates under var-
ious regularity assumptions on the solution, yet we cannot use it for a
convergence analysis under the basic solution regularity condition, because
then the pointwise value ẇj−1+θ occurring in (11.20) is not well-defined.
This suggests that we modify the derivation and prove some result sim-
ilar to (11.20) without the appearance of the ẇj−1+θ terms. We use the
same notations as in Section 11.2. Additionally, we use In = [tn−1, tn],
n = 1, . . . , N , to denote the time subintervals. From (11.15), we have the
inequality

1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
≤ a(θ wn + (1 − θ)wn−1, δwn − δwk

n)
+ j(δwn) − j(δwk

n) − 〈�n−1+θ, δwn − δwk
n〉. (11.46)

We now take z = δwk
n in (11.1),

a(w(t), δwk
n − ẇ(t)) + j(δwk

n) − j(ẇ(t)) ≥ 〈�(t), δwk
n − ẇ(t)〉,

and then integrate over In to obtain

0 ≤ 1
k

∫
In

a(w(t), δwk
n − ẇ(t)) dt + j(δwk

n) − 1
k

∫
In

j(ẇ(t)) dt

− 1
k

∫
In

〈�(t), δwk
n − ẇ(t)〉 dt. (11.47)

Adding the inequalities (11.46) and (11.47), we find that

1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
≤ Q1 + Q2 + Q3, (11.48)

where

Q1 = a(θ wn + (1 − θ)wn−1, δwn − δwk
n)

+
1
k

∫
In

a(w(t), δwk
n − ẇ(t)) dt,

Q2 =
1
k

∫
In

[j(δwn) − j(ẇ(t))] dt,

Q3 = −〈�n−1+θ, δwn − δwk
n〉 −

1
k

∫
In

〈�(t), δwk
n − ẇ(t)〉 dt.
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Let us estimate each of these three terms. We define

wa
n =

1
k

∫
In

w(t) dt ∈ H, n = 1, . . . , N, (11.49)

for local averages of w(t), and similar to (11.17), we introduce the quantities

Ea
n,θ(w) = θ wn + (1 − θ)wn−1 − wa

n. (11.50)

We have

Q1 = a(θ wn + (1 − θ)wn−1 − wa
n, δwn − δwk

n)

+
1
k

∫
In

a(w(t), δwn) dt− 1
k

∫
In

a(w(t), ẇ(t)) dt

=
1
k
a(Ea

n,θ(w), en − en−1)

+
1
2k

[2 a(wa
n, wn − wn−1) − a(wn, wn) + a(wn−1, wn−1)] .

Since

2 a(wa
n, wn − wn−1) − a(wn, wn) + a(wn−1, wn−1)

= 2 a(wa
n, wn − wn−1) − a(wn, wn − wn−1) + a(wn−1, wn − wn−1)

= a(2wa
n − wn − wn−1, wn − wn−1),

we see that

Q1 =
1
k
a(Ea

n,θ(w), en − en−1) +
1
k
a(wa

n − 1
2 (wn + wn−1), wn − wn−1).

(11.51)

For the second term Q2, we use the Lipschitz continuity of j(·) on K,

|Q2| ≤
c

k

∫
In

‖δwn − ẇ(t)‖Hdt.

Since

δwn − ẇ(t) =
1
k

∫
In

(ẇ(s) − ẇ(t)) ds,

we have

|Q2| ≤
c

k2

∫
In

∫
In

‖ẇ(s) − ẇ(t)‖Hds dt

≤ c

k2

∫
In×In

[
‖ẇ(s) − ẇ(s)‖H + ‖ẇ(t) − ẇ(t)‖H

+ ‖ẇ(s) − ẇ(t)‖H
]
ds dt

=
c

k

∫
In

‖ẇ(t) − ẇ(t)‖Hdt +
c

k2

∫
In

∫
In

∥∥∥∫ t

s

ẅ(τ) dτ
∥∥∥
H
ds dt.
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Now ∫
In

∫
In

∥∥∥∫ t

s

ẅ(τ) dτ
∥∥∥
H
ds dt ≤ k2

∫
In

‖ẅ(t)‖Hdt.

Therefore,

|Q2| ≤
c

k

∫
In

‖ẇ(t) − ẇ(t)‖Hdt + c

∫
In

‖ẅ(t)‖Hdt. (11.52)

Analogous to (11.49), we use

�an =
1
k

∫
In

�(t) dt ∈ H ′, n = 1, . . . , N (11.53)

for local averages of �. Then

Q3 = 〈�an − �n−1+θ, δwn − δwk
n〉 +

1
k

∫
In

〈�(t), ẇ(t) − δwn〉 dt.

Now,∫
In

〈�(t), δwn〉 dt =
〈

1
k

∫
In

�(t) dt,
∫
In

ẇ(s) ds
〉

=
∫
In

〈�an, ẇ(t)〉 dt.

Hence

Q3 =
1
k
〈�an − �n−1+θ, en − en−1〉 +

1
k

∫
In

〈�(t) − �an, ẇ(t)〉 dt. (11.54)

Combining (11.48), (11.51), (11.52), and (11.54), we have

1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
≤ 1

k
a(Ea

n,θ(w), en − en−1) +
1
k
a(wa

n − 1
2 (wn + wn−1), wn − wn−1)

+
c

k

∫
In

‖ẇ(t) − ẇ(t)‖Hdt + c

∫
In

‖ẅ(t)‖Hdt

+
1
k
〈�an − �n−1+θ, en − en−1〉 +

1
k

∫
In

〈�(t) − �an, ẇ(t)〉 dt.

Then

‖en‖2
a − ‖en−1‖2

a

≤ 2 a(Ea
n,θ(w), en − en−1) + 2 a(wa

n − 1
2 (wn + wn−1), wn − wn−1)

+ c

∫
In

‖ẇ(t) − ẇ(t)‖Hdt + c k

∫
In

‖ẅ(t)‖Hdt

+ 2 〈�an − �n−1+θ, en − en−1〉 + 2
∫
In

〈�(t) − �an, ẇ(t)〉 dt.
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Since e0 = 0, a mathematical induction argument shows that

‖en‖2
a ≤ 2

n∑
j=1

a(Ea
j,θ(w), ej − ej−1)

+ 2
n∑

j=1

a(wa
j − 1

2 (wj + wj−1), wj − wj−1)

+ c

∫ tn

0
‖ẇ(t) − ẇ(t)‖Hdt + c k

∫ tn

0
‖ẅ(t)‖Hdt

+ 2
n∑

j=1

〈�aj − �j−1+θ, ej − ej−1〉

+ 2
n∑

j=1

∫
Ij

〈�(t) − �aj , ẇ(t)〉 dt

for n = 1, . . . , N . Let M = max1≤n≤N ‖en‖a. We use the identities
n∑

j=1

a(Ea
j,θ(w), ej − ej−1)

= a(Ea
n,θ(w), en) +

n−1∑
j=1

a(Ea
j,θ(w) − Ea

j+1,θ(w), ej),

n∑
j=1

〈�aj − �j−1+θ, ej − ej−1〉

= 〈�an − �n−1+θ, en〉 +
n−1∑
j=1

〈(�aj − �j−1+θ) − (�aj+1 − �j+θ), ej〉

and get from the above inequality

M2 ≤ cM
{
‖Ea

N,θ(w)‖H +
N−1∑
n=1

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H

+ ‖�aN − �N−1+θ‖H′

+
N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H′
}

+ c

N∑
n=1

‖wa
n − 1

2 (wn + wn−1)‖H‖wn − wn−1‖H

+ c
N∑

n=1

∫
In

‖�(t) − �an‖H′‖ẇ(t)‖Hdt

+ c

∫ T

0
‖ẇ(t) − ẇ(t)‖Hdt + c k

∫ T

0
‖ẅ(t)‖Hdt.
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Applying the result (11.3), we then have

max
1≤n≤N

‖en‖a

≤ c
{
‖Ea

N,θ(w)‖H +
N−1∑
n=1

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H

+ ‖�aN − �N−1+θ‖H′ +
N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H′
}

+ c
{ N∑

n=1

‖wa
n − 1

2 (wn + wn−1)‖H‖wn − wn−1‖H

+
∫ T

0
‖ẇ(t) − ẇ(t)‖Hdt + k

∫ T

0
‖ẅ(t)‖Hdt

+
N∑

n=1

∫
In

‖�(t) − �an‖H′‖ẇ(t)‖Hdt
}1/2

. (11.55)

Let us analyze each term on the right-hand side of (11.55). First, for the
terms involving Ea

n,θ(w), we have

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H
≤ ‖Ea

n,θ(w) − Ea
n+1,θ(w)‖H

+ ‖Ea
n,θ(w − w)‖H + ‖Ea

n+1,θ(w − w)‖H . (11.56)

Since w(t) − w(t) is continuous in t,

wa
n − wa

n =
1
k

∫
In

[w(t) − w(t)] dt = w(τn) − w(τn), for some τn ∈ In.

Hence

Ea
n,θ(w − w)

= θ (wn − wn) + (1 − θ) (wn−1 − wn−1) − (w(τn) − w(τn))

= θ

∫ tn

τn

[ẇ(t) − ẇ(t)] dt + (1 − θ)
∫ tn−1

τn

[ẇ(t) − ẇ(t)] dt,

and then

‖Ea
n,θ(w − w)‖H ≤ c

∫ tn

tn−1

‖ẇ(t) − ẇ(t)‖Hdt.

Similarly,

‖Ea
n+1,θ(w − w)‖H ≤ c

∫ tn+1

tn

‖ẇ(t) − ẇ(t)‖Hdt.
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Noticing that

Ea
n,θ(w) = En,θ(w) + wn−1+θ − wa

n,

we have

Ea
n,θ(w) − Ea

n+1,θ(w)
= (En,θ(w) − En+1,θ(w)) + (wn−1+θ − wa

n) − (wn+θ − wa
n+1).

By Lemma 11.3,

‖En,θ(w) − En+1,θ(w)‖H ≤ c k ‖ẅ‖L1(tn−1,tn+1;H).

We use the Taylor expansion

w(t) = wn−1+θ + ẇn−1+θ(t− tn−1+θ) +
∫ t

tn−1+θ

(t− s) ẅ(s) ds

to get

wn−1+θ − wa
n = −1 − 2 θ

2
k ẇn−1+θ −

1
k

∫
In

∫ t

tn−1+θ

(t− s) ẅ(s) ds dt.

(11.57)

So

(wn−1+θ − wa
n) − (wn+θ − wa

n+1)

=
1 − 2 θ

2
k
(
ẇn+θ − ẇn−1+θ

)
− 1

k

∫
In

∫ t

tn−1+θ

(t− s) ẅ(s) ds dt

+
1
k

∫
In+1

∫ t

tn+θ

(t− s) ẅ(s) ds dt,

in which ẇn+θ − ẇn−1+θ =
∫ tn+θ

tn−1+θ
ẅ(t) dt, and then

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H
≤ ‖En,θ(w) − En+1,θ(w)‖H

+ ‖(wn−1+θ − wa
n) − (wn+θ − wa

n+1)‖H

implies

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H ≤ c k ‖ẅ‖L1(tn−1,tn+1;H).

Therefore (cf. (11.56)),

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H

≤ c k ‖ẅ‖L1(tn−1,tn+1;H) + c

∫ tn+1

tn−1

‖ẇ(t) − ẇ(t)‖Hdt,
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and thus,

N−1∑
n=1

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H

≤ c k ‖ẅ‖L1(0,T ;H) + c ‖ẇ − ẇ‖L1(0,T ;H)

≤ c k ‖ẅ‖L1(0,T ;H) + c ε. (11.58)

The formula (11.57) with n = N implies

‖wN−1+θ − wa
N‖H ≤ c k

[
‖ẇ‖L∞(tN−1,tN ;H) + ‖ẅ‖L1(tN−1,tN ;H)

]
.

By Lemma 11.2,

‖EN,θ(w)‖H ≤ c k ‖ẅ‖L1(tN−1,tN ;H).

It is not difficult to see that

‖Ea
N,θ(w) − Ea

N,θ(w)‖H ≤ c sup
tN−1≤t≤tN

‖w(t) − w(t)‖H .

Applying (11.45), we then have

‖Ea
N,θ(w) − Ea

N,θ(w)‖H ≤ c ε.

Using the last several bounds in the inequality

‖Ea
N,θ(w)‖H ≤ ‖Ea

N,θ(w) − Ea
N,θ(w)‖H

+ ‖EN,θ(w)‖H + ‖wN−1+θ − wa
N‖H ,

we obtain

‖Ea
N,θ(w)‖H ≤ c ε + c k

[
‖ẇ‖L∞(tN−1,tN ;H) + ‖ẅ‖L1(tN−1,tN ;H)

]
. (11.59)

We will now estimate the terms involving approximations of �. First we
have an � ∈ C∞([0, T ];H ′) such that

‖�− �‖H1(0,T ;H′) ≤ ε, (11.60)

and then

‖�− �‖C([0,T ];H′) ≤ c ‖�− �‖H1(0,T ;H′) ≤ c ε. (11.61)

We have

‖�aN − �N−1+θ‖H′

≤ ‖�aN − �N−1+θ‖H′ + ‖�aN − �
a

N‖H′ + ‖�N−1+θ − �N−1+θ‖H′

≤ ‖�aN − �N−1+θ‖H′ + c ‖�− �‖L∞(0,T ;H′)

≤ ‖�aN − �N−1+θ‖H′ + c ε.
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Using the formula (11.57) for �, we see that

‖�aN − �N−1+θ‖H′ ≤ c k
[
‖�̇‖L∞(tN−1,tN ;H′) + ‖�̈‖L1(tN−1,tN ;H′)

]
.

Hence,

‖�aN − �N−1+θ‖H′ ≤ c k
[
‖�̇‖L∞(0,T ;H′) + ‖�̈‖L1(0,T ;H′)

]
+ c ε. (11.62)

Similarly,

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H′

≤ ‖(�an − �n−1+θ) − (�
a

n+1 − �n+θ)‖H′

+ ‖(�an − �an+1) − (�
a

n − �
a

n+1)‖H′

+ ‖(�n−1+θ − �n+θ) − (�n−1+θ − �n+θ)‖H′

≤ ‖(�an − �n−1+θ) − (�
a

n+1 − �n+θ)‖H′ + c ‖�̇− �̇‖L1(tn−1,tn+1;H′).

Use the formula (11.57) for � once more:

‖(�an − �n−1+θ) − (�
a

n+1 − �n+θ)‖H′ ≤ c k ‖�̈‖L1(tn−1,tn+1;H′).

Therefore,

N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H′

≤ c k ‖�̈‖L1(0,T ;H′) + c ‖�̇− �̇‖L1(0,T ;H′).

Hence,

N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H′ ≤ c k ‖�̈‖L1(0,T ;H′) + c ε. (11.63)

For the last sum in (11.55), we first use the Cauchy–Schwarz inequality:

N∑
n=1

∫
In

‖�(t) − �an‖H′‖ẇ(t)‖Hdt

≤ ‖ẇ‖L2(0,T ;H)

[ N∑
n=1

∫
In

‖�(t) − �an‖2
H′dt

]1/2
.

Then using the inequality

‖�(t) − �an‖2
H′ ≤ c

[
‖�(t) − �

a

n‖2
H′ + ‖�an − �

a

n‖2
H′ + ‖�(t) − �(t)‖2

H′

]
,
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we find that

N∑
n=1

∫
In

‖�(t) − �an‖2
H′dt

≤ c

N∑
n=1

∫
In

‖�(t) − �
a

n‖2
H′ dt + c k

N∑
n=1

‖�an − �
a

n‖2
H′

+ c ‖�− �‖2
L2(0,T ;H′).

Now,

�(t) − �
a

n =
1
k

∫
In

[�(t) − �(s)] ds =
1
k2

∫
In

∫ t

s

�̇(τ) dτ ds,

so

N∑
n=1

∫
In

‖�(t) − �
a

n‖2
H′ dt ≤ c k2

N∑
n=1

∫
In

‖�̇(τ)‖2
H′dτ = c k2‖�̇‖2

L2(0,T ;H′).

Similarly,

N∑
n=1

‖�an − �
a

n‖2
H′ ≤

1
k

N∑
n=1

∫
In

‖�(t) − �(t)‖2
H′ dt ≤

1
k
‖�− �‖2

L2(0,T ;H′).

Therefore,

N∑
n=1

∫
In

‖�(t) − �an‖2
H′dt ≤ c k2‖�̇‖2

L2(0,T ;H′) + c ‖�− �‖2
L2(0,T ;H′),

and then

N∑
n=1

∫
In

‖�(t) − �an‖H′‖ẇ(t)‖Hdt ≤ c ‖ẇ‖L2(0,T ;H)

[
k ‖�̇‖L2(0,T ;H′) + ε

]
.

(11.64)

Finally, we estimate the terms ‖wa
n− 1

2 (wn+wn−1)‖H and ‖wn−wn−1‖H .
We have

wa
n − 1

2 (wn + wn−1)

=
1
k

∫
In

[
w(t) − 1

2 (wn + wn−1)
]
dt

= − 1
2 k

∫
In

[∫ tn

t

ẇ(s) ds +
∫ tn−1

t

ẇ(s) ds

]
dt,
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and thus

‖wa
n − 1

2 (wn + wn−1)‖H ≤ c

∫
In

‖ẇ(t)‖Hdt.

Also,

‖wn − wn−1‖H =
∥∥∥∫

In

ẇ(t) dt
∥∥∥
H

≤
∫
In

‖ẇ(t)‖H dt.

Then

N∑
n=1

‖wa
n − 1

2 (wn + wn−1)‖H‖wn − wn−1‖H

≤ c
N∑

n=1

(∫
In

‖ẇ(t)‖H dt
)2

≤ c k ‖ẇ‖L2(0,T ;H). (11.65)

Summarizing, using (11.55), (11.58), (11.59), (11.62)–(11.65), and the
inequality

‖ẇ − ẇ‖L1(0,T ;H) ≤ c ‖ẇ − ẇ‖L2(0,T ;H) ≤ c ε,

we find the following error estimate

max
1≤n≤N

‖wk
n − wn‖H

≤ c
{
ε + k (‖ẇ‖L∞(0,T ;H) + ‖ẅ‖L1(0,T ;H)

+ ‖�̇‖L∞(0,T ;H′) + ‖�̈‖L1(0,T ;H′))
}

+ c
{
ε + k (‖ẇ‖L2(0,T ;H) + ‖ẅ‖L1(0,T ;H))

+ ‖ẇ‖L2(0,T ;H) (ε + k ‖�̇‖L2(0,T ;H′))
}1/2

. (11.66)

The estimate (11.66) implies convergence under the basic solution regu-
larity condition.

Theorem 11.8. Suppose the standard assumptions on H, K, a, �, and j
are satisfied. Let w ∈ H1(0, T ;H) and wk be the solutions of the problems
Abs and Absk, respectively. Then the time-discrete solution wk converges
to w in the sense that

max
1≤n≤N

‖wk
n − wn‖H → 0 as k → 0. (11.67)

Convergence of the fully discrete scheme. Under the basic regularity
condition w ∈ H1(0, T ;H), we cannot use the estimate (11.39) to show



264 11. Approximations of the Abstract Problem

the convergence of the fully discrete method Abshk because the pointwise
values ẇj−1+θ in the estimate are not defined. Thus we need to derive
an estimate similar to (11.39) without the appearance of pointwise values
of ẇ. It will not be enough for the purpose of showing convergence if we
have only the property (11.4) for the finite element space. What we need is
the property (11.4) in certain uniform manner for a set of elements z. We
make the following additional assumptions about the function space and
the finite element space.

(H1) There exists a subspace H0 ⊂ H, such that H1(0, T ;H0∩K) is dense
in H1(0, T ;K) in the norm of H1(0, T ;H).

(H2) For some constants c and α > 0, we have the estimate

inf
zh∈Kh

‖z − zh‖H ≤ c ‖z‖H0 h
α ∀ z ∈ H0 ∩K. (11.68)

In the next chapter, when we apply the general result proved here for the
convergence of the fully discrete solutions for solving the primal variational
problem, we will need to verify both hypotheses (H1) and (H2).

By the assumption (H1), for any ε > 0 we have w̃ ∈ H1(0, T ;H0) such
that

‖w − w̃‖H1(0,T ;H) ≤ ε. (11.69)

We still use en = wn − whk
n , 0 ≤ n ≤ N , to denote the errors, and we

consider the quantity An defined in (11.33). A lower bound of An is given
by (11.34) and an upper bound by (11.35). Instead of (11.36), we integrate
(11.1) with z = δwhk

n ∈ K from t = tn−1 to t = tn,

0 ≤ 1
k

∫
In

a(w(t), δwhk
n − ẇ(t)) dt + j(δwhk

n )

− 1
k

∫
In

j(ẇ(t)) dt− 1
k

∫
In

〈�(t), δwhk
n − ẇ(t)〉 dt. (11.70)

We then add (11.70) to (11.35) to obtain

An ≤ R1 + R2 + R3, (11.71)

where

R1 = a(θ wn + (1 − θ)wn−1, δen) +
1
k

∫
In

a(w(t), δwhk
n − ẇ(t)) dt

− a(θ whk
n + (1 − θ)whk

n−1, δwn − zhn),

R2 = j(zhn) − 1
k

∫
In

j(ẇ(t)) dt,

R3 = −〈�n−1+θ, z
h
n − δwhk

n 〉 − 1
k

∫
In

〈�(t), δwhk
n − ẇ(t)〉 dt.
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As before, we use

wa
n =

1
k

∫
In

w(t) dt, n = 1, . . . , N,

for local averages and let

Ea
n,θ(w) = θ wn + (1 − θ)wn−1 − wa

n, n = 1, . . . , N.

Then

R1 = a(Ea
n,θ(w), δen) +

1
k

∫
In

a(w(t), δwn − ẇ(t)) dt

+ a(θ en + (1 − θ) en−1, δwn − zhn)
− a(θ wn + (1 − θ)wn−1, δwn − zhn). (11.72)

Since

R2 =
1
k

∫
In

[
j(zhn) − j(ẇ(t))

]
dt,

using the Lipschitz continuity of j(·) on K, we have

|R2| ≤
c

k

∫
In

‖zhn − ẇ(t)‖Hdt ≤ c

k

∫
In

‖zhn − ẇ(t)‖Hdt. (11.73)

Finally, R3 can be rewritten as

R3 = 〈�an − �n−1+θ, δen〉 +
1
k

∫
In

〈�(t), ẇ(t) − δwn〉 dt

− 〈�n−1+θ, z
h
n − δwn〉. (11.74)

Combine (11.34) with (11.71)–(11.74) and multiply the resulting inequality
by 2k,

‖en‖2
a − ‖en−1‖2

a

≤ 2 a(Ea
n,θ(w), en − en−1) + 2

∫
In

a(w(t), δwn − ẇ(t)) dt

+ 2 k a(θ en + (1 − θ) en−1, δwn − zhn)
− 2 k a(θ wn + (1 − θ)wn−1, δwn − zhn)

+ c

∫
In

‖zhn − ẇ(t)‖Hdt

+ 2 〈�an − �n−1+θ, en − en−1〉 + 2
∫
In

〈�(t), ẇ(t) − δwn〉 dt

− 2 k 〈�n−1+θ, z
h
n − δwn〉.
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Again we set

M = max
1≤n≤N

‖en‖a.

Since e0 = 0, mathematical induction based on the above inequality reveals
that for n = 1, . . . , N ,

‖en‖2
a

≤ 2
n∑

j=1

a(Ea
j,θ(w), ej − ej−1) + 2

n∑
j=1

∫
Ij

a(w(t), δwj − ẇ(t)) dt

+ 2
n∑

j=1

∫
Ij

〈�(t), ẇ(t) − δwj〉 dt + 2
n∑

j=1

〈�aj − �j−1+θ, ej − ej−1〉

+ c k (M + ‖w‖L∞(0,T ;H))
n∑

j=1

‖δwj − zhj ‖H

+ c
n∑

j=1

∫
Ij

‖zhj − ẇ(t)‖Hdt + c k ‖�‖L∞(0,T ;H′)

n∑
j=1

‖δwj − zhj ‖H .

Since
n∑

j=1

a(Ea
j,θ(w), ej − ej−1)

= a(Ea
n,θ(w), en) +

n−1∑
j=1

a(Ea
j,θ(w) − Ea

j+1,θ(w), ej)

and
n∑

j=1

〈�aj − �j−1+θ, ej − ej−1〉

= 〈�an − �n−1+θ, en〉 +
n−1∑
j=1

〈(�aj − �j−1+θ) − (�aj+1 − �j+θ), ej〉,
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we see that

‖en‖2
a

≤ cM
(
‖Ea

n,θ(w)‖H +
n−1∑
j=1

‖Ea
j,θ(w) − Ea

j+1,θ(w)‖H
)

+ 2
n∑

j=1

∫
Ij

a(w(t), δwj − ẇ(t)) dt + 2
n∑

j=1

∫
Ij

〈�(t), ẇ(t) − δwj〉 dt

+ cM
(
‖�an − �n−1+θ‖H′ +

n−1∑
j=1

‖(�aj − �j−1+θ) − (�aj+1 − �j+θ)‖H′
)

+ c k (M + ‖w‖L∞(0,T ;H))
n∑

j=1

‖δwj − zhj ‖H

+ c

n∑
j=1

∫
Ij

‖zhj − ẇ(t)‖Hdt + c k ‖�‖L∞(0,T ;H′)

n∑
j=1

‖δwj − zhj ‖H .

Then

M2 ≤ cM
{
‖Ea

N,θ(w)‖H +
N−1∑
n=1

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H

+ k
N∑

n=1

‖δwn − zhn‖H + ‖�aN − �N−1+θ‖H′

+
N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H′
}

+ c (‖w‖L∞(0,T ;H) + ‖�‖L∞(0,T ;H′))
N∑

n=1

∫
In

‖δwn − ẇ(t)‖H dt

+ c k (‖w‖L∞(0,T ;H) + ‖�‖L∞(0,T ;H′))
N∑

n=1

‖δwn − zhn‖H

+ c
N∑

n=1

∫
In

‖ẇ(t) − zhn‖H dt.
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Applying (11.3), we see that

M ≤ c
{
‖Ea

N,θ(w)‖H +
N−1∑
n=1

‖Ea
n,θ(w) − Ea

n+1,θ(w)‖H

+ k
N∑

n=1

‖δwn − zhn‖H + ‖�aN − �N−1+θ‖H′

+
N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H′
}

+ c
{

(‖w‖L∞(0,T ;H) + ‖�‖L∞(0,T ;H′))
N∑

n=1

∫
In

‖δwn − ẇ(t)‖H dt

+ k (‖w‖L∞(0,T ;H) + ‖�‖L∞(0,T ;H′))
N∑

n=1

‖δwn − zhn‖H

+
N∑

n=1

∫
In

‖ẇ(t) − zhn‖H dt
}1/2

.

(11.75)

We now estimate the quantity
N∑

n=1

∫
In

‖δwn − ẇ(t)‖H dt.

We write

δwn − ẇ(t) =
1
k

∫
In

[ẇ(s) − ẇ(t)] ds.

Hence, ∫
In

‖δwn − ẇ(t)‖H dt

≤ 1
k

∫
In×In

[
‖ẇ(s) − ˙̃w(s)‖H + ‖ẇ(t) − ˙̃w(t)‖H

+ ‖ ˙̃w(s) − ˙̃w(t)‖H
]
ds dt

= c

∫
In

‖ẇ(t) − ˙̃w(t)‖H dt +
1
k

∫
In

∫
In

∥∥∥∫ s

t

¨̃w(τ) dτ
∥∥∥
H
ds dt

≤ c

∫
In

‖ẇ(t) − ˙̃w(t)‖H dt + c k

∫
In

‖ ¨̃w(t)‖H dt.

Therefore,
N∑

n=1

∫
In

‖δwn − ẇ(t)‖H dt

≤ c ‖ẇ − ˙̃w‖L1(0,T ;H) + c k ‖ ¨̃w‖L1(0,T ;H)

≤ c ε + c k ‖ ¨̃w‖L1(0,T ;H). (11.76)
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Next, from

‖ẇ(t) − zhn‖H ≤ ‖δwn − ẇ(t)‖H + ‖δwn − zhn‖H ,

we see that

N∑
n=1

∫
In

‖ẇ(t) − zhn‖H dt

≤
N∑

n=1

∫
In

‖δwn − ẇ(t)‖H dt + k
N∑

n=1

‖δwn − zhn‖H . (11.77)

It remains for us to estimate the term

k

N∑
n=1

‖δwn − zhn‖H .

We have

δwn − zhn =
1
k

∫
In

ẇ(t) dt− zhn =
1
k

∫
In

[
ẇ(t) − ˙̃w(t)

]
dt + δw̃n − zhn,

and so

‖δwn − zhn‖H ≤ 1
k

∫
In

‖ẇ(t) − ˙̃w(t)‖H dt + ‖δw̃n − zhn‖H ,

k

N∑
n=1

‖δwn − zhn‖H ≤ ‖ẇ − ˙̃w‖L1(0,T ;H) + k
N∑

n=1

‖δw̃n − zhn‖H

≤ c ε + k

N∑
n=1

‖δw̃n − zhn‖H . (11.78)

Using the bounds (11.58), (11.59), (11.62), (11.63), and (11.76)–(11.78)
in the inequality (11.75) and noticing the arbitrariness of zhn ∈ Kh, we
obtain the estimate

max
1≤n≤N

‖whk
n − wn‖H

≤ c
{
ε + Dh(w̃) + k

(
‖ ˙̃w‖L∞(0,T ;H) + ‖ ¨̃w‖L1(0,T ;H)

+ ‖�̇‖L∞(0,T ;H′) + ‖�̈‖L1(0,T ;H′)

)}
+ c

{
(ε + k ‖ ¨̃w‖L1(0,T ;H) + Dh(w̃))

× (‖ẇ‖L∞(0,T ;H) + ‖�̇‖L∞(0,T ;H′) + 1)
}1/2

, (11.79)
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where

Dhk(w̃) = k
N∑

n=1

inf
zh
n∈Kh

‖δw̃n − zhn‖H . (11.80)

By the assumption (H2), we see that

inf
zh
n∈Kh

‖δw̃n − zhn‖H ≤ c hα‖δw̃n‖H0 ≤ c hα

k

∫
In

‖ ˙̃w(t)‖H0dt,

and thus

Dhk(w̃) = k
N∑

n=1

inf
zh
n∈Kh

‖δw̃n − zhn‖H ≤ c hα‖ ˙̃w‖L1(0,T ;H0).

Use this inequality in the estimate (11.79):

max
1≤n≤N

‖whk
n − wn‖H

≤ c
{
ε + hα‖ ˙̃w‖L1(0,T ;H0) + k

(
‖ ˙̃w‖L∞(0,T ;H) + ‖ ¨̃w‖L1(0,T ;H)

+ ‖�̇‖L∞(0,T ;H′) + ‖�̈‖L1(0,T ;H′)

)}
+ c

{
(ε + k ‖ ¨̃w‖L1(0,T ;H) + hα‖ ˙̃w‖L1(0,T ;H0))

× (‖ẇ‖L∞(0,T ;H) + ‖�̇‖L∞(0,T ;H′) + 1)
}1/2

. (11.81)

The estimate (11.81) implies the convergence under the basic solution
regularity condition.

Theorem 11.9. Suppose the standard assumptions on H, K, a, �, and j
are satisfied. Let w ∈ H1(0, T ;H) and whk be the solutions of the problems
Abs and Abshk, respectively. Then the fully discrete solution whk converges
to w in the sense that

max
1≤n≤N

‖whk
n − wn‖H → 0 as h, k → 0. (11.82)
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Numerical Analysis of the Primal
Problem

In this chapter we consider numerical approximations for the primal vari-
ational problem of elastoplasticity. We start with the derivation of error
estimates for various numerical schemes approximating the solution of the
primal variational problem by applying the results for the abstract varia-
tional problem proved in the last chapter. We also discuss the convergence
property for various schemes under the basic solution regularity condition.

Then we consider the practically important issue of the implementation
of numerical schemes and, in particular, the algorithms that are employed
in such schemes. The algorithms considered here are of predictor–corrector
type. Detailed derivation of the solution algorithms is given in Section 12.2.
Convergence of the solution algorithms is discussed in Section 12.3.

A major difficulty in solving the primal variational problem numerically
(and similarly, the inequality problem in a corrector step in the solution al-
gorithms discussed in Section 12.2) is the treatment of the nondifferentiable
functional j(·). Several approaches can be used to circumvent the difficulty
in practice. One approach is the regularization method, where the non-
differentiable term is approximated by a sequence of differentiable ones.
Convergence and error estimations for the regularization method are the
main topics of Section 12.4. A practically efficient approach is discretizing
the inequality for the continuous variables involving the nondifferentiable
term to give a set of uncoupled inequalities at integration points. We give
a detailed error analysis for one such method in Section 12.5.
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12.1 Error Analysis of Discrete Approximations of
the Primal Problem

In this section we apply the general results presented in the last chapter on
numerical approximations for the abstract problem to derive various error
estimates in the context of the primal form of the elastoplasticity prob-
lem for concrete selections of the finite elements under suitable regularity
assumptions on the solution and to show the convergence of the methods
under the basic regularity condition of the solution. We continue to restrict
attention to the problems with combined linear kinematic-isotropic hard-
ening or with linear kinematic hardening only, so that the results of the
last chapter are directly applicable.

The problem with combined linear kinematic and isotropic hard-
ening. The continuous problem Prim1 is stated in Section 7.1 and ana-
lyzed in Section 7.3.

Let Zh = V h × Qh
0 × Mh be a finite-dimensional subspace of Z. Let

Kh = Zh ∩K = V h ×Kh
0 , where

Kh
0 = {(qh, µh) ∈ Qh

0 ×Mh : |qh| ≤ µh in Ω}.

In the spatially discrete internal approximation of the problem, we seek
wh = (uh,ph, γh) : [0, T ] → Zh, wh(0) = 0, such that for almost all
t ∈ (0, T ), ẇh(t) ∈ Kh and

a(wh(t), zh − ẇh(t)) + j(zh) − j(ẇh(t)) ≥ 〈�n, zh − ẇh(t)〉 ∀ zh ∈ Kh.
(12.1)

From the discussion in the last chapter we know that the discrete prob-
lem has a unique solution wh. Since j(z) depends on q only, a careful
examination of the argument in Section 11.1 shows that we may modify
the error estimate (11.10) to read

‖w −wh‖L∞(0,T ;Z)

≤ c
[

inf
(qh,µh)∈L2(0,T ;Kh

0 )

(
‖ṗ− qh‖1/2

L2(0,T ;Q) + ‖γ̇ − µh‖L2(0,T ;M)

)
+ inf

vh∈L2(0,T ;V h)
‖u̇− vh‖L2(0,T ;V )

]
. (12.2)

The inequality (12.2) is the basis for various order error estimates. For
example, suppose that we use linear elements for V h and piecewise con-
stants for both Qh

0 and Mh. Assume that u̇ ∈ L2(0, T ; (H2(Ω))3), ṗ ∈
L2(0, T ; (H1(Ω))3×3), and γ̇ ∈ L2(0, T ;H1(Ω)). Then using the standard
interpolation error estimates for finite elements reviewed in Chapter 9, we
have

inf
vh∈L2(0,T ;V h)

‖u̇− vh‖L2(0,T ;V ) ≤ c h.
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Let qh = Πhṗ be the orthogonal projection of ṗ onto Qh
0 with respect

to the inner product of Q. We observe that on each element, Πhṗ is the
average value of ṗ on the element. Similarly, we take µh = Πhγ̇ to be the
orthogonal projection of γ̇ onto Mh with respect to the inner product of
M . Since ẇ ∈ K and K is convex, we have (Πhṗ,Πhγ̇) ∈ Kh

0 . Thus,

‖ṗ− Πhṗ‖L2(0,T ;Q) ≤ c h,

‖γ̇ − Πhγ̇‖L2(0,T ;M) ≤ c h,

and from (12.2) we get the error estimate

‖w −wh‖L∞(0,T ;Z) ≤ c h1/2. (12.3)

If ṗ ∈ L2(0, T ; (H2(Ω))3×3) and γ̇ ∈ L2(0, T ;H2(Ω)), we can use either
discontinuous or continuous piecewise linear functions for both Qh

0 and Mh.
By choosing Πhṗ and Πhγ̇ to be the piecewise linear interpolants of ṗ and
γ̇, we have (Πhṗ,Πhγ̇) ∈ Kh

0 , and

‖ṗ− Πhṗ‖L2(0,T ;Q) ≤ c h2,

‖γ̇ − Πhγ̇‖L2(0,T ;M) ≤ c h2.

Then the error estimate for this case becomes

‖w −wh‖L∞(0,T ;Z) ≤ c h. (12.4)

Results for time-discrete approximations can be deduced in a similar way
to those in Section 11.2 and are omitted.

Now let us consider fully discrete approximations. As in the last chapter,
we divide the time interval [0, T ] by evenly spaced nodes tn = nk, n =
0, 1, . . . , N , with k = T/N the step-size. The most useful schemes from the
family of fully discrete approximations considered in Section 11.3 are the
backward Euler scheme (corresponding to θ = 1) and the Crank–Nicolson
scheme (corresponding to θ = 1

2 ). Therefore, in the discussion below we
will mention only the results pertaining to these two schemes.

In the backward Euler approximation of the problem, whk
0 = 0, and we

compute whk
n = (uhk

n ,phk
n , γhk

n ) : [0, T ] → Zh, n = 1, 2, . . . , N , such that
δwhk

n ∈ Kh and

a(whk
n , zh − δwhk

n ) + j(zh) − j(δwhk
n ) ≥ 〈�n, zh − δwhk

n 〉 ∀ zh ∈ Zh.
(12.5)

We have a unique solution for the backward Euler scheme. By the esti-
mate (11.42), again noting that j(z) depends only on q, we find that if
ẅ ∈ L2(0, T ;Z), then

max
0≤n≤N

‖wn −whk
n ‖2

Z ≤ c k

N∑
n=1

[
inf

vh∈V h
‖u̇n − vh‖2

V

+ inf
(qh,µh)∈Kh

0

(
‖ṗn − qh‖Q + ‖γ̇n − µh‖2

M

) ]
+ c k2. (12.6)
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Assume that u̇ ∈ C([0, T ]; (H2(Ω))3), ṗ ∈ C([0, T ]; (H1(Ω))3×3), and γ̇ ∈
C([0, T ];H1(Ω)). If we use linear elements for V h and piecewise constants
for both Qh

0 and Mh, then as is noted earlier, (Πhṗ,Πhγ̇) ∈ Kh
0 , and for

n = 1, . . . , N ,

inf
vh∈V h

‖u̇n − vh‖V ≤ c h,

‖ṗn − Πhṗn‖Q ≤ c h,

‖γ̇n − Πhγ̇n‖M ≤ c h.

Therefore, we have the error estimate

max
0≤n≤N

‖wn −whk
n ‖Z ≤ c (h1/2 + k). (12.7)

If ṗ ∈ C([0, T ]; (H2(Ω))3×3), γ̇ ∈ C([0, T ];H2(Ω)), and we use either
discontinuous or continuous piecewise linear functions for both Qh

0 and
Mh, then the error estimate for this case becomes

max
0≤n≤N

‖wn −whk
n ‖Z ≤ c (h + k). (12.8)

Similarly, the Crank–Nicolson scheme for the primal problem has a unique
solution, and for the two different choices of the finite element spaces, under
suitable smoothness assumptions on the solution of the original problems,
we have the error estimates

max
0≤n≤N

‖wn −whk
n ‖Z ≤ c (h1/2 + k2), (12.9)

max
0≤n≤N

‖wn −whk
n ‖Z ≤ c (h + k2) (12.10)

replacing (12.7) and (12.8), respectively.
If we do not make any regularity assumptions on the solution w of the

primal problem, the order error estimates (12.3), (12.4), and (12.7)–(12.10)
no longer hold. Nevertheless, we still have convergence of the numerical
solutions:

‖w −wh‖L∞(0,T ;Z) → 0 as h → 0

for the spatially discrete schemes,

max
0≤n≤N

‖wn −wk
n‖Z → 0 as k → 0

for the time-discrete schemes, and

max
0≤n≤N

‖wn −whk
n ‖Z → 0 as h, k → 0

for the fully discrete schemes. Of course, for the convergence of the fully
discrete schemes, we need to verify the hypotheses (H1) and (H2). This is
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done next.

Verification of the hypotheses (H1) and (H2). In the context of
the problem Prim1 (we give the following discussion for a d-dimensional
domain Ω ⊂ R

d),

H = Z = (H1
0 (Ω))d ×Q0 × L2(Ω),

K = Zp = {z = (v, q, µ) ∈ Z : |q| ≤ µ a.e. in Ω}.

We will show that we can take

H0 = (H1
0 (Ω) ∩ C∞(Ω))d × (Q0 ∩ C∞(Ω)) × (L2(Ω) ∩ C∞(Ω)) (12.11)

in (H1) and (H2). For this purpose we will make some preparations.
The following result is found in Zeidler [129] (Proposition 23.2).

Proposition 12.1. Assume that X is a Banach space, 1 ≤ q < ∞. Then
the space C([0, T ];X) is dense in Lq(0, T ;X).

Using this proposition, we can prove the next result.

Proposition 12.2. Assume that X is a Banach space, 1 ≤ q < ∞,
and l is a nonnegative integer. Then the space Cl([0, T ];X) is dense in
W l,q(0, T ;X).
Proof. We prove the result for l = 1. A similar argument applies for other
values of l.

Let u ∈ W 1,q(0, T ;X). Then u′ ∈ Lq(0, T ;X). By Proposition 12.1, we
can find a sequence {vn} ⊂ C([0, T ];X) such that

vn → u′ in Lq(0, T ;X).

Define

un(t) = u(0) +
∫ t

0
vn(t) dt.

Then {un} ⊂ C1([0, T ];X), and un → u in W 1,q(0, T ;X). �

Define

P (0, T ;X) = {p : p(t) =
m∑
i=0

ait
i, ai ∈ X, 0 ≤ i ≤ m, m = 0, 1, . . . },

the space of the polynomials with values in X. Obviously, P (0, T ;X) ⊂
C∞([0, T ];X). The following result is found in [129] (page 442).

Proposition 12.3. Assume that X is a Banach space, X0 ⊂ X is dense
in X, 1 ≤ q < ∞, and l is a nonnegative integer. Then P (0, T ;X0) is dense
in Cl([0, T ];X).
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Combining Propositions 12.2 and 12.3, we have the next result.

Proposition 12.4. Assume that X is a Banach space, X0 ⊂ X is dense
in X, 1 ≤ q < ∞, and l is a nonnegative integer. Then P (0, T ;X0) is dense
in W l,q(0, T ;X).

Now we recall the following two smooth density results. Let k ≥ 0, 1 ≤
p < ∞. Then

C∞
0 (Ω) is dense in W k,p

0 (Ω). (12.12)

If the boundary ∂Ω is Lipschitz continuous, then

C∞(Ω) is dense in W k,p(Ω). (12.13)

From Proposition 12.4, (12.12), and (12.13), we see that H1(0, T ;C∞
0 (Ω))

is dense in H1(0, T ;H1
0 (Ω)) and H1(0, T ;C∞(Ω)) is dense in H1(0, T ;L2(Ω)).

Thus given w = (u,p, γ) ∈ H1(0, T ;K), we can find a sequence wn =
(un,pn, γn) ∈ H1(0, T ; (C∞

0 (Ω))d × (C∞(Ω))d×d × C∞(Ω)) converging to
w in H1(0, T ;Z). In order to see that the space H0 defined in (12.11) has
the property

H1(0, T ;H0 ∩K) is dense in H1(0, T ;K), (12.14)

we need

pn ∈ Q0, |pn| ≤ γn in Ω. (12.15)

To make sure (12.15) is valid, let us briefly review a typical proof of the
density result (12.13) (cf. Evans [35]).

We first introduce some notation. For x0 ∈ R
d and r > 0, we use

B(x0, r) = {x ∈ R
d : ‖x− x0‖ < r}

and

B(x0, r) = {x ∈ R
d : ‖x− x0‖ ≤ r}

to denote an open and a closed ball centered at x0 with radius r. Here and
below the vector norm in R

d is the Euclidean norm. Define

J(x) =
{

c0e
1/(‖x‖2−1), ‖x‖ < 1,

0, ‖x‖ ≥ 1,

where c0 > 0 is chosen such that∫
R

d
J(x) dx = 1.
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The function J(·) is infinitely smooth. Then we define the standard mollifier

Jε(x) =
1
εd

J(x/ε),

which has the properties that

Jε ∈ C∞(Rd),
∫

R
d
Jε(x) dx = 1, Jε(x) = 0 for ‖x‖ ≥ ε.

Now we sketch the main steps for the proof of (12.13).

Step 1. Localization. Since ∂Ω is compact and is Lipschitz continuous,
there exist finitely many points xm ∈ ∂Ω, positive numbers rm > 0, and
Lipschitz continuous functions γm : R

d−1 → R, 1 ≤ m ≤ M , such that

∂Ω ⊂
M⋃

m=1

B(xm, rm/2),

and for each m, after relabeling the coordinate axes if necessary,

Ω ∩B(xm, rm) = {x ∈ B(xm, rm) : xd > γm(x1, . . . , xd−1)}.

Define

Ωm = Ω ∩B(xm, rm/2), 1 ≤ m ≤ M,

and choose an open set Ω0 ⊂⊂ Ω with the property

Ω ⊂
M⋃

m=0

Ωm.

Let {ζm}Mm=0 be a smooth partition of unity subordinate to {Ωm}Mm=0; i.e.,
for each m, ζm ∈ C∞(Rd), supp (ζm) ⊂ Ωm, and

M∑
m=0

ζm(x) ≡ 1, x ∈ Ω.

Then we have the decomposition

u = u

M∑
m=0

ζm =
M∑

m=0

um,

where

um = u ζm.
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Step 2. Smooth approximation of u0. Take an ε0 ∈ (0,dist (∂Ω0, ∂Ω)),
and consider only those ε with ε ≤ ε0/2. Define

Ω′
0 = {x ∈ Ω : dist (x, ∂Ω) > ε0/2}.

Define the mollification of u0 with respect to the spatial variable

uε
0(x) = (Jε ∗ u0)(x) =

∫
B(O,ε)

Jε(y)u0(x− y) dy.

We have, for ε sufficiently small,

uε
0 ∈ C∞

0 (Ω′
0)

and

lim
ε→0

‖uε
0 − u0‖Wk,p(Ω) = 0.

Step 3. Smooth approximation of um, 1 ≤ m ≤ M . Fix an m =
1, . . . ,M and consider the smooth approximation of um. Recall that there
exist an rm > 0 and a Lipschitz continuous function γm such that upon
relabeling the coordinate axes if necessary,

Ω ∩B(xm, rm) = {x ∈ B(xm, rm) : xd > γm(x1, . . . , xd−1)}.

Let Ωm = Ω ∩ B(xm, rm/2). Denote by Lip(γm) the Lipschitz constant
of the function γm, and write en = (0, . . . , 0, 1)T in the local coordi-
nates. For any x ∈ Ωm, we define xε = x + α ε en, where we choose
α =

√
2 max{Lip (γm), 1}. It can be verified that if ε is small enough,

B(xε, ε) ⊂ Ω ∩B(x, rm).

Now we let

vεm(x) = um(xε), x ∈ Ωm,

and define

uε
m(x) = (Jε ∗ vεm)(x) =

∫
B(O,ε)

Jε(y) vεm(x− y) dy.

We have

uε
m ∈ C∞(Ωm)

and

lim
ε→0

‖uε
m − um‖Wk,p(Ω) = 0.
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Step 4. Global smooth approximation with respect to x. Define

uε =
M∑

m=0

uε
m.

Then

uε ∈ C∞(Ω)

and

uε → u in W k,p(Ω) as ε → 0.

It is evident from the proof that

p ∈ Q0 =⇒ pε ∈ Q0

and

|p| ≤ γ a.e. in Ω =⇒ |pε| ≤ γε in Ω.

Thus (12.14), and therefore (H1), is satisfied.

As for (H2), we assume that the finite element space V h for approximat-
ing V = (H1

0 (Ω))d contains piecewise linear functions and that the finite
element spaces Qh

0 and Mh for Q0 and M contain piecewise constants.
Then for any z = (v, q, µ) ∈ H0 ∩ K, we define z = (Πhv,Πhq,Πhµ),
where Πhv is the piecewise linear interpolant of v, and Πhq and Πhµ are
elementwise averages of q and µ. It is not difficult to see that zh ∈ Kh. By
the standard finite element interpolation theory,

‖z − zh‖Z ≤ c h (‖v‖H2(Ω) + ‖q‖H1(Ω) + ‖µ‖H1(Ω)).

Hence, (H2) is satisfied with α = 1.

The problem with linear kinematic hardening. Now we consider
discrete approximations to the solution w of the problem with linear kine-
matic hardening only. The continuous problem Prim2 is stated in Section
7.1 and analyzed in Section 7.3.

Let V h and Qh
0 be finite element subspaces of V and Q0, and set Zh =

V h×Qh
0 . Then a spatially discrete approximation of the problem is to find

wh = (uh,ph) ∈ Zh, wh(0) = 0, such that

a(wh(t), zh − ẇh(t)) + j(zh) − j(ẇh(t))
≥ 〈�(t),zh − ẇh(t)〉 ∀ zh = (vh, qh) ∈ Zh. (12.16)

The semidiscrete approximation problem has a unique solution wh(t), t ∈
[0, T ]. Since the functional j(z) depends on the second component q of z
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only, the term c ‖zh − ẇ(t)‖H on the right-hand side of (11.10) may be
replaced by c ‖qh − ṗ(t)‖Q. Thus, the error estimate (11.10) becomes, for
this case,

sup
0≤t≤T

‖w(t) −wh(t)‖2
Z

≤ c
{

inf
vh∈L2(0,T ;V h)

‖u̇− vh‖2
L2(0,T ;V )

+ inf
qh∈L2(0,T ;Qh

0 )
‖ṗ− qh‖L1(0,T ;Q)

}
. (12.17)

Once again we omit the discussion on the time-discrete approximations.
Now we consider fully discrete approximations of the problem and present

some error estimates for the backward Euler Crank–Nicolson schemes.
We divide [0, T ] into N equal parts and use k = T/N for the step-size.
The backward Euler method amounts to finding whk = {whk

n }Nn=0, where
whk

n = (uhk
n ,phk

n ) ∈ Zh, 0 ≤ n ≤ N , whk
0 = 0, such that for n = 1, 2, . . . , N ,

a(whk
n , zh − δwhk

n ) + j(zh) − j(δwhk
n )

≥ 〈�n, zh − δwhk
n 〉 ∀ zh = (vh, qh) ∈ Zh. (12.18)

The discrete problem has a unique solution. Again we observe that the
term ‖zh − ẇn‖H on the right-hand side of the inequality (11.37) may be
replaced by ‖qh − ṗn‖Q. Therefore, the error estimate (11.42) for the case
of the problem (12.18) becomes

max
0≤n≤N

‖wn −whk
n ‖2

Z

≤ c k
N∑

n=1

(
inf

qh∈Qh
0

‖ṗn − qh‖Q + inf
vh∈V h

‖u̇n − vh‖2
V

)
+ c k2‖ẅ‖2

L2(0,T ;Z). (12.19)

For the Crank–Nicolson scheme we compute whk = {whk
n }Nn=0, where

whk
n = (uhk

n ,phk
n ) ∈ Zh, 0 ≤ n ≤ N , whk

0 = 0, such that for n = 1, 2, . . . , N ,

a( 1
2 (whk

n + whk
n−1), z

h − δwhk
n ) + j(zh) − j(δwhk

n )

≥ 〈�n−1/2, z
h − δwhk

n 〉 ∀ zh = (vh, qh) ∈ Zh. (12.20)

The discrete problem has a unique solution. Assuming w ∈ W 2,∞(0, T ;Z)
and w(3) ∈ L1(0, T ;Z), we have the error estimate

max
0≤n≤N

‖wn −whk
n ‖2

Z

≤ c k
N∑

n=1

(
inf

qh∈Qh
0

‖ṗn−1/2 − qh‖Q + inf
vh∈V h

‖u̇n−1/2 − vh‖2
V

)
+ c k4. (12.21)



12.2 Solution Algorithms 281

The inequalities (12.19) and (12.21) are the basis for deriving various con-
vergence order estimates, which can be obtained as in the case of combined
linear isotropic–kinematic hardening.

If we do not make regularity assumptions on the solution w, we no longer
have order error estimates for the numerical solutions. However, we can
still apply the results from Section 11.4 to conclude the convergence of
the numerical solutions, as for the case in solving the primal problem with
combined linear kinematic–isotropic hardening. Here the hypotheses (H1)
and (H2) are easier to verify because the problem is posed on the whole
space, K = H = V ×Q0. The reader can verify the hypotheses for kinematic
hardening by modifying the argument presented for the more complicated
case of combined linear kinematic–isotropic hardening.

12.2 Solution Algorithms

In this section we discuss details of solution algorithms for the primal
elastoplasticity problems. We will be concerned with a particular class of
algorithms that have been employed in computational approaches to these
problems (see, for example, Reddy and Martin [107], Simo [114]). While al-
gorithms of this kind are often developed and implemented in the context
of fully discrete problems, in which the discretization is carried out using
finite elements for the spatial domain, we will develop the necessary algo-
rithms for the spatially continuous case, that is, for time-discrete schemes.
A parallel treatment can be given for the fully discrete schemes. Further-
more, the questions of whether to discretize spatially, and how, are ones
that are essentially independent of the details of the time-discretization,
and may be posed subsequently.

For simplicity of presentation, let us consider the particular elastoplastic-
ity problem with linear kinematic hardening and von Mises yield condition.
We recall from Section 7.1 that the problem is to find w = (u,p) : [0, T ] →
Z with w(0) = 0 such that for almost all t ∈ (0, T ),

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t),z − ẇ(t)〉 ∀ z = (v, q) ∈ Z,
(12.22)

where Z = V ×Q0 with

V = (H1
0 (Ω))3,

Q0 = {q = (qij) : qij = qji, qij ∈ L2(Ω), tr q = 0},
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and

a(w, z) =
∫

Ω
[C(ε(u) − p) : (ε(v) − q) + k1p : q] dx, (12.23)

j(z) =
∫

Ω
c0|q(x)| dx, (12.24)

〈�(t),z〉 =
∫

Ω
f(t) · v dx. (12.25)

We take as an example the backward Euler time-discrete scheme, the
spatially continuous version of (12.18), to show how various iterative so-
lution algorithms are employed to solve the discrete problem. A similar
discussion applies to the more general generalized midpoint schemes.

The time-discrete problem involves the computation of a sequence wk =
(uk,pk) = {(uk

n,p
k
n)}Nn=1 ⊂ Z, wk

0 = 0, such that for n = 1, . . . , N ,

a(wk
n, z − δwk

n) + j(z) − j(δwk
n) ≥ 〈�n, z − δwk

n〉 ∀ z ∈ Z. (12.26)

The algorithms of interest are all of predictor–corrector type. Investi-
gations of convergence have been carried out in the context of the fully
discrete (finite element) formulation by Martin and Caddemi [85] and, at a
more general level, by Reddy and Martin [108]. These investigations have
been concerned primarily with the question of whether the algorithms gen-
erate minimizing sequences, rather than with the consequential question of
whether such sequences in fact converge. In the course of developing the
solution algorithms we will pay close attention to whether they produce
minimizing sequences. Then in next section we will examine rigorously the
question of convergence for some of the algorithms.

We first rewrite (12.26) in a form such that the increment ∆wk
n is the

primary unknown. Attention is focused on a particular time tn, and with
wk

n−1 known, the problem is one of finding wk
n ∈ Z such that

a(∆wk
n, z − ∆wk

n) + j(z) − j(∆wk
n) ≥ 〈Ln, z − ∆wk

n〉 ∀ z ∈ Z,
(12.27)

where the functional Ln is defined by

〈Ln, z〉 = 〈�n, z〉 − a(wk
n−1, z). (12.28)

Crucial to the algorithm will be the consideration of this variational in-
equality as a combination of an equation and an inequality. Indeed, if we
return to the definition (12.23) of a(·, ·), we see that this bilinear form may
be written, with w = (u,p) and z = (v, q), as

a(w, z) = b(u,v) − c(p,v) − c(q,u) + d(p, q), (12.29)
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where

b : V × V → R, b(u,v) =
∫

Ω
C ε(u) : ε(v) dx,

c : Q0 × V → R, c(q,v) =
∫

Ω
C q : ε(v) dx,

d : Q0 ×Q0 → R, d(p, q) =
∫

Ω
(C p : q + k1p : q) dx.

The linear functional Ln(·) may likewise be decomposed by writing it in
the form

〈Ln, z〉 = 〈Ln,1,v〉 + 〈Ln,2, q〉,

in which

Ln,1 : V → R, 〈Ln,1,v〉 =
∫

Ω
[fn · v − σk

n−1 : ε(v)] dx,

and

Ln,2 : Q0 → R, 〈Ln,2, q〉 =
∫

Ω
χk

n−1 : q dx,

where

σk
n−1 = C (ε(uk

n−1) − pk
n−1),

χk
n−1 = σk

n−1 + k1p
k
n−1

are known from the previous step of the computation. Thus (12.27) can be
written in the form

b(∆uk
n,v) − c(∆pk

n,v) = 〈Ln,1,v〉 ∀v ∈ V, (12.30)
j(q) − j(∆pk

n) − c(q − ∆pk
n,∆uk

n) + d(∆pk
n, q − ∆pk

n)
≥ 〈Ln,2, q − ∆pk

n〉 ∀ q ∈ Q0. (12.31)

Here, we identify j(z) with j(q) in view of the expression of j(z) defined
in (12.24).

This variational inequality can be reformulated as a minimization prob-
lem. Such a formulation follows directly from the (equivalent) formula-
tion (12.27), and the problem may be considered as one of finding ∆wk

n ∈ Z
such that

Ln(∆wk
n) ≤ Ln(z) ∀ z ∈ Z, (12.32)

where the functional Ln is defined by

Ln(z) =
1
2
a(z, z) + j(q) − 〈Ln, z〉. (12.33)
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In order to simplify the notation in the derivation and convergence anal-
ysis of solution algorithms, we will view the problem (12.30)–(12.31) as a
special case of an abstract problem to be defined next.

First we introduce various spaces, functionals, and assumptions. Let V
and Λ be two Hilbert spaces. Let there be given three continuous bilinear
forms, b : V × V → R, c : Λ × V → R, and d : Λ × Λ → R; two continuous
linear forms, �1 : V → R and �2 : Λ → R; and one functional, j : Λ → R.
Assume that b and d are symmetric. Also assume that j is nonnegative,
convex, and Lipschitz continuous, and is of the form

j(µ) =
∫

Ω
D(µ(x)) dx,

where the function D(µ) is not differentiable at µ = 0 and is two times
differentiable everywhere else. For w = (u, λ), z = (v, µ) ∈ V × Λ, define

a(w, z) = b(u, v) − c(λ, v) − c(µ, u) + d(λ, µ). (12.34)

We further assume that a : (V ×Λ)× (V ×Λ) → R is (V ×Λ)-elliptic, that
is, for some constant c0 > 0,

a(z, z) ≥ c0(‖v‖2
V + ‖µ‖2

Λ) ∀ z = (v, µ) ∈ V × Λ. (12.35)

Problem Absd. Find u ∈ V and λ ∈ Λ such that

b(u, v) − c(λ, v) = 〈�1, v〉 ∀ v ∈ V, (12.36)
j(µ) − j(λ) − c(µ− λ, u) + d(λ, µ− λ)

≥ 〈�2, µ− λ〉 ∀µ ∈ Λ. (12.37)

The smoothness assumptions on j essentially restrict applications to
problems involving smooth yield surfaces. The implications for the algo-
rithm of a nonsmooth yield surface such as that corresponding to the Tresca
yield condition are treated in Rencontré, Bird, and Martin [110], and Simo,
Kennedy, and Govindjee [117].

We will develop solution algorithms for the problem Absd, instead of the
concrete problem formulated in (12.30) and (12.31). It will prove convenient
to reformulate this problem as a minimization problem. Let us introduce
an “energy” functional

L(z) = 1
2a(z, z) + j(µ) − 〈�1, v〉 − 〈�2, µ〉, z = (v, µ) ∈ V × Λ. (12.38)

By a standard approach, it can be shown that the variational inequality
problem (12.36)–(12.37) is equivalent to the minimization problem

w ∈ V × Λ, L(w) ≤ L(z) ∀ z ∈ V × Λ. (12.39)
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From the assumptions made on the data, it is readily seen that the func-
tional L(·) is strictly convex and coercive over V × Λ, and hence the min-
imization problem (12.39) has a unique solution. Thus, the variational in-
equality problem (12.36)–(12.37) also has a unique solution (u, λ) ∈ V ×Λ.
The framework given in the problem Absd is fairly general; by a slight
modification of the space setting (replacing the space Λ by a nonempty
closed convex cone of a Hilbert space), we can also include in this frame
the elastoplasticity problem with combined linear kinematic–isotropic hard-
ening, using a generalized midpoint rule.

The solution algorithm. We make use of a two-step predictor–corrector
strategy for solving the variational problem Absd. In a general iteration
step we have estimates ui−1 and λi−1, and we seek new, improved esti-
mates ui and λi. Let u0 and λ0 be some initial guess, e.g., we may take
u0 = 0 and λ0 = 0. We consider first conditions under which the itera-
tive scheme generates a minimizing sequence for the “energy” functional
L. This requires that

∆Li ≡ L(ui, λi) − L(ui−1, λi−1) < 0. (12.40)

The two steps of the iteration scheme will be referred to as the predictor
step and the corrector step. In the predictor step we replace L by a quadratic
functional L(i), chosen in such a way that

L(i)(ui−1, λi−1) = L(ui−1, λi−1). (12.41)

The minimization of the unconstrained quadratic functional L(i) is a linear
problem, and leads to the estimate (ui, λ∗i). In the corrector step, we min-
imize L(ui, µ) over all µ to find λi. We shall discuss the implementation
of each of these steps in further detail. At the moment, we note that it is
possible to set conditions under which each of the predictor and corrector
steps leads to a decrease in the functional L. In other words, the sequence
generated in this manner is a minimizing sequence. The question of whether
this sequence is actually convergent will be investigated in the next section.

We define

∆Li
P = L(ui, λ∗i) − L(ui−1, λi−1) (12.42)

and

∆Li
C = L(ui, λi) − L(ui, λ∗i). (12.43)

A sufficient condition for monotonic behavior is clearly

∆Li
P < 0 and ∆Li

C ≤ 0. (12.44)

The definition of the corrector step leads immediately to condition (12.44)2,
so that our sufficient condition for monotonic behavior is met if condition
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(12.44)1 is satisfied. We first discuss briefly the corrector step.

The corrector step. In the corrector step we start with a new estimate
ui obtained from the predictor step, and seek to minimize L(ui, µ) over all
µ ∈ Λ. In this minimization ui is held unchanged, and L(ui, µ) achieves its
minimum at µ = λi. From (12.38) we see that

L(ui, µ) = −c(µ, ui) + 1
2d(µ, µ) + j(µ) − 〈�2, µ〉

+ terms independent of µ. (12.45)

With ui ∈ V given, we are therefore required to find λi ∈ Λ such that

j(µ) − j(λi) + d(λi, µ− λi) ≥ 〈�2, µ− λi〉 + c(µ− λi, ui) ∀µ ∈ Λ.
(12.46)

Comparison with (12.37) shows that the problem of minimizing the func-
tional (12.45) is equivalent to solving the variational inequality (12.37),
with u = ui there.

If the variables have the required degree of smoothness, it is possible to
numerically solve the problem (12.46) pointwise. Indeed, this amounts to
solving a discrete version of (12.46) pointwise. For a fully discrete approx-
imation of the problem (12.36)–(12.37), this procedure is implemented by
solving for the variable λ at integration points. Thus, rather than having
to solve simultaneously for the variable λ at all integration points, it is
necessary only to solve a sequence of small uncoupled problems at each in-
tegration point. This collocation-type approach is made possible by the fact
that spatial derivatives of the variable λ (which corresponds to the inter-
nal variables in elastoplasticity problems) do not appear anywhere. Further
details may be found, for example, in Martin and Reddy [87], Reddy and
Martin [107, 108] for the small strain case, and in Eve and Reddy [37] for
finite strain problems.

The predictor step. We will consider several predictor steps discussed
in the literature. It is convenient to introduce a change of variables

v̂ = v − ui−1, µ̂ = µ− λi−1,

and to define ẑ = (v̂, µ̂). Now we rewrite the functional L in terms of
ẑ, thanks to the expression (12.34). We find, after some straightforward
algebraic manipulation, that

L(v, µ) = L(ui−1 + v̂, λi−1 + µ̂)
= 1

2a(ẑ, ẑ) + j(λi−1 + µ̂) − j(λi−1) − 〈χi−1, µ̂〉
− 〈Ri, v̂〉 + terms independent of v̂, µ̂ (12.47)

where

〈χi−1, µ̂〉 = c(µ̂, ui−1) − d(λi−1, µ̂) + 〈�2, µ̂〉,
〈Ri, v̂〉 = −b(ui−1, v̂) + c(λi−1, v̂) + 〈�1, v̂〉.
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In the context of the plasticity problem, the linear functional Ri is the
residual, and represents the out-of-balance forces at the end of the (i −
1)th iteration (cf. (12.36)). Clearly, if Ri = 0, then the iterative process is
complete, since the equilibrium equation (12.36) is satisfied at (ui−1, λi−1).
At this point L achieves its minimum value. This follows from the fact that
in (12.47), the first term is nonnegative from the positive definiteness of
the bilinear form a(·, ·), and j(λi−1 + µ̂)− j(λi−1)−〈χi−1, µ̂〉 ≥ 0 from the
fact that (ui−1, λi−1) satisfies the inequality (12.37). Thus, if Ri = 0, then
L achieves its least value at ẑ = (û, λ̂) = (0, 0).

The first choice of a predictor that we shall introduce is the elastic pre-
dictor. In the elastic predictor we set µ̂ = 0 in (12.47), and instead of
minimizing L, we minimize the functional

L(i)(v̂) = 1
2b(v̂, v̂) − 〈Ri, v̂〉. (12.48)

Here, we use the notation L(i)(v̂) rather than L(i)(v̂, 0). The minimum of
L(i) is achieved at ûi, which satisfies

b(ûi, v̂) = 〈Ri, v̂〉 ∀ v̂ ∈ V. (12.49)

This is simply the elastic boundary value problem with the loading given
by Ri. We set ui = ûi + ui−1, and since there is no change in λ,

λ∗i = λi−1.

Use of the elastic predictor results in a nonpositive ∆Li
P . To see this, we

observe that

∆Li
P = L(ui, λ∗i) − L(ui−1, λi−1)

= L(ui, λi−1) − L(ui−1, λi−1)
= L(i)(ûi) − L(i)(0)
≤ 0

with equality if and only if Ri = 0.
In practice, however, the decrease of the energy functional L(·) is slow

when the elastic predictor is used. A modified elastic predictor was given
by Comi and Maier [28], within the context of the spatially discrete (finite
element) formulation of the elastoplasticity problem, and was shown to im-
prove the speed of monotonic decrease. We briefly describe their extension
in the present variational framework.

First we introduce another bilinear form b∗(·, ·) on V ×V . Then we replace
(12.49) by the problem of finding ûi∗ ∈ V such that

b∗(ûi∗, v̂) = 〈Ri, v̂〉 ∀ v̂ ∈ V. (12.50)
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The solution ûi∗ differs from the solution ûi of the problem (12.49), and
we still set λ∗i = λi−1. It follows that

∆Li
P = L(ui∗, λ∗i) − L(ui−1, λi−1)

= L(ui∗, λi−1) − L(ui−1, λi−1)
= 1

2b(u
i∗, ui∗) − 〈Ri, ui∗〉

= 1
2b(u

i∗, ui∗) − b∗(ui∗, ui∗).

It is evident that if the bilinear form b∗ strictly dominates 1
2b in the sense

that

1
2b(v, v) < b∗(v, v) ∀ v ∈ V, v �= 0, (12.51)

then we have

∆Li
P ≤ 0

with equality if and only if ui∗ = 0, or equivalently, Ri = 0. In the context
of the elastoplasticity problem (12.30)–(12.31), the bilinear form b∗(·, ·) can
be constructed from b(·, ·) by replacing the elasticity tensor C with a tensor
C∗. Then the requirement (12.51) amounts to the condition that the tensor
C∗− 1

2C be positive definite. This permits a variety of choices for C∗ (and
in the finite element framework, for the modified stiffness matrix K∗) that
lead to the desired monotonically decreasing behavior. Some possibilities
for the construction of the tensor C∗ are discussed for the spatially discrete
case by Comi and Maier [28].

In proceeding further, we differentiate between active and inactive re-
gions of the domain. At the end of the (i− 1)th iteration the domain Ω is
partitioned into two disjoint parts: the active region Ωp(i), which is defined
to be the subset of Ω comprising points at which λi−1 �= 0, and the inactive
region Ωe(i), which is the subset comprising points at which λi−1 = 0. Note
that these two subsets can change after each iteration. In setting up the
quadratic approximation L(i) of L in the following discussion, we shall as-
sume that λ̂∗i = 0 in the inactive region. We note further that for the first
iteration the entire domain is regarded as inactive, and hence, by setting
λ̂0 = 0 throughout Ω, we are forced to use the elastic predictor. This is log-
ical in the sense that the load increment may lead to global unloading, for
which the elastic predictor is the only acceptable predictor for convergence.
The effect of permitting changes λ̂∗i only in the active region is that the
dissipation function D (and hence also the functional j) is differentiable at
λ̂i−1.

In setting up the quadratic approximation of L we restrict all integrals
involving the variable µ to the active region. The solution λ̂∗i will thus be
a function that is identically zero in the inactive region.

For completeness, we shall refer briefly to the concept of a secant predic-
tor used in Bird and Martin [10]. Here we replace D in the active region
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Figure 12.1: Approximation D(i) of D for the secant predictor

by a quadratic function D(i), defined in such a way that

D(i)(λi−1) = D(λi−1), (12.52)
∇D(i)(λi−1) = ∇D(λi−1) = χi−1 (12.53)

and

D(µ) ≤ D(i)(µ) ∀µ ∈ Λ. (12.54)

The quadratic function D(i) thus fits inside the cone D, touching at the
point λi−1 (see Figure 12.1). The exact form of D(i) will depend on the
nature of D; the von Mises case is discussed in [10].

Let

j(i)(µ) =
∫

Ω
D(i)(µ) dx, µ ∈ Λ.

Here, as stated earlier, the integration region is implicitly understood to
be the active region of λi−1. The quadratic approximating function for L
is now

L(i)(z) = 1
2a(z, z) + j(i)(µ) − 〈�1, v〉 − 〈�2, µ〉 (12.55)

for z = (v, µ) ∈ V × Λ.
The functional L(i) achieves its minimum at (ui, λ∗i) = (ui−1+ûi, λi−1+

λ̂∗i), and (ûi, λ̂∗i) satisfies

b(ûi, v̂) − c(λ̂∗i, v̂) = 〈Ri, v̂〉 ∀ v̂ ∈ V, (12.56)

j(i)(λi−1 + µ̂) − j(i)(λi−1 + λ̂∗i) − c(µ̂− λ̂∗i, ûi) + d(λ̂∗i, µ̂− λ̂∗i)

≥ 〈χi−1, µ̂− λ̂∗i〉 ∀ µ̂ ∈ Λ, (12.57)
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where Ri and χi−1 are defined as before. We note that since j(i) is a dif-
ferentiable quadratic form, the inequality (12.57) is actually equivalent to
the linear equation

〈∇j(i)(λi−1 + λ̂∗i), µ̂〉 − c(µ̂, ûi) + d(λ̂∗i, µ̂) = 〈χi−1, µ̂〉 ∀ µ̂ ∈ Λ. (12.58)

Now let us check whether ∆Li
P is decreasing. First we note that

L(ui−1, λi−1) = L(i)(ui−1, λi−1)

by the condition (12.52). Then by using the condition (12.54), we have

∆Li
P = L(ui, λ∗i) − L(ui−1, λi−1)

= L(i)(ui, λ∗i) + j(λ∗i) − j(i)(λ∗i) − L(i)(ui−1, λi−1)
≤ L(i)(ui, λ∗i) − L(i)(ui−1, λi−1)
≤ 0,

where the last inequality becomes an equality if and only if Ri = 0. Thus
(12.44)1 is satisfied for the secant method.

However, usually the rate of decrease for the secant predictor is still slow.
The case of real interest is the tangent predictor, which we shall discuss
next.

The tangent predictor. In the tangent predictor, we define D(i) as the
second order Taylor expansion of D about λi−1. Again, we need only to
define D(i) in the active region. We put, with µ̂ = µ− λi−1,

D(i)(µ) = D(λi−1) + χi−1 · µ̂ + 1
2 µ̂ ·Bµ̂, (12.59)

where

χi−1 = ∇D(λi−1),
B = ∇2D(λi−1).

From the convexity of D, we infer that the function D(i) is convex.
As in the case of the secant predictor, we define

j(i)(µ) =
∫

Ω
D(i)(µ) dx, µ ∈ Λ.

The quadratic approximation for L is

L(i)(z) = 1
2a(z, z) + j(i)(µ) − 〈�1, v〉 − 〈�2, µ〉 (12.60)

for z = (v, µ) ∈ V × Λ. The functional L(i) achieves its minimum at

(ui, λ∗i) = (ui−1 + ûi, λi−1 + λ̂∗i),
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and (ûi, λ̂∗i) satisfies

b(ûi, v̂) − c(λ̂∗i, v̂) = 〈Ri, v̂〉 ∀ v̂ ∈ V, (12.61)

− c(µ̂, ûi) + d(λ̂∗i, µ̂) + 〈Bλ̂∗i, µ̂〉 = 0 ∀ µ̂ ∈ Λ. (12.62)

Again, Ri is defined as before.
This formulation leads, in the spatially discrete case, to the consistent

tangent predictor of Simo and Taylor [118]. To see this, note that (12.61)
and (12.62) will yield, after the introduction of a finite element basis, the
set of equations

Ka−Lα = Ri,

−LTa + (M + Q)α = 0,
(12.63)

in which a is the vector of nodal displacements, α is the vector of internal
variables at Gauss points (see Martin and Caddemi [85] for further details),
K is the conventional stiffness matrix, and Q is the matrix that arises
from the term containing B. Elimination of the vector α from this set of
equations leads to the equation

KCa =
{
K −L(M + Q)−1LT

}
a = Ri, (12.64)

thus defining the consistent tangent predictor modulus KC . An alternative
formulation, in which we expand to only first order in (12.59), or alterna-
tively set Q = 0, leads to the conventional tangent predictor still used in
much finite element software. The consistent predictor is associated with
a quadratic rate of convergence, and we shall confine our attention to this
case. However, results for the conventional tangent predictor can be inferred
by setting Q = 0.

Now let us check whether it is possible to have monotonic convergence
for the tangent predictor. As before, we write

∆Li
P =

[
L(i)(ui, λ∗i) − L(i)(ui−1, λi−1)

]
+
[
j(λ∗i) − j(i)(λ∗i)

]
. (12.65)

From the definition of the solution (ui, λ∗i), we see that the first term on
the right-hand side of (12.65) is nonpositive. However, we have no control
over the sign of the second term on the right-hand side of (12.65). Indeed,
since D(i) is the second-order Taylor approximation of D, the difference
j(µ)− j(i)(µ) could be positive for certain µ and negative for some other µ.
Hence it seems that the tangent predictor in its pure form will not produce
a minimizing sequence.

Thus we are led to ask for what set of sufficient conditions it is possible to
show convergence for the tangent predictor. Here we give details to show
the line search procedure (see, for example, [29, 41, 89]) as a means of
resolving this problem.
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α0 1 2

L̂(i)(α)

L̂(α)

L̂(α) + α2C

Figure 12.2: The functions arising from the line search procedure

We consider a modified prediction of the form (αûi, αλ̂∗i), where α > 0
is a scalar to be determined and (ûi, λ̂∗i) is the solution of (12.61)–(12.62).

Referring back to the formula (12.47) for the functional L(v, µ), we dis-
card the terms that are independent of v̂ and µ̂, and define

L(ẑ) = 1
2a(ẑ, ẑ) + j(λi−1 + µ̂) − j(λi−1) − 〈χi−1, µ̂〉 − 〈Ri, v̂〉,

L
(i)

(ẑ) = 1
2a(ẑ, ẑ) + j(i)(λi−1 + µ̂) − j(λi−1) − 〈χi−1, µ̂〉 − 〈Ri, v̂〉.

We note that j(i)(λi−1) = j(λi−1). Now define two functions of α according
to

L̂(α) = L(αûi, αλ̂∗i),

L̂(i)(α) = L
(i)

(αûi, αλ̂∗i).

Prototype graphs of the functions are shown in Figure 12.2. Since the
function L̂(i) is quadratic in α and has its minimum value at α = 1, we see
that L̂(i)|α=2 = L̂(i)|α=0. Now consider the function

L̂ + α2C, C = 1
2 〈λ̂

∗i, B λ̂∗i〉 ≥ 0. (12.66)

Since D is a convex function, it is evident that

L̂(α) + α2C ≥ L̂(i)(α). (12.67)

The function is plotted in Figure 12.2.
We note that L̂(α) +α2C and L̂(i)(α) have the same value and gradient

at α = 0. It follows then that

L̂(α) + α2C < L̂(0)
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for α in some range 0 < α < α′, where α′ ≤ 1. Finally,

L̂(α) ≤ L̂(α) + α2C.

At this level of generality it is not clear what value of α will provide the
least value of L̂; this indeed is the merit of the line search algorithm in
which the optimal value of α is found approximately. The optimal value of
α may be less than or greater than unity, and clearly if it is significantly
different from unity, its adoption holds promise for faster convergence in
the predictor step.

While we cannot forecast the optimal value of α, we are assured that the
least value of L̂(α) will be less than L̂(0), in view of the fact that the slope
of L̂(α) at α = 0 is negative. Further, if the optimal value of α is larger
than unity, then L̂|α=1 < L̂|α=0. Thus the conclusion given above holds:
there exists α′ with 0 < α′ ≤ 1 such that L̂(α) < L̂(0) for 0 < α < α′. For
a choice of α in this range, a monotonic decrease is assured.

The essential result that follows from the discussion above is that the
condition ∆Li

P ≤ 0, ∆Li
C < 0 is not assured when the consistent tangent

predictor is used directly. However, if for some iteration this condition does
not hold, there will exist a value α in the range 0 < α ≤ 1 for which it
holds. In practice, the rate of decrease can be judged by comparing the
residual at the end of the iteration with the previous residual; our analysis
suggests that if the rate has the wrong sign in any iteration, the corrector
step of the iteration should be repeated with decreasing values of α until
it is again of the correct sign.

This comment strengthens the argument for the adoption of the line
search algorithm; if the optimal or a near optimal value of α is chosen in
each iteration, then the desired monotonic decrease is assured.

12.3 Convergence Analysis of the Solution
Algorithms

In the last section we presented and analyzed some solution algorithms of
the predictor–corrector type. The solution algorithms with the first three
predictors are shown to lead to minimizing sequences of approximations.
Whereas the solution algorithm with the tangent predictor does not, in
general, enjoy this property, it can be adapted, by introducing a line search
technique, so that the resulting algorithm leads to the desired monotoni-
cally decreasing behavior.

While the monotonic property guarantees that the sequence of approx-
imations is a minimizing sequence, it does not imply the convergence of
the sequence itself. Theoretically, it is possible that the limit of the min-
imizing sequence may fail to be the minimizer of the function. Therefore,
it is important to know whether the solution algorithms presented in the



294 12. Numerical Analysis of the Primal Problem

last section do produce convergent results. We will rigorously prove the
convergence of the solution algorithms for the first three predictors in this
section.

We will perform the convergence analysis in the framework of the prob-
lem Absd. In particular, we need to solve (12.36)–(12.37). In this section
we assume that the conditions stated in Problem Absd are satisfied. Thus,
for example, the bilinear form a is (V × Λ)-elliptic in the sense of (12.35).
By taking µ = 0 and v = 0 in turn in (12.35), we find that the bilinear form
b is V -elliptic, the bilinear form d is Λ-elliptic, and with the same constant
c0 in (12.35),

b(v, v) ≥ c0‖v‖2
V ∀ v ∈ V, (12.68)

d(µ, µ) ≥ c0‖µ‖2
Λ ∀µ ∈ Λ. (12.69)

Convergence of the elastic predictor. For convenience, we restate
the algorithm for the elastic predictor in a more compact form.

Algorithm 1. Choose w0 = (u0, λ0) ∈ V × Λ as the initial guess.
For i = 1, 2, . . . ,
Predictor: Compute ui ∈ V such that

b(ui, v) = 〈�1, v〉 + c(λi−1, v) ∀ v ∈ V. (12.70)

Corrector: Compute λi ∈ Λ such that

j(µ) − j(λi) + d(λi, µ− λi) ≥ 〈�2, µ− λi〉 + c(µ− λi, ui) ∀µ ∈ Λ.
(12.71)

Theorem 12.5. Under the assumptions stated in Problem Absd, Algo-
rithm 1 converges:

ui → u in V and λi → λ in Λ as i → ∞,

where (u, λ) is the solution of Problem Absd.

Proof. First we notice that the sequence {(ui, λi)}i≥1 is well-defined.
We take µ = λi−1 in (12.71) to obtain

j(λi−1) − j(λi) + d(λi, λi−1 − λi) ≥ 〈�2, λi−1 − λi〉 + c(λi−1 − λi, ui),
(12.72)

and take v = ui−1 − ui in (12.70) to obtain

b(ui, ui−1 − ui) = 〈�1, ui−1 − ui〉 + c(λi−1, ui−1 − ui). (12.73)

Now we consider the energy difference (recall the definition (12.38) of the
energy L):

L(wi−1) − L(wi)
= 1

2

[
b(ui−1, ui−1) − b(ui, ui)

]
−
[
c(λi−1, ui−1) − c(λi, ui)

]
+ 1

2

[
d(λi−1, λi−1) − d(λi, λi)

]
+ j(λi−1) − j(λi)

− 〈�1, ui−1 − ui〉 − 〈�2, λi−1 − λi〉,
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where wi = (ui, λi). Using the relations (12.72) and (12.73), we have

L(wi−1) − L(wi)
≥ 1

2

[
b(ui−1, ui−1) − b(ui, ui) − 2 b(ui, ui−1 − ui)

]
− [c(λi−1, ui−1) − c(λi, ui)

− c(λi−1 − λi, ui) − c(λi−1, ui−1 − ui)]
+ 1

2

[
d(λi−1, λi−1) − d(λi, λi) − 2 d(λi, λi−1 − λi)

]
= 1

2

[
b(ui−1 − ui, ui−1 − ui) + d(λi−1 − λi, λi−1 − λi)

]
.

Using (12.68) and (12.69) we thus have a useful inequality:

L(wi−1) − L(wi) ≥ c0
2

(
‖ui−1 − ui‖2

V + ‖λi−1 − λi‖2
Λ
)

=
c0
2
‖wi−1 − wi‖2

Z . (12.74)

A first consequence of the above inequality is that the sequence {L(wi)}i
is decreasing. Since the sequence {L(wi)}i is bounded below by L(w), with
w the solution of the problem Absd or equivalently the minimizer of L(·),
we see that the sequence {L(wi)}i has a limit. We may use the inequal-
ity (12.74) again to find that

‖wi−1 − wi‖Z → 0 as i → ∞, (12.75)

since {L(wi)}i is convergent and hence is a Cauchy sequence.
The next step is to show that the limit is attained at w. We choose µ = λi

in (12.37) to obtain

j(λi) − j(λ) − c(λi − λ, u) + d(λ, λi − λ) ≥ 〈�2, λi − λ〉, (12.76)

and choose v = ui − u in (12.36) to obtain

b(u, ui − u) − c(λ, ui − u) = 〈�1, ui − u〉. (12.77)

Next we consider the energy difference L(wi) − L(w). This time, we will
derive both a lower bound and an upper bound for the energy difference.
For a lower bound, we use the inequalities (12.76) and (12.77) to obtain

L(wi) − L(w)
= 1

2

[
b(ui, ui) − b(u, u)

]
−
[
c(λi, ui) − c(λ, u)

]
+ 1

2

[
d(λi, λi) − d(λ, λ)

]
+ j(λi) − j(λ)

− 〈�1, ui − u〉 − 〈�2, λi − λ〉
≥ 1

2

[
b(ui, ui) − b(u, u) − 2 b(u, ui − u)

]
−
[
c(λi, ui) − c(λ, u) − c(λi − λ, u) − c(λ, ui − u)

]
+ 1

2

[
d(λi, λi) − d(λ, λ) − 2 d(λ, λi − λ)

]
= 1

2 b(u
i − u, ui − u) − c(λi − λ, ui − u) + 1

2 d(λ
i − λ, λi − λ)

= 1
2 a(w

i − w,wi − w).
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Using the Z-ellipticity of a(·, ·), (12.35), we then have the lower bound

L(wi) − L(w) ≥ c0
2
‖wi − w‖2

Z . (12.78)

To derive an upper bound for the energy difference, we first take µ = λ
in (12.71) and v = ui − u in (12.70) to obtain

j(λ) − j(λi) + d(λi, λ− λi) ≥ 〈�2, λ− λi〉 + c(λ− λi, ui), (12.79)
b(ui, ui − u) = 〈�1, ui − u〉 + c(λi−1, ui − u). (12.80)

Using these two inequalities, we have

L(wi) − L(w)
= 1

2

[
b(ui, ui) − b(u, u)

]
−
[
c(λi, ui) − c(λ, u)

]
+ 1

2

[
d(λi, λi) − d(λ, λ)

]
+ j(λi) − j(λ)

− 〈�1, ui − u〉 − 〈�2, λi − λ〉
≤ 1

2

[
b(ui, ui) − b(u, u) − 2 b(ui, ui − u)

]
−
[
c(λi, ui) − c(λ, u) + c(λ− λi, ui) − c(λi−1, ui − u)

]
+ 1

2

[
d(λi, λi) − d(λ, λ) + 2 d(λi, λ− λi)

]
= − 1

2 b(u
i − u, ui − u) + c(λi−1 − λ, ui − u)

− 1
2 d(λ

i − λ, λi − λ)

= − 1
2 a(w

i − w,wi − w) + c(λi−1 − λi, ui − u)

≤ c(λi−1 − λi, ui − u).

Using the continuity of the bilinear form c and the well-known inequality

x y ≤ ε x2 +
1
4 ε

y2 ∀x, y ∈ R, ∀ ε > 0,

we then get

L(wi) − L(w) ≤ c0
4
‖ui − u‖2

V + c ‖λi−1 − λi‖2
Λ for some c > 0. (12.81)

Combining the inequalities (12.78), (12.81) and the obvious inequality

‖ui − u‖V ≤ ‖wi − w‖Z ,

we have

‖wi − w‖Z ≤ c ‖λi − λi−1‖Λ → 0 as i → ∞,

by virtue of (12.75). �
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A more careful examination of the argument leading to the inequality
(12.71) shows that together with (12.78), actually we have

a(wi − w,wi − w) ≤ c(λi−1 − λi, ui − u).

Now assume that we know the continuity constant c2 for the bilinear form
c(·, ·), that is, the constant appearing in the inequality

c(µ, v) ≤ c2‖µ‖Λ‖v‖V .

Then

c0‖wi − w‖2
Z ≤ a(wi − w,wi − w)
≤ c(λi−1 − λi, ui − u)
≤ c2‖λi−1 − λi‖Λ‖ui − u‖V
≤ c2‖λi−1 − λi‖Λ‖wi − w‖Z .

Therefore, we have a computable error estimate

‖wi − w‖Z ≤ c2
c0

‖λi−1 − λi‖Λ,

which is useful in estimating the error associated with an iterate wi.

Convergence of the modified elastic predictor. For the second
predictor considered in the last section, we need an auxiliary bilinear form
b∗ : V × V → R. Then we state the second solution algorithm in compact
form as follows:

Algorithm 2. Choose w0 = (u0, λ0) ∈ V × Λ as the initial guess.
For i = 1, 2, . . . ,
Predictor: Compute ui ∈ V such that

b∗(ui, v) = b∗(ui−1, v) − b(ui−1, v) + c(λi−1, v) + 〈�1, v〉 ∀ v ∈ V. (12.82)

Corrector: Compute λi ∈ Λ such that

j(µ) − j(λi) + d(λi, µ− λi) ≥ 〈�2, µ− λi〉 + c(µ− λi, ui) ∀µ ∈ Λ.
(12.83)

We observe that the corrector step is the same as that in Algorithm 1.
For the convergence of Algorithm 2, we need to make some assumptions
on the bilinear form b∗.

Theorem 12.6. We keep the assumptions stated in Problem Absd. Fur-
thermore, we assume that the bilinear form b∗ : V × V → R is continuous,
symmetric, and that there exists a constant c1 > 0 such that

b∗(v, v) − 1
2 b(v, v) ≥ c1‖v‖2

V ∀ v ∈ V. (12.84)
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Then Algorithm 2 converges:

ui → u in V, λi → λ in Λ as i → ∞.

Proof. From the assumptions, we see that the sequence {(ui, λi)} is well-
defined.

The idea of the convergence proof is the same as that for Theorem 12.5.
First we consider the energy difference L(wi−1) − L(wi). Since the correc-
tor steps are the same for the two algorithms, we still have the inequal-
ity (12.72). We take v = ui−1 − ui in (12.82) to obtain

b∗(ui, ui−1 − ui) = b∗(ui−1, ui−1 − ui) − b(ui−1, ui−1 − ui)
+ c(λi−1, ui−1 − ui) + 〈�1, ui−1 − ui〉. (12.85)

Using the inequalities (12.72) and (12.85), we can find a lower bound for
the energy difference:

L(wi−1) − L(wi) ≥ b∗(ui−1 − ui, ui−1 − ui) − 1
2 b(u

i−1 − ui, ui−1 − ui)

+ 1
2 d(λ

i−1 − λi, λi−1 − λi).

Using the assumption (12.84) and the Λ-ellipticity of the bilinear form d,
we then find that

L(wi−1) − L(wi) ≥ min{c1, c0/2}
(
‖ui−1 − ui‖2

V + ‖λi−1 − λi‖2
Λ
)
.

(12.86)

Once again, from (12.86) we infer that

‖wi−1 − wi‖Z → 0 as i → ∞. (12.87)

Now we consider the energy difference L(wi) − L(w). We note that in
deriving the lower bound (12.78) for the difference L(wi) − L(w) in the
proof of the last theorem, we used only the relations (12.36) and (12.37).
Thus, for Algorithm 2, we still have the inequality (12.78). To have an
upper bound for the energy difference, we note that the inequality (12.79)
remains unchanged, since it is derived from the corrector step. We choose
v = ui − u in (12.82) to obtain

b∗(ui, ui − u) = b∗(ui−1, ui − u) − b(ui−1, ui − u)
+ c(λi−1, ui − u) + 〈�1, ui − u〉. (12.88)
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Using the inequalities (12.79) and (12.88), after some straightforward alge-
braic manipulations we have

L(wi) − L(w)
≤ − 1

2 b(u
i − u, ui − u) + b(ui − ui−1, ui − u) − b∗(ui − ui−1, ui − u)

+ c(λi−1 − λ, ui − u) − 1
2 d(λ

i − λ, λi − λ)

= − 1
2 a(w

i − w,wi − w) + b(ui − ui−1, ui − u)

− b∗(ui − ui−1, ui − u) + c(λi−1 − λi, ui − u)
≤ b(ui − ui−1, ui − u) − b∗(ui − ui−1, ui − u) + c(λi−1 − λi, ui − u)

≤ c0
4
‖ui − u‖2

V + c
(
‖ui − ui−1‖2

V + ‖λi − λi−1‖2
Λ
)

≤ c0
4
‖wi − w‖2

Z + c
(
‖ui − ui−1‖2

V + ‖λi − λi−1‖2
Λ
)
,

which, combined with (12.78), implies that

‖wi − w‖Z ≤ c ‖wi − wi−1‖Z → 0 as i → ∞.

Thus the convergence of the iterates is proved. �

Convergence of the secant predictor. Now we turn to the convergence
analysis for the solution algorithm with the secant predictor. We observe
that for the ith iteration in the predictor step, we minimize the functional

1
2 b(v, v) − c(µ, v) + 1

2 d(µ, µ) + j(i)(µ) − 〈�1, v〉 − 〈�2, µ〉,

where

j(i)(µ) =
∫

Ω
D(i)(µ) dx

for a quadratic function D(i) satisfying the conditions (12.52)–(12.54). The
minimizer is denoted by (ui, λ∗i), where ui is an updated solution com-
ponent, while the intermediate value λ∗i is not needed further. The third
solution algorithm can now be stated as follows.

Algorithm 3. Choose a w0 = (u0, λ0) ∈ V × Λ as the initial guess.
For i = 1, 2, . . . ,
Predictor: Compute ui ∈ V such that ui, together with λ∗i ∈ Λ,

satisfies

b(ui, v) − c(λ∗i, v) = 〈�1, v〉 ∀ v ∈ V, (12.89)
j(i)(µ) − j(i)(λ∗i) + d(λ∗i, µ− λ∗i)

≥ 〈�2, µ− λ∗i〉 + c(µ− λ∗i, ui) ∀µ ∈ Λ. (12.90)

Corrector: Compute λi ∈ Λ such that

j(µ) − j(λi) + d(λi, µ− λi) ≥ 〈�2, µ− λi〉 + c(µ− λi, ui) ∀µ ∈ Λ.
(12.91)
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As was noted in the last section, the inequality (12.90) is actually a lin-
ear equation (cf. (12.58)). For the convergence analysis, however, it is more
convenient to leave the relation in the form of an inequality. Once again,
we observe that the corrector step is the same as in Algorithm 1, so any
relations derived from the corrector step in the proof of Theorem 12.5 are
still valid for Algorithm 3.

Theorem 12.7. Under the assumptions stated in Problem Absd, Algo-
rithm 3 converges:

ui → u in V and λi → λ in Λ as i → ∞.

Proof. Denote by w∗i = (ui, λ∗i) the intermediate solution from the
predictor step. Let us first consider the difference

L(wi−1) − L(w∗i)
= 1

2

[
b(ui−1, ui−1) − b(ui, ui)

]
−
[
c(λi−1, ui−1) − c(λ∗i, ui)

]
+ 1

2

[
d(λi−1, λi−1) − d(λ∗i, λ∗i)

]
+ j(λi−1) − j(λ∗i)

− 〈�1, ui−1 − ui〉 − 〈�2, λi−1 − λ∗i〉.

We take v = ui−1 − ui in (12.89) to obtain

b(ui, ui−1 − ui) − c(λ∗i, ui−1 − ui) = 〈�1, ui−1 − ui〉, (12.92)

and take µ = λi−1 in (12.90) to obtain

j(i)(λi−1) − j(i)(λ∗i) + d(λ∗i, λi−1 − λ∗i)
≥ 〈�2, λi−1 − λ∗i〉 + c(λi−1 − λ∗i, ui). (12.93)

Using (12.92) and (12.93), we find that

L(wi−1) − L(w∗i)
≥ 1

2

[
b(ui−1, ui−1) − b(ui, ui) − 2 b(ui, ui−1 − ui)

]
− [c(λi−1, ui−1) − c(λ∗i, ui)

− c(λ∗i, ui−1 − ui) − c(λi−1 − λ∗i, ui)]
+ 1

2

[
d(λi−1, λi−1) − d(λ∗i, λ∗i) − 2 d(λ∗i, λi−1 − λ∗i)

]
+ j(λi−1) − j(λ∗i) − j(i)(λi−1) + j(i)(λ∗i)

= 1
2 b(u

i−1 − ui, ui−1 − ui) − c(λi−1 − λ∗i, λi−1 − λ∗i)

+ 1
2 d(λ

i−1 − λ∗i, λi−1 − λ∗i) + j(i)(λ∗i) − j(λ∗i)

≥ 1
2 a(w

i−1 − w∗i, wi−1 − w∗i),

where we have used the relations j(i)(λi−1) = j(λi−1) and j(µ) ≤ j(i)(µ)
for any µ ∈ Λ. Thus, we have the inequality

L(wi−1) − L(w∗i) ≥ c0
2
‖wi−1 − w∗i‖2

Z . (12.94)
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From the definition of the corrector step, we have L(wi) ≤ L(w∗i). Hence,
from (12.94) we get

L(wi−1) − L(wi) ≥ c0
2
‖wi−1 − w∗i‖2

Z .

With the same argument used before, we then conclude that

wi−1 − w∗i → 0 as i → ∞. (12.95)

As will be seen below, we will need a result of the form (12.95), with the
superscript i− 1 in wi−1 replaced by i. To obtain such a result, we choose
µ = λi−1 in (12.91) to obtain

j(λi−1) − j(λi) + d(λi, λi−1 − λi) ≥ 〈�2, λi−1 − λi〉 + c(λi−1 − λi, ui).
(12.96)

Then in (12.91) again, we replace the index i by i− 1, and choose µ = λi

to obtain

j(λi) − j(λi−1) + d(λi−1, λi − λi−1) ≥ 〈�2, λi − λi−1〉 + c(λi − λi−1, ui−1).
(12.97)

The inequalities (12.96) and (12.97) are added to give

−d(λi−1 − λi, λi−1 − λi) ≥ −c(λi−1 − λi, ui−1 − ui),

or

d(λi−1 − λi, λi−1 − λi) ≤ c(λi−1 − λi, ui−1 − ui).

Using the Λ-ellipticity of d and the continuity of c, we have

‖λi−1 − λi‖Λ ≤ c ‖ui−1 − ui‖V → 0 as i → ∞,

by (12.95). This inequality, together with (12.95), implies

λ∗i − λi → 0 as i → ∞. (12.98)

We now proceed to consider the energy difference

L(wi) − L(w) = 1
2

[
b(ui, ui) − b(u, u)

]
−
[
c(λi, ui) − c(λ, u)

]
+ 1

2

[
d(λi, λi) − d(λ, λ)

]
+ j(λi) − j(λ) − 〈�1, ui − u〉 − 〈�2, λi − λ〉.

As before, we have the lower bound

L(wi) − L(w) ≥ 1
2 a(w

i − w,wi − w) ≥ c0
2
‖wi − w‖2

Z . (12.99)
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To derive an upper bound for the energy difference, we take v = ui − u in
(12.89), µ = λ in (12.91), to obtain

b(ui, ui − u) − c(λ∗i, ui − u) = 〈�1, ui − u〉

and

j(λ) − j(λi) + d(λi, λ− λi) ≥ 〈�2, λ− λi〉 + c(λ− λi, ui).

Using these two inequalities, we have

L(wi) − L(w) ≤ 1
2

[
b(ui, ui) − b(u, u) − 2 b(ui, ui − u)

]
−
[
c(λi, ui) − c(λ, u) − c(λ∗i, ui − u) + c(λ− λi, ui)

]
+ 1

2

[
d(λi, λi) − d(λ, λ) + 2 d(λi, λ− λi)

]
= − 1

2 a(w
i − w,wi − w) + c(λ∗i − λi, ui − u)

≤ c(λ∗i − λi, ui − u).

This inequality and (12.99) imply, with the Z-ellipticity of a and the con-
tinuity of c, that

‖wi − w‖2
Z ≤ c ‖λ∗i − λi‖Λ‖ui − u‖V ≤ c ‖λ∗i − λi‖Λ‖wi − w‖Z .

Therefore,

‖wi − w‖Z ≤ c ‖λ∗i − λi‖Λ → 0 as i → ∞,

by virtue of (12.98). �

We observe that in the convergence proof we did not use the condition
(12.53) in the construction of the quadratic functional j(i).

12.4 Regularization Technique and A Posteriori
Error Analysis

In this section we analyze the regularization technique for solving vari-
ational inequalities involving nondifferentiable terms. As a sample prob-
lem, we consider the solution of the backward Euler time-discrete scheme
(12.27) for the elastoplasticity problem (12.22). Similar results hold for
other numerical schemes (in particular, the fully discrete schemes) for solv-
ing (12.22), and for more general plasticity models such as those involving
combined kinematic and isotropic hardening.

In addition, we will restrict attention to the case of the von Mises yield
condition, for which the dissipation function is given by D(q) = c0|q|; the
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generalization to arbitrary yield conditions can be achieved with a little
modification on the following arguments.

We will first discuss the idea of the regularization technique and present
some general convergence theorems for the technique. For the commonly
used regularization methods (resulting from commonly used regulariza-
tion functions), we prove an a priori error estimate, which shows directly
the convergence of the regularization sequences. Besides the a priori error
estimate, we will also provide an a posteriori error analysis for the reg-
ularization technique. An a posteriori error estimate gives a computable
error bound once the solution of a regularized problem is computed. From
the application viewpoint, an a posteriori error estimate is more useful for
actual implementation of a regularization method.

To simplify the notation in this section, we will use w and � to stand for
the quantities ∆wk

n and Ln in (12.27). Thus, the problem to be solved is

w ∈ Z, a(w, z −w) + j(z) − j(w) ≥ 〈�,z −w〉 ∀ z ∈ Z. (12.100)

Here, as before, Z = V ×Q0, w = (u,p), z = (v, q), and

a(w, z) =
∫

Ω
[C(ε(u) − p) : (ε(v) − q) + k1p : q] dx, (12.101)

j(z) =
∫

Ω
c0|q(x)| dx, (12.102)

〈�,z〉 = 〈�1,v〉 + 〈�2, q〉. (12.103)

Here, �1 is a continuous linear form on V , and �2 is a continuous linear
form on Q0. Thus, � is a continuous linear form on Z = V ×Q0.

In this section we will additionally assume f(t) ∈ (L2(Ω))3 for a.a. t ∈
[0, T ]. It will be convenient for us to identify the functionals �1 and �2 with
functions �1 ∈ (L2(Ω))3 and �2 ∈ Q such that

〈�1,v〉 =
∫

Ω
�1 · v dx,

〈�2, q〉 =
∫

Ω
�2 : q dx.

Then

〈�,z〉 =
∫

Ω
(�1 · v + �2 : q) dx ∀ z = (v, q) ∈ Z.

The regularization technique. In a regularization method, the non-
differentiable term j(z) is approximated by a family of differentiable func-
tionals jε(z) =

∫
Ω φε(|q|) dx, where φε(|q|) is differentiable with respect to

q. The regularized approximation of (12.100) is

wε ∈ Z, a(wε, z −wε) + jε(z) − jε(wε) ≥ 〈�,z −wε〉 ∀ z ∈ Z.
(12.104)
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Since jε is differentiable, this problem is actually an equation, namely,

wε ∈ Z, a(wε, z) + 〈j′ε(wε), z〉 = 〈�,z〉 ∀ z ∈ Z. (12.105)

For a given nondifferentiable term, there are many ways to construct
sequences of differentiable approximations. We list three possible choices
of a regularizing sequence for the nondifferentiable functional j of (12.102).

Choice 1. jε(z) =
∫

Ω
c0φ

1
ε(|q|) dx, where

φ1
ε(t) =

√
t2 + ε2.

Choice 2. jε(z) =
∫

Ω
c0φ

2
ε(|q|) dx, where

φ2
ε(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t− ε

2
if t ≥ ε,

1
2ε

t2 if |t| ≤ ε,

−t− ε

2
if t ≤ −ε.

Choice 3. jε(z) =
∫

Ω
c0φ

3
ε(|q|) dx, where

φ3
ε(t) =

⎧⎪⎪⎨⎪⎪⎩
t if t ≥ ε,
1
2

(
t2

ε
+ ε

)
if |t| ≤ ε,

−t if t ≤ −ε.

Convergence, a priori error estimate. We first consider the conver-
gence of the regularization technique (cf. [45, 62]).

Theorem 12.8. Let V be a Hilbert space; a : V × V → R a continu-
ous, V -elliptic bilinear form; j : V → R a proper, nonnegative, convex,
and weakly continuous functional; and � a linear continuous form on V .
Assume that jε : V → R is proper, nonnegative, convex, and weakly l.s.c.
Assume further that

jε(v) → j(v) ∀ v ∈ V,

uε → u weakly in V =⇒ j(u) ≤ lim inf
ε→0

jε(uε).

Let u, uε ∈ V be the solutions of the variational inequalities

a(u, v − u) + j(v) − j(u) ≥ 〈�, v − u〉 ∀ v ∈ V
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and

a(uε, v − uε) + jε(v) − jε(uε) ≥ 〈�, v − uε〉 ∀ v ∈ V,

respectively. Then, uε → u in V as ε → 0.

In the context of the problem (12.100) and its regularization (12.104), the
conditions stated in Theorem 12.8 are satisfied for all three choices of the
regularization function. So with any of these choices the regularization
method (12.104) produces a convergent sequence:

wε → w as ε → 0. (12.106)

Actually, with the chosen regularization functions it is easy to verify that∣∣φε(|q|) − |q|
∣∣ ≤ c ε ∀ q. (12.107)

Using (12.107), we can derive an a priori error estimate for the regulariza-
tion methods.

Theorem 12.9. With any of the three choices for the regularization func-
tion, the regularization method (12.104) converges, and

‖wε −w‖Z ≤ c
√
ε. (12.108)

Proof. We take z = wε in (12.100), z = w in (12.104), add the two
inequalities, and use the Z-ellipticity of a to obtain

c0 ‖wε −w‖2
Z ≤ a(wε −w,wε −w)
≤ [j(wε) − jε(wε)] + [jε(w) − j(w)]
≤ c ε.

Then (12.108) follows by applying (12.107). �

A posteriori error analysis. To derive a posteriori error estimates for
the regularization technique, we employ the duality theory reviewed in
Section 4.1. Specifically, in our analysis of the regularization technique, we
reformulate the problem (12.100) in the form of (4.32). Then, in applying
Theorem 4.6, we take y there to be the solution w of the problem (12.100),
and we will take z in (4.34) to be the solution wε of the regularized prob-
lem (12.104). The procedure of deriving an estimate for the error w −wε

then consists of two steps:

Step 1. Find a suitable lower bound for the difference D defined in (4.33).
We will show that this difference D can be bounded below by the quantity
c1‖w − wε‖2

Z , with c1 = c0/2, and c0 is the constant in the Z-ellipticity
inequality for the bilinear form a.

Step 2. Take an appropriate s∗ such that the right-hand side of (4.34) will
provide a close upper bound for the quantity D. The auxiliary quantity s∗
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in (4.34) must be easily computable from the solution wε of the regular-
ized problem. We will make such a selection and discuss the efficiency of
the resulting a posteriori error estimate.

To apply Theorem 4.6 we use the following problem setting:

Z = V ×Q0 with the norm of V ×Q,

S = Q with the norm of Q,

and with z = (v, q) ∈ Z, s ∈ S,

Fz = ε(v),

J(z, s) =
∫

Ω

[
1
2 C (s− q) : (s− q) +

k1

2
|q|2 + c0|q|

]
dx− 〈�,z〉.

We identify Q′ with Q, and use s∗ to denote a generic element in Q′. It
is easily seen that the problem (12.100) is equivalent to the minimization
problem (4.32) with the above identification. Now let us use the defini-
tion (4.8) to compute the conjugate function

J∗(F ∗s∗,−s∗)
= sup

z∈Z,s∈S
[〈s∗, Fz〉 − 〈s∗, s〉 − J(z, s)]

= sup
z∈Z,s∈S

∫
Ω

[
s∗ : (ε(v) − s) − 1

2C(s− q) : (s− q) − 1
2 k1|q|2

− c0|q| + �1 · v + �2 : q
]
dx.

We have

J∗(F ∗s∗,−s∗)

=
∫

Ω

1
2 C

−1s∗ : s∗ dx

+ sup
z∈Z

∫
Ω

[
s∗ : ε(v) + �1 · v − 1

2 k1|q|2 − c0|q| + (�2 − s∗) : q
]
dx

=
∫

Ω

1
2 C

−1s∗ : s∗ dx

+ sup
z∈Z

∫
Ω

[
s∗ : ε(v) + �1 · v − 1

2 k1|q|2 + (|s∗D − �D2 | − c0) |q|
]
dx,

where s∗D is the deviatoric part of the tensor s∗. Thus we have

J∗(F ∗s∗,−s∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

Ω

[
1

2 k1

(
|s∗D − �D2 | − c0

)2

+
+

1
2
C−1s∗ : s∗

]
dx

if
∫

Ω
[s∗ : ε(v) + �1 · v] dx = 0 ∀v ∈ V,

+∞ otherwise,
(12.109)
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where x+ = max{x, 0}.
Now for any z ∈ Z, consider the difference

D(w, z) = J(z, Fz) − J(w, Fw)

=
∫

Ω

[
1
2 C(ε(v) − q) : (ε(v) − q)

− 1
2 C(ε(u) − p) : (ε(u) − p)

+ 1
2 k1(|q|2 − |p|2) + c0(|q| − |p|)

]
dx− 〈�,z −w〉.

First we derive a lower bound for D(w, z). Using (12.100), we find that

〈�,z −w〉 ≤
∫

Ω

[
C(ε(u) − p) : (ε(v − u) − (q − p))

+ k1p : (q − p) + c0(|q| − |p|)
]
dx.

Thus

D(w, z) ≥
∫

Ω

[
1
2 C(ε(v) − q) : (ε(v) − q)

− 1
2 C(ε(u) − p) : (ε(u) − p)

−C(ε(u) − p) : (ε(v − u) − (q − p))

+ 1
2 k1(|q|2 − |p|2) − k1p : (q − p)

]
dx

= 1
2 a(z −w, z −w).

By the Z-ellipticity of a, we then obtain

D(w, z) ≥ c1‖z −w‖2
Z ∀ z ∈ Z. (12.110)

In particular, with z = wε in (12.110), we have

D(w,wε) ≥ c1‖wε −w‖2
Z . (12.111)

An upper bound for D(w,wε) comes from (4.34). Examining this ex-
pression for J∗(F ∗s∗,−s∗), we will say that an auxiliary s∗ ∈ S′(= S) is
admissible if ∫

Ω
[s∗ : ε(v) + �1 · v] dx = 0 ∀v ∈ V.

We observe that the value of J∗(F ∗s∗,−s∗) is finite if and only if s∗ is
admissible. For an admissible s∗, we have

D(w,wε) ≤
∫

Ω

[1
2
C(ε(uε) − pε) : (ε(uε) − pε)

+
1

2 k1

(
|s∗D − �D2 | − c0

)2

+
+

1
2
C−1s∗ : s∗

+
k1

2
|pε|2 + c0|pε|

]
dx− 〈�,wε〉.
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The regularized problem (12.105) can be decomposed into two relations,∫
Ω

[C(ε(uε) − pε) : ε(v) − �1 · v] dx = 0 ∀v ∈ V (12.112)

and∫
Ω

[−C(ε(uε) − pε) + k1pε + c0φ
′
ε(|pε|) − �2] : q dx = 0 ∀ q ∈ Q0.

(12.113)

By (12.112), the quantity

s∗ = −C(ε(uε) − pε) (12.114)

is admissible. Then an equivalent way of writing (12.113) is

s∗D + k1pε + c0φ
′
ε(|pε|)D − �D2 = 0,

from which we easily obtain

|s∗D − �D2 | = |k1pε + c0φ
′
ε(|pε|)D|. (12.115)

From (12.109) with v = uε, we have

〈�1,uε〉 =
∫

Ω
C(ε(uε) − pε) : ε(uε).

From (12.113) with q = pε, we have

〈�2,pε〉 =
∫

Ω
[−C(ε(uε) − pε) + k1pε + c0φ

′
ε(|pε|)] : pε dx.

Using these two relations and (12.115), we can simplify the upper bound
for D(w,wε) to get

D(w,wε) ≤
∫

Ω

[
c0 (|pε| − φ′

ε(|pε|) : pε) −
k1

2
|pε|2

+
1

2 k1

(
|k1pε + c0φ

′
ε(|pε|)D| − c0

)2
+

]
dx,

which together with (12.111) yields an a posteriori error estimate for the
solution of the regularized problem (12.104), that is,

c1‖wε −w‖2
Z

≤
∫

Ω

[
c0 (|pε| − φ′

ε(|pε|) : pε) −
k1

2
|pε|2

+
1

2 k1

(
|k1pε + c0φ

′
ε(|pε|)D| − c0

)2
+

]
dx. (12.116)
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Now we derive the concrete a posteriori error bound for each of the three
choices of the regularization function. For the first choice,

(φ1
ε)

′(t) =
t√

t2 + ε2
.

Hence the error estimate (12.116) in this case reduces to

c1‖wε −w‖2
Z

≤
∫

Ω

[
c0|pε| ε2√

|pε|2 + ε2 (
√
|pε|2 + ε2 + |pε|)

− k1

2
|pε|2

+
1

2 k1

(∣∣∣k1 +
c0√

|pε|2 + ε2

∣∣∣ |pε| − c0

)2

+

]
dx. (12.117)

For the second choice of the regularization function,

(φ2
ε)

′(t) =

⎧⎪⎨⎪⎩
1, if t ≥ ε,
1
ε
t, if |t| ≤ ε,

−1, if t ≤ −ε,

the a posteriori error estimate is

c1‖wε −w‖2
Z

≤
∫

Ωε

[
c0|pε|

(
1 − |pε|

ε

)
− k1

2
|pε|2

+
1

2 k1

(
k1|pε| + c0

( |pε|2
ε

− 1
))2

+

]
dx, (12.118)

where Ωε = {x ∈ Ω : |pε(x)| ≤ ε}.
For the third choice of the regularization function,

(φ3
ε)

′(t) =

⎧⎪⎨⎪⎩
1, if t ≥ ε,
1
ε
t, if |t| ≤ ε,

−1, if t ≤ −ε.

Hence, the resulting a posteriori error estimate has the same form as that
of the estimate (12.118).

To see the efficiency of the a posteriori error estimates we observe that in
(12.117), the summation of the second and third terms in the integrand on
the right-hand side of (12.117) is nonpositive. Hence, a simple consequence
of (12.117) is

c1‖wε −w‖2
Z ≤

∫
Ω

c0|pε| ε2√
|pε|2 + ε2 (

√
|pε|2 + ε2 + |pε|)

dx. (12.119)
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Similarly, for the second and third choices of the regularization function,
we have the simple consequence

c1‖wε −w‖2
Z ≤

∫
Ωε

c0|pε|
(
1 − |pε|

ε

)
dx (12.120)

of the estimate (12.118). It is worth noting that a similar procedure employ-
ing the duality theory can be used for a posteriori error analysis in various
processes in applied and computational mathematics. In Han [50, 51], a
posteriori error analysis is carried out on effects of mathematical idealiza-
tions of models and data. In Han, Jensen, and Shimansky [53], a posteriori
error analysis is given for the Kačanov iteration method for solving some
nonlinear problems. Numerical experiments in these references show that
the derived a posteriori error estimates are efficient.

12.5 Fully Discrete Schemes with Numerical
Integration

In this section we analyze another type of method for dealing with the
difficulty caused by nondifferentiable terms. We will use numerical quadra-
ture to approximate nondifferentiable terms and as a result get a system of
linear equations and uncoupled inequalities at integration points for fully
discrete approximations. As we will see, each uncoupled inequality is of
small size, and thus can be solved easily. This section follows Han, Jensen,
and Reddy [52].

We will present the analysis for the elastoplasticity problem with linear
kinematic hardening. In other words, the continuous problem to be solved
is the following.

Problem Prim2. Given f ∈ H1(0, T ;H−1(Ω)) with f(0) = 0, find w =
(u,p) : [0, T ] → Z with w(0) = 0 such that for almost all t ∈ (0, T ),

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t),z − ẇ(t)〉 ∀ z = (v, q) ∈ Z.
(12.121)

Here, as before, the solution space is Z = V ×Q0 with

V = [H1
0 (Ω)]3,

Q0 = {q = (qij)3×3 : qij = qji ∈ L2(Ω), tr q = 0}.

The bilinear form takes the form

a(w, z) =
∫

Ω
[C(ε(u) − p) : (ε(v) − q) + k1 p : q] dx.

The linear form � is defined by

〈�(t),z〉 =
∫

Ω
f(t) · v dx.
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The nondifferentiable functional is

j(z) =
∫

Ω
c0|q| dx for z = (v, q) ∈ Z.

The elasticity tensor C is assumed to be symmetric, bounded, and point-
wise stable, and the hardening coefficient k1 is bounded and uniformly
bounded below by 0. As we have seen before in Chapter 7, the problem
Prim2 has a unique solution.

Let us review some fully discrete approximations for solving the problem
Prim2. We divide the time interval I = [0, T ] into N equal parts with step
size k = T/N . The nodal points are denoted by tn = nk (n = 0, 1, . . . , N)
and subintervals by In = [tn−1, tn] (n = 1, 2, . . . , N). For a continuous
function v(t) with values in one of the spaces Z, V , Q0, or Z ′, we use
the notation vn−1+θ = v(tn−1+θ), where tn−1+θ = θ tn + (1 − θ) tn−1
and θ ∈

[ 1
2 , 1

]
. We will also need the notation ∆vn = vn − vn−1 and

δvn = ∆vn/k. Our analysis below works also for discrete schemes with
nonuniform divisions of I; all the error estimates to be derived are true
with k interpreted as the maximal step-size.

Let Th = {Ωe}Ee=1 be a regular triangulation of the domain Ω into
triangular (tetrahedral) or rectangular (hexahedral) elements. As usual,
h ∈ (0, 1] denotes the maximal side of the elements in the triangulation. Let
V h and Qh

0 be finite element subspaces of V and Q0, and set Zh = V h×Qh
0 .

Then a family of fully discrete approximations to the solution of the prob-
lem Prim2 is the following.

Problem Prim2hk. Find whk = {whk
n }Nn=0, where whk

n = (uhk
n ,phk

n ) ∈
Zh, 0 ≤ n ≤ N , whk

0 = 0, such that for n = 1, 2, . . . , N ,

a(θwhk
n + (1 − θ)whk

n−1, z
h − δwhk

n ) + j(zh) − j(δwhk
n )

≥ 〈�n−1+θ, z
h − δwhk

n 〉 ∀ zh = (vh, qh) ∈ Zh. (12.122)

We have shown before that this discrete problem has a unique solution,
and furthermore that for the error wn −whk

n ,

max
0≤n≤N

‖wn −whk
n ‖2

Z

≤ c k
N∑

n=1

(
inf

qh∈Qh
0

‖ṗn−1+θ − qh‖Q + inf
vh∈V h

‖u̇n−1+θ − vh‖2
V

)
+ c k2

(
‖ẇ‖2

L∞(0,T ;Z) + ‖ẅ‖2
L1(0,T ;Z)

)
, (12.123)
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and when θ = 1
2 ,

max
0≤n≤N

‖wn −whk
n ‖2

Z

≤ c k
N∑

n=1

(
inf

qh∈Qh
0

‖ṗn−1/2 − qh‖Q + inf
vh∈V h

‖u̇n−1/2 − vh‖2
V

)
+ c k4

(
‖ẅ‖2

L∞(0,T ;Z) + ‖w(3)‖2
L1(0,T ;Z)

)
, (12.124)

as long as the solution w has the regularity required by the right-hand
sides of (12.123) and (12.124). The inequalities (12.123) and (12.124) are
the basis for deriving various order error estimates, which can be obtained
by applying the theory of finite element interpolation errors.

We assume for definiteness that the elements in the triangulation are
either triangles for domains in R

2 or tetrahedra for domains in R
3, and

choose

V h =
{
vh ∈ V : vh|Ωe is linear ∀Ωe ∈ Th

}
,

Qh
0 =

{
qh ∈ Q0 : qh|Ωe

is linear ∀Ωe ∈ Th
}
.

We chose discontinuous piecewise linear functions for the space Qh
0 in order

to obtain the first order bound in h. We have

inf
qh∈Qh

0

‖ṗn−1+θ − qh‖Q ≤ c h2
{∑

Ωe

|ṗn−1+θ|2H2(Ωe)

}1/2
,

inf
vh∈V h

‖u̇n−1+θ − vh‖V ≤ c h
{∑

Ωe

|u̇n−1+θ|2H2(Ωe)

}1/2
.

Therefore, if the solution is sufficiently smooth, the error maxn ‖wn −
whk

n ‖Z is bounded by O(h + k) if θ ∈ (1
2 , 1], and by O(h + k2) if θ = 1

2 .
From a practical point of view it is not convenient to compute the value

of j(zh) for piecewise linear functions zh ∈ Q0. One way to overcome
the difficulty is to replace j(zh) by an approximation jh(zh), which is
achieved through the use of numerical quadratures. We present next one
such approximation, in two dimensions; the extension to three dimensions
is immediate.

For a typical triangle Ωe ∈ Th, let Ai, i = 1, 2, 3, denote the three vertices
of Ωe. Then for any qh ∈ Qh

0 , the restriction qh|Ωe is uniquely defined by
its values at the vertices, qh(Ai), i = 1, 2, 3. Notice that if a point A is a
common vertex of several neighboring triangles, in general, the values of qh

at A computed from the different triangles are different. We approximate
the functional j by∫

Ω
c0|qh| dx =

∑
Ωe

∫
Ωe

c0|qh| dx ≈ c0
∑
Ωe

meas (Ωe)
1
3

3∑
i=1

|qh(Ai)|,
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and define

jh(zh) = c0
∑
Ωe

meas (Ωe)
1
3

3∑
i=1

|qh(Ai)|. (12.125)

Then the problem Prim2hk is replaced by the following problem.

Problem Prim2hk
# . Find whk = {whk

n }Nn=0, where whk
n = (uhk

n ,phk
n ) ∈

Zh, 0 ≤ n ≤ N , whk
0 = 0, such that for n = 1, 2, . . . , N ,

a(θwhk
n + (1 − θ)whk

n−1, z
h − δwhk

n ) + jh(zh) − jh(δwhk
n )

≥ 〈�n−1+θ, z
h − δwhk

n 〉 ∀ zh = (vh, qh) ∈ Zh. (12.126)

The next result gives an error analysis of the numerical solution com-
puted from (12.126), with jh(zh) defined through (12.125).

Theorem 12.10. For the error of the numerical solution defined by the
problem Prim2hk

# , we have the following inequalities, for any zh
n ∈ Zh,

n = 1, . . . , N ,

max
0≤n≤N

‖wn −whk
n ‖Z

≤ c k
(
‖ẇ‖L∞(0,T ;Z) + ‖ẅ‖L1(0,T ;Z)

)
+ c k

N∑
n=1

‖ẇn−1+θ − zh
n‖Z

+ c

{
k

N∑
n=1

[
‖ṗn−1+θ − qh

n‖Q + |jh(zh
n) − j(ẇn−1+θ)|

]}1/2

(12.127)

if θ �= 1
2 ,

max
0≤n≤N

‖wn −whk
n ‖Z

≤ c k2
(
‖ẅ‖L∞(0,T ;Z) + ‖w(3)‖L1(0,T ;Z)

)
+ c k

N∑
n=1

‖ẇn−1+θ − zh
n‖Z

+ c

{
k

N∑
n=1

[
‖ṗn−1+θ − qh

n‖Q + |jh(zh
n) − j(ẇn−1+θ)|

]}1/2

(12.128)

if θ = 1
2 .

Proof. For the approximation defined in (12.125), it is easy to verify that

j(zh) ≤ jh(zh) ∀ zh ∈ Zh, (12.129)

an important property needed in the error analysis below. The practical
implications of this inequality are commented at the end of next section
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for more general finite element spaces and related approximations jh(·)
constructed via numerical quadratures.

The error is denoted by en = wn −whk
n , 0 ≤ n ≤ N . Since the bilinear

form a(·, ·) is symmetric, bounded, and Z-elliptic, the quantity ‖z‖a =
a(z, z)1/2 defines an equivalent norm on Z. Consider next the quantities

An = a(θ en + (1 − θ) en−1, δen), n = 1, . . . , N.

Recalling θ ∈
[ 1
2 , 1

]
, an elementary argument reveals

An ≥ 1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
. (12.130)

On the other hand, for any zh ∈ Zh, we write

An = a(θwn + (1 − θ)wn−1, δwn − δwhk
n )

− a(θwhk
n + (1 − θ)whk

n−1, δwn − zh)

− a(θwhk
n + (1 − θ)whk

n−1, z
h − δwhk

n ).

Using the inequality (12.126), we have

An ≤ a(θwn + (1 − θ)wn−1, δwn − δwhk
n )

− a(θwhk
n + (1 − θ)whk

n−1, δwn − zh)

+ jh(zh) − jh(δwhk
n ) − 〈�n−1+θ, z

h − δwhk
n 〉.

Taking t = tn−1+θ and z = δwhk
n in (12.121), we get

0 ≤ a(wn−1+θ, δw
hk
n − ẇn−1+θ) + j(δwhk

n ) − j(ẇn−1+θ)
− 〈�n−1+θ, δw

hk
n − ẇn−1+θ〉.

Adding the last two inequalities, we then have

An ≤ a(θwn + (1 − θ)wn−1, δwn − δwhk
n )

− a(θwhk
n + (1 − θ)whk

n−1, δwn − zh)

+ a(wn−1+θ, δw
hk
n − ẇn−1+θ) + jh(zh) − j(ẇn−1+θ)

− 〈�n−1+θ, z
h − ẇn−1+θ〉 + j(δwhk

n ) − jh(δwhk
n ).

Using the property (12.129) and the inequality (12.130), we conclude that

1
2k

(
‖en‖2

a − ‖en−1‖2
a

)
≤ a(θwn + (1 − θ)wn−1, δwn − δwhk

n )
− a(θwhk

n + (1 − θ)whk
n−1, δwn − zh)

+ a(wn−1+θ, δw
hk
n − ẇn−1+θ)

+ jh(zh) − j(ẇn−1+θ) − 〈�n−1+θ, z
h − ẇn−1+θ〉.
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We can then use the above inequality recursively, and show that for any
zh
j ∈ Zh, j = 1, . . . , N ,

max
n

‖wn −whk
n ‖a

≤ c
(
‖EN,θ(w)‖Z +

N−1∑
j=1

‖Ej,θ(w) − Ej+1,θ(w)‖Z
)

+ c k

N∑
j=1

‖δwj − zh
j ‖Z

+ c
{
k max

n
‖En,θ(w)‖Z

N∑
j=1

‖δwj − zh
j ‖Z

}1/2

+ c
{
k

N∑
j=1

[
‖ṗj−1+θ − qh

j ‖Q + |jh(zh
j ) − j(ẇj−1+θ)|

] }1/2
,

where

Ej,θ(w) = θwn + (1 − θ)wn−1 −wn−1+θ.

This leads in turn to (12.127) and (12.128), using estimates for the terms
‖EN,θ(w)‖Z and ‖Ej,θ(w) − Ej+1,θ(w)‖Z , j = 1, . . . , N − 1. �

The inequalities (12.127) and (12.128) form the basis for order error
estimates, under suitable assumptions on the regularity of the solution, as
the next theorem shows. We say p changes its sign if one of its components
does.

Theorem 12.11. Assume that the solution of the problem Prim2 satisfies
w ∈ W 2,1(0, T ;Z) or w ∈ W 3,1(0, T ;Z) if θ = 1

2 , and for each n, u̇n−1+θ ∈
∩ΩeH

2(Ωe), ṗn−1+θ ∈ ∩Ωe(W
1,∞(Ωe)∩H2(Ωe)). Further, assume that for

each n, ṗn−1+θ changes its sign on at most finitely many curves in Ω.
Therefore, the numerical solution defined by the problem Prim2hk

# , we have
the following error estimates:

max
0≤n≤N

‖wn −whk
n ‖Z

≤ c k
(
‖ẇ‖L∞(0,T ;Z) + ‖ẅ‖L1(0,T ;Z)

)
+ c h

{
k

N∑
n=1

[(∑
Ωe

|ṗn−1+θ|2H2(Ωe)

)1/2
+ sup

Ωe

|ṗn−1+θ|W 1,∞(Ωe)

]}1/2

+ c h k

N∑
n=1

{∑
Ωe

[
|u̇n−1+θ|2H2(Ωe) + |ṗn−1+θ|2H1(Ωe)

]}1/2

(12.131)
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if θ �= 1
2 ,

max
0≤n≤N

‖wn −whk
n ‖Z

≤ c k2
(
‖ẅ‖L∞(0,T ;Z) + ‖w(3)‖L1(0,T ;Z)

)
+ c h

{
k

N∑
n=1

[(∑
Ωe

|ṗn−1+θ|2H2(Ωe)

)1/2
+ sup

Ωe

|ṗn−1+θ|W 1,∞(Ωe)

]}1/2

+ c h k

N∑
n=1

{∑
Ωe

[
|u̇n−1+θ|2H2(Ωe) + |ṗn−1+θ|2H1(Ωe)

]}1/2
(12.132)

if θ = 1
2 .

Proof. In (12.127) and (12.128) we choose zh
n = Πhẇn−1+θ, the finite

element interpolant of ẇn−1+θ, n = 1, . . . , N . Let us estimate the term

Jn−1+θ = jh(Πhẇn−1+θ) − j(ẇn−1+θ). (12.133)

By definition, we have

Jn−1+θ = c0
∑
Ωe

{
meas (Ωe)

1
3

3∑
i=1

|ṗn−1+θ(Ai)| −
∫

Ωe

|ṗn−1+θ| dx
}
,

where as before, we use Ai, i = 1, 2, 3, to denote the three vertices of a
typical triangle Ωe. We distinguish two cases according to whether or not
the function ṗn−1+θ changes its sign on Ωe.

If ṗn−1+θ does not change its sign on Ωe, then

meas (Ωe)
1
3

3∑
i=1

|ṗn−1+θ(Ai)| −
∫

Ωe

|ṗn−1+θ| dx

=
∫

Ωe

|Πhṗn−1+θ| dx−
∫

Ωe

|ṗn−1+θ| dx,

so that ∣∣∣meas (Ωe)
1
3

3∑
i=1

|ṗn−1+θ(Ai)| −
∫

Ωe

|ṗn−1+θ| dx
∣∣∣

≤
∫

Ωe

|Πhṗn−1+θ − ṗn−1+θ| dx. (12.134)

Now assume that ṗn−1+θ changes its sign on Ωe. An application of Tay-
lor’s expansion at a zero of ṗn−1+θ reveals that

|ṗn−1+θ|L∞(Ωe) ≤ c he |ṗn−1+θ|W 1,∞(Ωe),
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where he is the diameter of Ωe. Therefore,∣∣∣meas (Ωe)
1
3

3∑
i=1

|ṗn−1+θ(Ai)| −
∫

Ωe

|ṗn−1+θ| dx
∣∣∣

≤ c h3
e|ṗn−1+θ|W 1,∞(Ωe). (12.135)

Under the assumption that ṗn−1+θ changes its sign on at most finitely
many curves in Ω, we see that from (12.134) and (12.135),

|Jn−1+θ| ≤ c0

∫
Ω
|Πhṗn−1+θ − ṗn−1+θ| dx + c h2 sup

Ωe

|ṗn−1+θ|W 1,∞(Ωe).

(12.136)

Using (12.136) and the finite element interpolation error estimates, we
obtain the estimates (12.131) and (12.132) from (12.127) and (12.128). �

Remark. Roughly speaking, Theorem 12.11 states that, under the assump-
tion that ṗn−1+θ, n = 1, . . . , N , can change their signs on at most finitely
many curves, the replacement of the functional j(·) by its numerical quadra-
ture approximation does not cause degradation in the convergence order.
If for some n it happens that ṗn−1+θ changes its sign on infinitely many
curves, then the last term in the error bound (12.131) and (12.132) has to
be replaced by

c h
{
k

N∑
n=1

[∑
Ωe

|ṗn−1+θ|2H2(Ωe)

]1/2}1/2
+ c h1/2 sup

Ωe

|ṗn−1+θ|
1/2
W 1,∞(Ωe)

.

Stability of the numerical scheme. We consider the stability of the
problem Prim2hk

# . Assume that there is some error associated with the
solution whk

n−1 at t = tn−1, say, caused by rounding errors. We will show
that the propagation of the error in the solution at the later time levels is
under control. Thus, let w̄hk

n−1 be an approximation of whk
n−1, and let w̄hk

n

be the (exact) solution of (12.126) with whk
n−1 replaced by w̄hk

n−1. Therefore,
w̄hk

n satisfies

a(θ w̄hk
n + (1 − θ) w̄hk

n−1, z
h − δw̄hk

n ) + jh(zh) − jh(δw̄hk
n )

≥ 〈�n−1+θ, z
h − δw̄hk

n 〉 ∀ zh = (vh, qh) ∈ Zh. (12.137)

We take zh = δw̄hk
n in (12.126), zh = δwhk

n in (12.137), and add the two
inequalities to obtain

a(θ (whk
n − w̄hk

n ) + (1 − θ) (whk
n−1 − w̄hk

n−1), δ(w
hk
n − w̄hk

n )) ≤ 0. (12.138)

Since θ ∈ [ 12 , 1], we have

a(θ (whk
n − w̄hk

n ) + (1 − θ) (whk
n−1 − w̄hk

n−1),

(whk
n − w̄hk

n ) − (whk
n−1 − w̄hk

n−1))

≥ 1
2

[
a(whk

n − w̄hk
n ,whk

n − w̄hk
n ) − a(whk

n−1 − w̄hk
n−1,w

hk
n−1 − w̄hk

n−1)
]
.
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Then from (12.138), we see that

‖whk
n − w̄hk

n ‖a ≤ ‖whk
n−1 − w̄hk

n−1‖a,

i.e., in the norm induced by the bilinear form a(·, ·), we have the stability
inequality for the propagation of errors.

In the literature, the above type of stability is termed B-stability (cf.
Reddy and Martin [107], Simo [114]).



13
Numerical Analysis of the Dual
Problem

In this last chapter we present some results on the numerical analysis for
the dual formulation of the elastoplasticity problem. For various numeri-
cal approximation schemes, we will derive error estimates under sufficient
regularity assumptions on the solution and prove the convergence under
the basic solution regularity condition. In Section 13.1 we study a family of
generalized midpoint schemes for the stress problem. For the dual problem,
we analyze several time-discrete schemes in Section 13.2 and fully discrete
schemes in Section 13.3.

We then turn our attention to the implementation of numerical methods
for solving the dual problem. For simplicity in notation, the discussion will
be given in the context of the solution of temporal semidiscrete schemes.
The extension of the discussion to fully discrete schemes is straightforward;
one needs only to change infinite-dimensional spaces or their subsets to
corresponding finite element spaces or their subsets in the argument. At
each time level, one needs to solve a variational inequality system for the
current state of the generalized stress and the displacement (or velocity). A
common practice in engineering is to use an iteration procedure to update
the generalized stress and the displacement separately, thus breaking a
large-scale problem into two subproblems. Such an iteration procedure is
termed a predictor-corrector method. Analysis of some predictor–corrector
methods are given in Section 13.4. The main work required to carry out
one step of a corrector–predictor method is the solution of a constrained
variational inequality for updating the generalized stress. The problem can
be equivalently formulated as one of computing the closest-point projection
of a trial generalized stress onto a convex set—the admissible set. In the



320 13. Numerical Analysis of the Dual Problem

engineering literature, an algorithm for solving the closest-point projection
problem is called a return mapping algorithm (the algorithm returns a trial
generalized stress to the admissible set). We will discuss several return
mapping algorithms that are used in actual computations.

For convenience, we recall here the dual variational problem.

Problem Dual. Given � ∈ H1(0, T ;V ′) with �(0) = 0, find (u,Σ) =
(u,σ,χ) : [0, T ] → V × P with (u(0),Σ(0)) = (0,0) such that for almost
all t ∈ (0, T ),

b(v,σ(t)) = 〈�(t),v〉 ∀v ∈ V, (13.1)
A(Σ̇(t),T − Σ(t)) + b(u̇(t), τ − σ(t)) ≥ 0 ∀T ∈ P. (13.2)

Here,

V = [H1
0 (Ω)]3,

P = {T = (τ ,µ) ∈ T : (τ ,µ) ∈ K a.e. in Ω}

with

T = S ×M

and

S = {τ = (τij) : τji = τij , τij ∈ L2(Ω), 1 ≤ i, j ≤ 3},
M = {µ = (µj) : µj ∈ L2(Ω), j = 1, . . . ,m}.

The bilinear forms are

A : T × T → R, A(Σ,T ) =
∫

Ω
σ : C−1τ dx +

∫
Ω
χ : H−1µ dx,

b : V × S → R, b(v, τ ) = −
∫

Ω
ε(v) : τ dx.

The linear form is

�(t) : V → R, 〈�(t),v〉 = −
∫

Ω
f(t) · v dx.

Introducing

P(t) = {T = (τ ,µ) ∈ P : b(v, τ ) = 〈�(t),v〉 ∀v ∈ V },

we can eliminate the variable u̇(t) from Problem Dual and obtain the
stress problem.

Problem Dual1. Given � ∈ H1(0, T ;V ′), �(0) = 0, find Σ = (σ,χ) :
[0, T ] → P with Σ(0) = 0 such that for almost all t ∈ (0, T ), Σ(t) ∈ P(t)
and

A(Σ̇(t),T − Σ(t)) ≥ 0 ∀T = (τ ,µ) ∈ P(t). (13.3)

The well-posedness of the problems have been discussed in Chapter 8.
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13.1 Time-Discrete Approximations of the Stress
Problem

In this section we consider a family of time-discrete approximations that
includes as a special case that used in the existence proof in Section 8.2.
The goal here is to derive optimal order error estimates for the approximate
solutions under sufficient regularity assumptions on the solution and show
the convergence under the basic solution condition.

A family of generalized midpoint schemes. Let θ ∈
[1
2 , 1

]
be a

parameter. As before, we divide the time interval [0, T ] into N equal parts,
and denote by k = T/N the step-size. The partition points are tn = nk,
n = 0, 1, . . . , N . Let tn−1+θ = (n+1−θ) k, n = 1, . . . , N . We use Σk

n for an
approximate value of Σ(tn). A family of generalized midpoint time-discrete
approximations of the problem Dual1 is as follows.

Problem Dual1k
θ . Find a sequence {Σk

n = (σk
n,χ

k
n)}Nn=0 ⊂ T with Σk

0 =
0 such that for n = 1, 2, . . . , N , Σk

n−1+θ = θΣk
n + (1 − θ)Σk

n−1 ∈ Pn−1+θ

and

A(∆Σk
n,T − Σk

n−1+θ) ≥ 0 ∀T ∈ Pn−1+θ. (13.4)

The constraint set Pn−1+θ is defined by

Pn−1+θ ≡ P(tn−1+θ)
= {T = (τ ,µ) ∈ P : b(v, τ ) = 〈�(tn−1+θ),v〉 ∀v ∈ V }.

For the same reason as that in the case of time discretization of the ab-
stract problem (cf. Section 11.1), we do not consider values of θ outside
the range

[ 1
2 , 1

]
. For simplicity in writing, we will omit the explicit de-

pendence on θ in the notation Σk
n. When θ = 1, the problem Dual1k

θ is
reduced to Dual1k, which was used in the existence proof in Section 8.2.
By Lemma 8.7, this problem has a unique solution. For other θ in the range[ 1
2 , 1

]
, the inequality (13.4) can be rewritten in terms of Σk

n−1+θ ∈ Pn−1+θ:

A(Σk
n−1+θ − Σk

n−1,T − Σk
n−1+θ) ≥ 0 ∀T ∈ Pn−1+θ.

By modifying the proof of Lemma 8.7 in a straightforward way, it can be
readily shown that for θ ∈

[ 1
2 , 1

]
, the problem Dual1k

θ also admits a unique
solution.

Order error estimates. We now derive error estimates for the time-
discrete approximate solutions under sufficient regularity assumptions on
the solution Σ. We consider the relation (13.3) at t = tn−1+θ. Choosing
T = Σk

n−1+θ ∈ Pn−1+θ, we obtain

A(Σ̇(tn−1+θ),Σk
n−1+θ − Σ(tn−1+θ)) ≥ 0, (13.5)
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and choosing T = Σ(tn−1+θ) ∈ Pn−1+θ in (13.4), we obtain

A(∆Σk
n,Σ(tn−1+θ) − Σk

n−1+θ) ≥ 0. (13.6)

The inequality (13.5) is multiplied by k and is added to the inequality
(13.6), yielding

A
(
∆Σk

n − k Σ̇(tn−1+θ),Σ(tn−1+θ) − Σk
n−1+θ

)
≥ 0. (13.7)

If the error is denoted by en = Σ(tn) − Σk
n, n = 1, . . . , N , then with

En,θ(Σ) = θΣ(tn) + (1 − θ)Σ(tn−1) − Σ(tn−1+θ),

the inequality (13.7) can be rewritten as

A(en−1 − en + k (δΣ(tn) − Σ̇(tn−1+θ)), θ en + (1 − θ) en−1 − En,θ(Σ))
≥ 0,

or

A (en − en−1, θ en + (1 − θ) en−1)
≤ A (en − en−1, En,θ(Σ))

+ k A
(
δΣ(tn) − Σ̇(tn−1+θ), θ en + (1 − θ) en−1

)
− k A

(
δΣ(tn) − Σ̇(tn−1+θ), En,θ(Σ)

)
. (13.8)

We will use below the equivalent norm ‖ · ‖A induced by the bilinear form
A(·, ·):

‖Σ‖2
A = 1

2 A(Σ,Σ).

Since θ ∈
[ 1
2 , 1

]
, we have

A (en − en−1, θ en + (1 − θ) en−1) ≥ 1
2

(
‖en‖2

A − ‖en−1‖2
A

)
. (13.9)

Thus, from (13.8), we get

1
2
(
‖en‖2

A − ‖en−1‖2
A

)
≤ A (en − en−1, En,θ(Σ))

+ k A
(
δΣ(tn) − Σ̇(tn−1+θ), θ en + (1 − θ) en−1

)
− k A

(
δΣ(tn) − Σ̇(tn−1+θ), En,θ(Σ)

)
,
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which in turn implies that

1
2
‖en‖2

A ≤
n∑

j=1

A (ej − ej−1, Ej,θ(Σ))

+ k

n∑
j=1

A
(
δΣ(tj) − Σ̇(tj−1+θ), θ ej + (1 − θ) ej−1

)
− k

n∑
j=1

A
(
δΣ(tj) − Σ̇(tj−1+θ), Ej,θ(Σ)

)
.

Let us use the identity

n∑
j=1

A (ej − ej−1, Ej,θ(Σ))

=
n−1∑
j=1

A (ej , Ej,θ(Σ) − Ej+1,θ(Σ)) + A (en, En,θ(Σ)) ,

and denote by M = max0≤n≤N ‖en‖T the maximal error. Then we have,
for n = 1, . . . , N ,

‖en‖2
A ≤ c

( n−1∑
j=1

‖Ej,θ(Σ) − Ej+1,θ(Σ)‖T + ‖En,θ(Σ)‖T

+ k
n∑

j=1

‖δΣ(tj) − Σ̇(tj−1+θ)‖T
)
M

+ c k

n∑
j=1

‖δΣ(tj) − Σ̇(tj−1+θ)‖T ‖Ej,θ(Σ)‖T .

Therefore,

M2 ≤ c
(N−1∑

j=1

‖Ej,θ(Σ) − Ej+1,θ(Σ)‖T + ‖EN,θ(Σ)‖T

+ k

N∑
j=1

‖δΣ(tj) − Σ̇(tj−1+θ)‖T
)
M

+ c k

N∑
j=1

‖δΣ(tj) − Σ̇(tj−1+θ)‖T ‖Ej,θ(Σ)‖T .
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By (11.3), we then have

M2 ≤ c
(N−1∑

j=1

‖Ej,θ(Σ) − Ej+1,θ(Σ)‖T + ‖EN,θ(Σ)‖T

+ k
N∑
j=1

‖δΣ(tj) − Σ̇(tj−1+θ)‖T
)2

+ c k
N∑
j=1

‖δΣ(tj) − Σ̇(tj−1+θ)‖T ‖Ej,θ(Σ)‖T . (13.10)

To proceed further, let us assume that Σ ∈ W 2,1(0, T ; T ) if θ ∈
( 1

2 , 1
]
,

and Σ ∈ W 3,1(0, T ; T ) if θ = 1
2 . Then by Lemma 11.3,

N−1∑
j=1

‖Ej,θ(Σ) − Ej+1,θ(Σ)‖T ≤
{

c k ‖Σ̈‖L1(0,T ;T ) if θ ∈ ( 1
2 , 1],

c k2‖Σ(3)‖L1(0,T ;T ) if θ = 1
2 ;

by Lemma 11.2, for j = 1, . . . , N ,

‖Ej,θ(Σ)‖T ≤
{

c k ‖Σ̈‖L1(0,T ;T ) if θ ∈ ( 1
2 , 1],

c k2‖Σ̈‖L∞(0,T ;T ) if θ = 1
2 ;

and by Lemma 11.4,

N∑
j=1

‖δΣ(tj) − Σ̇(tj−1+θ)‖T ≤ ‖Σ̈‖L1(0,T ;T ),

N∑
j=1

‖δΣ(tj) − Σ̇(tj−1/2)‖T ≤ k

8
‖Σ(3)‖L1(0,T ;T ).

Applying these estimates in (13.10), we obtain the following result.

Theorem 13.1. Assume that Σ ∈ W 2,1(0, T ; T ) and in the case θ = 1
2 ,

Σ ∈ W 3,1(0, T ; T ). For the time-discrete solution {Σk
n}Nn=0 of Problem

Dual1k
θ , we have the error estimate

max
0≤n≤N

‖Σ(tn) − Σk
n‖T ≤ c k ‖Σ‖W 2,1(0,T ;T ),

and if θ = 1
2 ,

max
0≤n≤N

‖Σ(tn) − Σk
n‖T ≤ c k2 ‖Σ‖W 3,1(0,T ;T ).

Convergence analysis under minimal regularity conditions. The
estimate (13.10) cannot be used to conclude the convergence of the semidis-
crete solutions if we have only the basic solution regularity condition Σ ∈
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H1(0, T ; T ). Let us modify the estimate (13.10). We still have the relation
(13.9). On the other hand,

A (en − en−1, θ en + (1 − θ) en−1)
= A (∆Σ(tn), θ en + (1 − θ) en−1)

−A
(
∆Σk

n,Σ(tn−1+θ) − Σk
n−1+θ

)
−A

(
∆Σk

n, En,θ(Σ)
)
.

Using the inequality (13.6), we obtain

A (en − en−1, θ en + (1 − θ) en−1)

≤ A (∆Σ(tn), θ en + (1 − θ) en−1) −A
(
∆Σk

n, En,θ(Σ)
)

= A (∆Σ(tn), θ en + (1 − θ) en−1)
+ A (∆en, En,θ(Σ)) −A (∆Σn, En,θ(Σ)) . (13.11)

Now, for any t ∈ In = [tn−1, tn], from Lemma 8.2 we have the existence of
a unique τ δ(t) ∈ (KerB)⊥ such that

b(v, τ δ(t)) = 〈�(t) − �n−1+θ,v〉 ∀v ∈ V,

‖τ δ(t)‖S ≤ c ‖�(t) − �n−1+θ‖V ′ .

The subscript δ indicates that the quantity is related to a difference. By
Assumption 8.4, we have a µδ(t) ∈ M such that T δ(t) = (τ δ(t),µδ(t)) ∈
P(t) and

‖T δ(t)‖T ≤ c ‖�(t) − �n−1+θ‖V ′ . (13.12)

Let T (t) = Σk
n−1+θ + T δ(t). Obviously, T (t) ∈ P(t). We take T = T (t) in

(13.3) to obtain

A(Σ̇(t),T δ(t) + Σk
n−1+θ − Σ(t)) ≥ 0,

i.e.,

A(Σ̇(t), θ en + (1 − θ) en−1)
≤ A(Σ̇(t),T δ(t)) + A(Σ̇(t), θΣ(tn) + (1 − θ)Σ(tn−1) − Σ(t)).

Integrate the above relation over In to obtain

A(∆Σ(tn), θ en + (1 − θ) en−1)

≤
∫
In

A(Σ̇(t),T δ(t)) dt

+
∫
In

A(Σ̇(t), θΣ(tn) + (1 − θ)Σ(tn−1) − Σ(t)) dt,
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which is then used in (13.11) to yield

A(en − en−1, θ en + (1 − θ) en−1)

≤
∫
In

A(Σ̇(t),T δ(t)) dt +
∫
In

A(Σ̇(t),Σ(tn−1+θ) − Σ(t)) dt

+ A(∆en, En,θ(Σ)). (13.13)

To simplify the writing, we introduce the moduli of continuity

ωk(�) = sup{‖�(s) − �(t)‖V ′ : 0 ≤ s, t ≤ T, |t− s| ≤ k}, (13.14)
ωk(Σ) = sup{‖Σ(s) − Σ(t)‖T : 0 ≤ s, t ≤ T, |t− s| ≤ k}. (13.15)

Note that � ∈ H1(0, T ;V ′) and Σ ∈ H1(0, T ; T ) are uniformly continuous
with respect to t ∈ [0, T ]. Hence ωk(�) → 0 and ωk(Σ) → 0 as k → 0.

Combining (13.9), (13.12), and (13.13), we obtain

‖en‖2
A − ‖en−1‖2

A ≤ c (ωk(�) + ωk(Σ))
∫
In

‖Σ̇(t)‖T dt

+ 2A(en − en−1, En,θ(Σ)).

Applying this inequality recursively and recalling that e0 = 0, we see that

‖en‖2
A

≤ c (ωk(�) + ωk(Σ))
∫ tn

0
‖Σ̇(t)‖T dt

+ 2
n∑

j=1

A(ej − ej−1, Ej,θ(Σ))

= c (ωk(�) + ωk(Σ))
∫ tn

0
‖Σ̇(t)‖T dt

+ 2A(en, En,θ(Σ)) + 2
n−1∑
j=1

A(ej , Ej,θ(Σ) − Ej+1,θ(Σ)).

With M = max0≤n≤N ‖en‖T , we then have

M2 ≤ c (ωk(�) + ωk(Σ)) ‖Σ̇‖L1(0,T ;T )

+ c

(
‖EN,θ(Σ)‖T +

N−1∑
n=1

‖En,θ(Σ) − En+1,θ(Σ)‖T

)
M.

Now use the inequality (11.3) to obtain

M ≤ c
{

(ωk(�) + ωk(Σ)) ‖Σ̇‖L1(0,T ;T )

}1/2

+ c

{
‖EN,θ(Σ)‖T +

N−1∑
n=1

‖En,θ(Σ) − En+1,θ(Σ)‖T

}
.

(13.16)
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By the density result (5.27), for any ε > 0, we have Σ ∈ C∞([0, T ]; T )
such that

‖Σ − Σ‖H1(0,T ;T ) < ε. (13.17)

It is easy to see that

‖EN,θ(Σ)‖T +
N−1∑
n=1

‖En,θ(Σ) − En+1,θ(Σ)‖T

≤
∫
IN

‖Σ̇(t)‖T dt +
N−1∑
n=1

‖En,θ(Σ) − En+1,θ(Σ)‖T

+ c

∫ T

0
‖Σ̇(t) − Σ̇(t)‖T dt.

Using Lemma 11.3, we see that

N−1∑
n=1

‖En,θ(Σ) − En+1,θ(Σ)‖T ≤ c k ‖Σ̈‖L1(0,T ;T ).

So finally, from (13.16) we obtain

max
0≤n≤N

‖en‖T ≤ c
{

(ωk(�) + ωk(Σ)) ‖Σ̇‖L1(0,T ;T )

}1/2

+ c
{
‖Σ̇‖L1(tN−1,tN ;T ) + k ‖Σ̈‖L1(0,T ;T ) + ‖Σ̇ − Σ̇‖L1(0,T ;T )

}
.

(13.18)

The estimate (13.18) implies the convergence as k → 0. We state this result
in the form of a theorem.

Theorem 13.2. Under the basic regularity condition Σ ∈ H1(0, T ; T ),
the time-discrete solution {Σk

n}Nn=0 of the problem Dual1k
θ converges to

the exact solution Σ in the sense that

max
0≤n≤N

‖Σ(tn) − Σk
n‖T → 0 as k → 0.

13.2 Time-Discrete Approximations of the Dual
Problem

Now we study several time-discrete schemes for the dual problem. We are
interested in approximating values of the generalized stress Σ(tn) and the
velocity w(tn) = u̇(tn), n = 1, . . . , N .

The first temporal semidiscrete scheme is the backward Euler’s scheme.
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Scheme Dualk1. Find (wk,Σk) = {(wk
n,Σ

k
n)}Nn=0 ⊂ V ×P, (wk

0 ,Σ
k
0) = 0

such that for n = 1, . . . , N ,

b(v,σk
n) = 〈�(tn),v〉 ∀v ∈ V, (13.19)

A(δΣk
n,T − Σk

n) + b(wk
n, τ − σk

n) ≥ 0 ∀T ∈ P. (13.20)

More generally, we can form a family of generalized midpoint schemes.
For θ ∈

[ 1
2 , 1

]
we use Σk

n−1+θ = θΣk
n + (1 − θ)Σk

n−1 and wk
n−1+θ =

θwk
n+(1−θ)wk

n−1 to approximate Σ(tn−1+θ) and w(tn−1+θ), respectively.

Scheme Dualk2. Find (wk,Σk) = {(wk
n,Σ

k
n)}Nn=0 ⊂ V ×P, (wk

0 ,Σ
k
0) = 0

such that for n = 1, . . . , N ,

b(v,σk
n−1+θ) = 〈�(tn−1+θ),v〉 ∀v ∈ V, (13.21)

A(δΣk
n,T − Σk

n−1+θ)

+ b(wk
n−1+θ, τ − σk

n−1+θ) ≥ 0 ∀T = (τ ,µ) ∈ P. (13.22)

We notice that since P is a convex set, from the conditions Σk
n,Σ

k
n−1 ∈ P,

we have Σk
n−1+θ ∈ P. Obviously, in the case θ = 1, the scheme Dualk2

reduces to the scheme Dualk1 .
As before, we introduce the constraint set

Pn−1+θ ≡ P(tn−1+θ)
= {T = (τ ,µ) ∈ P : b(v, τ ) = 〈�(tn−1+θ),v〉 ∀v ∈ V }.

Then Σk
n−1+θ ∈ Pn−1+θ satisfies

A(∆Σk
n,T − Σk

n−1+θ) ≥ 0 ∀T ∈ Pn−1+θ,

which is exactly (13.4). By the error analysis done in the last section,
we see that in terms of the error maxn ‖Σ(tn) − Σk

n‖T , if the solution is
sufficiently smooth, the scheme Dualk2 is of second-order when θ = 1

2 , and
for θ ∈

( 1
2 , 1

]
, the scheme Dualk2 , and hence also the scheme Dualk1 , is

first-order accurate.
The third discretization scheme is a generalized midpoint method of Simo

[114].

Scheme Dualk3. Let (wk
0 ,Σ

k
0) = 0. For n = 1, . . . , N , first compute

(wk
n−1+θ,Σ

k
n−1+θ) ∈ V × P satisfying

b(v,σk
n−1+θ) = 〈�(tn−1+θ),v〉 ∀v ∈ V,(13.23)

A(Σk
n−1+θ − Σk

n−1,T − Σk
n−1+θ)

+ θ k b(wk
n−1+θ, τ − σk

n−1+θ) ≥ 0 ∀T = (τ ,µ) ∈ P. (13.24)

Then define

wk
n =

1
θ
wk

n−1+θ +
(

1 − 1
θ

)
wk

n−1, (13.25)
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and finally, find Σk
n ∈ P such that

A(Σk
n − Σk

n−1,T − Σk
n) + k b(wk

n, τ − σk
n) ≥ 0 ∀T ∈ P. (13.26)

In the analysis of the dual problem in Chapter 8, we have shown the
existence of a solution of the problem (13.19)–(13.20). The existence of
solutions of the problems (13.21)–(13.22) and (13.23)–(13.24) can be shown
similarly. The problem (13.26) is equivalent to a constrained minimization
problem,

inf
{ 1

2 A(T ,T ) −A(Σk
n−1,T ) + k b(wk

n, τ ) : T ∈ P
}
,

which has a unique minimizer Σk
n ∈ P. For the rest of the section we give

a stability analysis of the above semidiscrete schemes. First we notice that
for the continuous problem, we have a result on the contractivity of the
solution.

Theorem 13.3. Let (u1,Σ1), (u2,Σ2) : [0, T ] → V×P satisfy the relations
(13.1) and (13.2). Then

‖Σ1(t) − Σ2(t)‖A ≤ ‖Σ1(s) − Σ2(s)‖A for all 0 ≤ s ≤ t ≤ T. (13.27)

Proof. The functions (u1(t),Σ1(t)) and (u2(t),Σ2(t)) satisfy

b(v,σ1(t)) = 〈�(t),v〉 ∀v ∈ V, (13.28)
A(Σ̇1(t),T − Σ1(t)) + b(u̇1(t), τ − σ1(t)) ≥ 0 ∀T ∈ P, (13.29)

and

b(v,σ2(t)) = 〈�(t),v〉 ∀v ∈ V, (13.30)
A(Σ̇2(t),T − Σ2(t)) + b(u̇2(t), τ − σ2(t)) ≥ 0 ∀T ∈ P. (13.31)

Subtracting (13.30) from (13.28), we obtain

b(v,σ1(t) − σ2(t)) = 0 ∀v ∈ V. (13.32)

Then we take T = Σ2(t) in (13.29) and T = Σ1(t) in (13.31), and add the
resulting inequalities to obtain

−A(Σ̇1(t) − Σ̇2(t),Σ1(t) − Σ2(t)) − b(u̇1(t) − u̇2(t),σ1(t) − σ2(t)) ≥ 0.

By (13.32),

b(u̇1(t) − u̇2(t),σ1(t) − σ2(t)) = 0.

Hence,

A(Σ̇1(t) − Σ̇2(t),Σ1(t) − Σ2(t)) ≤ 0,
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i.e.,

1
2

d

dt
‖Σ1(t) − Σ2(t)‖2

A ≤ 0,

from which the contractivity inequality (13.27) follows. �

We say that a numerical scheme for Problem Dual is stable if its so-
lutions inherit the contractivity property of the solution of the continuous
problem. More precisely, we introduce the following definition.

Definition 13.4. A numerical scheme for solving the dual problem Dual
is said to be stable if two numerical solutions (wk

1 ,Σ
k
1) = {(wk

1,n,Σ
k
1,n)}Nn=0

and (wk
2 ,Σ

k
2) = {(wk

2,n,Σ
k
2,n)}Nn=0, generated by two initial values, satisfy

the inequality

‖Σk
1,n − Σk

2,n‖A ≤ ‖Σk
1,m − Σk

2,m‖A for all 0 ≤ m ≤ n ≤ N. (13.33)

Stability is a desirable property for a numerical scheme. The stability
estimate (13.33) shows that the propagation of the error at any step is
controlled at later steps.

Let us show that all the three schemes are stable.

Theorem 13.5. The schemes Dualk1 and Dualk3 are stable. If θ ∈
[1
2 , 1

]
,

the scheme Dualk2 is also stable.

Proof. We will prove that when θ ∈
[1
2 , 1

]
, the scheme Dualk2 is stable.

Since the scheme Dualk1 is the particular case of the scheme Dualk2 with
θ = 1, we also get the stability of Dualk1 . The stability of the scheme
Dualk3 can be proved by a similar argument.

Let (wk
1 ,Σ

k
1) and (wk

2 ,Σ
k
2) be two solutions computed from the scheme

Dualk2 with two initial values. Then for n = 1, . . . , N , we have

b(v,σk
1,n−1+θ) = 〈�(tn−1+θ),v〉 ∀v ∈ V, (13.34)

A(δΣk
1,n,T − Σk

1,n−1+θ)

+ b(wk
1,n−1+θ, τ − σk

1,n−1+θ) ≥ 0 ∀T = (τ ,µ) ∈ P, (13.35)

and

b(v,σk
2,n−1+θ) = 〈�(tn−1+θ),v〉 ∀v ∈ V, (13.36)

A(δΣk
2,n,T − Σk

2,n−1+θ)

+ b(wk
2,n−1+θ, τ − σk

2,n−1+θ) ≥ 0 ∀T = (τ ,µ) ∈ P. (13.37)

Subtracting (13.36) from (13.34), we obtain

b(v,σk
1,n−1+θ − σk

2,n−1+θ) = 0 ∀v ∈ V. (13.38)
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Notice that Σk
1,n−1+θ,Σ

k
2,n−1+θ ∈ P. Taking T = Σk

2,n−1+θ in (13.35) and
T = Σk

1,n−1+θ in (13.37), adding the two resulting inequalities, and using
the relation (13.38), we get

A
(
(Σk

1,n − Σk
2,n) − (Σk

1,n−1 − Σk
2,n−1),Σ

k
1,n−1+θ − Σk

2,n−1+θ

)
≤ 0.

(13.39)

By definition, Σk
i,n−1+θ = θΣk

i,n +(1− θ)Σk
i,n−1, i = 1, 2. Since θ ∈

[1
2 , 1

]
,

from the inequality (13.39) we have

θ A(Σk
1,n − Σk

2,n,Σ
k
1,n − Σk

2,n)

≤ (1 − θ)A(Σk
1,n−1 − Σk

2,n−1,Σ
k
1,n−1 − Σk

2,n−1)

+ (2θ − 1)A(Σk
1,n − Σk

2,n,Σ
k
1,n−1 − Σk

2,n−1)

≤ (1 − θ)A(Σk
1,n−1 − Σk

2,n−1,Σ
k
1,n−1 − Σk

2,n−1)

+ 1
2 (2θ − 1)

[
A(Σk

1,n − Σk
2,n,Σ

k
1,n − Σk

2,n)

+ A(Σk
1,n−1 − Σk

2,n−1,Σ
k
1,n−1 − Σk

2,n−1)
]
.

Therefore,

A(Σk
1,n − Σk

2,n,Σ
k
1,n − Σk

2,n) ≤ A(Σk
1,n−1 − Σk

2,n−1,Σ
k
1,n−1 − Σk

2,n−1),

i.e., the scheme is stable. �

We end this section by commenting that the contractivity property im-
plies the uniqueness of a solution. Thus, in particular, for both the continu-
ous problem and discrete problem, the uniqueness of the generalized stress
part of the solutions follows immediately.

13.3 Fully Discrete Approximations of the Dual
Problem

We now discuss a family of fully discrete approximations to the problem
Dual. We have seen in Chapter 8 that under suitable assumptions, the
problem Dual has a unique solution. The fully discrete schemes discussed
here can also be viewed as mixed approximations to the stress problem
Dual1; by “mixed” here we mean that a Lagrange multiplier is introduced
as a result of the constraint related to the bilinear form b(·, ·).
The schemes. To begin with, we assume that a uniform partition dividing
the time interval [0, T ] into N subintervals is given, with step-size k = T/N .
Then we assume that a finite element mesh Th = {Ωe}Ee=1 of the spatial
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domain Ω is constructed in the usual way, with the mesh-size defined by
h = maxhe, where he is the diameter of the element Ωe, a general element
of the triangulation. Unlike the case of the primal variational problem,
where we derive error estimates for any finite element subspaces, here we
will consider only a particular choice of finite element subspaces. More
precisely, the finite element subspace V h will consist of piecewise linear
functions in V = [H1

0 (Ω)]3, while Sh and Mh will be the subspaces of
S and M , respectively, comprising piecewise constants. Then we define
T h = Sh ×Mh and

Ph = {T h = (τh,µh) ∈ T h : T h ∈ K a.e. in Ω}.

Again, let θ ∈
[ 1
2 , 1

]
be a parameter. The family of fully discrete schemes

for the problem Dual is stated next.

Problem Dualhk. Find (whk,Σhk) = {(whk
n ,Σhk

n )}Nn=0 ⊂ V h ×Ph with
(whk

0 ,Σhk
0 ) = 0 such that for n = 1, . . . , N ,

b(vh,σhk
n−1+θ) = 〈�(tn−1+θ),vh〉 ∀vh ∈ V h, (13.40)

Ah(δΣhk
n ,T h − Σhk

n−1+θ)

+ b(whk
n−1+θ, τ

h − σhk
n−1+θ) ≥ 0 ∀T h = (τh,µh) ∈ Ph. (13.41)

Here, as before, we use the notation Σhk
n−1+θ = θΣhk

n + (1 − θ)Σhk
n−1. We

use whk
n−1+θ ∈ V h to denote an approximation of the velocity variable

w(t) ≡ u̇(t) at t = tn−1+θ. The bilinear form Ah : T × T → R is an
approximation to A(·, ·) and is defined by

Ah(Σ,T ) =
∫

Ω
σ : C−1

h τ dx +
∫

Ω
χ : H−1

h µ dx, (13.42)

in which the approximate moduli C−1
h and H−1

h are piecewise constant
approximations of C−1 and H−1. They can be defined as the piecewise
averages of C−1 and H−1 over each element, for example. The approxima-
tions C−1

h and H−1
h are assumed to satisfy the material properties enjoyed

by C−1 and H−1, given in Section 7.1, with the constants there indepen-
dent of h.

With the same proof technique as that used in Section 8.3, one can
show that under assumptions that are the discrete counterparts of As-
sumptions 8.4 and 8.11, the discrete problem Dualhk has a solution.

Order error estimates. In the derivation of order error estimates below,
we assume that the solution has the regularity required by the expressions
at various locations. The precise regularity assumptions needed will be
made clear in the statement of Theorem 13.7. We introduce the orthogonal
projection operator Πh : T → T h with respect to the inner product defined
by the bilinear form Ah(·, ·); that is, for T ∈ T , ΠhT is the unique element
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in T h such that

Ah(T − ΠhT ,T h) = 0 ∀T h ∈ T h. (13.43)

From the expression (13.42) we see that ΠhT = (τh
1 ,µ

h
1 ) with τh

1 ∈ Sh and
µh

1 ∈ Mh being orthogonal projections of τ and µ onto Sh and Mh in the
inner products defined by the bilinear forms ah(·, ·) and ch(·, ·), respectively.
Here,

ah(σ, τ ) =
∫

Ω
σ : C−1

h τ dx,

ch(χ,µ) =
∫

Ω
χ ·H−1

h µ dx.

We will use the same symbol Πh also to denote these two orthogonal pro-
jections. Thus, we will write ΠhT = (Πhτ ,Πhµ).

Later, we will need some properties of the orthogonal projections, which
are summarized in the following lemma.

Lemma 13.6. The orthogonal projections Πh : S → Sh and Πh : M → Mh

are piecewise averaging operators; that is, for T = (τ ,µ) ∈ T , for any
element T ,

Πhτ |Ωe
=

1
meas (Ωe)

∫
Ωe

τ dx, Πhµ|Ωe
=

1
meas (Ωe)

∫
Ωe

µ dx. (13.44)

Consequently, by the convexity of the set P, if T ∈ P, then ΠhT ∈ Ph.
Also, we have

b(vh,Πhτ − τ ) = 0 ∀vh ∈ V h, τ ∈ S. (13.45)

Proof. We will prove the first relation in (13.44); the second relation can
be proved similarly. From (13.43), we find that∫

Ω
(Πhτ − τ ) : C−1

h τh dx = 0 ∀ τh ∈ Sh,

which implies, on each element Ωe, that∫
Ωe

(Πhτ − τ ) dx :
(
C−1

h τh
)
|Ωe

= 0 ∀ τh ∈ Sh,

since
(
C−1

h τh
)
|Ωe is constant. Because

(
C−1

h τh
)
|Ωe can take on the value

of an arbitrary constant, we get∫
Ωe

(Πhτ − τ ) dx = 0.

So the first relation in (13.44) holds. The relation (13.45) is a simple con-
sequence of (13.44) and the fact that ε(vh) is a piecewise constant for
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vh ∈ V h. �

Now let en = Σ(tn) − Σhk
n , n = 0, 1, . . . , N , denote the approximation

error, e0 = 0. We consider the expression

Ah(δen, θ en + (1 − θ) en−1).

Denote by ‖ · ‖h the norm induced by the discrete bilinear form Ah(·, ·),
that is,

‖T ‖h = Ah(T ,T )
1
2 .

By the assumptions made on C−1
h and H−1

h , the norm ‖ · ‖h is equivalent
to ‖ ·‖T with the equivalence constants independent of h. Adapting (11.34)
to the current case, we have

Ah(δen, θ en + (1 − θ) en−1) ≥
1
2k

(
‖en‖2

h − ‖en−1‖2
h

)
. (13.46)

To derive an upper bound, we write

Ah(δen, θ en + (1 − θ) en−1)
= Ah(δen, En,θ(Σ)) + Ah(δen,Σ(tn−1+θ) − Σhk

n−1+θ), (13.47)

where as before, we use the notation

En,θ(Σ) = θΣ(tn) + (1 − θ)Σ(tn−1) − Σ(tn−1+θ).

For the second term on the right-hand side of (13.47), we have

Ah(δen,Σ(tn−1+θ) − Σhk
n−1+θ)

= Ah(δΣ(tn) − Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk
n−1+θ)

+ Ah(Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk
n−1+θ)

−A(Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk
n−1+θ)

+ A(Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk
n−1+θ)

−Ah(δΣhk
n ,ΠhΣ(tn−1+θ) − Σhk

n−1+θ)

−Ah(δΣhk
n ,Σ(tn−1+θ) − ΠhΣ(tn−1+θ)).

The first term on the right-hand side can be rewritten,

Ah(δΣ(tn) − Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk
n−1+θ)

= Ah(δΣ(tn) − Σ̇(tn−1+θ),−En,θ(Σ))

+ Ah(δΣ(tn) − Σ̇(tn−1+θ), θ en + (1 − θ) en−1).
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We use (13.2) at t = tn−1+θ with T = Σhk
n−1+θ (which is in P by its

convexity) to obtain (recalling that we use w to stand for u̇)

A(Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk
n−1+θ)

≤ b(w(tn−1+θ),σhk
n−1+θ − σ(tn−1+θ)).

Taking T h = ΠhΣ(tn−1+θ) in (13.41), we get

−Ah(δΣhk
n ,ΠhΣ(tn−1+θ) − Σhk

n−1+θ)

≤ b(whk
n−1+θ,Π

hσ(tn−1+θ) − σhk
n−1+θ).

And finally, because Πh is the orthogonal projection onto T h in the inner
product induced by the bilinear form Ah(·, ·), we have

Ah(δΣhk
n ,Σ(tn−1+θ) − ΠhΣ(tn−1+θ)) = 0.

Thus, we have

Ah(δen,Σ(tn−1+θ) − Σhk
n−1+θ)

≤ Ah(δΣ(tn) − Σ̇(tn−1+θ),−En,θ(Σ))

+ Ah(δΣ(tn) − Σ̇(tn−1+θ), θ en + (1 − θ) en−1)
+ Ah(Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk

n−1+θ)

−A(Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk
n−1+θ)

+ b(w(tn−1+θ),σhk
n−1+θ − σ(tn−1+θ))

+ b(whk
n−1+θ,Π

hσ(tn−1+θ) − σhk
n−1+θ).

From (13.40) and (13.1) we obtain the relation

b(vh,σ(tn−1+θ) − σhk
n−1+θ) = 0 ∀vh ∈ V h. (13.48)

Using (13.48) and (13.45), we have

b(whk
n−1+θ,Π

hσ(tn−1+θ) − σhk
n−1+θ)

= b(whk
n−1+θ,Π

hσ(tn−1+θ) − σ(tn−1+θ))
= 0. (13.49)

Again using (13.48), we get, for any vh ∈ V h,

b(w(tn−1+θ),σhk
n−1+θ − σ(tn−1+θ))

= b(w(tn−1+θ) − vh,σhk
n−1+θ − σ(tn−1+θ))

= b(w(tn−1+θ) − vh, En,θ(σ))
+ b(w(tn−1+θ) − vh,

θ (σhk
n − σ(tn)) + (1 − θ) (σhk

n−1 − σ(tn−1))).
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Employing all these relations in (13.47), we obtain an upper bound, for any
vh ∈ V h,

Ah(δen, θ en + (1 − θ) en−1)
≤ Ah(δen, En,θ(Σ)) −Ah(δΣ(tn) − Σ̇(tn−1+θ), En,θ(Σ))

+ Ah(δΣ(tn) − Σ̇(tn−1+θ), θ en + (1 − θ) en−1)
+ Ah(Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk

n−1+θ)

−A(Σ̇(tn−1+θ),Σ(tn−1+θ) − Σhk
n−1+θ)

+ b(w(tn−1+θ) − vh, En,θ(σ))
+ b(w(tn−1+θ) − vh,

θ (σhk
n − σ(tn)) + (1 − θ) (σhk

n−1 − σ(tn−1))).

Set M = max0≤n≤N ‖en‖T , the maximal error. Furthermore, we use the
notation

chn,θ(w) = inf
vh∈V h

‖w(tn−1+θ) − vh‖V (13.50)

and

ch(C,H) = max
Ωe

{
‖C−1

h −C−1‖L∞(Ωe), ‖H
−1
h −H−1‖L∞(Ωe)

}
. (13.51)

Notice that

‖Σ(tn−1+θ) − Σhk
n−1+θ‖T ≤ ‖En,θ(Σ)‖T + M.

Combining the lower and upper bounds for the quantity

Ah(δen, θ en + (1 − θ) en−1),

we obtain

1
2k

(
‖en‖2

h − ‖en−1‖2
h

)
≤ 1

k
Ah(en − en−1, En,θ(Σ))

+ c
(
‖δΣ(tn) − Σ̇(tn−1+θ)‖T + chn,θ(w) + ch(C,H) ‖Σ̇‖L∞(0,T ;T )

)
× (‖En,θ(Σ)‖T + M).

From this inequality, we find in turn that, for n = 1, . . . , N ,

‖en‖2
h − ‖en−1‖2

h

≤ 2Ah(en − en−1, En,θ(Σ))

+ c k
(
‖δΣ(tn) − Σ̇(tn−1+θ)‖T + chn,θ(w) + ch(C,H) ‖Σ̇‖L∞(0,T ;T )

)
× (‖En,θ(Σ)‖T + M).
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Hence, recalling that e0 = 0, an induction on n yields

‖en‖2
h ≤ 2

n∑
j=1

Ah(ej − ej−1, Ej,θ(Σ))

+ c k

n∑
j=1

(
‖δΣ(tj) − Σ̇(tj−1+θ)‖T + chj,θ(w)

+ ch(C,H) ‖Σ̇‖L∞(0,T ;T )

)
M

+ c k

n∑
j=1

‖Ej,θ(Σ)‖T
(
‖δΣ(tj) − Σ̇(tj−1+θ)‖T

+ chj,θ(w) + ch(C,H) ‖Σ̇‖L∞(0,T ;T )

)
.

We then use the identity

n∑
j=1

Ah(ej − ej−1, Ej,θ(Σ))

=
n−1∑
j=1

Ah(ej , Ej,θ(Σ) − Ej+1,θ(Σ)) + 2Ah(en, En,θ(Σ))

to find that

M2 ≤ c

⎛⎝N−1∑
j=1

‖Ej,θ(Σ) − Ej+1,θ(Σ)‖T + ‖En,θ(Σ)‖T

⎞⎠ M

+ c k

N∑
j=1

(
‖δΣ(tj) − Σ̇(tj−1+θ)‖T + chj,θ(w)

+ ch(C,H) ‖Σ̇‖L∞(0,T ;T )
)
M

+ c k

N∑
j=1

‖Ej,θ(Σ)‖T
(
‖δΣ(tj) − Σ̇(tj−1+θ)‖T

+ chj,θ(w) + ch(C,H) ‖Σ̇‖L∞(0,T ;T )

)
.



338 13. Numerical Analysis of the Dual Problem

Applying the inequality (11.3) and recalling the definition of M , we get

max
0≤n≤N

‖Σ(tn) − Σhk
n ‖T

≤ c
(N−1∑

j=1

‖Ej,θ(Σ) − Ej+1,θ(Σ)‖T + ‖EN,θ(Σ)‖T

+ k

N∑
j=1

(‖δΣ(tj) − Σ̇(tj−1+θ)‖T + chj,θ(w))
)

+ c ch(C,H) ‖Σ̇‖L∞(0,T ;T )

+ c
{
k

N∑
j=1

‖Ej,θ(Σ)‖T
(
‖δΣ(tj) − Σ̇(tj−1+θ)‖T

+ chj,θ(w) + ch(C,H) ‖Σ̇‖L∞(0,T ;T )

)} 1
2
.

Now assume that Σ ∈ W 2,1(0, T ; T ) if θ ∈ ( 1
2 , 1] and Σ ∈ W 3,1(0, T ; T ) if

θ = 1
2 . Applying Lemmas 11.2, 11.3, and 11.4, we conclude that if θ ∈ (1

2 , 1],

max
0≤n≤N

‖Σ(tn) − Σhk
n ‖T

≤ c k ‖Σ‖W 2,1(0,T ;T ) + c k
N∑
j=1

chj,θ(w)

+ c ch(C,H) ‖Σ̇‖L∞(0,T ;T )

+ c

{
k

N∑
j=1

k ‖Σ̈‖L1(tj−1,tj ;T )
(
‖Σ̈‖L1(tj−1,tj ;T )

+ ch(C,H) ‖Σ̇‖L∞(0,T ;T ) + chj,θ(w))

}1/2

≤ c k ‖Σ‖W 2,1(0,T ;T ) + c k
N∑
j=1

chj,θ(w)

+ c ch(C,H) ‖Σ̇‖L∞(0,T ;T )

+ c k
{
‖Σ̇‖L∞(0,T ;T )‖Σ̈‖L1(0,T ;T )c

h(C,H)
}1/2

+ c k

⎧⎨⎩
N∑
j=1

‖Σ̈‖L1(tj−1,tj ;T )c
h
j,θ(w)

⎫⎬⎭
1/2

, (13.52)
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and if θ = 1
2 ,

max
0≤n≤N

‖Σ(tn) − Σhk
n ‖T

≤ c k2 (‖Σ‖W 3,1(0,T ;T ) + ‖Σ̈‖L∞(0,T ;T ))

+ c k

N∑
j=1

chj,θ(w) + c ch(C,H) ‖Σ̇‖L∞(0,T ;T )

+ c

{
k

N∑
j=1

k2‖Σ̈‖L∞(0,T ;T )(k ‖Σ(3)‖L1(tj−1,tj ;T )

+ chj,θ(w) + ch(C,H)‖Σ̇‖L∞(0,T ;T ))

}1/2

≤ c k2 (‖Σ‖W 3,1(0,T ;T ) + ‖Σ̈‖L∞(0,T ;T ))

+ c k

N∑
j=1

chj,θ(w) + c ch(C,H) ‖Σ̇‖L∞(0,T ;T )

+ c k2
{
‖Σ̈‖L∞(0,T ;T )‖Σ(3)‖L1(0,T ;T )

}1/2

+ c k ‖Σ̈‖1/2
L∞(0,T ;T )

⎧⎨⎩k

N∑
j=1

chj,θ(w)

⎫⎬⎭
1/2

+ c k
{
ch(C,H)‖Σ̇‖L∞(0,T ;T )

}1/2
, (13.53)

where chj,θ(w), j = 1, . . . , N , are defined in (13.50), and ch(C,H) is defined
in (13.51).

The final error estimates in terms of powers of k and h are derived from
(13.52) and (13.53), and are dependent on the regularity of the Lagrangian
multiplier w and that of C and H. If we assume that

w ∈ L∞(0, T ; (H2(Ω))3),

then from (13.49) we have

chn,θ(w) ≤ c h ‖w‖L∞(0,T ;(H2(Ω))3). (13.54)

And if we assume that

Cijkl ∈ W 1,∞(Ω), Hij ∈ W 1,∞(Ω),

and that Ch and Hh are obtained from C and H through piecewise aver-
aging, then

ch(C,H) ≤ c h. (13.55)
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We are now ready to state the results on the order error estimates for
the fully discrete approximations.

Theorem 13.7. Assume Σ ∈ W 2,1(0, T ; T ), w ∈ L∞(0, T ; (H2(Ω))3),
Cijkl ∈ W 1,∞(Ω), and Hij ∈ W 1,∞(Ω). Then for the fully discrete solutions
defined in Problem Dualhk, we have the estimate

max
0≤n≤N

‖Σ(tn) − Σhk
n ‖T = O(h + k).

In the case θ = 1
2 , if additionally Σ ∈ W 3,1(0, T ; T ), we have

max
0≤n≤N

‖Σ(tn) − Σhk
n ‖T = O(h + k2).

Convergence analysis under minimal regularity conditions. Now
we prove the convergence of the fully discrete solutions under the basic
regularity condition (u,Σ) ∈ H1(0, T ;V × T ). Again we denote en =
Σ(tn) − Σhk

n , n = 0, 1, . . . , N , e0 = 0. We still have (13.46) and (13.47).
Hence

1
2k

(
‖en‖2

h − ‖en−1‖2
h

)
≤ Ah(δen, En,θ(Σ)) + Ah(δen,Σ(tn−1+θ) − Σhk

n−1+θ). (13.56)

We examine the second term on the right-hand side of (13.56):

Ah(δen,Σ(tn−1+θ) − Σhk
n−1+θ)

= Ah(δΣn,−En,θ(Σ)) + Ah(δΣn, θ en + (1 − θ) en−1)

−Ah(δΣhk
n ,ΠhΣ(tn−1+θ) − Σhk

n−1+θ)

−Ah(δΣhk
n ,Σ(tn−1+θ) − ΠhΣ(tn−1+θ)) (13.57)

We take T h = ΠhΣ(tn−1+θ) ∈ Ph in (13.41) to obtain

−Ah(δΣhk
n ,ΠhΣ(tn−1+θ) − Σhk

n−1+θ)

≤ b(whk
n−1+θ,Π

hσ(tn−1+θ) − σhk
n−1+θ).

By (13.49),

b(whk
n−1+θ,Π

hσ(tn−1+θ) − σhk
n−1+θ) = 0.

Therefore,

−Ah(δΣhk
n ,ΠhΣ(tn−1+θ) − Σhk

n−1+θ) ≤ 0. (13.58)

Because Πh is the orthogonal projection onto T h in the inner product
induced by the bilinear form Ah(·, ·), we have

Ah(δΣhk
n ,Σ(tn−1+θ) − ΠhΣ(tn−1+θ)) = 0. (13.59)
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Using (13.58) and (13.59) in (13.57), we see that

Ah(δen,Σ(tn−1+θ) − Σhk
n−1+θ)

≤ Ah(δΣn,−En,θ(Σ)) + Ah(δΣn, θ en + (1 − θ) en−1).(13.60)

Now we take T = Σhk
n−1+θ ∈ P in (13.2) and integrate the inequality over

In = [tn−1, tn]:∫
In

A(Σ̇(t),Σhk
n−1+θ − Σ(t)) dt +

∫
In

b(w(t),σhk
n−1+θ − σ(t)) dt ≥ 0,

which after being divided by k can be rewritten as

A(δΣn, θ en + (1 − θ) en−1)

≤ 1
k

∫
In

A(Σ̇(t), θΣ(tn) + (1 − θ)Σ(tn−1) − Σ(t)) dt

+
1
k

∫
In

b(w(t),σhk
n−1+θ − σ(t)) dt. (13.61)

Combining (13.56), (13.60), and (13.61) and rearranging some terms, we
obtain

1
2
(
‖en‖2

h − ‖en−1‖2
h

)
≤ Ah(en − en−1, En,θ(Σ))

+
∫
In

A(Σ̇(t), En,θ(Σ)) dt−
∫
In

Ah(Σ̇(t), En,θ(Σ)) dt

+
∫
In

Ah(Σ̇(t), θ en + (1 − θ) en−1) dt

−
∫
In

A(Σ̇(t), θ en + (1 − θ) en−1) dt

+
∫
In

A(Σ̇(t),Σ(tn−1+θ) − Σ(t)) dt

+
∫
In

b(w(t),σhk
n−1+θ − σ(t)) dt.

Using the quantities ch(C,H) and ωk(Σ) defined in (13.51) and (13.15),
we then derive from the above inequality

‖en‖2
h − ‖en−1‖2

h

≤ 2Ah(en − en−1, En,θ(Σ))

+ c ch(C,H)
∫
In

‖Σ̇(t)‖T dt (‖En,θ(Σ)‖T + M)

+ c ωk(Σ)
∫
In

‖Σ̇(t)‖T dt

+
∫
In

b(w(t),σhk
n−1+θ − σ(t)) dt, (13.62)
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where M = maxn ‖en‖T . Now we estimate the last term in (13.62):∫
In

b(w(t),σhk
n−1+θ − σ(t)) dt

=
∫
In

[
b(w(t),σhk

n−1+θ − σ(tn−1+θ))

+ b(w(t),σ(tn−1+θ) − σ(t))
]
dt.

From (13.48) with an arbitrary vh = vh(t) ∈ V h, we have

b(vh(t),σ(tn−1+θ) − σhk
n−1+θ) = 0.

Then∫
In

b(w(t),σhk
n−1+θ − σ(t)) dt

≤
∫
In

b(w(t) − vh(t),σhk
n−1+θ − σ(tn−1+θ)) dt

+ c ωk(σ)
∫
In

‖w(t)‖V dt

=
∫
In

b(w(t) − vh(t), θ (σn − σ(tn)) + (1 − θ) (σn−1 − σ(tn−1)) dt

+
∫
In

b(w(t) − vh(t), En,θ(σ)) dt + c ωk(σ)
∫
In

‖w(t)‖V dt

≤ c

∫
In

‖w(t) − vh(t)‖V dt (M + ‖En,θ(Σ)‖T )

+ c ωk(σ)
∫
In

‖w(t)‖V dt.

To simplify the notation, we define

E(Σ) = max
n

‖En,θ(Σ)‖T .

Hence, from (13.62), we have

‖en‖2
h − ‖en−1‖2

h

≤ 2Ah(en − en−1, En,θ(Σ))

+ c
(
ch(C,H)

∫
In

‖Σ̇(t)‖T dt +
∫
In

‖w(t) − vh(t)‖V dt
)

× (E(Σ) + M) + c ωk(Σ)
∫
In

(‖Σ̇(t)‖T + ‖w(t)‖V ) dt.
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Apply the inequality recursively and notice that e0 = 0:

‖en‖2
h ≤ 2

n∑
j=1

Ah(ej − ej−1, Ej,θ(Σ))

+ c
(
ch(C,H)

∫ tn

0
‖Σ̇(t)‖T dt +

∫ tn

0
‖w(t) − vh(t)‖V dt

)
× (E(Σ) + M) + c ωk(Σ)

∫ tn

0
(‖Σ̇(t)‖T + ‖w(t)‖V ) dt.

We use the identity

n∑
j=1

Ah(ej − ej−1, Ej,θ(Σ))

= Ah(en, En,θ(Σ)) +
n−1∑
j=1

Ah(ej , Ej,θ(Σ) − Ej+1,θ(Σ))

to obtain

M2 ≤ cM
(
‖EN,θ(Σ)‖T +

N−1∑
n=1

‖En,θ(Σ) − En+1,θ(Σ)‖T

+ ch(C,H) ‖Σ̇‖L1(0,T ;T ) + ‖w − vh‖L1(0,T ;V )

)
+ c

(
ch(C,H) ‖Σ̇‖L1(0,T ;T ) + ‖w − vh‖L1(0,T ;V )

)
E(Σ)

+ c ωk(Σ)
(
‖Σ̇‖L1(0,T ;T ) + ‖w‖L1(0,T ;V )

)
.

Now we apply the inequality (11.3) to obtain

M2 ≤ c
(
‖EN,θ(Σ)‖T +

N−1∑
n=1

‖En,θ(Σ) − En+1,θ(Σ)‖T

+ ch(C,H) ‖Σ̇‖L1(0,T ;T ) + ‖w − vh‖L1(0,T ;V )

)
+ c

{(
ch(C,H) ‖Σ̇‖L1(0,T ;T ) + ‖w − vh‖L1(0,T ;V )

)
E(Σ)

+ ωk(Σ)
(
‖Σ̇‖L1(0,T ;T ) + ‖w‖L1(0,T ;V )

)}1/2
.
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Since vh ∈ L1(0, T ;V h) is arbitrary, we then get the estimate

max
0≤n≤N

‖Σ(tn) − Σhk
n ‖2

h

≤ c
(
‖EN,θ(Σ)‖T +

N−1∑
n=1

‖En,θ(Σ) − En+1,θ(Σ)‖T

+ ch(C,H) ‖Σ̇‖L1(0,T ;T ) + inf
vh∈L1(0,T ;V h)

‖w − vh‖L1(0,T ;V )

)
+ c

{(
ch(C,H) ‖Σ̇‖L1(0,T ;T ) + inf

vh∈L1(0,T ;V h)
‖w − vh‖L1(0,T ;V )

)
E(Σ)

+ max
0≤n≤N

‖En,θ(Σ)‖T inf
vh∈L1(0,T ;V h)

‖w − vh‖L1(0,T ;V )

+ ωk(Σ)
(
‖Σ̇‖L1(0,T ;T ) + ‖w‖L1(0,T ;V )

)}1/2
. (13.63)

Now for any ε > 0, there exists w ∈ L2(0, T ; (H2(Ω))3) such that

‖w −w‖L2(0,T ;V ) < ε.

By the finite element interpolation error estimates, for a.a. t ∈ (0, T ),

inf
vh(t)∈V h

‖w(t) − vh(t)‖V ≤ c h ‖w(t)‖(H2(Ω))3 .

Then

inf
vh∈L1(0,T ;V h)

‖w − vh‖L1(0,T ;V )

≤ ‖w −w‖L1(0,T ;V ) + inf
vh∈L1(0,T ;V h)

‖w − vh‖L1(0,T ;V )

≤ c ε + c h ‖w‖L1(0,T ;(H2(Ω))3).

The other terms on the right-hand side of (13.63) can be estimated as in
Section 13.1 for the time-discrete schemes. Recall that ‖·‖h is a norm equiv-
alent to ‖ · ‖T with the equivalence constants independent of h. Therefore,
we have proved the following convergence result.

Theorem 13.8. Under the basic regularity condition (u,Σ) ∈ H1(0, T ;V×
T ), the fully discrete solution defined in the problem Dualhk converges:

max
0≤n≤N

‖Σ(tn) − Σhk
n ‖T → 0 as k, h → 0.

13.4 Predictor–Corrector Iterations

In actual computations, usually the discrete schemes discussed in Sec-
tion 13.3 are not implemented directly, because of the large size of the
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discrete problems. What is done in practice is to use an iteration procedure
to split the task of computing the generalized stress and the displacement.
The iteration procedures used are all of the predictor–corrector type. In
this section we formulate and analyze some predictor–corrector algorithms
for solving the discrete problems discussed in the last section. We focus
on algorithms that are in common use in current computational practice
(see, for example, [114]). The presentation will be given for solving one
step in the backward Euler time-discrete approximation of the dual prob-
lem, cf. the scheme Dualk1 ; the treatment of other time-discrete and fully
discrete approximations can be discussed similarly.

For convenience of discussion, we first formulate the dual problem Dual
in an equivalent form. We set

E(u) = (ε(u),0) and Σe = (Cε(u),0) = GE(u),

where G = diag[C,H]. Then the variational inequality (13.2) can be
rewritten as

A(Σ̇
e
(t) − Σ̇(t),T − Σ(t)) ≤ 0 ∀T = (τ ,µ) ∈ P. (13.64)

It is easy to see that the scheme Dualk1 can be rewritten as the following
scheme Dualk, with �n = �(tn) and the relation between wk

n and uk
n

defined by

uk
n = k

n∑
j=1

wk
j , n = 1, . . . , N.

Problem Dualk. Find {(uk
n,Σ

k
n) = (uk

n,σ
k
n,χ

k
n)}Nn=0 ⊂ V × P, with

(uk
0 ,Σ

k
0) = 0, such that for n = 1, . . . , N ,

b(v,σk
n) = 〈�n,v〉 ∀v ∈ V, (13.65)

A(Σtr,k
n − Σk

n,T − Σk
n) ≤ 0 ∀T ∈ P, (13.66)

in which

Σtr,k
n = Σk

n−1 + G∆Ek
n (13.67)

and

∆Ek
n = E(uk

n) −E(uk
n−1) = (C ε(uk

n − uk
n−1),0).

From the proof of Theorem 8.12 we see that under the assumptions of
Theorem 8.12, the problem Dualk has a solution, and one can show that
{Σk

n}Nn=1 ⊂ P is unique. It seems difficult to prove the uniqueness of the
sequence {uk

n}Nn=1 directly, although we have seen in Theorem 8.12 that
the limit of the sequence as k → 0 is unique.
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We note that once Σtr,k
n is known, the variational inequality (13.66) is

equivalent to the minimization problem

J(T ) ≡ 1
2 ‖Σ

tr,k
n − T ‖2

A → inf, T ∈ P, (13.68)

where ‖ · ‖A is the norm induced by the bilinear form A, as well as to the
projection problem

Σk
n = ΠP,AΣtr,k

n , (13.69)

where, ΠP,A denotes the projection operator onto P with respect to the
inner product (·, ·)A.

The algorithms to be discussed here for solving (13.65)–(13.66) are all
of the predictor–corrector type. Each iteration consists of a predictor step
and a corrector step. In the predictor step, we update the quantity uk

n by
using the equation (13.65). Then we compute an updated value for Σtr,k

n .
In the corrector step we solve (13.66) (equivalently, (13.68) or (13.69)) to
get a new iterate for Σk

n. As with the primal problem, a variety of solution
algorithms can be developed by using different schemes to update uk

n in
the predictor step. We will consider two types of predictors: the elastic
predictor and a consistent tangent predictor.

In the literature (for example, [114]), an implementation of the corrector
step is usually called a return map algorithm. Using an updated value for
uk
n from the predictor step, one computes the corresponding updated strain

increment ∆Ek
n. Then an updated trial state Σtr,k

n for the generalized stress
is calculated by the formula (13.67). If the trial state Σtr,k

n belongs to P,
then Σk

n = Σtr,k
n is the solution, and we can move on to solve (13.65)–

(13.66) for the next time level n+1. In general, however, the updated trial
state lies outside the admissible region P. The purpose of a corrector step
is then to find a point in P that is close to the trial state in some sense;
that is, the corrector step returns the iteration to some point in P. This is
also evident from the form of the projection problem (13.69).

The elastic predictor. For brevity in exposition, we drop the superscript
k. A superscript i will be used later as the iteration counter in the algorithm.

We begin by returning to (13.1). Since the stress σ is implicitly a function
of the displacement u, we replace σ in (13.1) by σi, the ith iterate, which
is defined by

σi ≡ σ(ε(ui)) ≈ σ(ε(ui−1)) + Dε(ui − ui−1);

the predictor step will be referred to as an elastic predictor by virtue of
the fact that the modulus D will be assumed to be time-independent and
to be related to the elastic modulus C in a definite way. Later, we will
provide conditions on D that are sufficient to guarantee the convergence
of the predictor–corrector algorithm.
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From a known iterate (ui−1
n ,Σi−1

n ), we therefore update un by solving
the equation∫

Ω
Dε(ui

n − ui−1
n ) : ε(v) dx = b(v,σi−1

n ) − 〈�n,v〉 ∀v ∈ V

for ui
n. This equation may be regarded as an approximation to (13.1) at

t = tn, in which σ(tn) is replaced by a first-order approximation σi
n ≡

σ(ε(ui
n)) ≈ σ(ε(ui−1

n )) + Dε(ui
n − ui−1

n ). Thus, once (un−1,Σn−1) is
known, a predictor–corrector algorithm for computing (un,Σn) is the fol-
lowing procedure.

Initialization: u0
n = un−1, Σ0

n = Σn−1.

Iteration: For i = 1, 2, . . . ,
Predictor: Compute ui

n ∈ V satisfying∫
Ω
Dε(ui

n − ui−1
n ) : ε(v) dx = b(v,σi−1

n ) − 〈�n,v〉 ∀v ∈ V, (13.70)

and a trial state

Σtr,i
n = Σn−1 + (C ε(ui

n − un−1),0). (13.71)

Corrector: Find Σi
n ∈ P such that

A(Σtr,i
n − Σi

n,T − Σi
n) ≤ 0 ∀T ∈ P. (13.72)

Convergence of the elastic predictor. We first note that (13.66) can
be rewritten in the alternative form (with the superscript k omitted)

A(Σn,T − Σn) + b(un, τ − σn) ≥ 〈Ln,T − Σn〉 ∀T ∈ P,

where Ln is a continuous linear form on T defined by

〈Ln,T 〉 = A(Σn−1,T ) + b(un−1, τ ).

To further simplify the notation, we will also drop the subscript n in the
convergence analysis. Thus, given the continuous linear forms � and L, the
problem is to find u ∈ V and Σ = (σ,χ) ∈ P such that

b(v,σ) = 〈�,v〉 ∀v ∈ V, (13.73)
A(Σ,T − Σ) + b(u, τ − σ) ≥ 〈L,T − Σ〉 ∀T ∈ P. (13.74)

We assume that the problem has a solution (u,Σ), and that Σ is unique.
Given a modulus D, independent of time, and an initial guess (u0,Σ0) ∈

V ×P, the predictor–corrector algorithm for solving the problem (13.73)–
(13.74) is this: For i = 1, 2, . . . , compute ui ∈ V such that∫

Ω
Dε(ui − ui−1) : ε(v) dx = b(v,σi−1) − 〈�,v〉 ∀v ∈ V, (13.75)



348 13. Numerical Analysis of the Dual Problem

and then compute Σi ∈ P such that

A(Σi,T − Σi) + b(ui, τ − σi) ≥ 〈L,T − Σi〉 ∀T = (τ ,µ) ∈ P.
(13.76)

We have the following result on convergence of the algorithm.

Theorem 13.9. Assume that the modulus D is chosen in such a way that
it is symmetric, uniformly bounded, pointwise stable in the sense that for
some constant c > 0,

D(x)ξ : ξ ≥ c |ξ|2 ∀ ξ ∈ M3, a.e. x ∈ Ω, (13.77)

and such that its inverse D−1 is uniformly dominated by C−1 (or equiva-
lently, C is uniformly dominated by D ) in the sense that for some constant
α > 0,

ξ :
(
C−1(x) −D−1(x)

)
ξ ≥ α |ξ|2 ∀ ξ ∈ M3, a.e. x ∈ Ω. (13.78)

Then

Σi → Σ as i → ∞,

and for some subsequence {uij}j of {ui}i and some element ũ ∈ V ,

uij ⇀ ũ as j → ∞.

The limits ũ ∈ V and Σ ∈ P together solve the problem (13.73)–(13.74).

Proof. Under the given assumptions, the iterative procedure given by
(13.75) and (13.76) is well-defined. Set

Σ
i
= Σi − Σ and ui = ui − u.

From (13.75) and (13.73) we find that∫
Ω
Dε(ui − ui−1) : ε(v) dx = b(v,σi−1) = −

∫
Ω
σi−1 : ε(v) dx ∀v ∈ V.

Thus we get an important relation

Dε(ui − ui−1) = −σi−1. (13.79)

Since D is a symmetric positive definite operator, we can define its square
root operator D1/2, which is also symmetric and positive definite. In par-
ticular, from (13.79) we have

D1/2ε(ui) = D1/2ε(ui−1) −D−1/2σi−1.
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Taking the inner product of the relation with itself and integrating over Ω,
we obtain ∫

Ω
Dε(ui) : ε(ui) dx−

∫
Ω
Dε(ui−1) : ε(ui−1) dx

=
∫

Ω
D−1σi−1 : σi−1 dx−

∫
Ω
ε(ui−1) : σi−1 dx. (13.80)

Now take T = Σi in (13.74) to obtain

A(Σ,Σi − Σ) + b(u,σi − σ) ≥ 〈L,Σi − Σ〉,

and take T = Σ in (13.76) to obtain

A(Σi,Σ − Σi) + b(ui,σ − σi) ≥ 〈L,Σ − Σi〉.

Adding these two inequalities we find that

A(Σ
i
,Σ

i
) ≤ −b(ui,σi) =

∫
Ω
ε(ui) : σi dx. (13.81)

Combining (13.80) and (13.81), we get∫
Ω
Dε(ui) : ε(ui) dx−

∫
Ω
Dε(ui−1) : ε(ui−1) dx

≤
∫

Ω
D−1σi−1 : σi−1 dx−A(Σ

i−1
,Σ

i−1
).

By the assumption that H is positive definite and (13.78), we then have,
for some constant c > 0,∫

Ω
Dε(ui) : ε(ui) dx−

∫
Ω
Dε(ui−1) : ε(ui−1) dx ≤ −c ‖Σi−1‖2

T . (13.82)

The first consequence drawn from (13.82) is that the nonnegative sequence
{
∫
Ω Dε(ui) : ε(ui) dx}i is nonincreasing, and thus has a limit. Then again

from (13.82), we see that∥∥Σi−1∥∥
T → 0 as i → ∞,

that is, we have proved that

Σi → Σ as i → ∞.

Moreover, since {
∫
Ω Dε(ui) : ε(ui) dx}i is a nonincreasing sequence,

and since D satisfies (13.77), we see that {ui}i is a bounded sequence
in V . Equivalently, the sequence {ui}i ⊂ V is bounded. Recall that V is
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a Hilbert space and is hence reflexive. Thus, we can find a subsequence
{uij}j ⊂ {ui}i and an element ũ ∈ V , such that

uij ⇀ ũ in V as j → ∞.

By (13.79),

uij − uij−1 → 0 in V as j → ∞.

Thus if we take the limit along the subsequence {ij}j in (13.75) and (13.76),
we find that the limit (ũ,Σ) satisfies (13.73) and (13.74). �

We observe that if a solution of the problem (13.73)–(13.74) is unique,
then the whole sequence {ui}i converges weakly to u.

We remark that it is not difficult to choose D such that both (13.77) and
(13.78) are satisfied. For example, we may take D = κC for some κ > 1,
or we may take D = κ I with κ > 1/C ′

0. Here C ′
0 is the constant in the

inequality for the positive definiteness of the tensor C−1 (cf. Section 7.1).

Tangent predictor. This predictor takes as a starting point a first-order
Taylor expansion of σ, in which the modulus D introduced earlier is re-
placed by an appropriate tangent modulus. We follow the derivation of the
symmetric consistent tangent modulus in Simo and Govindjee [115] and
Simo [114] to obtain a formula for the tangent predictor. By the expression
(13.69) and the formula (13.67), we see that Σn is a nonlinear function of
un. Here and below, we once again omit the superscript k. And we use i
for the iteration index.

Assume that the (i − 1)th iterate (ui−1
n ,Σi−1

n ) is known. We will use
(13.73) to update un. By Taylor’s expansion, we have the relation

σ(ε(ui
n)) ≈ σ(ε(ui−1

n )) +
∂σ

∂ε
(ε(ui−1

n )) : ε(ui
n − ui−1

n ). (13.83)

Now the question is how to find (an approximate value of) the quantity
∂σ

∂ε
(ε(ui−1

n )). We start with the relation

Σn = G(En − P n),

which comes from

σ = C(ε(u) − p) and χ = −Hξ,

and the notation P = (p, ξ). Here and below, we use the short-hand nota-
tion εn = ε(un), En = E(un), Σn = Σ(εn), and P n = P (un). We take
the differentials of both sides of the relation to obtain

dΣn = G(dEn − dP n). (13.84)
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Thus we need to find an (approximate) expression of dP n in terms of dEn.
Using the relation

Ṗ = λ∇φ(Σ),

we get

Ṗ n = λn ∇φ(Σn).

Hence

P n − P n−1 ≈ ∆λn ∇φ(Σn),

where ∆λn = k λn. The quantity P n−1 is assumed given. So, taking the
differential of the above relation, we have

dP n ≈ d(∆λn)∇φ(Σn) + ∆λn ∇2φ(Σn) dΣn.

Substitution of this relation into (13.84) yields

dΣn ≈ G(dEn − d(∆λn)∇φ(Σn) − ∆λn ∇2φ(Σn) dΣn).

Hence

dΣn ≈ Gn [dEn − d(∆λn)∇φ(Σn)] , (13.85)

where

Gn = [G−1 + ∆λn ∇2φ(Σn)]−1. (13.86)

Thus the problem is reduced to one of finding an (approximate) expression
for d(∆λn) in terms of dEn. As in [115], we determine d(∆λn) by enforcing
the condition

dφ(Σn) = ∇φ(Σn) : dΣn = 0. (13.87)

From (13.85) and (13.87) we find that

d(∆λn) ≈ ∇φ(Σn) : GndEn

∇φ(Σn) : Gn∇φ(Σn)
. (13.88)

Combining (13.85) and (13.88), we obtain the formula

dΣn ≈ [Gn −Nn ⊗Nn] dEn, (13.89)

where

Nn =
Gn∇φ(Σn)√

∇φ(Σn) : Gn∇φ(Σn)
. (13.90)
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The relation (13.89) provides the formula

dσn ≈ Cn dεn, (13.91)

in which Cn can be viewed as an approximation of ∂σ/∂ε(ε(un)).
Thus the tangent predictor step is constructed as follows. Once an iter-

ate (ui−1
n ,Σi−1

n ) is known, we find Gi
n from (13.86), with Σn there being

replaced by Σi−1
n . Then we find N i

n from its definition (13.90), again with
Σn there being replaced by Σi−1

n . Now we have a relation between dΣi
n and

dEi
n from (13.89), which provides us the tangent modulus Ci

n from (13.91).
After the predictor step is completed, we can then apply the corrector step
(13.72) to update Σn.

We note that Gn in (13.86) contains an undetermined scalar ∆λn. In [115]
this scalar is chosen in such a way that the computed value Σn belongs to
P.

As in the case of the primal problem, it is not clear how to prove conver-
gence for the tangent predictor constructed above. In practice, however, it
is known that the tangent predictor performs far more efficiently than the
elastic predictor, particularly if a line search is incorporated.

Solution algorithms for the generalized midpoint discretization.
The solution algorithms discussed so far are in the context of the backward
Euler time-discrete approximation of the dual problem Dual. We may as
well consider the more general time-discrete approximations based on the
generalized midpoint rule. Let θ ∈

[ 1
2 , 1

]
be a parameter. With the same

uniform partition of the time interval [0, T ] given as before, a typical step
in solving the problem (13.1)–(13.2) is to find un ∈ V and Σn ∈ T such
that Σn−1+θ ≡ θΣn + (1 − θ)Σn−1 ∈ P, and

b(v,σn) = 〈�n,v〉 ∀v ∈ V, (13.92)
A(Σn − Σn−1,T − Σn−1+θ)

+ b(un − un−1, τ − σn−1+θ) ≥ 0 ∀T = (τ ,µ) ∈ P. (13.93)

We can rewrite (13.92) and (13.93) as relations in terms of un and Σn−1+θ

(rather than Σn). We have

b(v,σn−1+θ) = θ 〈�n,v〉 + (1 − θ) b(v,σn−1)
∀v ∈ V, (13.94)

A(Σn−1+θ − Σn−1,T − Σn−1+θ)
+ θ b(un − un−1, τ − σn−1+θ) ≥ 0 ∀T = (τ ,µ) ∈ P. (13.95)

The problem (13.94)–(13.95) assumes exactly the form of (13.73) and (13.74).
Thus the elastic predictor–corrector algorithm (13.75)–(13.76) can be ap-
plied directly to solve the problem (13.94)–(13.95). For the study of con-
vergence, we can apply Theorem 13.6. It is also straightforward to derive
a formula for a tangent predictor to solve the problem (13.94)–(13.95).
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13.5 Computation of the Closest Point Projections

We observe that the core of a corrector step in the predictor–corrector
algorithms discussed above is the solution of a variational inequality of the
form

Σ ∈ P, A(Σtr − Σ,T − Σ) ≤ 0 ∀T ∈ P. (13.96)

This is an elliptic variational inequality of the first kind. Equivalently, the
solution Σ is the closest-point projection of the trial generalized stress Σtr

onto the admissible convex set P. This is a standard problem in convex
optimization. Thus, a prototype problem can be described as follows.

Problem. Let P be a nonempty, closed, convex subset of a Hilbert space
T , and G−1 a symmetric, positive definite metric on T . Given Σtr ∈ T ,
solve the problem

min
{ 1

2

(
Σtr − Σ

)
: G−1 (Σtr − Σ

)
: Σ ∈ P

}
. (13.97)

We discuss a possible solution algorithm for solving the constrained min-
imization problem. To do this, we need the following equivalence result.

Theorem 13.10. Σ ∈ P is the solution of the problem (13.97) if and only
if there exists a scalar γ such that

Σ = Σtr − γG∇φ(Σ),
φ(Σ) ≤ 0, γ ≥ 0, γ φ(Σ) = 0. (13.98)

Proof. Let Σ ∈ P be the solution of the problem (13.97). The Lagrangian
associated with the constrained minimization problem is

L(Σ, γ) = 1
2

(
Σtr − Σ

)
: G−1 (Σtr − Σ

)
+ γ f(Σ).

By the Kuhn–Tucker optimality condition, we get (13.98).
Conversely, assume that (13.98) is satisfied for some Σ ∈ P and some

scalar γ. By the second-order sufficiency conditions [81], Σ ∈ P is the so-
lution of the constrained minimization problem. �

Following [114], an application of Newton’s method to solve the system
(13.98) results in a solution algorithm.

Step 1. Initialization. Let δ > 0 be a given error tolerance. Set k = 0,
Σ(0) = Σtr, and γ(0) = 0.

Step 2. Convergence test and residual evaluation. For current values Σ(k)

and γ(k), compute the yield function

φ(k) = φ(Σ(k)).
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If φ(k) ≤ δ, then (Σ, γ) = (Σ(k), γ(k)), and the computation is completed.
Otherwise, compute the residual

R(k) = G−1
[
Σtr − Σ(k)

]
− γ(k)∇φ(Σ(k)).

Step 3. Linearization. If φ(k) > δ, then linearize the residual about the
current iterate (Σ(k), γ(k)) and obtain a linear system for the increment
(∆Σ(k),∆γ(k)),

− ∆Σ(k) + Ḡ
(k)

[
R(k) − ∆γ(k) ∇φ(Σ(k))

]
= 0,

∇φ(Σ(k)) ∆Σ(k) + φ(k) = 0,

where,

Ḡ
(k) =

[
G−1 + γ(k) ∇2φ(Σ(k))

]−1

is the tensor of algorithmic moduli.

Step 4. Solution of the linear system and update. Solving the linear system
in Step 3, we obtain

∆γ(k) =
φ(k) + ∇φ(Σ(k)) : Ḡ(k)

R(k)

∇φ(Σ(k)) : Ḡ(k)∇φ(Σ(k))

and

∆Σ(k) = Ḡ
(k)

[
R(k) − ∆γ(k)∇φ(Σ(k))

]
.

Then set k := k + 1, Σ(k+1) = Σ(k) + ∆Σ(k), γ(k+1) = γ(k) + ∆γ(k), and
return to Step 2.

Although this algorithm performs well on some numerical examples in
Simo [114], theoretically it is not guaranteed that γ(k) ≥ 0. Also, it is an
open problem to prove the convergence of the algorithm rigorously.
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cations, Birkhäuser, Boston, 1985.

[100] W. Prager, Recent developments in the mathematical theory of plas-
ticity, J. Appl. Phys. 20 (1949), 235–241.

[101] L.T. Prandtl, Spannungsverteilung in plastischen Körpern, in Proc.
1st Intern. Congr. Mechanics, Delft, 1924, 43–54.

[102] L.T. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen
Körper, ZAMM 8 (1928), 85–106.

[103] A. Quarteroni and A. Valli, Numerical Approximation of Partial Dif-
ferential Equations, Springer-Verlag, Berlin, 1994.

[104] B.D. Reddy, Existence of solutions to a quasistatic problem in elasto-
plasticity, in C. Bandle et al., eds., Progress in Partial Differential
Equations: Calculus of Variations, Applications , Pitman Research
Notes in Mathematics 267, Longman, London, 1992, 233–259.

[105] B.D. Reddy, Mixed variational inequalities arising in elastoplasticity,
Nonl. Anal. Theory, Meths. and Appls. 19 (1992), 1071–1089.

[106] B.D. Reddy, Introductory Functional Analysis with Applications to
Boundary Value Problems and Finite Elements , Springer-Verlag,
New York, 1998.

[107] B.D. Reddy and J.B. Martin, Algorithms for the solution of internal
variable problems in plasticity, Comp. Meth. Appl. Mech. Engng. 93
(1991), 253–273.

[108] B.D. Reddy and J.B. Martin, Internal variable formulations of prob-
lems in elastoplasticity: constitutive and algorithmic aspects, Adv.
Appl. Mech. 47 (1994), 429–456.



Bibliography 363

[109] M. Renardy and R.C. Rogers, An Introduction to Partial Differential
Equations, Springer-Verlag, New York, 1993.
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Lamé moduli, 31
Lax–Milgram lemma, 106, 224
Legendre transformation, 50, 51
Legendre-Fenchel conjugate, 75
line search procedure, 291
linear elasticity

boundary value problem, 38
initial–boundary value prob-

lem of, 37
linear functional, 99
linear momentum, 24

balance of, 24
linearly elastic material, 28, 36
Lipschitz domain, 112
Lipschitz-continuous boundary, 112
little oh (o) notation, 12
local basis functions, 212, 213
lower semicontinuous (l.s.c.) func-

tion, 74

material point, 15

maximum plastic work, 57
maximum plastic work inequality,

58, 83
mesh parameter, 220
mesh-size, 219
minimization problem, 134

existence of solution to, 135
Minkowski Inequality, 111
mixed variational problems, 135
moduli of continuity, 326
motion, 16

rigid body, 17, 20, 21
multi-index notation, 108

neutral loading, 57
nodal point, 208
norm, 98
normal cone, 72
normality law, 6, 58, 81, 84
normed space, 98

completion of, 100
reflexive, 101

norms
equivalent, 98

obstacle problem, 138
operator, 99

bounded, 100
compact, 103
continuous, 100
dual, 104
kernel of, 99
Laplacian, 126
linear, 99
Lipschitz continuous, 100
monotone, 101
nonexpansive, 107
null space of, 99
orthogonal projection, 107
projection, 107
range of, 99
strongly monotone, 101
uniformly elliptic, 132
weakly compact, 103

orthogonal projection, 222, 333
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parabolic variational inequalities
approximation of, 235

parabolic variational inequality
of the first kind, 146, 235
of the second kind, 146

partition, 208
quasi-uniform, 222
regular, 219

path-dependence, 45
PDE

elliptic, 131
perfect plasticity, 44, 60
perfectly-plastic problem, 4, 7
permutation symbol εijk, 9
plastic hardening, 47
plastic incompressibility, 53
plastic loading, 47, 54, 55
plastic multiplier, 59
plastic strain, 5, 48, 49, 51, 54

equivalent, 66
plastic strain increment, 5
plastic strain rate, 47
Poincaré inequality, 132
Poincaré–Friedrichs inequality, 119
Poisson equation, 125

Neumann problem for, 129
Poisson’s ratio, 32
polar conjugate, 81
polar function, 81, 86
polynomial invariance property, 214
positively homogeneous function,

73
predictor

consistent tangent, 291
elastic, 287, 294, 346, 347
modified elastic, 287, 297
secant, 288, 299
tangent, 290, 350

predictor step, 286
predictor–corrector algorithm, 282,

346
primal problem

fully discrete approximations,
280

spatially discrete approxima-
tions, 272

time-discrete approximations,
273, 282

primal problem Prim
stability, 172

primal variational problem, 4, 155
Prim1, 157
Prim2, 158, 310
Prim, 155

primal variational problem Prim1
existence and uniqueness of

solution, 171
primal variational problem Prim2,

171
discrete approximations, 279

primal variational problem Prim
existence of solution, 169

principal invariants, 11
principle of material frame indif-

ference, 36
principle of maximum plastic work,

57
projection operator, 99
proper function, 74
pseudopotential, 85

quasistatic, 61
quotient space, 130

rate-dependence, 46
rate-independence, 46, 48
reference configuration, 15
reference element technique, 218
reflexivity, 111
regularization technique, 303

a posteriori error estimate, 305
a priori error estimate, 305
convergence, 304

responsive map, 77
maximal, 77, 84

return mapping algorithm, 320, 346
Riesz representation theorem, 106
rigid-perfectly plastic beam, 91

saddle-point problem, 136
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safe load condition, 182
second law of thermodynamics, 35

Clausius–Duhem form of, 35
semidiscrete approximation, 4
seminorm, 98
sequence

convergence of, 98
limit of, 98

set
bounded, 99
closed, 98
closure of a, 98
compact, 103
complete, 99
dense, 99
weakly compact, 103

shear bands, 171
shear modulus, 32
slip lines, 171
Sobolev embedding theorem, 160,

165, 214, 218
Sobolev spaces, 7, 114
softening behavior, 42
space L(V,W ), 101
spatially discrete approximation,

238, 272, 279
stability, 317, 329, 330
stability postulate, 57
stiffening behavior, 42
strain

direct, 20
elastic, 46
plastic, 46
shear, 20

strain tensor, 18, 19
additive decomposition of, 50
infinitesimal, 21

stress problem
Dual1, 182
time-discrete approximation

Dual1k, 185
stress problem Dual1, 193, 195,

320
stress tensor, 25

Cauchy, 27

first Piola–Kirchhoff, 25
stress vector, 24
stress–strain relation

rate form of, 202
subdifferential, 75
subgradient, 75
support function, 75
surface traction, 24

tensor, 9
deviatoric part, 10, 31
fourth-order, 9
identity, 10, 11
magnitude, 9
scalar product, 9
second-order, 9
spherical part, 10, 31
trace of, 10

thermodynamic force, 40
thermodynamics, 34

first law of, 34, 39
second law of, 39

time-discrete approximation, 241,
254

of dual problem, 321, 327, 345,
352

total plastic dissipation, 66
trace, 116
trace operator, 115
trace theorem, 116

variational inequality, 6, 7
elliptic, 137
parabolic, 146

variational problems
mixed, 135

vector, 9
axial, 21
magnitude, 9

vectors
scalar product of, 9
tensor product of, 9
vector product of, 9

velocity, 24
viscoplasticity, 4, 48
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Wm,p(Ω), 114
Wm,p

0 (Ω), 116
W−m,p(Ω), 120
W s,p(Γ), 115
weak convergence, 74
weak formulation, 126
weak lower semicontinuity, 74

yield condition
von Mises, 156

yield criteria, 61

yield criterion, 5
anisotropic, 65
Tresca, 5, 63
von Mises, 5, 62, 67, 89

yield function, 4, 5, 60, 81, 86
canonical, 86, 92

yield surface, 5, 6, 52–54, 60
non-smooth, 6

Yosida regularization, 184
Young’s modulus, 32, 47



Interdisciplinary Applied Mathematics

1. Gutzwiller: Chaos in Classical and Quantum Mechanics
2. Wiggins: Chaotic Transport in Dynamical Systems
3. Joseph/Renardy: Fundamentals of Two-Fluid Dynamics:

Part I: Mathematical Theory and Applications
4. Joseph/Renardy: Fundamentals of Two-Fluid Dynamics:

Part II: Lubricated Transport, Drops and Miscible Liquids
5. Seydel: Practical Bifurcation and Stability Analysis:

From Equilibrium to Chaos
6. Hornung: Homogenization and Porous Media
7. Simo/Hughes: Computational Inelasticity
8. Keener/Sneyd: Mathematical Physiology
9. Han/Reddy: Plasticity: Mathematical Theory and Numerical Analysis


	front-matter
	1Preliminaries
	2Continuum Mechanics and Linear Elasticity
	3Elastoplastic Media
	4The Plastic Flow Law in a Convex-Analytic Setting
	5Results from Functional Analysis and Function Spaces
	6Variational Equations and Inequalities
	7The Primal Variational Problem of Elastoplasticity
	8The Dual Variational Problem of Elastoplasticity
	9Introduction to Finite Element Analysis
	10Approximation of Variational Problems
	11Approximations of the Abstract Problem
	12Numerical Analysis of the Primal Problem
	13Numerical Analysis of the Dual Problem
	back-matter

